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ABSTRACT

Turbulence in high-speed flows is an important problem in aerospace applica-

tions, yet extremely difficult from a theoretical, computational and experimental per-

spective. A main reason for the lack of complete understanding is the difficulty of gen-

erating turbulence in the lab at a range of speeds which can also include hypersonic

effects such as thermal non-equilibrium. This work studies the feasibility of a new ap-

proach to generate turbulence based on laser-induced photo-excitation/dissociation

of seeded molecules. A large database of incompressible and compressible direct

numerical simulations (DNS) has been generated to systematically study the devel-

opment and evolution of the flow towards realistic turbulence. Governing parameters

and the conditions necessary for the establishment of turbulence, as well as the length

and time scales associated with such process, are identified. For both the compress-

ible and incompressible experiments a minimum Reynolds number is found to be

needed for the flow to evolve towards fully developed turbulence. Additionally, for

incompressible cases a minimum time scale is required, while for compressible cases a

minimum distance from the grid and limit on the maximum temperature introduced

are required. Through an extensive analysis of single and two point statistics, as well

as spectral dynamics, the primary mechanisms leading to turbulence are shown. As

commonly done in compressible turbulence, dilatational and solenoidal components

are separated to understand the effect of acoustics on the development of turbulence.

Finally, a large database of forced isotropic turbulence has been generated to study

the effect of internal degrees of freedom on the evolution of turbulence.

ii



To my father,

my great inspiration who made this all possible.

iii



ACKNOWLEDGEMENTS

This work was supported by the Airforce Office of Scientific Research (Grant No.

FA9550-12-1-0443). The computational resources of Extreme Science and Engineer-

ing Discovery Environment (XSEDE), Texas Advanced Computing Center (TACC -

University of Texas at Austin), and Texas A&M Supercomputing Facility were used

to perform the simulations presented.

I would like to express my deepest gratitude to my advisor, Professor Donzis,

for guiding me through my PhD. His expertise in high performance computing and

fluid mechanics, combined with his dedication and ability to teach, have made him

the perfect mentor. It is hard to find the right words to express how grateful I am

for allowing me to be his first student. His extensive understanding of the physics

of turbulence, his constant pursuit for excellence, and the intellectual curiosity with

which he explores new aspects of the field have been a true inspiration. All the

aforementioned qualities, combined with his humility and work ethics, have made

working with him a privilege.

I am also thankful for the opportunity I had to interact with distinguished

scholars in the field of turbulence. A special thank goes to Dr. Rubinstein who I

had the opportunity of learning from at several conferences. I would also like to

thank Drs. Bowersox, Girimaji and North for being part of my committee and for

sharing with me their boundless knowledge in the different aspects of this work. I

am specially grateful to Dr. Girimaji for teaching me about turbulence inside and

outside of the classroom. The same goes to Dr. Bowersox who has helped me with

iv



the different aspects and complexities of hypersonic flows. Dr. Sánchez-González has
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CHAPTER I

INTRODUCTION

High speed flight is a recurring topic in the field of aerospace engineering. In

some instances it is unavoidable, like the case of re-entry vehicles. As vehicles in space

approach the earths atmosphere, they can be traveling at tens of times the speed

of sound. There is also great interest in hypersonic speeds for both space and air

travel, given flight times are drastically reduced. One of the major challenges faced

by hypersonic vehicles (scram-jets, re-entry) is heat insulation. High speeds typically

lead to extreme temperatures that are a real threat to the materials used (Walker

et al., 2008; Masaki & Yakura, 1969). Another challenge in air breathing hypersonic

vehicles is attaining efficient combustion. A solution to the former may come from

exchanges of molecular degrees of freedom, while the latter may be improved by

mixing enhancements from small scale turbulence (Buckmaster et al., 2012).

This study aims at providing fundamental understandings that can be used to

solve these problems from a fluid dynamics stand point, rather than improving the

materials used or injection techniques for enhanced mixing. We propose a new con-

cept to establish turbulence using photo-excitation of the molecules that comprise

the fluid. This concept was inspired by the experimental use of lasers to photo-

dissociate seeded molecules, whose fragments possess different degrees of thermal

non-equilibrium (TNE) which are then used to obtain measurements of temperature,

for example. Details on this technique can be seen here in Refs. (47; 46; 88; 89). In

this photo-dissociation process molecular fragments can have very large speeds. For
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example, NO2 excited with 355 nm produces fragments with velocities in excess of

(Hsu et al., 2009a) 1000 m/s. Diatomics such as Cl2 present velocities of about

(Booth et al., 2012) 1700 m/s. If the flow comprises enough seeded molecules, the

fragments may create a macroscopic perturbation which can in turn trigger turbu-

lence. This is even more so if the fluid itself is made up of molecules susceptible to

the photo-dissociation process just described.

Laser induced concentrated energy sources (LICES) may be a feasible method

for improving combustion in air-breathing hypersonic vehicles. Furthermore, there

are well known interactions between TNE and turbulent transport (Fuller et al.,

2014), so understanding these effects can help improve the efficiency of such grid, or

could lead to techniques for reducing translational temperature (Donzis & Maqui,

2016). Nonetheless understanding the complex interaction between grid generated

compressible turbulence and TNE is a remarkably ambitious project which must be

taken a step a time. Consequently the efforts to understand the complex physics

behind LICES is divided into three steps, each with its own milestone.

The first is understanding the physics behind grid (LICES) generated turbulence

in incompressible flows. This is a simplified version of LICES where there are no

thermodynamic effects and we call LIKES: localized intense kinetic energy sources.

There are vast amounts of literature of incompressible grid turbulence, so this first

step can help us validate the concept while understanding the main mechanisms

for generating turbulence based on concentrated energy sources such as LICES or

LIKES. The incompressible simplification also makes the problem computationally

more tractable. The second step is to add compressibility effects, and hence the
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additional complexity of interacting fluid and thermodynamic variables. This step is

focused on the feasibility of improving hypersonic combustion by LICES generated

turbulence. The last and final step is to add the effect of thermal non-equilibrium

to compressible turbulence. This could potentially lead to techniques for reducing

translational temperature in hypersonic vehicles. A background and literature review

with the main accomplishments in these fields will be given next.

I.A. Background and literature review: Grid generated turbulence

High-Reynolds number turbulent flows are observed in a wide variety of en-

gineered and natural systems. Due to the importance of our ability to predict and

control these flows, substantial efforts have been made over the decades to understand

their behavior and fundamental principles. As a result of the well-known complexities

of high-Reynolds number flows, most of our understanding has benefited from data

from physical laboratory experiments and computational simulations, each with its

own limitations and strengths. The accuracy of measurements in physical laboratory

experiments, and computational power in numerical simulations are two of the main

bottlenecks towards achieving higher realistic Reynolds numbers.

One of the first approaches to study turbulence dates back to as early as 1934 and

came in the form of grid turbulence in a physical laboratory experiment. The pioneer-

ing work of Simmons & Salter (92) utilized what is now known as a “passive” grid.

The name comes from the fact that a solid, non-moving grid is placed in a uniform

flow creating perturbations which grow in space to eventually become turbulence

further downstream. Following Simmons & Salter came the very influential paper
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by Taylor (99). Passive grids have proven to be very simple and effective in creating

homogeneous turbulence (Gence, 1983), thus widely used (11; 31; 50). Nonetheless,

they possess certain limitations, which among others include the achievable Reynolds

number and the persistent degree of anisotropy observed as turbulence decays. Since

most related theoretical work on turbulence assumes the flow to be in a state of

isotropy, even if only local, achieving this condition is fundamental for comparing

theoretical and experimental results.

A measure of the anisotropy of the flow downstream of the grid is the relation

between the streamwise and transverse root-mean-square velocity components u′/v′,

which is unity for a perfectly isotropic state. Grant & Nisbet (35) among others have

reported the issue of anisotropy in the flow behind a square mesh grid. Consistent

with other experimentalist, they found that the streamwise velocity fluctuations are

higher than transverse velocity fluctuations. Comte-Bellot & Corrsin (11) attempted

to overcome this issue by passing the flow through an axisymmetric contraction,

originally suggested by Prandtl (80). With a slight contraction of 1.27 to 1, the flow

remains isotropic with equal lateral and axial mean square components. However,

similar experiments with contractions (Uberoi & Mahinder, 1957) reveal that the

anisotropy returns. It was also observed that the turbulence resulting from passive

grids is fairly insensitive to the geometry and characteristics of the grid. Even though

there is an effect on the rate of decay of turbulence, the ratio of u′/v′ is independent

of geometry with no clear proclivity towards equipartition (Uberoi & Wallis, 1967).

The limitations of passive grids led to the introduction of “active” grids which,

as the name suggests, have movable parts or inject a secondary flow in the form of a
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jet with the main purpose of introducing momentum to the flow. Extensive research

has been published with this type of grids, with a focus on trying to achieve isotropic

turbulence at high Reynolds numbers. One of the first successful approaches to active

jet grids was that of Mathieu & Alcaraz (69) as described by Gad-el Hak & Corrsin

(38). They significantly increased the turbulence intensity compared to passive grids

but there were some limitations regarding the degree of isotropy in the flow. Gad-el

Hak & Corrsin (38) improved the homogeneity of the flow by introducing controllable

nozzles while retaining high turbulent intensity. Since then, a number of different

active grids have been used including oscillating grids (14), vibrating grids (91), and

rotating grids (74). Implementing an active grid devised by Hideharu (40), Mydlarski

& Warhaft (1996) span a range of Taylor Reynolds numbers (Rλ) from 50 to nearly

500. Some of the drawbacks with this type of grid are the increased complexity and

the difficulty in changing the grid to study possible geometrical effect. However, the

increased turbulence intensity from active grids show that it is possible to generate

high Reynolds number turbulence in reasonable-sized facilities.

In all the efforts mentioned above, an issue of practical relevance is the determi-

nation of the distance from the grid necessary to obtain fully developed turbulence.

Close to the grid, clearly the flow will not be turbulent, statistically isotropic or

even homogeneous. The distance from the grid at which the flow is considered fully

turbulent is often taken as the point where the decay of turbulent energy follows

a power law (Mohsen, 1990; Sinhuber et al., 2015), though other quantities have

also been used. Two quantities typically observed are the 4/5-th law in the inertial

range and the skewness of the velocity gradient, which have been documented in
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Refs. (98; 96).Nonetheless, there seems to be no systematic study of the effect of

different grid parameters on this location.

Our objective here is to study the generation of turbulence from localized intense

kinetic energy sources (LIKES). This configuration resembles the active jet grids

described above, or as we will see later, it also resembles grid turbulence passed

through a contraction. The mechanism is also present in the concept of generating

turbulence with LICES. Using this method to generate turbulence can provide several

advantages over the known traditional active and passive grids. The alignment of

the lasers can be easily modified to study the effect of grid geometry. Changing

the seeded molecules or the intensity of the lasers can also modify the strength of

the perturbations. This provides a wide range of easily modified parameters that

can be tuned according to user based needs. Furthermore, since the lasers can be

turned on and off, these can be dynamically activated to enhance turbulence and

may be useful for industrial applications. As turbulence small scales are required for

efficient mixing and combustion (Dimotakis, 2005), a potential application of this

concept is to improve efficiency of combustion in hypersonic air-breathing vehicles

such as scramjets, where streamwise vortices can increase macro and micro mixing

for improved hypersonic combustion (Buckmaster et al., 2012). This non-invasive

grid may increase mixing without increasing the overall combustor losses.

Even though there are numerous advantages and applications for this new con-

cept to generate turbulence, several questions arise with the practical implementation

of LIKES. The first and most important is whether realistic turbulence can be gen-

erated. Furthermore, if it is possible, can it be generated within the confinements of
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a laboratory wind tunnel? In order to answer these questions and study the physics

of this type of flow, direct numerical simulations (DNS) are used to analyze the

evolution of flows with LIKES. Direct numerical simulations can also provide more

insight on the physical processes that lead to the creation or shortcomings of grid

generated turbulence. In physical experiments it is difficult to obtain measurements

near the grid. This, however, is not a problem with DNS which in general can pro-

vide information as the flow evolves in both time and space. Although there is a

vast literature on both physical experiments of grid turbulence and DNS of isotropic

turbulence, there is virtually no literature on DNS of grid generated turbulence. The

numerical experiments presented here will allow us to study the feasibility of gen-

erating and controlling turbulence from intense localized sources of kinetic energy

as the one obtained from photo-excitation of molecules while at the same time fur-

ther understanding general physical mechanisms behind passive and active grids to

generate turbulence.

A detailed study of incompressible flows starting from concentrated kinetic en-

ergy sources will be given in the next following sections.

I.B. Background and literature review: Hypersonic combustion and tur-

bulence

Combustion of hypersonic air-breathing vehicles such as scramjets has been a

subject of study for several decades. Two of the earliest works to propose com-

bustion at supersonic speeds were that of Ferri (1960) and Dugger (1961). In a

scramjet, air at the inlet is compressed and decelerated from hypersonic to super-
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sonic speeds, where the fuel residence at the combustor is of approximately 1ms

(Ladeinde et al., 2009). Of course there are numerous difficulties associated with

achieving controlled combustion at such conditions. As summarized in the review

article by (Ferri, 1973), these issues include but are not limited to: performance of su-

personic combustion flame (Curran et al., 1996), complex interactions between fluid

dynamics and combustion, extremely short residence time in the combustor (Kumar

et al., 1989), and a rapid decay in mixing efficiency of supersonic flows compared to

subsonic (37; 3; 73; 32; 58).

Of particular interest here is the issue of mixing efficiency. A large number of

methods have been proposed for enhanced mixing in scramjet engines, most of which

can be found in the historical survey by (Seiner et al., 2001). These include both

passive and active mechanisms for controlled forced mixing of fuel and oxidizer. Some

of the most known passive methods include ramp fuel injectors, tabs, shock/shear

layer interaction and cavities. Ramp fuel injectors induce a pair of counter-rotating

streamwise vortices (Rogers et al., 1998) coupled with shock and expansion waves to

increase mixing. Both compression and expansion style ramps have been tested in

the literature. Stouffer et al. (1993) have shown that although compression ramps

provide larger vorticity and fuel/air mixing, expansion ramps yield higher combustion

efficiency from mixing at the small scales. The strong axial vorticity generated by

compression ramps tends to suppress the growth of transverse scales. Similar to ramp

style fuel injectors, tabs also introduce counter-rotation streamwise vorticity and lead

to separated flow. Grosch et al. (1997) have shown a large increase in mixing with

low performance losses when using numerous tabs. From linear theory, Ribner (1954)
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demonstrated that turbulence is amplified upon interaction with a plane shock wave.

A number of studies in this canonical configuration supported this conclusion (Lee

et al., 1997; Mahesh et al., 1997; Donzis, 2012). Even in more realistic settings, such

as a scramjet combustor, mixing was found to be greatly increased upon interaction

with oblique shocks (Menon, 1989).

Passive methods are practical solutions for increased mixing but they are typi-

cally constrained to specific flight conditions. On the other hand, the harsh environ-

ment of scramjet combustors makes active methods more challenging to implement.

Nonetheless, several authors have proposed these methods as potential candidates

for increased mixing in scramjets. Some of the active mixing methods include vibrat-

ing wires, piezoelectric actuators, pulsed jets, and acoustic excitation among others.

Vandsburger & Ding (1993) have shown that mixing can be doubled when placing a

wire across jet shear layer. Although difficult in practice, newer methods with wires

fixed at the nozzle exit, with the other end free to oscillate, suggest accelerated en-

ergy transfer to small scales through vortex shedding (Seiner et al., 2001). A similar

concept developed by Wiltse & Glezer (1998) uses piezoelectric actuated flaps at the

trailing edge of a nozzle. Driven at the resonance frequency, their measurements

show a notable increase in small scale turbulence.

In summary, small scale turbulence is greatly desired to achieve efficient mix-

ing and combustion (Dimotakis, 2005). Therefore, it is not surprising that all the

mentioned methods, both passive and active, attempt to accelerate the creation of

small scale turbulence structures. Some of the passive methods provide efficient

mixing without significant combustor losses, however these are typically fine tuned
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for a specific Mach number range. Active methods have the potential of increasing

small scale turbulence at a wide range of conditions, yet the feasibility of practically

applying these methods is questionable.

Implementing LICES might be a solution to the limitations of both active and

passive methods. Although active, LICES would require no movable parts within the

combustor. This new method can provide several advantages over the passive and

active methods available. The alignment of laser can be easily modified to provide

variable grid geometry for adaptable conditions. The lasers can also be pulsed to

generate acoustics at certain frequencies. As demonstrated by Bogdanoff (1994),

acoustic excitation can deliver shear layer instability waves for enhanced mixing

efficiency. This non-invasive grid may be actively controlled for changing conditions

without increasing combustor losses. While there are numerous advantages with this

new concept, several questions arise about the feasibility of such method. The most

important question is whether this type of grid can generate isotropic turbulence.

Additionally, one needs to address whether it can be tuned to trigger turbulence at

short distances such that it may be used for improving the efficiency of scramjet

combustors. Answering these questions for conventional active and passive grids has

been a subject of study for nearly a century, as described in the previous section.

There is vast literature on the main mechanisms leading to turbulence using active

grids for incompressible flows (De Silva & Fernando, 1994; Shy et al., 1997). However,

there is a very little work on grid turbulence where compressibility effects become

significant (M > 0.3), and even less in highly compressible hypersonic flows.

The early work of Honkan & Andreopoulos (1992) and Honkan et al. (1994)
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used shock tubes to study the interaction between upstream turbulence and normal

shocks. Briassulis et al. (2001) studied the main mechanisms leading to the cre-

ation of grid generated turbulence in weakly compressible flows. However, reaching

the transonic-supersonic region imposes several difficulties. As described by Zwart

et al. (1997), the flow behavior becomes extremely sensitive to geometry an supply

pressure in the range 0.7 < M < 1. Unsteady shocks develop in the test section

that affect the results and the measuring techniques. It is clear that generating grid

turbulence at hypersonic speeds is not a trivial problem, and hence the lack of liter-

ature. In the current work we propose studying this problem using direct numerical

simulations (DNS) which with the tremendous detail they generate, allow us to ob-

tain a large number of quantities that are extremely difficult or expensive to obtain

experimentally.

With DNS we may also study more complex physics behind a grid based on

LICES. The photo-excitation/dissociation of molecules introduces additional internal

degrees of freedom, such as vibrational and rotational, that lead to thermal non-

equilibrium (TNE). There are well known interactions between TNE and turbulent

transport (Fuller et al., 2014; Donzis & Maqui, 2016), so understanding the effects

on LICES can further help improve the efficiency of such grid. The numerical study

presented here will allow us to determine the feasibility of generating turbulence from

localized sources of energy while further understanding grid generated turbulence in

hypersonic flows.

11



I.C. Background and literature review: Thermal non-equilibrium and

turbulence interactions

In many flows, the molecular structure and state of the constituent fluid plays

a significant role on the macroscopic behavior of these flows. In such situations,

some molecular modes of energy, especially those associated with longer time scales,

may not be in thermal equilibrium and the flow is thus said to be in thermal non-

equilibrium (TNE). This situation is encountered in low-temperature glow plasmas,

flows behind shock waves and supersonic expansions and can be recreated in labo-

ratories with lasers to excite specific molecular modes (Rich & Treanor, 1970; Rich

et al., 1996). TNE has also a significant effect on reaction rates in reacting flows and

heat transfer characteristics in hypersonic vehicles. Although the asymptotic behav-

ior of simple steady laminar flows in TNE has been studied before (?), very few

studies have focused on the interaction of turbulent fluctuations with TNE. These

numerical (Liao et al., 2010) and experimental (Fuller et al., 2014) studies, nonethe-

less, shown strong coupling between them. However, no general or systematic study

is available to determine, for example, how the distribution of energy in different

modes is affected by turbulence and how this depends on turbulence statistics as

well as molecular properties. This is the thrust for the present study. Our objec-

tive here is to determine general statistical features of energy modes, in particular

molecular vibration of diatomic molecules, when the flow is turbulent and in TNE.

We show that, due to the non-linear nature of partially excited vibrational modes,

turbulent fluctuations create statistically steady states that, unlike laminar flows, do

not approach thermal equilibrium at long times. This has implications on the distri-
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bution of energy in different modes, namely, vibrational, translational and rotational

molecular modes.

If turbulence can be used to store energy in the vibrational or rotational mode,

rather than the translational mode, this has a big potential for heat reducing tech-

niques in hypersonic vehicles. For example, for a re-entry or a hypersonic vehicle

we may design a method such that a laser sheet foresees the molecules in the flow

before they come in contact with the vehicle. This could increase energy in vibration

and decrease the translational temperature. Furthermore, if a turbulent flow could

potentially store more vibrational energy than a laminar flow, we can simultaneously

use the LICES to create turbulence. Of course, this could have negative implications

on the drag of the vehicle, but the wide range of application of LICES are worth

noting.

I.D. Objectives of the present work

In this work we have propose to:

1. Implement localized intense kinetic energy sources (LIKES) in a massively

parallel incompressible Navier-Stokes code.

