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ABSTRACT 

The International Atomic Energy Agency’s (IAEA) safeguards technical objective 

is the  timely detection of a diversion of a significant quantity of nuclear material from 

peaceful activities to the manufacture of nuclear weapons or of other nuclear explosive 

devices or for purposes unknown, and deterrence of such diversion by the risk of early 

detection. An important IAEA task towards meeting this objective is the ability to 

accurately and reliably measure spent nuclear fuel (SNF) to verify reactor operating 

parameters and verify that the fuel has not been removed from reactors or SNF storage 

facilities. This dissertation analyzes a method to improve the state-of-the-art of nuclear 

material safeguards measurements using two combined measurement techniques: passive 

neutron albedo reactivity (PNAR) and passive spectral photon measurements. 

PNAR was used for measurements of SNF in Japan as well as fresh fuel pins at 

Los Alamos National Laboratory (LANL). The measured PNAR signal was shown to 

trend well with neutron multiplication and fissile content of the SNF. The PNAR 

measurements showed a 73% change in signal for a fuel burnup range of 7.1 to 19.2 

GWd/MTHM of spent mixed-oxide (MOX) fuel and a 40% change in signal over a range 

of initial 235U enrichment from 0.2% to 3.2% in UO2 fuel. 

Photon measurements were performed on a wide range of SNF pins to determine 

which photon signatures are visible in different sets of fuels. These signatures were then 

investigated and tested using a sensitivity analysis to determine the spent fuel parameters 

to which each signal is most sensitive. These photon signatures can be used to determine 

SNF parameters that can support PNAR determination of SNF fissile content. 
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Based on the results from these measurements, we have concluded that spectral 

photon measurements can determine operating parameters to improve the implementation 

of PNAR. We also concluded that PNAR can accurately measure multiplication and fissile 

content in SNF with standard deviations of 1% and 4%, respectively. The PNAR and 

photon measurements can be used together as a powerful tool to support the IAEA 

safeguards technical objective. 
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1. INTRODUCTION 

As of July 2015, there are 438 operating nuclear power reactors in 30 countries 

providing 10.9% of the world’s electricity production. One-hundred and ninety-eight of 

these reactors are in states that do not possess nuclear weapons[1]. As of 2005, there was 

roughly 180,000 metric tons of heavy metal (MTHM) in spent nuclear fuel (SNF) 

worldwide, and the International Atomic Energy Agency (IAEA) estimates that this will 

grow to 300,000 MTHM by 2020[2]. Part of the mission statement of the IAEA is to 

“verify through its inspection system that States comply with their commitments, under 

the Non-Proliferation Treaty and other non-proliferation agreements, to use nuclear 

material and facilities only for peaceful purposes[3].” Thus, the IAEA has a responsibility 

to detect and deter the diversion of nuclear material from nuclear power plants to military 

purposes. The goal of this research is to assess the capability of two SNF nondestructive 

analysis (NDA) measurement techniques for the purposes of nuclear material safeguards 

measurements of commercial SNF and fresh fuel: passive neutron albedo reactivity 

(PNAR) and spectral passive photon measurements. 

Accurately measuring nuclear material contained in the SNF for nuclear 

safeguards purposes is a difficult task. Ideally, the IAEA would be able to determine initial 

enrichment, burnup, cooling time, and fissile content within acceptable uncertainty from 

independent measurements. They could then use this information to determine if the 

operator declarations are accurate and if any of the SNF has been diverted or substituted. 

Since there are several unknowns, multiple independent signals would be required to fully 

characterize the items being considered. Currently, the IAEA relies on total neutron and/or 
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total photon measurements to verify operator declarations. Their current goal is to be able 

to reliably detect the removal or substitution of 50% or more of the fuel pins in an 

assembly[4].  

When uranium dioxide (UO2) fuel is exposed to a neutron flux in a reactor, it 

undergoes transmutation, decay, neutron absorption, etc. This results in a highly 

radioactive and diverse mix of fission products and actinides in the SNF. Changes in the 

irradiation history such as changes in power level and irradiation and decay periods, as 

well as different initial fuel compositions (e.g. enrichment or mixed oxide fuel), will affect 

these physical processes in different ways for different fission products and actinides. 

Theoretically, these resulting differences in final fuel composition can be used to provide 

information about the history and initial enrichment of the fuel. This could be a difficult 

inverse problem to solve. The inputs for this inverse problem could be acquired from a 

destructive analysis (DA) and/or non-destructive analysis (NDA) measurements. DA, 

however, is not a feasible measurement option for the vast majority of SNF, which for 

safety needs to remain contained in the fuel pins and often is intended to be irradiated 

further. NDA techniques are feasible, because they rely on signals such as photons and 

neutrons emitted from the SNF. Even when these signals can be measured accurately in 

the harsh environment of SNF, they may be affected by dozens of different isotopes in the 

fuel and the convolution of these different effects can be difficult to unfold.  

Spectral passive photon measurements involve measuring the photons (gamma-

rays and x-rays) emitted by the fission products (and sometimes actinides) in SNF. Since 

gamma-rays are emitted at characteristic energies for individual isotopes and x-rays are 
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emitted at characteristic energies for individual elements, spectral photon measurements 

can be used to determine absolute or relative quantities of some isotopes or elements in 

SNF, although this can be complicated by self-attenuation and background.  

At reactor sites, it would be desirable to have a technique which can independently 

identify fuel assemblies with a higher degree of accuracy and reliability than are available 

with current techniques during regular inspections. Passive photon measurements could 

also be useful as a means to recover continuity of knowledge[5]. At reactor sites and 

reprocessing facilities, better characterization of fuel, especially measurements of 

plutonium (Pu) concentration, would help reduce shipper-receiver differences and 

optimize fuel loading. It could also help reprocessing plants select fuels for reprocessing 

to produce optimal materials. For spent fuel storage and repositories, direct measurement 

of fuel parameters could enable more efficient safe fuel storage through the use of a 

“burnup credit” system[6]. 

PNAR is a passive neutron measurement technique which utilizes high and low 

neutron-multiplying regions within the detector to measure the multiplication of special 

nuclear material (SNM), such as SNF or fresh fuel. This multiplication is directly related 

to the nuclear fissile content. Neutron multiplication is useful in terms of reactor safety, 

spent fuel storage, and spent fuel shipping. If some other information about the fuel is 

known either through operator declarations or through additional measurements (such as 

passive photon or total neutron), fissile content potentially could be mapped to plutonium 

content and used to verify reactor operation parameters such as burnup, initial enrichment, 

and/or cooling time. 



 

 

4 

 

The primary objective of this research was to develop and assess the use of spectral 

photon measurements and the PNAR technique for nuclear material safeguards 

measurements of SNF.  

This work is part of the Next Generation Safeguards Initiative Spent Fuel (NGSI-

SF) Project. In 2009, the U.S. Department of Energy’s National Nuclear Security 

Administration (DOE/NNSA) began the NGSI-SF project as a multi-year effort to 

research the capability of an integrated nondestructive assay (NDA) system to improve 

the state-of-the-practice in safeguards technology. The technical safeguards goals of the 

NGSI-SF Project include (1) measuring the Pu mass in an individual assembly, (2) 

verifying initial enrichment, burnup, and cooling time and (3) verifying that pins have not 

been removed or replaced from the fuel[7-9]. 

 

1.1 Objectives 

Spectral photon measurements were investigated to determine what information 

could be obtained about (1) SNF irradiation history to improve nuclear material safeguards 

measurements and/or (2) quantify neutron absorbers in SNF to better inform neutron 

measurements such as PNAR. Many of the neutron SNF measurement techniques depend 

on burnup code and fuel history generalizations to estimate the content of several neutron 

absorbers in SNF which strongly affect the neutron signals. These neutron absorbers are 

generally stable isotopes, but in some cases they are strongly related to secondary 

radioactive isotopes. Measurement of these secondary isotopes could provide an indirect 

measurement of neutron absorbers to better inform the simulations and calculations.  
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The PNAR technique was tested on SNF to ensure that it would perform in harsh 

SNF environments and on the complicated isotopics in spent fuel. The objectives of the 

PNAR measurements and simulations were to optimize the design of the PNAR detector 

built through LANL to measure Fugen spent fuel, benchmark PNAR simulations in 

MCNPX, and to verify that the measured PNAR signal can be used to calculate neutron 

multiplication and fissile content. Fresh fuel measurements were conducted to test PNAR 

measurement response to axial source location, effective assembly enrichment, position 

of the assembly within the detector, and distribution of LEU and DU pins within the 

assembly. 

 

1.2 Previous Work 

1.2.1 Current Spent Nuclear Fuel Measurement Techniques 

Photon measurements are a well understood technique for estimating burnup and 

cooling time in SNF. However, at most only a few isotopes are currently analyzed. In 

current IAEA measurements, only total gamma measurements or low resolution spectral 

gamma measurements are made[12-14]. Utilizing a larger set of photon signatures as well 

as including low-energy measurements (around 100 keV) could provide a significant 

increase in the information gained from such measurements.  

Currently, the main techniques used to measure SNF for safeguards purposes are 

the Digital Cerenkov Viewing Device (DCVD), the Fork Detector (FDET), and the 

Safeguards MOX Python Detector (SMOPY).  
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The DCVD measures photon activity using the Cerenkov glow produced by 

electrons slowing down in water. It uses a charge coupled device camera system with a 

UV filter to view the Cerenkov light, which is strongest through the water holes in the 

assembly. The presence and behavior of this light verifies that the assembly is SNF and 

that fuel rods are not missing from the assembly. The intensity of the light provides some 

information about spent fuel history. This light intensity is related to many fuel 

parameters, particularly burnup and cooling time. However, there are many combinations 

of these parameters which lead to the same DCVD signal. It also requires a known 

calibration assembly to account for effects such as water quality[15, 16].  

The SMOPY and FDET systems use photons (from 137Cs and 134Cs isotopes only) 

and total neutron signatures to infer burnup, but rely on operator declarations. SMOPY 

serves three main functions: determining whether a fuel assembly is low-enriched uranium 

(LEU) or mixed oxide (MOX) fuel, determining the burnup of an assembly, and looking 

for partial defects within the fuel assembly (removal or replacement of fuel pins with 

dummy pins). When calculating burnup of an assembly, SMOPY uses a high-efficiency 

fission chamber neutron detector. This measurement requires an initial measurement of a 

known assembly to account for measurement geometry. The calculation requires 

knowledge of reactor type, initial enrichment, irradiation history, and cooling time. If an 

anomaly is detected, the SMOPY includes a Python script which uses a parametric on-line 

depletion calculation to determine neutron emission rate as a function of burnup for those 

parameters and the calibrated measurement geometry in order to determine burnup of the 

assembly[17].  
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The FDET is used to verify burnup and look for partial defects. It consists of an 

ionization chamber for gross gamma measurements and a fission chamber for gross 

neutron measurements. To calculate burnup, the FDET also requires operator declarations 

to determine burnup of the assembly. The development of a tool which utilizes more 

signatures from SNF than FDET has the potential to provide more fuel parameters without 

relying on operator declarations[18, 19]. 

A large effort has been funded by the NGSI to improve state-of-the-art SNF 

measurements and quantify Pu content in SNF. This effort (NGSI-SF) is investigating the 

integration of complimentary spent fuel nondestructive measurement techniques, 

including PNAR, in order to best quantify the Pu in the SNF.  

There are a total of 14 techniques being researched as part of the NGSI-SF effort. 

In addition to PNAR, these techniques include Self-Interrogation Neutron Resonance 

Densitometry (SINRD), Differential Die-Away (DDA), Differential Die-Away Self-

Interrogation (DDSI), Californium-Interrogation with Prompt Neutrons (CIPN), 

Assembly Interrogation with Prompt Neutrons (AIPN), Passive Gamma (PG), Delayed 

Gamma (DG), Delayed Neutron (DN), Neutron Multiplicity (NM), Lead Slowing Down 

Spectroscopy (LSDS), Neutron Resonance Transmission Analysis (NRTA), X-ray 

Fluorescence (XRF), and Nuclear Resonance Fluorescence (NRF). Many of the 

techniques involved require information about burnup, initial enrichment, and cooling 

time in order to draw conclusions about the fuel. 

Two of the important attributes of each of these measurements in terms of 

application is whether they are passive or active measurements and how portable they are. 
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Passive techniques rely on self-interrogation, or using the radiation source naturally 

produced by the fuel as the source signal. They are generally less expensive to build, and 

are easier to use and less invasive in current facilities because they do not require 

procurement, storage, or transportation of large radiation sources or generators. In addition 

to the distinction between passive and active measurements, some measurement 

techniques are not portable and require new facilities to be built around them. These un-

portable techniques are better suited to specific facilities such as reprocessing plants or 

long-term storage sites rather than for safeguards purposes at nuclear power reactors 

around the world. 

SINRD is a passive technique which uses multiple sets of fission chambers 

surrounded by filters of different materials to measure ‘windows’ of neutron energies. 

These filter materials are chosen so that the neutron energy windows being measured 

correspond to neutron absorption resonances in 239Pu to measure 239Pu content[20, 21].  

DDA and DDSI rely on the differential die-away of the neutron multiplication in 

the assembly. DDSI is a passive measurement which uses neutron multiplicity to analyze 

the Rossi-Alpha distribution of neutrons from the fuel assembly[22, 23]. DDA uses a 

neutron generator to interrogate the assembly and looks at neutron counts in specific time 

windows after the neutron pulses[24, 25]. 

CIPN and AIPN are both active neutron measurements which use an external 

neutron source to induce fissions in SNF. CIPN uses an external 252Cf source, while AIPN 

uses one assembly to interrogate another. CIPN has a better known interrogation signal 
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which leads to better accuracy, although it requires a very large 252Cf source at each facility 

which can be difficult to obtain, store, and move around a facility[25, 26]. 

Passive gamma can refer to total or spectral gamma measurements[27, 28]. 

Delayed gamma measurements involve interrogating the material with pulses from a 

neutron generator to activate fission products in the fuel, and then measuring the gamma 

signatures from these activation products[29]. DN is similar to delayed gamma in that it 

measures fuel between neutron pulses, but it is looking at the total neutron signal rather 

than spectral gamma[30].  

NM measurements use high efficiency banks of detectors to measure neutron 

singles, doubles, and triples counts to obtain estimates of actinide content for multiplicity 

data[31]. 

LSDS is an active time-of-flight measurement technique currently used to measure 

nuclear cross-sections. It involves using a linear accelerator to inject neutrons into a large 

mass of lead surrounding the material to be measured[32, 33]. NRTA is another time-of-

flight active measurement. It uses a pulsed accelerator on one side of the assembly and 

measures the neutron through the assembly as a function of time after the pulse to 

differentiate between neutrons of different energies. Known absorption resonances of 

isotopes such as 239Pu are used to calculate the mass of those isotopes in the fuel from the 

attenuation of the original beam[34]. Both of these techniques require large facilities built 

specifically for their purpose. 

XRF is the only technique in this list which directly measures elemental plutonium. 

In SNF, it is a passive technique which relies on photons from fission products to generate 
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x-rays in uranium and plutonium which are around 100 keV[35-37]. NRF of SNF involves 

directing a broad-energy or mono-energetic photon source through the assembly and on 

to a witness foil. The witness foil creates activation products which are then measured by 

a gamma detector shielded from the fuel assembly.  This is another technique which 

requires a facility to be built around its use[38, 39]. 

Another aspect of the NGSI-SF effort has been to develop a spent fuel library in 

simulation space. This library of spent fuel assemblies has been used in simulations of 

many of these measurement techniques for comparison to each other[40]. Since each of 

the techniques has been investigated by different scientists in multiple organizations, this 

common simulation space has been an important tool to compare the results of these 

techniques to each other and choose combinations of techniques to investigate further. 

While current spent fuel safeguards measurements have room for improvement, 

PNAR and spectral photon measurements are two of several NDA SNF measurement 

techniques being investigated to improve the IAEA’s capabilities. 

 

1.3 Theory 

1.3.1 PNAR Technique 

The first paper written about the PNAR technique was published in 1997 by H.O. 

Menlove and D.H. Beddingfield. This paper demonstrates the proof of concept of a PNAR 

detector through MCNP simulations and measurements of fresh fuel in a high-efficiency 

passive neutron multiplicity counter (PSMC) at LANL[41]. PNAR was later selected as 

one of the NGSI-SF techniques in 2009. Much of the initial PNAR research as part of the 
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NGSI-SF effort focused on PNAR measurements with He-3 tubes[42], and then switched 

to PNAR measurements with FCs due to the expense and difficulty of obtaining He-3 

tubes. The previous work was entirely simulation based, and focused on PNAR geometries 

for typical PWR SNF assemblies. This work developed a strong modeling capability for 

PNAR in MCNPX and investigated the effects of different fuel parameters on the PNAR 

ratio using the LANL spent fuel library. Previous work has shown that simulations predict 

that the PNAR ratio trends well with neutron multiplication and fissile content[43-46]. 

