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ABSTRACT

The Implicit Monte Carlo (IMC) method has been a standard method for thermal

radiative transfer for the past 40 years. In this time, the hydrodynamics methods

that are coupled to IMC have evolved and improved, as have the supercomputers

used to run large simulations with IMC. Several modern hydrodynamics methods

use unstructured non-orthogonal meshes and high-order spatial discretizations. The

IMC method has been used primarily with simple Cartesian meshes and always has a

first order spatial discretization. Supercomputers are now made up of compute nodes

that have a large number of cores. Current IMC parallel methods have significant

problems with load imbalance. To utilize many core systems, algorithms must move

beyond simple spatial decomposition parallel algorithms. To make IMC better suited

for large scale multiphysics simulations in high energy density physics, new spatial

discretizations and parallel strategies are needed. Several modifications are made

to the IMC method to facilitate running on node-centered, unstructured tetrahedral

meshes. These modifications produce results that converge to the expected solution

under mesh refinement. A new finite element IMC method is also explored on these

meshes, which offer a simulation runtime benefit but does not perform correctly

in the diffusion limit. A parallel algorithm that utilizes on-node parallelism and

respects memory hierarchies is studied. This method scales almost linearly when

using physical cores on a node and benefits from multiple threads per core. A multi-

compute node algorithm for domain decomposed IMC that passes mesh data instead

of particles is explored as a means to solve load balance issues. This method scales

better than the particle passing method on highly scattering problems with short

time steps.

ii



DEDICATION

This is dedicated to you, the reader.

iii



ACKNOWLEDGEMENTS

My wife Jane has supported me and pushed me over the entire course of my

graduate education. Even when other people close to me doubted, she has always

been positive. Jane has also endured living in two small college towns while I’ve

been in graduate school.

My parents Kristi and Ken Long bought me flash cards that with astronomical

objects on them when I was about 5 years old. I have no idea why I wanted these, nor

do I claim that I was some kind of child prodigy. My parents have always fostered my

curiosity and encouraged me to follow my own academic interests. This intellectual

support has always been accompanied with love and understanding.

My advisor, Ryan McClarren, has been patient with me and my questions about

the wide world of computational physics over the past three years. He has the ability

to translate a poorly posed question into the question I should have asked and then

deliver a bespoke answer. He has been an exceptional advisor.

All of my friends at Texas A&M made graduate school so much more enjoyable.

Coming from a school with a very small transport group, I was surprised to find the

A&M transport students were a welcoming, supportive family. Andrew Till has been

a great friend and has provided immense technical support. Jim Feguson, Carlolyn

McGraw, Don Bruss, Daniel Holladay, Simon Bolding and so many others were and

are my brothers in arms in the duty-dance with death that is graduate school.

I’ve received so much support from the wonderful people at Los Alamos National

Laboratory. My mentors Jacob Waltz and John Wohlbier took a chance bringing by

bringing me out to the lab full time, for which I am very grateful. Working with

the transport team in CCS-2 has been invaluable. Gabe Rockefeller, Allan Wollaber

iv



Matt Cleaveland have provided technical advice and perspective on many occasions.

Gabe Rockefeller also provided the idea for the alternate domain decomposition and

let me explore it in this work. Kelly Thompson has helped me navigate C++, MPI

and the delicate art of linking libraries on HPC machines. The kindness and support

of everyone at Los Alamos has made this process enjoyable and enriching.

Joe and Emily Zerr have been great friends to me over the past two years, making

the otherwise boring town of Los Alamos a misanthrope’s paradise.

Nick Gentile, my mentor from my first summer at LLNL, introduced me to com-

putational physics and has continued to offer guidance and advice in technical and

career matters.

v



NOMENCLATURE

CDF Cumulative Distribution Function

CFEM Continuous Finite Element Method

DFEM Discontinuous Finite Element Method

HEDP High Energy Density Physics

HPC High Performance Computing

ICF Inertial Confinement Fusion

IMC Implicit Monte Carlo

LTE Local Thermodynamic Equilibrium

MPI Message Passing Interface

PDF Probability Density Function

RDMA Remote Direct Memory Access

RMA Remote Memory Access

SIMC Symbolic Implicit Monte Carlo

TRT Thermal Radiative Transfer

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiv

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 The Physics of Radiation Transport . . . . . . . . . . . . . . . . . . . 1
1.1.1 Approximations to the Physics of Radiation Transport . . . . 2
1.1.2 Applications of TRT . . . . . . . . . . . . . . . . . . . . . . . 3
1.1.3 Equations of TRT . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.1.4 Thesis Outline . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2. THE IMPLICIT MONTE CARLO METHOD . . . . . . . . . . . . . . . . 8

2.1 Methods of Solving the TRT Equations . . . . . . . . . . . . . . . . . 8
2.2 Derivation of the IMC Equations . . . . . . . . . . . . . . . . . . . . 10
2.3 Multigroup Equations . . . . . . . . . . . . . . . . . . . . . . . . . . 16
2.4 Properties of the IMC Equations . . . . . . . . . . . . . . . . . . . . 18

2.4.1 Implementation of the IMC Equations . . . . . . . . . . . . . 19
2.4.2 Computational Cost . . . . . . . . . . . . . . . . . . . . . . . 20

2.5 Current State of IMC Research and Monte Carlo TRT . . . . . . . . 23

3. ADVANCED SPATIAL DISCRETIZATION . . . . . . . . . . . . . . . . . 25

3.1 Applying a Spatial Discretization to the IMC Equations . . . . . . . 25
3.2 Node-Centered IMC Variant . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Corner-Centered IMC Variant . . . . . . . . . . . . . . . . . . . . . . 36
3.4 Finite Element IMC . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

vii



3.5 Numerical Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48
3.5.1 Diffusion Limit Analysis of the Node-Centered Method . . . . 48
3.5.2 Absorption Based Emission Analysis . . . . . . . . . . . . . . 53
3.5.3 Analysis of Opacity Averaging in DFEM IMC . . . . . . . . . 60

3.6 Test Problems . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62
3.7 Numerical Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.7.1 Absorption Based Emission Results . . . . . . . . . . . . . . . 71
3.7.2 DFEM IMC . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77

3.8 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82

4. SAMPLING ON TETRAHEDRA AND CORNERS . . . . . . . . . . . . . 92

4.1 Uniform Sampling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
4.2 Sampling from a Distribution . . . . . . . . . . . . . . . . . . . . . . 95

5. IMPLICIT CAPTURE WITH NON-CONSTANT OPACITY AND BASIS
FUNCTIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

5.1 Linear Opacity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 101
5.2 Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 102

6. SERIAL AND PARALLEL PERFORMANCE . . . . . . . . . . . . . . . . 108

6.1 The High Performance Computing Landscape . . . . . . . . . . . . . 108
6.2 Requriements for High Energy Density Physics Simulations . . . . . . 109
6.3 Monte Carlo, IMC and Scaling . . . . . . . . . . . . . . . . . . . . . . 110
6.4 On-Node Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . 112
6.5 Multiple Node Domain Decomposed Algorithms . . . . . . . . . . . . 117

6.5.1 The Window Method Implementation . . . . . . . . . . . . . . 122
6.5.2 The Non-Blocking Method Implementation . . . . . . . . . . . 123
6.5.3 Domain Decomposed Algorithms Results . . . . . . . . . . . . 124
6.5.4 Stratified Sampling . . . . . . . . . . . . . . . . . . . . . . . . 130

6.6 Discussion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138

7. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 142

7.1 IMC in the CHICOMA Hydro Code . . . . . . . . . . . . . . . . . . . 142
7.2 Spatial Discretizations of IMC . . . . . . . . . . . . . . . . . . . . . . 142
7.3 Parallel Algorithms . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143
7.4 Broad Strokes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 144

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145

viii



LIST OF FIGURES

FIGURE Page

2.1 The main loop over IMC particles, similar to chart in CCS-2:12-55(U) 21

3.1 Dual mesh cells in 2D and 3D (reprinted with permission from [37]) . 28

3.2 Locations of the unknowns in the node-centered IMC method for a
2D triangular mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

3.3 Two materials in a 2D triangular mesh with a material interface within
the center dual mesh cell (reprinted with permission from [37]) . . . . 31

3.4 One thousand sampled emission particle locations using a linear tem-
perature field on the dual mesh cell, the average location is the large
red point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.5 One thousand sampled emission particle locations after energy is uni-
formly decomposed from the dual mesh cell on to the corners, the
average location is the large red point . . . . . . . . . . . . . . . . . . 36

3.6 One thousand sampled emission particle locations given energy is uni-
formly decomposed from the dual mesh cell on to the corners and then
biased with the linear temperature field, the average location is the
large red point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

3.7 One thousand sampled emission particle locations given emission up-
winding is used to decompose the energy on to the corners, the average
location is the large red point . . . . . . . . . . . . . . . . . . . . . . 38

3.8 One thousand sampled emission particle locations given emission up-
winding is used to decompose the energy on to the corners and then
biased with the linear temperature field, the average location is the
large red point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.9 A corner control volume within a tetrahedra . . . . . . . . . . . . . . 40

3.10 Locations of the unknowns in the corner-centered IMC method for a
2D triangular mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

ix



3.11 Locations of the unknowns in the DFEM IMC method for a 2D tri-
angular mesh . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

3.12 1D view of node-centered method showing the location of the unknowns 53

3.13 DFEM IMC results at 1 ns using the cell averaged temperature in
Eq. (3.83 for various spatial resolutions . . . . . . . . . . . . . . . . . 63

3.14 The crooked pipe or “tophat” problem from [25]—the points where
the solution is tracked are marked with red stars . . . . . . . . . . . . 65

3.15 The material temperature in the Su-Olson problem with the node-
based IMC method without emission upwinding at three times . . . . 67

3.16 The material temperature in the Su-Olson problem with the node-
based IMC method with emission upwinding at three times . . . . . . 68

3.17 The material temperature in the Su-Olson problem with the corner-
based IMC method at three times . . . . . . . . . . . . . . . . . . . . 69

3.18 The node-centered IMC method without emission upwinding IMC
method for the Marshak wave problem at t = 1.0 ns at various spatial
resolutions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.19 The node-centered IMC method with emission upwinding for the Mar-
shak wave problem at t = 1.0 ns at various spatial resolutions . . . . 72

3.20 The corner-centered IMC method for the Marshak wave problem at
t = 1.0 ns at various spatial resolutions . . . . . . . . . . . . . . . . . 73

3.21 A comparison of the node-centered and corner-centered IMC methods
for the Marshak wave problem at t = 1.0 ns . . . . . . . . . . . . . . 74

3.22 Temperature vs time for 5 tracked points at various mesh resolutions
in the crooked pipe problem with the node-centered IMC method,
KULL IMC is given as a reference solution . . . . . . . . . . . . . . . 74

3.23 Temperature vs time for 5 tracked points at various mesh resolutions
in the crooked pipe problem with the node-centered IMC method and
emission upwinding, KULL IMC is given as a reference solution . . . 75

3.24 Temperature vs time for 5 tracked points at various mesh resolutions
in the crooked pipe problem with the corner-centered IMC method,
KULL IMC is given as a reference solution . . . . . . . . . . . . . . . 75

x



3.25 Resolution of the material interface in the crooked pipe problem run
with the CHICOMA code–the interface is at r = 0.5 cm, the location
of the smallest mesh cells (reprinted with permission from [37]) . . . . 76

3.26 Node-centered IMC with absorption based emission and CAPSAICIN
SN results at 1 ns for various mesh resolutions . . . . . . . . . . . . . 78

3.27 Node-centered IMC results at 1 ns for various mesh resolutions . . . 79

3.28 Node-centered IMC results at 1 ns compared to refined results from
CAPSAICIN and JAYENNE . . . . . . . . . . . . . . . . . . . . . . . 80

3.29 Discontinuous and average temperatures for the 1D DFEM IMC method
with linear opacity within a mesh cell for the Marshak wave problem
at t = 1.0 ns compared to the JAYENNE solution . . . . . . . . . . . 83

3.30 Discontinuous and average temperatures for the 1D DFEM IMC method
with average temperature opacity for the Marshak wave problem at
t = 1.0 ns compared to the JAYENNE solution . . . . . . . . . . . . 84

3.31 Discontinuous and average temperatures for the 1D DFEM IMC method
with average T 4 opacity for the Marshak wave problem at t = 1.0 ns
compared to the JAYENNE solution . . . . . . . . . . . . . . . . . . 85

3.32 A comparison of the opacity and temperature at the wavefront in a
Marshak wave problem—the DFEM method effectively has a larger
opacity than the IMC method (the opacity is linear within an element
in the DFEM method but the plot scale is logarithmic so the shape is
curved) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

3.33 Damped maximum principle violations in the solution of the DFEM
IMC equations with linear opacity at several timesteps . . . . . . . . 87

3.34 The material temperature in the Su-Olson problem with the corner-
based IMC method at three times . . . . . . . . . . . . . . . . . . . . 88

3.35 Temperature vs. time for a Marshak wave problem with the DFEM
IMC method with linear opacity . . . . . . . . . . . . . . . . . . . . . 89

3.36 Temperature vs. time for a Marshak wave problem with the DFEM
IMC method with a constant opacity from the average T in an element 90

3.37 Temperature vs. time for a Marshak wave problem with the DFEM
IMC method with a constant opacity from the average T 4 in an element 91

xi



4.1 Uniform sampling on a triangle using two random numbers (reprinted
with permission from [37]) . . . . . . . . . . . . . . . . . . . . . . . . 93

4.2 Uniform sampling within a triangle transformed to uniform sampling
within a corner (reprinted with permission from [37]) . . . . . . . . . 94

4.3 One thousand sampled particle emission locations with the rejection
tilt method given a linear temperature field (reprinted with permission
from [37]) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

5.1 Absorption integral for case 1 with various numerical integration meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103

5.2 Absorption integral for case 2 with various numerical integration meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 104

5.3 Absorption integral for case 3 with various numerical integration meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.4 Absorption integral for case 4 with various numerical integration meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 105

5.5 Absorption integral for case 5 with various numerical integration meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.6 Absorption integral for case 6 with various numerical integration meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106

5.7 Absorption integral for case 7 with various numerical integration meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

5.8 Absorption integral for case 8 with various numerical integration meth-
ods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 107

6.1 A mesh replicated on three parallel processes—simulation data from
each rank is reduced to one rank . . . . . . . . . . . . . . . . . . . . . 111

6.2 Comparison of particle histories in thin and thick regions . . . . . . . 113

6.3 Weak scaling in the infinite medium problem with 10 timesteps . . . 118

6.4 Strong scaling in the infinite medium problem with 10 timesteps . . . 119

6.5 Weak scaling in the infinite medium problem with 10 timesteps using
four hardware threads for each core . . . . . . . . . . . . . . . . . . . 120

xii



6.6 Examples of a decomposed domain and particles moving between sub-
domains . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

6.7 Examples of a particle-based domain decomposed method with two
sub-domains and five sub-domains . . . . . . . . . . . . . . . . . . . . 122

6.8 Weak scaling for the optically thick infinite medium problem for var-
ious sizes of working mesh . . . . . . . . . . . . . . . . . . . . . . . . 131

6.9 Total RMA operations per rank for the optically think infinite medium
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 132

6.10 Weak scaling results with various working mesh sizes for the optically
thick infinite medium problem with physical scattering . . . . . . . . 133

6.11 Total RMA operations per rank for the optically thick infinite medium
problem with physical scattering . . . . . . . . . . . . . . . . . . . . . 134

6.12 Weak scaling results with various working mesh sizes for the optically
thin infinite medium problem . . . . . . . . . . . . . . . . . . . . . . 135

6.13 Total RMA operations per rank for the optically thin infinite medium
problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136

6.14 Monte Carlo integration of the function f = cos(x) with 100 points
with standard sampling and stratified sampling . . . . . . . . . . . . 139

6.15 Comparison of particle angles with and without stratified sampling . 140

6.16 Total RMA operations per rank with various sizes of working mesh
for the optically thin infinite medium problem with stratified sampling 141

xiii



LIST OF TABLES

TABLE Page

1.1 Parameters in the TRT equations . . . . . . . . . . . . . . . . . . . . 5

3.1 Average Particle positions in the dual mesh cell centered at (0.5, 0.5),
with 5.0× 105 points for various methods . . . . . . . . . . . . . . . . 34

3.2 Parameters of the Su-Olson problem . . . . . . . . . . . . . . . . . . 64

3.3 Parameters of the Marshak wave problem . . . . . . . . . . . . . . . . 65

3.4 Parameters of the crooked pipe problem . . . . . . . . . . . . . . . . 66

3.5 Runtimes for different methods on the Su-Olson and Marshak wave
problems (Crooked Pipe ∆x is the resolution at the material interface)
(* these results were run with half as many cores on a slightly faster
machine) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.6 Unknown count for each level of interface resolution in the crooked
pipe problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

3.7 Temperature of the five tracked points for the standard node-centered
IMC method and the absorption based emission IMC method at var-
ious interface resolutions (∆xi, in centimeters) . . . . . . . . . . . . 77

5.1 Parameters of a the absorption function to be integrated numerically 102

6.1 Parameters of first case: a thick test problem with no physical scattering127

6.2 Parameters for the second case: a thick test problem with physical
scattering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

6.3 Parameters of the thin test problem with no physical scattering . . . 130

xiv



1. INTRODUCTION

1.1 The Physics of Radiation Transport

What humans perceive as light is made of up photons. Photons travel at 300

million meters per second and have the form of both particles and waves. Photon

interactions with matter are the source of many familiar and unfamiliar phenomena.

This interaction illuminate rooms, propels solar sails on spacecraft [45], heats the

earth and drives supernova explosions. There are many processes in nature that

produce photons. Bound-bound emission produces photons at discrete energy levels,

this comes from the movement of electrons from high energy levels to lower energy

levels. Bound-free transitions produce photons with a continuous spectra. When a

free electron moves to a bound state a photon is emitted with an energy equal to

the difference between the free and bound state. Free-free transitions also produce

photons with a continuous spectra. Free-free transitions occur when free electrons or

ions move from a high energy state to a lower energy state. Emission from electrons

or ions slowing down or changing direction is called Bremsstrahlung radiation. These

processes also describe the absorption of photons. An absorbed photon that moves an

electron to a higher energy level is a bound-bound absorption. Bound-free absorption

occurs when a photon provides the energy for an electron to leave its state. A

photon being absorbed by a free electron is free-free absorption. The emission of

photons coincides with a decrease in the energy of matter, likewise the absorption

of a photon causes an increase in the energy of matter. This interplay between

the energy in matter, the energy in radiation, emission and absorption is known as

thermal radiative transfer (TRT).

1



1.1.1 Approximations to the Physics of Radiation Transport

When simulating TRT, several approximations are made to the physics of emis-

sion and absorption to make simulations tractable. The first approximation is that

the matter is in Local Thermodynamic Equilibrium (LTE). This assumption means

the energy of the material is effectively described by a temperature. Instead of sim-

ulating the complex interactions of electrons and ions that lead to bound-bound,

bound-free and free-free emission, LTE assumes that absorption and emission pro-

cesses are in equilibrium and the net emission is approximated as being Planckian.

In Planckian emission, the emitted photon energy at a given frequency, ν, from a

material at a temperature, T is:

B(ν, T ) =
2hν3

c2

1

(ehν/T − 1)
. (1.1)

The emission of photons is also influenced by induced processes—the probability

of a photons entering a new state (frequency, angle and polarization) is a function

of the number of photons in that state [50]. Induced processes greatly complicate

the solution process in TRT because it makes the scattering term non-linear. For

simplicity, induced processes are often neglected in TRT.

The absorption processes are approximated by an opacity, which is probability

of interaction per unit length. Opacities are used to describe the absorption and

scattering interactions of a photon with matter. The absorption opacity approxi-

mates the bound-bound, bound-free and free-free interactions with a single value per

material, density, temperature and frequency:

σa(ρ, ν, T ) = σbb + σbf + σff , (1.2)

2



where σ is the opacity of a given type, ρ is the density, ν is the frequency of the

interacting photon and T is the temperature of the material. The absorption opacity

is generally a strong function of temperature and photon frequency.

There are two types of photon scattering interactions—coherent (Thompson scat-

tering) and incoherent (Compton scattering). A coherent scattering interaction

changes the angle of a photon but not its energy. Incoherent interactions change

the photon’s energy and angle. At high temperatures, photons can gain energy from

incoherent interactions. Because Thompson and Compton scattering have different

effects on the photon, they cannot be combined into a single opacity value.