2. Generate a large database of incompressible flows based on LIKES and char-

acterize the evolution and transition to turbulence.

3. Understand the main mechanisms leading to turbulence based on LIKES.

4. Implement laser induced concentrated energy sources (LICES) in a massively

parallel compressible Navier-Stokes code.
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5. Generate a large database of compressible flows based on LICES and charac-

terize the evolution and transition to turbulence.

6. Understand the main mechanisms leading to turbulence based on LICES, in-

cluding the effect of thermodynamic variables and dilatational motions.

7. Understand the effect of thermal non-equilibrium in steady state isotropic com-

pressible turbulence.

This work is done in collaboration with the National Aerothermochemistry group

at Texas A&M University led by Dr. Bowersox, and the chemistry departments at

Texas A&M University and Texas Tech University led by Dr. North and Dr. Hase

respectively. The close interaction between the different collaborators has also been

a primary objective of this work. We have relied on the experimental evidence to

model the hydrodynamics of the photo-dissociation process as accurately as possi-

ble. In turn, our simulations provide the parameters for designing the laboratory

experiments of the current work presented.
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CHAPTER II

DIRECT NUMERICAL SIMULATIONS

In this chapter we describe the numerical schemes used and numerical imple-

mentation of the previously described problem. Direct numerical simulations (DNS)

of both incompressible and compressible flows are solved using two different numer-

ical schemes which will be described below. For incompressible flows, the nature

of the incompressible Navier-Stokes equations and the periodic boundary conditions

make pseudo-spectral methods the best approach to solve this problem. On the

other hand, the compressible Navier-Stokes, which use non-periodic boundary con-

ditions, are solved using compact-schemes. In this chapter we present the governing

equations along with the numerical scheme and initial conditions/forcing used to

model the photo-dissociation of molecules. The governing equations for thermal

non-equilibrium, which are coupled with the compressible Navier-Stokes equations,

are also shown.

In this chapter we also present a novel numerical method for implementing the

Helmholtz decomposition in non-periodic domains. This is done through a modified

windowing technique which will be presented in vast detail.

Although units are excluded for simplicity of the notation, all non-normalized

quantities in this chapter, as well as the following chapters, are in the International

System of Units (SI).
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II.A. Incompressible numerical scheme and initial conditions

In order to study the physics of the previously described problem, we performed

direct numerical simulations (DNS) in a periodic domain of size (2π)3 using a pseudo-

spectral code. This code provides unique resolution capabilities in terms of small-

scale resolution that allow studying the problem at an affordable computational cost.

The flows is assumed to be incompressible which is justified given the low speeds con-

sidered here and is consistent with the literature for turbulence generated with passive

and active grids. The latter, as shown below, presents important similarities with our

flow. During the photo-excitation process described above, however, this may not be

entirely satisfactory. Our interest, nonetheless, is in the fundamental hydrodynamic

processes that occurs shortly after photo-excitation, when the thermodynamic vari-

ables have reached equilibrium and the flow can be considered incompressible. Thus,

our results for this particular way of generating intense localized kinetic energy, are

valid shortly after the photo-excitation process which is assumed to be fast compared

to flow time scales.

Thus our simulations are based on the incompressible Navier-Stokes equations

given by

∂ui
∂xi

= 0

∂ui
∂t

+ uj
∂ui
∂xj

= −1

ρ

∂p

∂xi
+ ν

∂2ui
∂x2j

(2.1)

which are solved according to the Rogallo (1981) formulation: non-linear terms are

computed in physical space and aliasing errors are controlled by a combination of

truncation and phase shifting. Time advancement is performed with an explicit
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second-order Runge-Kutta scheme with a time step size set by a CFL condition.

The resulting time resolution is between one and two orders of magnitude smaller

than the average Kolmogorov time scale. Viscous terms are treated exactly by the

use of an integrating factor in wave-number space.

There are several numerical difficulties associated with implementing LIKES as

initial conditions. The primary issue arises from having contrasting concentrated re-

gions of very large velocities and a stagnant background. This creates large gradients

that are difficult or very expensive to treat numerically. This is discussed next.

II.A.1. Implementation of LIKES

To reproduce the intense kinetic energy sources generated by e.g. photo-dissociation

or jet grids, velocity perturbations must be introduced in concentrated regions or so

called LIKES, as shown in Fig. II.1. These perturbations are assumed to possess a

Gaussian distribution in the plane of the perturbation, which can be justified from ex-

perimental observations of the photo-dissociation process (North & Hall, 1997; North

et al., 1997). The fragment departure direction, which defines the perturbation ve-

locity vector, has for the most part an angular relationship with the polarization of

the photolysis light (Houston, 1987; Dixon, 1986). Therefore, it is expected that a

preferential direction of photo-dissociation will favor one component of velocity de-

pendent on the polarization of the laser. This is also the case for jet grids as well as

passive grids followed by a contraction, as will be seen in Sec. III. If perturbations are

implemented on a single component of the velocity field, namely the z-component,

then ∂ui/∂xi 6= 0 and continuity is not satisfied, thus a second component of velocity
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is needed to satisfy continuity. These two components of the velocity field can either

be introduced in physical or Fourier space. However, truncation of the highest wave

numbers, for aliasing control, when transforming from physical to Fourier space alters

the velocity field, smoothing the perturbations. Since the Fourier transformation of

a Gaussian is a Gaussian itself, this issue is resolved by introducing the perturbations

in Fourier space where continuity can also be satisfied trivially. As represented in

Fig. II.1, the LIKES are implemented along x cutting through the y − z plane and

perturbations are introduced in w. Continuity is then satisfied by introducing per-

turbations in u. In order to generate a random spatial distribution of perturbations

consistent with experiments, the velocity is constructed as a sum of Gaussians along

x with random amplitude and phases. The initial velocity field in three dimensions

becomes:

ŵ =

ny ,nz
∑

ly ,lz=0

β0
∑

β=1

±w0 × (2.2)

exp

[

−cxπ2k2x − ι2πksx(β)kx−cyπ2k2y −
ιlyky2π

ny

−czπ2k2z −
ιlzkz2π

nz

]

and the u component of velocity can then be trivially obtained from Eq. 2.1a in

Fourier space:

ûkx + ŵkz = 0 (2.3)

where ny, nz are the number of LIKES along y and z respectively. The total number

of LIKES, ny × nz, is Nl. β0 is the number of perturbations along x ( ± is to

alter between positive and negative perturbations for each β). To distribute the
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Figure II.1. Representation of nine LIKES as initial conditions (Nl = 9).

perturbations along x, ksx(β) takes a random number between 0 and 1 for each β.

kx,y,z are the wave numbers and cx,y,z determine the width of the Gaussian in x, y,

and z respectively. For all simulations, cy = cz which will be denoted as cyz (c
1/2
yz is

proportional to the radius of the LIKES in the y-z plane) . Increasing the value of

cx,y,z will lead to wider Gaussians and thus smoother gradients. When transformed

to physical space, a single perturbation (β = 1, ly,z = 0) follows the distribution:

wp = κ0 exp

(

− x2

4π2cx
− y2 + z2

4π2cyz

)

(2.4)

where κ0 = w0/(π
3cxc

2
yz)

1/2 is the amplitude of the perturbation. As mentioned

previously, a series of perturbations are randomly distributed along the LIKES in

the x-axis. For the present simulations, we use β0 ≈ 100 though the results presented

here are unaffected by this specific value.

For an a-priori estimate of the resulting velocity field accounting for the random

distribution of negative and positive perturbations along the LIKES, we need to
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approximate the number of perturbations that will overlap or cancel each other. The

degree of cancellation can be accounted for by assuming an effective number of active

perturbations, βe, instead of the total β, which we find in our cases to be close to

1/2. From the full width at half maximum, it is also possible to estimate the average

number of perturbation that would fill the length of the domain without overlapping

with other perturbations. Using standard probability concepts on binomial trials,

we find the probability of two overlapping perturbations to be p2 = βe!/(2!(βe −

2)!) (1/20)2 (1− 1/20)βe−2, while that of non-overlying perturbations is simply p1 =

1− p2. Integrating the velocity squared multiplied by these probabilities to estimate

the rms, the velocity distribution becomes:

w ≈ wp

(

(

Nlβe
(2π)3

∫ π

−π

∫ π

−π

∫ π

−π

(p1 + 4p2)w
2
pdxdydz

)1/2
)−1

w0

≈ κ exp

(

− x2

4π2cx
− y2 + z2

4π2cyz

)

(2.5)

where κ = αw0/(Nlc
1/2
x cyz(p1+4p2)βe)

1/2 is the estimated amplitude of the total sum

of perturbations and α = (26/π3)1/4. For simplification the error function involving

cx and cyz which appears after the integration has been dropped, as they are very

close to 1 when evaluated for all the cases. In summary, the initial velocity is a

function of several parameters, namely, w0, Nl, βe, and the width of the Gaussian cx

and cyz. However, in practice they cannot be chosen arbitrarily. For example, how

much energy we can introduce in the form of LIKES will depend on the maximum

gradient that can be resolved by the numerical scheme. The next section is dedicated

to determining this criterion.
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II.A.2. Convergence study

Introducing LIKES can be very challenging numerically. The nature of the

random localized perturbations creates very strong gradients that may be hard to

capture. To assess whether the numerical scheme can capture the imposed pertur-

bations one needs to perform a grid convergence study. For this, one first needs to

identify the parameters controlling the initial conditions and then relate these with

the grid spacing.

The four parameters that determine the initial velocity distribution are w0, Nl,

cx and cyz (β is constant for all cases, so it is not considered). All four control the

amplitude of the velocity perturbation while only the third and fourth determine

the width of influence. Increasing w0 or decreasing Nl will makes the amplitude of

the perturbation larger, while decreasing cx or cyz makes the distribution narrower.

Both changes will lead to stronger gradients in the initial condition. As shown

above, however, all the parameters can be accounted for in κ, which determines the

magnitude of w given w0, Nl, and cx,yz.

To determine the resolution needed to capture the maximum gradient, we con-

sider the worst case scenario. To do so, we need to understand where and in which

direction the maximum gradient occurs. Even though the narrowest Gaussians are

along x (cx < cyz), the accumulation of perturbations provides a significant amount

of cancellation between them that smoothens the gradients in x and yields an ef-

fective cyz < cx. With this in mind, and since from continuity û = kz/kxŵ, the

maximum gradient is found in the first component of velocity. However, we note

that the analysis below would apply equally well if the maximum gradient is in an-
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other direction by simply considering that particular gradient and direction in the

formulae that follow.

To guarantee adequate resolution for the sharpest gradient we must then have:

∂u

∂α

∣

∣

∣

∣

max

∼ κ

γ∆α
(2.6)

where κ is the amplitude of the perturbation, α is either y or z (due to symmetry

in the y-z plane), and γ is the number of grid points required to properly resolve

the gradient. Substituting ∆α = 2π/N (N is the number of grid points along y or

z) and the highest resolvable wavenumber (Rogallo, 1981) kmax =
√
2N/3 (on a N3

grid) into Eq. (2.6), and using Eq. (2.4) on the left-hand side, we rewrite Eq. (2.6)

as

G ≡
3kmax

√
cyz

2
(2.7)

where γ has been absorbed by the new parameter G, which quantifies the reso-

lution of the sharpest gradients generated by the Gaussians. The higher G, the more

points are used to resolve the sharpest gradients which are thus better resolved. Well

resolved simulations are then expected to performed on a grid resolution such that G

greater than some Gmin still to be determined. This convergence criterion is based on

kinematic considerations and, while necessary, is found to be insufficient to guarantee

convergence of the simulation.

Numerical experiments reveal that a second, dynamical, condition is required

for convergence. Velocity fluctuations at scales smaller than the Kolmogorov scale

are highly damped by viscous effects and are commonly assumed to have a negligible

contribution to the dynamics of flow. In non-dimensional form, one expects the
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Reynolds number based on these scales to be small. Similarly, the numerical grid

must be fine enough such that its Reynolds number is also small to account for

fluctuations in the order of the length scale η ∼ 1/kmax (Yakhot & Sreenivasan,

2005). If again as a worst case scenario we take the maximum velocity in the flow,

wmax, then the Reynolds number:

Rk =
wmax

1
kmax

ν
=

κ

kmaxν
(2.8)

must be smaller than some threshold Rmax
k presumed to be order 1. Suitable values

for Rmax
k and Gmin must be found through numerical experiments. To do so, the evo-

lution of the space averaged dissipation rate 〈ǫ〉 is used, as it is known to be sensitive

to small scale resolution. Several authors have used the peak of the dissipation in de-

caying flows, or the maximum mean enstrophy to determine the onset of turbulence.

Starting with a typical energy spectrum, Yamamoto & Hosokawa (1988) have shown

that by the peak of the mean dissipation, turbulence is fully developed based on the

? (K41) premise and the skewness of the velocity gradient, among other quantities.

Similar observations have been made by ??, making 〈ǫ〉 a reasonable choice for both

convergence and to determine the onset of fully developed turbulence. The latter

will be throughly studied. In Fig. II.2 we show typical evolutions of the average

dissipation rate for different resolutions. We can see that the value of the maximum

dissipation changes with resolution and so does the location of the peak with respect

to time. These two parameters, 〈ǫ〉∗ and τ ∗ thus, which will be studied extensively

below, appear as natural choice for determining when the simulation becomes grid

independent. The relative error is computed using the highest resolution available
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(Nmax):

ε〈ǫ〉∗ =

∣

∣〈ǫ〉∗N − 〈ǫ〉∗Nmax

∣

∣

〈ǫ〉∗Nmax

(2.9)

The error for these two quantities can be seen in Fig. II.3 as a function of G,

where an error below 2% is considered converged. From the plots it becomes apparent

that a Gmin in the order of 10 is required, but this does not guarantee convergence

as mentioned above. The two convergence criteria are then combined into Fig. II.4

to obtain the region of converged simulations.
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Figure II.2. Averaged dissipation rate for resolutions 643 to 5123, with
fixed initial conditions. Inset: peak of dissipation in linear scales.

By examining all the database we can establish that well resolved simulations

require Gmin larger than 5 and Rmax
k smaller than 10. The region on the bottom right

of Fig. II.4 contains all the converged simulations. Note that a few cases lie outside

of the convergence region which shows our criterion is slightly conservative, thus
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Figure II.3. Relative error for τ ∗ and 〈ǫ〉∗ as a function of G for different
initial conditions with varying kmax, w0, Nl, and cyz. Closed symbols satisfy
the Rmax

k criterion while open symbols do not. Horizontal dash-dot line
represents 2% error.
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Figure II.4. Convergence of mean dissipation. Squares have satisfied the
minimum error for τ ∗, while triangles have satisfied 〈ǫ〉∗. Closed circles
have satisfied both τ ∗ and 〈ǫ〉∗ criterion’s for convergence, while open
circles have not satisfied either. Vertical and horizontal dash-dot lines
correspond to Gmin and Rmax

k respectively.
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assuring convergence for all our simulations. In other words, all data here present

an error of less than 2%. Table II.1 contains all the simulations that satisfy the two

convergence criterion. The database has a wide range of viscosities, Nl, shape of

Gaussian cx,y,z, and grid resolutions up to 10243.

Case N
1/2
l κ ν ( 10−3) cx (10−3) cyz (10−3) N G Rk RI R∗

λ R2∗

λ

1 2 6.3 3 0.4 5.0 512 25.6 5.2 286 42 31

2 3 8.4 4 0.4 5.0 512 25.6 5.2 430 48 35

3 3 10.8 4 0.4 3.0 512 19.8 6.7 333 46 32

4 4 3.1 3 0.4 5.0 256-1024 12.8-25.8 1.3-5.2 286 44 33

5 4 7.0 3 0.4 1.0 512-1024 11.5-22.9 2.6-5.8 128 32 24

6 4 9.1 3 0.4 0.6 512 8.9 7.4 99 28 21

7 4 11.1 7 0.4 0.4 512 7.2 3.9 35 17 13

8 4 3.1 2 0.4 5.0 256-512 12.8-25.6 3.9-9.9 430 54 38

9 4 3.1 6 0.4 5.0 128-512 6.4-25.6 1.3-5.3 143 40 40

10 4 7.0 6 0.4 1.0 256-512 5.7-11.5 2.9-5.9 64 22 17

11 4 9.1 6 0.4 0.6 512 8.9 3.8 50 20 15

12 4 6.3 3 0.4 5.0 512-1024 25.6-51.2 2.6-5.3 573 61 40

13 4 14.0 3 0.4 1.0 1024 22.9 5.9 256 45 32

14 4 6.3 6 0.4 5.0 256-512 12.8-25.6 2.6-5.3 286 44 33

15 4 14.0 6 0.4 1.0 512 11.45 5.9 128 32 24

16 4 18.2 6 0.4 0.6 512 8.9 7.6 99 28 21

17 4 18.8 3 0.4 5.0 1024 51.2 7.9 1718 95 60

18 6 2.1 3 0.4 5.0 128-512 6.5-25.6 1.8-7.0 286 50 37

19 6 4.7 3 0.4 1.0 256-512 5.7-11.5 3.9-7.9 128 40 29

20 6 6.0 3 0.4 0.6 512 8.9 5.1 99 38 27

Table II.1. Table for converged simulations with number of lines Nl, ini-
tial perturbation κ, fluid viscosity ν, width of gaussian cx,y,z, number of
grid points along one direction N , convergece criterions G and Rk, initial
conditions Reynolds number RI , and Taylor Reynolds number evaluated
at τ ∗ and 2τ ∗.
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II.B. Compressible numerical scheme and forcing

The DNS code solves the full compressible Navier-Stokes equations using com-

pact finite differences of sixth-order (Lele, 1992). The compressible Navier-Stokes

equations can be written as:

∂ρ

∂t
+

∂

∂xi
(ρui) = 0 (2.10)

∂

∂t
(ρuj) +

∂

∂xi
(ρujui) = − ∂

∂xi

[

pδij − µ

(

∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij
∂uk
∂xk

)]

+ ρfu, (2.11)

∂(ρe)

∂t
+

∂

∂xi
(ρeui) =

∂

∂xi

[

−pδijuj + k
∂T

∂xi

]

+ σijSij + ρfe (2.12)

where, ρ is density, ui is the i
th component of velocity, p is pressure, e is internal

energy per unit mass, T is temperature, k is thermal conductivity, and f is an

additional forcing term implemented through velocity or internal energy fu and fe

respectively. Sij = 1/2(∂ui/∂uj + ∂uj/∂xi) is the strain rate tensor, and the σij is

the viscous stress tensor given by:

σij = µ

(

∂ui
∂xj

+
∂uj
∂xi

− 2

3
δij
∂uk
∂xk

)

(2.13)

where the viscosity µ has a power law dependence based on temperature following

Sutherland’s Law, and the internal energy is related to temperature through the

perfect gas law. The non-linear terms are computed using a skew-symmetric formu-

lation (Blaisdell et al., 1996; Ducros et al., 2000) , and time advancement is perform

with an explicit third-order low storage Runge-Kutta scheme (Williamson, 1980).

The time step size is controlled with a Courant Friedrichs Lewy (CFL) condition.
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Further details on the numerical as well as computational aspects of the code can be

found in Jagannathan & Donzis (2012); Donzis & Jagannathan (2013); Jagannathan

& Donzis (2015).

The additional forcing term f is used to introduce the LICES. These are in-

troduced at t = 0 as initial conditions and then at regular time intervals specified

through a forcing frequency Hf . This parameter is introduced as an additional

control parameter for a LICES grid as lasers can be turned on and off in actual

experiments. The nature of the strong perturbations introduced by the LICES im-

poses several numerical difficulties. The primary issue arises from having contrasting

regions of concentrated large velocities on a stagnant background. This creates large

gradients that are difficult or very expensive to treat numerically. The following sec-

tion will describe how the LICES are numerically implemented to provide converged

statistics.

II.B.1. Implementation of LICES

From experimental observations of the photo-dissociation process (North & Hall,

1997; North et al., 1997), the area of influence of velocity or temperature perturba-

tions may be approximately described by:

α = αm − αm/(1 + exp[g (b−
√
x2)] (2.14)

where αm is the magnitude of the perturbation, b is the affected width, and g deter-

mines the gradient between the unaffected region and the maximum perturbation.

Both b and g are based on inspection of vibrationally excited nitric oxide (Sánchez-

González et al., 2012a,b), although these may be modified for other molecules. To
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reproduce a grid based on LICES, perturbations perpendicular to the x-z plane are

randomly distributed along lines in x and z. The number of lines, or namely LICES,

along x and z are nx and nz, with the total number being Nl = nx+nz. Throughout

the chapter the subscript l corresponds to quantities evaluated at the LICES.