PNAR is a passive neutron measurement technique which utilizes high and low 

neutron-multiplying regions within the detector to measure multiplication of special 

nuclear material (SNM). One measurement is taken in a high multiplying region (in this 

case, with no cadmium liner), and the other in a low multiplying region (in this case, with 

a cadmium liner between the fuel and the detectors). Cadmium affects the multiplication 

of the low multiplying region since it is a strong thermal neutron absorber and keeps most 

thermal neutrons which have left the assembly from returning to the assembly and causing 

more fissions. The ratio of these two measurements is used as the PNAR ratio and has 

been shown to scale with multiplication and fissile content[41, 43-46]. The basic geometry 

for the detector built for this research is shown below in Figure 1.1. 
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Figure 1.1. Diagram of PNAR detector built for Fugen reactor SNF measurements. 

 

In Figure 1.1, section 1 is the high neutron-multiplying region, where neutrons are 

free to leave the fuel assembly, slowdown in the water around the assembly or the 

polyethylene in section 1, and return to the fuel to create more fissions. Section 3 is the 

low neutron-multiplying region, where a cadmium liner between the detectors and the fuel 

absorbs many of the neutrons escaping the fuel assembly from returning to cause more 

fissions. The ion chambers in section 2 are for collecting gross gamma measurements, and 

the multiple sets of fission chambers in section 3 are for neutron energy measurements in 

addition to the PNAR signal and will be explained in chapter 2. 
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Neutron multiplication is useful in terms of reactor safety, spent fuel storage, and 

spent fuel shipping. If some other information about the fuel is known either through 

operator declarations or through additional measurements (such as passive gamma or total 

neutron), multiplication can be mapped to plutonium content and used to verify reactor 

operation parameters such as burnup, initial enrichment, and/or cooling time.  

1.3.2 Plutonium Effective Measurements 

The multiplication measured by the PNAR detector is a function of the fissile 

isotopics in the fuel. The main isotopes contributing to this measurement in uranium 

dioxide SNF are 239Pu, 241Pu, and 235U. This fissile content can be expressed in units of 

effective grams of 239Pu, or 239Pueff. This is basically a measurement of how many grams 

of pure 239Pu would produce the same measured signal as the mixture. 239Pueff is calculated 

according to Eq. (1.1): 

 

 239 235 239 241

1 2eff m m mPu C U Pu C Pu   , (1.1) 

 

where 235

mU , 239

mPu , and 241

mPu  are the masses of 235U, 239Pu, and 241Pu, respectively. C1 

and C2 are weighting constants that are specific to each measurement technique and need 

to be calculated via simulations. In simulation space, the contribution of fission neutrons 

from each isotope which cause interactions in the detectors can be tracked. This data is 

used to calculate the relative effect of a difference in 235U, 239Pu, or 241Pu on the measured 

signal for each measurement technique. These values can then be used to calculate C1 and 

C2 for each technique. An experimental calibration of C1 and C2 would be very 
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complicated and require making several measurements of samples that are well-known 

either because of extensive calculations or through performing DA after the NDA 

measurement. 

In a safeguards context, the goal is to measure either grams of plutonium or grams 

of fissile material. It becomes necessary to be able to split this measured signal into its 

three isotopic parts. Since there is only one signal which depends on all three of these 

isotopes, additional knowledge of the relative isotopics is required to calculate the quantity 

of plutonium in the fuel. If the relative quantities of 235U, 239Pu, and 241Pu are known from 

burnup and initial enrichment or simulations, the plutonium mass or total fissile mass can 

be calculated from the measured 239Pueff signal[47]. 

1.3.3 MONTEBURNS 

MONTEBURNS is a reactor physics code that was developed as a master’s thesis 

project by Holly Trellue at the University of New Mexico and is maintained by Los 

Alamos National Laboratory. It uses a Perl script to link the cross section and flux 

calculation capability of MCNP with the production and decay calculations of ORIGEN 

or CINDER. The simulations used for this work used MCNP5 and ORIGEN 2.2. Figure 

1.2 shows how MONTEBURNS interacts with both ORIGEN and MCNP to calculate 

material compositions for each step. For each step, ORIGEN is first used to perform fuel 

burnup and decay the materials provided by the MCNP input file for half of the step and 

create a new MCNP deck with these materials. MCNP then uses this information to 

calculate one-group cross sections and neutron fluxes half way through the step. This 

information is considered to be valid for the entire step, and is fed into ORIGEN to perform 
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fuel burnup and decay the materials for the entire step. This process is valid as long as 

sufficiently small steps are used throughout the calculation (generally less than 2500 

MWD/MTU). Especially small steps need to be used at the beginning of each burn cycle 

to account for initial buildup of neutron absorbing fission products. Decay steps can be 

considerably longer (years) because the calculations are much simpler and the fuel 

compositions are changing more predictably.  

 

 

Figure 1.2. Interaction of MONTEBURNS with MCNP and ORIGEN[8]. 

 

MONTEBURNS requires both an MCNP input deck and a MONTEBURNS input 

deck. The MCNP input deck defines the geometry and composition of the simulation, and 

the MONTEBURNS input deck defines other required parameters such as power level, 

how many steps to link between ORIGEN and MCNP, which isotopes to keep track of, 
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and which ORIGEN library to use. There is also an optional feed file which allows for 

adding or removing materials during the simulation or, as used in this work, for defining 

a power cycle[8]. 

While MONTEBURNS takes a considerable period of time to run, depending on 

how many MCNP steps are included, it is a very powerful code. By using MCNP to input 

geometry specifications, very complex systems can be simulated, which makes 

MONTEBURNS a very flexible simulation code. 

Since the standard MONTEBURNS output file only has three significant digits, 

all analysis of material concentrations used data from the mb5tx files saved in the temp 

folder once MONTEBURNS has finished running. There is an mb5tx file saved for each 

material which lists the grams of each isotope for each feed step with eight significant 

digits. 

1.3.4 Fission Product Production and Decay 

The nuclides present in SNF consist of (1) fission products generated during 

reactor operation, (2) activation products created by absorption reactions in the cladding 

or other fuel support structures, and (3) actinides, as well as the decay products of all three 

categories. The buildup of these nuclides can depend on many fuel parameters, and each 

measurable nuclide may be able to provide unique information about the history of the 

fuel based on how it is produced and removed from the fuel during irradiation. Not all of 

the signatures will be visible in all fuels since some will decay quickly and others take 

time to build up.  



 

 

17 

 

1.3.4.1 Cesium-137 

137Cs is produced at a constant rate in nuclear fission systems, almost regardless of 

the fissioning nuclide because it is rarely produced by anything other than fission and the 

M=137 mass chain lies almost directly on the intersection between the U and Pu fission 

product yield curves, as shown in Figure 1.3. This means that 137Cs is produced steadily 

throughout the burnup of SNF regardless of whether fissions are occurring in U or Pu. It 

also has a low absorption cross-section. This makes it an especially easy fission product 

to calculate the quantity of in SNF. It is produced in significant quantities from fission and 

is radioactive with a relatively long half-life of 30 years. It produces a single 662 keV 

gamma-ray with an abundance of 85% per decay. This makes it one of the most straight 

forward fission products to measure in SNF and means that if cooling time is known, an 

absolute measurement of 137Cs is a fairly direct measurement of burnup.  
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Figure 1.3. Fission Product Yield Curves [48] 

 

137Cs’s half-life is 30.1 years, making it typically the longest lived fission product 

measurable in SNF photon measurements. This combined with the 662 keV photon 

emitted in every decay makes 137Cs especially useful because it is still clearly measurable 

in SNF after many of the shorter lived isotopes have decayed past being useful, even in 

fuel that is many years old. It is linearly dependent on burnup and predictably dependent 

on cooling time, but is almost insensitive to other fuel parameters[48]. Other studies have 

used a direct measurement of 137Cs activity to calculate burnup based on a known cooling 
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time, but this also requires very precise information about the geometry of the 

measurement and efficiencies of the system in order to translate a count rate into an 

activity[49]. 137Cs beta decays and produces a 662 keV photon which is emitted in 85% 

of decays[50]. 

1.3.4.2 Cesium-134 and Cesium-133 

133Cs has a high cumulative fission yield, produced by roughly 7% of fissions in 

both 235U and 239Pu[51], and it also has a fairly high resonance radiative capture cross 

section of 390 barns[52]. This makes it a prominent neutron absorber in SNF, and it is 

thus interesting to several neutron measurement techniques which depend on 

understanding the neutron absorption environment to quantify Pu content. However, 133Cs 

is stable and thus impossible to measure directly with photon measurements. Being able 

to better quantify the 133Cs by understanding its relationship with 134Cs in SNF could help 

the accuracy of these neutron techniques[8]. 

Many fission products are produced largely through beta decay chains, where 

several higher-Z nuclides of the same mass have very short half-lives and quickly decay 

through beta decay along the mass chain until they reach an isotope in the chain that is 

either stable or has a longer half-life (around 100+ days). In these cases, it can be assumed 

that the isotope blocking the fission chain (the first in the mass chain that is stable or has 

a longer half-life) has a fission yield equivalent to the sum of its own fission yield and the 

fission yields of the previous isotopes in the decay chain, and this sum of fission yields is 

referred to as cumulative fission yield. In this way, the direct fission yield of the specific 

isotope may be low, but the cumulative fission yield may be quite important. This 



 

 

20 

 

assumption is generally valid, but can lead to complications in simulations that lead to 

relatively larger errors in mass estimates for these isotopes. 134Xe, which is stable and is 

higher in the mass chain than 134Cs, is one of these blocking isotopes. While M=134 is the 

mass chain with the highest cumulative fission field from 235U, 134Cs is not produced this 

way because it is blocked within its mass chain by a stable element: 134Xe[52]. Since 134Xe 

is stable, 134Cs is not produced directly from fission outside of its direct fission yield, 

which is quite small[51].  

Instead, 134Cs is largely produced by radiative capture in 133Cs, which means that 

it is closely related to 133Cs content and measurement of 134Cs could possibly be used to 

infer information about the quantity of 133Cs present during measurements. [48]. 

134Cs is also relatively frequently used in specialized spent fuel photon analysis as 

a ratio to 137Cs to estimate cooling time. Since it is mostly produced by radiative capture 

in 133Cs, the production of 134Cs has a roughly quadratic dependence on the neutron flux 

density, which shows up as a quadratic dependence on burnup.  It is one of the strongest 

photon signals present in fuels with cooling time less than around 15 years, which accounts 

for most fuel measurements performed by the IAEA, but it becomes unusable at much 

longer cooling times due to its 2.1 year half-life. It beta decays with several signatures, the 

strongest of which are 604 keV (98% of decays), 796 keV (86% of decays), and 569 keV 

(15% of decays)[50].  

1.3.4.3 Europium-154 

Similar to 134Cs, 154Eu is blocked in its decay chain by 154Sm, which is stable. One 

prominent production path for 154Eu is through radiative capture in 153Eu. 153Eu is stable, 
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and has a resonance integral radiative capture cross section of 1,500 barns[52], so even 

though its cumulative fission yield is more than an order of magnitude lower than the 

fission yield of 133Cs , it is still one of the important neutron absorbers to quantify for 

neutron based NDA measurements. 154Eu is an especially complicated fission product to 

model because it is produced significantly from 20 different paths[48]. CINDER 90 in 

MCNP allows for the creation of ‘chains’ files which track how each element is created. 

This chains file was created with the simulation of the Three Mile Island fuel. Analysis of 

this file showed that while 97% of 154Eu created was created directly from 153Eu, this 153Eu 

was created in many ways, a few of which are shown below with their percentage: 

 

153 153 153239

fission
Pu Pm Sm Eu

 
    (30%) 

 
151

151 151 153235 151 152 153Pr
fission

U Nd Pm Sm n Sm n Sm Eu
   

          

(14% w/out 151Pr, 3% with 151Pr) 

152 152 152 152 153235 153Pr
fission

U Nd Pm Sm n Sm Eu
   

        (8%) 

 
153

153 153 153235 153Pr
fission

U Nd Pm Sm Eu
   

      (7% without 153Pr, 4% with 153Pr) 

152 152 153239 153*
fission

Pu Pm Sm n Sm Eu
 

      (3%) 

152 152 153239 153

fission
Pu Pm Sm n Sm Eu

 
      (3%) 
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The relative weights in this simulation are dependent on many fuel parameters and 

so are just an example for this specific fuel case. This complicated production process 

makes it relatively difficult to calculate 153Eu or 154Eu with reactor physics codes, 

especially since some of the nuclides in these chains are not well benchmarked. It also 

makes any changes in 154Eu production as a result of changes in fuel parameters difficult 

to predict without measurements or simulations. For this reason, measurements of 153Eu 

would be especially beneficial. Since the complicated part of this production process lies 

in the production of 153Eu, quantifying 154Eu content could be directly tied to quantifying 

153Eu. 154Eu beta decays with a half-life of 8.6 years, which is the second longest (after 

137Cs) of the nuclides visible in the spent fuel measurements at ORNL. Because of this, a 

ratio of 137Cs and 154Eu would be especially practical since it would be visible in fuels with 

the longest cooling times, once other isotopes are no longer measurable. 154Eu produces 

many strong photon signatures over a wide range of energies in SNF, the most intense of 

which are 123 keV (40% of decays), 1,274 keV (35% of decays), 723 keV (20% of 

decays), and 1,004 keV (18% of decays)[50].  

In some measurements in this work, as many as 26 154Eu peaks are visible. One 

benefit of the large quantity and range of photopeaks visible from 154Eu is that this is the 

only isotope with photopeaks clearly visible in both low-energy planar and broad-energy 

coaxial measurements. This allows for calculation of relative efficiencies between the two 

detectors so that ratios can be used between signals visible in the different detector energy 

regions. The wide range of 154Eu peak energies is beneficial because it provides several 

options for calculating peak ratios to different nuclides. Ideally, any ratio between two 
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isotopes would be calculated with photon peaks that are close together in energy so as to 

reduce errors from detector efficiency and escape ratio differences. With many strong 

peaks between 123 keV and 1,274 keV, 154Eu has photopeaks close in energy to many of 

the nuclides being measured. 

1.3.4.4 Cerium-144 

144Ce is mainly produced by fission, with relatively high fission yields of 5.5% and 

3.7% from 235U and 239Pu, respectively[51]. 144Ce beta decays with a half-life of 285 d to 

144Pr, which then beta decays with a half-life of 17 minutes. The strongest signal visible 

in spent fuel photon measurements from this pair is a 2,185 keV photon which is produced 

in 0.7% of decays[50]. While this is a low emission rate, the very low background at 2,185 

keV makes this a viable measurement for fuel with short enough cooling times that 144Ce 

is still present. 

In a reactor, 144Ce will reach an equilibrium concentration over the period of 

typical power cycle lengths. This equilibrium concentration is dependent on power level, 

but since most power plants operate in a small range of power levels, this is considered 

known in some facility measurement situations. When this happens, the concentration of 

144Ce in measured fuel is independent of burnup and only on cooling time. This allows 

144Ce to be used as a cooling time indicator for young fuel at reprocessing plants by using 

a ratio of 144Ce with 137Cs or 95Zr[53, 54]. 
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1.3.4.5 Americium-241 

241Am is formed in nuclear fuel from 241Pu beta decay, and thus increases in 

concentration with cooling time and burnup. 241Am has a large resonance radiative capture 

absorption cross-section of 1,490 barns[52], and thus the 241Am measured in spent fuel is 

almost entirely from Pu decay once fuel has been removed from the reactor. This makes 

it a promising cooling time indicator when combined with information about the Pu 

content. The strongest photon produced by 241Am, at 60 keV, cannot be well discriminated 

with broad-energy photon measurements. The capability of measuring 241Am with low-

energy gamma-ray measurements (such as the thin planar detector used in these 

measurements) is also of particular interest with respect to neutron measurements 

attempting to quantify Pu mass because of its large neutron absorption cross section. 

241Am alpha decays with a half-life of 432 years and is produced from 241Pu with 

a half-life of 14.4 years, so it takes several years after discharge from the reactor to build 

up enough 241Am to have a strong signal. The only photon from 241Am decay visible in 

the SNF measurements at ORNL is at 60 keV and has an emission rate of 40%[50]. 

1.3.4.6 Europium-155 and Gadolinium-155 

155Eu beta decays with a half-life of 4.8 years with a photon signature at 105 keV 

clearly visible in the SNF measurements made at ORNL. This is a low enough energy that 

it is not identifiable in standard broad-energy photon measurements, but it can be resolved 

in the low-energy measurements done at ORNL with the planar HPGe detector. 