1.1.2 Applications of TRT

The total energy emitted by matter is obtained by integrating Eq. (1.1) over all

frequencies:

∞∫
0

B(ν, T ) dν =
acT 4

4π
. (1.3)

The emitted energy is proportional to temperature to the fourth power. As the

temperature of a system increases, TRT becomes a more important component of

heat transfer. At these temperatures, the physical system is difficult to contain.

The difficulty containing systems at high temperatures means that building physi-

cal experiments is impractical and thus expensive. At temperatures where TRT is

important, computer simulation is often the most practical way to study high en-

ergy physical systems. These systems fall into the regime called high energy density

physics (HEDP). It is defined by the National Academy of Sciences to be systems

with a pressure greater than one million atmospheres [12]. Inertial confinement fu-

sion is one example of a problem in HEDP. In inertial confinement, fusion lasers are

used to heat and compress fuel to the point of thermonuclear fusion. In one form of
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inertial confinement fusion called indirect drive, lasers are used to heat a gold cylinder

surrounding the fuel. The cylinder, called a hohlraum, is heated in such a way that

it radiates X-rays that uniformly heat the surface of the fuel pellet. There are many

HEDP applications in astrophysics—TRT is particularly important in determining

light curves. In these problems the measured spectrum of light from a supernova is

compared to the spectrum produced by a simulation [33] [38] [61]. This problem is

used to determine the composition of supernova precursors as well as the dynamics

of a supernova explosion. In both the inertial confinement fusion and light curve

problems thermal radiative transfer is coupled to other simulated physics, meaning

that TRT directly affects the evolution of the physical system.

1.1.3 Equations of TRT

Photons emitted by a material move through a physical system—they can be

absorbed, scattered or stream through the surrounding material. The photon energy

density in time, space, angle and frequency is described by the Boltzmann transport

equation. This transport equation is coupled to a material energy balance equation.

Absorbed photons increase the material energy and emitted photons remove energy

from the material. The radiative energy balance, generally called the transport equa-

tion, and the material energy balance form the equations of radiative transfer:

1

c

∂I(x, ν,Ω, t)

∂t
+ Ω · ∇I(x, ν,Ω, t) + σa(x, ν, T )I(x, ν,Ω, t)

= σa(x, ν, T )B(ν, T ), (1.4)
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Parameter Description
x position
Ω angle
ν frequency
t time

I(x, ν,Ω, t) Radiation intensity
Um(x, T, t) Material energy density
σa(x, ν, T ) Absorption opacity

cV Heat capacity
B(ν, T ) Planck emission
Sm(x, t) Material energy source

Sr(x,Ω, ν, t) Radiation source

Table 1.1: Parameters in the TRT equations

∂Um(x, T, t)

∂t
=

∞∫
0

4π∫
0

σa(x, ν, T )I(x, ν,Ω, t)dΩdν−
∞∫

0

σa(x, ν, T )B(ν, T )dν +Sm(x, t).

(1.5)

The equations are presented without the scattering terms. The material energy

density, Um, is related to the material temperature by the heat capacity, cV:

Um =

T∫
0

cV(T ) dT (1.6)

The parameters of Eqs. (1.4) to (1.6) are shown in Table (1.1).

The material and radiative energy balance equations are coupled to each other

by the emission term, σaB, and the intensity I. The emission term is proportional to

temperature to the fourth power, so the TRT equations are nonlinear in temperature.

The TRT equations are linear in intensity, I.

This work is focused on solving the TRT equations with the Implicit Monte Carlo
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method in a manner that is accurate and efficient.

1.1.4 Thesis Outline

The remainder of this dissertation is organized as follows:

Section 2 includes a derivation of the Implicit Monte Carlo method for Thermal

Radiative Transfer for multigroup and grey transport. The details of implementing

the IMC method are outlined. The implementation of IMC leads to a discussion

on the factors that affect simulation runtime. A brief history of progress in IMC is

discussed as well as the current state of IMC research.

Section 3 is about alternate spatial discretizations for IMC designed to be used

with point-centered hydrodynamics schemes. The consequences of applying a spatial

discretization to the IMC equations are explained. A node-centered method is derived

for low-memory cases. A method is analyzed that is similar to corner balance with

piecewise constant data. Finally, a discontinuous finite element method is derived

and the implementation details are explained. The results for each method are

compared to standard IMC methods on several test problems. This work builds

upon the author’s previous work [37].

Section 4 contains specific sampling methods needed to implement the IMC

method on tetrahedra and corners. This includes efficient techniques for sampling

from uniform distributions on tetrahedra and corners. Implementing IMC also re-

quires a method for sampling from linear distributions, two methods for doing this

on tetrahedra and corners are also in Section 4.

In Section 5, the implicit capture method of variance reduction is explored in the

context of the finite element method. Several methods are proposed for handling

implicit capture with linear basis functions and the performance of each method is

compared on a variety of opacity and shape function cases.
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Section 6 examines algorithms for parallelizing IMC. The computational require-

ments of running HEDP problems are detailed, which informs the need for effi-

cient parallel algorithms. A parallel algorithm for on-node, shared memory IMC

is explained and analyzed on two different architectures. A multi-node, domain-

decomposed method is proposed that allows particles to request data from other

parallel processes. Two different implementations for this method are compared

on several test cases and then compared to the standard domain-decomposed IMC

method.

Section 7 is a summary of the results. Deficiencies and benefits are discussed and

future work for spatial discretizations and parallel methods is recommended.

7



2. THE IMPLICIT MONTE CARLO METHOD

2.1 Methods of Solving the TRT Equations

There are a number of methods for solving the TRT equations that employ differ-

ent linearizations and discretizations. These methods fall into four general categories:

diffusion theory, discrete ordinates, spherical harmonics, and Monte Carlo. The

Monte Carlo method for particle transport was developed at Los Alamos National

Laboratory in the 1940’s [44] and proved to be an effective way to solve neutron

criticality problems [31] [24]. The Monte Carlo method was applied to nonlinear,

time-dependent TRT by Fleck in a 1963 paper [20]. Fleck applied a simple lin-

earization by assuming that the temperature was constant within a time step. This

linearization required very small timestep sizes for numerical stability and also did

not hold an equilibrium state. Fleck and Cummings vastly improved upon the simple

linearization with what is generally referred to as the Implicit Monte Carlo (IMC)

method [20] 1

Before the IMC equations are derived, a few terms need to be introduced that

are used in the derivation. A useful quantity with TRT equations is the equilibrium

radiation energy density:

Ur(T ) = aT 4 (2.1)

The emission term in the transport equation can be written in terms of the equilib-

rium radiation energy density, this involves the Planck weighted opacity:

1The IMC method is also referred to as the Fleck and Cummings method.
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σa,p =

∞∫
0

σa(ν, T )B(ν, T ) dν

∞∫
0

B(ν, T ) dν

=

∞∫
0

σa(ν, T )B(ν, T ) dν

cUr(T )
, (2.2)

This is used to replace the emission term with an emission spectrum multiplied by

a source:

σa(ν, T )B(ν, T ) = σa(ν, T )B(ν, T )

∞∫
0

σa(ν, T )B(ν, T ) dν

∞∫
0

σa(ν, T )B(ν, T ) dν

= χ(ν, T )cσa,p(T )Ur(T ),

(2.3)

where χ is the emission spectrum:

χ(ν, T ) =
σa(ν, T )B(ν, T )

∞∫
0

σa(ν, T )B(ν, T ) dν

. (2.4)

Equation (2.4) now has the form of a probability density function (PDF) in fre-

quency. When a PDF in some variable x is integrated over a range (a, b), it yields

the probability of a < x < b. A PDF is equal to unity when integrated over the

entire domain of the variable it represents. For example, when Eq. (2.4) is integrated

over the entire frequency range, ν ∈ (0,∞), it evaluates to 1.0. The opacity is usu-

ally given as discrete data, meaning the Planck weighted opacity and the emission

spectrum can be evaluated numerically. In the material energy balance, the emission

term is integrated over all frequencies and χ(ν, T ) becomes unity:

∞∫
0

σa(ν, T )B(ν, T ) dν =

∞∫
0

χ(ν, T )cσa,p(T )Ur(T ) dν = cσa,p(T )Ur(T ), (2.5)
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The TRT equations written in terms of Ur are:

1

c

∂I(x, ν,Ω, t)

∂t
+ Ω · ∇I(x, ν,Ω, t) + σa(x, ν, T )I(x, ν,Ω, t) = χ(ν, T )cσa,p(T )Ur(T )

(2.6)

∂Um(x, T, t)

∂t
=

∞∫
0

4π∫
0

σa(x, ν, T )I(x, ν,Ω, t)dΩdν − cσa,p(T )Ur(T ). (2.7)

A relationship between the change in equilibrium radiation energy density to the

material energy density is needed to write the material energy balance as a time

derivative of Ur:

β =
∂Ur

∂T

∂T

∂Um

=
4aT 3

cV

(2.8)

Such that:

∂Um

∂t
=
∂Um

∂Ur

∂Ur

∂t
=

1

β

∂Ur

∂t
(2.9)

The material energy balance equation becomes:

1

β

∂Ur

∂t
=

∞∫
0

4π∫
0

σa(x, ν, T )I(x, ν,Ω, t) dΩ dν − cσa,p(x, T )Ur(T ) + Sm(x, t). (2.10)

2.2 Derivation of the IMC Equations

No approximations have been made to the TRT equations in forming Eq. (2.10).

The derivation of the IMC equations begins by integrating the material energy bal-

ance (in terms of equilibrium radiation energy density) over a timestep, ∆t:
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tn+1∫
tn

1

β

∂Ur

∂t
=

∞∫
0

4π∫
0

tn+1∫
tn

σa(x, ν, T )I(x, ν,Ω, t) dt dΩ dν

−
tn+1∫
tn

cσa,p(x, T )Ur(T ) dt+

tn+1∫
tn

Sm(x, t) dt. (2.11)

To perform this integration, two approximations are made:

• The opacity is assumed to be constant over a timestep and held at the beginning

of the timestep, tn

• The β term is assumed to be constant over a timestep and held at the beginning

of the timestep, tn. This term includes temperature and heat capacity.

The equations have now been partially discretized in time:

1

βn

tn+1∫
tn

∂Ur

∂t
=

∞∫
0

4π∫
0

σna (x, ν, T )

tn+1∫
tn

I(x, ν,Ω, t) dt dΩ dν

−cσna,p(T )

tn+1∫
tn

Ur(T ) dt+

tn+1∫
tn

Sm(x, t) dt. (2.12)

At this point the material energy balance could be solved for Ur with an integrating

factor. Following that route leads to the Carter-Forest method [8] and the adaptive

material coupling developed by McClarren [41]. To derive the IMC method, the

integration is carried out and time average quantities are substituted:

Ur =
1

∆t

tn+1∫
tn

Ur dt
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I =
1

∆t

tn+1∫
tn

I dt

Sm =
1

∆t

tn+1∫
tn

Sm dt

1

βn
Un

r − Un+1
r

∆t
=

∞∫
0

4π∫
0

σna (x, ν, T )I(x, ν,Ω) dΩdν−cσna,p(x, T )Ur(T )+Sm(x). (2.13)

The IMC method is derived by making the approximation:

Ur = αUn+1
r + (1− α)Un

r , (2.14)

where α is the implicitness parameter. Eq. (2.14) can be rearranged to:

Ur − Un
r

α
= Un+1

r − Un
r . (2.15)

This is then substituted into Eq. (2.13):

1

βn
1

α

Ur − Un
r

∆t
=

∞∫
0

4π∫
0

σna (x, ν, T )I(x, ν,Ω) dΩ dν − cσna,pUr + Sm(x). (2.16)

The equations are then solved for the Ur:

Ur =

(
α∆tβn

1 + αcσna,p∆tβn

) ∞∫
0

4π∫
0

σna (x, ν, T )I(x, ν,Ω) dΩ dν + Un
r + αβn∆tSm(x)

 .

(2.17)
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This expression for Ur can be simplified with the introduction of the Fleck factor, f :

f =
1

1 + αcσna,p∆tβn
, (2.18)

1− f =
αcσna ∆tβn

1 + αcσna,p∆tβn
, (2.19)

This simplification yields:

Ur =
(1− f)

cσa,p

 ∞∫
0

4π∫
0

σna (x, ν, T )I(x, ν,Ω) dΩ dν + Sm(x)

+ fUn
r . (2.20)

At this point we consider the radiative energy balance of the TRT equations.

To accommodate a Monte Carlo solution procedure, an expression is needed for the

radiation energy that is continuous in time and linear in temperature. This requires

another approximation, one that has been described before as “dubious” [57]. The

time averaged equilibrium radiation energy density, Ur is approximated as being the

instantaneous value. The same approximation is made for the intensity and the

source:

Ur ≈ Ur(t),

I ≈ I(t),

Sm ≈ Sm(t),

These expressions are substituted into Eq. (2.20) to form an expression for the radi-

ation source in the transport equation that is explicit in temperature and continuous
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in the intensity:

Ur(t) =
(1− f)

cσa,p

 ∞∫
0

4π∫
0

σna (x, ν, T )I(x, ν,Ω, t) dΩdν + Sm(x, t)

+ fUn
r . (2.21)

The transport equation can now be written with Ur(t), which is the final form of the

IMC radiative energy balance:

1

c

∂I(x, ν,Ω, t)

∂t
+ Ω · ∇I(x, ν,Ω, t) + σna (x, ν, T )I(x, ν,Ω, t)

= χcσa,pfU
n
r + χ(ν)(1− f)

 ∞∫
0

4π∫
0

σna (x, ν, T )I(x, ν,Ω, t) dΩdν + Sm(x, t)

 (2.22)

Returning to the material energy balance, the linear, time dependent Ur defined in

Eq. (2.21) is substituted into the time dependent material energy balance in Eq. (2.7)

for Ur. This yields:

∂Um(x, T, t)

∂t
=

∞∫
0

4π∫
0

fσa(x, ν, T )I(x, ν,Ω, t) dΩdν−fcσa,p(T )Un
r +fSm(x, t). (2.23)

The material energy balance equation can now be integrated over a timestep. Again,

the opacity is assumed to be constant and held at the beginning of timestep value.

The approximation for β is not necessary—that approximation was made to obtain

an expression for Ur. Because we have an explicit emission term the material energy

balance can remain in terms of Um. The integration yields the final form of the IMC

material energy balance:
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Un+1
m (x, T )− Un

m(x, T )

∆t
=

1

∆t

∞∫
0

∞∫
0

4π∫
0

fσna (x, ν, T )I(x, ν,Ω, t) dΩdνdt

−fcσa,p(T )Un
r + fSm(x, t). (2.24)

The TRT system of equations has now been linearized and made into a lower trian-

gular system. The system is solved by determining the intensity with Monte Carlo

transport. The intensity can then be used to solve the material energy balance for

Un+1
m .

The discretization has an odd feature which can sometimes be a tripping point

when implementing the method—the Fleck factor in the IMC equations is derived

by assuming that β, and thus the heat capacity, cV, are held at the beginning of

timestep values but this approximation is not used when the expression for Ur is

substituted back in to the material energy balance. If the heat capacity is constant,

the temperature at tn+1 is obtained by simply dividing the material energy by the

heat capacity. If the heat capacity is a function of temperature, the temperature at

nn+1 must be calculated by inverting the heat capacity integral in Eq. (1.6), which

is done by solving for T n+1 in:

Un+1
m =

Tn+1∫
0

cV(T ) dT. (2.25)

To solve the time-dependent IMC equations, boundary conditions are needed for

the temperature and intensity:

I(Γ,Ω, ν, t) = Ib(Γ,Ω, ν, t) (2.26)
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I(x,Ω, ν, 0) = I0(x,Ω, ν) (2.27)

T (x,Ω, ν, 0) = T0(x,Ω, ν) (2.28)

Where Ib is the incoming intensity, Γ corresponds to points on the boundary and Ω

are the incoming angles (Ω · n < 0). I0 and T0 are the initial intensity and initial

material temperature. If the problem begins at equilibrium, the initial intensity is

given by:

∞∫
0

I0(x,Ω, ν, T ) dν =
1

4π
acT 4

0 (2.29)

Where the spectrum of I0 is the Planckian spectrum2 of Eq. (1.1).

2.3 Multigroup Equations

Although the Monte Carlo method allows for a continuous particle frequency, the

opacity data is usually given as a constant value for a range of frequencies. This

approach of using discrete values over a frequency range is known as multigroup.

The number of discrete energy groups and their range should resolve the physical

behavior of the problem. For example, if a material has a sharp absorption peak at

1.0 keV, their should be enough groups to differentiate that from a high scattering

opacity at 0.9 keV. To form the multigroup IMC equations, the radiative energy

balance is integrated over each discrete energy range to form a system of coupled

equations. The radiative energy balance for group g (with space, angle and time

dependence suppressed for clarity) is:

2The spectrum of the initial radiation is not the emission spectrum of Eq. (2.4), this can be seen
by looking at the steady state, infinite medium solution of the Eq. (1.4)
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1

c

∂Ig
∂t

+Ω ·∇Ig +σna,gIg = χ(g, T )fσna,pcU
n
r +

χ(g, T )

4π

G∑
g′=1

4π∫
0

(1−f)σna,g′Ig′ dΩ. (2.30)

where Ig is the group integrated intensity for group g, σa,g is the average absorption

opacity of group g, and G is the total number of groups. The emission spectrum, χ,

becomes a function of the group index, g:

χ(g, T ) =

g+1/2∫
g−1/2

σaB dν

∞∫
0

σaB dν

≈
σa,r,g

g+1/2∫
g−1/2

B dν

∞∫
0

σa,rB dν

. (2.31)

Where σa,r,g is the Rosseland weighted opacity for group g.

The equation for group g is coupled to the other discrete groups by the effective

scattering term, which is a summation over all groups. The multigroup material

energy balance is formed by integrating Eq. (2.24) over each frequency group and

summing the result:

Un+1
m (x, T )− Un

m(x, T )

∆t
=

G∑
g′=1

4π∫
0

fσna,g′Ig′ dΩ dν − fσna,pcUn
r (2.32)

Both the grey and the multigroup TRT equations are formed by integrating over

frequency, this introduces an additional approximation which leads to a discussion

about how to weight opacities. When integrating over a frequency range, the follow-

ing approximation is made to the absorption term:

g+1/2∫
g−1/2

σa(ν, T )I(x, ν,Ω, t) dν ≈ σa,g(T )

g+1/2∫
g−1/2

I(x, ν,Ω, t) dν = σa,g(T )Ig (2.33)
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An approximation would not be necessary if the opacity could be weighted with the

actual intensity:

σa,g =

g+1/2∫
g−1/2

σa(ν, T )I(x, ν,Ω, t) dν

g+1/2∫
g−1/2

I(x, ν,Ω, t) dν

(2.34)

Since the intensity is an unknown, the opacity must be weighted with a different

function that approximates the shape of the intensity. Planck weighting uses the

Planckian to weight the group opacities:

σa,g,p =

g+1/2∫
g−1/2

σa(ν, T )B(ν, T ) dν

g+1/2∫
g−1/2

B(ν, T ) dν

(2.35)

At equilibrium, the intensity is Planckian and this weighting is correct. An asymp-

totic analysis of the equilibrium diffusion limit shows that an alternate weighting

known as Rosseland weighting is necessary to preserve the equilibrium diffusion

limit [34]:

σa,g,r =

g+1/2∫
g−1/2

∂B(ν,T )
∂T )

dν

g+1/2∫
g−1/2

1
σa

(ν, T )∂B(ν,T )
∂T

dν

(2.36)

2.4 Properties of the IMC Equations

The IMC method has been shown to be unconditionally stable for all timestep

sizes 3 in gray infinite-medium and one-dimensional cases [46] [59]. The IMC method

3The implicitness parameter, α, must be greater than 0.5 to guarantee unconditional stability
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also maintains equilibrium conditions.

The linearization in IMC leads to a reemission term, which is effectively a scatter-

ing term—photons are redistributed in angle and energy after they interact. Effective

scattering can be interpreted as a photon reemission. The amount of effective scat-

tering depends on the Fleck factor. The effective scattering has ramifications related

to simulation runtime that are discussed below.