The velocity uil and temperature Tl along the LICES may then be described by:

αil = αrefi+ (2.15)

∑nx

lx=1



αmi
− αmi

1 + exp
[

g
(

b−
√

(y − yl)2 + (z − zl(lz))2
)]



wx(lx) +

∑nz

lz=1



αmi
− αmi

1 + exp
[

g
(

b−
√

(x− xl(lx))2 + (y − yl)2
)]



wz(lz)

where α is either velocity or temperature, αref is the reference value, xl and zl are

the location of each LICES in the x and z planes, and yl is the location of the grid

in y, which for the simulations presented is at π/4 away from the inlet. The random

distribution along each LICES is given by a sum of ζmax sine waves described by:

wx,z =

ζmax
∑

ζ=1

(

κmax
∑

κ=1

sin [κx+ rnd(κ, ζ)]

)

(2.16)

where κ is an integer to determine the frequency, with upper bound fixed by κmax.

The phase shifting is provided by rnd, a random number between 0 and 2π which

changes for each ζ and κ, as well as for each lx and lz such that no two LICES have

the same random distribution. For the velocity perturbations w varies between -1

and 1, while for the temperature perturbations it varies between 1 and 1.15, such

that fluctuations are 15% of Tm. A graphical representation of a grid thus gener-

ated can be seen in Fig. II.5. Applying these perturbations involves having very
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large gradients and strong fluctuations in both fluid and thermodynamic variables.

It is therefore crucial to asses whether the numerical scheme used can capture accu-

rately the imposed perturbations. The following section will describe the resolution

criterion to guarantee properly resolved simulations.

y

x

z

Ly

yl

xl(lx = 1)

xl(lx = nx)

zl(lz = nz)

zl(lz = 2)

Figure II.5. Schematic of grid based on LICES with nx = 4 and nz =
4. Each red line represents one LICES at a particular xl or zl location
(dimensions not to scale).

II.B.2. Convergence study

Representing the strong fluctuations in velocity and temperature from the photo-

dissociation of molecules is a very challenging numerical problem. The perturbations

create very large gradients in both velocity and temperature. Thus, one needs to

perform a numerical study to guarantee grid converged results. Furthermore, it

would be useful to find resolution criteria that can, a priori, identify appropriate

simulations parameters for a given condition. This is our purpose next.

30



With the distribution proposed in Eq. (2.16) the parameters that have a first

order effect on the resolution are: um, Tm, g, and b. For the functional forms of the

perturbations and the values of κmax used, one finds that the largest gradients will

scale with the parameter g.

Following II.A.2 a first requirement for a simulation to accurately resolve regions

of intense but concentrated fluctuations is to require the grid spacing ∆x to be small

enough to capture the largest gradient imposed. Formally this can be expressed as

umax/∆x ∼ (∂u/∂x)max where umax is the largest velocity and (∂u/∂x)max is the

largest gradient imposed at the LICES. Using Eq. (2.14) we can compute the maxi-

mum gradient imposed as well as the maximum velocity to form a non-dimensional

resolution parameter:

G ≡ 2Nx

π g
(2.17)

which has to be larger than some minimum value. This kinematic parameter, how-

ever, while necessary is found to be insufficient to guarantee converged simulations

from extensive analysis of our DNS database. Consistent with II.A.2, a second dy-

namic parameter was necessary to assure accuracy.

This dynamic parameter was found to take the form of a Reynolds number

using the parameters that define the LICES. Extensive analysis of our DNS database

suggest that the appropriate resolution Reynolds number can be defined as:

Rk =

√
K0 ∆x

ν(〈T 〉l)
(2.18)

where K0 = 1/2 〈u21 + (u2 + uref2)
2 + u33〉l is the total kinetic energy of the system at

t = 0. Angular brackets are used for spatial averages, where the subscript indicates

the location. In this case, 〈〉l indicates that the averages are taken over volume
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occupied by the LICES. If averages are taken along y over x − z planes 〈〉y will be

used. Similarly for 〈〉x and 〈〉z.

To approximate the energy introduced strictly based on initial conditions, the

mean velocity 〈u〉l can be taken as the integration of the distribution Eq. (2.16) in

the y − z plane over the area affected by the lines. Simplifying this analysis to a

single line, the mean becomes:

〈ul〉 ≈ uref +
1

πr2l

∫ ∞

−∞

∫ ∞

−∞

um − um

1 + exp
[

g
(

b−
√

y2 + z2
)] dy dz

=
−2πumLi [2,− exp[g b]]

π(rl g)2
(2.19)

where the Li is the Polylogarigthm function Li[n, k] ≡ ∑∞
k=1 z

k/kn and rl is the

radius of the LICES where the perturbation is is greater than 1% of the maximum

um. Solving for rl and substituting back into Eq. (2.19), the mean velocity becomes:

〈ul〉 ≈ uref + um − um

1 + exp



g



b−
√

(g b+ log [99])2

g2









(2.20)

The length scale in Eq. (2.18) taken to be the grid spacing ∆x = Lx/Nx, where

Nx is the number of grid points along x. For all the simulations the grid spacing is

the same in all directions, that is, ∆x = Lx/Nx = ∆y = Ly/Ny = ∆z = Lz/Nz. The

kinematic viscosity is formed using Sutherland’s Law for viscosity with the mean

temperature of the LICES and reference density, assuming the instantaneous change

of density is small:
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ν(〈Tl〉) =
(

Cv1(Tref + 〈Tl〉)3/2
(Tref + 〈Tl〉) + Cv2

)

/

(

pref
R 〈Tl〉

)

(2.21)

where Cv1 and Cv2 are Sutherland’s Law coefficients, Tref and ρref are the refer-

ence temperature and density of the flow, R is the universal gas constant and 〈T 〉l

is calculated using Eq. (2.20) with temperature instead of velocity.

To establish the convergence criterion a suitable variable must be chosen to asses

grid convergence. Since variables dominated by small-scale activity such as velocity

gradients or dissipation are more sensitive to resolution effects, a natural candidate

is the averaged dissipation rate 〈ǫ〉. The relative error can be computed using the

highest resolution available to approximate the exact value.

ε〈ǫ〉 =
|〈ǫ〉N − 〈ǫ〉Nmax

|
〈ǫ〉Nmax

(2.22)

The error for mean dissipation rate εǫ as well as that for mean turbulent kinetic

energy εK , similarly defined, can be seen in Fig. II.6. The error for mean dissipation

rate appears to collapse for all simulations as ∼ R3
k. The error for K shows more

spread than the dissipation rate, +but it is approximately two orders of magnitude

smaller for all values of Rk. Thus we consider simulations to be grid converged if εǫ

is below 2%, which corresponds to Rk . 40. DNS also demonstrates that satisfying

this condition for Rk simultaneously satisfies the kinematic condition for G.

II.C. Thermal non-equilibrium governing equations

In order to study the effects of thermal non-equilibrium, we may treat diatomic

molecules as a harmonic oscillator, where the evolution of vibrational energy of a
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Figure II.6. Error of mean dissipation rate and turbulent kinetic energy as
a function of resolutions Reynolds number Rk for simulations with differ-
ent 〈ul〉, 〈Tl〉, g and N . Circles correspond to εǫ, while squares correspond
to εK.

fluid element convected by the macroscopic velocity ui can be written as (Hirschfelder

et al., 1954):

∂(ρev)

∂t
+
∂(ρevui)

∂xi
=

∂

∂xi

(

D
∂ev
∂xi

)

+
ρ

τv
(e∗v − ev) (2.23)

where ui is the advecting velocity field and D is the diffusion coefficient. The

diffusion coefficient is taken to be the same as that for translational energy, which

may be written in terms of the Prandtl number Pr as:

D =
µγ

Pr
(2.24)

where γ is the ratio of specific heats. The last term in Eq. (2.23) represents the

exchange mechanism between translational and vibrational energy modes according

to Landau-Teller relaxation (Landau & Teller, 1936). From quantum mechanics, the
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vibrational energy per unit mass for harmonic oscillators in thermodynamic equilib-

rium with translational temperature T is given by

e∗v =
Rθv

eθv/T − 1
(2.25)

where θv denotes the characteristic vibrational temperature and R is the universal

gas constant. The translational and rotational energies are assumed to be in equi-

librium, which is justified given the relatively small number of collisions needed for

equilibration (Hirschfelder et al., 1954). We denote the combination of both energies

as e = e∗t + e∗r = (5/2)RT , where the asterisk is dropped in e for simplicity of the

notation. τv corresponds to the characteristic relaxation time, which can also be

computed from theoretical considerations as:

τv =
cτv1
p
e(c

τv
2

/T )1/3 (2.26)

where cτv1 and cτv2 are constants which depend on the molecular system (Hirschfelder

et al., 1954). As in past studies (e.g. Olejniczak & Candler, 1995; Bertolotti, 1998),

Eq. (2.23) is solved along with the compressible Navier-Stokes equations Equa-

tions (2.10) to (2.12). For these simulations, compact finite differences of tenth

order with penta-diagonal system of equations are used. Numerical details of the

simulations can be found in (Jagannathan & Donzis, 2015).

To reach a state of stationary homogeneous isotropic turbulence, a stochastic

forcing is used at the largest scales using the solenoidal (SF) and dilatational (DF)

modes in Eq. (2.11), as well as a combination of SF with stochastic forcing also in

the internal energy equation Eq. (2.12) (EF). Details on the specifics of the forcing

may be found in (Donzis & Jagannathan, 2013). Purely solenoidal forcing (SF)

35



is obtained with s = 1; purely dilatational forcing (DF) is obtained with s = 0.

The reason for using multiple forcing schemes is to assess universal aspects of the

flow as well as to reach regimes difficult to access otherwise such as those with very

strong temperature fluctuations enabled by EF. To maintain a statistically steady

state, energy is removed from the system uniformly so that the mean temperature

is kept constant as in (Donzis & Jagannathan, 2013). Consistent with results in the

literature (e.g. Wang et al., 2010), our simulations show that results are insensitive

of the details of the energy removal mechanism (Jagannathan & Donzis, 2015).

II.D. Numerical computation of Helmholtz decomposition: Windowing

Understanding the effect of compressibility in turbulent flows can further help

understand the different energy exchange mechanisms that enhance or inhibit turbu-

lence. It is often useful to isolate compressibility effects using the so-called Helmholtz

decomposition which separates the velocity field into a dilatational and a solenoidal

component. In the absence of boundary effects or periodic boundary conditions, the

velocity field may be written as:

u = us + ud (2.27)

where the solenoidal component us = ∇×ψ satisfies ∇·us = 0, while the dilatational

ud = ∇φ satisfies ∇×ud = 0 (Sagaut & Cambon, 2008). This decomposition can be

trivially done in Fourier space, where the Fourier transform of us, ûs(k) is orthogonal

to the wave number vector k, and ûd(k) is parallel to k. The variance of u, which

is related to the kinetic energy, can also be split into a solenoidal and dilatational

part, where the ratio of dilatational to total velocity variance: χ = 〈udiudi 〉∗/〈uiui〉∗
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provides a measure of compressibility at the large scales, or energy containing range

(Lele, 1994; ?; ?). This decomposition has been vastly used in literature for ho-

mogeneous compressible box turbulence with periodic boundary conditions (Lele,

1994). However, a much more challenging situation is to perform such a decompo-

sition in a non-homogeneous flow. This is a well known open problem (Sagaut &

Cambon, 2008). In the absence of periodicity, the velocity field may not be trans-

formed to Fourier space without introducing large errors at high wavenumbers from

the discontinuity that appears at the boundaries of the non-periodic direction. In

the next section we propose a new method that allows for Helmholtz decomposition

in non-periodic domains. The method we propose is based on classical windowing

techniques, such as the Tukey or Blackman, used for signal processing. A detail

description of the method and error study follows in the next section.

II.D.1. Windowing

There has been substantial work in the field of signal processing devoted to win-

dowing of signals. Fourier series can represent any signal as a sum of sines and cosines,

where the signal is of infinite length. When we have finite length signals, Discrete

Fourier transforms must be used to recover the information of the signal. Discrete

Fourier transforms, commonly implemented as Fast Fourier Transforms (FFT) re-

quire the signal to be periodic, such that it can be repeated to approximate an infinite

signal. When a signal is not periodic, this procedure will introduce discontinuities

at the boundaries which lead to spectral leakage (Harris, 1978) and consequently the

appearance of artificial frequencies. To avoid this discontinuity, the signal can be
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made periodic by matching the function value at the boundaries. This is most easily

done by forcing the boundaries values and their derivative to zero which is simply

implemented by multiplying the function, say f , by a “window” function wi. The

signal to be transformed to Fourier space is now f(y)wi(y), when transformed along

the y axis. A detailed summary of windows and their properties can be found in

Harris (1978). A classical window is the Tukey window, which may be expressed as

(Geckinli & Yavuz, 1978):

wi(y) =















1 |y| < βπ

1

2
+

1

2
cos

( |y| − βπ

1− β

)

βπ 6 |y| 6 π
(2.28)

for a domain of Ly = 2π with origin at 0 (from -π to π). The parameter β determines

the amount of domain windowed as well as the smoothness of the transition from 1

to 0 close to the boundaries, as can be seen from Fig. II.7(left) where two different

β are shown. For simplicity we will call the left and right boundaries of the domain

yin and yout respectively, and define ywi1 = yin + βπ and ywi2 = yout − βπ, which

represent the starting regions for the window. We apply the window along y where

the velocity field is non-periodic by ui(x, y, z) = ui(x, y, z)wi(y). A typical windowed

velocity field is shown in Fig. II.7(right). After a window is applied, the velocity field

becomes periodic and can be transformed to Fourier space such that the Helmholtz

decomposition may be applied.

One way of assessing how much windowing distorts the original signal is by com-

puting, for example, velocity gradients in Fourier space, transforming them back to

physical space and comparing the results to velocity gradients computed in physical
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Figure II.7. Left: Tukey window with β =0.8 (blue) and β =0.9 (red).
Right: window applied to sample velocity at a particular x and z location.
Inset shows the discontinuity generated when the signal is repeated in
space and the effect of windowing.

space using high-order differential methods. We use sixth order compact schemes, as

described by Lele (1992). Compact schemes offer spectral-like resolution and have

been widely used in literature for turbulent flows (e.g. Lee et al. (1991); Petersen &

Livescu (2010)).

To compare the gradients computed with spectral methods (with windowing)

and compact schemes, a segment of 2π is taken at the end of the domain along the

axial (y) direction, such that the domain is of size (2π)3. The last segment length

of 2π is chosen as the flow is turbulent, or nearly turbulent at this location, though

other locations have been tested and results are still consistent.

Applying any classical windowing method forces the velocity field at the inlet

and outlet to 0. Consequently, the variance of velocity and velocity gradients over

the planes where the windowing is effective is reduced. To understand how the

velocity field is modified by windowing, we compute the error for the variance of

velocity gradients between spectral methods, after windowing is applied, and sixth
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order compact schemes. Fig. II.8 shows the relative error for the variance of velocity

gradients. The first and third components of velocity are periodic, therefore the error

between spectral and compact schemes should be zero if no windowing is applied

(β = 1). On the other hand, for β = 1, the error will be largest for the second

component due to the effect of spectral leakage. Decreasing β will reduce the error

on the second component, but will introduce error on the first and third. This is so

because all velocity fluctuations in the x-z plane go to zero at the boundaries. From

Fig. II.8 we find the minimum error for ∂/∂x2 at approximately β = 0.8 for u1 and

u3 and at β = .75 for u2.
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Figure II.8. Relative error for variance of velocity gradients
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between spectral and sixth order compact schemes for different β using
the Tukey window. Different colors represent j = 1 (blue), 2 (black), 3
(red), and line styles i = 1 (solid), 2 (dash-dot), 3 (dashed). Left and right
correspond to two cases with different Reynolds number.

With other classical window methods, such as the Blackman, we have seen sim-

ilar results. With conventional windows, where the derivatives at the boundaries are

matched by taking the values to zero, the variance over the entire plane is drastically

40



reduced. The velocity fluctuations in the x-z plane goes to zero at the boundaries.

Therefore, applying a window in the y component also has a large impact on gradi-

ents along the x and z components. As the error decreases along y, it increases along

the other two components, making it hard to find an adequate β. To minimize the

effect of reduced fluctuations in x and z, we propose a new windowing technique.

Instead of matching the derivative at the boundaries by forcing the velocity to zero,

we fit a cubic polynomial between ywi2 and ywi1 for each point on the x-z plane. The

proposed window can be written as:

wi(x, y, z) =















1 |y| < βπ

c1(x, z)ξ(y)
3 + c2(x, z)ξ(y)

2 + c3(x, z)ξ(y) + c4(x, z)

ui(x, y, z)
βπ 6 |y| 6 π

(2.29)

for a domain of Ly = 2π with origin at 0 (from -π to π), where ξ is a transformed

y coordinate. The transformed y coordinate ξ shifts the first half of the domain by

+π, from the inlet to Ly/2, such that it connects the outlet and inlet. The effect of

using ξ instead of y is that the discontinuity will appear in the middle of the domain

as oppose to the inlet and outlet, as shown in the inset of Fig. II.9b.

In order to match the velocity as well as the derivative of the function at the two

boundaries one obtains four equations for the four unknown coefficients in Eq. (2.29).

The resulting system is then:
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Right: window applied to sample velocity at a particular x and z location.
Inset shows the velocity as a function of the transformed coordinate ξ and
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for each x and z, such that the value and derivative at ywi1 and ywi2 are matched with

the original velocity field. This minimizes the effect of reduced variance in the x-z

planes where the window is effective. With this windowing technique, the relative

error for derivatives along x and z is nearly constant and below 2% from β = 0.8 to

β = 0.98. Similarly to the Tukey window, the error for derivatives along y decreases

with decreasing β. However, the minimum is now found to be at approximately β =

0.9, and consistent for the three components of velocity. This windowing method has

also shown to be consistent for different set of initial conditions as seen in Fig. II.10.

Applying this new windowing method with β = 0.9 bounds the error for the
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between spectral and sixth order compact schemes for different β using
the cubic window. Different colors represent j = 1 (blue), 2 (black), 3
(red), and line styles i = 1 (solid), 2 (dash-dot), 3 (dashed). Left and right
correspond to two cases with different Reynolds number (same simulations
as Fig. II.8).

variance of velocity derivatives to approximately 2%, independent of initial conditions

and domain location. We may then apply the Helmholtz decomposition to study the

effect of dilation on the large scales.
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CHAPTER III

TURBULENCE GENERATION IN INCOMPRESSIBLE FLOWS

III.A. Flow evolution

The flow evolution towards a fully turbulent state will depend on a number of

parameters characterizing the simulations and initial conditions. These are sum-

marized in Table II.1. Some will have a first order effect, while others are not as

determinant in the evolution. The next few sections will try to address what the

dominating parameters are, and how energy is re-distributed from the LIKES to the

rest of the domain to create fully developed turbulence.

III.A.1. Characteristic time scales

A typical evolution of the mean dissipation and the Taylor’s Reynolds number

is shown in Fig. III.1. Initially, independent of how high the Reynolds number is, the

flow is not turbulent. It has not evolved sufficiently to forget the initial condition

and create all the relevant scales of motion that characterize such a flow. From

Fig. III.1a, we find that before the mean dissipation starts to decay, it peaks at

a characteristic time scale. We call this time τ ∗, which we find, depends on the

initial conditions and flow properties. It will be shown in future sections that the

maximum dissipation becomes an important parameter in the evaluation of the onset

of turbulence, consistent with results in the literature (Yamamoto & Hosokawa, 1988;

?; ?). The maximum dissipation and the corresponding Rλ are marked on Fig. III.1
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as 〈ǫ〉∗ and R∗
λ respectively.
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Figure III.1. Evolution of 〈ǫ〉 and Rλ for two cases with different viscosity,
Nl, and initial perturbation. Solid lines correspond to case 5 from Table
II.1 while dashed lines correspond to case 18. Point of maximum averaged
dissipation marked on both plots (τ ∗).

An objective of this chapter is to identify the transition of the flow to fully

turbulent. There are several measures to determine such a condition, including

skewness of the velocity gradient, root mean square velocity ratios, and isotropic

spectra relations among others which are studied next.

III.A.1.a. Velocity and velocity gradients

To quantify the effectiveness of LIKES to generate turbulence we now focus

on statistics widely used to characterize turbulent flows behind physical grids as

well as other canonical flows. One measure of the energy transfer for large to small

scales and the generation of vortical motions is the skewness of longitudinal velocity

gradients (Sux ,Svy ,Swz), which for fully developed turbulence approaches the value
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of (Tavoularis et al., 1978; Sreenivasan & Antonia, 1997) -0.5. The evolution of Sux

in our simulations is seen in Fig. III.2 for two representative cases. Again, marked in
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Figure III.2. Evolution for skewness of the velocity gradient Sux left and
ratio of root mean squared velocities right. Same initial conditions as
Fig. III.1. Colors on right figure correspond to u′/w′ (red) and v′/w′

(black). Horizontal dash-dot lines correspond to fully developed isotropic
turbulence.

black circles are the corresponding τ ∗ for both cases. At the peak of the dissipation,

we see that only one of the cases has reached Sux ≈ −0.5. This indicates that τ ∗ is

not in general a measure of when a fully developed state has been achieved. As we

will see shortly, however, τ ∗ is an indicator provided some conditions are satisfied at

t = 0.