155Eu has a fairly complicated production process. It has cumulative fission yields 

of .03% and 0.17% from 235U and 239Pu fissions, respectively. It is also created through 
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neutron capture in 154Eu, which has a complicated production history of its own and 

thermal and resonance radiative capture cross sections of 1,400 barns and 1,600 barns, 

respectively. It is also produced in considerable quantity through neutron absorption in 

154Sm to 155Sm followed by beta decay to 155Eu[55]. This complicated production history 

makes it difficult to calculate with reactor physics codes. It makes predictions of how it 

will behave in reaction to changes in fuel parameters difficult as well. The same ‘chains’ 

file produced with CINDER 90 discussed in section 1.4.3 was also analyzed for 155Eu. It 

showed that for the Three Mile Island fuel simulated, 74.9% and 24.8% of 155Eu came 

directly from 154Eu and 155Sm, respectively. 155Eu is of particular interest to measure in 

relation to neutron measurements due to its large resonance radiative capture cross section 

of 16,000 barns and the fact that its stable daughter product, 155Gd, is also a strong neutron 

absorber in SNF. Since 155Gd has an enormous thermal neutron absorption cross section 

of 61,000 barns, it can be assumed that all 155Gd in the fuel at the time of measurement 

has been produced by decay from 155Eu after discharge from the reactor[52]. It would be 

helpful to the neutron measurement techniques measuring Pu in SNF if measuring 155Eu 

could provide information about both 155Eu and 155Gd in the fuel. 

1.3.4.7 Silver-110m, Ruthenium-106, and Antimony-125 

110mAg, 106Ru, and 125Sb are all of interest primarily because of their potential to 

provide information about initial enrichment. All three of these nuclides have significantly 

higher fission yields from Pu than from U[51]. SNF at the same burnup will have more 

fissions from Pu and fewer fissions from U than if the fresh fuel had a lower initial 

enrichment. For this reason, quantifying concentrations of isotopes with higher fission 
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yields from Pu fissions than from U fissions could provide information about the initial 

enrichment if burnup information is known. Since these isotopes are all produced more 

through Pu fissions, they could also help indicate whether SNF is MOX or UO2 fuel[56]. 

None of these isotopes are used frequently in SNF measurements. Reactor physics 

codes are tested primarily against fuel parameters of interest to reactor operators and the 

academic community: thus most reactor physics codes are not as accurate at predicting 

these lesser studied isotopes as they are at predicting other fission products such as 137Cs 

and 134Cs. For example, MONTEBURNS, which is used for the sensitivity simulations in 

this work, does not track 110mAg, so not many conclusions about 110mAg are generated in 

this research. 

Of these three nuclides, 110mAg has the largest difference in fission yields between 

235U and 239Pu fissions. It is produced in 0.03% of 235U fissions and 1.5% of 239Pu fissions, 

with a factor of 47 times difference. 110mAg is blocked in its mass decay chain in the same 

manner as 134Cs and 154Eu. It is mostly produced by neutron absorption in 109Ag, which is 

a stable isotope with a resonance absorption cross section of 1,460 barns[52]. 110mAg 

decays with a half-life of 250 days. Several 110mAg gamma-rays were visible in the 

measurements of Catawba MOX fuel at ORNL, the strongest of which is at 658 keV which 

is produced in 95% of decays[50]. Other well-defined gamma-rays from 110mAg included 

884 keV, 937 keV, and 1,384 keV. 

106Ru is produced in 4.4% of 239Pu fissions, but only 0.4% of 235U fissions, which 

differ by a factor of 10.8. The strongest 106Ru photon visible in the measurements at ORNL 

is at 622 keV and is emitted in 10% of decays. There is a stronger gamma-ray emitted at 
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511 keV, but since this severely overlaps with the 511 keV escape peak, it is impossible 

to measure 106Ru using this peak[50]. Other well-defined peaks visible in the Catawba 

MOX fuel measured at ORNL were at 1,050 keV, 1,128 keV, and 1,562 keV.  For MOX 

fuel, where nearly all fissions are from Pu, 106Ru has been shown to be a good burnup 

indicator when used with 134Cs and 137Cs due to its low absorption cross section and high 

production[56]. One issue with measuring 106Ru is that it tends to migrate towards the 

center of the fuel pellet, with peripheral-to-center concentrations as high as 1:20[57]. The 

energy of the photon being measured, at 622 keV, is high enough that effects on photon 

measurements due to this migration should be minimal. 

125Sb is produced 3.3 times as much from 239Pu as from 235U, with fission yields 

of 0.11% and 0.03%, respectively[51]. 125Sb beta decays with a 2.8 year half-life. The 

strongest photon from 125Sb visible in the photon measurements at ORNL was the 600 

keV gamma-ray emitted in 17% of decays. There is a stronger 427.8 keV photon, but it is 

too close in energy to the 428.4 keV photon emitted by 106Ru to be discriminated[50]. 

 All three of these nuclides, especially 110mAg and 125Sb because of their relatively 

low fission yields, are impossible to measure in many fuels because of their short half-

lives and low fission yields in 235U. They are only likely to be viable for measurements of 

fuel with some combination of high burnup, low cooling time, and MOX rather than UO2 

fuel. 
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1.3.4.8 Uranium and Plutonium 

Most of SNF is U. Since SNF has a high photon activity, the U produces strong 

self-induced x-ray peaks visible clearly even in typical broad-energy HPGe 

measurements.  

 

Only about 1% of typical SNF is Pu. 239Pu is produced in SNF via the following 

chain: 

 

239 239 239238n U U Np Pu
 

     

 

240Pu, 241Pu, and 242Pu are all produced by one or more neutron absorptions from 

239Pu. This chain effectively stops, however, at 242Pu because 243Pu has a half-life of 5 

hours. The radiative capture and fission cross sections for the main Pu isotopes found in 

SNF are shown in Table 1.1. 

 

Table 1.1. Plutonium Cross Sections[52] 

 

Isotope 

Thermal Radiative 

Capture Cross 

Section [barns] 

Resonance Radiative 

Capture Cross 

Section [barns] 

Thermal 

Fission 

Cross 

Section 

[barns] 

Resonance 

Fission Cross 

Section 

[barns] 

239Pu 271 200 750 300 
240Pu 290 8100 0.05 2.4 
241Pu 361 160 1010 570 
242Pu 19 1100 0.2 0.2 
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Both U and Pu x-rays are at a very low energy, around 100 keV. Due to the high 

density of SNF, the fuel itself acts as a very effective shield for these x-rays, such that they 

have a mean free path of about 0.05 cm, while the diameter of most PWR fuel pins is 

around 0.5 cm[36]. This results in the x-ray signal being measured coming only from the 

U and Pu in the very outer edge of the fuel pin. U is evenly distributed throughout the fuel 

pin. When Pu is produced in LWR fuel, however, it has a significantly higher 

concentration on the very outer edge of the fuel pin due to resonance shielding in the 

fuel[58]. This is convenient for Pu x-ray measurements because only the x-ray signal from 

the part of the fuel with the highest Pu concentration is reaching the detectors. Even though 

only the outer edge of the fuel pin is being measured, it has been shown that the Pu/U x-

ray ratio is directly proportional to the bulk Pu/U content ratio in the fuel[35, 36, 58, 59].  

The U and Pu x-ray peaks scale heavily with background radiation, since they are 

created primarily when fission product gamma-rays knock electrons from U and Pu atoms. 

While gamma peaks have a natural Gaussian shape, x-ray peaks have a natural Laurentian 

shape, which can be more difficult to fit in spectral analysis software. This is addressed 

further later. 

239Pu, 240Pu, and 242Pu have half-lives over 6,000 years, and so are effectively 

independent of cooling time in reference to the time periods experienced by SNF. 241Pu 

has a half-life of 14.4 years, but this is long in terms of most fuels measured, and 241Pu is 

usually only a small portion of the Pu vector, so this results in only a minor dependence 

of Pu on cooling time. 
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1.3.4.9 Cobalt-60 

60Co is not a fission product, but is formed as an activation product in the cladding 

and structural materials surrounding the fuel. Most types of nuclear fuel cladding and 

stainless steel can contain impurities of iron, nickel, and cobalt. Natural cobalt is 100% 

59Co, which becomes 60Co when it absorbs a neutron. 60Co can also be formed in a few 

ways by irradiation of stable isotopes in iron and nickel. Two of these modes of production 

are: 

 

 
59 59 6058n Fe Fe Co n Co


      

 
59 59 6058

EC
n Ni Ni Co n Co     . 

 

In theory, activation products could be used to determine cladding composition 

and/or calculate the fluence experienced by the fuel. However, the exact concentrations of 

these impurities fluctuate and are too hard to determine for 60Co activation to be useful in 

either of these capacities. 

60Co beta decays with a half-life of 5.2 years, which is relatively long when 

compared to the other isotopes being considered in this study but not so long that the 

activity is immeasurably low. 60Co produces two photons from each decay, at 1,173 keV 

and 1,332 keV. This is a high enough energy that there is very little background noise 

from other fission products[50]. 
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1.3.4.10 Bismuth-214 

214Bi is a decay product of 238U which is created as follows: 

 

234 234 234 230 226 222 218 214 214238U Th Pa U Th Ra Rn Po Pb Bi
        
        

 

 

Many 214Bi peaks are visible in older fuel (with a cooling time of around 30+ 

years), where background radiation has gone down significantly. In the other fuels, 214Bi 

is measurable because one of its strongest gamma lines is at 1,764 keV, where there is less 

background than at lower energies. When there is strong activity from 106Ru, the 1,764 

keV peak from 214Bi can be covered up by the 106Ru 1,766 keV peak. However, in the 

measurements at ORNL, they were easily separated using Genie’s interactive peak fitting 

program. While 214Bi does not provide any information about cooling time, burnup, initial 

enrichment, or power history, it has the possibility of indicating the time since the U was 

chemically processed.  
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2. PNAR MEASUREMENTS 

This section describes the Fugen reactor SNF and LANL fresh fuel used in the 

PNAR measurements, the characteristics of the PNAR detector built, the measurement 

procedure, and the results from the SNF measurements and the fresh fuel measurements 

performed. 

 

2.1 Fugen Reactor and Fuel Design 

The Fugen reactor is a heavy-water moderated, light-water cooled reactor. It was 

built as a prototype of an advanced thermal reactor to test the use of mixed oxide (MOX) 

fuel in a heavy-water moderated nuclear power plant. The core contained 224 fuel 

assemblies, each of which has an effective fuel length of 3.7 m, a radius of 5.6 cm, and 

contains 28 fuel pins, as shown below in Figure 2.1. [60] 
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Figure 2.1. Schematic view of a standard Fugen fuel assembly[60]. 

 

The Fugen reactor site provided 8 of these assemblies for PNAR measurements. 

The fuel burnup information and simulated multiplication values for these assemblies are 

shown below in Table 2.1. The assemblies were irradiated MOX fuel over a range of fuel 

burnup and cooling time values. Neutron multiplication was not calculated for the LEU 

assembly since the count rates were too low to get an accurate measurement. 
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Table 2.1. Fugen Fuel Assemblies Measured 

 

Assembly 
Fuel 

Type 

Burnup 

(GWd/MTHM) 

Cooling 

Time 

(yrs) 

Simulated 

Neutron 

Multiplication 

M1 MOX 3.7 10 1.74 

M2 MOX 7.1 10 1.69 

M3 MOX 12.3 10 1.59 

M4 MOX 15.2 10 1.55 

M5 MOX 15.2 15 1.54 

M6 MOX 15.2 20 1.52 

M7 MOX 19.2 20 1.48 

 

LANL performed fuel burnup simulations of Fugen MOX fuel assemblies using 

Monteburns to determine their neutron multiplication. Monteburns is a LANL burn-up 

calculation code (different from JAEA Fugen’s burnup calculation codes). LANL used 

only the official data they got from a published paper / booklet about the Fugen power 

plant along with estimated data from LWR burnup calculations.  LANL used their own Pu 

isotopic composition data for LWR fuel with 28 GWD/MTHM for the initial Fugen fresh 

fuel MOX assembly actinide compositions. This is because the Fugen fresh fuel 

assemblies use recovered Pu from Tokai Reprocessing Plant (TRP) to make the MOX 

fuel. Following the fuel burnup simulations, the spent fuel assemblies were simulated 

inside the detector using MCNPX to predict neutron count rates and prepare for 

measurements. 

 

2.2 Fresh Fuel Design 

The second measurement campaign with the PNAR detector was on fresh fuel with 

a 252Cf source at LANL.  This allowed for more precise measurements in that the isotopics 
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of the fuel and position of the assembly within the detector were better known. LANL has 

a variety of fresh PWR fuel pins, as described in Table 2.2. 

 

Table 2.2: LANL Fresh Fuel Pin Inventory 

 

 LEU DU Gd rod 

Number of rods 204 204 12 

Pellet density (g/cm3) 10.48 10.48 10.48 

Pellet O.D. (cm) 0.851 0.851 0.877 

Rod O.D. (cm) 1.08 1.08 1.08 

Cladding Material Zr-2 Zr-2 Zr-4 

Cladding thickness (cm) 0.115 0.115 0.064 

Rod active length (cm) 103.5 103.5 104 

U-235 enrichment (wt %) 3.19 0.2 3.28 

Gd wt% 0 0 5.12 

 

2.3 PNAR Detector Design 

The PNAR detector, as built for measurements of Fugen fuel, is primarily divided 

into three axial sections, as shown in  

Figure 2.2. The detector consists of three ion chambers and twelve fission 

chambers which combine the following NDA measurements: (1) PNAR ratio, (2) total 

neutron counts, (3) total gamma counts and (4) counts from three sets of energy filtering 

fission chambers. Sections 1 and 2 are together considered the high neutron-multiplying 

region. These sections are filled with polyethylene and have no cadmium (Cd) between 

the fuel and the detectors, allowing neutrons to reflect back and forth between the fuel 

assembly and the detector. The polyethylene surrounding the detectors allows the neutrons 

to thermalize in the detector as if they were in water. Section 3 is considered the low 
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neutron-multiplying section. In contrast to sections 1 and 2, section 3 is filled with air, 

which reduces the number of neutrons which will thermalize near the fuel and reflect back 

to the assembly. Section 3 also has a Cd liner between the fuel and the detectors which 

prevents thermalized neutrons from returning to the assembly to cause more fissions. This 

PNAR detector uses the ratio of counts in the fission chambers in the high-multiplying 

section to counts in the fission chambers in the low-multiplying section to obtain the 

PNAR ratio, which is a measurement of the neutron multiplication of the assembly. 

 

 

 

Figure 2.2: PNAR detector system as built for use at the Fugen site in Japan. 

 

Section 1 has three bare fission chambers which are used to obtain the high 

neutron-multiplying measurement. Section 2 has three ion chambers, which are used to 
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measure the total gamma dose from which the burnup of the fuel can be inferred. They 

could also possibly be used for determining the position of the assembly within the 

detector. 

Section 3 has nine fission chambers, divided into three groups of three fission 

chambers which are each tailored to measure a different energy region of the neutron 

spectrum from the fuel assembly. The three groups of fission chambers in section 3 are 

fast-flux monitors (FFM), Cd-covered fission chambers and bare fission chambers. Each 

of these sets of fission chambers is surrounded with different neutron-absorbing materials 

in order to tailor them to measure different regions of the neutron-energy spectrum.  

The fission chambers in the PNAR detector are 93% 235U. Because of the fission 

cross-section of 235U, shown in Figure 2.3, these fission chambers are mainly measuring 

thermal neutrons when left bare.  

 

 

Figure 2.3. Fission cross-section of uranium-235[50]. 
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There is a Cd layer around some sets of fission chambers as well as between the 

fuel and all but the bare detectors in section 3. This Cd absorbs nearly all of the thermal 

neutrons, due to its absorption cross-section as shown in Figure 2.4. 

 

 
 

Figure 2.4. Absorption cross-section of 113Cd[50]. 

 

The Cd liner between section 3 of the detector and the fuel “bulges out” around 

the bare fission chambers as shown in Figure 2.5. This allows the bare fission chambers 

to measure the thermal flux from the fuel, while keeping thermal neutrons from returning 

to the fuel assembly. 
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Figure 2.5. Diagram of Cd liner in section 3 of PNAR detector. 

 

 Because of the set up shown in Figure 2.5, the bare fission chambers are measuring 

primarily thermal flux from the fuel. The Cd covered fission chambers are on the other 

side of this Cd liner from the fuel, and they are also surrounded with an additional thin 

layer of Cd, which together absorb most of the thermal neutrons. As a result, these 

detectors primarily measure epithermal neutrons. The fast flux monitors are surrounded 

by 1.73 cm of polyethylene, 0.1 cm of Cd, and then another 1.9 cm of polyethylene. The 

goal of these detectors is to detect only neutrons which were fast when they left the fuel 

assembly. The first layer of polyethylene preferentially slows down lower energy 

neutrons. The Cd then absorbs the lowest energy neutrons at this point, which were more 

likely to have been epithermal and thermal when leaving the fuel assembly. The final layer 
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of polyethylene slows down the remaining neutrons, which were likely fast when they left 

the fuel, to the thermal region so they can interact in the fission chambers. The fission 

chambers in Section 3 can also be used to analyse different parts of the neutron energy 

spectrum. An MCNPX input deck used to simulate fresh fuel measurements in this 

detector can be found in Appendix A. The detector built for these measurements is shown 

in Figure 2.6 with the clamp and hose for carrying signal cables above water. 