2.4.1 Implementation of the IMC Equations

To solve the IMC equations using a computer involves four large steps:

1. Some number of user defined particles are created to represent the energy in

the problem. Position in a cell, angle, frequency and emission time are all

determined with random numbers.

2. Each particle history is simulated: particles move at the speed of light and the

probability of a scattering interaction is determined with random numbers. To

improve the quality of the solution, the implicit capture method is used, which

treats the particle as continuously being absorbed into the material as it moves

between events (see Section 4). Particles with energy below a user defined

cutoff value are treated with a rouletting procedure. The life of a particle is

further detailed in Fig. (2.1).

3. The photons that reached the end of the timestep without leaving the problem

or being rouletted are called census particles. The emission time is set to

the beginning of the next timestep and these census particles form the initial

radiation condition of the next timestep.

4. The material energy is updated using the absorbed energy from the Monte

Carlo transport step. The temperature is determined with Eq. (2.25) and the
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emission energy, opacity, and Fleck factor are all updated and the timestep is

incremented.

A key point of the IMC method is that the frequency of a particle is not the energy

of that particle. Instead, a particle can be thought of as a group of photons all

with frequency ν ′ and a total energy of E ′. To clarify this relationship, the energy

represented by an IMC particle is usually referred to as its energy weight and a

simulated group of photons is called a particle.

2.4.2 Computational Cost

In Monte Carlo methods for radiation transport the radiation intensity is in

essence continuous in both space and angle (a continuous representation is not stored,

but is used to update a spatially discrete temperature). This property has lead to

IMC being considered a standard solution of the TRT equations [6]. This continuous

representation of the radiation intensity comes with a very large caveat—the solution

is only a continuous representation, and thus the correct solution for the radiation

intensity, in the limit of an infinite number of simulated particles. The computational

cost of IMC is generally proportional to the number of simulated particles used to

obtain the solution, although the cost of simulating a particle is dependent on the

local dependent variables. Because the solution is determined with pseudorandom

numbers, the solution also exhibits variance. The variance scales inversely as the

square root of the number of particles, meaning a 100 fold increase in simulated

particles yields a 10 fold reduction in error. The IMC method is thus limited because

it uses a finite number of particles to represent seven dimensional phase space.

In addition to the cost of accurately sampling phase space and reducing variance

in the solution, (features of all Monte Carlo methods) the IMC method has several

additional computational challenges. The Fleck factor introduces “effective scatter-
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initialize
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run particle

db =
distance to
boundary
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event =
min(db,ds,dc)
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all
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yes

no

no

yes

Figure 2.1: The main loop over IMC particles, similar to chart in CCS-2:12-55(U)
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ing” to the TRT radiative energy balance. In areas where the effective scattering

ratio is high, particles can have many scattering events before reaching the end of the

timestep. There are several ways of dealing with this cost, all of them involve treat-

ing the particle with diffusion theory in areas where effective scattering is large [21]

[15] [23] [11]. Another computational challenge in thermal radiative transfer prob-

lems is the size of the discrete mesh. Unlike source-detector Monte Carlo simulations,

TRT problems are time-dependent and require capturing spatial gradients. This re-

quires a mesh that can resolve the features of the solution. This kind of mesh is not

usually necessary in source-detector problems common in neutronics and gamma-ray

simulations. In those problems, large combinatorial geometries are used. The need

for a mesh that can resolve features of the solution has two consequences for Monte

Carlo TRT simulations:

• Memory access is more likely to be indirect

• Multiple computer nodes are needed to represent large meshes

The first consequence is a difficulty because IMC is memory intensive. This means

that a significant amount of time during simulation is spent loading data instead

of performing arithmetic operations on that data. This problem is compounded

by the fact that particles do not access data in regular patterns, as is common in

hydrodynamics, SN transport and diffusion algorithms. In IMC, a particle can stream

across the entire mesh if the timestep is large and the problem is optically thin. The

degree to which IMC is memory bound is a subject of this work.

The second item requires some elucidation on the idea that Monte Carlo trans-

port is “embarrassingly parallel.” This oft-spoken shibboleth comes from the fact

that Monte Carlo particle histories are independent (this is true for particles within

a timestep for IMC and for all particles in steady-state neutronics problems), which

22



allows computers operating in parallel to divide the particles between them. This

kind of decomposition only works when the spatial domain and physical data can

be stored locally by each parallel process, this mode of operation is called domain

replication. If the mesh and physical data are too large to be replicated on each par-

allel process, the mesh (usually larger than the physical data) must be decomposed

into smaller components that are stored on each process. This mode of parallel ex-

ecution is called domain decomposition. In domain decomposed execution, parallel

processes must communicate with other processors in order to compete the simula-

tion. This communication significantly increases runtime and adds complexity to a

Monte Carlo simulation, thus breaking the “embarrassingly parallel” norm. The run-

time and complexity associated with domain decomposition is addressed in Section 6

of this work.

2.5 Current State of IMC Research and Monte Carlo TRT

Many improvements have been made to the IMC method over the past 40 years.

IMC has been shown to hold a “diffusion-like” equation in the equilibrium diffu-

sion limit of its temporal discretization [14] and the incorrect diffusion limit with its

spatial discretization, which can be corrected by properly accounting for the spatial

shape of the emission [13] [52]. Much work has been done to improve the compu-

tational performance of diffusive regions, starting with the “random-walk” method

of Fleck and Canfield [21] and then later Gentile and Densmore used a diffusion

discretization in thick regions [23] [15] [11]. Several other Monte Carlo radiation

transport codes have sought to correct both the linearatization and discretization

deficiencies of the IMC method. The Symbolic Implicit Monte Carlo Method (SIMC)

of Nkoua [47] and Brooks [3] does not involve a linearization of the emission term,

instead a matrix is formed and solved that relates the emission of one cell to the
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absorption in every other cell. This method involves the solution of an N ×N ma-

trix, where N is the number of unknowns. This matrix is positive and could be

dense if the problem is optically thin. The SIMC method still uses the implicit

Euler approximation in time, making it temporally first order. The Carter-Forest

method [8] applies a linearization similar to IMC but the equations are integrated

over a timestep instead of being temporally discretized.4

The IMC method is still considered the standard for Monte Carlo TRT simu-

lations. Although the SIMC method is implicit and would thus avoid maximum

principle violations, the computational and memory cost of SIMC have kept it from

being widely implemented. The Carter-Forest has smaller magnitude discretization

errors but it introduces time-dependent emission and opacity. This makes the imple-

mentation more complex than IMC. The Carter-Forest still has an O
(
∆t
)

error due

to the approximation that the opacity and β are constant throughout a timestep [10].

For these reasons and simple inertia, the IMC method is still used as the standard

method for solving the TRT equations with a Monte Carlo method.

4The linearizations and temporal discretizations of IMC, Carter Forest and SIMC are examined
in the equilibrium diffusion limit by Densmore [14]
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3. ADVANCED SPATIAL DISCRETIZATION

3.1 Applying a Spatial Discretization to the IMC Equations

The IMC equations in Eq. (2.22) and Eq. (2.24) have not yet been discretized in

space. The IMC radiative energy balance in Eq. (2.22) has been discretized in time

and additionally, frequency, in Eq. (2.30). Because Monte Carlo particles can take

on any time within the timestep, the intensity, I, in the radiative energy balance

and material energy balance is continuous in time in the limit of an infinite number

of particles. The Monte Carlo particles can also take on any value in space and

angle meaning that the intensity I is also continuous in space and angle in the

limit of an infinite number of particles and does not need to be discretized. The

continuous nature of the intensity is the reason that Monte Carlo is considered a

standard solution to the transport equation—it does not suffer from the ray effects

of the SN method or the wave effects of the PN method [7]. All other dependent

variables in the IMC equations need to be discretized in space in order to solve the

IMC equations. This is done by imposing a spatial grid or mesh on the problem.

Currently, the IMC method uses piecewise-constant unknowns, meaning there is one

temperature, opacity and Fleck factor value for each cell on the mesh.

There are several consequences of using piecewise-constant unknowns:

• The error term is first order in space: ε = O
(
∆x
)

• Because the variance in quantities of interest (e.g. temperature, momentum)

is related to the number of tally events, increasing the number of mesh cells

reduces the number of tally events in a given cell if the number of particles is

not increased
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• Particle absorption is continuous, but the emission is based on discrete, piecewise-

constant, dependent variables. Thus absorption can occur at one side of a cell

and on the next timestep emission occurs uniformly in the cell. This means

energy propagates too quickly leading to an error sometimes referred to as

teleportation error, but this diffusive behavior could also just be called spatial

discretization error.

To address the first two errors, the spatial resolution and the number of particles

can be increased. The third error can be improved by imposing a spatial shape on

to the emission. This is done by using additional information from the simulation to

form the spatial shape. Originally it was done by using the temperature of adjacent

cells to form a linear function [21]. This procedure is often called source tilting [42].

Other forms of tilting use functional tallies [10] or particle histories [30]. Densmore

has shown that tilting improves the behavior of IMC in the diffusion limit [13]. These

tilting methods all serve in reducing the spatial discretization error of IMC without

increasing the number of cells.

In coupled multiphysics simulations, the discrete unknowns must be mapped be-

tween different physics algorithms. The simplest way to do this is to collocate the

unknowns between different physics simulations. For HEDP and astrophysics prob-

lems, TRT simulations are most often coupled to hydrodynamics, this is commonly

referred to as radiation hydrodynamics. The equations of radiation hydrodynamics

are the Euler equations with additional sources:

∂

∂t
ρ = ∇ · (ρu) (3.1)

∂

∂t
(ρu) +∇ · (ρu⊗ u) +∇p = −Srp (3.2)

26



∂

∂t

(
1

2
ρu2 + ρe

)
+∇ ·

((
1

2
ρu2 + ρe+ p

)
u

)
= −Sre (3.3)

The radiation source to the momentum equation, Srp, and the radiation source to

the energy equation, Sre, are defined by Pomraning [50]. This work does not explore

radiation hydrodynamics explicitly, instead the IMC is examined in the context of

using the same mesh and spatial discretization as modern hydrodynamics so that it

can be effectively coupled to those hydrodynamics methods.

Currently, all of the Monte Carlo methods for TRT are first order accurate in

space and make no attempt to use a high-order spatial representation of the temper-

ature. Work has been done exploring a discontinuous finite element discretization

with IMC in idealized conditions as a means of reducing the diffusive teleportation

error [60].

Modern algorithms for other physics, especially hydrodynamics, have embraced

high-order spatial discretizations [17] [9] [56]. High-order methods are viewed as a

path forward for modern architectures because they involve more computational work

per unknown [18]. This reduces the number of memory operations per floating point

operation. The use of high-order spatial discretization in hydrodynamics means that

there is a disparity between the spatial accuracy of Monte Carlo radiation transport

methods and modern methods for hydrodynamics. How to treat a high-order spatial

discretization of IMC is a focal point of this work. We examine how IMC can best be

coupled to a hydrodynamics code called CHICOMA, which uses a continuous linear

finite-element discretization to solve the ALE form of the Euler equations [56].

The hydrodynamics method in CHICOMA has node-centered unknowns, meaning

that the control volumes is represented by the dual mesh. This presents a problem for

IMC methods—the unknowns in standard IMC implementations are at cell-centers.

The CHICOMA code uses an unstructured tetrahedral mesh. The control volumes
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formed by the dual mesh are arbitrarily sided polygons and are generally not convex.1

The dual mesh of a triangular 2D mesh is shown in Fig. (3.1a). An example of dual

mesh cell formed by an unstructured tetrahedral mesh is shown in Fig. (3.1b).

(a) Example of the dual mesh (solid line)
formed by a 2D triangular mesh

(b) A dual-mesh cell formed by an un-
structured tetrahedral mesh

Figure 3.1: Dual mesh cells in 2D and 3D (reprinted with permission from [37])

The IMC method requires tracking particles as they move through, and interact

with the background material. The interaction probability is defined by the opacity,

which is constant within a mesh cell in the standard IMC method. Tracking a particle

as it streams through a polyhedral mesh is computationally expensive because the

intersection of each surface with the particle must be calculated to determine which

surface is crossed. Sampling particle emission locations on this mesh would also be

very computationally expensive: particles would have to be sampled uniformly on

a large encompassing volume and then rejected if they were outside the dual mesh

1Concave mesh cells are not a problem in Monte Carlo transport, in SN transport they introduce
an additional dependency in the sweep algorithm—the intensity in the cell depends upon itself
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cell. Sampling emission locations based on a temperature field would require an

additional rejection step.

In this work we examine three IMC variations for unstructured tetrahedral meshes

that avoid the difficulty of tracking and sampling directly on the dual mesh. Two of

them use piecewise- constant data and the third attempts to use the linear temper-

ature field of the CHICOMA hydrodynamics method:

• A node-centered IMC method where all unknowns are located at the nodes and

the unknowns are treated as piecewise-constant

• A corner-centered IMC method where unknowns are defined on the corners of

the tetrahedra and the node centers are updated using corner values

• A linear discontinuous finite element method for the material energy that treats

emission, opacity and the scattering opacity as piecewise-linear

3.2 Node-Centered IMC Variant

Instead of implementing the algorithm on the dual mesh, the energy is decom-

posed on to the corners of the tetrahedra that make up the dual cells (corners are

also used as a sub-cell in SN methods for arbitrary polyhedra [2]). As an example,

for the 2D mesh in Fig. (3.1a), the dual mesh cell in the center of contains 8 corners.

Decomposing the energy like this allows particle tracking to be done on the tetra-

hedral mesh, where there are always four potential surfaces to cross instead of an

unknown number. Sampling uniform emission locations on the tetrahedral mesh is

much simpler, as is sampling emission locations using a temperature field. Efficient

methods for both uniform and temperature field sampling are given in Section 4.

The unknowns in the node-centered method are shown for an analogous 2D mesh

in Fig. (3.2). One feature of this method that is unique to the other discretizations
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considered in this work is that spatial cells on the boundary can have the same

volume and different surface area. This is the case for cells Ti and Tk in Fig. (3.2)—

they are both formed from the dual mesh of equally sized triangular cells, but Tk has

twice the surface area of Ti.

Materials are defined on the tetrahedra. This means that a dual-mesh cell can

contain multiple materials. This is handled by storing a unique temperature for every

material at the node, which means there are multiple control volumes in within the

dual mesh cell and the temperature is discontinuous at material interfaces. This is

shown for an analogous 2D triangular mesh in Fig. (3.3).

Ti

Tj

Tk

Figure 3.2: Locations of the unknowns in the node-centered IMC method for a 2D
triangular mesh
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Material 1
Material 2

Figure 3.3: Two materials in a 2D triangular mesh with a material interface within
the center dual mesh cell (reprinted with permission from [37])

The shift from implementing IMC directly on the dual volumes to tetrahedra and

corners presents two drawbacks:

• Decomposing energy equally between the corners is akin to assuming that the

emission is uniform within a cell. This limits the efficacy of tilting algorithms.

This problem is addressed with a method called emission upwinding.

• An additional event must be accounted for in particle tracking: dual volume

crossing within tetrahedra. This is necessary because a tetrahedra contains

four different nodes and potentially four different opacities and Fleck factors.

This adds computational work.

The second drawback mentioned above related to decomposing the energy on

the tetrahedra adds a large amount of computational work. During the simulation,

a particle determines its next event by calculating the distance to each potential
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event and then selecting the event with the smallest distance, or in other words, the

next temporal event. Transporting the particle on the tetrahedra instead of the dual

mesh requires tracking to the dual interface. This adds another event into the basic

transport loop. The hydrodynamics algorithm used in the CHICOMA code uses a

continuous linear finite element spatial discretization. If IMC could also use this

spatial discretization, the opacity could be treated as linearly continuous within a

tetrahedra. This would eliminate the need to track a particle to the interface of a

dual mesh cell. Instead, a continuous opacity could be used to determine the distance

to scatter and energy would be absorbed according to the linear basis functions. This

is another potential benefit to finite element methods in IMC.

Uniformly dividing the energy between corners of the dual mesh cell essentially

eliminates the benefits of tilting. Tilting can still be used after energy is decomposed

onto the corners, but this only affects the emission shape within a corner. To show the

effects of energy decomposition, we examine emission in the center cell of Fig. (3.2),

which is centered at (0.5 cm, 0.5 cm). We look at the case of emitted particle locations

in the presence of a linear temperature field that varies in x with T (0) = 1.0 and

T (1.0) = 0.01. The specifics of how to generate samples with a PDF defined by

a linear field are addressed in Section 4. As the reference case, we sample directly

on the dual mesh cell and use rejection sampling based on the temperature field.

Ideally, this is what would be done in the IMC routine but this is very expensive

when there are an indeterminate number of tetrahedra that make up a dual mesh

cell. The results for the reference case are shown in Fig. (3.4). If energy is uniformly

divided between the corners, the emission is uniform over each corner and thus the

whole dual mesh cell, as seen in Fig. (3.5). If the linear temperature field is used

to bias emission after the energy is divided, the average particle location does not

change significantly, as Fig. (3.6) shows. The average particle locations are reported
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in Table (3.1).

To effectively sample emission particles based on the temperature field and regain

the benefits of tilting, a method for biasing the amount of energy decomposed on

to each corner is needed. To do this we assume that the shape of the emission is

piecewise-linear. The emission within a tetrahedra can then be written as a function

of the emission at the nodes using barycentric coordinates:

E(λ) =
4∑
i=1

Eiλi (3.4)

Where λi is the barycentric coordinate for node i and Ei is the emission at node i (the

nodes of the tetrahedra are centers of dual-mesh cells). To determine the amount

energy that should be emitted in a given corner of a dual mesh cell, we integrate

Eq. (3.4) over a corner of the tetrahedra, which yields:

Ec =

∫
xc

4∑
i=1

Eiλi =
1

4
Vt

(
75

144
Ec +

4∑
i=1,i 6=c

23

144
Ei

)
(3.5)

Where c is the corner that belongs to the dual mesh cell of interest, xc is the spatial

domain of the corner, Vt is the volume of the tetrahedron and Ec is the integral of

the linear emission function over the corner c. The fraction of emission energy that

corner c receives is:

Ẽc =
Ec
N∑
i=1

Ei

(3.6)

Where N is the total number of corners in the dual mesh cell, Ei is the integral,

Eq. (3.5), over the corner i, and Ẽc is the fraction of the total emission in the

dual-mesh cell that corner c receives. We now have a method of decomposing the
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Method
Average Particle Position (cm)

x y
Dual Sampling with Tilting 0.445 0.500
Uniformly Decomposed 0.500 0.500
Uniformly Decomposed with Tilting 0.490 0.500
Emission Upwinding Decomposition 0.454 0.500
Emission Upwinding with Tilting 0.445 0.500

Table 3.1: Average Particle positions in the dual mesh cell centered at (0.5, 0.5),
with 5.0× 105 points for various methods

energy onto the corners that takes into account the shape of the emission field. We

call this method emission upwinding because it biases emission in the direction of

an energy gradient. Emission upwinding does not advect energy across dual-mesh

cell boundaries, it only changes how energy is decomposed onto the corners of a

dual-mesh cell.

To test emission upwinding on a triangular mesh, we integrate linear emission

over a corner of a triangle, which yields:

Ec =

∫
xc

3∑
i=1

Eiλi =
1

3
At

(
22

36
Ec +

3∑
i=1,i 6=c

7

36
Ei

)
, (3.7)

where At is the area of the triangle. Equation (3.6) is then used in the same manner

to determine the amount of energy each corner receives. Particle locations with

emission upwinding for a triangular dual mesh cell are shown in Fig. (3.7). Using

tilting with emission upwinding is shown in Fig. (3.8). Emission upwinding with

tilt gives an average particle location that is within 0.1% of the reference solution,

as shown in Table (3.1). Thus emission upwinding proves to be an effective way of

decomposing energy and when it is combined with tilting it appears to produce the

same effect as sampling with tilting directly on the dual mesh cell.
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T=1.0 T=0.01

Figure 3.4: One thousand sampled emission particle locations using a linear temper-
ature field on the dual mesh cell, the average location is the large red point

Another concern with the node-centered method is that individual dual-mesh

cells on a boundary can have different surface area to volume ratios. This presents

problems when a boundary source is present and the problem is optically thick—in

this case all energy absorption takes place on the boundary surface and there is very

little energy movement between adjacent cells because the problem is optically thick.