The ratio of the root mean squared velocities (denoted by a prime), shown

in Fig. III.2b, can also be used to study large scale anisotropy. Initially, the y-

component of velocity is zero and so is the ratio v′/w′. On the other hand, there

is an initial perturbation in the x-component of velocity to satisfy continuity, so

u′/w′ 6= 0 at t = 0. Two different behaviors can be seen in the figure, for u′/w′ and
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v′/w′ respectively. While u′/w′ asymptotes at unity, v′/w′ asymptotes at approx-

imately 0.8 after τ ∗, a departure also observed in experiments (11; 38; 74) due to

the inhomogeneity caused by the initial conditions. Given that the two simulations

shown have different initial conditions, it appears that the trend to isotropy at all

scales will depend on these, and that τ ∗ will not always be sufficient to guarantee

fully developed turbulence.

III.A.1.b. Spectra and isotropy

If realistic turbulence is established at t = τ ∗, it is expected that the flow

acquire also structural signatures of fully developed turbulence. For example, we

can expect the three-dimensional spectrum to approach, under K41 (?) scaling, that

of isotropic turbulence at the same Reynolds number. Fig. III.3 shows the spectra

for two simulations (a and b) with different initial conditions at four different times

in the evolution of the flow, namely t = 0, 0.1 τ ∗, and 2 τ ∗. The difference between

the simulations is the Reynolds number based on the initial conditions RI , which will

be presented in the following section. For now we will focus on Fig. III.3b, which has

the highest RI . Initially the spectrum is defined by the initial conditions and is thus,

not expected to be universal in the sense of K41. However, as the flow evolves in time

and reaches τ ∗ it collapses with the spectrum for isotropic turbulence (dashed-dot)

from a steady state simulation using stochastic forcing (e.g. Refs. (25; 34)), consistent

with K41 small-scale universality. Since it is a relatively low Rλ flow, there is not a

well defined inertial range.

Furthermore, if turbulence is expected to acquire a universal behavior indepen-
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Figure III.3. Spectra for case 11 (left) with RI ∼ 50 and case 12 (right)
with RI ∼ 573 at four different times: Initial conditions t = 0 (black), 0.1 τ ∗

(magenta), τ ∗ (blue), 2 τ ∗ (red). The dissipation and Taylor’s microscale
is the instantaneous for each case. For comparison to forced steady state
simulations, the dashed curve is a Rλ ∼ 38 with 1283 resolution.

dent of the mechanism of energy injection or initial conditions in the case of decaying

turbulence, it is commonly accepted that turbulence should evolve towards a state

of statistical isotropy (Monin & Yaglom, 1975). Since scales comparable to the char-

acteristic scales of the forcing mechanism may always have a signature of some of

the geometrical features of this forcing, isotropy is generally only expected at small

scales. Thus, different indicators of anisotropy have been used in the literature to

determine how (an)isotropic different scales are at a given time. For example the dif-

ferent components of the one-dimensional energy spectra can be related to each other

and to the three-dimensional energy spectra by isotropic relations (Monin & Yaglom,

1975). For fully isotropic turbulence, the longitudinal energy spectrum E11(k1) can

be related to its transverse counterpart E22(k1) according to (79):

E22(k1) =
1

2

(

E11(k1)− k1
dE11(k1)

dk1

)

(3.1)
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All longitudinal componentsE11(k1), E22(k2), E33(k3) should be equivalent for isotropic

turbulence. From Fig. III.4, we observe that E22(k1) from DNS becomes close to

Eq. (3.1) computed using E11(k1) also from DNS, at τ ∗ and even closer at 2τ ∗. It

is also seen that all longitudinal components of the energy spectra are similar at τ ∗.

All the components collapse in the dissipative range. However, as expected, there

are some disparities at large scales even for latter times.
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Figure III.4. Left: one dimensional transverse energy spectra from DNS in
solid, and from isotropic relation Eq. (3.1) using longitudinal counterpart
in dash. Right: longitudinal energy spectra E11(k1) (solid), E22(k2) (dash-
dot), E33(k3) (dash). Different colors correspond to different times t = 0
(black), τ ∗ (blue), and 2 τ ∗ (red). Dissipation and Taylor’s microscale is
the instantaneous for each case. Both plots correspond to case 12 with
RI ∼ 573. Inset on both figures is a close-up view of the same quantity.

The anisotropy at large scales, is widely quantified by the departures of the

Reynolds stress tensor 〈uiuj〉 from an isotropic tensor. In the absence of a production

term, the evolution of the Reynolds stresses is given by:

d

dt
〈uiuj〉 = Rij − ǫij (3.2)
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where d/dt is the substantial derivative and the pressure-strain and dissipation rate

tensors are:

Rij = p

〈

∂ui
∂uj

+
∂uj
∂ui

〉

, ǫij = 2ν

〈

∂ui∂uj
∂xk∂xk

〉

(3.3)

Since the pressure-strain tensor is traceless, it does not affect the kinetic energy and

its effect is solely the re-distribution of energy between the different components

of the Reynolds stress tensor, playing an important role in the return to isotropy.

Anisotropy is often studied through the normalized Reynolds anisotropy tensor (?)

bij:

bij =
〈uiuj〉
2K

− 1

3
δij (3.4)

where K is the averaged turbulent kinetic energy K = 1
2
〈ukuk〉. Clearly, for a

perfectly isotropic Reynolds stress tensor, all components of the anisotropy tensor

vanish identically. One can similarly define an anisotropy tensor for the dissipation

rate (Antonia et al., 1994):

dij =
〈ǫij〉
〈2ǫ〉 − 1

3
δij (3.5)

where 〈ǫ〉 = 1
2
〈ǫkk〉 is the averaged dissipation rate. We point out that these quan-

tities provide a quantitative measure of departures from isotropy and that the main

contributions to each come from different range of scales. While bij represents large

scales, dij is associated with small dissipative scales. Since the sum of the eigenval-

ues of both the Reynolds and the dissipation rate tensor are zero, the state of the

anisotropy tensors can be defined by just two invariants, namely:
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IIb = −1

2
bijbji IIIb =

1

3
bijbjkbki (3.6)

IId = −1

2
dijdji IIId =

1

3
dijdjkdki (3.7)

the first invariant, which is the trace of the anisotropic tensor, is zero. The state of

turbulence can then be defined by the position occupied in a phase diagram with the

second and third invariants in the vertical and horizontal axes respectively (Lumley,

1978). It can also be shown that for incompressible turbulence, not every combina-

tion of parameters is physically realizable. Only points inside the so-called Lumley

triangle are realizable (Lumley & Newman, 1977). The different states (?) of the

anisotropy tensor can be observed in Fig. III.5.

In terms of the Reynolds stress anisotropy tensor, the three vertices of the

triangle represent the extreme cases where two components of the turbulent kinetic

energy are zero (1C), where one component is zero and the other two are equivalent

(2Ca), and all three components are exactly alike (isotropic turbulence). Along

the top of the triangle there is two component turbulence (2C), that transitions

from equal kinetic energy among the components to one much larger than the other

and finally just one component. On the right side of the triangle there is rod-

like turbulence, or cigar-shaped turbulence as described by Choi and Lumley (10).

Finally, on the left side of the triangle (negative III), disk-like structures are observed.

The trajectories of the Reynolds stress anisotropy tensor bij and the rate of

dissipation anisotropy tensor dij have been studied by several author for boundary

layers and channel flows (Liu & Pletcher, 2008; Antonia et al., 1994; Mansour et al.,

1988). Over a significant portion of the outer layer, a linear relation can be estab-
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lished between the two anisotropy tensors such that dij = fbij, where f is a function

of the turbulent Reynolds number (Antonia et al., 1994). Mansour et al. have seen

better agreement with f = 1 for their channel data (Mansour et al., 1988). This

however is not the case for turbulence generated with LIKES. As seen in Fig. III.5,

a linear relationship between dij and bij is not observed. bij approaches isotropy

from the two component axisymmetric state (2Ca) while dij does it from the one

dimensional state (1C). These observations for bij and dij can be explained from the

initial conditions. Since we impose one component of velocity, and satisfy continuity

with a second (w and u with v = 0), it is expected that the flow will be initially

described as two component axisymmetric at the large scales. In wavenumber space,

consider a Gaussian for ŵ located at some low wavenumber, k0. Since continuity

requires û = kz/kxŵ = 0, it is clear that when kx and kz are comparable and close

to k0, both components û and ŵ will be commensurate. That is, a 2C state. For

wavenumbers much lower or higher than k0, the magnitude of ŵ will be negligible,

and only û components may be non-zero. That is, a 1C state. This can be eas-

ily visualized in Fig. III.6 where we have 1C at the smallest wave number, 2C for

0.03 < kη < 0.2 and again 1C for kη ≥ 0.2. Since dissipation is a small-scale quan-

tity, typically found for (Donzis & Sreenivasan, 2010b) kη & 0.1, it is expected that

dij will start from the one-dimensional region of the Lumley triangle at t = 0. The

differences in the trajectories between the LIKES and boundary layers could also

be the result of the 2-dimensionality of the boundary layer. An experimental setup

that would resemble our initial conditions more closely is grid generated turbulence

passed through a contraction. The change in area will amplify the transverse velocity
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fluctuations(Comte-Bellot & Corrsin, 1966), forcing two principal components (2C).

The return to isotropy for grid generated turbulence has been studied by several

authors (54; 103; 10). Of particular interest are the experiments with axis symmetric

contraction, or negative third invariant (III < 0), which as mentioned previously

corresponds more closely to the conditions generated by LIKES. The third invariant is

negative when two principal components are large, consistent with our simulations as

v = 0. We see very close agreement with the data of Le Penven et al.(54) and Tucker

& Reynolds (103) for their configuration with negative third invariant (III < 0).

Similarly, the experiments by Choi & Lumley (10) show very good agreement for their

sets with axis symmetric contraction for pancake-shaped turbulence. On the other

hand, the data from these references for turbulence through an expansion is more

consistent with boundary layers, where only one principal components dominates, as

can be appreciated in Fig. III.5.

As we mentioned above, bij and dij are associated with large and small scales

respectively, so it is expected that the rate of return to isotropy will be faster for dij

when compared to bij. Results show that the starting location in the Lumley triangle

for both tensors is on the 2C line, with bij being very close to axisymmetric for the

two cases presented in the figure, as well as all the others in our database, which

is expected since there is no initial v component of velocity. From the previous

discussion, it is also expected that dij will be less axisymmetric than bij and as

predicted, dij returns to isotropy at a faster rate than bij . This is also consistent with

results from the core region of a channel flow, where dij is closer to the axis symmetric

state than the Reynolds anisotropy tensor (Mansour et al., 1988). The Reynolds
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anisotropy tensor at 2τ ∗ was also compared to our database of forced homogeneous-

isotropic turbulence with similar Reynolds number (Donzis & Sreenivasan, 2010a)

and result are well within the same order of magnitude for both invariants.
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Figure III.5. Lumley triangle for the Reynolds stress (bij) anisotropy ten-
sor and for the rate of dissipation (dij) anisotropy tensor. Trajectories
for two simulations with RI ∼ 430 (dash) and RI ∼ 573 (dash-dot) are
shown. Time evolution is represented by stars, color labeled as t = 0
(black), τ ∗ (blue) and 2τ ∗ (red). Inset a) shows the trajectories for the
Reynolds stress anisotropy tensors close to the isotropic conditions. In-
cluded are the data of Choi & Lumley (2001) (squares, open symbols:
asymmetric contraction, closed: asymmetric expansion), Le Penven et al.

(1985) (triangles, open symbols: III < 0 and closed: III > 0), and Tucker
& Reynolds (1968) (circles). Inset b) shows the trajectories for the dis-
sipation anisotropy tensor. 1C: one component “turbulence”, 2C: two
component “turbulence”, 2Ca: two component axis symmetric “turbu-
lence”.
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A more detailed analysis of return to isotropy that reflects the behavior of the

range of scales present in the flow can be done if anisotropic metrics are defined in

wavenumber space. Anisotropy can then be evaluated for individual wavenumbers

representative of different scales of motion. While in the most general case the

velocity spectrum tensor Eij will depend on the wavenumber vector k, one can also

integrate the spectrum over spherical shells of radius k. The energy spectra has 9

components for each wave number, which can be reduced to 6 due to symmetry. The

energy spectra anisotropy tensor is then defined as (Yeung et al., 1995):

eij(k) =
Eij(k)

2E(k)
− 1

3
δij (3.8)

where Eij(k1) = 2
∫∞

−∞

∫∞

−∞
〈ui(k)∗uj(k)〉dk2dk3 and E(k) = 1

2
Eii(k). Similarly to bij

and dij , the invariants of eij II(k)e and III(k)e measure anisotropy, in this case, in

spectral space.

Fig. III.6 shows the second and third invariants for two cases as a function of

kη. At t = 0 we see 1C behavior at low and high wavenumbers and a 2Ca behavior

at intermediate wavenumbers, which as discussed above, can be explained from the

particular form of the initial conditions. For t > 0 it becomes evident that the

smallest scales of motion approach isotropy at a faster rate than the largest scales of

motion. Both the second and third invariant decrease in the inertial and beginning of

dissipation range. There seems to be an increase in anisotropy in the far dissipation

range, but data show this to be due to a transient state towards turbulence, as

larger times show a decrease in anisotropy at small scales. If one assumes a power-

law scaling in the inertial range for these invariants, then one finds that anisotropy
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decays as k−3.5 and k−5 for the second and third invariants, respectively, in the range

4× 10−2 . kη . 4× 10−1.
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Figure III.6. Second and third invariants for the energy anisotropy tensor
as a function of kη. Circles correspond to t = 0, squares are at τ ∗, stars
2τ ∗, and diamonds 3τ ∗. Open symbols are for positive values of IIIe, while
closed are for negative. Dashed-dot line represents the 1C (one component
“turbulence” limit), while dotted line represents 2Ca (two component axis
symmetric “turbulence”). Top and bottom rows correspond to cases with
RI ∼ 430 and 573, respectively.

III.A.1.c. Dependence on initial conditions

As mentioned in the previous sections, the characteristic time scale at the peak

of the mean dissipation appears to be related to the onset of turbulence. The question

that arises is whether this characteristic time scale can be predicted, and if it can

provide the correct information as to when the flow becomes turbulent. The first

objective now is to determine whether there is fully developed turbulence by τ ∗ and
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how it depends on initial conditions.

Some initial conditions have a larger degree of (a)symmetry than others due

to narrower Gaussians cx,y,z or stronger perturbations κ. Naturally, the time to

reach isotropy at all scales will depend on these characteristics. In looking for a

non-dimensional parameter that characterizes the initial conditions, it can be argued

that important dimensional parameters to be considered are the energy introduced

at the lines, the distance between lines, and viscosity. These can easily be used to

form a Reynolds number. The amount of energy introduced can be approximated

by multiplying the amplitude of the perturbation, κ, by the solidity σ ≈ NlLπr
2
l /L

3.

The solidity is the ratio of volume affected by the LIKES to the total volume in the

domain, where rl = 2π(cyz log(2))
1/2 is the approximate radius of a line defined using

full width at half maximum, L = 2π is the length of a line and L3 is the volume of the

domain. Taking the distance between LIKES dl = L/N
1/2
l as the length scale and

the fluid viscosity ν, the Reynolds number based on the initial conditions becomes:

RI =
κσdl
ν

= α
κcyzN

1/2
l

ν
(3.9)

where α = log(4)π2. From plots for the skewness of the velocity gradient and the

ratio of mean squared velocities with respect to RI in Fig. III.7, it is evident that

the onset of turbulence is related to both τ ∗ and RI . Longer times and higher RI

will both make the flow more isotropic. Intuitively one may argue that the initial

perturbations must be strong enough to generate a turbulent flow. Indeed the data

show that there is a minimum RI under which turbulence will not be generated

regardless of how long the flow is allowed to evolve. As RI is increased, the flow

properties tend to those of fully developed isotropic turbulence, with skewness of
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-0.5 and ratio of rms velocities close to 1. However, only after a certain time it can

be said that for sufficiently high RI the flow becomes turbulent. As discussed in

previous sections, even though τ ∗ is typically sufficient time for most quantities to

show the properties of a turbulent flow, some variables such as Sux approaches its

fully turbulent value (≈ −0.5) at a slightly slower rate than the other two velocity

gradients (Fig. III.8b) and τ ∗ may not be considered sufficiently long. Therefore, for

practical purposes 2τ ∗ will be considered as the time scale required for the quantities

studied here to reach the values of fully developed turbulence, given a minimum RI

is satisfied. In other words there will be a minimum RI required for 2τ ∗ to be a

good indicator of when the flow becomes turbulent. Indeed, three regimes can be

identified based on RI :

1 RI > 400: turbulence established at t ≈ 2τ ∗

2 RI < 100: turbulence is not established

3 100 . RI . 400: transition where 2τ ∗ is too short to attain realistic turbulence

Lets consider high RI cases. As seen in Fig. III.7, the ratio of w′/u′ becomes 1 at

approximately τ ∗, while v′/w′ and v′/u′ asymptote at a lower value of approximately

0.85. Even though the ratio of longitudinal to transverse velocities does not go to one,

this is expected for this type of initial conditions. This could be compared to using

active rods or jets to generate turbulence. As reported by Gad-el Hak & Corrsin

(1974) for their experiments with parallel rods, u′ and w′ were of comparable order

(within 5%) and approximately 15% larger than v′. This inhomogeneity has long

been known (Corrsin, 1963; Comte-Bellot & Corrsin, 1966) and seems unavoidable,
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Figure III.7. Skewness of the velocity gradients (top), and ratio of root
mean squared velocities (bottom) as a function of RI . The different mark-
ers correspond to: t = τ ∗ (dots), t = 2τ ∗ (stars), and t = 3τ ∗ (open circles).
Dashed-dot lines at -0.5 for top plots and 1 for bottom plots.

especially close to the grid. The skewness of the velocity gradient asymptotes at

approximately −0.5 for all three components. The first component to reach −0.5 is

Svy . This is the velocity component that, because of zero initial condition, evolves

according to Navier-Stokes dynamics acquiring energy from the other components of

velocity.

The degree of isotropy at small scales, while expected to be attained earlier than

at large scales, would also depend on the characteristics of the initial conditions. A

common way to assess small-scale isotropy is by comparing statistics of velocity

gradients in different directions. For example, for isotropic turbulence the ratio of

the variances of transverse and longitudinal gradients can be shown to be (Hinze,

1959) 2.0. Fig. III.8 shows two simulations that meet the criterion for reaching
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turbulence at 2τ ∗ with RI of ∼ 430 and 573. The ratio of transverse to longitudinal

velocity gradients approach the corresponding isotropic value of 2.0 at or before

τ ∗. The figure also shows that the skewness of all three components of longitudinal

velocity gradients asymptote around -0.5 at approximately τ ∗. In summary, we found

that, provided RI & 400, the variance of velocity gradients as well as their skewness

already approach values found in fully developed turbulence at t . 2τ ∗.

III.A.1.d. Scaling of Characteristic Time Scales

We just saw that a sufficiently high RI leads to the successful establishment of

fully developed turbulence at t . 2τ ∗. Of obvious interest then is to understand

the scaling of τ ∗ to quantitatively estimate, based on all the information from the

initial conditions when the flow becomes turbulent. A number of non-dimensional
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parameters can be constructed based on initial conditions. Introducing energy in

the form of LIKES implies very localized source of energy concentrated along narrow

filaments. Therefore, it is expected that the initial evolution of the flow will depend

strongly on the energy and local characteristics of the LIKES. In particular one can

argue that a set of relevant parameters determining the scaling of τ ∗, would include

the energy deposited in the LIKES (KI = κ2σ), the distance between the LIKES, dl

and the viscosity. Dimensional analysis would then suggest:

τ ∗ =
ν

KI

f(RI) (3.10)

where f is an unknown function. In Fig. III.9 we show all our database normalized

according to Eq. (3.10). It can be seen that this relationship collapses all simulations

with different Nl, cyz,x, viscosity, and initial perturbation. It is also observed that

the function f can be well represented by a power law close to 3/2 obtained as a best

fit.

It is also of practical interest to be able to predict, for a given initial condition,

the Reynolds number achievable when the flow becomes fully turbulent, that is,

at t ∼ τ ∗. In Fig. III.10a, we show precisely the Taylor Reynolds number at τ ∗

as a function of RI . As expected the achievable Reynolds number increases with

the initial Reynolds number, though as a weak power law. Also of interest is the

relation between τ ∗ and R∗
I which is shown in Fig. III.10b. This relation, which may

follow approximately a power law, implies that achieving high Reynolds numbers may

require longer times. This could present some challenges in experiments, especially

at high speeds, where the finite length of a wind tunnel may preclude the flow from

becoming fully turbulent in the test section at high Reynolds numbers.
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III.A.2. Acceleration statistics

In previous sections we have shown that turbulence can be established from

LIKES as long as the initial Reynolds number is sufficiently high, and sufficient time
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has passed as measured by τ ∗. In this and the next few sections we focus on the

physical mechanisms leading to turbulence.