 

 

Figure 2.6. Fugen detector built for underwater measurements of Fugen fuel 

 

2.4 Fugen Spent Fuel Measurements 

In June 2013, a series of spent fuel measurements were performed in Tsuruga, 

Japan at the Fugen Power Reactor Site. These measurements were performed to 
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experimentally assess the capability of PNAR to determine multiplication and fissile 

content of SNF. 

 

2.4.1 Fugen Spent Fuel Measurement Schedule 

The schedule of events during the two weeks of measurements at the Fugen site is 

shown in Table 2.3. The first three days involved site specific training for LANL staff, as 

well as background measurements and preparations for measurements by JAEA and 

Fugen staff. Over the next eight days, each assembly was measured at least once. The 

measurement plan was drafted in advance based on simulations of PNAR measurements 

of these assemblies to obtain similar counting statistics amongst the assemblies.  

 

Table 2.3. Preparation and Measurement Schedule 

 

June 17 Overnight background measurement, training and preparation 

June 18 Training and preparation 

June 19 Training and preparation, overnight background measurement 

June 20 Measure M7 

June 21 Measure M5, start overnight measurement of U2 

June 22 
Finish U2 measurement, measure M6, start overnight background 

measurement 

June 23 Continue background measurement from 6/22 

June 24 Measure M4, start overnight measurement of M1 

June 25 Finish M1 measurement, measure M3 

June 26 Measure M2 

June 27 

Measure M1, M2, M3, M4, M6, and M7 again for comparison to earlier 

measurements. Also measure M7 3 times to investigate effects of fuel 

positioning within the detector. 
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Before long measurements of each assembly, the assembly was scanned axially at 

a rate of approximately 1 cm per second while collecting 4 second measurements to obtain 

gamma and neutron profiles of each assembly. After the axial scans, one long 

measurement was made for each assembly with the bottom of the fuel 2600 mm below the 

top of the PNAR detector. This position was chosen because it had the highest neutron 

count rate in the axial scan of the first assembly. The actual count times for each of these 

long measurements are shown in Table 2.4. 

 

Table 2.4. Measurement Times for Each Assembly June 20-26 

 

Assembly 
Measurement 

Time (hours) 

M1 14.0 

M2 7.3 

M3 7.0 

M4 3.2 

M5 3.6 

M6 3.1 

M7 3.7 

 

One concern in these measurements was that the axial offset between sections 1 

and 3 (38 cm) would affect the PNAR measurement. To test this, assemblies M4, M5, M6, 

and M7 also had long measurements with the assembly moved down another 38 cm so 

that the bottom of the fuel was 2980 mm below the top of the PNAR detector. This allowed 

for measurements of the same portion of the fuel assembly with section 1 and section 3 

fission chambers. It was determined that the PNAR ratio calculated from one measurement 

location was not significantly different than the PNAR ratio calculated with offset 
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measurements to measure the same position of each fuel assembly with section 1 and 

section 3 detectors. 

Two systematic concerns inherent in these measurements were 1) how stable the 

detector response would be over time and 2) how significant would any random changes 

in lateral position of the fuel assembly within the detector be on the PNAR ratio. To assess 

these issues, the last day of measurements was spent re-measuring most of the assemblies 

for comparison to previous measurements. Assemblies M1, M2, M3, M4, and M6 were 

each measured once more for comparison to measurements made earlier in the week. M7 

was measured twice, for comparison to the measurement earlier in the week and to have a 

set of three measurements to investigate the effects of positioning within the detector. 

Assembly M7 was returned to the fuel storage rack between these two measurements so 

that the positioning would be as random as any other two fuel assembly measurements. 

The members from LANL and JAEA are shown in Figure 2.7 with many of the 

Fugen site staff during measurements in the spent fuel pool area at the Fugen reactor site. 
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Figure 2.7. Measurement team including LANL, JAEA, and Fugen by spent fuel pool 

during spent fuel measurements. 

 

2.4.2 Fugen Measurement Results 

This section includes results and analysis from the Fugen PNAR Measurements. 

2.4.2.1 Axial Scans 

Each assembly was scanned twice (up and down) before its first long 

measurement. An example of the total photon and neutron (section 1) counts from 

assembly M7 is shown in  

Figure 2.8, where 0 mm is when the bottom of the fuel assembly is at the top of 

the PNAR detector. As the plot moves to the right, the assembly is moving downwards 

through the PNAR detector at roughly 10 mm/sec. The indentions in the photon flux line 

up axially with the spacer plates in the assembly, and the dip around 2200 mm in the 

neutron spectrum lines up with a larger spacer grid present in all assemblies.  
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Figure 2.8. Photon and neutron scans of assembly M7 in 4 second increments. 

 

Comparisons between gamma and neutron scans of different assemblies are shown 

in Figure 2.9 and Figure 2.10. It is clear that they follow the same basic shape but with 

different magnitudes.  Information on each assembly’s burnup and cooling time can be 

found in Table 2.1. Assemblies M1-M4 have the same cooling time and increasing burnup, 

M4-M6 have the same burnup and increasing cooling time, and M7 has the same cooling 

time as M6 but a higher burnup. It was expected that the counts in both the ion chambers 

and fission chambers would increase from M1-M4, decrease from M4-M6, and then for 

M7 to be higher than M6. This behavior was observed in the measured data.  
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Figure 2.9. Total ion chamber counts from scans of each assembly during first week of 

measurements. 

Figure 2.10. Fission chamber scans from each assembly during first week of 

measurements. Shown here are the total counts for the three fission chambers in section 

one. 

2.4.2.2 Ion Chamber Measurements 

The ion chambers functioned well during the measurements except at very low 

count rates (such as background measurements). The ion chamber count rate of each 
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assembly versus fuel burnup is shown in Figure 2.11. Ion chamber counts for this plot are 

used from long measurements of each assembly, and have count rate errors of less than 

1% which cannot be seen on this plot. As expected, the ion chamber count rate increases 

with burnup, but decreases with cooling time. The burnup and cooling time for each 

assembly can be seen in Table 2.1. The ion chamber was less sensitive than typical ion 

chambers at low count rates due to the use of an analog-to-digital converter box that was 

necessary in order to input the ion chamber signal into the data acquisition system 

designed for neutron detection. 

Figure 2.11. Total Ion Chamber counts per second versus burnup for assemblies 

measured on June 27. 
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2.4.2.3 PNAR Ratio 

Because all three sets of fission chambers in section 3 are in the low multiplying 

region, the PNAR ratio could be calculated with different sets of section 3 fission 

chambers. Several combinations were investigated, but the ratio chosen for this research 

is: 

Section 1

Bare - Cd
PNAR  (2.1) 

It was discovered that by using a difference between the bare and Cd covered tubes, 

the signal was dependent on epithermal neutrons which created a greater change in signal 

across the range of fuel measured. The results of PNAR measurements of the Fugen SNF 

assemblies are shown in Figure 2.12. In Figure 2.12, M1 appears to be a statistical outlier. 

The cause for this outlier point is undetermined, but appears to be either an assembly 

misidentification or measurement error. Resolution of this outlier will be left as future 

work. 
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Figure 2.12. PNAR Ratio for Fugen SNF assemblies. 

This plot shows a 73% change in measured PNAR signal over the range of fuels 

measured. The count rate statistics errors on these points are too small to be visible at less 

than 2%. With the count rate statistics and standard deviation of the line fit to assemblies 

M2-M7, the multiplication of an assembly can be calculated with a standard deviation of 

.02, or roughly 1%. 

2.4.2.4 Pu Effective 

As described in Section 1.3.2, Pueff is an indirect measurement of the plutonium 

present in a fuel assembly. In fuel assemblies from the same reactor, the Pueff value is often 

directly related to the multiplication, which is what PNAR measures. C1 and C2 were 

calculated using the “MCNPX method” from Hu, 2010[47], which involves using flux 

multipliers in MCNPX. The values of C1 and C2 were calculated to be 0.435 and 1.33, 

respectively. Figure 2.13 shows the multiplication of the Fugen assemblies as a function 
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of Pueff. The isotopics of each assembly were calculated using LANL’s burnup 

simulations, and these isotopics are used to calculate Pueff and simulate an assembly in 

MCNPX to determine multiplication. The labels show that Pueff decreases with an increase 

in burnup for this fuel, which is expected since it is MOX fuel. 

Figure 2.13. Pueff vs. multiplication in Fugen assemblies 

Figure 2.14 shows the PNAR ratio measured from Fugen assemblies as a function 

of Pueff in grams in the full assembly. This is a comparison of a simulated value (Pueff is 

based on simulated isotopics) to a measured value. They trend quite well, except for the 

outlier data point of M1. This is a result of the M1 data point being an outlier in Figure 

2.12. 
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Figure 2.14. Pueff vs. measured PNAR Ratio 

 

Without the outlier at M1, this plot shows a 77% change in signal over the range 

of measurements. With the standard deviation of the line fit to assemblies M2-M7, the 

Pueff content of an assembly can be calculated to within 54 g, or 4.2%. This number could 

likely be improved if calibrated with fuel with better known isotopics. 

 

2.5 LANL Fresh Fuel Measurements 

2.5.1 Fresh Fuel Measurement Experiments 

Fresh fuel racks were built specifically for these measurements since the PNAR 

detector built for Fugen measurements does not fit typical PWR or BWR assemblies. This 

rack design is shown in Figure 2.15. There is a solid base plate, two fuel rod spacer plates, 

and a shaft in the center. The fuel rod spacer plates are attached to each other and the base 

plate with threaded rods which allow the fuel rod spacer plates to be moved and keep them 

aligned. The fuel rod spacer plates each have three threaded slots around the perimeter. 
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Small set screws in these slots allow for precise positioning of the assembly within the 

detector. The shaft in the center of the assembly racks is for the 252Cf source during 

measurements. 

Figure 2.15. Assembly rack design for LANL fresh fuel PNAR measurements. 

Two assembly designs were developed. The first design, assembly 1, is similar to 

Fugen fuel in that it has the same quantity of fuel per unit length and radius as Fugen fuel, 

but with PWR pins. In order to keep the same mass of fuel per unit length of the assembly, 

60 PWR pins were used in this design. The assembly radius was kept the same as the 

Fugen fuel assemblies – 5.6 cm. The other design, assembly 2, is similar to typical LWR 

fuel in that it has the same fuel/moderator ratio and a thinner gap between the fuel and the 

detector. This design was chosen to have a water gap between the fuel of 1/8” – similar to 

the spacing found in PWR spent fuel storage racks. This resulted in an assembly radius of 

6 cm. The assembly was also chosen to have a similar fuel to moderator ratio as typical 
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PWR fuel, which resulted in having 51 PWR pins. The assembly designs are shown below 

in Figure 2.16. The rectangular slots around the perimeter of the assemblies are for the set 

screws which are used to specify the location of the assembly within the detector. 

 

 

Figure 2.16. Assembly designs 

 

Both of these designs were tested in multiple configurations. For each 

measurement, the source was placed in three locations: centered on the section one fission 

chambers, centered on the section three fission chambers, and midway between those two 

locations. In some configurations, a scan of the entire assembly was taken by moving the 

source in 2” increments from 4” above the detector lid to 6”below the bottom surface of 

the detector.  
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Each assembly was measured at 5 ‘effective enrichments’ obtained by evenly 

mixing the Depleted Uranium (DU) and LEU pins. Each assembly was measured at 

different positions within the detector to estimate effects of fuel assembly location on the 

PNAR ratio. A measurement was also made with LEU and DU pins distributed unevenly 

throughout the assembly to test the penetrability of the PNAR measurements. 

For the effective enrichment measurements, 5 configurations were chosen for each 

of the two assembly designs. The lowest enrichment was 0.2% 235U, all DU pins. The 

highest enrichment was 3.19% 235U, all LEU pins. Three other configurations were chosen 

between those two values by mixing the LEU and DU pins evenly throughout the 

assembly. These arrangements are shown in Figure 2.17 and Figure 2.18. 

One of the concerns in SNF NDA measurements is the precise location of the fuel 

with respect to the detector. Most owners of SNF will require some gap between the 

detector and the assembly – they need some space in case the fuel is bowed and would 

prefer the detector to not touch or rub against the fuel to prevent fuel failure. In most cases, 

this gap creates some uncertainty about the position of the fuel assembly with respect to 

the detector. In the PNAR detector specifically, the 120º symmetry could potentially offset 

any effects of an un-centered fuel assembly. One of the goals of the fresh fuel 

measurements was to determine if this position uncertainty resulted in a change in the 

PNAR ratio. 
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Figure 2.17. Assembly 1 enrichment configurations. 

Figure 2.18. Assembly 2 enrichment configurations 
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In order to test the effect of a change in the position of the assembly within the 

detector on the PNAR signal, set screws were adjusted in the fresh fuel rack assembly 

plates to set the assembly at specific locations within the detector. The measured locations 

are shown below in Figure 2.19. These are worst case scenarios, with the assembly entirely 

against a wall of the detector. The positions were chosen with respect to the 120° 

symmetry of the detectors – one off-centered location is towards the FFM, while the other 

is between two FFMs. Ideally, the higher counts from one or two detectors closest to the 

assembly would offset the lower counts from one or two detectors farther from the 

assembly. 

 

   

Figure 2.19. Positioning measurements: assembly centered, assembly towards cable port, 

and assembly away from cable port. 

 

Another concern in general spent fuel measurements is the penetration of the 

measured signal. Ideally, a SNF NDA measurement would measure an average of the 

entire fuel assembly. Realistically, some measurements are especially weighted towards 

one region of the fuel, such as the outer perimeter, and don’t effectively measure other 

parts of the assembly, such as the center. To test the penetrability of the PNAR detector, 
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the same number of LEU and DU pins from the 2.49% assembly 2 design were arranged 

unevenly throughout the assembly, with all the LEU pins on the outside edge of the 

assembly. If PNAR was preferentially measuring the outside of this assembly, the PNAR 

ratio would indicate a higher enrichment than in the evenly distributed 2.49% case. The 

assembly configurations for both of these cases are shown in Figure 2.20. 

 

 

Figure 2.20. Assembly configurations for evenly spaced 2.49% distribution and 

unevenly spaced 2.49% distribution used in penetration measurements. 

 

2.5.2 Fresh Fuel Measurement Results 

Source scans were performed in many of the measurement configurations. In these 

scans, the source was moved axially in 2” increments from 4” above the top of the detector 
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to 4” below the bottom of the detector. The results from each set of fission chambers for 

the scan of assembly 1 at full LEU pins (3.2%) are shown below in Figure 2.21. 

Figure 2.21 Source Scan for 3.2% configuration of fresh fuel assembly 1. 

This shows that the fuel above and below the detector are negligibly affecting the 

total count rates. It shows that the curves for each detector response are not skewed, and 

they all have relative standard deviations between 0.9 and 1.2, which makes the midpoint 

of each detector a reasonable location for fresh fuel measurements. 

This does show that the measurement center for the FFM detectors is slightly 

higher than the measurement center of the bare and Cd covered detectors. This is because 

while the center of all three fission chambers is the same, the polyethylene and cadmium 

around the FFMs is actually centered slightly higher, which affects the neutrons creating 

fissions in those fission chambers. This is a slight design factor that could be modified in 
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the future, but it is simply a calibration issue for point source measurements and not an 

issue in continuous source measurements as long as the fuel is relatively constant over a 

couple inches, as is typical for commercial SNF. 

As mentioned in section 2.2.3.3, the PNAR ratio in this detector can be calculated 

as a ratio of the high multiplying region to any of several combinations of the low 

multiplying region detector sets. In the spent fuel measurements, the difference between 

the bare and cadmium tubes was used as the low multiplying region measurement, which 

highlights effects due to epithermal neutrons. This ratio was used again for the fresh fuel 

measurements for consistency, but since all fission chambers were assessed and fixed 

upon return to LANL, the sum of all detectors of each type was used rather than a single 

tube As such, the PNAR ratio used for fresh fuel measurements is: 

 
Section 1

Bare-Cd
PNAR  . (2.2) 

 

The PNAR ratios for assembly 1 and assembly 2 are shown in Figure 2.22 and 

Figure 2.23, respectively. Count rate errors for these plots are less than 1% and too small 

to be visible. 
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Figure 2.22. PNAR ratios for fresh fuel measurements of assembly 1 at different 

effective enrichments. 

Figure 2.23. PNAR ratios for fresh fuel measurements of assembly 2 at different 

effective enrichments. 
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These measurements show that the PNAR Ratio trends quite linearly with 

enrichment of the assemblies. The total change in signal for assembly 1 and assembly 2 

designs are 40% and 45%, respectively. The standard deviation of the best fit lines results 

in a standard deviation of 0.12% 235U in estimating the effective enrichment, or 7% of the 

average effective enrichment. 