Because the surface areas to volume ratios are different and the energy absorbed is

proportional the surface area, two mesh cell that are normal the boundary source will

have two different material temperatures. This creates an asymmetry in the solution.

This asymmetry is expected in optically thick Marshak wave problems. Although
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T=1.0 T=0.01

Figure 3.5: One thousand sampled emission particle locations after energy is uni-
formly decomposed from the dual mesh cell on to the corners, the average location
is the large red point

Marshak wave problems are generally simulated in 1D, the CHICOMA code uses a

3D mesh2, thus an asymmetry is expected in the solution until the problem heats up

enough to allow radiation to flow between mesh cells.

3.3 Corner-Centered IMC Variant

The second method is based on using corners as control volumes. A corner of a

tetrahedron is formed by drawing a line between the barycenter of the tetrahedron

2The CHICOMA code was designed from the start to be 3D. The idea being that is is easier for
a method to prove its utility in 3D and then move down in dimensionality than to prove its utility
in 1D and then move up.
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T=1.0 T=0.01

Figure 3.6: One thousand sampled emission particle locations given energy is uni-
formly decomposed from the dual mesh cell on to the corners and then biased with
the linear temperature field, the average location is the large red point

and the barycenter of each of the four faces. This divides a tetrahedron into four equal

volume corners. A corner within a tetrahedron is shown in Fig. (3.9). Corners are

used as the control volumes in SN radiative transfer in the corner balance method [2].

Using corners as a control volume defines multiple, independent temperatures within

a larger dual mesh cell—this approach does not have the diffusive behavior that comes

from dividing the energy of the node onto the corners. The corner-centered method

applied to a 2D triangular dual mesh is shown in Fig. (3.10). In Fig. (3.10), Tk is the

temperature of a corner that belong to the dual-mesh cell T̃n. Tk is used to update
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T=1.0 T=0.01

Figure 3.7: One thousand sampled emission particle locations given emission up-
winding is used to decompose the energy on to the corners, the average location is
the large red point

T̃n at the end of the IMC timestep. Emission upwinding is not necessary in the

corner-centered IMC method, instead the corner temperatures naturally determine

the amount of emission energy in each corner. Within the IMC method, the node

temperatures are only used to construct an emission shape, which is used to tilt

within corners.

The corner-centered method has a higher memory cost than the node-centered

method because each corner holds an opacity, Fleck factor and temperature value.

This results in about eight times more memory for storing unknowns than the node-
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T=1.0 T=0.01

Figure 3.8: One thousand sampled emission particle locations given emission up-
winding is used to decompose the energy on to the corners and then biased with the
linear temperature field, the average location is the large red point

centered method. The memory footprint for unknown storage is generally much

smaller than storing the Monte Carlo census particles so the additional memory

required by the corner-centered method is generally not prohibitive. The node-

centered method and the corner-centered both track particles in the same manner—in

both cases particles must be tracked to the interface of a corner within a tetrahedra.

In the node-centered method a corner boundary is an interface between dual mesh

cells.

Using the node-centered temperatures in the emission tilt provides a continuous
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Figure 3.9: A corner control volume within a tetrahedra

emission shape between corners. This is in contrast to the piecewise-constant IMC

method in a Cartesian mesh. With a Cartesian mesh, the emission shape is obtained

from two adjacent temperatures for each dimension within the cell. This yields

a continuous emission shape within the cell but it is discontinuous between cells.

Smedley-Stevenson and McClarren have identified a continuous emission shape as

having the appropriate behavior in the equilibrium diffusion limit [52].

The corner-based method has not been used in a hydrodynamics simulation with

CHICOMA, but the coupling is not as straightforward as the node-centered IMC

method. A hydrodynamics code will move energy and mass and change the temper-

ature at the nodes. The temperatures at the corners must be updated in a manner

that conserves the new energy in the dual mesh cell and preserves the relative shape

of the temperature. This can be done by changing the corner temperatures by the

same relative amount as the node temperature was changed by the hydrodynamics

step. This method of updating the corner temperatures after the hydrodyanmics
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Ti

Tj Tk

T̃n

Figure 3.10: Locations of the unknowns in the corner-centered IMC method for a
2D triangular mesh

step is used by other corner-based TRT methods.

In the corner-centered method, the surface area to volume ratio is constant for

cells on the boundary. This means that the the temperature is the same for each

corner on the boundary after the first timestep. Unfortunately, when the problem is

optically thick, energy can only travel through corners that are hot and thus optically

thin. This means that a corner must be adjacent to a hot, thin corner to receive

energy. Because corners are arranged in a 3D configuration, the solution is not 1D,

as it should be. This can be seen by comparing the wavefront in an optically thick

Marhsak wave problem and an optically thin Su-Olson problem, as shown in the
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results below.

3.4 Finite Element IMC

The Finite Element method was first used to solve the neutron transport equation

by Reed and Hill in the early 1970’s [51]. Finite Element methods were applied to

the SN form of the radiative transfer equations by Larsen and Morel in the 1980’s

and by Adams in the early 1990’s [1].

In the finite element method, unknowns are projected on to a trial function

space. Discontinuous finite elements are used for the unknowns. Using discontinuous

finite elements is the standard method for finite element methods in TRT. Although

the hydrodynamics in CHICOMA uses a continuous finite element method (CFEM)

unknown space, the discontinuous finite element method (DFEM) solution in the

TRT could be updated after the hydrodynamics step in a similar manner as the

corner-centered IMC method described above. The DFEM method is often used

to transform spatial derivatives in partial differential equations (PDE) into a set of

3algebraic equations that can be solved with a linear solver. In the IMC method,

the Monte Carlo method solves the radiative energy balance equation accurately,

including the spatial derivative. Thus we do not use the finite element method to

solve the radiation energy balance equation. In applying the finite element method

to IMC, we are more interested in representing the material energy with linear trial

functions as a means of reducing diffusivity. To form the DFEM IMC equations we

first multiply the material energy balance by a test function and integrate over the

spatial domain:
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∫
X

dUu
m(x)N v(x)

dt
dx =

∞∫
0

4π∫
0

∫
X

N v(x)fσna I(x,Ω, ν) dx dΩ dν −
∫
x

N v(x)E(x) dx.

(3.8)

Where N v are the test functions in the space of V and Uu
m are the trial functions

in the space of U . Trial functions that satisfy Eq. (3.8) yield the weak form of the

material energy balance. In the Galerkin method, the test and trial functions are

in the same space. In this work, we assume that the the test and trial spaces are

linear. To spatially discretize Eq. (3.8), we represent the domain with some number

of linear functions, Um ∈ V and N v ∈ V . Each Um must satisfy Eq. (3.8) for each

N v. This is done by defining N v in a spatial cell i such that:

N v
i =


N v
i (x) if x ∈ xi

0 otherwise

(3.9)

The linear functions, Uu
m, representing the solution contain a coefficient multiplied

by a linear function defined in a spatial cell i:

Uu
m,i(x) = Um,iN

u(x). (3.10)

The linear trial functions Nu have the same properties as the test functions:

Nu
i =


Nu
i (x) if x ∈ xi

0 otherwise

(3.11)

To satisfy the weak form, each trial function for an unknown at node i must

satisfy Eq. (3.8) for each test function N v, because the test and trial functions have
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been defined to only have extent within the cell, the inner produce of N v
i and Nu

j

is nonzero only within a spatial cell containing node i and node j. The locations of

the unknowns in DFEM IMC for an unstructured 2D triangular mesh, are shown in

Fig. (3.11). Using a tetrahedral mesh means that a material balance is formed for

each N v
i with integrals from all four material energies in the cell. This forms a local

4× 4 matrix, which can be inverted to find Um,i for each node i in the tetrahedron:

4∑
i=1

4∑
j=1

∂Um,j

∂t

∫
Xc

Nu
j (x)N v

i (x) dx =
4∑
i=1

∞∫
0

4π∫
0

∫
X

N v
i (x)fσna I(x,Ω, ν) dx dΩ dν

−
∫
x

N v
i (x)E(x) dx. (3.12)

To take advantage of the linear material energy density, we assume that the emission,

E, absorption opacity, σa, and effective scattering opacity fσa are also linear within

a tetrahedral cell:

σa(x) =
k∑
i=1

N i(x)fiσa,i, (3.13)

σs = (1− f)σa(x) =
k∑
i=1

N i(x)(1− fi)σa,i, (3.14)

E(x) = c
k∑
i=1

N i(x)fiσa,iUr,i, (3.15)

Because the emission is also linear within a cell, integrating it against the test func-

tion N v yields the same mass matrix as Nu. Carrying out the integration yields the

DFEM IMC material energy balance:
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Ti,1

Ti,2 Ti,3

Figure 3.11: Locations of the unknowns in the DFEM IMC method for a 2D trian-
gular mesh

Mt =
∂Um

∂t
=

4∑
i=1

∞∫
0

4π∫
0

∫
X

N v
i (x)fσna I(x,Ω, ν) dx dΩ dν −MtE dx. (3.16)

Where Mt is the mass matrix for for a linear tetrahedron:
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Mt = Vt



1/10 1/20 1/20 1/20

1/20 1/10 1/20 1/20

1/20 1/20 1/10 1/20

1/20 1/20 1/20 1/10


(3.17)

The integration cannot be carried out for the test function multiplied by the intensity

I because the shape of the intensity is not linear. Instead, the IMC transport solution

is modified to solve for the spatial moment of the intensity and all test functions

within a cell. This adds additional complexity to the particle transport that is

addressed in Section 5. The linear opacity shape also adds complexity to the particle

transport—the particle now experiences a changing scattering opacity as it streams.

Brown and Martin [5] described the process for calculating the distance to an event

in continuously changing media, that method is used here for scattering events.

In addition to a linear opacity, it may be necessary to use an average opacity

value for the element. If a constant opacity is used, there are several options to get

the average opacity for an element, the first is to take the average opacity of the

nodes:

σn =
1

k

k∑
n=1

σni . (3.18)

Where k is the number of nodes in an element. The opacity at the average temper-

ature could also be used:

σn = σn(T )→ T =
1

k

k∑
n=1

Ti (3.19)

Or the average T 4 can be used, as is done when selecting the opacity at a face in

TRT diffusion:
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σn = σn(T )→ T =

(
1

k

k∑
n=1

T 4
i

)1/4

(3.20)

For each element, the moment of the test functions and the absorption is deter-

mined from the transport step:

〈σnI〉i =

∞∫
0

∫
4π

∫
x

N iσnI dxi dΩ dν (3.21)

Where 〈σiI〉i is the moment of the absorption and the basis function for node i.

The absorption within a node can be projected onto a linear space as well. The

absorption then becomes a sum of the coefficients for each node multiplied by the

linear basis function for that node:

(σnI)(x) =
k∑
i=1

(σnI)iN
i(x) (3.22)

The linear reconstruction must satisfy the integral equations for each moment:

〈σnI〉i =

∫
x

k∑
j=1

(σnI)jN
j(x) (3.23)

In tetrahedra, a 4 by 4 matrix is formed that relates the moments of the absorption

to the linear coefficients. If the continuous finite element discretization is used with

the assumption that the absorption is linear, Eq. (3.22)) is multiplied by the basis

function for node i and integrated over the element to get the absorption term in the

TRT material energy balance:

∫
x

N iN j dUm
dt

dx =

∫
x

∞∫
0

4π∫
0

N j(σna I)(x) dΩ dν dx−
∫
x

N jE dx. (3.24)
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In this case, the absorption term in the material energy balance then becomes the

absorption moment 〈σI〉i as is shown in Eq. (3.23)).

The moments of the absorption could be used as the linear coefficient in Eq. (3.22)

(this is equivalent to lumping the solution in Eq. (3.23)). If this is done, the absorp-

tion moment of all nodes within an element would contribute to the energy absorbed

at a node. Implicit capture with basis functions and non-constant opacity is ex-

plained in Section 5.

3.5 Numerical Analysis

3.5.1 Diffusion Limit Analysis of the Node-Centered Method

The diffusion limit behavior of the node-centered IMC method at equilibrium is

analyzed here. We begin with the equilibrium, 1D, transport solution:

1

c

∂ψ(x, µ, t)

∂t
+ µ

∂ψ(x, µ)

∂x
+ σ(x)ψ(x, µ) =

σ(x)

2
(fB(x) + (1− f)φ(x)) , (3.25)

where,

φ(x) =

1∫
−1

ψ(x, µ) dµ, (3.26)

and ψ(x, µ) is the Monte Carlo solution for the angular flux—in the analysis it is

taken to be analytic.

The node-centered IMC method has a piecewise-linear emission profile. For the

discrete node-centered IMC method, the 1D unknowns are shown in Fig. (3.12). The

emission profile between cell centers is given by:
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B(x) = Bi
xi+1 − x

∆xi
+Bi+1

x− xi
∆xi

, x ∈ (xi, xi+1), (3.27)

Thus there are two piecewise-linear functions within a cell that are continuous and

have the value of Bi at the cell center. The coefficients of the emission shape are

determined by integrating the flux over a cell.

Bi =



x1+1/2∫
x1

σ(x)φ(x)
σ1∆x1

dx, i = 1

xi+1/2∫
xi−1/2

σ(x)φ(x)
σi∆xi

dx, i = 2, ..., I − 1

xI∫
xI−1/2

σ(x)φ(x)
σI∆xI

dx, i = I


(3.28)

The scaling and methodology of this analysis generally follows that of Larsen [34].

In the standard discrete diffusion limit analysis, the optical depth of a mesh cell is

scaled according to:

σi∆x→
σi∆xi
ε

(3.29)

where σi∆i = O
(
1
)

and ε→ 0.

The solution is assumed to be separable into boundary layer and interior compo-

nents:

ψ(x, µ) = ψb(x, µ) + ψn(x, µ), (3.30)

where the boundary solution and interior solution both satisfy the equilibrium trans-

port solution:
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1

c

∂ψb(x, µ, t)

∂t
+ µ

∂ψb(x, µ)

∂x
+ σ(x)ψb(x, µ) =

σ(x)

2
(fBb(x) + (1− f)φb(x)) ,

(3.31a)

1

c

∂ψn(x, µ, t)

∂t
+ µ

∂ψn(x, µ)

∂x
+ σ(x)ψn(x, µ) =

σ(x)

2
(fBn(x) + (1− f)φn(x)) .

(3.31b)

where the boundary solution also satisfies:

ψb(x1/2, µ) =ψinc(µ)− ψn(x1/2, µ), µ > 0, (3.32a)

lim
x→∞

ψb(x, µ) =0. (3.32b)

The boundary at xI has similar conditions.

We focus on the implications of the interior solution with the scaling from Eq. (3.29).

The transport equation then becomes:

ε

c

∂ψ(x, µ, t)

∂t
+µ

∂ψn(x, µ)

∂x
+
σ(x)

ε
ψn(x, µ) =

1

ε

σ(x)

2
(fBn(x) + (1− f)φn(x)) . (3.33)

The coefficients in Bn(x) given in Eq. (3.28) have an opacity in the numerator and

denominator and thus all ε terms cancel inside the coefficients. Expanding ψn, φn

and Bn with a power series in ε yields:
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ψn(x, µ) = ψ(0)
n (x, µ) + εψ(1)

n (x, µ) + ε2ψ(2)
n (x, µ) + ... (3.34a)

φn(x, µ) = φ(0)
n (x, µ) + εφ(1)

n (x, µ) + ε2φ(2)
n (x, µ) + ... (3.34b)

Bn(x) = B(0)
n (x, µ) + εB(1)

n (x, µ) + ε2B(2)
n (x, µ) + ... (3.34c)

Multiplying Eq. (3.51) by ε produces the O
(
1
)

solution:

ψ(0)
n (x, µ) =

1

2

(
fB(0)

n (x) + (1− f)φ(0)
n (x)

)
(3.35)

Integrating over angle:

φ(0)
n (x) = fB(0)

n (x) + (1− f)φ(0)
n (x), (3.36)

which simplifies to

φ(0)
n (x) = B(0)

n (3.37)

And from Eq. (3.51),

ψ(0)
n (x, µ) =

1

2
B(0)

n (x) =
1

2
φ(0)

n (x). (3.38)

The emission function, Bn(x), is piecewise-linear, meaning that the leading order

intensity is also piecewise-linear and isotropic.

Because the system is assumed to be in equilibrium, the intensity should produce

coefficients for B(x) that in turn produce the same intensity. We now examine

the coefficients of B
(0)
n (B

(0)
n,i and B

(0)
n,i+1), given that the leading order intensity is

piecewise linear:
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B
(0)
n,i =

i+1/2∫
xi−1/2

σ(x)φ
(0)
n (x)

σi∆xi
dx, (3.39)

Substituting the piecewise linear φ
(0)
n into Eq. (3.39). There are two piecewise-linear

functions over x ∈ (xi−1/2, xi+1/2) so the integral is broken into two parts:

B
(0)
n,i =

1

σi∆xi

xi∫
xi−1/2

σ(x)

(
B

(0)
n,i

xi+1 − x
∆xi

+B
(0)
n,i−1

x− xi
∆xi

)
dx+

1

σi∆xi

xi+1/2∫
xi

σ(x)

(
B

(0)
n,i

xi+1 − x
∆xi

+B
(0)
n,i+1

x− xi
∆xi

)
dx. (3.40)

Carrying out the integration:

B
(0)
n,i =

1

σi∆xi

(
(σ∆x)i

2

(
1

4
B

(0)
n,i−1 +

3

4
B

(0)
n,i

)
+

(σ∆x)i
2

(
1

4
B

(0)
n,i+1 +

3

4
B

(0)
n,i

))
(3.41)

Simplifying:

0 = B
(0)
n,i−1 −B

(0)
n,i +B

(0)
n,i+1 −B

(0)
n,i (3.42)

which can be written as:

1

3σi

B
(0)
n,i+1 −B

(0)
n,i

∆xi/2
− 1

3σi

B
(0)
n,i −B

(0)
n,i−1

∆xi/2
= 0 (3.43)

This result is incorrect and implies that a linear intensity will not reproduce the

equilibrium emission coefficients unless the intensity is constant everywhere in the

problem. This problem stems from a mismatch in the emission and absorption

shapes.
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2

Ti

σi

Figure 3.12: 1D view of node-centered method showing the location of the unknowns

3.5.2 Absorption Based Emission Analysis

To obtain the correct diffusion limit we attempt to force the emission and ab-

sorption to have the same shape. This leads to a different way of calculating the

emission shape for the node-centered method. This new method, which we call “ab-

sorption based emission,” is analyzed here. This method uses sub-cell absorption

tallies to calculate a linear emission profile for the next timestep. The location of the

unknowns is again shown in Fig. (3.12). Cell centers are at integer values and faces

are at i + 1/2 and i − 1/2. The emission is treated as discontinuous at cell-centers

and continuous across cell faces, meaning the emission profile is described by a left

and right value for each cell center:

B(x) = Bi,R
xi+1 − x
xi+1 − xi

+Bi+1,L
x− xi
xi+1 − xi

, x ∈ (xi, xi+1), (3.44)

where B is the emission shape and Bi,R and Bi+1,L are linear coefficients.

The coefficients are determined by solving for a linear scalar intensity that repro-

duces the sub-cell absorption integral. We consider the equilibrium case, and thus

there is no need to differentiate the time of absorption from emission:
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xi+1/2∫
xi

σ(x)

(
Bi,R

xi+1 − x
xi+1 − xi

+Bi+1,L
x− xi
xi+1 − xi

)
dx =

xi+1/2∫
xi

σ(x)φ(x) dx, (3.45a)

xi+1∫
xi+1/2

σ(x)

(
Bi,R

xi+1 − x
xi+1 − xi

+Bi+1,L
x− xi
xi+1 − xi

)
dx =

xi+1∫
xi+1/2

σ(x)φ(x) dx. (3.45b)

The purpose of this analysis is to determine if using the emission in Eq. (3.44) with

coefficients from Eq. (3.45) introduces spurious terms that cause the solution to

diverge from an equilibrium solution, as was shown in the node-centered method

analysis above.