The main objective of this section is to assess what components play a major role

in dispersing the energy introduced in the LIKES. For this we write the Navier-Stokes

equations as:

∂ui
∂t

+ aC = aP + aV (3.11)

where aC , aP , and aV correspond to the convective, pressure, and viscous compo-

nents of acceleration respectively. For fully developed turbulence, the variance of

the pressure term should be of comparable magnitude or smaller than that of the

convective term (Lin, 1987), while the viscous term will be smaller than both by an

order of magnitude or more (Vedula & Yeung, 1999).
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Figure III.11. Variance for the three components of acceleration for case
12 from Table II.1 with RI ∼ 573. Convective acceleration (black), pres-
sure acceleration (red) and viscous acceleration (blue). The different lines
styles correspond to the x (solid), y (dash-dot), and z (dashed) compo-
nents.
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The time evolution of these three terms is shown in Fig. III.11. At τ ∗ we see

the variance of aP and aC are of comparable magnitude, while the viscous term is

about an order of magnitude smaller. The ratio of variance of pressure to viscous

acceleration scales with (Vedula & Yeung, 1999) Rλ and takes a value of approx-

imately 40 at τ ∗ and 22 at 2τ ∗, with corresponding Rλ of 50 and 37 respectively.

At τ ∗ the ratio is slightly large compared to the values reported in Vedula & Yeung

(1999), but matches very well at 2τ ∗. For any time smaller than τ ∗, there is a strong

disparity between the axial and transverse components of acceleration. Since there

is no initial velocity in the y-component, the only non-zero term in the v component

of Eq. (2.1) is −(1/ρ)∂p/∂y, and is therefore responsible for initializing the spread

of momentum in the y direction. If this term is assumed to be relatively constant

for short times, the second order moment of velocity and velocity gradients would

evolve initially as 〈v2〉 ∼ t2, and 〈(∂nv/∂xni )2〉 ∼ t2. This helps explain the t2 behav-

ior seen in Fig. III.11 for the variance of the y-component of the viscous as well as

the convective acceleration. The latter can be explained by the fact to be discussed

later, that the y-component of the convective terms is dominated by the transverse

terms v∂u/∂y and v∂w/∂z. With this rapid increase in the y-component, we see

that convection dominates in the three directions by approximately 0.5τ ∗.

Each component of the convective acceleration comprises three terms, each com-

posed of the product of a velocity and a velocity gradient. The evolution of these

terms is shown in Fig. III.12. In an isotropic flow, the variance of the three compo-

nents of velocity will be similar while the ratio between transverse to longitudinal

velocity gradients will tend to 2. Thus, the terms u∂u/∂x, v∂v/∂y, and w∂w/∂z
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will be expected to be approximately half of the other 6 components at sufficiently

large time.

The largest term of the convective acceleration is found to be u∂w/∂x. The

initial perturbation, distributed along the LIKES (aligned with the x-axis), is in the w

velocity component with random magnitude and direction, providing large gradients

in x. The two other terms that dominate initially are w∂u/∂z and w∂w/∂z, again

explainable in terms of the form of the initial conditions. All the terms involving the

second component of velocity v start from zero. Since, as DNS data show, initially

u and w as well as their gradients are approximately constant with respect to time,

the variance of the four transverse terms involving v will scale with t2, while the

longitudinal ones will scale as t4 for short times. This is indeed observed from DNS

data in Fig. III.12. The return to isotropy can also be confirmed from this figure as
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the six terms with transverse gradients and the three longitudinal gradients collapse

for t & 2 τ ∗.

In summary, global averages suggest that initially pressure gradients redistribute

energy to the velocity component with smallest energy content which grows alge-

braically until about t ≈ 0.5τ ∗. After this time convection becomes the dominant

mechanism for spreading momentum away from LIKES. For t & 2 τ ∗, accelerations

in different directions become equal in magnitude.

III.A.3. Local analysis

While global averages provide some information about the dominant forces, they

can provide little information about the local behavior of the flow as momentum

spreads from LIKES. To understand the mechanisms for turbulence spreading, one

can consider radial statistics at different distances from the line. Because of the

asymmetry in the perturbation in the plane perpendicular to LIKES, it is convenient

to define radial statistics in the y and z directions separately. Thus a radial average

of a function f in z, for example, will be denoted by 〈f〉z, and is computed by

averaging the value of f at all points a distance rz apart in the z direction from any

LIKE in the domain. When the two directions (y and z) are also averaged, we will

use simply 〈f〉r .

A typical evolution for the radial variance of the w component of velocity in

different radial directions is shown in Fig. III.13 for different times. Here, we can

see how kinetic energy, which is concentrated at the LIKES spreads to the center

as time progresses. One can also see a different response for averages in y and z
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direction. Since the perturbation is initially preferentially aligned with z direction,

and as we showed in the previous section convection is the dominant process in

spreading momentum, one would expect, a more rapid spread in the z direction than

in the y direction, where the initial velocity is zero.

Two aspects of the flow can be assessed from this type of radial statistics. First,

to have isotropic turbulence, one would expect the three components of velocity to

be of comparable magnitude at t ≈ 2τ ∗. Furthermore, for it to be homogeneous, the

radial dependence of velocity must also vanish at that time. These expectations can

be assessed from Fig. III.13 and Fig. III.14, where we show radial statistics for the

three components of velocity for different times.

From Fig. III.14, it becomes clear that both homogeneity and isotropy become

progressively better realized with time. Given that the second component of velocity

starts from zero, only the pressure gradient term remains in the right-hand-side of the
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Navier-Stokes equations in the y direction. As mentioned previously, if the pressure

gradient term is assumed to be approximately constant the second order moment of

velocity in that direction should evolve as 〈v2〉 ∼ t2 for short times. Indeed, this

behavior is observed for all radial distances in Fig. III.14b up until t ≈ 0.5τ ∗.
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Figure III.14. Evolution of second order moment of velocity as a function
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right respectively. Different line styles correspond to radial distances
with r ∼ 0 (•), r ∼ 0.12 (dash-dot), r ∼ 0.24 (dots), r ∼ 0.36 (dashed), and
r ∼ 0.5 (solid). Vertical dotted line at t/τ ∗ = 2 for reference.

Given the importance of the convective acceleration term in the spatial transport

of energy away from LIKES, we wish also to investigate radial statistics of velocity

gradients. Since the perturbations are Gaussians, it is expected that the gradients

of velocity with respect to y and z will be small for r = 0. On the other hand, the

velocity will change with a random distribution along x, and since the maximum is

at r = 0, the gradient along this direction is expected to be large. Fig. III.15 shows

the variance of the nine components of velocity gradients. By comparing all the

68



gradients at short times, it is seen that the largest contributions come from ∂w/∂x

and ∂u/∂z. The former is large for the reason previously described. The latter comes

from satisfying continuity, as the first component of velocity is generated from ∂w/∂z.

The derivative of u with respect to x and y at r = 0 is small, as the velocity itself

should be small at this location. All gradients involving the y component of velocity

start from zero but they reach the magnitude of the other six terms by t . 2τ ∗, as

can be seen in Fig. III.15. Also by 2τ ∗ there is no more radial dependence and all

terms decay at the same rate. Here again, the data supports t/τ ∗ ∼ 2 as the nominal

time at which the flow becomes fully turbulent.
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Figure III.15. Variance of velocity gradient as a function of radial distance
r. Different linestyles correspond to radial distances with r ∼ 0 (•), r ∼ 0.12
(dash-dot), r ∼ 0.24 (dots), r ∼ 0.36 (dashed), and r ∼ 0.5 (solid).

We now focus on how both the velocity and derivatives interact and contribute to

the radial moments of convective acceleration. Fig. III.16 shows the evolution for the
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sum of all uj∂ui/∂xj terms at five different radial distances. Here we find that most

components have a larger variance at short distances away from the LIKES, rather

than at the center of the LIKES themselves. This can be explained by the trade off

between the gradients and the velocity components. We have seen that ∂w/∂x is the

largest term at r = 0, but since u is very small (Fig. III.14) u∂w/∂x becomes small.

The product of velocity and its gradients is also expected to be small at r = 0.5

where the imposed symmetry implies very small gradients at a point equidistant to

two LIKES. It is thus expected that the largest convective contributions would be

observed at an intermediate point between r = 0 and r = 0.5. Indeed, we see that the

largest contribution from convective acceleration is found at r ∼ 1/4 in Fig. III.16.

For t > 0, the convective acceleration at r = 0 increases fastest while it is relatively

constant for other distances, leading it to dominate the spread of momentum at very

short times (t ≈ 0.1τ ∗). For t & 2τ ∗ we see radial independence and the same rate of

decay for all distances, consistent with results for the velocity and velocity gradient

profiles.

III.A.4. Enstrophy generation

The equation for the evolution of enstrophy ωiωi can provide great insight into

the physical processes of turbulent flows. The different terms are related to tilt-

ing, folding, stretching as well as dissipation and transport of vorticity which are

responsible for the non-linear generation of small scales, the cascade of energy and

its dissipation at the smallest scales (Tennekes & Lumley, 1972). The evolution equa-

tion for the vorticity can be readily found by taking the curl of the Navier-Stokes
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equation, Eq. (2.1). Multiplying the result by the vorticity vector, taking spatial

averages, and assuming homogeneous and isotropic turbulence, yields the evolution

equation of enstrophy (Taylor, 1938):

∂〈ωiωi〉
∂t

= 2 〈ωiωjsij〉 − 2ν

〈

∂ωi

∂xj

∂ωi

∂xj

〉

(3.12)

where sij = 1/2(∂ui/∂xj + ∂uj/∂xi) is the strain rate tensor. The first term on

the right hand side represents the production of enstrophy by vortex stretching and

the second is the viscous dissipation (101). From Fig. III.17 we see that the two

terms reach their minimum and maximum around τ ∗. For homogeneous flows, one

can show that(101) 〈ǫ〉 = ν〈ωiωi〉. Thus the peak of the dissipation is also the

time of maximum vorticity as can be appreciated from Fig. III.17. For steady state

turbulence, it is expected that the two terms on the right hand side of Eq. (3.12)

be equal in magnitude but opposite in sign thus canceling each other (Taylor, 1938;
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Gorski et al., 1994). However, we are interested in the transient between the LIKES

at t = 0 and the time where fully developed turbulence is established. At t = 0

we can use the fact that v = 0 by construction and that, because of continuity,

∂u/∂x = −∂w/∂z to write wiwjsij as:

ωiωjsij =
∂w

∂z

∂u

∂y

∂u

∂z
+
∂w

∂z

∂u

∂y

∂w

∂x
−
(

∂w

∂z

)2
∂w

∂y
(3.13)

We can observe that 〈wiwjsij〉 starts from zero but increases as the flow evolves.

Due to the random nature of the initial conditions, the gradients of velocity in

Eq. (3.13) are uncorrelated with each other. We would then expect the average

of the product of velocity gradients to be small, if the average of each independent

gradient is small. This can indeed be verified from our DNS data. On the other

hand, the viscous dissipation term is not negligible at the initial conditions.
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Figure III.17. Enstrophy budget with terms averaged over the domain.
Solid line is for evolution of 〈ωiωi〉, dashed for vortex stretching and dotted
for viscous dissipation.
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As argued above, a local analysis of the flow can be effectively done with radial

averages around the LIKES. If we apply radial averages on the enstrophy equation

we find:

∂〈ωiωi〉r
∂t

= − ∂
∂xj

(Uj〈ωiωi〉r)− ∂
∂xj

(〈ujωiωi〉r)− 2〈ujωi〉r ∂Ωi

∂xj
+ 2〈ωiωj〉rSij

+2〈ωiωjsij〉r + 2Ωj〈ωisij〉r + ν∇2〈ωiωi〉r − 2ν
〈

∂ωi

∂xj

∂ωi

∂xj

〉

r
(3.14)

Where upper case (Ui, Ωi, Sij) denotes radial means at a particular radial distance.

While for fully developed homogeneous and isotropic turbulence all mean components

as well as gradients of means are expected to be zero, this is not the case at short

times in the present configuration. From DNS we find that the terms ∂
∂xj

(Uj〈ωiωi〉r),

2〈ujωi〉r ∂Ωi

∂xj
, and 2Ωj〈ωisij〉 as well as the spatial derivatives of Ωi and Ui are very

small. We also find that the first and third components of Ω are very small compared

to the second component for all radial distances. The latter is maximum at r = 0

and decreases as r increases. While 〈ωisij〉 starts from zero and increases with time,

the decrease of Ω2 makes the sixth term in Eq. (3.14) also small compared to the

other terms. Thus, keeping only the dominant terms we may reduce Eq. (3.14) to:

∂〈ωiωi〉r
∂t

= − ∂

∂xj
(〈ujωiωi〉r) + 2〈ωiωj〉rSij + 2〈ωiωjsij〉r + ν∇2〈ωiωi〉r

− 2ν

〈

∂ωi

∂xj

∂ωi

∂xj

〉

r

(3.15)

The second and third terms correspond to the production of turbulent vorticity

from the stretching or squeezing (according to the sign) of the fluctuating and mean

strain rates respectively. The first correspond to transport of vorticity from fluctu-
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ations of velocity while the last two are the viscous transport and dissipation (101).
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Figure III.18. Enstrophy budget with radial averages for r = 0 (left), 0.25
(center), and 0.5 (right). Different line styles correspond to ∂

∂xj
(〈ujωiωi〉r)

(dotted), 2〈ωiωj〉rSij (dash), 2〈ωiωjsij〉r (black), ν∇2〈ωiωi〉r (blue), and

−2ν
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∂ωi

∂xj

〉

r
(red). Vertical dotted line for t = 2τ ∗.

The evolution of the five terms in Eq. (3.15) is shown in Fig. III.18 at three

radial distances, r = 0, 0.25 and 0.5. The viscous transport term ν∇2〈ωiωi〉r is only

present for r = 0 and becomes negligible after a short time. The dominating term at

t = 0 is the viscous dissipation, with strongest influence at r = 0. This term peaks

at approximately t ≈ τ ∗, where it also reaches radial homogeneity. The second two

largest terms are the (negative) production of turbulent vorticity from the mean and

fluctuating strain rates.

To understand why there is negative production (or vortex squeezing) from the

mean strain rate, one needs to consider the mean of velocity gradients in terms of

74



radial distances. The mean of the nine components of velocity gradients at differ-

ent radial distances are shown in Fig. III.19. Only four components are non zero

between the initial conditions and t ≈ 0.5τ ∗. These are the longitudinal ∂v/∂y,

∂w/∂z and the transverse gradients ∂u/∂z, ∂w/∂x. The longitudinal components

are the dominating terms, yet the change in sign at different radial distances provide

a significant amount of cancellation. On the other hand, there is a net negative

contribution from the transverse components. We can then conclude that the large

vortex squeezing at t = 0 comes mainly from ∂w/∂x and ∂u/∂z. The former cor-

responds to non-uniformities in the w component along the LIKES (in x) and the

latter to the changes in the perturbations in the direction of the LIKES as one moves

away from them.

There is also vortex squeezing from the fluctuating strain rate. Not surprisingly

this term is dominant at the location of the LIKES for short times. At approxi-

mately t ≈ 0.5τ ∗, there is a qualitative change in behavior from vortex squeezing to

stretching. The term 〈ωiωjsij〉 sees a maximum at approximately τ ∗, where radial

dependence begins to vanish. By t ≈ 2τ ∗ the vortex stretching due to the fluctuating

strain rate is roughly equal and opposite to the dissipation of vorticity. After the

flow reorganizes itself to a turbulent state, these are the principal mechanism for the

creation and destruction of vorticity, respectively.

Another interesting observation is that − ∂
∂xj

(〈ujωiωi〉) has large negative val-

ues at r = 0, up until approximately τ ∗. Since this is a transport term and it is

negative, it implies that enstrophy is being transported outwards as time evolves.

As the flow starts mixing this term has large fluctuations but becomes small beyond
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2τ ∗. Then, consistent with all the previous observations, all the terms show radial

independence by 2τ ∗ and the two terms that dominate are the vortex stretching and

viscous dissipation.

III.B. Conclusions

We have investigated the generation of turbulence using localized intense kinetic

energy sources, or LIKES. We have found that LIKES are a feasible mechanism for

generating turbulence given two conditions are met: a Reynolds number based on

initial conditions is sufficiently high (RI > 400) and that enough time has elapsed for

the flow to reorganized into a fully turbulent state (t > 2τ ∗). The characteristic time

scale τ ∗ is a well defined time scale of the problem easily identified as the time when

the mean dissipation (or enstrophy) is maximum. This characteristic time scale,
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as well as other characteristics of the flow, were shown to be expressible in terms

of a single non-dimensional parameter (a Reynolds number) based on the initial

conditions, in particular the magnitude of velocity perturbation, the grid solidity,

the fluid viscosity, and the distance between the LIKES as the length scale.

The LIKES are implemented as a sum of Gaussians with random amplitude and

phases with a preferential direction, justified from experimental observations of the

photo-dissociation process (North & Hall, 1997; North et al., 1997; Houston, 1987).

From detailed convergence studies we found that two conditions, one kinematic and

one dynamic, must be met to obtain grid converged solutions. This led to two non-

dimensional parameters (G and Rk) that can be determined a priori from initial

conditions. The final resolution criteria were found to be given by G > Gmin ≈ 5

and Rk < Rmax
k ≈ 10. Several statistics were used to understand the flow transition

to fully developed turbulence in terms of time and RI . For RI > 400 and t > 2τ ∗,

it is shown that the skewness of velocity gradient becomes -0.5 while the ratio of

rms velocities approaches unity, consistent with homogeneous isotropic turbulence

(Tavoularis et al., 1978; Sreenivasan & Antonia, 1997). At these conditions, the spec-

tra collapses under K41 normalization and isotropic relations based on longitudinal

to transverse components of the energy spectra are satisfied. The anisotropy tensors

for turbulent kinetic energy and dissipation are also shown to be consistent with

DNS of isotropic turbulence.

In general, the second and third invariants of bij and dij approach zero as RI and

time are increased. For RI > 400 and t ≈ 2τ ∗, these are comparable to grid generated

turbulence at similar Reynolds number (Choi & Lumley, 2001; Le Penven et al., 1985;
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Tucker & Reynolds, 1968). For shorter times, as the flow evolves we do not observe

a linear relation as in e.g. Refs. (1; 67). However, this is not surprising given the

significant differences in the initial conditions. The flow generated from LIKES is

found to present similarities with grid turbulence passed through a contraction where,

as several authors have shown (Choi & Lumley, 2001; Le Penven et al., 1985; Tucker

& Reynolds, 1968), there is no linear relationship between the bij and dij tensors. An

anisotropy tensor in wavenumber space was used to show that small scales approach

isotropy at a faster rate than the large scales.

An important result from the analysis above is the relation found for both τ ∗ and

Rλ with the initial conditions Reynolds number RI . In particular, these have been

shown to scale as τ ∗ ∼ R1.54
I and Rλ ∼ R0.3

I . It is worth noting that increasing Rλ

requires longer times to observe fully developed turbulence. This result is crucial for

the design of wind tunnels that will use the proposed method to generate turbulence.

Since the time scale can be converted to distance using a suitably defined convective

velocity, this can also provide estimates for the highest Rλ that can be attained when

faced with spatial restrictions.

To understand the main mechanisms governing the spread of concentrated ki-

netic energy of the LIKES, we studied accelerations statistics. The convective accel-

eration uj∂ui/∂uj dominates the spread of energy and pressure redistributes energy

from the x and z components to the y component through ∂p/∂y which dominates

initially. At t/τ ∗ ≈ 2, all directional information is lost and acceleration statistics

become isotropic.

Local statistics of the flow were studied to further understand the mechanisms
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for redistribution of energy. Radial averages demonstrated that convection dominates

initially in the proximity of the LIKES. Vortex squeezing due to the fluctuating and

mean strain rates at the LIKES (r = 0) was found to be strong for short times.

〈ωiωjSij〉r=0 vanishes at t ≈ τ ∗, while 〈ωiωjsij〉r=0 sees a qualitative change from

squeezing to stretching at τ ∗/2. Viscous dissipation is seen at most radial distances

but primarily dominates at r = 0. Consistent with a homogeneous flow, the peak

of the dissipation is also the time of maximum vorticity and vortex stretching and

viscous dissipation become equal in magnitude and opposite in sign at t ≈ 2τ ∗.

In summary, we have shown that it is possible to create turbulence based on

localized intense kinetic energy sources provided a well-defined Reynolds number

based on initial conditions is high enough. We have also shown that it is possible to

predict the achievable Rλ as well as when the transition to turbulence occurs, using

a single non-dimensional parameter based on initial conditions.
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CHAPTER IV

TURBULENCE GENERATION IN COMPRESSIBLE FLOWS

In the previous chapter we have shown results from incompressible lines to study

the hydrodynamics of the general problem: generating turbulence with localized

sources or energy. While it provided insight into the main mechanisms leading to

the generation of turbulence at a relatively low computational cost, we are now

interested in understanding the more general and realistic problem. We now replicate

the physical wind tunnel experiment more faithfully by including compressibility

and temperature effects. Compressible simulations capture both hydrodynamics and

thermodynamics of the practical problem and DNS parameters can be adjusted to

simulate the test conditions. The next step in complexity would be to incorporate

the effects of TNE in the evolution of the flow.