Another series of fresh fuel measurements was to determine the effect of position 

of the assembly within the detector on the PNAR ratio. The racks for each fresh fuel 

assembly have three set screws on each grid plate which were used to specify the location 

of the assembly within the detector. To assess the worst case scenarios given the 120° 

symmetry of the detector, two measurement locations were selected for the full LEU 

configuration of each measurement design. These were shown in Figure 2.19. The results 

from the measurements are shown in Table 2.5 

Table 2.5. Fresh fuel assembly positioning measurement results. 

% Difference in PNAR 

ratio from measurement 

with centered assembly 

Measurement location 
Assembly 1 

(Fugen type) 

Assembly 2 

(PWR type) 

assembly away from cable port -3.0 -2.9 

assembly near cable port -7.7 -2.5 
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In most cases, the change in PNAR ratio was under 3%, which corresponds to 

change in initial enrichment of about 0.25% 235U. The one case with a change in PNAR 

ratio of almost 8% was with the wider water gap. The assembly with a water gap of only 

¼” was under 3% for both cases. 

Another detector response tested in these measurements was the penetration of the 

PNAR signal. The same number of DU and LEU pins used in the evenly distributed 2.49% 

235U configuration were unevenly distributed such that the LEU pins were all on the 

outside and the DU pins were all on the inside. These two configurations were shown in 

Figure 2.20. The PNAR ratios for the evenly and unevenly distributed configurations were 

14.45 and 14.47, relatively, for a change in signal of 0.1%, which is better than the errors 

in the measurements. This indicates that the distribution of LEU and DU pins in the 

assembly are of little importance to the PNAR signal, at least in an assembly the size of 

the Fugen assemblies. This is a good sign for partial defect measurements. 

 

2.5.3 Fresh Fuel Measurement Simulations 

Simulations were performed of many of the measurement configurations for 

benchmarking purposes. A comparison of the simulations to experiments for each set of 

fission chambers for each effective enrichment configuration of assembly 1 is shown in 

Figure 2.24. 
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Figure 2.24. Comparison of experiment to simulation for each set of fission chambers 

 

 

Figure 2.24 shows that the section 1, FFM, and Cd covered tubes have flat lines 

for experiment to simulation ratios. This indicates that simulations are accurately 

predicting trends in measurements. The vertical distance between these lines is likely due 

to difference in absolute calibration of the fission chambers. The slope of the bare fission 

chamber comparison is due to the fact that simulations show a trend of about 30% of the 

total signal, while experiments had almost the same count rate for each configuration. This 

is the case for both assembly 1 and assembly 2 configurations. The cause for this is still 

unknown, but one possibility is that these bare fission chambers are the most sensitive to 

changes in multiplication in the fuel, and are being affected by the moderating material 

surrounding the measurement set-up more than the other fission chambers. This is a 

concern for future simulations of the PNAR detector, but the trend in experimental PNAR 
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ratio for both sets of measurements still shows that the PNAR ratio is an effective 

measurement of multiplication. 

 

2.6. Conclusions from PNAR Application to SNF Safeguards 

Through experiment and simulation it has been shown that PNAR is applicable for 

safeguarding SNF. When supplied with appropriate SNF parameters, it is expected that 

PNAR can measure SNF plutonium content to within 4.2% (or 54 g 239Pueff) and detect 

the diversion of at least 25% of the pins from an assembly. The technique also has 

application to fresh fuel measurements and can accurately measure 235U in LEU fresh fuel 

assemblies. 
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3. PHOTON MEASUREMENTS 

In the previous section, we assessed the capability of PNAR to determine 239Pueff 

in SNF. PNAR could measure this with a high degree of accuracy when supplied with 

sufficient information about the fuel assembly to allow a model of the assembly that links 

multiplication to 239Pueff (specifically initial enrichment, burnup, and cooling time). This 

information could be declared by the operator; however, in safeguards it would be 

preferred to have an independent measure of any operator-supplied information. In this 

chapter, we will show that this fuel assembly information can be acquired from photon 

measurements of the assembly. Several measurement campaigns of solid SNF pins were 

conducted at ORNL, covering a range of burnups, cooling times, and fuel types to 

demonstrate this capability using commercially available detector systems. 

This research started by determining what signals were identifiable with 

commercially available broad-energy coaxial and low-energy planar HPGe detectors. 

Next, simulations were performed to investigate how each of these signatures responded 

to changes in a set of fuel parameters. Then, a sensitivity characterization was performed 

by changing individual fuel parameters in simulations. These simulations were performed 

to determine which signatures were the best indicators for individual fuel parameters. 

While some of the signatures are more useful than others, and some signatures are only 

applicable to a subset of SNF (such as with low cooling times due to a short half-life), the 

goal of this research was to determine what is possible. 

This research focuses on photon measurements of solid pressurized water reactor 

(PWR) fuel pins in air due to the availability of this fuel. In a safeguards application, these 
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measurements would likely be made with the assembly in water but using an air filled 

collimator. Thus, we expect these measurements to well approximate the application 

configuration. It may be useful for future measurements to be conducted on entire 

assemblies to verify the accuracy of this technique for entire assemblies as opposed to 

individual pins[14]. 

In this research we concentrated on the usage of ratios of signals to provide more 

robust analyses. Since photon signals can depend on many factors (including geometry, 

detector calibrations, and material properties), taking the ratio of two signals can often 

decrease the effect that lack of knowledge of these factors can have. 

 

3.1 ORNL ADEPT Facility Measurement Setup 

The spent fuel pin measurements were performed in hot cells at the Irradiated Fuels 

Examination Laboratory (IFEL) at ORNL. The IFEL hot cells have a precision positioning 

system called the Advanced Diagnostics Evaluation PlaTform (ADEPT) which was used 

for all the spent fuel pin measurements used in this study. The ADEPT system is shown 

in Figure 3.1 with a fuel pin in the hot cell during the October 2011 measurements. The 

yellow tint of the photographs inside the hot cell is due to the leaded glass used in the hot 

cell windows. 
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Figure 3.1. ADEPT system with a fuel pin placed directly in front of the collimator. 

 

The ADEPT system uses a digital control system to measure the length of each 

fuel pin and adjust its position inside the hot cell so that various axial positions along the 

fuel pin can be measured through the beam port. There are manipulators inside the hot cell 

which are controlled manually from outside the hot cell. These manipulators are used to 

move fuel to and from the ADEPT system. For some measurements, they were also used 

to remove fuel from the shipping tubes the fuel had been transported in, as shown in Figure 

3.2. 

 

 
 

Figure 3.2. The ORNL technicians removing the Three Mile Island SNF from its 

shipping tube using the claws inside of the hot cell 
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The ADEPT system is situated so that the fuel is directly in front of one of the 

beam ports to the outside of the hot cell. The outside of the beam port is about 218 cm 

from the center of the fuel pin. The beam port is a rectangular slit which can be adjusted 

in thickness with a movable plate inside the collimator. The collimator can be seen on the 

inside of the hot cell in Figure 3.1.  

Figure 3.3 shows a detector, dewar and the outside of the beam port during the 

October 2011 measurements.  

 

 
 

Figure 3.3. HPGe detector SNF photon measurement through the hot cell wall using the 

stainless steel collimator 

 

Two sets of measurements were performed for each fuel pin. Measurements with 

a coaxial HPGe ORTEC PopTop detector using ORTEC Maestro software were used to 

acquire a broad-energy spectrum. This detector was usually set to collect data between 30 
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keV and 2040 keV, but cannot sufficiently resolve many peaks in SNF below 120 keV. A 

second set of measurements were taken with a Canberra Low Energy Germanium (LEGe) 

planar detector designed to measure energies between 30 keV and 300keV. The planar 

detector measured a low-energy spectrum which was usually set to collect data between 

30 keV and 300 keV. For these measurements, long planar detector count times were used 

to provide good resolution of the 103.7 keV Pu X-ray peak while using a very long and 

thin collimator (resulting in a microscopic beam spot). This detector setup is likely not 

practical for field use and could possibly be replaced with a commercially available 

segmented HPGe planar detector (using up to 800 miniature HPGe crystal segments in 

one detector) with a specialized small collimator array. More information about the 

detector setup and measurements can be found in References [58] and [61]. 

Because the flux profile in a nuclear reactor is not homogeneous, not all fuel in the 

reactor reaches the same burnup. Of particular interest to measurements of single pins is 

the axial flux variation. Because the axial flux is largest in the center of the reactor, the 

ends of the fuel pin are at a lower burnup than the center. This was exploited for these 

measurements to collect data from several points along each pin at different burnup values. 

This allowed some investigation of how photon signatures changed with burnup when all 

other parameters were held constant.  

 

3.2 Description of Measured Fuels 

Fuel rods from North Anna, Three Mile Island, Catawba, and Calvert Cliffs were 

measured at the ORNL ADEPT facility. The first measurements investigated in this paper 
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were performed on North Anna fuel in July 2008. This fuel pin had an initial enrichment 

of 4.199 wt.% 235U, cooling time of 4.2 years, and burnup values along a single fuel pin 

from 35 to 67 GWd/MTU. In January 2009, another measurement campaign looked at a 

fuel pin from the Three Mile Island unit 1 reactor. This fuel pin had an initial enrichment 

of 4.0 wt.% 235U, cooling time of 13.3 years, and a burnup range of 27 to 59 GWd/MTU. 

In September 2009, a fuel pin from Catawba with MOX fuel was measured. This fuel had 

been produced with weapons-derived Pu. The original fuel was 4.4% Pu (5.25% of the 

heavy metal was Pu) and depleted U with 0.27% wt 235U. The Catawba MOX fuel had a 

cooling time of 9 months and burnups from 18 to 52 GWd/MTU. In October 2009, 

measurements were taken on a fuel pin from Calvert Cliffs. This pin had an initial 

enrichment of 3.038 wt.% 235U, a cooling time of 27.5 years and an estimated burnup of 

37 GWd/MTU. In October 2011, more measurements were performed on the same Three 

Mile Island fuel pin, and at the time of this measurement the fuel had a cooling time of 

16.1 years. Altogether, these measurements cover cooling times from 9 months to 27.5 

years, burnups of 18 to 67 GWd/MTU, and both uranium dioxide and mixed oxide fuel. 

Fuel parameters for the measured fuels are shown in Table 3.1. More information about 

the histories of these fuels and specific measurement set-up information can be found in 

References [58] and [61]. 
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Table 3.1. Parameters of SNF Measured at ORNL. 

 

Fuel 
Burnup 

[GWd/MTHM] 

Initial 

Enrichment 

Cooling Time 

[years] 

North Anna 35-67 4.19% U235 4.2 

Three Mile Island 27-59 4.0% U235 13.3, 16.1 

Calvert Cliffs 41 3.038% U235 27.5 

Catawba (MOX 

fuel) 
18-52 

4.4% Pu with 

DU 
0.75 

 

 

3.3 Spectral Analysis of Fuel Measurements 

The collected spectra were analyzed using GENIE 2000 software to determine 

photopeak energies and net peak areas, identify isotopes present in the fuel, and determine 

the relative isotope activities.  

 

3.3.1 Spectrum Analysis Software 

The Canberra spectrum analysis program, GENIE 2000, was used to analyze the 

spectra collected from the various measurement campaigns. In order to ensure that GENIE 

calculated peak areas correctly and consistently for each spectrum, an interactive peak fit 

tool was utilized to visually identify how well GENIE’s automated analysis fit the 

measured data. This involved ensuring that the background was fit accurately and looking 

for overlapping peaks which were incorrectly being measured as one peak by GENIE’s 

automated peak fitting process. Two screenshots from this interactive peak fit program are 

shown in Figure 3.4a and Figure 3.4b. They show the impact of the interactive peak fit 

software for a small portion of a complicated spectra. Each figure displays several 
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features. The green squares in the top half of each image are individual data points with 

counting uncertainties (the black lines above and below each point) for each channel. The 

calculated peak fit is shown as the black curve and associated red striped area. The 

calculated background is shown as the solid pink area below each peak. The residuals (or 

difference between the measurement and GENIE’s fit for that point) for each channel are 

shown as the green squares in the lower half of each image. The red horizontal lines in the 

lower half of each image are at the same value in each image, and mark the area within 

which the residuals should fall if the region is fit correctly. Ideally, the residuals would be 

within these red lines and randomly scattered, as in Figure 3.4b. The definite curve visible 

in the residuals of Figure 3.4a indicates that a second peak is present in the measurement 

but not accounted for in GENIE’s automated fit. This peak has been manually added in 

Figure 3.4b. GENIE 200 fits most gamma-ray peaks, which have a natural Gaussian shape, 

very well. However, GENIE 2000 does not fit the natural Lorentzian shape of x-ray peaks 

well. Since ratios are being used in this work instead of direct measurements, trends and 

relative changes are more important than absolute values. Therefore, it is more important 

that the peaks are fit in the same manner for each spectrum than that the actual value of 

each peak area is accurate. For this reason all x-ray fits were manually adjusted using the 

interactive peak fit program. To calculate peak areas for U x-rays, manual measurement 

regions were placed around the U 98 keV x-ray peak – which was well isolated – to 

compute the net peak area. The Pu 103 keV x-ray peak was too close to the 155Eu 105 keV 

peak to fit in this method. The multi-peak region including these two peaks was manually 

fit in each spectrum, keeping as many features constant as possible, and it was assumed 
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that GENIE 2000 fit both these peaks in the same manner within the interactive fit program 

for each spectrum. 

 

 
 

     (a)           (b) 

Figure 3.4. Interactive peak fit showing (a) fit directly from GENIE 2000 automated fit 

and (b) fit after manual correction by adding an additional peak in the interactive peak fit 

program. In (a) and (b), the upper half shows the spectra and the lower half shows the 

residuals. 

 

 

3.3.2 Visible Nuclides 

The nuclides visible for each group of measurements were identified. Isotopes with 

a half-life greater than ten days, along with decay products of these isotopes, were added 

to a library of fission products for use with the GENIE software. This half-life criterion 

was chosen because the youngest fuels dealt with in this analysis, and in most practical 

applications, are at least six months old. By this point, isotopes with half-lives less than 
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ten days are unlikely to be visible. This library was used with the peak identify feature in 

GENIE to identify the nuclides visible in each spectra.  

 

Table 3.2 Measurable Nuclide Presence in the Four Fuels Measured. 

Nuclide NA TMI CC MOX 
137Cs All Coax All Coax All Coax All Coax 
134Cs All Coax All Coax All Coax All 
154Eu All All All Coax All 

144Ce* High BU Coax None None All 
125Sb High BU coax All Coax None All 

110mAg High BU Coax None None All Coax 
106Ru All Coax None None All Coax 
60Co All Coax All Coax All Coax All Coax 
214Bi All Coax All Coax All Coax All Coax 

U x-ray All All All Coax All 

Pu x-ray All Planar All Planar All Planar All 
155Eu All Planar All Planar All Planar All Planar 

241Am None All Planar All Low BU Planar 

*While 144Ce is one of the commonly used isotopes for measuring cooling time, this 

usually takes advantage of the low background around 144Ce’s 2185 keV peak. None of 

these measurements extended to this high of an energy. 

 

Table 3.2 lists the presence of each isotope identified in the measured fuels. In this 

table, the entries list the measurements in which each signal was visible. For example, 

106Ru was seen in all coax measurements for the North Anna and Catawba MOX fuel 

(mostly due to the relatively short cooling times), but not in the coaxial spectra for Three 

Mile Island or Calvert Cliffs, or in any of the planar spectra. Figure 3.5 - Figure 3.7show 

some examples of the measured spectra.  

Figure 3.5 shows a close up of the x-ray region for one of the low burnup Catawba 

MOX measurements (with a 10 hour count time).  
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Figure 3.6 shows the extent to which 134Cs is still visible in the Calvert Cliffs fuel 

after almost 30 years cooling time. The strongest 134Cs 604 keV peak is almost completely 

obscured by Compton background from the 137Cs 662 keV peak. However, the 134Cs 795 

keV peak is still clearly visible, with a net peak area uncertainty of 2.9% after a 4.2 hour 

(live time) count.  

Figure 3.7 displays the visibility of short-lived isotopes 110mAg and 106Ru in 

relation to the strongest 137Cs and 134Cs peaks in the Catawba MOX fuel. This 

measurement was the highest burnup along the rod, at 52.5 GWd/MTHM, but the peaks 

are clearly visible at lower burnups as well. 

 

 
 

Figure 3.5. X-ray region of Catawba MOX fuel at position 1965. 

 

 

 
 

Figure 3.6. 600 keV to 800 keV region from Calvert Cliffs coax measurement. 
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Figure 3.7. 600 keV to 670 keV region from Catawba MOX fuel at position 1865. 