Using a constant opacity within a cell, as is done in IMC, yields:

σi

xi+1/2∫
xi

Bi,R
xi+1 − x
xi+1 − xi

+Bi+1,L
x− xi
xi+1 − xi

dx = σi

xi+1/2∫
xi

φ(x) dx, (3.46a)

σi+1

xi+1∫
xi+1/2

Bi,R
xi+1 − x
xi+1 − xi

+Bi+1,L
x− xi
xi+1 − xi

dx = σi+1

xi+1∫
xi+1/2

φ(x) dx. (3.46b)

Canceling opacity and carrying out these integrals gives the matrix form of Eq. (3.46):

xi+1 − xi
2

3/4 1/4

1/4 3/4


 Bi,R

Bi+1,L

 =


xi+1/2∫
xi

φ(x) dx

xi+1∫
xi+1/2

φ(x) dx

 . (3.47)

This method is examined in 1D diffusion limit with the additional assumption

that the material and radiation are in equilibrium. In 1D, the IMC transport equation
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is:

1

c

∂ψ(x, µ, t)

∂t
+µ

∂ψ(x, µ, t)

∂x
+σ(x)ψ(x, µ, t) =

σ(x)

2
(fB(x) + (1− f)φ(x, t)) , (3.48)

where the intensity is assumed to be taken as analytic. We consider the interior

solution with the standard scaling applied, which yields:

ε

c

∂ψ(x, µ, t)

∂t
+µ

∂ψn(x, µ)

∂x
+
σ(x)

ε
ψn(x, µ) =

1

ε

σ(x)

2
(fBn(x) + (1− f)φn(x)) . (3.49)

Because Bn(x) is a piecewise linear function, we look at the scaling of the coefficients.

In 1D, the coefficients of Bn(x) are Bn,i,R and Bn,i+1,L. An expression for each

coefficient can be seen in the solution of Eq. (3.47), which yields:

B
(0)
n,i,R = φ

(0)
n,i,R =

1

xi+1 − xi

3

xi+1/2∫
xi

φn(x) dx−
xi+1∫

xi+1/2

φn(x) dx

 , (3.50)

There are no opacity terms in the coefficients of Bn and thus no scaling is applied.

Multiplying Eq. (3.51) by ε, substituting the expansions for ψn, φn and Bn, and

grouping O
(
1
)

terms:

ψ(0)
n (x, µ) =

1

2

(
fB(0)

n (x) + (1− f)φ(0)
n (x)

)
. (3.51)

Integrating over angle:

φ(0)
n (x) = fB(0)

n (x) + (1− f)φ(0)
n (x), (3.52)
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which simplifies to

φ(0)
n (x) = B(0)

n . (3.53)

And from Eq. (3.51),

ψ(0)
n (x, µ) =

1

2
B(0)

n (x) =
1

2
φ(0)

n (x). (3.54)

The emission function, Bn(x), is piecewise-linear, meaning that the leading order

intensity is also piecewise-linear and isotropic. Because leading order radiation in-

tensity is isotropic, the leading order flux is zero:

F (0)
n =

1∫
−1

µψ(0)
n (x, µ) dµ =

1∫
−1

µ
φ

(0)
n (x)

2
dµ = 0. (3.55)

The radiation pressure with an isotropic intensity is:

P (0)
n =

1∫
−1

µ2ψ(0)
n (x, µ) dµ =

1∫
−1

µ2φ
(0)
n (x)

2
dµ =

1

3
φ(0)

n . (3.56)

We can now examine if the leading order intensity generates an emission profile

that reproduces the equilibrium solution. The linear coefficients in B
(0)
n can be

calculated. Examining the coefficient B
(0)
n,i,R:

B
(0)
n,i,R = φ

(0)
n,i,R. (3.57)

Solving Eq. (3.47) for φ
(0)
n,i,R and substituting into Eq. (3.57) yields an expression for

B
(0)
n,i,R in terms of the left and right absorption integrals:
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B
(0)
n,i,R = φ

(0)
n,i,R =

1

xi+1 − xi

3

xi+1/2∫
xi

φn(x) dx−
xi+1∫

xi+1/2

φn(x) dx

 . (3.58)

The interior intensity in the absorption integrals is replaced with the piecewise linear

intensity, given by Bn(x):

B
(0)
n,i,R =

1

xi+1 − xi

3

xi+1/2∫
xi

B(i,R)
n

xi+1 − x
xi+1 − xi

+B(i+1,L)
n

x− xi
xi+1 − xi

dx



− 1

xi+1 − xi

 xi+1∫
xi+1/2

B(i,R)
n

xi+1 − x
xi+1 − xi

+B(i+1,L)
n

x− xi
xi+1 − xi

dx

 , (3.59)

The equations now only contain the linear coefficients for the emission. Integrating

and simplifying:

B
(0)
n,i,R =

1

xi+1 − xi
(3(xi+1 − xi)

2

(
3

4
B

(0)
n,i,R +

1

4
B

(0)
n,i+1,L

)

−(xi+1 − xi)
2

(
1

4
B

(0)
n,i,R +

3

4
B

(0)
n,i+1,L

))
,

B
(0)
n,i,R =

9

8
B

(0)
n,i,R +

3

8
B

(0)
n,i+1,L −

1

8
B

(0)
n,i,R −

3

8
B

(0)
n,i+1,L,

B
(0)
n,i,R = B

(0)
n,i,R.

This result implies that the leading order intensity in the diffusion limit will hold an

equilibrium solution by reproducing the same linear coefficients used in the emission.

No spurious terms are introduced into the essentially steady -state equation by using
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Eq. (3.44) with coefficients from Eq. (3.45).

We now examine the O
(
ε
)

and O
(
ε2
)

equations to look for correct behavior in

the diffusion limit. The first order (O
(
ε
)
) transport equation is:

µ
∂ψ

(0)
n (x, µ)

∂x
+ σ(x)ψ(1)

n (x, µ) =
σ(x)

2

(
fB(1)

n (x) + (1− f)φ(1)
n (x)

)
. (3.60)

Taking the first angular moment of Eq. (3.60) and simplifying yields Fick’s law for

the first order flux:

∂P
(0)
n (x)

∂x
+ σ(x)F (1)

n (x, µ) = 0,

1

3σ(x)

∂φ
(0)
n (x)

∂x
+ F (1)

n (x, µ) = 0,

F (1)
n (x, µ) = − 1

3σ(x)

∂φ
(0)
n (x)

∂x
. (3.61)

The second order transport equation is:

1

c

∂ψ
(0)
n (x, µ, t)

∂t
+ µ

∂ψ
(1)
n (x, µ, t)

∂x
+ σ(x)ψ(2)

n (x, µ, t)

=
σ(x)

2

(
fB(2)

n (x, t) + (1− f)φ(2)
n (x, t)

)
. (3.62)

Suppressing time arguments and taking the zeroth angular moment of Eq. (3.62):

1

c

∂φ
(0)
n (x)

∂t
+
∂F

(1)
n (x)

∂x
+ σ(x)φ(2)

n (x) = σ(x)
(
fB(2)

n (x) + (1− f)φ(2)
n (x)

)
. (3.63)
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To eliminate the emission and scattering terms, the second order transport equation

is combined with the second order, stead-state material energy balance, which is:

cV
∂T

(0)
n (x)

∂t
= fσ(x)φ(2)

n (x)− fσ(x)B(2)
n (x). (3.64)

Combing Eq. (3.63) and Eq. (3.64) yields:

cV
∂T

(0)
n (x)

∂t
+

1

c

∂φ
(0)
n (x)

∂t
+
∂F

(1)
n (x)

∂x
= 0. (3.65)

Using Eq. (3.61) and simplifying:

cV
∂T

(0)
n (x)

∂t
+

1

c

∂φ
(0)
n (x)

∂t
− ∂

∂x

1

3σ(x)

∂φ
(0)
n (x)

∂x
= 0,

cV
∂T

(0)
n (x)

∂t
+

1

c

∂φ
(0)
n (x)

∂t
− ∂

∂x

1

3σ(x)

∂B
(0)
n (x)

∂x
= 0. (3.66)

Eq. (3.66) is then integrated between node edges: x ∈ (xi−1/2, xi+1/2):

xi+1/2∫
xi−1/2

cV
∂T

(0)
n (x)

∂t
+

1

c

∂φ
(0)
n (x)

∂t
dx− 1

3σi

(
∂B

(0)
n (x)

∂x

∣∣∣∣
x=xi+1/2

− ∂B
(0)
n (x)

∂x

∣∣∣∣
x=xi−1/2

)
= 0.

(3.67)

The opacity is constant within a cell and thus becomes σi. The spatial derivatives can

be evaluated by substituting the linear emission function for B
(0)
n (x) in Eq. (3.44):

xi+1/2∫
xi−1/2

cV
∂T

(0)
n (x)

∂t
+

1

c

∂φ
(0)
n (x)

∂t
dx−

1

3σi

((
B

(0)
n,i+1,L −B

(0)
n,i,R

xi+1 − xi

)
−

(
B

(0)
n,i,L −B

(0)
n,i−1,R

xi − xi−1

))
= 0. (3.68)
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Eq. (3.68) represents a discrete diffusion equation at node edges.

3.5.3 Analysis of Opacity Averaging in DFEM IMC

The DFEM IMC method is analyzed for case where the intensity from the trans-

port solution is a linear function:

I(x) = ILNL(x) + IRNR(x). (3.69)

In this analysis, all intensity values are assumed to be angle-integrated quantities.

The opacity is treated as linear and assumed to be proportional to the T−3, given

by:

σa(x) = σa,LNL(x) + σa,RNR(x), (3.70)

which yields,

σa,L =
σa,o

T 3
L

, (3.71)

σa,R =
σa,o

T 3
R

. (3.72)

With a linear opacity and linear intensity, the material energy balance for left and

right temperatures becomes:

∫
x

fσa(x)NL(x)I(x) dx =
acfσa,LT

4
L

2
, (3.73)

∫
x

fσa(x)NR(x)I(x) dx =
acfσa,RT

4
R

2
. (3.74)
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Carrying out the integration and replacing left and right opacity values with the

temperature expression:

IL
4T 3

L

+
IL

12T 3
R

+
IR

12T 3
L

+
IR

12T 3
R

=
1

2
TL (3.75)

IR
4T 3

R

+
IR

12T 3
L

+
IL

12T 3
L

+
IL

12T 3
R

=
1

2
TR (3.76)

This shows that using a linear opacity in the DFEM IMC case is not guaranteed

to reproduce the steady-state solution unless the intensity and temperature are flat

(IL = IR and TL = TR). The intensity coefficients that do reproduce the steady-state

solution are:

IL =
TL
2

(
σL
12

+ σR
4

)
− TR

2

(
σL
12

+ σR
12

)
−
(
σL
12

+ σR
12

)2
+
(
σL
12

+ σR
4

) (
σL
4

+ σR
12

) (3.77)

IR =
−TL

2

(
σL
12

+ σR
12

)
+ TR

2

(
σL
4

+ σR
12

)
−
(
σL
12

+ σR
12

)2
+
(
σL
12

+ σR
4

) (
σL
4

+ σR
12

) (3.78)

The standard method of selecting an opacity at a cell face in TRT diffusion is to

use an opacity calculated with the average of the material temperature to the fourth

power:

σ(T̃ ) =
σa,o

T̃ 3
→ T̃ =

(
T 4
i + T 4

i+1

2

)1/4

(3.79)

This opacity averaging improves the results of the DFEM IMC method compared

to using a linear opacity within an element. Using Eq. (3.79) in the DFEM method

can be justified by requiring that an average opacity reproduce the average emission

in a cell:
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σaT 4 = σT 4 (3.80)

For a cell in the DFEM IMC method, this becomes:

σa
T 4
L + T 4

R

2
=
σa,LT

4
L + σa,RT

4
R

2
= σa,o

TL + TR
2

(3.81)

Solving for σa yields:

σa = σa,o
TL + TR
T 4
L + T 4

R

(3.82)

The average temperature used in an inverse cubic opacity is:

T̃ =

(
T 4
L + T 4

R

TL + TR

)1/3

(3.83)

Although this is not the exact form of the temperature averaging that is tradi-

tionally used, it does suggest that the temperature in an average opacity should be a

T 4 average. If the opacity is constant, a simple temperature average will reproduce

the average emission in a cell. The results for the Marshak wave problem are given

in Fig. (3.13), they are nearly indistinguishable from the results using Eq. (3.79).

3.6 Test Problems

There are several standard test problems in TRT. These test problems are used to

verify the method implementation and test the method’s performance in the optically

thick and thin limits.

The TRT equations are non-linear, and it is therefore difficult to obtain an ana-

lytic solution without eliminating many dependent variables. Su and Olson provided

a 1D, time-dependent semi-analytic solution to the TRT equations [53]. This solu-
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Figure 3.13: DFEM IMC results at 1 ns using the cell averaged temperature in
Eq. (3.83 for various spatial resolutions

tion linearizes the TRT equations by using a heat capacity that is proportional to

T 3:

cV = αT 3 (3.84)

The equations are now linear in T 4. The Su-Olson solution is non-dimensional and

the parameters are given in Table (3.2).

The Marshak wave problem was first proposed by Marshak in the late 1950’s [40].

This problem uses an absorption opacity that is inversely proportional the cube of

the material temperature. A relatively hot boundary source drives a 1D problem.
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Parameter Value
σa = 1.0
α = 4.0
cV = αT 3

Tm,0 = 0.0
Tr,0 = 0.0
Ts = 1.0
c = 1.0
a = 1.0
ρ = 1.0

Table 3.2: Parameters of the Su-Olson problem

The inner material starts cold and is thus very opaque. As the material heats up,

the material becomes thin. This creates a sharp wavefront that propagates through

the material. The mean free path in a Marshak wave problem is about 1.0 × 10−8

cm in the cold material. To spatially resolve a mean free path would prohibitively

expensive in both computation and memory costs. Thankfully, much work has been

done to show that a method can be expected to behave correctly, even if it does

not resolve a mean free path, if it holds the equilibrium diffusion limit [34]. This

means that the spatially discretized TRT equations look like consistent, discretized,

diffusion equations when certain terms in the equations are scaled by a parameter

representing the optically thick limit. The Marshak wave problem tests the behavior

of a method in the equilibrium diffusion limit. The parameters for the Marshak wave

test problem used in this work are shown in Table (3.3).

The crooked pipe test problem was proposed by Graziani and LeBlanc [25] as a

way to test method performance in optically thin and thick regimes. The crooked

pipe test problem is shown in Fig. (3.14)). The temperature is tracked at 5 points in

the thin section of the pipe. The energy propagation speed is highly dependent on

the resolution of the thick-thin material interface and the method’s behavior in the
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Parameter Value

σa(T ) = 100
T 3

cm2

g

cV = 0.0081181 jk
keVcm3

Tm,0 = 0.001 keV
Tr,0 = 0.001 keV
Ts = 1.0 keV
c = 299.79 cm

sh

a = 0.013720160 jk
cm3keV4

ρ = 3.0 kg
m3

Table 3.3: Parameters of the Marshak wave problem

diffusion limit. In this work, a source temperature of Ts = 0.5 keV is used instead of

the Ts = 0.3 keV as specified originally because that source temperature is used in

the reference solution [23]—IMC results from the KULL code developed at Lawrence

Livermore National Laboratory [22]. The parameters for the crooked pipe problem

are shown in Table (3.4).

Figure 3.14: The crooked pipe or “tophat” problem from [25]—the points where the
solution is tracked are marked with red stars
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Parameter Value
σthin = 20.0 g

cm2

σthick = 200.0 g
cm2

ρthin = 0.01 g
cm3

ρthick = 10.0 g
cm3

cV = 0.05 jk
keVcm3

Tm,0 = 0.05 keV
Tr,0 = 0.05 keV
Ts = 0.5 keV
c = 299.79 cm

sh

a = 0.013720160 jk
cm3keV4

Table 3.4: Parameters of the crooked pipe problem

3.7 Numerical Results

The results for the Su-Olson problem are shown in Figs. (3.15) to (3.34). In

the Su-Olson problem the node-centered and corner-centered IMC method appear to

be 1D, expecting Monte Carlo noise, even though the mesh is 3D. The corner-based

method results show the material temperatures at the nodes, unless noted otherwise.

The Su-Olson results show that the node-centered, corner-centered and DFEM IMC

method have been implemented correctly. This includes the quadrature rule used

in the implicit capture in the DFEM method. The runtimes for each method using

∆t = 0.01 and ∆x = 0.01 are shown in Table (3.5). The runtimes show that the

corner-centered method is not significantly longer than the node-centered methods.

The DFEM IMC method runtime is not significantly longer than the other methods—

this confirms that the addition of the quadrature rule in implicit capture is offset by

eliminating the need to track to corners within the tetrahedra.

The results for the Marshak wave problem for each of the four methods are shown

in Figs. (3.18) to (3.20). The Marshak wave results appear to converge to the 1D,

refined JAYENNE results. The corner-based IMC method uses the same mesh as
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Figure 3.15: The material temperature in the Su-Olson problem with the node-based
IMC method without emission upwinding at three times

the node-centered IMC method, but it effectively uses double the resolution in each

dimension because it divides the dual mesh cells into corners. This can be seen in

the 2D example of the corner-based mesh in Fig. (3.10)). Thus, the corner based

method should be compared to a node-centered method using twice as many cells.

Even with that caveat, the corner-based method gives results that are closer to the

1D Jayenne results compared to the node-centered method using mesh at twice the

resolution, as seen in Fig. (3.21).

The runtimes for each method on the Marshak wave problem for ∆t = 0.000125 sh

and ∆x = 0.0025 are shown in Table (3.5). The corner-centered method takes the
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Figure 3.16: The material temperature in the Su-Olson problem with the node-based
IMC method with emission upwinding at three times

longest time to complete for the Marshak wave problem of the piecewise-constant

IMC methods. Although the tracking cost is the same for the corner-centered method

and the node-centered methods, there is additional work from other places in the

implementation related to the increased number of unknowns in the corner-centered

method. The DFEM IMC method takes about 8% longer than the piecewise-constant

methods. Based on the Su-Olson results, the decreased cost of particle tracking

seems to be offset by the increased cost in evaluating the implicit capture integral.

An increase in runtime for the DFEM IMC method relative to the other methods in

the Marshak wave problem is likely caused by particles encountering higher opacity
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Figure 3.17: The material temperature in the Su-Olson problem with the corner-
based IMC method at three times

than the peicewise-constant methods and thus experiencing more scattering events.

This is due to the linear opacity representation and is explained further below and

illustrated in Fig. (3.32).

Results for the crooked pipe problem for each method are shown in Figs. (3.22)

to (3.24). The various methods in CHICOMA are compared to the 2D, RZ KULL

results. The crooked pipe problem was run with various resolutions at the thick-thin

material interface. The propagation of energy through the problem is sensitive to

this material interface resolution, as is seen in the CHICOMA results. In 2D, it is

relatively simple to increase the resolution at the material interface, in 3D selectively

69



Method
Runtime (s)

Su-Olson
Marshak Wave

(∆x = 0.0025 cm)
Crooked Pipe

(∆x = 0.015 cm)
Node-Centered (no upwind) 7469 2640 7200.526
Node-Centered (with upwind) 7461 2652 7888.19
Corner-centered 7559 2689 11717.55*
DFEM 7515 2864 11165.16*

Table 3.5: Runtimes for different methods on the Su-Olson and Marshak wave prob-
lems (Crooked Pipe ∆x is the resolution at the material interface) (* these results
were run with half as many cores on a slightly faster machine)

increasing the resolution at the material interface is more complicated. With stan-

dard meshing tools, the tetrahedra at the material interface can be uniformly refined,

as shown in Fig. (3.25). Uniform refinement at the interface increases the number of

mesh cells at the interface by a factor of four. These interface cells quickly dominate

the number of total cells, as is seen in Table (3.6). This has two negative effects on

the simulation:

• Particles cross relatively more cell boundaries and thus experience more discrete

events before reaching the end of the timestep, which increases runtime

• To obtain the same relative quality (low variance) of the solution in the addi-

tional mesh cells, more particle histories must be used

An alternative meshing solution would be to increase the aspect ratio of the tetrahe-

dra at the material interface. This would provide an increased resolution at the in-

terface without significantly increasing the number of mesh cells. This type of mesh-

ing is used to resolve boundary layers when solving Navier-Stokes problems in the

aerospace community [49]. This method of meshing an interface is called anisotropic

grid stretching. Advanced mesh generation has not been used in CHICOMA simula-

tions, but the simulation results and runtimes highlight the need for mesh generation
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Figure 3.18: The node-centered IMC method without emission upwinding IMC
method for the Marshak wave problem at t = 1.0 ns at various spatial resolutions

that can automatically capture material interfaces without significantly increasing

the cell count.