IV.A. Spreading of perturbations from single LICES

Understanding the evolution of the flow behind LICES is a very complex problem

which depends on a large number of parameters. A variable of obvious interest if

turbulence is sought is the rate at which perturbations spread. It is expected that

if perturbations spread at a large rate, turbulent mixing will be favored. However,

having strong interactions between thermodynamic and hydrodynamic variables it is

hard to predict how the perturbations will spread. The following section is devoted

to characterizing the leading mechanisms in the rate of spread.

80



IV.A.1. Numerical computation of perturbation spread

To understand how the perturbations of velocity spread downstream, the prob-

lem is simplified to a single LICES on the x − z plane aligned with x, as shown in

Fig. IV.1. A flow with convective Mach number Mc = 5 (u2 = 720.7, T0 = 50) dis-

places the perturbations from the LICES downstream along the second component.

To measure how the velocity perturbations spread downstream, we define a width δ.

This width is defined as the distance along z, starting from the center of the LICES,

at which the kinetic energy decays to 1% of the introduced kinetic energy at the

LICES. A graphical representation of δ can be seen inFig. IV.1 (right).

y

x

z

y

z

uref
δ(y)

Figure IV.1. Schematic of configuration used for measuring spread of
perturbations. Domain is (2π)3 with LICES located at z = 0, y = π/4. a)
three dimensional perspective, b) top view.

Given the flow is supersonic, the perturbations introduced create Mach waves at

an angle of sin−1(1/Mc) behind the LICES. This introduces non turbulent velocity

perturbations that affect the spread measurements and must be removed prior to

computing δ. The velocity perturbations from the Mach waves are stationary in

time, so we may easily remove these by subtracting the time averaged velocity field.
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For statistical convergence, a total of 50 different times are averaged for each set of

conditions. Throughout the chapter angular brackets are used for spatial averages

while an overbar is used for time averages. From this point, all quantities shown are

time averages, so for simplicity of the notation the overbar will be dropped.

We then define δ as:

δ(x, y, t) =
Nz
∑

z=Nz/2



















∆z, if
1
2
((u1 − u1)

2 + (u2 − u2)
2 + (u3 − u3)

2)

〈∆K〉l
> 1%

0, otherwise

(4.1)

where ∆z is the grid spacing along z, ui and ui are both functions of x, y, z and

〈∆K〉l =
〈

1
2
((u1 − uref1)

2 + (u2 − uref2)
2 + (u3 − uref3)

2)
〉

l
is the averaged additional

kinetic energy introduced by the LICES. In this configuration the center of the LICES

is at half of the domain along z and consequently the sum starts from Nz/2. With

Eq. (4.1) we compute δ for every y − z plane at time t. We then average all planes

and times such that δ becomes a function of only y.

To understand the effect of fluid and thermodynamic variables on the spreading

rate, we created a large database with different velocities, temperatures, and κmax.

All the simulations have been tabulated in Table IV.1.

IV.A.2. Spreading rate

In Fig. IV.2 we can see δ(y) for different velocity and temperature perturbations.

The clear peaks we see for small y correspond to each LICES. For uref = 720.7

and Hf = 2000, a LICES is convected a distance of yc ∼ 0.36 before the next is

implemented. For small velocity perturbations, there seems to be a strong effect
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Case Nl um Tm κmax ul Tl 〈νl〉 Hf N Rl

1 - 6 1 1 1 - 20 2 - 12 0.35 0.40 - 8.05 0.40 - 0.43 2000 1283 0.31

7 - 12 1 5 1 - 20 2 - 12 1.76 0.40 - 8.05 0.40 - 0.43 2000 1283 1.55

13 - 18 1 10 1 - 20 2 - 12 3.52 0.40 - 8.05 0.40 - 0.43 2000 1283 3.09

19 - 24 1 20 1 - 20 2 - 12 7.05 0.40 - 8.05 0.40 - 0.43 2000 1283 6.18

25 - 30 1 50 1 - 20 2 - 12 17.61 0.40 - 8.05 0.40 - 0.43 2000 1283 15.45

31 - 36 1 100 1 - 20 2 - 12 35.23 0.40 - 8.05 0.40 - 0.43 2000 1283 30.90

Table IV.1. All simulations used to measure the rate of spread δ as a
function of streamwise distance y. The cases grouped together contain
two κmax with three temperatures each. They are ordered as case 1-3:
Tm = 1, 10, 20 with κmax = 2, and 4-6 with same temperature and κmax = 12.
Similarly for rest of cases grouped.

of temperature on the spreading of perturbations, with low temperature having the

largest δ. As the velocity perturbations are increased, the effect of temperature

weakens. This is evident for um = 10 where it becomes difficult to distinguish between

the different temperatures. Increasing the amplitude of velocity perturbations even

further we see a reversed trend, where high temperature has the largest δ. The

amount of kinetic and internal energy we introduce seems to play a critical role in

the spreading rate. If we wish to define a non-dimensional parameter to quantify the

amount of energy we introduced as a function of the energy in the flow, we may do

so as:

Q =
∆Kρ +∆E

Kρ + E
(4.2)

where Kρ = ρK, E = ρe, and ∆ corresponds to the difference between the evaluated

quantity and the reference value.
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Figure IV.2. Spreading of perturbations δ as a function of y for differ-
ent velocity and temperature. From left to right is increasing velocity
um = 1 (left), 10 (center), 100 (right). Different colors correspond to
Tm = 1 (black), 10 (blue), and 20 (red). These correspond to Case 4,5,6
(left), 13,14,15 (center) and 31,32,33 (right) of Table IV.1. Dotted line
corresponds to a Mach wave with Mc = 5.

We may also quantify the energy we introduce to the system in terms of veloc-

ity and internal energy in the form of a Reynolds number. Based on the velocity

and temperature perturbations introduced at the LICES, we can define a Reynolds

number as:

Rl =
〈(∆K)1/2〉l σ dl

〈ν〉l
(4.3)

where σ represents the solidity of the grid defined as σ = NlLπr
2
l /(L

2Ly). L is the

transverse length of the domain (x or z), Ly the axial length, and rl is the radius

of a LICES. The radius rl is defined as the width where the velocity or temperature

is 10% of the maxium, um or Tm, which may be numerically obtained solving for x

in Eq. (2.14) with α = αm × 10−1. Finally, the length scale is the distance between

LICES: dl = L/Nl (if we have LICES in more than one component then dl = L/nx,
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with nx = nz). For computing the spreading rate, the transverse length of the domain

is used for dl, as there is only one LICES.

As seen in Fig. IV.2, the width δ undergoes approximately a linear growth in

space consistent with self-similar solution from jets (Tennekes & Lumley, 1972). Thus

one can quantify the rate with dδ/dy. In Fig. IV.3 we show the time averaged rate

of spread with respect to Rl and Q for all the simulations in Table IV.1. The first

observation we can make is that Rl collapses the data for spreading rate while Q

does not. It will also be shown in future sections that Rl is a suitable parameter to

describe the evolution of the flow. With this in mind, we continue our analysis in

terms of Rl. At low Rl there is a strong dependence on Tl, where the increased local

viscosity from the additional temperature mitigates the spread of perturbations. The

effect of temperature decreases with increasing Rl and appears to be independent

at approximately Rl = 3 × 10−1. After this point, although weaker, the effect of

temperature returns with a reverse trend where large temperature increases dδ/dy.

As Rl is increased, the rate of spread asymptotes at the convective Mach angle,

represented by the horizontal dotted line in Fig. IV.3. The velocity perturbations

appear to be confined within the Mach waves generated by the LICES. With the

exception of the case with largest velocity and temperature, dδ/dy ≤ sin−1(1/Mc),

which can also be observed in Fig. IV.2. Nonetheless, for large temperature and

velocity perturbations we can expect the local temperature to increase behind the

LICES. If this is the case, the local speed of sound will increase (proportional to

T
1/2
l ) and the slope of the Mach line will also increase accordingly. From Fig. IV.4,

where we show x− z and x− y plane averages of temperature, we can see that the
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increase of temperature is significant and that it increases with both Tl and ul. It

is then anticipated that the rate of spread will be confined to the local Mach angle

behind the LICES rather thanMc. For the highest temperature, the Mach angle can

drop down to M ∼ 4.5, which would increase the angle from ∼ 0.2 to ∼ 0.225.

10-2 10-1 100 101
-0.1

0

0.1

0.2

0.3

10-3 10-2
-0.1

0

0.1

0.2

0.3

QRl

dδ

dy

❄

Tl

❈
❈❈❖
Tl

Figure IV.3. Rate of spread
dδ

dy
as a function of LICES Reynold number

Rl (left) and Q (right) for all Cases in Table IV.1. Colors correspond
to Tm = 1 (black), 10 (blue), 20 (red). Different symbols correspond to
um = 1 (squares), 5 (up-triangle), 10 (circle), 20 (star), 50 (left-triangle),
100 (down-triangle). Open and closed symbols are for two different κmax

of 2 (open), 12 (closed). Horizontal dotted line corresponds to sin−1(1/Mc).

To understand how the kinetic energy and dissipation have an effect on the

rate of spread, we can take an x − y plane average at half of the domain along

z = 1/2Lz. This plane cuts through half of the LICES, making the average of this

plane independent of dδ/dy, which is not the case for any plane average along y or

x. To quantify the effect of both dissipation and K with one parameter, we may

normalize dissipation using the width of the LICES (2 rl), and the turbulent kinetic
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Tm = 1 (black), 10 (blue), and 20 (red). Different line styles correspond
to velocity, um = 1 (solid) um = 50 (dotted), and um = 100 (red).

energy:

ψ =
ǫ 2 rl
K3/2

(4.4)

In Fig. IV.5 we show the plane average of ψ evaluated at z = 1/2Lz. This parameter

has been extensively used in compressible turbulence to asses the so-called dissipative

anomaly (Sreenivasan, 1984, 1998; Donzis et al., 2005). For low Rl, we see that the

normalized dissipation ψ is much larger than unity, which is typical of low Reynolds

number (Sreenivasan, 1998). However, we can see that for the large Rl cases (Rl &

0.5) ψ becomes of order one, also consistent with the literature. It is also around this

Rl that dδ/dy asymptotes with the Mach angle. An interesting observation is that

for the smallest Rl, ψ is larger when Tl is small. This trend then reverses quickly

by Rl & 0.1. When Rl is small, the velocity perturbations are also very small, so

having large temperature dampens out the perturbation rapidly, decreasing K and

thus increasing ψ.

In summary, both Tl and ul have a strong effect on the rate of spread, which

can be quantified by the LICES Reynolds number Rl. We find that for sufficiently
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Figure IV.5. Plane average (x− y) of ψ as a function of Rl for all simula-
tions. Plane chosen is at half of the domain 1

2
Lz, which cuts through the

center of the LICES. Same colors and symbols as Fig. IV.3.

large Rl, the dissipation qualitatively scales as in incompressible turbulence with

large-scale length scale and turbulent kinetic energy, and that the spreading rate

asymptotes with the local Mach angle. From careful examination of the database,

we found this asymptote (i.e. dδ/dy ∼ sin−1(1/M)) is achieved when Rl > 0.5.

IV.B. Flow evolution: interaction between LICES

An objective of this chapter is to determine if LICES can help improve the poor

fuel and oxidizer mixing efficiency in air breathing hypersonic vehicles, or hypersonic

flows in general. As noted in the introduction, there is a rapid decay in mixing

efficiency of supersonic compared to subsonic flows (Gutmark et al., 1995; Birch &

Eggers, 1972; Morris et al., 1990; Goebel & Dutton, 1991; Lele, 1989). Although

the solution to this problem is well known, small scale turbulence (Dimotakis, 2005),

creating homogeneous isotropic turbulence in hypersonic flows is not trivial. While

LICES may be a possible solution, their ability to generate turbulence from very
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confined concentrated sources of energy is not known. Furthermore, if it is possible,

we must then quantify the effectiveness of generating turbulence from LICES and

understand when and why the flow transitions to fully developed turbulence.

In the previous section we quantified the spreading rate of perturbations and

identified the main mechanism that control dδ/dy, with the LICES Reynolds number

Rl being a suitable parameter to characterize it. In this section we will study the

interaction of several intersecting LICES, as shown in the schematic of Fig. II.5.

Two simulations with this setup are shown in Fig. IV.6 and Fig. IV.7. One has

high Tl and low ul, while the other has low Tl and high ul. It is clear that both

temperature and velocity have a qualitative effect on the evolution of the flow, where

the latter conditions seem to favor turbulent mixing. To quantify the degree of

turbulence in the flow we will look at widely used quantities that measure such

condition, including skewness of the velocity gradient, root mean square velocity

ratios, and energy spectra. The large database of simulations, described in Table

IV.2, will be used to study all these quantities.

It is also noted from Fig. IV.6 that when Tl is high the flow behind the LICES

appears to be reasonably statistically stationary. However, when the flow is turbu-

lent, most quantities experience fluctuations over a wide range of scales. It is then

useful to split a variable f into mean and fluctuations, such that f = f + f † where

as defined above and overbar is a time average. We can then compute fluctuation

in time by f † = f − f . As we will see below, studying the statistics of both f and

f † provide complimentary insight into the large scales features of the flow as well as

the small scale turbulence structure that emerges respectively.
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Figure IV.6. Visualization of 1/2(u21+u
2
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3) for low Rl with high Tl (Case

1 from Table IV.2). Color scheme increases from blue to red with green
being intermediate values.
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Figure IV.7. Visualization of 1/2(u21+u
2
2+u

2
3) for high Rl with low Tl (Case

14 from Table IV.2). Color scheme increases from blue to red with green
being intermediate values.
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Case Nl um Tm κmax ul Tl νl Hf Nx,z ×Ny Lx,z × Ly Rl Rλ

1 4 10 20 2 3.67 10.20 4.36 2000 256×1280 2π×10π 1.18 1.96

2 4 30 20 2 11.00 10.20 4.36 2000 256×1280 2π×10π 3.54 2.48

3 4 50 20 2 18.33 10.20 4.36 2000 256×1280 2π×10π 5.90 3.35

4 4 70 20 2 25.66 10.20 4.36 2000 256×1280 2π×10π 8.26 4.37

5 4 160 20 2 58.65 2.04 4.05 2000 256×1280 2π×10π 20.30 7.78

6 4 10 1 2 3.67 0.51 3.99 2000 256×1280 2π×10π 1.29 0.73

7 4 30 1 2 11.00 0.51 3.99 2000 256×1280 2π×10π 3.86 2.16

8 4 50 1 2 18.33 0.51 3.99 2000 256×1280 2π×10π 6.44 3.40

9 4 70 1 2 25.66 0.51 3.99 2000 256×1280 2π×10π 9.01 4.38

10 4 90 1 2 32.99 0.51 3.99 2000 256×1280 2π×10π 11.59 5.22

11 4 110 1 2 40.32 0.51 3.99 2000 256×1280 2π×10π 14.17 6.48

12 4 135 1 2 49.49 0.51 3.98 2000 256×1280 2π×10π 17.46 7.22

13 4 150 1 2 54.99 0.51 3.99 2000 256×1280 2π×10π 19.32 7.85

14 4 160 1 2 58.65 0.51 3.99 2000 256×1280 2π×10π 20.60 8.41

Table IV.2. All converged simulations run. Rλ is averaged from y = 0.8Ly

to Ly.

IV.B.1. Velocity and velocity gradients

To measure large scale anisotropy we can use the ratio of root mean squared

(rms) velocities (denoted by a prime). The rms is defined as:

u′i(y) =

√

〈

(

ui − 〈ui〉y
)2
〉

y

(4.5)

where the subscript y represents the plane average at the particular y location. In

Fig. IV.8 we have the ratio of time-averaged rms velocities for two cases with low and

high Tl. The perturbations we introduce are equivalent for the three components of

velocity, so it is expected that the ratio should be close to one, even close to the grid.
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For low Tl, although we have some oscillations for the axial to transverse rms close

to the grid due to the pulsating nature of the LICES, these tend to equipartition

at short distances. On the other hand, when we have large Tl, the transverse rms

is larger than the axial, with no clear proclivity towards equipartition in terms of

axial distance. In fact, it appears as the ratio of axial to transverse rms decreases

with increasing distance from the grid. This is due to the effect of the Mach waves,

which are found to affect the velocity fluctuations differently in different directions.

Here we can also see the strong effect of acoustics where we have large peaks in the

rms at factors of yMc , which correspond to the location of the Mach waves evident

from the low Rl case in Fig. IV.8. If we removed the time averaged velocity field,

we would expect these strong peaks to disappear. This is indeed what we observe

from Fig. IV.9, supporting the claim that the lower axial-to-transverse rms is due

primarily to the effect of the Mach waves at high Tl.

In Fig. IV.10 we can see the value of rms ratios averaged at three different loca-

tions downstream. At the location of the LICES, we see equipartition independent

of Rl and Tl which is expected since by construction velocity perturbation are similar

in all directions. Then, consistent with the observations in Fig. IV.8, the axial rms

is significantly lower than the transverse rms, primarily for low Rl. An interesting

observation is that for low Tl and away from the grid, the axial rms appears to be

slightly larger than the transverse. Larger axial to transverse rms velocities have been

reported for grid generate turbulence experiments (Comte-Bellot & Corrsin, 1966;

Gad-el Hak & Corrsin, 1974; Mydlarski & Warhaft, 1996) due to the inhomogeneity

of the generator (grid). Axial contractions have shown to decrease the anisotropy
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by amplifying the transverse velocity fluctuations (Comte-Bellot & Corrsin, 1966),

yet some experiments suggest that anisotropy returns (Uberoi & Mahinder, 1957).

It is worth noting that although we still have some degree of anisotropy, the ax-

ial rms is only approximately 2-4% larger than the transverse, while most reported

experiments show between 10-20% larger axial rms.
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Figure IV.8. Ratio of root mean squared velocities for Tm = 1 (left) and
Tm = 20 (right). Different line styles for ratio of transverse velocities
(u′1/u

′
3) (solid) and axial to transverse (u′2/u

′
3) (dotted). Different colors

correspond to to um = 10 (cyan), 30 (magenta), 70 (blue), and 160 (black).
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Figure IV.9. Ratio of root mean squared velocities using the fluctuating
velocity in time. Same colors and line style as Fig. IV.8.

Another widely accepted measure to test the establishment of turbulence is the
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skewness of velocity gradients, which measures the transfer of energy from large to

small scales (Sreenivasan & Antonia, 1997). The skewness of longitudinal velocity

gradients can be defined as:

〈Sui
〉∗ =

〈

(

∂ui
∂xi

−
〈

∂ui
∂xi

〉

∗

)3
〉

∗
〈

(

∂ui
∂xi

−
〈

∂ui
∂xi

〉

∗

)2
〉3/2

∗

(4.6)

where the asterisks will be used to indicate whether the average is taken over the

entire domain, planes, or lines. For fully developed turbulence, it is well known that

the value of Sui
approaches -0.5 (Tavoularis et al., 1978; Sreenivasan & Antonia,

1997). The evolution for Sui
as a function of axial distance can be seen in Fig. IV.11

for two different Tl and several velocities ul. The start of LICES is at π
4
−rl, which is

approximately y ∼ 0.5. Before this point the skewness of velocity gradient is not well

defined, as the variance is zero. At the LICES the skewness is close to zero, which is

expected given the symmetry of the imposed distribution. Downstream of the LICES
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we can see a very different evolution between the low and high Tl simulations. For

very low ul or large Tl we see a strong effect of acoustics on the transverse velocity

gradients Su1
and Su2

, where the skewness changes drastically at the location where

the Mach waves intersect. This location, computed based on the convective Mach

angle is approximately yMc = 7.75. Since the boundary conditions along x and z are

periodic, the Mach waves will intersect at yMc , 2 yMc , 3 yMc and 4 yMc before exiting

the domain. If we remove the time averaged velocity filed, the effect of the Mach

waves disappears, as evident from Fig. IV.12.

For all the cases, except 6 and 7 from Table IV.2, the transverse skewness of

longitudinal velocity gradients goes negative after the LICES and then tends towards

-0.5 as distance increases downstream. When the temperature is high, the evolution

of Su1
and Su2

towards fully developed turbulence appears to be very slow from

Fig. IV.11. However, if we consider S†
ui

the evolution is significantly faster, yet still

slow compared to low-Tl case. This results again supports the idea that fluctuations

appear to approach a realistic turbulent state superimposed on a flow with strong

large-scale acoustic components which are essentially steady. This result also suggests

that care has to be exercised when studying flows with this characteristics but that

the removal of time-averaged quantities could help disentangle the different effects.