 

3.3.3 Determining Relative Isotope Activity Ratios 

The net peak areas from GENIE 2000 were used to determine the isotope activities 

in each fuel. However, even in measurements of a single nuclide with multiple photon 

peaks, the known ratios of intensities of the peaks do not directly correspond to the peak 

heights in the spectra. This is because detector efficiencies and escape probabilities from 

the fuel (i.e., the probability that a photon born in the fuel rod escapes from the fuel rod 

and cladding) are both functions of energy. Detector efficiency calibration curves can be 

obtained by measuring a source with several photon peaks with known intensity ratios 

(such as 152Eu) in a wide range of energies. Once generated for a detector, this calibration 

curve can be applied to ratios as a correction. Escape probabilities can be calculated in 

MCNP if the fuel composition and geometric specifications are well known. These 

calculations depend on geometric specifications, densities, and mean free paths in 

materials. These factors will not significantly change over the life time of SNF and should 

be the same for all fuel of a certain design. If several measurements are being taken on 

fuel with the same fuel composition and geometric specifications, as is often the case in 
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safeguards measurements, this information can be calculated once and can be used to 

correct ratios of future measurements. 

134Cs/137Cs ratios were used to determine the burnup for each set of measurements. 

ORIGEN simulations were run for each fuel over the known power history and cooling 

times, but with varying power levels to simulate the axial power distribution the fuel rod 

experiences in the reactor. The calculated 134Cs and 137Cs atom densities were compared 

to measured 134Cs/137Cs ratios to determine burnup. To account for differences in the 

energies of peaks used, detector efficiency curves were obtained with a 152Eu source and 

escape ratios were calculated through MCNP simulations. Differences in peak intensities 

were also taken into account in the ratios. For more information on the process of 

calculating burnup base on photon measurements in a fuel with known geometric 

specifications, cooling time, power history, and initial enrichment, see Section 3.1 of 

Reference [58]. 

 

3.4 Fuel Measurement Results 

Using the planar detector provided the unique opportunity to measure several U x-

rays, as well as the main Pu x-ray, in spent fuel and to use these as a monitor of burnup 

without the need for a priori knowledge of the fuel history and dimensions. The fact that 

the half-lives of most U and Pu isotopes are much longer than the age of any SNF means 

that this ratio is relatively independent of cooling time, unlike the 134Cs/137Cs ratio often 

used to calculate the burnup of SNF measurements. Since the energies of the U and Pu x-

ray peaks differ by only ~5 keV, the detector efficiency and escape ratios are not needed 
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in order to draw meaningful conclusions. Simulations later in this section show that both 

bulk U and bulk Pu are insensitive to initial enrichment. This adds to the convenience of 

using this ratio as a potential burnup monitor in the field if little information is known 

about the fuel being measured. In addition, UO2 fuel is known to have zero Pu content 

before irradiation which adds an anchor point to correlations. The Three Mile Island and 

Catawba MOX measurements indicate that Pu x-ray/U x-ray ratios scale very well with 

burnup.  Figure 3.8 shows the Pu/U x-ray ratio for the Three Mile Island fuel 

measurements. 

 

 
 

Figure 3.8. Ratio of Pu 103 keV x-ray to U 98 keV x-ray vs. burnup for Three Mile 

Island fuel. 

 

As expected from normal LWR fuel, this indicates that the Pu content grows with 

burnup, but levels off as the Pu builds up enough to become a decent source of fissions. 
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This plot was fit with a second degree polynomial, but was not manually anchored at the 

origin, so it is promising that the y-intercept is almost zero, which is expected as described 

above.  

Figure 3.9 shows the Pu/U x-ray ratio for the Catawba MOX fuel as a function of 

burnup. Count rate errors on these ratios are below 1% and are too small to be seen. This 

shows the expected downward trend in Pu content in Catawba MOX fuel as the Pu in the 

original fuel is burned off even though Pu is also building up from 238U neutron 

absorptions. The y-intercept suggests that the initial Pu content was 5.35% of the total 

heavy metal content of the fuel, which has a relative error of only 2% from the actual value 

of 5.25%. 

 

 
 

Figure 3.9. Ratio of Pu 103 keV x-ray to U 98 keV x-ray vs. burnup for Catawba MOX 

fuel. 

 

The ratio of the 155Eu 105 keV peak to the 98 keV U x-ray peak (shown in Figure 

3.10) is another promising burnup indicator measurable with planar detectors but not 
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typical coaxial detectors. The ratio of any fission product to a U x-ray peak should have a 

value of zero when extrapolated to the fresh fuel case. This plot has a y-intercept of 0.0015, 

which is very close to zero even for the low magnitude of the ratio measurements. 

 

 
 

Figure 3.10. Ratio of 155Eu 105 keV peak to 98 keV U x-ray peak vs. burnup for Three 

Mile Island fuel. 

 

 

3.5. Sensitivity Analysis 

In order to determine how much knowledge about the history of SNF can be 

obtained from photon measurements, it is necessary to determine how each signal depends 

on different fuel history parameters. There are many parameters which could change 

isotopic composition of the fuel. These parameters include burnup, cooling time, power 

level of the last burn cycle, total days of shutdown before the last burn cycle, initial 
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enrichment, moderator temperature and density, cladding composition and thickness, fuel 

assembly pitch, and burnable poisons. 

This section discusses a series of sensitivity simulations performed with 

MONTEBURNS to investigate how each of the signals found in the SNF measurements 

at ORNL depends on several of these parameters. The parameters investigated here are 

initial enrichment, moderator density, soluble boron concentration in the pool water, 

power level, and power cycle. A range was selected for each of these parameters based on 

the range seen in the fuels measured at ORNL. Each time a parameter was perturbed for 

the sensitivity analysis, it was randomly sampled in this range. Burnup was not considered 

an input parameter because it is really a result of combinations of power level and power 

cycle. Burnup is a main factor in many isotopes’ concentrations, though, and it is 

considered in the power level and power cycle analysis. 

Each photon signature’s dependence on each individual fuel parameter was tested 

as well as its dependence on combinations of changes in multiple parameters. First, a 

reference fuel was chosen in order to be more representative of fuels typically measured 

in safeguards scenarios. This was considered the ‘base case,’ and every other simulation 

was compared to it. Using relative changes rather than absolute values makes this study 

more widely applicable and mitigates possible errors in the inputs or fuel simulation in the 

same manner as taking ratios of photon peaks rather than trying to use absolute activities. 

Since MONTEBURNS does not provide statistical errors, the base case was run 

ten times with different starting seed values to obtain statistical errors for each signature 
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at each cooling time. It was assumed that these percentage errors could be applied to all 

other simulations at the same cooling times. 

To investigate effects of changing each parameter on each fuel signature, and thus 

how well that fuel signature is an indication of that fuel parameter, each parameter was 

changed up and down from the base case.  

3.5.1 Reference Fuel Model 

The reference fuel pin used in these simulations was chosen with the intention of 

being representative of typical fuel measured in safeguards applications. A 17x17 PWR 

fuel pin was used with initial enrichment of 4%, 45 GWd/MTU burnup, 5 years cooling 

time, and a power history of three cycles of 455 days at 33 W/g with shutdowns of 20 days 

between each cycle and sitting out of the reactor for one cycle after the first two. This case 

also had 0.715 g/cc moderator density and 500 ppm of natural boron in the water. This 

reference fuel pin became the ‘base case’ with which all other simulations were compared. 

Many factors of the MONTEBURNS spent fuel sensitivity simulations are the 

same for all simulations. The fuel pin geometry, MCNP cross-section libraries used, 

fission Q-value, number of outer, inner, and predictor steps to run from MONTEBURNS, 

ORIGEN library used, and automatic tallying in MONTEBURNS, and cooling time 

values used were held constant for all the simulations. The only things that changed were 

initial enrichment, moderator density, boron concentration, power level, and power cycle, 

and at most two of these deviated from the base case in any one simulation. 

The fuel pin geometry is based off of a standard 17x17 PWR assembly with fuel 

outer diameter of 0.4096 cm, cladding inner diameter of 0.418 cm, and cladding outer 
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diameter of 0.475 cm. The fuel was expanded to fill the fuel-cladding gap and the density 

was reduced accordingly to a density of 10.02 g/cc. The fuel-to-moderator ratio was 

calculated taking into account water holes in the assembly, and this was used to calculate 

the pin pitch for the simulation. A square was created, centered around the round fuel pin, 

with infinitely reflecting sides that were each 1.3236 cm for the water moderator. A 10 cm 

tall piece of fuel pin was simulated with infinitely reflecting upper and lower boundaries. 

The fuel was split into five exponential radial regions. The radii for each region were 

calculated with Eq. 3.1, where 
ir  is the radius of region i , 

,f OR  is the outer radius of the 

fuel, 
a  is the absorption cross section, and 

rN  is the number of regions. 
a  was calculated 

to be 0.6942 cm-1 for 4% i.e. UO2 fuel, which resulted in fuel region radii being located at 

0.2159 cm, 0.3238 cm, 0.3777 cm, and 0.4046 cm, and 0.418 cm. 
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The MCNP input deck for each simulation included a kcode criticality simulation 

card with 1000 source histories per cycle, 1.0 as an initial guess for keff, with the first 30 

of 400 cycles skipped.  Source particles were started at the center of the simulated fuel 

pin. This MCNP deck was run on its own for the base case to make sure that this kcode 

simulation converged. 

In the MONTEBURNS input file, the Q-value for fission was set to -200. Number 

of outer burn, inner burn, and predictor steps were set to 55, 10, and 1, respectively. The 



 

 

84 

 

fractional importance limit was set to 0.005, and 34 specified nuclides were listed for 

automatic tally in each material.  

The Monteburns feed file was used to define the power history of each simulation. 

For the base case, the fuel was in the reactor for two cycles, out for one cycle, then in for 

a third cycle. Each power cycle was 455 days with 20 days of shutdown in between each 

cycle. In the MONTEBURNS feed file, the beginning of each burn cycle started with two 

15 day burn steps followed by a third burn step to the end of that cycle. Shutdowns 

between reactor power cycles were each one step. The cooling time steps were arranged 

in order to provide the output cooling times desired, with no single step being longer than 

1000 days. 

The MCNP and MONTEBURNS input decks and the MONTEBURNS feed file 

for the base case can be found in Appendix B. 

3.5.2 Fuel Parameters Tested 

In the MONTEBURNS simulations, the examined parameters were initial 

enrichment, moderator density, boron concentration, power level, and power cycle. For 

each perturbation in the MONTEBURNS simulations, the value of each parameter 

changed was chosen randomly in a designated range. The specific range for each 

parameter was chosen by reviewing the range of parameters visible in the detailed fuel 

histories of the spent fuel pins measured at ORNL.  

First, each parameter was individually perturbed up and down from the base case 

randomly within the ranges chosen in order to determine how each parameter individually 

affects the different photon signatures in the fuel. Next, each two parameters were 
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perturbed up and then down for each combination of two parameters examined in the 

MONTEBURNS simulations. 

3.5.2.1 Initial Enrichment 

The main effect from a change in initial enrichment is a change in the ratio of fissions in 

U to Pu. For fuels with lower initial enrichments, there is less 235U available for fissioning 

and more Pu produced from 238U, which both lead to more Pu fissions than there would 

be in fuel of the same burnup with a higher initial enrichment. Since some fission products 

have higher fission yields from U than from Pu, they will have different concentrations in 

fuel at the same burnup based on how many of the fissions were in U vs. Pu. Table 3.3 

shows the thermal neutron fission yields of many of the fission products and activation 

products in SNF[51].  

While the Pu/U fission yield ratio for 154Eu and 134Cs are both very high, the 

magnitudes of the U and Pu fission yields for these isotopes are quite small. They are still 

produced in high quantities in SNF, but are produced more by neutron absorption than by 

direct fission yield. This is why the yield information for 153Eu and 133Cs are also shown, 

even though they are not visible in photon measurements of SNF. Similarly, 110mAg is not 

directly produced in meaningful concentrations by Pu fission, but more 110mAg is produced 

by neutron absorption from 109Ag than is produced directly from fission, so the Pu/U 

fission yield ratio data for 109Ag is more relevant to initial enrichment effects on 110mAg 

production. Based on these caveats, the isotopes with the strongest expected visible 

dependence on initial enrichment are 155Eu, 125Sb, 106Ru, and 110mAg. 
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Table 3.3. Cumulative fission yields and half-lives. 

 

Nuclide 
235U  

fission yield 

239Pu  

fission yield 

239Pu/235U 

yield ratio 
Half-life 

Cs-137 6.19E-2 6.61E-2 1.07 30.04 y 

Cs-134* 3.85E-8 3.35E-6 86.9 2.06 y 

Cs-133 6.7E-2 7.02E-2 1.05 Stable 

Eu-154* 9.7E-10 1.4E-7 144 8.59 y 

Eu-153 1.58E-3 3.61E-3 2.28 Stable 

Eu-155 3.21E-4 1.66E-3 5.15 4.76 y 

Co-60 0 0 n/a 5.27 y 

Bi-214 0 0 n/a 19.9 m 

Sb-125 3.40E-4 1.12E-3 3.28 2.76 y 

Ru-106 4.02E-3 4.35E-2 10.83 373 d 

Ce-144 5.5E-2 3.74E-2 .68 284 d 

Ag-110m* 2.28E-14 0 n/a 249 d 

Ag-109 3.12E-4 1.48E-2 47.34 Stable 

Am-241 0 0 n/a 432.2 y 

*This nuclide is shielded by a stable isotope, thus individual fission yields are shown 

rather than cumulative. 

 

For the sensitivity simulations, a range of initial enrichments between 2% and 5% 

235U was chosen based on values present in the fuels measured at the ORNL ADEPT 

facility. For values lower than the base value of 4%, an initial enrichment was randomly 

chosen between 2% and 3.8%. For values higher than the base value, an initial enrichment 

was randomly chosen between 4.2% and 5%. 

3.5.2.2 Moderator Density 

The main result of a change in moderator density is a change in the neutron 

spectrum. As the water temperature in a LWR reactor increases, the density of the 

moderator decreases. When this occurs, there is less moderation between fuel pins in the 

reactor. This results in a harder neutron spectrum. The effects of changes in moderator 
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density are especially visible in BWR reactors where there is a large moderator density 

gradient across the length of the fuel. 

Since current safe LWR designs are over-moderated, this results in an increase in 

resonance energy neutrons (around 1x10-6 MeV to 1x10-1 MeV) entering the fuel as well 

as a decrease in thermal neutrons (around 1x10-8 MeV) and an increase in fast neutrons 

(around 1 MeV) entering the fuel. Since neutron cross sections are energy dependent, this 

affects the way certain nuclides are produced in SNF. Neutron cross sections for 235U 

fission, 238U fission, 238U radiative capture, and 239Pu fission are shown in  

Figure. 3.11. 

 

 
 

Figure. 3.11. Neutron cross sections for 235U fission, 238U fission, 238U radiative capture, 

and 239Pu fission[50]. 
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The increase in resonance energy neutrons results in more radiative capture in 238U, 

which in turn results in more Pu production as described in section 1.4.8. This increase in 

Pu results in a larger macroscopic Pu fission cross section and more fissions from Pu to 

reach the same burnup. This higher portion of fissions from Pu will affect the fission 

product distribution and lead to an increase in the concentration of the isotopes created 

more by Pu fissions (110mAg, 106Ru, and 125Sb) for the same burnup. 

Moderator density was simulated over a range from 0.6 g/cc and 0.8 g/cc based on 

values listed in fuel histories for the fuels measured at ORNL as well as expert advice. It 

was chosen as a random value between 0.6 g/cc and 0.705 g/cc for perturbations below 

the base value of 0.715 g/cc and between 0.725 g/cc and 0.8 g/cc for perturbations above 

the base value. 

3.5.2.3 Boron Concentration 

A change in boron density also changes the neutron spectrum, with results similar, 

but opposite, to changes in moderator density. Adding boron to the water in a reactor is 

one way by which reactor operators maintain or change the operating power level of a 

reactor. There are other ways that reactor operators change power level, including control 

rods and burnable poisons incorporated into fresh fuel, but these all change power level 

when inserted by absorbing thermal neutrons which reduces the neutron population in a 

reactor. Absorbing thermal neutrons, however, not only decreases the neutron population 

but hardens the spectrum as mostly the thermal neutrons are absorbed. The radiative 

capture cross section of 10B is shown in Figure. 3.12.  
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Figure. 3.12. 10B (n,α) capture cross section[50]. 

 

A range of 0 to 400 ppm natural boron was randomly sampled for decreases from 

the base case and a range of 600 to 1000 ppm natural boron was randomly sampled for 

increases in boron concentration from the base case. In real reactors, boron concentration 

is not constant and follows what is called a ‘let down curve’ over each cycle. More detailed 

simulations could be performed taking this into account or varying the shape of the let-

down curve. 

3.5.2.4 Burnup, Power Level, and Power Cycle 

Burnup is one of the most frequently used and discussed fuel history parameters. 