3.7.1 Absorption Based Emission Results

Implementing the absorption based emission as the emission shape in CHICOMA

yields results that behave more like SN than IMC on Marshak wave type problems.

Figs. (3.26) compares the convergence of the absorption based emission to the SN

results from the CAPSAICIN code at Los Alamos National Laboratory. The node-

centered IMC method with standard tilting results are shown for comparison in

Fig. (3.27). Comparing these figures shows that the fix up method allows less energy

into the problem for all cases in a way that is similar to the SN results. The results

of the absorption based emission compared to resolved JAYENNE and CAPSAICIN
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Figure 3.19: The node-centered IMC method with emission upwinding for the Mar-
shak wave problem at t = 1.0 ns at various spatial resolutions

Interface Resolution Unknown Count
∆x = 0.03 49724
∆x = 0.015 161875
∆x = 0.0075 608046
∆x = 0.00375 2387779

Table 3.6: Unknown count for each level of interface resolution in the crooked pipe
problem
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Figure 3.20: The corner-centered IMC method for the Marshak wave problem at
t = 1.0 ns at various spatial resolutions
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Figure 3.21: A comparison of the node-centered and corner-centered IMC methods
for the Marshak wave problem at t = 1.0 ns
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Figure 3.22: Temperature vs time for 5 tracked points at various mesh resolutions in
the crooked pipe problem with the node-centered IMC method, KULL IMC is given
as a reference solution
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Figure 3.23: Temperature vs time for 5 tracked points at various mesh resolutions
in the crooked pipe problem with the node-centered IMC method and emission up-
winding, KULL IMC is given as a reference solution
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Figure 3.24: Temperature vs time for 5 tracked points at various mesh resolutions
in the crooked pipe problem with the corner-centered IMC method, KULL IMC is
given as a reference solution
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Figure 3.25: Resolution of the material interface in the crooked pipe problem run
with the CHICOMA code–the interface is at r = 0.5 cm, the location of the smallest
mesh cells (reprinted with permission from [37])
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∆xi
Standard Emission Based Absorption

P1 P2 P3 P4 P5 P1 P2 P3 P4 P5

0.03 0.466 0.304 0.165 0.092 0.049 0.466 0.306 0.169 0.100 0.050
0.015 0.466 0.309 0.188 0.128 0.052 0.467 0.311 0.190 0.133 0.051
0.0075 0.467 0.313 0.200 0.152 0.057 0.467 0.315 0.204 0.155 0.060
0.00375 0.466 0.316 0.211 0.166 0.069 0.467 0.317 0.213 0.170 0.073

Table 3.7: Temperature of the five tracked points for the standard node-centered
IMC method and the absorption based emission IMC method at various interface
resolutions (∆xi, in centimeters)

are shown Fig. (3.28). Again, the wavefront for the fix up method is closer to the

SN solution than the resolved IMC solution.

The crooked pipe problem has also been rerun to examine how absorption based

emission changes the results. At the same mesh resolution this method gives higher

temperatures than the node-centered method. The higher temperatures are closer to

the much more resolved RZ results from the KULL IMC code at Lawrence Livermore

National Laboratory. This is consistent with the results observed in the Marshak

wave problem—less energy penetrates into thick regions, meaning more energy is

reflected back into the thin region, producing higher material temperatures at the

tracked points. Visually, the differences between the temperatures are difficult to

discern so the material temperature at the end of the simulation for each tracked

point are instead listed in Table (3.7).

3.7.2 DFEM IMC

To study the DFEM IMC method, we first examine the use of different opacity

treatments in a 1D code. This is done to isolate the effects of an unstructured grid

from the effects of the DFEM IMC and the opacity treatments. In 1D, the mass

matrix, Mt, is:
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Figure 3.26: Node-centered IMC with absorption based emission and CAPSAICIN
SN results at 1 ns for various mesh resolutions

Mt = xc

1/3 1/6

1/6 1/3

 (3.85)

Where xc is the length of the 1D cell. The results for each opacity treatment in

the DFEM IMC method on the Marshak wave problem are compared to the standard

IMC method in the JAYENNE code. The case where opacity is simply averaged, as

in Eq. (3.79), yields negative solutions on the Marhsak wave problem and is therefore

not included in the results. Each method requires lumping the mass matrix in front

of the time derivative and in the emission term to ensure positivity—this is due to
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Figure 3.27: Node-centered IMC results at 1 ns for various mesh resolutions

the fact that the temperature at the wavefront cannot be fit with a linear function.

The DFEM IMC solution is shown with the full discontinuous solution and the cell

average solution. Figures (3.29) to (3.30) shows the results for each case. A feature

of using piecewise linear opacity not seen in the late time results is that the material

temperature can be larger than the source temperature incident on the problem.

This effect is known as a maximum principle violation [58] and it is a well known

occurrence in IMC methods. It is essentially non-monotonic behavior of the solution

about some equilibrium condition and appears when too much energy is absorbed

during a timestep3. This occurs in the linear opacity case of DFEM IMC because

3this energy absorption can be controlled by reducing the timestep size or increasing the size of
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Figure 3.28: Node-centered IMC results at 1 ns compared to refined results from
CAPSAICIN and JAYENNE

applying a linear shape to the opacity yields a larger opacity than the standard

IMC method for the same number of unknowns and thus more energy is absorbed

compared to the standard IMC method. This situation is illustrated in Fig. (3.32).

Figure (3.33) shows the peaks in the temperature solution for DFEM linear opacity

and how these oscillations are damped out over time.

The results from the linear test case show that linear opacity case converges to

a value that is ahead of the piecewise constant IMC method solution. This could

be due to the overheating that occurs at the early timesteps. The opacity averaging

spatial cells
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methods both converge to the piecewise constant IMC solution, but they do not

converge at an accelerated rate—for the same level of grid spacing there are twice as

many unknowns in the DFEM method so in reality both of these cases are worse than

the piecewise constant method. These results indicate that more work is necessary

on developing a DFEM IMC solution that is both robust and accurate. Alternative

means of lumping the mass matrix may improve the quality and robustness of the

solution, as is done by Maginot et al [39].

The results of the 1D DFEM IMC code eliminate the use of simple averaged

opacity. The DFEM IMC method could still prove advantageous to the IMC im-

plementation in CHICOMA because using a constant or linear opacity within a

tetrahedral cell eliminates the need to track to the corner boundary. The DFEM

IMC method with linear opacity was tested for the Su-Olson and Marshak wave

problems, the results are shown in Figs. (3.34) to (3.35). The constant opacity with

an average temperature is shown in Fig. (3.36). The constant opacity with the av-

erage temperature to the fourth is shown in Fig. (3.37). The Marshak wave results

appear similar to the 1D case: the wavefront in the full linear opacity DFEM IMC

method converges to a position ahead of the standard IMC wavefront. The averaged

opacity results both converge to the refined, standard IMC wavefront. Although

it is not clearly visible in the graph, the constant opacity with T 4 averaging has a

slightly higher temperature for all points compared to the T averaged opacity. This

is expected because a T 4 average is higher, yielding an overall lower opacity. The

performance of these opacity averaged DFEM IMC results indicates that an IMC

method could be used on the CHICOMA mesh that does not need to track to the

interface of the dual mesh cells.
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3.8 Discussion

The corner-centered IMC method appears to be the best IMC method for the

unstructured tetrahedral mesh with node-based unknowns. It produces more accu-

rate results compared to the node-centered method in all cases. The DFEM IMC

method shows promise when used with average opacity—this method converges to

the same solution as the corner-centered method and does not require tracking to

the dual mesh cell interface. A DFEM IMC that uses the linear temperature shape

for opacity and emission and that has improved convergence behavior has not been

observed in the results and requires more development.
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Figure 3.29: Discontinuous and average temperatures for the 1D DFEM IMC method
with linear opacity within a mesh cell for the Marshak wave problem at t = 1.0 ns
compared to the JAYENNE solution
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Figure 3.30: Discontinuous and average temperatures for the 1D DFEM IMC method
with average temperature opacity for the Marshak wave problem at t = 1.0 ns
compared to the JAYENNE solution
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Figure 3.31: Discontinuous and average temperatures for the 1D DFEM IMC method
with average T 4 opacity for the Marshak wave problem at t = 1.0 ns compared to
the JAYENNE solution
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(b) Temperature and opacity after one timestep in the DFEM IMC
method

Figure 3.32: A comparison of the opacity and temperature at the wavefront in a
Marshak wave problem—the DFEM method effectively has a larger opacity than the
IMC method (the opacity is linear within an element in the DFEM method but the
plot scale is logarithmic so the shape is curved)
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Figure 3.33: Damped maximum principle violations in the solution of the DFEM
IMC equations with linear opacity at several timesteps
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Figure 3.34: The material temperature in the Su-Olson problem with the corner-
based IMC method at three times
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Figure 3.35: Temperature vs. time for a Marshak wave problem with the DFEM
IMC method with linear opacity
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Figure 3.36: Temperature vs. time for a Marshak wave problem with the DFEM
IMC method with a constant opacity from the average T in an element
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Figure 3.37: Temperature vs. time for a Marshak wave problem with the DFEM
IMC method with a constant opacity from the average T 4 in an element
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4. SAMPLING ON TETRAHEDRA AND CORNERS

4.1 Uniform Sampling

Sampling a particle location in an orthogonal quadrilateral or hexehedral mesh

cell is done by sampling each coordinate independently. This is more difficult on

triangular and tetrahedral meshes. Both triangles and tetrahedra are simplexes. A

simplex is defined as a shape in d dimensions formed by d+ 1 points. Points within

a simplex can be described with barycentric coordinates. The formula:

X =
d+1∑
i=1

λivi, (4.1)

describes all points within a simplex. Where the spacing vector, λ, is a positive unit

vector and vi is the position of vertex i that forms the simplex and X is a location

within the simplex. Devroye gives a method to sample the spacing vector, λ, such

that a uniform distribution of points is produced within the simplex [16]. The spacing

vector is obtained by generating a vector of random numbers, ξ of length d where

each ξi ∈ [0, 1]. These d random numbers are then sorted least to greatest and the

spacing vector is determined with:

λi =


ξ1, i = 1

ξi+1 − ξi, d+ 1 > i > 1

1− ξd, i = d+ 1

(4.2)

The relationship between ξ, λ and X is shown for the case of triangle in Fig. (4.1a)

and Fig. (4.1b). This method samples each component of λ from an exponential

distribution, which is necessary for the process to be memoryless. If the samples
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Figure 4.1: Uniform sampling on a triangle using two random numbers (reprinted
with permission from [37])

do not come from an exponential distribution, the points are clustered around the

barycenter of a tetrahedron. Uniform particle locations on the tetrahedron can be

sampled easily and without rejection by using Eq. (4.2) with Eq. (4.1).

Because energy is decomposed on to corners, particle emission locations need to

be sampled on the corners as well. This can be done with rejection sampling by only

accepting positions that are within the corner but this means on average three quar-

ters of all samples are rejected. Instead we sample uniformly on the tetrahedron and

translate positions outside the current corner onto the corner that is being sampled.

In barycentric coordinates this can be done by multiplying the spacing vector λ by

a transformation matrix, T :

λi = Tiλi. (4.3)
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Figure 4.2: Uniform sampling within a triangle transformed to uniform sampling
within a corner (reprinted with permission from [37])

Where λi is the original sampled location in barycentric coordinates, and the trans-

formation matrix, Ti, depends on the corner that the point is in. In practice this

equates to swapping the index of the maximum λi value with the index of the corner

you are sampling in. This method gives the same mean particle position as the re-

jection method. In a triangle, transforming from a point in corner 2 to corner 1 can

be done with the transformation matrix:

T2,1 =


0 1 0

1 0 0

0 0 1

 . (4.4)

Transformations on a triangle are shown in Fig. (4.2).
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4.2 Sampling from a Distribution

Particle emission is a strong function of temperature. Although the temperature

is assumed constant in the standard IMC method, an emission shape is constructed

from the emission in adjacent cells. This process is called tilting and is used to reduce

spatial discretization error. To sample from this constructed emission distribution

in orthogonal quadrilateral or hexehedral mesh cells is simplified by making the

approximation that each dimension can be treated independently. This is more

challenging on simplexes because each dimension cannot be treated independently.

The rejection method can be used to sample particle locations from a linear emission

distribution. This is done by probabilistically sampling particle position from a

uniform distribution and accepting that position based on the emission, E, at that

location:

P (x) =
E(x)

Emax

(4.5)

Where P is the probability of accepting the particle emission location. This method

is implemented in three steps:

1. A particle position is sampled from a uniform distribution

2. E(x)
Emax

is calculated at the sampled position

3. A random number, ξ ∈ (0, 1), is compared to P—if ξ is less than P the point

is accepted, otherwise start again at step 1

Emission locations using the rejection method on a triangle are shown in Fig. (4.3).

This method can be expensive because it involves generating additional random

numbers but using Eq. (4.3) can reduce some of the cost because it can be used
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Figure 4.3: One thousand sampled particle emission locations with the rejection tilt
method given a linear temperature field (reprinted with permission from [37])

to sample only within the corner of interest (although this makes calculating Emax

slightly more complicated because it is not always simply the maximum Ei at the

vertices). Tilting using node based values also differs from standard IMC algorithms

because there is no ambiguity about how to construct the emission field because the

temperatures are located at the vertices of a tetrahedron. The emission at any point

within a tetrahedron can be calculated using the barycentric coordinate system:

E(λ) =
d+1∑
i=1

λiEi =
d+1∑
i=1

λiσiT
4
i . (4.6)

Where Ti is the material temperature at vertex i and σi is the opacity at vertex i.

Equation (4.6) is equivalent to using linear finite element basis functions to repre-

sent the temperature, although only the DFEM IMC method explicitly treats the

temperature as being linear during transport.
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As an alternative to rejection sampling, each barycentric coordinate can be sam-

pled using conditional probability. In conditional probability, the first barycentric

coordinate is sampled from a PDF formed from Eq. (4.6) and subsequent barycentric

coordinates depend on the previous sampled results. The CDF for each barycentric

coordinate using conditional probability is:

ξ1 =
1

E1

24
+ E2

24
+ E3

24
+ E4

24

(
λ4

1

(
E1

8
− E2

24
− E3

24
− E4

24

)
+ λ3

1

(
−E1

3
+
E2

6
+
E3

6
+
E4

6

)
+ λ2

1

(
E1

4
− E2

4
− E3

4
− E4

4

)
+ λ1

(
E2

6
+
E3

6
+
E4

6

))
,

(4.7)

ξ2 =
1

n2

(
λ3

2

(
−E2

3
+
E3

6
+
E4

6

)
+ λ2

2

(
−E1λ1

2
− E2λ1

2
+
E2

2
+
E3λ1

2
− E3

2
+
E4λ1

2
− E4

2

)
+ λ2

(
−E1λ

2
1 + E1λ1 +

E3λ
2
1

2
− E3λ1 +

E3

2
+
E4λ

2
1

2
− E4λ1 +

E4

2

))
,

(4.8)

ξ3 =
λ2

3

(
E3

2
− E4

2

)
+ λ3 (E1λ1 + E2λ2 − E4λ1 − E4λ2 + E4)(

E3

2
− E4

2

)
(−λ1 − λ2 + 1)2 + (−λ1 − λ2 + 1) (E1λ1 + E2λ2 − E4λ1 − E4λ2 + E4)

.

(4.9)

Where ξ1, ξ2 and ξ3 are uniform random variables where ξi ∈ (0, 1) and n2 is the

norm for Eq. (4.8):
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(4.10)

λ4 is determined by λ1, λ2, and λ3:

λ4 = 1− λ1 − λ2 − λ3 (4.11)

These equations only require three random numbers to sample from a linear

equation on a tetrahedron but Eq. (4.7) requires inverting a fourth order polynomial

and Eq. (4.8) requires inverting a third order polynomial. These equations were

tested and the mean sampled position converges to the rejection sampling average

as the number of samples is increased. In the tested implementation, the rejection

sampling is about ten times faster than the conditional sampling method. These

results are not definitive: there may be a way to optimize the root finding method

to select the correct root without an expensive root solve.
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5. IMPLICIT CAPTURE WITH NON-CONSTANT OPACITY AND BASIS

FUNCTIONS

In the Monte Carlo method, a particle interacts with the background medium.

These interactions can be handled as discrete events or as continuous interactions.

Modeling the interaction as continuous is a type of absorption weighting, which is

a variance reduction technique [35]. Particle absorption is the most straightforward

event to treat continuously, this is called implicit capture. In the Implicit Monte

Carlo method, the end of time step event can also be treated as a continuous inter-

action [54]. For radiative transfer, the opacity is usually treated as being constant

within a mesh cell. In that case, implicit capture is simply the attenuation of the

particle’s energy-weight over its path:

w(s) = w0e
−σas. (5.1)

Where w is the energy-weight of the particle, w0 is the initial particle weight, σa

is the absorption opacity and s is the path length. A loss of energy-weight in the

particle corresponds to an increase in energy in the material. The absorbed energy

in the material is thus:

wabs(s) = w0

(
1− e−σas

)
. (5.2)

In the finite element IMC method, the absorption is projected onto a trial space.

If that space is linear, absorption is now weighted with a linear basis function. In

the material energy balance, the absorption term becomes:
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Eabsorbed =

∫
x

∞∫
0

∫
4π

N v(x)σI(x,Ω, ν) dΩ dν dx (5.3)

Where N v is a linear basis function and x is the spatial domain. The finite element

method also changes the implicit capture method—instead of a depositing energy in

to a single mesh cell as a particle streams, the absorbed energy is weighted by the

basis functions in the cell. In analog tracking, the absorbed energy can simply be

multiplied by the value of the shape functions at that point. With implicit capture,

the shape function is multiplied by the differential absorption and then integrated

over the path-length. The derivative of Eq. (5.2) with respect to the current path

length, s, is:

dwabs
ds

= w0σae
−σas. (5.4)

Eq. (5.4) is then multiplied by a linear basis function and integrated over the total

path length, d. This yields an expression for the energy absorption weighted by the

linear basis function:

w0

∫ d

0

N v(s)σae
−σasds = w0m

(
1

σa
− e−σad

(
1

σa
+ d

))
+ bw0

(
1− e−σad

)
. (5.5)

Where m and b are the slope and intercept of the basis function of node v along the

path length. The total amount of energy absorbed into the spatial cell is the same

for both Eq. (5.5) and Eq. (5.2). Because the total energy absorbed in the material

is the same, the particle’s energy can be updated simply with Eq. (5.1).
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5.1 Linear Opacity

In the DFEM IMC method and in discrete ordinates methods for thermal ra-

diative transfer the material temperature is treated as being piecewise linear. This

implies that the opacity is not constant within a mesh cell and should be projected

onto the same space as the temperature. If a linear opacity is used in the IMC

method, the differential absorption becomes:

dwabs
ds

= w0
dτ(s)

ds
e−τ = w0σa(s)e

−τ . (5.6)

Where τ , is the total optical depth for the linear opacity case:

τ =

s∫
0

σa(s
′)ds′ =

s∫
0

mσs
′ + σ0ds

′ (5.7)

Where σ0 is the opacity at s = 0 and mσ is the slope of the opacity along the particle

path. When combined with the linear basis function, the differential absorbed energy

for a node, v is:

dwv,abs
ds

= w0N
v(s)σa(s)e

−τ . (5.8)

Equation (5.8) is not analytically integrable and must be evaluated numerically.

Several techniques for evaluating this integral are presented. Gauss-Legendre and

Gauss-Labotto quadrature are examined. Unfortunately, quadrature rules for inte-

grals over the range of (0,∞), such as Gauss-Laguerre, are not useful for this integral

because the linear basis functions are zero outside the mesh cell and the linear opac-

ity functions can become negative outside the mesh cell. In addition to quadrature

rules, the integral can be evaluated by breaking up the path length and moving the

particle as if it there were some number of constant opacity sub-steps. This is done
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case σ0 mσ b m τ
1 1.0 10.0 1.0 0.0 1.0
2 1.0 10.0 1.0 -1.0 1.0
3 100.0 1000.0 1.0 -1.0 1.0
4 100.0 1000.0 0.0 1.0 10.0
5 100.0 1000.0 0.0 1.0 10.0
6 100.0 1000.0 1.0 -1.0 10.0
7 100.0 1000.0 0.0 1.0 20.0
8 100.0 1000.0 1.0 -1.0 20.0

Table 5.1: Parameters of a the absorption function to be integrated numerically

by assuming the opacity and shape function are constant within a sub-step and eval-

uating both properties at the mid-point of the sub-step. We call this integration

method discrete tracking. Equation (5.5) can be used to treat the shape function as

linear while assuming the opacity is constant over a sub-step, we call this method

shape integral tracking.