The streamwise velocity gradient Su2
is more sensitive to the forcing frequency

Hf , where we see strong oscillations at factors of yc. The oscillations decrease down-

stream with y and also with increasing Rl. For the cases with low Tl, increasing ul

tends the three longitudinal velocity gradients towards the value for isotropic turbu-

lence at large y. If we focus on the case with um = 70, it appears that the transverse
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Figure IV.11. Skewness of longitudinal velocity gradients as a function
of axial distance for Tm = 1 (left) and Tm = 20 (right). Different colors
correspond to um = 10 (cyan), 30 (magenta), 70 (blue), 110 (green), 150
(red), and 160 (black).

skewness reaches -0.5 very close to the grid. However, as y is increased the value

departs from that of developed turbulence. It is then not clear if this is a transition

stage, or if realistic turbulence is effectively established at those conditions. This

will be re-visited when we study one-dimensional energy spectra. The behavior for

the three cases shown with low Tl and largest ul is similar, with the three skewness

of velocity gradients reaching that of isotropic turbulence.

In Fig. IV.13 we show the mean of the three skewness of velocity gradients using
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Figure IV.12. Skewness of longitudinal velocity gradients as a function of
axial distance using fluctuating velocity in time.

total and fluctuating quantities averaged at three locations of y: at the LICES, from

0.4 to 0.6 Ly and from 0.8 to Ly. At the LICES the skewness is nearly zero for

all cases, as expected. For the skewness computed using the total velocity we see

a contrasting behavior between low and high temperature cases. For those with

high Tl, the skewness has negative values larger than -0.5 and becomes less negative

with increasing Rl. There is no clear distinction between the averages taken at half

of the domain and close to the exit. This indicates that if Tl is large, extremely

long distances are required to reach turbulence. In contrast to the high Tl cases,
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Figure IV.13. Skewness of averaged longitudinal velocity gradients as a
function of Rl, space averaged at different locations downstream. Com-
puted using total velocity (left) and fluctuating velocity (right). Same
colors and symbols as Fig. IV.10. Dotted line at -0.5 representing ho-
mogeneous isotropic turbulence (Tavoularis et al., 1978; Sreenivasan &
Antonia, 1997).

for low Tl the skewness is close to zero at low Rl and becomes more negative as we

increase Rl. Now we see a clear distinction between averages at half of the domain

and at the exit. At half of the domain the skewness overshoots -0.5, while at the

exit it asymptotes at -0.5. For the skewness computed using the fluctuating velocity,

the same trend is observed between low and high Tl. Although higher temperature

appears to slow down the transition to turbulence, we can now see a difference

between quantities evaluated at half of the domain and the exit, with a clear trend

towards turbulence values as the axial distance is increased. It is important to note

that for low temperature and high Rl the skewness of velocity gradients tends to the

value found in isotropic turbulence independent of how we evaluate the quantity.

We close this section by summarizing the main conclusion from observations of

ratios of rms velocities and normalized moments of velocity gradients. This conclu-

sion is that three conditions must be met to generate realistic turbulence: Tl must

be small, y must be sufficiently large, and Rl & 15. A quantitative assessment of this
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conditions is given in the next section where we investigate the scaling of the energy

spectrum.

IV.B.2. One-dimensional energy spectra

If turbulence is established for the set of conditions previously described, we

would also expect the flow to acquire the structural signature of fully developed tur-

bulence. Universality of the small scales is one of the signatures. Thus, we can expect

the energy spectrum to approach that of isotropic turbulence at the same Reynolds

number under K41 (?) scaling. Due to the non-periodic boundary condition along

the axial component, we may not directly compute the three-dimensional energy

spectra. Nonetheless, we can still compute the one-dimensional energy spectra in

the first and third components where periodicity is enforced. The one dimensional

energy spectra is defined (Pope, 2000) as Eij(k1) =
1
π

∫∞

−∞
e−ι k1 r1Rij(e1r1)dr1, where

Rij = 〈ui(x)∗uj(x+ e1 r1)〉 is the velocity autocorrelation function, k1 is the wave

number, and e1 the basis vector.

In Fig. IV.14 we show the timed averaged one-dimensional energy spectra nor-

malized using the dissipation ǫ, wave number k, and Kolmogorov microscale η =

(ν3/ǫ)1/4 Tennekes & Lumley (1972) for low Tl cases at three different axial dis-

tances. For the cases with low Tl, the only difference between Eij and E
†
ij is seen at

the large scales which do not change conclusions from the results. Consequently, only

results for total velocity field are shown. The first axial distance shown is for the

location of the LICES. At this point the spectra is defined strictly by the introduced

perturbations and is not expected to collapse with isotropic turbulence under K41
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Figure IV.14. Normalized one dimensional energy spectra for Tm = 1, with
same colors Fig. IV.11. Solid lines for α = 1 and dotted for α = 3. Dashed
lines for homogeneous isotropic turbulence with Rλ ∼ 10 and dash-dot for
Rλ ∼ 17.

scaling. At the second location, which is the average of half of the domain ±10%Ly,

we see that only one case collapses with isotropic turbulence. This case has low tem-

perature and intermediate velocity um = 70. For this particular case, the transverse

components of the skewness goes to -0.5 at this specific y location. Therefore, it is

not surprising that transverse one-dimensional spectra collapses well with isotropic

turbulence. However, for this case Su2
does not go to -0.5, so the the flow is only

isotropic in the transverse plane and it is likely and that neither the stream-wise

one-dimensional energy spectra, nor the three-dimensional energy spectra will col-

lapse with isotropic turbulence. Consequently, although we see close agreement in

the one-dimensional spectra, we cannot claim fully developed turbulence under those

specific conditions. The third location where we evaluate the spectra is at the exit,
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from 95% of the domain to the end. Here we see close agreement with the case with

um = 110 and excellent collapse with the two large Rl cases. For the three cases with

the largest Rl ∼ 17 − 20, we find agreement with isotropic turbulence in the three

components of Sui
, in the ratio of rms velocities, and finally in the two components

of the energy spectra available.
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Figure IV.15. Normalized one dimensional energy spectra for Tm = 20,
with same colors Fig. IV.11. Solid lines for α = 1 and dotted for α = 3.
Dashed lines for homogeneous isotropic turbulence with Rλ ∼ 10 and dash-
dot for Rλ ∼ 17.

In Fig. IV.15 we have the timed averaged one-dimensional energy spectra com-

puted using the total velocity for the cases with high Tl at the same three axial

distances shown for low Tl. At the location of the LICES there is no distinguishable

difference between low and high Tl. As we move downstream we see very strong

oscillations for the cases with lower velocity ul. These oscillations decrease with in-

creasing Rl and can be attributed to the Mach waves. For the cases with very low
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Figure IV.16. Normalized one dimensional energy spectra for Tm = 20
computed using the fluctuating velocity field, with same colors and line
styles as Fig. IV.15.

ul and high Tl, the primary perturbations arise from the Mach waves, as turbulent

fluctuations are negligible. The velocity of a single component in an transverse plane

will be similar to a square wave oscillating between positive and negative velocity,

as may be seen visually in Fig. IV.6 (left). A simple model for an alternating signal

like that is a square wave which in spectral space contains only odd Fourier modes

(for example, 1 = 4
π
(sin(x) + sin(3x)

3
+ sin(5x)

5
. . . (Tolstov, 2012)). This helps explain,

in a qualitative way, the fluctuating nature of the spectra in Fourier space. As Rl is

increased, more perturbations are generated and the oscillations tend to disappear.

For the case with largest Rl, the strong oscillations vanish but we still do not see a

collapse with isotropic turbulence. This is expected given the results from velocity

and velocity gradients. In Fig. IV.16, we show the spectra for the same cases as

Fig. IV.15 computed using the fluctuating velocity field. As we expect, the strong
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oscillations at low ul have decreased drastically. Although the effect of Mach waves

is virtually removed when using only fluctuating quantities, there is still no collapse

with isotropic turbulence. This demonstrates that if the conditions are satisfied for

the establishment of fully developed turbulence, Mach waves will no longer have an

effect on the flow properties and in general the statistics of f will be similar to f †.

The excellent agreement of the energy spectrum for low Tl and high Rl supports

the results from velocity and velocity gradients, indicating three conditions for fully

developed turbulence:

1. y/dl & 5

2. Tl/T0 . 1%

3. Rl & 15

Note that this does not preclude the generation of turbulence at higher Tl. In such

a case, however, we expect a higher Rl will be needed as well as a larger distance

downstream of the LICES. Though, confirmation of these claims would require fur-

ther numerical experiments.

IV.B.3. Reynolds number

In the previous section we showed that, when a set of conditions is met, turbu-

lence can be generated from LICES. It is now of practical importance to quantify in

some sense the strength of the turbulence generated. A measure of this strength is

the Reynolds number, which is the ratio of inertial to viscous forces. A widely used
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definition of the Reynolds number is the Taylor Reynolds number:

Rλ =
u′ λ

ν
(4.7)

where the u′ is the rms velocity and λ =
〈

(u′2/(∂u′/∂x)2)
1/2
〉

the Taylor microscale.

The smallest relevant scale in the flow is the Kolmogorov microscale η = (ν3/ǫ)1/4

(Tennekes & Lumley, 1972) which is related to the integral scale through L/η = R
3/4
λ

(?). This implies that separation between the largest and smallest scales increases

with Reynolds number. Furthermore, if our largest scale is confined, increasing the

Reynolds number will generate smaller scales which ultimately facilitate mixing, one

of the main practical objectives of this work.
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Figure IV.17. Taylor Reynolds number as a function of axial distance for
Tm = 1 (left) and Tm = 20 (right). Colors are same as Fig. IV.11.

In Fig. IV.17 we show the Taylor Reynolds number as a function of axial dis-

tance. Upstream of yMc we can see the effect of Hf where the different peaks of Rλ

correspond to individual LICES convected downstream. If y > yMc and Rl is large,

the distinctive peaks from the LICES disappear and Rλ becomes nearly insensitive to

y, given Tl is also low. For large temperature we can clearly see the interacting Mach

104



100 101
10-2

10-1

100

101

100 101
10-2

10-1

100

101

yy

R
† λ
(y
)

R
† λ
(y
)

Figure IV.18. Taylor Reynolds number as a function of axial distance for
Tm = 1 (left) and Tm = 20 (right). Colors are same as Fig. IV.11.

waves at factors of yMc , although the effect is reduced for increased Rl. Consistent

with the previous quantities, the peaks at yMc disappear for R
†
λ(y) and a dependence

of temperature is no longer visible if one compares Fig. IV.18 left and right.

100 101

100

101

100 101

100

101

RlRl

Rλ ∝ R 0.85
l

R
λ
(y

=
.8
L
y
−
L
y
)

R
† λ
(y

=
.8
L
y
−
L
y
)

Figure IV.19. Taylor Reynolds number as a function of LICES Reynolds
number computed using total velocity (left) and fluctuating velocity
(right). Colors are same as Fig. IV.11. Dash-dot line for fit of data
with Rl > 2.

From Fig. IV.17 and Fig. IV.18 we find that Rλ decays very slowly with respect

to axial distance. For this reason, we only show results of Rλ as a function of Rl

for the average of the last 10% of the domain in Fig. IV.19. We find that, with
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the exception of low ul, Rl collapses all simulations with different perturbations of

velocity and temperature. The collapse is even better when we use the fluctuating

velocity, as there are no departures at low Rl for high Tl. The relation between Rλ

and Rl can be well represented by a power law of ∼ 0.85 from a best fit based on

the total velocity. The power found when using the fluctuating velocity is smaller,

but within 5%. The weak power could present some limitations in the practical

applicability of LICES, as reaching higher Reynolds number would require stronger

perturbations while maintaining local low temperature along the LICES.

IV.B.4. Dilatational motions

Dilatational motions can act, in principle, at any scale. To study the effect of

compressibility at the small scales, we may use the dilatational dissipation (Sagaut

& Cambon, 2008):

ǫd =
4

3
ν

(

∂ui
∂xi

)2

(4.8)

and we may also define χǫ = 〈ǫd〉∗/〈ǫ〉∗, where the asterisk indicates that different

spatial averages may be taken. We wish to understand the emergence of dilatation

motions downstream of the LICES. We may compute χǫ for all y as it is computed us-

ing compact schemes. On the other hand, for χ we must extract 2π cubes at different

y locations, apply windowing and then obtain the averaged dilatation through the

Helmholtz decomposition. For statistical convergence this is then repeated for differ-

ent times instances and then time averaged, making it a computationally expensive

quantity.

In Fig. IV.20 we show χ for different y locations, where each point on the figure
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using the fluctuating velocity for Tm = 1 (left) and Tm = 20 (right). Same
colors as Fig. IV.20.

corresponds to the center of the cubic domain where χ is computed, namely y∗. For

this reason the first point is at π and the last at 9π. From the figure we can see that

χ shows no clear dependence on y for small Tl, but there is a weak dependence on y

for high Tl, with a few distinctive peaks that are associated to the Mach waves. Each

point corresponds to a 2π average, so variations with y will be hard to capture if

oscillations are around the mean of the quantity evaluated. There is also a monotonic

trend with Rl for high Tl, where dilatation decreases with increasing Rl. On the other
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hand, when Tl is low, χ decreases and then increases again.

Overall, the dilatational kinetic energy is larger when Tl is large. Lee & Girimaji

(2013) have also observed that dilatational kinetic energy increases with heat release

in the presence of temperature fluctuations. This is attributed to an increase in

pressure dilatation from the heat release. When we introduce the additional temper-

ature on the LICES, we will have temperature fluctuations between the mean and the

LICES, and also on the distribution of the LICES themselves, proportional to 15%

of Tm. Therefore, adding larger Tm increases both the heat release and temperature

fluctuations.

If χ is computed using the fluctuating velocity, we find that there is a qualitative

change in dilatational motions for high Tl. Now there is a monotonic trend where

dilatation increases with Rl. This is not unexpected as we can attribute the strong

dilatation to the stationary Mach waves generated behind the LICES. Upon removing

the time averaged velocity, the Mach waves disappear and the dilatation can be

expected to scale with the velocity introduced. We also find χ† to be smaller when

Tl is large. As shown in Fig. IV.4, the temperature increases substantially behind the

LICES when Tl is large, which will simultaneously increase the speed of sound. As

the speed of sound increases, the turbulent Mach number Mt decreases and we can

expect the dilatational contributions to weaken as χ scales with Mt (Jagannathan &

Donzis, 2015).

As mentioned previously, we can compute χǫ in physical space and we can

therefore compute plane averages for each y location. In Fig. IV.22 we have the ratio

of dilatational to total dissipation. It is clear that the ratio of dilatational to total
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dissipation we introduce at the LICES is constant and independent of temperature.

However, similarly to χ, we see a difference in the evolution of χǫ for different Tl.

At high Tl we can see the interacting Mach waves at factors of yMc , whose effect

decreases with increasing ul. When ul is low, we see strong fluctuations with respect

to y which decrease at the region where the Mach waves interact. This is expected, as

the flow has not evolved to a turbulent state and is very sensitive to Hf . Where the
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planes interact, and we can expect the flow to be more homogeneous in this region.

These oscillations are seen to go over unity, which implies the solenoidal dilatation

becomes negative in this regions. This is only seen for the cases where Tl is large

and can attributed to the inhomogeneous term of dissipation, which has a strong

contribution given the inhomogeneity of flow as seen from Fig. IV.6.
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Figure IV.24. Ratio of dilatational to total velocity variance χ (open
symbols) and ratio of dilatational dissipation to total dissipation χǫ (closed
symbols) for the total velocity field (left), and fluctuating velocity field
(right). Different markers correspond to y locations, with y = π (circles),
5π (squares), and 9π (triangles) for χ and y = LICES (circles), 0.4Ly−0.6Ly

(squares), and 0.8Ly − Ly (triangles) for χǫ . Colors correspond to Tm = 1
(black) and 20 (red).

When we compute the χǫ using the fluctuating velocity, we find there is virtually

no change compared to the total velocity if the temperature is low. This can be

appreciated in Fig. IV.24 where it is hard to distinguish the difference between χ

and χ†. However, at large Tl we find that the large values of dilatational dissipation

disappear and results are similar between low and high LICES temperature. Similar

to χ, when we remove the time averaged velocity the effects of acoustics disappear
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and we no longer have the large gradients caused by the Mach waves.

From Fig. IV.24, it is clear that at the location of the LICES the dilation in-

troduced is independent of ul and Tl. If we consider χǫ computed using the total

velocity, we can then see a similar trend as that χ, where it decreases with increasing

Rl for the cases with high Tl, while there also seems to be a dip at intermediate Rl

for the low Tl cases, although less pronounced than χ. On the other hand, dilata-

tional dissipation behaves similarly for both low and high Tl when computed using

the fluctuating velocity.

In summary, the heat release at the LICES has a first order effect on the evo-

lution of both the kinetic and dissipation dilatational fields. Introducing large tem-

perature favors dilatational motions at both the large and small scales. Introducing

large temperature increases the strength of the Mach waves, which are purely di-

latational motions. These can be weakened by increasing the velocity fluctuations.

Upon removing the time averaged velocity field we find a qualitative change at both

the large and small scales, as seen in Fig. IV.24. This demonstrates the strong effect

of the transition of the flow towards fully developed turbulence.

IV.C. Conclusions

In this chapter we have investigated the possibility of creating turbulence from

laser induced concentrated energy sources (LICES), inspired in the experimental use

of lasers to photo-dissociated molecules. This mechanisms is intended to increase

mixing in hypersonic combustion, where the harsh environment of combustors makes

any other active method unpractical. We have modeled the velocity and temperature
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fluctuations based on experimental observations of vibrationally excited nitric oxide

(Sánchez-González et al., 2012a,b), although the analysis may be adapted to other

molecules.

We have performed a convergence study to quantify the error of mean kinetic

energy and dissipation rate, strictly based on the way energy was introduced. We

have defined a non dimensional resolution Reynolds number Rk which provides a

function for the error of both quantities. Rk can be known a priori from initial

conditions, and the error can be bounded by assuming Rk < Rmax
k .

As a first step in understanding the evolution of the flow, we analyzed the spread-

ing rate of perturbations from a single LICES. To measure the turbulent fluctuations

downstream, the stationary flow is removed by subtracting the time averaged veloc-

ity field. The perturbations downstream are then measured using Eq. (4.1). From a

large database of simulations, seen in Table IV.1, it was determined that the time

averaged spreading rate dδ/dy is a function of Rl and Tl, with an upper bound fixed

by the local Mach angle dδ/dy . sin−1(1/M), which increases with Tl. It was also

determined that at low Rl the normalized dissipation ψ is much larger than unity,

which is typical of low Reynolds number (Sreenivasan, 1998). However, for the large

Rl ψ becomes of order one, also consistent with the literature, and the spreading

rate collapses with the Mach angle dδ/dy ∼ sin−1(1/M).

Several statistics were used to determine the transition of the flow to fully devel-

oped turbulence. It was shown that for low Tl, the axial rms is approximately 2-4%

larger than the transverse. Although there is a small degree of anisotropy at the

large scales, it is close to an order of magnitude smaller than classical grid turbulence
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(Comte-Bellot & Corrsin, 1966; Gad-el Hak & Corrsin, 1974; Mydlarski & Warhaft,

1996). For high Tl cases we can seen strong anisotropies as the major velocity per-

turbations are generated by the Mach waves behind the LICES. This effect decreases

with Rl as the Mach waves are weakened by the velocity perturbations. The strong

effect of acoustics when LICES temperature is large was validated by computing the

same quantities with the fluctuating velocity field. The effect of acoustics, which is

statistically stationary in time, disappears and the large scale anisotropies are no

longer seen. The skewness of longitudinal velocity gradients was shown to approach

the value for fully developed isotropic turbulence (Tavoularis et al., 1978; Sreenivasan

& Antonia, 1997) given three conditions are met: axial distance y/dl & 5, LICES

Reynolds number Rl & 15, and LICES temperature perturbations are withing 1%

of the reference temperature Tl/Tref . 1%. At these conditions the transverse one-

dimensional energy spectra collapses with isotropic turbulence under K41 scaling

and we can claim universality of the small scales. Other conditions for generating

turbulence at higher temperature perturbations are likely possible, yet the distance

behind the grid and Rl will have to increase.

An important result from the analysis is that the Taylor Reynolds number scales

with Rl. It was found to scale as Rλ ∼ R0.85
l , implying a weak power law. Finally,

it was shown that adding temperature at the LICES has a first order effect on the

dilatational motions, both of velocity and dissipation. For high Tl dilatation decreases

with increasing Rl, while for low Tl it is relatively constant with a dip at Rl ∼ 10.