Burnup is a measurement of the amount of energy produced by the fuel per mass of fuel, 

often provided in units of MWd/MTU. Since many of the visible photon signatures are 

from fission products, higher burnup fuel will generally have stronger photon signatures. 

Burnup is a function of both power level and power cycle, as shown in Eq. 3.2, where 
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BU  is burnup in Wd/MTU, p  is the specific power in W/g, and d  is the number of days 

in the reactor. If there are multiple cycles at different specific power levels, the burnup of 

each burn cycle can be calculated with Eq. 3.2 and then added together.  

 

 BU p d   (3.2) 

 

This means that unlike the other fuel parameters, burnup is not a quantity that can 

be changed on its own. In order to obtain a different burnup, fuel needs to be exposed to a 

different power level, a different power cycle, or both for given fissile content enrichment. 

There are also multiple combinations of power level and power cycle that will lead to the 

same burnup. 

For these simulations, burnup was considered a function of power level and fuel 

history. Burnup was not a parameter that was tweaked on its own; rather power level and 

power history were perturbed independently as two separate parameters. 

Power level is directly proportional to neutron flux in a reactor. A higher power 

level, or neutron flux, will cause nuclides to build up and decay faster because fissions are 

occurring more rapidly. In some cases, such as fission, these results will only show up as 

a change in burnup: two cases with the same burnup but different power levels will have 

negligible difference in number of fissions. Only some neutron interactions, such as 

radiative capture, are dependent on neutron flux aside from burnup effects. Nuclides with 

production paths that include these interactions can be affected by power level changes 

even if burned to the same burnup. In some nuclides, such as 154Eu, changes in power level 
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will change the relative importance of different production and decay mechanisms. Some 

nuclides reach an equilibrium based on production through one mechanism and decay 

through another, often fission and radiative capture, respectively. If one of these 

mechanisms (i.e. radiative capture) is dependent on the neutron flux, a change in power 

level will affect the equilibrium level this nuclide reaches in the core. For these nuclides, 

such as 144Ce, if it can be assumed that the last burn cycle was long enough to reach 

equilibrium and the cooling time is known, the power of the last cycle could be 

determined. Many nuclides, such as 137Cs, should have no change in concentration based 

on power level because they are neither produced nor removed through any mechanisms 

depending on neutron flux.  

Specific power level was randomly chosen in the range of 15 to 30 W/g for 

decreases in specific power level from the base case and in the range of 36 to 45 W/g for 

increases in specific power level from the base case. In order to separate effects due to 

changes in specific power level from effects due to changes in burnup, two more cases 

were run with a specific power level of 33 W/g but with shorter or longer burn cycles to 

reach the burnups of the two previous cases. 

The other main cause of changes in power history is the operation cycle – the 

combination and arrangement of days during which the reactor is at full power and shut 

down. Total days of shutdown was used as the second metric for this case. In addition to 

the base case of three cycles with 20 days shutdown between each cycle, another common 

case was chosen in which the assembly is in the reactor for two cycles, out for one cycle, 

and then in for a third burnup cycle. The third chose case also had the assembly out of the 
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reactor for one cycle between the second and third operating cycles, but had shutdown 

periods of 70 days rather than 20 days between cycles. These three cases had 40, 505, and 

655 total days shutdown. 

3.5.2.5 Cooling Time 

Cooling time is the amount of time between the fuel being discharged from the 

reactor and a measurement being taken. Cooling time often has a very predictable effect 

on isotopic concentrations. Since unstable isotopes decay with a constant half-life, one 

simple equation can be used to calculate how quickly any given unstable isotope will 

decay. This equation is shown in Eq. 3.3, where 
0N  is the initial quantity of a given 

isotope at the time of discharge from the reactor, N  is the quantity of that isotope at 

cooling time t , and   is the decay constant of that isotope. This equation works very well 

for calculating how some isotopes will depend on cooling time, including 137Cs, 134Cs, 

154Eu, 155Eu, 106Ru, 125Sb, 110mAg, and 144Ce.  

 

 
0

tN N e    (3.3) 

 

The U and Pu x-rays are a slightly different case because they provide a photon 

signature even though they mostly have half-lives that are long enough to be considered 

stable even for the longest cooling times considered here. 241Pu is the one exception to this 

with a half-life of 14.4 years. This means that while the U x-ray will be effectively 
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independent of cooling time, the Pu x-ray signal will have a slight dependence on cooling 

time, but it will depend on the isotopic abundance of 241Pu. 

Some isotopes are built up in fuel after discharge from the reactor instead of 

decaying if they are a daughter product of another fission product. This is the case for both 

241Am and 155Gd. They are produced according to Eq. 3.4, where in addition to the 

variables from Eq. 3.3, 
0

PN  is the initial quantity of the parent isotope at the time of 

discharge from the reactor and 
P  is the half-life of the parent isotope. 

 

  0 0 1
Pt P tN N e N e        (3.4) 

 

The half-lives of the isotopes investigated in these simulations are provided in 

Table 3.3. Each simulation case was burned to the final burnup and then several cooling 

time steps were performed so that every case has isotopic concentrations for several 

cooling times. The cooling time values simulated were 1, 2, 5, 10, 20, 50, 80, and 100 

years. The cooling time values of 1, 5, 20, and 80 years were specifically chosen for 

comparison with the NGSI Spent Fuel Library. 

 

3.6 MONTEBURNS Sensitivity Simulation Results 

First, the base case was run ten times with different seeds – or starting random 

number values. These results were used to compile estimated statistical uncertainties from 

the MONTEBURNS code, since MONTEBURNS provides no statistical error results. 
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Next, each input parameter chosen for analysis with MONTEBURNS was 

perturbed individually, once above and once below the base case value. For these 

simulations, the changed input parameter was the only difference between each simulation 

and the base case – all other values were held constant. These results were compiled into 

tables for each input parameter, as shown in Table 3.5 for initial enrichment, Table 3.6 for 

moderator density, Table 3.7 for boron concentration, and Table 3.9 for specific power 

level. A larger value for one of these sensitivity coefficients means that the concentration 

of that isotope changes more drastically in the range of the parameter specified. 

Comparisons between different parameters are not necessarily meaningful, since the 

ranges of each parameter are not comparable. 

3.6.1 MONTEBURNS Statistical Error Analysis 

Since no statistical errors are provided in the code output, a statistical test was 

performed along with the MONTEBURNS simulations. In order to analyze the statistical 

uncertainty, the base case was run ten times with different seed values. The one sigma 

standard deviations for the concentrations of each isotope are provided in Table 3.4.  

As expected, some of the isotopes had higher variations than others. This variation 

is largely a result of both the simplicity of each signature’s build up and decay and the 

quantity of each signature in the fuel. These percentage standard deviations are used for 

statistical analysis for all following MONTEBURNS results. 
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Table 3.4. MONTEBURNS statistical variations 

 

signature σ (%) 

U 1.65E-14 

Pu 0.15 

134Cs 0.65 

137Cs 0.07 

154Eu 0.44 

155Eu 0.47 

106Ru 0.22 

125Sb 0.13 

144Ce 0.16 

 

 

There are several sources of potential error in these simulations. They include the 

statistical error inherent in a Monte Carlo calculation as well as model uncertainty, cross 

section and other input data uncertainty, and measurement uncertainty. This study is 

looking only at relative changes, not absolute quantities of material. This makes most 

uncertainties other than statistical error less important, since they would likely affect all 

simulations equally. 

3.6.2 Sensitivity Analysis 

Each of the first four fuel parameters (initial enrichment, moderator density, boron 

concentration, and power level) was perturbed up and down from the base case randomly 

within the selected ranges. 

For sensitivity to initial enrichment, 2.7% and 4.3% initial enrichments were 

selected for comparison to the base case which had 4% initial enrichment. These 
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simulations all had the same power level and power history, and so also had the same 

burnup. The results of these simulations are shown in Table 3.5. The errors shown in Table 

3.5 and the following similar tables are the product of the grams of material and the 

computational standard deviation from MONTEBURNS listed in Table 3.4. The percent 

change listed in Table 3.5 is calculated as the change in grams of material between the 

cases where initial enrichment was perturbed up and down divided by the grams of 

material present in the base case, as shown in Eq. 3.5, where x

ic  is the concentration of 

signature i  at initial enrichment value x  wt.% 235U. A positive percent change means that 

the element or nuclide concentration increases with an increase in initial enrichment, while 

a negative percent change means the opposite. 

 

 
4.3 2.7

4.0

i i

i

c c

c


 (3.5) 
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Table 3.5. Initial Enrichment Sensitivity Simulation Results 

 

Signature 
4.3% i.e. 4% i.e. 2.7% i.e. 

% change 
Grams σ Grams σ Grams σ 

U 
4.56E+01 

7.53E-

15 4.56E+01 
7.53E-

15 4.56E+01 
7.53E-

15 
0.01 

Pu 
5.06E-01 

7.72E-

04 5.08E-01 
7.75E-

04 5.10E-01 
7.77E-

04 
-0.71 

134Cs 
1.54E-03 

9.96E-

06 1.59E-03 
1.03E-

05 1.82E-03 
1.18E-

05 
-17.68 

137Cs 
6.84E-02 

5.04E-

05 6.85E-02 
5.04E-

05 6.90E-02 
5.08E-

05 
-0.81 

154Eu 
1.29E-03 

5.65E-

06 1.30E-03 
5.68E-

06 1.34E-03 
5.88E-

06 
-4.03 

155Eu 
2.91E-04 

1.38E-

06 2.98E-04 
1.41E-

06 3.36E-04 
1.59E-

06 
-15.30 

155Gd 
2.99E-04 

1.45E-

06 3.07E-04 
1.48E-

06 3.44E-04 
1.66E-

06 
-14.56 

106Ru 
2.34E-04 

5.11E-

07 2.46E-04 
5.37E-

07 3.10E-04 
6.76E-

07 
-30.66 

125Sb 
2.03E-04 

2.71E-

07 2.08E-04 
2.78E-

07 2.36E-04 
3.15E-

07 
-15.93 

144Ce 
1.63E-04 

2.68E-

07 1.61E-04 
2.65E-

07 1.53E-04 
2.52E-

07 
6.07 

 

As expected from the fission yield data in Table 3.3 and associated description of 

isotope production following that table, 155Eu, 125Sb, and 106Ru are some of the signatures 

with the highest percentage change due to initial enrichment. 110mAg is not capable of 

being tracked in MONTEBURNS, so there are no results for this signature available. One 

of 155Eu’s main production paths is through fission, and it has a cumulative fission yield 

from 239Pu that is 5 times the cumulative fission yield from 235U. Since 155Gd in the 

measured fuel is mostly created as a daughter product from 155Eu, it makes sense that the 

percent change of those two signatures would be similar. Even though the change in these 

isotopes is mainly due to a difference in U/Pu fissions, the Pu concentration has less than 
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a 1% change. This is because of competing effects between more Pu being produced 

because there was more 238U and more Pu being removed by fission because there was 

less 235U. 

Also as expected, U and 137Cs have very little dependence on initial enrichment. 

There is so much 238U that the minor change in 235U is roughly negligible, even aside from 

the fact that some of the extra 235U in the higher enriched fuel will be burned out. 137Cs is 

expected to be only a function of burnup, which is constant in all three of these 

simulations. 

Every signature with a meaningful change other than 144Ce had a negative percent 

change, which means that these signatures all increased when initial enrichment 

decreased. This makes sense for 155Eu, 155Gd, 125Sb, and 106Ru because their dependence 

on initial enrichment stems from having a higher production yield from Pu fissions, and 

there will be more Pu fissions in fuel with equal burnup but a lower initial enrichment.  

For changes in moderator density, the two moderator density values selected were 

0.785 g/cc and 0.672 g/cc, in comparison to the base case which had 0.715 g/cc water. The 

results of these simulations are shown in Table 3.6. These simulations all had the same 

power level and power history because these are separate inputs into the MONTEBURNS 

input decks, and so also had the same burnup. In reality, changing the moderator density 

drastically would have an effect on power level. The percent change listed in Table 3.6 is 

calculated as the change in grams of material between the cases where moderator density 

was perturbed up and down divided by the grams of material present in the base case, as 

shown in Eq. 3.6, where x

ic  is the concentration of signature i  at moderator density value 
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x  g/cc. A positive percent change means that the element or nuclide concentration 

increases with an increase in moderator density, while a negative percent change means 

the opposite. 

 

 
0.785 0.618

0.715

i i

i

c c

c


 (3.6) 

 

Table 3.6. Moderator Density Sensitivity Simulation Results 

 

Signature 
0.785 g/cc 0.715 g/cc 0.618 g/cc 

% change 
Grams σ Grams σ Grams σ 

U 
4.57E+01 

7.53E-

15 4.56E+01 
7.53E-

15 4.56E+01 
7.52E-

15 
0.21 

Pu 
4.79E-01 

7.30E-

04 5.08E-01 
7.75E-

04 5.61E-01 
8.55E-

04 
-16.19 

134Cs 
1.55E-03 

1.00E-

05 1.59E-03 
1.03E-

05 1.67E-03 
1.08E-

05 
-7.44 

137Cs 
6.85E-02 

5.04E-

05 6.85E-02 
5.04E-

05 6.87E-02 
5.06E-

05 
-0.33 

154Eu 
1.21E-03 

5.29E-

06 1.30E-03 
5.68E-

06 1.48E-03 
6.50E-

06 
-21.30 

155Eu 
2.91E-04 

1.38E-

06 2.98E-04 
1.41E-

06 3.12E-04 
1.48E-

06 
-7.04 

155Gd 
2.99E-04 

1.44E-

06 3.07E-04 
1.48E-

06 3.23E-04 
1.56E-

06 
-7.69 

106Ru 
2.44E-04 

5.31E-

07 2.46E-04 
5.37E-

07 2.52E-04 
5.50E-

07 
-3.42 

125Sb 
2.03E-04 

2.71E-

07 2.08E-04 
2.78E-

07 2.17E-04 
2.90E-

07 
-6.67 

144Ce 
1.62E-04 

2.66E-

07 1.61E-04 
2.65E-

07 1.61E-04 
2.66E-

07 
0.04 

 

As explained in section 4.2.2, a decrease in moderator density causes an increase 

in resonance and fast energy neutrons and a decrease in thermal neutrons entering the fuel. 

This increase in higher energy neutrons results in more Pu creation, which is why Pu mass 
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increases with a decrease in moderator density. Some of the additional Pu formed leads to 

additional fissions from Pu. This is why the isotopes created mainly by Pu fission, 110mAg, 

106Ru, and 125Sb, show an increase in mass, on a smaller scale than the change in Pu, for a 

decrease in moderator density as well.  

An increase in moderation in an already over moderated system reduces the 

number of resonance integral neutrons in the system. Since most 134Cs is created by 

absorptions of resonance integral neutrons in 133Cs, an increase in moderation, and 

therefore reduction in density of resonance energy neutrons, reduces the amount of 134Cs 

produced.  

It is interesting to note that 154Eu has the strongest dependence on moderator 

density of all the signatures investigated here. This suggests that one or more of 154Eu’s 

production paths in this occurs more often due to an increase in resonance or fast neutrons. 

The resonance radiative capture cross-section in 153Eu is about 5 times higher than the 

thermal radiative capture cross section (1500 and 350, respectively)[52]. 153Eu is also 

produced twice as often in 239Pu fissions as in 235U fissions. Regardless of the weights of 

each of these causes, 154Eu’s strong dependence on moderator density makes it a good 

indicator for moderator density in photon measurements. 

For changes in boron concentration, the two boron concentration values selected 

were 868 ppm and 136ppm natural boron, in comparison to the base case which had 500 

ppm natural boron. The results of these simulations are shown in Table 3.7. These 

simulations all had the same power level and power history, and so also had the same 

burnup. In reality, changing the boron concentration drastically would have an effect on 
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power level, which could have an effect on burnup. The percent change listed in Table 3.6 

is calculated as the change in grams of material between the cases where boron 

concentration was perturbed up and down divided by the grams of material present in the 

base case, as shown in Eq. 3.7, where x

ic  is the concentration of signature i  at boron 

concentration value x  ppm natural boron. A positive percent change means that the 

element or nuclide concentration increases with an increase in boron concentration, while 

a negative percent change means the opposite. 