5.2 Results

The quadrature rules and particle tracking methods are compared for several

cases shown in Table (5.1). The cases represent circumstances that would likely

be encountered during IMC simulations—thick and thin opacities that vary rapidly

within a cell and the basis function varying drastically along a path length. The

first case tests the ability of the integration method without basis functions. The

second case tests relatively thin opacity. The subsequent cases test thick opacity

cases, where the particle weight changes rapidly over the path length. Each method

is compared to the result from a midpoint-rule numerical integration with 106 points.

The results are shown in Figs. (5.1) to (5.8).

The particle tracking methods are exact for case 1, when the basis function is

held constant. The Gauss-Legendre quadrature is effective at integrating cases 1-4
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Figure 5.1: Absorption integral for case 1 with various numerical integration methods

where the optical depth, τ , is one. Case 7 proves to be the most difficult—in this

case the particle travels a large number of mean free paths in the material and the

linear basis function starts at 0.0 and increases to about 0.12. Using four integration

points with the Gauss-Legendre method yields the lowest error compared to the other

methods for all but case 8. In the majority of cases, using four points produces less

than 0.1% relative error in the solution. Thus Gauss-Legendre with four integration

points was used to compute the implicit capture integral in the DFEM IMC method.

For the test problems studied in this work, a particle traveling more than ten mean

free paths is unlikely because of effective scattering and the Gauss-Legendre method

will be sufficient.

Evaluating the implicit capture term with a quadrature rule is a potential target

for vectorization. It is difficult to find vectorizable operations in the IMC particle

loop because adjacent particle histories quickly diverge and require different data or

103



100 101 102

Integration Points

10-14

10-13

10-12

10-11

10-10

10-9

10-8

10-7

10-6

10-5

10-4

10-3

10-2

10-1

R
e
la

ti
v
e
 E

rr
o
r

Gauss-Legendere Quadrature

Gauss-Labotto Quadrature

Discrete Tracking

Shape Integral Tracking

Figure 5.2: Absorption integral for case 2 with various numerical integration methods

have different interactions. Evaluating the implicit capture term in a DFEM IMC

method with Gaussian quadrature is two nested loops: the outer loop is over test

functions in the cell and the inner loop is over the integration points. If these loops

could be fused or if more integration points were used, it may be large enough to

benefit from vectorization.
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Figure 5.3: Absorption integral for case 3 with various numerical integration methods
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Figure 5.4: Absorption integral for case 4 with various numerical integration methods
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Figure 5.5: Absorption integral for case 5 with various numerical integration methods
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Figure 5.6: Absorption integral for case 6 with various numerical integration methods
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Figure 5.7: Absorption integral for case 7 with various numerical integration methods
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Figure 5.8: Absorption integral for case 8 with various numerical integration methods
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6. SERIAL AND PARALLEL PERFORMANCE

6.1 The High Performance Computing Landscape

The technology of supercomputers has changed drastically over the past 50 years

and continues to change [27]. Previously, gains in performance were achieved by

placing more transistors on a processor. Because the power dissipation of a CPU

is proportional to the cube of the clock speed, the trend of simply placing more

transistors on a chip became impractical. To obtain gains in performance without

significantly increasing power consumption, multiple linked processors with lower

clock speeds are placed together on a processor. This approach is known as multi-

core. Multicore machines still form most of the top supercomputers in the world. The

newest supercomputers, including the Tianhe supercomputer in China [28] and the

impending Trinity supercomputer at Los Alamos National Laboratory [29] use what

is known as manycore architectures. In manycore systems, the multicore approach

is extended further to tens to hundreds of low-clock-speed cores. This increases the

power efficiency of the system, but more cores means that applications must be able

to parallelize computational work effectively. In the multicore era, the spatial domain

was usually decomposed so that each individual core was given a spatial subdomain

to do work on. When the solution at the boundary 1 of the subdomain is required,

these processors would communicate with adjacent processors. In manycore systems

this strategy for parallelism is inefficient—the surface to volume ratio of each subdo-

main becomes large as the number of cores is increased and the amount of memory

required to store boundary cells becomes significant. One solution to this approach

is to use multiple parallel processes within a subdomain. This can be accomplished

1The boundary of a subdomain is often called a halo, because it looks like a ring in 2D
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with a variety of different software tools used together or individually. The newer

manycore architectures also have multiple instruction pipelines on a core, which al-

lows for threading. Threading can potentially allow the arithmetic processing unit

on a CPU to be used more effectively. Manycore machines also have wider vector

registers, which allow a single instruction to performed on multiple data simulta-

neously. Making use of these wider vector registers is called vectorization. To use

the full resources of a manycore system, an application must be able to effectively

parallelize computational work, make use of threads and vectorization.

6.2 Requriements for High Energy Density Physics Simulations

In High Energy Density Physics problems, there are certain phenomena that

require 3D modeling—this is especially true in ICF problems, where mixing, insta-

bilities and turbulence are represented poorly by 1D and 2D models [19]. In 3D, the

memory required to store a discrete mesh with multiple unknowns and physical data

per cell grows quickly. For example, if each dimension has 10000 discrete points,

then the amount of memory required to store pressure, density, temperature, energy

and 30 opacity values in each cell is:

100003 cells× 34
double values

cell
× 8

bytes

double value
= 2.72× 1014 bytes.

This is about 20% of the total 1,572,864 GB of memory available on the Sequoia su-

percomputer at Lawrence Livermore National Laboratory, this corresponds to about

270,000 cores. In addition to the memory requirements, the amount of computa-

tional work is also dependent on the number of mesh cells—physics algorithms solve

a discrete system of equations to determine the values of the unknowns for each mesh

cell.
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Many physics equations involve spatial gradients of the solution. When these

equations are discretized these spatial gradients introduce a dependence of the un-

known values in one cell on the unknowns in adjacent cells. This means that when

the mesh is decomposed on to subdomains, the solution on one sub-domain is depen-

dent on the data in adjacent subdomains. In IMC this coupling between sub-domains

comes from particles that are emitted in one sub-domain that deposit energy in other

sub-domains. This dependence on the data in adjacent sub-domains means that sub-

domains must communicate with each other in order to solve discrete physics equa-

tions. If the cost of this communication were negligible, the time to run a simulation

with 1000 mesh cells on one core would be the same as the time to run 1.0 × 109

mesh cells on one million cores. In reality, the communication cost is non-negligible.

Scaling describes an algorithm’s ability to run in parallel effectively. Weak scaling

describes how well an algorithm runs on larger problems and strong scaling describes

how well an algorithm runs the same amount of computational work on more parallel

processes.

6.3 Monte Carlo, IMC and Scaling

A critical assumption of neutral particle transport in the Boltzmann equation is

that particles do not interact with each other. This means that each Monte Carlo

particle history can be carried out independently, which makes a parallel implemen-

tation of the Monte Carlo method relatively simple. Because particle histories are

independent, Monte Carlo is often referred to as being “embarrassingly parallel.” In

reality, Monte Carlo is only embarrassingly parallel when the mesh information and

physical data are small enough to be stored locally on each parallel process. That

model, called domain replication is simple to implement: the only parallel commu-

nication is a reduction operation at the end of a simulation step, as illustrated in
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Fig. (6.1). If the mesh data and physical data are larger than the memory of a single

parallel process (which is common for HEDP problems, as described above), the mesh

and physical data must be decomposed and assigned to parallel processes. This case

is called domain decomposed. As HPC architectures trend toward more cores and

threads, the available memory per core and thread decreases and the use of domain

replication becomes less feasible for most problems of interest. Therefore, domain

decomposition is the standard procedure for multiphysics problems and Monte Carlo

transport.

 parallel
reduction

Figure 6.1: A mesh replicated on three parallel processes—simulation data from each
rank is reduced to one rank

To evaluate the performance of a domain decomposed IMC algorithm we need to

understand the computational requirements of the IMC method. The IMC method

must perform well in the optically thick and optically thin regimes. Fig. (6.2) shows

particle histories originating from a single cell on a 2D mesh in both the optically

thick and thin regimes respectively. In the optically thick case, shown in Fig. (6.2a),

each particle has many interactions but stays very close to its birth place. Many

interactions are expensive—at each point a distance to boundary, scatter and end of
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timestep must be calculated. The DDMC method of Cleveland, Densmore and Gen-

tile aids in reducing the computational work in processing these particles. Although

the DDMC method is not considered in this work, it could improve load balancing

because it means that particles in optically thick regions will not take significantly

longer than thin particles. In the thin limit, shown in Fig. (6.2b), particles generally

move far from their origin cell but have relatively few scattering interactions. The

geometric data, opacity data and energy and momentum tallies are required at each

cell and are not reused once the particle leaves the cell. This means that particles

in optically thin regions will load much more data from memory than thick parti-

cles. Because particle histories are determined with random numbers, subsequent

particles are not likely to reuse data loaded from memory by the previous particle,

which could lead to poor cache usage. A parallel algorithm for IMC also must work

well in the thick and thin limit. In the thick case that means that an algorithm

must be able to handle many particle crossings between sub-domains. In the thin

limit, an algorithm must be able to account for particles penetrating far into other

sub-domains.

6.4 On-Node Algorithms

The simplest method of domain decomposition is to implement an algorithm

where cores or threads share access to local memory. In this work, we examine

shared memory systems known as a compute nodes.

A compute node is a grouping of cores and threads that all share access to some

amount of memory. In HPC machines, multiple compute nodes are networked to-

gether. The time for a core or node to access memory on its local compute node

is much faster than accessing memory on another compute node in the network,

which generally requires additional communication protocols. Algorithms can take
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Figure 6.2: Comparison of particle histories in thin and thick regions

advantage of the close proximity to memory on a compute node by reworking parallel

algorithms and assuming that on-node access is very inexpensive. There is a often a

memory hierarchy on compute nodes: within a compute node there are non-uniform

memory access (NUMA) nodes. On a compute nodes, some subset of the cores will

be closer (and thus have faster access) to a subset of the total system memory. Mem-

ory access between NUMA nodes is relatively slower than access to memory within

a NUMA node but much faster than memory access off of a compute node.

To optimize parallel performance on a compute node, an algorithm must take into

account NUMA. This can be done by ensuring that cores or threads on a NUMA

node do work on memory that is on their NUMA node whenever possible. Memory

that is allocated by a thread or core is close to the NUMA node of that thread or

core. This is the principle of first touch.

To have the advantages of first touch in an IMC algorithm, each thread or core

needs to allocate the data for particles that it will transport. This means that the
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particle data is as close as possible to the thread that will use it. An IMC algorithm

using the OpenMP threading library was implemented with a simple Cartesian mesh.

In this implementation, threads make and transport the particles for a group of cells.

The purpose of giving cells to threads instead of a group of particles is because the

thread working on a group of cells will allocate the memory for those particles. If

instead the thread was given a group of particles from an already allocated array

it would be difficult to ensure that those particle were close to the thread in the

memory hierarchy.

Two additional challenges in implementing a shared memory parallel algorithm

arise because memory is shared between threads on a compute node. The first

challenge is race conditions: the programmer must ensure that a memory location

cannot be accessed while a thread is writing to that location. For example, if a

thread tries to increment an integer at a memory location, it first reads the integer

value from memory, adds one to it, then writes it back. If a second thread reads

the memory location before the first thread is finished writing, the second thread

will have read the incorrect value of the memory location. If the second thread

increments the value and writes it back to memory the first threads actions will have

been nullified. Race conditions can be avoided by locking a memory location when

a thread wants to write it—this forces other treads attempts to access the memory

location to wait until the memory location is unlocked. Another solution is to have

each thread make a copy of the memory location and perform a reduction after the

parallel loop is finished. This adds memory overhead but avoids the waiting involved

in locking a memory location. In the IMC on-node memory algorithm, the absorbed

energy array is where race conditions can occur—because particles owned by threads

can travel to any cell on a mesh, multiple threads may try to update the amount

of absorbed energy in the same cell. The amount of memory needed to replicate
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the absorbed energy array for each thread (an array of doubles of size N , where N

is the number of mesh cells) is generally much smaller than the amount of memory

required by the IMC particles, so we use the replicated array strategy to avoid race

conditions.

The on-node parallel IMC algorithm can be described in five steps:

1. A thread is assigned a group of cells by using OpenMP loop over cells on the

mesh.

2. This thread creates and transports particles representing the energy in the cells

that it was assigned. Each thread keeps a copy of the absorbed energy array

to avoid race conditions when writing to the absorbed energy array.

3. After the loop over cells has been completed, a reduction is performed on the

absorbed energy array and the temperature is updated

4. The list of census particles is sorted in parallel by cell index. This is done so

that a thread assigned a cell can easily simulate the census particles belonging

to that cell on the next timestep.

5. The timestep is advanced and step 1 begins again.

This algorithm was tested in weak and strong scaling on the Intel Xeon Phi and

Intel Knights Corner (KNC-MIC). The results for an infinite medium problem are

shown in Figs. (6.3) to (6.4). The Intel Knight’s Corner has 60 cores with 4 hardware

threads each for a total of 240 parallel processes. The Xeon Phi has 32 cores and 2

software threads per core, for a total of 64 parallel processes. The algorithm scales

well on both architectures when the number of threads is less than or equal to the

number of cores. The possible effect of NUMA nodes can be seen with the decrease
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in weak scaling efficiency on the Xeon-Phi, where eight cores comprise a NUMA

node. The efficiency drops from 97.5% on 8 cores to 93% on 16 cores. The efficiency

continues to drop to 83% on 32 cores, when all NUMA nodes are being used. The

algorithm scales well on the MIC, but the absolute runtimes are longer for the same

number of cores on the Xeon Phi. The cores are less powerful on the KNC-MIC, but

the algorithm could be faster if it attempted to use the longer vector registers on

the KNC-MIC. Currently, there is no work on modifying IMC for vectorization but

it could follow the event based Monte Carlo approach of Brown and Martin [4].

A brief discussion on the particulars of threading helps explain what appears

to be very poor scaling on the KNC-MIC above 60 cores. Modern processors use

simultaneous multithreading, which allows the instruction pipeline to be more fully

utilized. This is accomplished by having multiple hardware threads per processor

core. These hardware threads can independently issue instructions to be executed by

shared CPU resources. In the results shown in Fig. (6.3), the scaling results above

60 threads are using multiple threads per core. Although the scaling drastically

decreases as multiple threads per core are used, the amount of power required to

run in this mode does not significantly increase. To run with 60 cores and four

hardware threads per core uses about the same amount of power as 60 cores with

1 hardware thread per core. We assume that the power requirement with all cores

active is twice the thermal designed power (TDP). If a smaller number of cores are

used, the power use is assumed proportional to the number of active cores relative

to the total TDP. The TDP for the Intel Knight’s Corner used in this study is 225

W. Figure (6.5), a second weak scaling plot, shows the weak scaling when each core

is run with 4 hardware threads. In this case the scaling at 60 cores (for a total of

OpenMP 240 threads) is about 0.77. Comparing runtimes where 4 cores are used

with one hardware thread to the runtime of 1 core with 4 hardware threads shows the
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benefit of hardware threads: 4 cores with one hardware thread each takes 66 seconds

and uses about 1950 joules. The same problem run with 1 core and four hardware

threads takes 121 seconds and 907 joules. If two cores with four hardware threads are

used for the same amount of work as the previous case, the runtime is 60.8 seconds

and 912 joules of energy are used. Thus, for less than half the energy requirement

the same amount of computational work can be performed when threading is used.

An efficient on-node algorithm could be beneficial in the context of a multi-node

domain decomposed IMC algorithm. Currently, domain decomposed algorithms do

not utilize the shared memory within a compute node. Treating one compute node

as a spatial sub-domain would reduce the surface to volume ratio, which would mean

less particles moving off of the sub-domain and incurring parallel communication.

6.5 Multiple Node Domain Decomposed Algorithms

If the domain is too large to fit on one compute node, the mesh must be decom-

posed across compute nodes. The current IMC algorithm for a decomposed mesh is

to pass particle between sub-domains during a timestep. A sub-domain must also

receive particles from other sub-domains. An illustration of this method is shown

in Fig. (6.6), where the arrows represent particles moving between sub-domains and

thus incurring parallel communication. A method for minimizing the time spent in

communication in the particle passing method is examined by Brunner et al [7]. This

method finds an optimal frequency to check for incoming particles and an optimal

buffer size for passing particles to other sub-domains.

A drawback of this approach is that it must be done very carefully to avoid load

imbalance—even if the number of particles is the same on each processor, a domain

boundary in a diffusive region will result in poor scaling as scattering particles are

passed back and forth between processors. The issue of load imbalance becomes
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Figure 6.3: Weak scaling in the infinite medium problem with 10 timesteps

more difficult as the number of subdomains increases.

In this work a method is studied where the mesh is decomposed but the parti-

cles are not necessarily decomposed in the same way as the mesh. The crux of this

method is that particles are not passed between parallel processes. Each processor is

given some amount of particles and then requests spatial information as it is needed

by the particles. This spatial information may or may not belong to the processor

that is transporting the particles. If it does not belong to the mesh, a parallel com-
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Figure 6.4: Strong scaling in the infinite medium problem with 10 timesteps

munication is incurred. We called this approach particle-based domain decomposition

as opposed to the current approach which we call particle-passing domain decompo-

sition. This method is illustrated in Fig. (6.7)—particles owned by one processor

are using mesh owned by another processor. The particle-based method removes

the pitfall present in the particle-passing method where particles in diffusive regions

can simply scatter between spatial subdomains. In the particle-based method, the

particle can scatter back and forth between local and non-local data and if that non-

local data is stored locally after it is requested, scattering no longer incurs parallel
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communication. To achieve the same goal of reducing communication due to scat-

tering particles, the Monte Carlo reactor physics code SHIFT at Oakridge National

Laboratory defines some number of mesh cells from the sub-domain boundary that

a parallel process also stores in local memory, but does not own [55][48]. This is

equivalent to having a larger layer of ghost cells. This method is not pursued here

as a way to reduce the communication cost of scattering particles because the end

goal of the particle-based method is to reduce load imbalance by having the abil-
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(a) Domain decomposition and particle-
passing with two sub-domains

(b) Domain decomposition and particle-
passing with five sub-domains

Figure 6.6: Examples of a decomposed domain and particles moving between sub-
domains

ity to partition particles equally between parallel processes. If this could be done

effectively, hot regions in a problem could easily be load balanced. In the current

domain-decomposed method, hot regions of the problem have a large share of the

work and put a communication strain on the system. The solution to this problem

in the domain-decomposed method is to replicate domains that have a large amount

of work. This, however, does not solve the problem of particles scattering back and

forth between domain boundaries. This is made worse by the fact that effective

scattering is higher in hot regions of the problem.

An additional detail of parallel algorithms for IMC is how to handle the census

particles. One downside of the particle-passing method is that the census particles

usually need to be rebalanced after a timestep. For the infinite medium cases studied

here, census particles that are not on the local mesh are sent to the parallel process
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(a) Example of particle-based method with
two sub-domains

(b) Example of particle-based method with
five sub-domains

Figure 6.7: Examples of a particle-based domain decomposed method with two sub-
domains and five sub-domains

that does own the mesh. In the simple particle-passing method all particles are

always on the processor that has their mesh data locally.

Two implementations of the particle-based decomposition are explored. In the

first implementation, which we call the window method, a parallel process sets up its

mesh data so that other processors can read that data during a timestep. This mem-

ory access is read-only but the speed of this operation is dependent on the machine

architecture and the parallel library implementation. In the second implementation,

non-blocking messages are used to interleave parallel communication and work, we

call this method the non-blocking method.

6.5.1 The Window Method Implementation

In the window method, we use MPI windows to provide global access to the mesh

data. After the timestep, a reduction is performed where a parallel process sends
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absorbed energy in cells that it does not own back to the processes that do own that

mesh.