In summary, we have shown that it is possible to create turbulence based on

LICES, provided a Reynolds number based on initial conditions is high enough and
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the additional temperature at the LICES is below 1%. We have also shown that if

the velocity introduced at the LICES is sufficiently high, the anisotropic effect of the

Mach waves is reduced. Therefore, we expect that turbulence at higher Tl is possible

but would require significantly higher Rl, which is a computational challenge. Finally,

we have found that is possible to predict the achievable Rλ based on the energy we

introduce.
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CHAPTER V

ISOTROPIC TURBULENCE IN THERMAL EQUILIBRIUM AND

NON-EQUILIBRIUM

In this chapter we investigate the statistically steady states of turbulent flows

when the vibrational molecular degree of freedom is excited. Unlike laminar flows

in thermal non-equilibrium which relax asymptotically towards thermal equilibrium,

turbulent flows present persistent departures from equilibrium. This is due to fluctu-

ations in thermodynamic variables which are known to increase with turbulent Mach

number Mt =
√

(3)u′/c, where c is the mean speed of sound. In turbulent flows,

hydrodynamics as well as thermodynamic variables experience fluctuations over a

wide range of scales and it is useful to split a variable f into mean and fluctuations,

that is f = f + f ′ where an overbar is a suitably defined average and clearly f ′ = 0.

For simplicity in notation we will denote normalized fluctuations as f † ≡ f ′/f .

The analytical results in this section are derived in terms of temperature variance

and temperature-density correlations. Depending on the type of forcing, these can

be related to other parameters. For example for SF we have (Donzis & Jagannathan,

2013):

T †2 ≈ A2(γ − 1)2M4
t /9

ρ†2 ≈ A2M4
t /9

ρ†T † ≈ A2(γ − 1)M4
t /9, (5.1)

where A is a flow-dependent constant and γ is the ratio of specific heats.
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When DF is applied, however, these relations are not valid but still fluctuations

are found to be accurately described as isentropic or more generally as polytropic.

Then (Donzis & Jagannathan, 2013):

ρ†2 = T †2/(γ − 1)2

ρ†T † = T †2/(γ − 1). (5.2)

(In what follows γ is understood as a polytropic exponent, with the isentropic case

being a particular instance). Finally, when the energy equation is forced (i.e. EF),

temperature and density fluctuations become more uncorrelated and it is not possible

to identify a single parameter to represent their fluctuations.

To assess scaling with different parameters, a large database of 204 simulations

has been generated. A summary of the parameter space and conditions covered by

the simulations is shown in Table V.1.

V.A. Turbulence in thermal equilibrium

If we have a turbulent flow where vibrational energy is in complete thermal

equilibrium, ev = e∗v everywhere and at all times with e∗v given by Eq. (2.25). Due

to temperature fluctuations, we clearly have e∗v 6= e∗v(T ) where e∗v(T ) is Eq. (2.25)

evaluated at T = T . If one considers fluctuations around e∗v(T ), using a Taylor

expansion with spatial averages, Eq. (2.25) may be re-written as:

e∗v − e∗v(T )

e∗v(T )
= gTT †2 (5.3)

≈ A2gMM
4
t (5.4)
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Cases Rλ Mt Forcing N c2/T kT kτ

1-48 38 0.1 SF (s = 1) 64 100-200 1,2,5,10 1,2,5,10,15,25

49-96 38 0.3 SF (s = 1) 64 100-200 1,2,5,10 1,2,5,10,15,25

97-120 38 0.6 SF (s = 1) 64 100 1,2,5,10 1,2,5,10,15,25

121-140 38 0.8 SF (s = 1) 64 100 1,2,5,10 1,2,5,10,15

141-152 38 0.6 SF (s = 1) +1.2 EF 64 100 1,10 1,2,5,10,15,25

153-164 38 0.6 SF (s = 1) +1.6 EF 64 100 1,10 1,2,5,10,15,25

165-176 38 0.3 SF (s = 0.4) + DF 128 100 1,10 1,2,5,10,15,25

187-188 60 0.3 SF (s = 1) 128 100 1,10 1,2,5,10,15,25

189-196 100 0.1 SF (s = 1) 256 100 1,10 1,2,5,10,15

197-204 100 0.3 SF (s = 1) 256 100 1,10 1,2,5,10,15

Table V.1. All simulation run for isotropic turbulence with TNE including
the type of forcing used and parameter space for each Mt and Rλ.

Where gT is a function of the non-dimensional parameter:

KT ≡ θv

T
(5.5)

and gM = gT (γ − 1)2/9. Eq. (5.4) is only valid for SF. The complete expression for

gT may be found in (Donzis & Maqui, 2016).

In Fig. V.1(a-b) we compare Eq. (5.3) and Eq. (5.4) with DNS data where

averages are taken over space as typically done in isotropic simulations (?). In part

(a) we see very good agreement except for DF and EF cases, which is not unexpected

since the relation used between temperature fluctuations andMt is only valid for SF.
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Figure V.1. Effect of temperature fluctuations on mean vibrational en-
ergy in thermal equilibrium per unit mass (a-b) and per unit volume (c).
Circles, squares and triangles correspond to KT = 2, 5 and 10 respectively.
Black, magenta, red and cyan are for SF, DF, SF+EF and DF+EF, re-
spectively. Blue symbols are for Rλ ∼ 100. For present simulations A = 1.2,
γ = 1.4.

All cases collapse when data are cast in terms of temperature fluctuations (part b).

The general expression in terms of T †2 holds independently of the physical mechanism

responsible for these temperature fluctuations. We also note that while the Mach

number dependence is strong, Reynolds number effects are very weak. This is not

unexpected since temperature fluctuations are known to be strongly affected by Mt

but only weakly affected by Rλ (Donzis & Jagannathan, 2013).

A similar development can be done for the vibrational energy per unit volume

E∗
v ≡ ρe∗v. The relevance of this quantity can be seen readily in the context of our

simulations where the average is essentially an integration over the volume (divided

by a constant), that is the total vibrational energy in the domain. When Eq. (2.25) is

multiplied by ρ, the Taylor expansion now involves fluctuations in both temperature

and density. Again, using Eq. (2.25) and averaging, we can rearrange the final
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expression which, to leading order, is

E∗
v − E∗

v(T , ρ)

E∗
v(T , ρ)

= gT T †2 + gρT ρ†T † (5.6)

≈ GT T †2 (5.7)

where again gρT is just a function of KT and GT = gT + gρT/(γ− 1). This expression

may also be re-rewritten solely in terms ofMt for SF. Details on the expressions may

be found in (Donzis & Maqui, 2016).

The good agreement between Eq. (5.7) and the DNS with SF and DF forcings

is shown in Fig. V.1c. It is readily verified that at low and high values of KT

the dominant contribution comes from the gρT and gT terms respectively. Thus, it

is also seen that the EF cases, which are dominated by temperature fluctuations,

also become a better approximation at high KT as the magnitude of gρT becomes

relatively small.

An interesting consequence of Eq. (5.7) is that since GT is always positive,

then E∗
v > E∗

v(T ). This means that the total energy in the vibrational mode will

always be larger when fluctuations of thermodynamic variables are present, even if

the flow is in complete thermal equilibrium. Alternatively, this implies that in order

to maintain the same mean temperature (translational-rotational energy) a turbulent

flow will store more energy in the vibrational mode than its non-fluctuating (laminar)

counterpart. This result is a consequence of the specific non-linear dependence of

the equilibrium vibrational energy with temperature Eq. (2.25) when this mode is

partially excited.

We now turn to the relative contribution of vibrational to translational-rotational

119



energy. For laminar flows in thermal equilibrium this is well known:

E∗
v(T , ρ)

E(T , ρ)
=

2KT

5(β − 1)
. (5.8)

Because of the different effect of fluctuations of thermodynamic variables on differ-

ent energy modes, we expect the distribution of energy to depend on these fluctu-

ations. For example, the ratio of the average vibrational to translational-rotational

energy, both in thermodynamic equilibrium, can be written, using Eq. (5.6) and

E = E(T , ρ)(1 + ρ†T †) (which results from decomposing E = ρ(5/2)RT into mean

and fluctuations), as

E∗
v

E
≈ E∗

v(T , ρ)

E(T , ρ)

1 +GTT †2

1 + T †2/(γ − 1)
(5.9)

where as before the last expression corresponds to polytropic fluctuations. The good

agreement between this expression and DNS is shown in Fig. V.2 as we compare

open circles (DNS) with Eq. (5.9) as dashed lines. From the figure we can see a

transition from low to high temperature fluctuations. In particular, from Eq. (5.9),

we can define the turbulent-to-laminar ratio of the relative contribution of vibrational

energy as

r∗v ≡
E∗

v/E

E∗
v(T , ρ)/E(T , ρ)

(5.10)

which measures the effect of turbulence on the distribution of energy across

vibrational and translational-rotational modes. It is readily shown from Eq. (5.9)

that r∗v tends to 1 and (γ − 1)GT for low and high levels of temperature fluctuations

T †2 (or Mt) respectively. However, the expansion in the numerator of Eq. (5.9)

contains only the leading order term. Higher order terms will become important at,

for example, higher Mt where thermodynamic fluctuations may follow a log-normal
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rotational energy. Dashed lines (Eq. (5.9)) and open circles (DNS) are
for E∗
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for Ev/E. From top to bottom, KT = 1, 5, 10 and 15 respectively. Same

colors as in Fig. V.1. Inset: variation of Ev/E∗
v with Kτ for fixed T †2 ≈ 10−2

and KT = 10.

distribution (Blaisdell et al., 1993; Donzis & Jagannathan, 2013). In any case, we

can see that asMt increases, a larger fraction of the available energy will be stored in

vibrational modes when the mean temperature of the flow is kept constant. Even if

higher order terms are included, r∗v may still plateau at intermediate Mach numbers

since the denominator is a second order polynomial without any approximation.

V.B. Turbulence in thermal non-equilibrium

We now turn to the situation where thermal equilibrium is not achieved instan-

taneously, that is TNE. This is known to be the case, for example, in the laminar
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flow behind a strong shock where translational and rotational energy quickly reach

equilibrium but vibration, associated with much larger time scales (Rich & Treanor,

1970), attains equilibrium only after a relatively long period of time. This relaxation

process can also be studied in molecular simulations (Liao et al., 2010; ?) as well as

experiments (Fuller et al., 2014).

Turbulent flows possess a wide range of time scales. The most rapid fluctuations

in a turbulent flow are associated with the so-called Kolmogorov time scale (?)

τη ≡ (ν/〈ǫ〉)1/2 where ν is the mean kinematic viscosity and 〈ǫ〉 the mean energy

dissipation rate. Since the Prandtl number in the simulations is of order one, the

smallest scales for the temperature field are expected to operate at a time scale

comparable to τη (Monin & Yaglom, 1975). Thus, an important non-dimensional

parameter to characterize the relaxation process is the ratio

Kτ ≡ τv/τη (5.11)

To obtain a specific value Kτ in our simulations, we adjust the constant cτv1 . The

value of cτv2 is taken to be about two orders of magnitudes larger than T (that is

Kc2 ≡ cτv2 /T ∼ O(102)) which is not uncommon in real flows with TNE (e.g. air

at temperatures of O(103) degrees Kelvin). The conclusions below, though, do not

depend strongly on the specific value of Kc2.

If Eq. (2.23) is averaged, then, for a stationary, homogeneous flow, the entire

left-hand-side as well as transport terms on the right-hand-side vanish. The result is

Ev/τv = E∗
v/τv. (5.12)

This expression represents a general statement on the nature of statistically station-

ary states for turbulence in TNE under the assumptions which make Eq. (2.23) valid.
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We have verified Eq. (5.12) against DNS data within statistical error.

We can expand the right-hand-side of Eq. (5.12) in T and ρ as before. The

result, to leading order, is

Ev/τv ≈ E∗
v(T , ρ)

τv(T , p)

(

1 +HTT †2
)

, (5.13)

where HT is a function of KT and Kc2 for polytropic fluctuations. The generalized

formula along with details on the expression may be found in (Donzis & Maqui,

2016).

However, while Eq. (5.12) and Eq. (5.13) describe the nature of steady states

from the governing equations through the correlation Ev/τv, our interest is in the be-

havior of the vibrational energy itself. Based on the parameter Kτ we can distinguish

two asymptotic regimes, namely, fast and slow relaxation.

Fast TNE relaxation.If Kτ ≪ 1, then vibrational relaxation is much faster than

any other hydrodynamically relevant time scale. We would then expect fluid elements

to attain thermal equilibrium almost instantaneously which implies Ev ≈ E∗
v .

Slow TNE relaxation. If Kτ ≫ 1, then the last term in Eq. (2.23) will be

small. The evolution towards equilibrium will be slow and fluctuations of transla-

tional temperature will not have an immediate effect on ev. Unlike the case of very

rapid equilibration (Kτ ≪ 1), Ev may be only weakly correlated to T † and one may

expect

Evτv−1 ≈ Ev τv−1. (5.14)

Combining with Eq. (5.13) we find

Ev ≈ E∗
v(T , ρ)

τv(T ,±)−1

τv−1

(

1 +HTT †2
)

. (5.15)
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The ratio of vibrational relaxation times can also be expanded in Taylor series yield-

ing τv−1/τv(T ,±)−1 ≈ 1 + LTT †2 with LT = K
1/3
c2 (K

1/3
c2 − 4)/18.

Combining results we obtain

Ev

E
≈ E∗

v(T , ρ)

E(T , ρ)

1 +HTT †2

(

1 + LTT †2
)(

1 + T †2/(γ − 1)
) . (5.16)

In Fig. V.2 we compare DNS data (solid stars) with Eq. (5.16) (solid lines) where we

also see very good agreement especially at high KT . At low KT , higher values of Kτ

(i.e. longer relaxation times) lead to increasingly better agreement. We can also define

a ratio rv = (Ev/E)/(E
∗
v(T , ρ)/E(T , ρ)) to quantify departures in energy distribution

due to turbulence. Like r∗v, the ratio rv grows as temperature fluctuations become

stronger (Fig. V.2). At much higher fluctuations, however, higher order terms are

needed in Eq. (5.16).

Note that the dashed and solid lines represent the limits Kτ → 0 and Kτ → ∞

respectively. Intermediate conditions are expected to fall between these two lines.

The inset of the figure illustrates this, where the ratio of Ev/E∗
v approaches unity at

low Kτ but increases at high Kτ . The conclusion here is again that turbulent flows

will store more energy in vibrational modes (even more than in complete thermal

equilibrium) than its laminar counterpart at the same mean temperature.

V.C. Conclusions

The strongly non-linear nature of partially excited vibrational energy with tem-

perature, as described by quantum mechanics, results in steady states for turbulent

flows which depart from its nonfluctuating counterparts. In particular, when the

mean translational temperature is the same, turbulent flows store a larger fraction
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of energy in vibration than flows without temperature fluctuations. This is the case

in situations when there is complete thermal equilibrium as well as situations with

TNE. However, the degree of the departure is stronger for the latter. This phe-

nomenon may be used, for example, to control heat transfer to surfaces in supersonic

vehicles by taking advantage of the increased energy stored in vibrational, instead

of translational modes, as turbulent fluctuations increase. Quantifying the effect

of turbulence on the mean vibrational energy can also be valuable in interpreting

averaged experimental results of this energy mode.
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CHAPTER VI

CONCLUSIONS AND FUTURE WORK

VI.A. Conclusions

Generating turbulence at supersonic speeds with thermal non-equilibrium (TNE)

is an extremely difficult, yet desired problem. In the present work we examine a new

idea to generate these conditions in a controlled experimental environment and assess

whether such an approach is feasible. This new concept involves localized concen-

trated energy sources, which can be introduced by laser-induced photo-dissociation

of molecules, and evolve to eventually trigger the establishment of turbulence. To

understand the main mechanisms leading towards the development of turbulence, in-

compressible simulations with concentrated kinetic energy sources were used. These

allowed us to investigate the fundamental hydrodynamic process shortly after photo-

excitation, when thermodynamic variables have reached equilibrium and the flow can

be considered isotropic.

Based on several statistics commonly used to describe turbulent flows we have

found laser induced kinetic energy sources (LIKES) are a feasible mechanisms for

generating turbulence given the Reynolds number based on initial conditions is suf-

ficiently high, RI > 400, and enough time has elapsed, t > 2τ ∗. At these conditions,

the skewness of velocity gradients and ratio of rms velocities is consistent with grid

turbulence at similar Reynolds number (Tavoularis et al., 1978; Sreenivasan & An-

tonia, 1997), and the spectra collapses under K41 normalization. It has also been
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shown that the second and third invariants agree well with grid generated turbu-

lence passed through a contraction (Choi & Lumley, 2001; Le Penven et al., 1985;

Tucker & Reynolds, 1968), given the similarities of the initial conditions. From an

analysis using radial statistics, we have shown that, in the proximity of the LIKES,

convection dominates and that there is a qualitative change from vortex squeezing

to stretching as the flow evolves in time. It is also found that both the characteristic

time scale τ ∗ and the Taylor Reynolds number scale with RI . This is an important

result provided we can predict the highest achievable Rλ, as well as the transition to

turbulence from the initial conditions.

Upon having understood the main mechanisms which generate turbulence from

concentrated energy sources, the more complex compressible scenario, where we have

fluctuations in thermodynamic and hydrodynamic variables, was studied. These are

laser induced concentrated energy sources (LICES). Again, based on the skewness of

velocity gradients, ratio of rms velocities, and energy spectra we have found LICES

to be feasible mechanism for generating turbulence, given the right set of conditions

are posed, which in this case is reduce to: high Rl, and low Tl. The Taylor Reynolds

number is found to scale with Rl, providing a tool for predicting the Rλ based on the

energy introduced. Results show a strong effect of heat release on the development

of turbulence. Increasing temperature at the LICES increases dilatational motions

which inhibit or delay the transition to turbulence.

Finally, the effects of TNE have been studied in isotropic turbulence. It has

been showed that turbulent flows store a larger fraction of energy in vibration than

laminar flows. This is the case for flows in thermal equilibrium as well as thermal
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non-equilibrium, although the fraction can be larger for the latter.

In summary, we have shown that it is possible to generate turbulence from

concentrated sources of energy, such as those of laser induced photo-dissociation

molecules. The numerical study presented provides the parameters used to design

turbulence experiments at hypersonic speeds. This will allow for the fundamental

understanding of turbulence in hypersonic speeds, where more complex physics such

as TNE may be present. These parameters can also be used for the development of

new technologies for increased mixing in the combustion of hypersonic vehicles.

VI.B. Future research directions

In this section we discuss possible extensions to the current work.

• Although the fundamental aspects of LICES generated turbulence have been

studied, there is still a large number of parameters that offer greater control on

the characteristics of the generated turbulence. For example we would also like

to explore the effect of the different distributions, distance between LICES, and

other geometrical considerations that could affect the transition to turbulence.

• Although we expect that turbulence can be generated at higher Tl, we wish to

verify this claim through numerical experiments. Furthermore, we would like

to predict the distance at which the flow will transition to turbulence. This

distance would be the analogous to τ ∗ in the simulations of incompressible

LIKES. Characterizing this distance could provide valuable information to the

design of a well controlled experimental configurations for shock turbulence

interactions.
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• The next step in complexity is to study the effect of TNE in controlled con-

ditions. Ideally we would like to have LICES with TNE and control energy

distributions (translational, rotational, vibrational). With a carefully designed

LICES grid one can create a mean Ev gradient in the transverse direction to

understand the evolution of Ev. Other simplified configurations could involve

turbulence boundary layer with TNE, or other simple transition flows.

• Another potential implementation of the LICES technique is for relaminariza-

tion of flows. We have shown that introducing large temperature at the LICES

delays or inhibits the transition to turbulence. It is of practical importance to

understand if an already turbulent flow can be relaminarized through LICES.

This could be an extremely useful tool for systems where turbulence noise is

detrimental to the functionality of the system. It could also have practical

applications to reduce drag or dynamically control flows. For example, LICES

could be applied at the exit of a combustion chamber to relamizarize the flow

and improve the efficiency of the exhaust process.

• A large number of scripts have been developed to automatize the process in

which simulations are run. To make these more user friendly, a collaboration

between our group and XSEDE was established. The main objective of this col-

laboration is to create a framework to run simulations and post processing on

different supercomputers from our local machines, without requiring advance

knowledge of the codes or supercomputing. An automatic workflow was suc-

cessfully created to run the main simulation but achieving dynamic workflows

of post processing is still a work in progress. Building the tools to perform DNS
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in a user friendly fashion would be beneficial to the entire scientific community.
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che Verlagsgesellschaft MBH.

Ribner, H. S. 1954 Shock-turbulence interaction and the generation of noise. NACA

TN-3255 .

140



Rich, J. W., Macheret, S. O. & Adamovich, I. V. 1996 Aerothermodynamics

of vibrationally nonequilibrium gases. Experimental Thermal and Fluid Science

13 (1), 1–10.

Rich, J. W. & Treanor, C. E. 1970 Vibrational relaxation in gas-dynamic flows.

Annual Review of Fluid Mechanics 2, 355–396.

Rogallo, R. S. 1981 Numerical experiments in homogeneous turbulence p. NASA

Tech. Memo. 81315.

Rogers, R Clayton, Capriotti, Diego P & Guy, R Wayne 1998 Experi-

mental supersonic combustion research at nasa langley. AIAA Paper 98, 2506.

Sagaut, P. & Cambon, C. 2008 Homogeneous turbulence dynamics.
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