The particle-based decomposition relies on Remote Memory Access (RMA) oper-

ations to load mesh data that is needed by particles. RMA operations are the main

parallel communication in the particle-based decomposition.

Avoiding unnecessary RMA operations provides the same benefit as queuing par-

ticle passing events and particle receiving events in the particle-passing method—

both serve to reduce parallel communication. In the simplest case, each time a

particle moves into an element that is not on the parallel process it requests the

mesh data with an RMA operation.

The first improvement is to use a “working mesh” that stores mesh data that has

recently been loaded with an RMA operation. Now when a particle needs mesh data

that is not local, it first checks the working mesh to see if this data has already been

loaded. The working mesh cannot be arbitrarily large as that would limit the size of

the mesh on the parallel process and thus defeat the goal of domain decomposition.

Instead, the working mesh must be a limited size. Ideally, the working mesh should

keep data that is accessed often and when the working mesh is full and evict data

that is used rarely. This behavior is essentially like the desired behavior of cache

memory used in modern computers.

6.5.2 The Non-Blocking Method Implementation

The non-blocking method is implemented by adding an additional step in the

particle transport loop where a parallel process requests data that it needs and checks

to see if requested data has been received. This processing of parallel communication

can be set with some user defined frequency—if the problem is dominated by optically

thin behavior, particles will make many requests for data that is not owned by
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their parallel process and the frequency to process parallel communication should be

higher. In the optically thick case, particles are less likely to stream far from the

local memory and the parallel communication can be less frequent. Particles that

are waiting on data are placed on a waiting list, which is implemented as a first

in, first out queue. When new data is received from a parallel communication the

particles in the waiting list are simulated—if they complete their history they are

removed, otherwise they are added to the back of the waiting list. The non-blocking

method also uses a working mesh to store mesh data that has been requested by

other processors.

The non-blocking method is potentially much better than the window method

because it can effectively interleave parallel communication and work—while some

particles are waiting for mesh data to be received, particles that only need local

data are being simulated. In the window method, the whole simulation waits for the

RMA access to complete before continuing. The main impetus for trying the window

method is because there are network architectures that support RMA operations

which require very low overhead from the operating system. These high efficiency

operations are called direct remote memory access (DRMA). Modern interconnects

such as InfiniBand support these DRMA operations[43] and DRMA operations have

been studied as a means of doing collective parallel operations [26].

6.5.3 Domain Decomposed Algorithms Results

The particle-based method was implemented using a simple Cartesian mesh. MPI

was used for message passing and creating the shared memory windows. The METIS

library [32] from The University of Minnesota was used to decompose the mesh with

the Recursive Coordinate Bisection method.

The particle-based decomposition is examined for optically thick and thin cases
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in an infinite medium problem. The results are shown for one time step and for

multiple timesteps. The case for one timestep isolates the effect of RMA operations

on scaling since there is no need for census rebalancing. Multiple timesteps show the

influence of census rebalancing on scaling and the influence of transport the census

particles that accumulate from timestep to timestep. To truly test the weak scaling

behavior of the algorithms, the number of cells per rank is kept constant.

The particle-based parallel method is compared to the standard particle-passing

method for an optically thick problem. The first case is shown in Table (6.1). In this

case, particles can travel a total of 3.0 cm in a timestep, or three mesh cell widths.

The mean free path between scattering interactions is about 0.012 cm. In this case,

sub-domain boundary crossings are common for particles born on the edge of the

sub-domain but particles will not penetrate deep into other sub-domains because of

the timestep size. The weak scaling results for this case with one timestep are shown

in Fig. (6.8a) and for all ten timesteps in Fig. (6.8b). The total number of RMA

operations per rank are shown in Fig. (6.9). For this case, the weak efficiency for one

timestep is about 88% at 256 cores with the non-blocking implementation and about

50% with the window implementation. When the problem is run for ten timesteps

the weak scaling of the non-blocking implementation is not affected—the weak scal-

ing at 256 cores is still about 88%. The scaling of the window implementation is

reduced to about 40% when multiple timesteps are used. Both implementations use

the same method for rebalancing the census photons. The fact that the particle re-

balancing does not impact the scaling of the non-blocking implementation suggests

that this is not the cause of the decrease in scaling efficiency present in the window

implementation. Multiple timesteps does increase the number of particles simulated

per timestep (no population control on the particles is used in this scaling study).

The decrease in weak scaling efficiency suggests that the window implementation
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does not scale well with an increased number of particles per core, likely due to the

blocking nature of its parallel communication. When comparing the RMA operations

graphs, it is important to note that the non-blocking implementation is not making

remote memory requests to a memory window instead we use “RMA operation” to

mean “request for a remote piece of data.” In both implementations an RMA op-

eration is incurred when a particle requires data that is not available or is not in

the process of being requested. In Fig. (6.9) the non-blocking implementation makes

more requests for remote memory than the window implementation. This difference

is likely due to mesh partitioning and in this case, the increased number of RMA

operations does not affect the performance of non-blocking implementation relative

to the window implementation. The size of the working mesh, which is implemented

as a map data type, does not affect the scaling results for this case. This is because

the total number of RMA operations per core is less than the size of the working

mesh (for each working mesh size used: 5000, 10000 and 50000). Unfortunately, The

working mesh cannot be used for multiple timesteps. This is because the opacity

and Fleck factor will change after the temperature of a remote cell is updated by its

remote host at the end of the timestep. This means that the copy of the cell data

that is stored in the working mesh is no longer valid.

The flat weak scaling beyond 8 cores for the non-blocking implementation and

beyond 8 cores in the window implementation show that there is some initial cost in

the parallel overhead but that cost does not significantly increase as the number of

processors is increased to 256.

A second case with physical scattering and a lower absorption opacity emphasizes

scattering and streaming behavior, the parameters are shown in Table (6.2). For this

case, the mean free path between scattering events is longer (about 0.08 cm) and we

thus expect the photon to be able to travel farther from local memory. The weak
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Parameter Value
particles/rank = 2.0× 106

∆t = 0.1 ns
t = 1.0 ns

cells/rank = 253

∆x,∆y,∆z = 1.0 cm
σa = 100.0 cm−1

f = 0.1955
fσa = 19.5 cm−1

(1− f)σa = 80.44 cm−1

σs = 0.0 cm−1

cv = 1.0 jk
g keV

Tm,0 = 1.0 keV
Tr,0 = 1.0 keV

Table 6.1: Parameters of first case: a thick test problem with no physical scattering

scaling results for this case are shown in Fig. (6.10a) and Fig. (6.10b). The RMA

operations are shown in Fig. (6.11). The weak scaling results are very similar to

those for the first case for the two larger working mesh sizes. The smallest working

mesh size of 5000 cells is now less than the total number of RMA operations per

core in the non-blocking method. Managing memory and evicting data from the

working mesh causes the weak scaling efficiency to decrease to about 43% at 256

processors. The window method never reaches the point where the number of more

RMA operations are larger than the size of the working mesh and its scaling is not

affected. The same affect on scaling is seen when multiple timesteps are used, only

the decrease is seen at a smaller number of cores. This is most likely due to the

additional census photons being transported—these photons will travel farther in a

timestep (they start at t = tn, forming the initial radiation conditions). In this test

IMC code, the census photons are not sorted by cell and grouped with the emission

photons from the same cell. This means that memory requested by the emission
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Parameter Value
particles/rank = 2.0× 106

∆t = 0.1 ns
t = 1.0 ns

cells/rank = 253

∆x,∆y,∆z = 1.0 cm
σa = 10.0 cm−1

f = 0.7085
fσa = 7.085 cm−1

(1− f)σa = 2.915 cm−1

σs = 10.0 cm−1

cv = 1.0 jk
g keV

Tm,0 = 1.0 keV
Tr,0 = 1.0 keV

Table 6.2: Parameters for the second case: a thick test problem with physical scat-
tering

particles in a cell is less likely to be present when it is needed by the census photons

from that same cell. This emphasizes the importance of sorting the census photons

and grouping particles that are likely to have similar histories together.

The differences between the weak scaling results for one timestep and ten timesteps

are more pronounced in the second case. Because the mean free path between scat-

tering events is longer, a particle is more likely to end its history on a non-local

mesh cell, meaning there is more particles that are passed in the rebalance step.

This problem also takes less overall runtime because there is less overall scattering,

meaning that the census particle rebalance takes more time relative to the particle

transport.

For the thin case, the same mesh is used as the previous cases but the timestep

size is increased and the absorption opacity is decreased, as shown in Table (6.3).

Now particles can travel a distance of 10 cell widths within a timestep and have

a mean free path of about 8.0 cm between scattering interactions. In this case we
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expect more RMA operations and worse weak scaling efficiency relative to the the

particle-decomposed method. The weak scaling results for the thin case are shown

in Fig. (6.12a) and Fig. (6.12b). The RMA operations are shown in Fig. (6.16). The

results show that weak scaling is significantly improved by having a large enough

working mesh to store non-local mesh. The non-blocking method is especially sensi-

tive to the size of the working mesh in the optically thin regime—unless the largest

mesh size is used, the weak scaling immediately degrades to below 10% efficiency.

The window method is not impacted as severely, although the weak scaling is poor

compared to particle passing method. The ability of the window implementation to

finish the simulation in a reasonable time is likely because particle histories are forced

to wait for data and are thus allowed to complete their history. In the non-blocking

implementation, all particles waiting for data are moved until they need data again.

If the number of particles waiting is large enough they may be waiting on more data

than the size of the working mesh. This causes these particles to request the same

data over and over again until other particles finish their histories.

As expected, both implementations of the particle-based method are inferior to

the particle passing method as the problem becomes more optically thin. Both imple-

mentations of the particle-based method could be improved by requesting addition

mesh at a given time. Both implementations are operating in regime that is straining

the latency of the network—this is especially true of the window implementation be-

cause it requests one mesh cell at a time. If the neighbors of a cell were also delivered

by a remote host, a particle could potentially move further before requesting data

again.
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Parameter Value
particles/rank = 2.0× 106

∆t = 0.33 ns
t = 3.33 ns

cells/rank = 253

∆x,∆y,∆z = 1.0 cm
f = 0.879
fσa = 0.879 cm−1

(1− f)σa = 0.121 cm−1

σs = 0.0 cm−1

cv = 1.0 jk
g keV

Tm,0 = 1.0 keV
Tr,0 = 1.0 keV

Table 6.3: Parameters of the thin test problem with no physical scattering

6.5.4 Stratified Sampling

In thin cases, a single particle can stream through many mesh cells. If this

occurs off of the memory owned by the parallel process, it will incur many RMA

operations. This is made worse by the fact the next particle could stream through

entirely different mesh cells, which would incur more RMA operations and possible

evict memory that could be used by the next particle. In an ideal situation, memory

use would be synchronized such that a group of particles would use the same memory

during a timestep. Because Monte Carlo uses random numbers to determine particle

histories, grouping particles that will have the same interactions is difficult. One way

to improve memory access patterns is stratified sampling. In stratified sampling, the

phase space is divided into a number of discrete bins and then samples are taken from

within those bins. Stratified sampling reduces variance because samples are more

uniform. To achieve the largest reduction in variance, the number of bins should be

equal to the number of samples. An example of Monte Carlo numerical integration

with and without stratified sampling is shown in Fig. (6.14). In this simple example,
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(a) Weak scaling in the infinite medium problem with 1 timestep
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Figure 6.8: Weak scaling for the optically thick infinite medium problem for various
sizes of working mesh
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Figure 6.9: Total RMA operations per rank for the optically think infinite medium
problem

132



100 101 102

cores

0.0

0.2

0.4

0.6

0.8

1.0
w

e
a
k 

e
ff

ic
ie

n
cy

DD Jayenne

Non-Blocking

Window

Mapsize=5000

Mapsize=10000

Mapsize=50000

(a) Weak scaling in the infinite medium problem with 1 timestep

100 101 102

cores

0.0

0.2

0.4

0.6

0.8

1.0

w
e
a
k 

e
ff

ic
ie

n
cy

DD Jayenne

Non-Blocking

Window

Mapsize=5000

Mapsize=10000

Mapsize=50000

(b) Weak scaling in the infinite medium problem with 10 timesteps

Figure 6.10: Weak scaling results with various working mesh sizes for the optically
thick infinite medium problem with physical scattering
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Figure 6.11: Total RMA operations per rank for the optically thick infinite medium
problem with physical scattering
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Figure 6.12: Weak scaling results with various working mesh sizes for the optically
thin infinite medium problem
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Figure 6.13: Total RMA operations per rank for the optically thin infinite medium
problem
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the error in the integral is reduced by a factor of about 50 by using stratified sampling

with 100 strata.

Using stratified sampling to reduce variance in IMC was suggested by Long and

McClarren [36]. The reduction in variance is not the main benefit that stratified

sampling can provide to the particle-based domain decomposition method—instead

stratified sampling can be used to ensure that consecutive particles in memory will

have roughly the same history. To obtain this benefit from stratified sampling, the

angle of an emission particle is stratified by octant. The case of particle angle with

and without stratified sampling is shown in Fig. (6.15). In Fig. (6.15b), particles P2

and P3 are likely to access the same mesh data, especially if the region is optically

thin.

As an example, there are 32 particles to represent the emission energy in a cell.

The first 4 particles will be sampled from the first octant (θ ⊂ [0, π/2], φ ⊂ [0, π/2]),

the second four particles from the second octant and so on. Now particles that are

adjacent in memory are much more likely to use the same mesh data.

Stratified sampling is likely to provide the most benefit when the problem is

optically thin and the working mesh size is small. To test the effects of stratified

sampling, the thin case in Table (6.3) was run. The results are shown in Fig. (6.16a).

The RMA operations are shown in Fig. (6.16b). Currently, stratified sampling does

not have a significant effect on the weak scaling for the window implementation.

This is likely due to the fact that particles within a cell are not likely to evict mesh

memory that is needed by other particles in that cell. If the working mesh size

were very small, which is not advised based on the results above, stratified sampling

could have a larger effect on runtime. For the non-blocking implementation, stratified

sampling reduces the runtime for the case of 16 processors with a working mesh size of

10000 from 586 seconds to 450 seconds. This case still takes much longer to run than

137



the 50000 working mesh size case but it does show that stratified sampling can have

a positive on the runtime. The benefit is seen in the non-blocking implementation

because it appears to be sensitive to the case where are large number of particles are

waiting on disparate data.

A variant of stratified sampling would be to group all of the particles on a pro-

cessor that have a direction in the same octant and organize them to be adjacent in

memory. Sorting particles could be expensive but if the RMA operations are truly

the limit on scaling and performance it could be an advantageous trade off.

6.6 Discussion

Both the on-node and domain-decomposed algorithms in this chapter show promise

as a means to improve the performance of IMC on large, non-uniform HEDP prob-

lems. The particle-based method performs well on optically thick problems compared

to the particle-passing method. Multiple methods were suggested as a means to im-

prove the scaling in the optically thin regime, but as an aside, the performance in

the thick regime could arguably be considered more important. The reasoning be-

hind this is that most work is performed in energetic regions of the problem, which

are optically thick and highly scattering. The portions of the problem that are very

optically thin should have a lower mesh resolution away from interfaces because the

solution will not significantly change in those areas. The on-node algorithms could

be paired with domain decomposed algorithms to increase the size of the local do-

main, reducing the surface area to volume ratio and possibly reducing overall parallel

communication.

The main challenge of the particle-based method is developing a load-balancing

algorithm that scales well to a large number of processors. The challenge for on-node

parallel methods is to utilize the vector registers of modern HPC machines.
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Figure 6.14: Monte Carlo integration of the function f = cos(x) with 100 points
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139



P1

P2

P3

P4

P5

P6

P7 P8

P9

(a) Random angle samples for nine particles that are
adjacent in memory

P1 P2 P3

P4 P5

P6

P7 P8 P9

(b) Stratified azimuthal angle samples for nine parti-
cles that are adjacent in memory

Figure 6.15: Comparison of particle angles with and without stratified sampling

140



100 101 102

cores

0.0

0.2

0.4

0.6

0.8

1.0

w
e
a
k 

e
ff

ic
ie

n
cy

DD Jayenne

Non-Blocking

Non-Blocking Stratified

Window

Window Stratified

Mapsize=5000

Mapsize=10000

Mapsize=50000

(a) Weak scaling in the infinite medium problem with 1 timestep for the thin case with
stratified sampling

101 102

cores

104

105

106

107

R
M

A
 o

e
p
ra

ti
o
n
s/

co
re

Non-Blocking

Non-Blocking Stratified

Window

Window Stratified

Mapsize=5000

Mapsize=10000

Mapsize=50000

(b) Total RMA operations per rank for various working mesh size with one timestep
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7. CONCLUSIONS AND FUTURE WORK

7.1 IMC in the CHICOMA Hydro Code

IMC was adapted to work with node-based unknowns on unstructured tetrahedral

meshes. Adapting the IMC algorithm to this context was done by avoiding the

cost of tracking and sampling on the complicated dual mesh geometry. Using a

3D, unstructured tetrahedral mesh yields two problems: the first is that boundary

sources can yield asymmetrical wavefronts when the material is very optically thick.

This problem appears to be an issues of unstructured meshes in general. The second

problem is that refining material interfaces is difficult in three dimensions without

significantly increasing the number of cells in the simulation. This interface resolution

has been solved in other contexts but is not address directly here.

7.2 Spatial Discretizations of IMC

The corner-based method is the most accurate and robust method studied for

running on IMC on node-based, unstructured tetrahedral meshes. The node-centered

method with the emission upwinding technique is equivalent to transporting on the

dual mesh directly, but using the corner-based method provides a more accurate

while requiring only slightly more memory. The DFEM IMC method gives solutions

that are too diffusive when a piecewise linear opacity is used on optically thick

problems and yields a similar solution to the corner based method when an averaged

opacity is used. Although the implicit capture method of variance reduction is not

as simple in DFEM IMC, it can be done accurately using a Gaussian quadrature

integration technique when the optical depth of a single particle path is less than 10.

The DFEM method does show promise as a means of reducing simulation runtime

by eliminating the need to track to the dual mesh cell interface. An equilibrium
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diffusion limit analysis is likely necessary to determine how the opacity and emission

should be treated in the DFEM IMC method, or a method that allows for a robust

solution that does not require lumping of the mass matrix. A potential benefit of

DFEM IMC methods is that they could employ vectorization in the partilce transport

loop—evaluating the implicit capture absorption for each test function in a cell is a

simple loop that could benefit from vectorization.

7.3 Parallel Algorithms

The amount of memory per core is trending downward as low power, manycore

architectures enter the landscape. The on-node IMC algorithms attempts to exploit

parallelism in the particle transport and respect the memory hierarchy of the com-

pute node. Shared-memory systems can be effectively used in parallel and can benefit

simulations that are too large to be replicated across all cores. Shared memory algo-

rithms could also allow sub-domains to be larger when used in a hybrid configuration

with a domain-decomposed IMC algorithm.

Domain decomposition is difficult to do because it must load-balance the problem

and perform well in optically thick and optically thin regimes. A new method for

domain decomposition in IMC was explored that focuses on the moving mesh data

instead of particle data. This method is better than the particle-passing method for

optically thick problems with a large amount of scattering.

The particle-based algorithm is a new idea and there are many ways it could be

improved. The first and foremost issue is to develop a load-balancing algorithm that

allows processors with many particles to share their work. The memory manage-

ment of the working mesh could be improved drastically such that RMA operations

could be reduced for thick and thin problems. Parallel communication and compu-

tational work is effectively balanced using the non-blocking MPI implementation of
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the particle-based decomposition method. The window implementation is currently

less effective than the non-blocking implementation but it could be improved by

using non-blocking RMA operations and utilizing lower level RDMA operations on

architectures where they are available. Deferred parallel communication could also

be used to improve the particle rebalancing that occurs at the end of a timestep.

Stratified sampling does improve the parallel performance for cases where a small

working mesh is used. The larger implication of the stratified sampling results are

that similar particle histories should be grouped as close as possible in memory.

7.4 Broad Strokes

The IMC method is known as a standard solution in TRT simulations because it is

robust and accurate. Because it has been used for so long, its defects and difficulties

are well known. In this work we attempted to address the spatial discretization

errors and pave the way to use IMC in the most effective way on a specific mesh

type. We also examined ways to reduce the high cost of running IMC on large HPC

machines. These improvements will hopefully allow IMC to be used with emerging

hydrodynamics methods on the computer architectures of the future.
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