 

 
868 136

500

i i

i

c c

c


 (3.7) 

 

Since boron concentration and moderator density both change the hardness of the 

neutron spectrum in the reactor, it is not surprising that they have similar effects on almost 

all of the signatures. Table 3.8 shows the percent change of each signature with a 

significant percent change over one percent in the moderator density and boron 

concentration simulations, sorted based on moderator density percent change.  
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Table 3.7. Boron Concentration Sensitivity Simulation Results 

 

Signature 
868 ppm 500 ppm 136 ppm 

% change 
Grams σ Grams σ Grams σ 

U 
4.56E+01 

7.52E-

15 4.56E+01 
7.53E-

15 4.57E+01 
7.53E-

15 
-0.13 

Pu 
5.29E-01 

8.06E-

04 5.08E-01 
7.75E-

04 4.84E-01 
7.38E-

04 
8.88 

134Cs 
1.62E-03 

1.05E-

05 1.59E-03 
1.03E-

05 1.55E-03 
1.00E-

05 
4.77 

137Cs 
6.86E-02 

5.05E-

05 6.85E-02 
5.04E-

05 6.84E-02 
5.04E-

05 
0.30 

154Eu 
1.38E-03 

6.05E-

06 1.30E-03 
5.68E-

06 1.22E-03 
5.36E-

06 
11.98 

155Eu 3.04E-04 
1.44E-

06 
2.98E-04 

1.41E-

06 
2.93E-04 

1.39E-

06 
3.81 

155Gd 3.14E-04 
1.51E-

06 
3.07E-04 

1.48E-

06 
3.01E-04 

1.45E-

06 
4.18 

106Ru 
2.50E-04 

5.45E-

07 2.46E-04 
5.37E-

07 2.43E-04 
5.30E-

07 
2.80 

125Sb 
2.13E-04 

2.84E-

07 2.08E-04 
2.78E-

07 2.03E-04 
2.71E-

07 
4.48 

144Ce 
1.62E-04 

2.66E-

07 1.61E-04 
2.65E-

07 1.61E-04 
2.65E-

07 
0.41 

 

 

Table 3.8. Comparison of Moderator Density and Boron Sensitivity Results 

 

Signature 
Moderator Density 

% Change 

Boron Concentration 

% Change 
Ratio 

Eu154 -21.30 11.98 -1.78 

Pu -16.19 8.88 -1.82 

Gd155 -7.69 4.18 -1.84 

Cs134 -7.44 4.77 -1.56 

Eu155 -7.04 3.81 -1.85 

Sb125 -6.67 4.48 -1.49 

Ru106 -3.42 2.80 -1.22 
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Comparing magnitudes between moderator density and boron concentration 

percent changes is difficult because the ranges are not directly comparable. Trends over 

both lists and the ratio of the two values, however, are valuable because they show relative 

dependencies. The rankings of these signatures are quite similar for moderator density and 

boron concentration changes. The ratio of the two percent changes is also fairly constant 

through all signatures. This implies that changes in moderator density and boron 

concentration affect spent fuel in roughly the same way through changing the energy 

spectrum of neutrons in the reactor. This means that unfolding the contributions between 

moderator density and boron concentration (and likely any other types of power level 

control such as control rods) will probably not be possible with photon measurements. A 

combination of these factors could still be used to verify a more extensive fuel history than 

is currently analyzed be the IAEA for safeguards or rule out possible fuel sources in a 

forensics situation. It should also be noted that an increase in moderator density has the 

same type of results as a decrease in boron concentration. This makes sense because both 

increasing moderator density in an already over-moderated reactor system and decreasing 

boron concentration soften the neutron spectrum. 

For changes in power level, the two power level values selected were 24 W/g and 

44.5 W/g, in comparison to the base case which was run at 33 W/g. The results of these 

simulations are shown in Table 3.9. Since these simulations involved changing power 

level but keeping the power cycle constant, the main change should be due to the resulting 

change in burnup. In order to also investigate the specific effect of power level on each of 

the signatures being considered, two more simulations were run which will be explained 
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later. The percent change listed in Table 3.9 is calculated as the change in grams of 

material between the cases where power level (and therefore burnup) was perturbed up 

and down divided by the grams of material present in the base case, as shown in Eq. 3.8, 

where x

ic  is the concentration of signature i  at power level x  W/g. A positive percent 

change means that the element or nuclide concentration increases with an increase in 

power level, while a negative percent change means the opposite. 

 

 
44.5 24
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
 (3.8) 

 

Burnup is the only parameter for which every signature changes noticeably. Even 

bulk U changes by 3% due mainly to the loss of 235U through fission. Every other signature 

increases with an increase in burnup, which is expected since they are all nonexistent in 

fresh fuel but are being created while the fuel is in the reactor. 
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Table 3.9. Power Level Sensitivity Simulation Results 

 

Signature 
44.5 W/g 33 W/g 24 W/g 

% change 
Grams σ Grams σ Grams σ 

U 
4.48E+01 

7.39E-

15 4.56E+01 

7.53E-

15 4.63E+01 

7.64E-

15 
-3.44 

Pu 
5.73E-01 

8.74E-

04 5.08E-01 

7.75E-

04 4.34E-01 

6.62E-

04 
27.35 

134Cs 
2.78E-03 

1.80E-

05 1.59E-03 

1.03E-

05 8.53E-04 

5.53E-

06 
121.16 

137Cs 
9.24E-02 

6.80E-

05 6.85E-02 

5.04E-

05 5.00E-02 

3.68E-

05 
61.94 

154Eu 
1.94E-03 

8.51E-

06 1.30E-03 

5.68E-

06 7.67E-04 

3.37E-

06 
90.56 

155Eu 
4.58E-04 

2.17E-

06 2.98E-04 

1.41E-

06 1.77E-04 

8.40E-

07 
94.08 

155Gd 
4.68E-04 

2.26E-

06 3.07E-04 

1.48E-

06 1.83E-04 

8.85E-

07 
92.94 

106Ru 
3.93E-04 

8.57E-

07 2.46E-04 

5.37E-

07 1.50E-04 

3.27E-

07 
98.61 

125Sb 
2.99E-04 

3.99E-

07 2.08E-04 

2.78E-

07 1.42E-04 

1.90E-

07 
75.11 

144Ce 
2.07E-04 

3.41E-

07 1.61E-04 

2.65E-

07 1.23E-04 

2.03E-

07 
51.97 

 

In order to separate burnup effects from specific power level effects, two more 

cases were run in which the specific power level was set back to the base value of 33 W/g, 

but the lengths of each burn cycle were changed with Eq. 3.2 so that the burnups matched 

those of the cases in Table 3.9 where specific power level was changed to 44.5 W/g and 

24 W/g. The burnups for the previous cases with specific power levels at 44.5 W/g and 24 

W/g were 60.7 GWd/MTU and 32.8 GWd/MTU, respectively. To reach these burnups at 

33 W/g, the burn cycle lengths were changed from the base case value of 455 days each 
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(45 GWd/MTU) to 601 days each (60.7 GWd/MTU) and 331 days each (32.8 

GWd/MTU). These results are shown in Table 3.10 and Table 3.11. 

 

Table 3.10. First Specific Power Level and Burnup Comparison 

 

Power Level 

(W/g) 
24 33 

Ratio 
Burnup 

(GWd/MTU) 
32.760 32.769 

U 4.48E+01 4.48E+01 1.00 

Pu 5.73E-01 5.72E-01 1.00 
134Cs 2.78E-03 2.56E-03 1.08 
137Cs 9.24E-02 9.10E-02 1.02 
154Eu 1.94E-03 1.90E-03 1.02 
155Eu 4.58E-04 4.47E-04 1.02 
155Gd 4.68E-04 4.60E-04 1.02 
106Ru 3.93E-04 3.33E-04 1.18 
125Sb 2.99E-04 2.68E-04 1.11 
144Ce 2.07E-04 1.68E-04 1.23 
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Table 3.11. Second Specific Power Level and Burnup Comparison 

 

Power Level 

(W/g) 
44.5 33 

Ratio 
Burnup 

(GWd/MTU) 
60.74 60.79 

U 4.63E+01 4.63E+01 1.00 

Pu 4.34E-01 4.34E-01 1.00 
134Cs 8.53E-04 9.24E-04 0.92 
137Cs 5.00E-02 5.05E-02 0.99 
154Eu 7.67E-04 7.75E-04 0.99 
155Eu 1.77E-04 1.80E-04 0.98 
155Gd 1.83E-04 1.86E-04 0.99 
106Ru 1.50E-04 1.73E-04 0.87 
125Sb 1.42E-04 1.56E-04 0.91 
144Ce 1.23E-04 1.48E-04 0.83 

 

These simulations show that power level only makes a significant difference to a 

few isotopes. U, Pu, 137Cs, 154Eu, 155Eu, and 155Gd are unaffected by changes in power 

level if burnup is held constant. 144Ce is the signature with the strongest dependence on 

power level, but it is not a linear dependence. 

For changes in cooling time, every simulation was aged to cooling times of 0, 1, 

2, 5, 10, 20, 50, 80, and 100 years. The fission product results for most of these cooling 

times (a few were left out for the sake of space) for the base case are shown in Table 3.12. 

The bulk U and Pu results are shown in Table 3.13. For each isotope, the simulated mass 

at zero years cooling time was decayed with Eq. 3.3 or 3.4 to obtain the calculated 

expected mass at each cooling time. The cooling times used for each of these isotopes can 

be found in Table 3.3. This is what is shown in the ‘Calculated’ row for each fission 

product. The ‘Calculated/Simulation’ row for each isotope shows the ratio of this 
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calculated value to the simulation results for each cooling time.155Gd is a special case for 

cooling time because it stable and is being created by 155Eu rather than decaying away 

itself. The calculated values for 155Gd were obtained by summing up the 155Eu that had 

decayed since discharge from the reactor. 

 

Table 3.12. Fission Product Cooling Time Data 

 

Cooling Time [yrs] 0 1 5 10 50 100 

134Cs 
Calculated [g] 8.51E-03 6.08E-03 1.59E-03 2.96E-04 4.37E-10 2.24E-17 

Calc/Sim 1.00 1.00 1.00 1.00 1.01 1.02 

137Cs 
Calculated [g] 7.69E-02 7.51E-02 6.85E-02 6.11E-02 2.43E-02 7.67E-03 

Calc/Sim 1.00 1.00 1.00 1.00 1.00 1.00 

154Eu 
Calculated [g] 1.94E-03 1.79E-03 1.29E-03 8.65E-04 3.43E-05 6.08E-07 

Calc/Sim 1.00 1.00 1.00 1.00 0.99 0.99 

155Eu 
Calculated [g] 5.99E-04 5.18E-04 2.89E-04 1.40E-04 4.13E-07 2.85E-10 

Calc/Sim 1.00 0.99 0.97 0.94 0.74 0.55 

155Gd 
Calculated [g] 0.00E+00 8.12E-05 3.10E-04 4.60E-04 5.99E-04 5.99E-04 

Calc/Sim 0.00 0.97 1.01 1.01 0.99 0.99 

106Ru 
Calculated [g] 7.65E-03 3.88E-03 2.56E-04 8.56E-06 1.34E-17 2.35E-32 

Calc/Sim 1.00 1.01 1.04 1.08 1.46 0.00 

125Sb 
Calculated [g] 7.21E-04 5.61E-04 2.05E-04 5.84E-05 2.51E-09 8.77E-15 

Calc/Sim 1.00 0.99 0.99 0.98 0.93 0.88 

144Ce 
Calculated [g] 1.38E-02 5.67E-03 1.62E-04 1.90E-06 6.86E-22 3.41E-41 

Calc/Sim 1.00 1.00 1.01 1.01 0.81 0.00 

 

Cooling time dependence for most fission products is straight forward, and the 

simple equation used to generate these calculated numbers compared very well to 

simulation results for 134Cs, 137Cs, 154Eu, and 155Gd. It also did well for 106Ru, 125Sb, and 

144Ce out to about 10 years, which is as long as these signatures are likely to be useful. 
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After this time, they had reached a small enough concentration in the fuel that 

MONTEBURNS no longer tracked them. The one strange feature in Table 3.12 is the 

combination of 155Eu and 155Gd data. Even though 155Gd is only calculated as the amount 

of 155Eu that has decayed since discharge from the reactor, this calculation is very close to 

the simulated value of 155Gd while the calculated value of 155Eu itself does not match well 

with the simulated value of 155Eu. 155Gd is generally of more interest to reactor physics 

codes benchmarks due to its large neutron absorption cross section. If MONTEBURNS 

has been tested more for 155Gd than 155Eu, then that could explain this anomaly. 

 

Table 3.13. Bulk Uranium and Plutonium Cooling Time Data 

 

Cooling Time 

[years] 
U 
[g] 

Pu 
[g] 

Pu/Pu0 

0 4.56E+01 5.19E-01 1.00 

1 4.56E+01 5.21E-01 1.00 

2 4.56E+01 5.18E-01 1.00 

5 4.56E+01 5.08E-01 0.98 

10 4.56E+01 4.95E-01 0.95 

20 4.56E+01 4.76E-01 0.92 

50 4.56E+01 4.52E-01 0.87 

80 4.56E+01 4.44E-01 0.85 

100 4.56E+01 4.41E-01 0.85 

 

 

Table 3.13 shows bulk U and Pu masses as a function of cooling time for the base 

case simulation. The third column, Pu/Pu0, shows the ratio of the bulk Pu for that cooling 

time to the bulk Pu at zero years cooling time. Bulk U does not change to the third 
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significant digit even to 100 years cooling time, because of the four main U isotopes (234, 

235, 236, and 238), the shortest half-life is 245,500 years. Bulk Pu decays slightly, but not 

with a constant half-life like the fission products in Table 3.12. Only one of the plutonium 

isotopes, 241Pu, has a half-life of less than 6,500 years. 241Pu has a half-life of 14.4 years, 

but its percentage of the plutonium vector will change with burnup and power level. This 

uncertainty in the plutonium vector makes Pu’s dependence on cooling time difficult to 

estimate. One option is to assume a standard Pu vector at discharge from the reactor and 

use this to calculate plutonium dependence on burnup. In this base case, 15% of the Pu is 

241Pu at zero years cooling time. The results of this assumption are shown for the base case 

in Table 3.14, where the calculated values are obtained using Eq. 3.9. Again, the 

calculated/simulated values are ratios of the calculated values using Eq. 3.10 to the 

simulated value in MONTEBURNS. In Eq. 3.10,  Pu CT  is bulk Pu mass as a function 

of cooling time in years, x  is the assumed percentage of 241Pu in bulk Pu (0.15 in this 

case), 
0Pu  is plutonium mass at zero years cooling time, and 

241 Pu  is the decay constant 

of 241Pu, which is 0.048 yr-1. As future work, this could be refined by coming up with a 

correlation of the Pu vector with burnup and/or specific power level. 

 

  
241

0(1 )
Pu CT

Pu CT x Pu x e


 
  
       (3.9) 
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Table 3.14. Bulk Plutonium Calculation for Base Case Assuming 15% 241Pu. 

 

Cooling 

Time 

[years] 

Calculated 

Pu [g] 
calc/sim 

0 5.19E-01 1.00 

1 5.16E-01 0.99 

2 5.12E-01 0.99 

5 5.03E-01 0.99 

10 4.90E-01 0.99 

20 4.71E-01 0.99 

50 4.48E-01 0.99 

80 4.43E-01 1.00 

100 4.42E-01 1.00 

 

 

One of the metrics used to look at power cycle was total days of shutdown. The 

base case and two cases used to test total days of shutdown are shown in Figure 3.13. The 

base case and two test cases had 505, 40, and 655 total days of shutdown, respectively. 

 

 
Figure 3.13. Simulations with different total days shutdown (not to scale). 

 

The results from these simulations are shown in Table 3.15. Since these 

simulations involved changing only number of days shutdown, they all have the same 
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burnup. The percent change listed in Table 3.15 is calculated as the change in grams of 

material between the cases where total days of shutdown was perturbed up and down 

divided by the grams of material present in the base case, as shown in Eq. 3.10, where x

ic  

is the concentration of signature i  at x  total days shutdown. A positive percent change 

means that the element or nuclide concentration increases with an increase in total days 

shutdown, while a negative percent change means the opposite. 

 

 
655 40

505

i i

i

c c

c


 (3.10) 

 

Table 3.15. Total Days Shutdown Sensitivity Simulation Results 

 

Signature 
40 days shutdown 505 days shutdown 655 days shutdown 

% change 
Grams σ Grams σ Grams σ 

U 4.56E+01 
7.53E-

15 
4.56E+01 

7.53E-

15 
4.56E+01 

7.53E-

15 
0.00 

Pu 5.07E-01 
7.72E-

04 
5.08E-01 

7.75E-

04 
5.08E-01 

7.75E-

04 
-0.32 

134Cs 1.76E-03 
1.14E-

05 
1.59E-03 

1.03E-

05 
1.55E-03 

1.01E-

05 
13.03 

137Cs 6.99E-02 
5.15E-

05 
6.85E-02 

5.04E-

05 
6.82E-02 

5.02E-

05 
2.48 

154Eu 1.31E-03 
5.76E-

06 
1.30E-03 

5.68E-

06 
1.30E-03 

5.70E-

06 
1.07 

155Eu 3.01E-04 
1.43E-

06 
2.98E-04 

1.41E-

06 
2.97E-04 

1.41E-

06 
1.54 

155Gd 3.09E-04 
1.49E-

06 
3.07E-04 

1.48E-

06 
3.05E-04 

1.47E-

06 
1.33 

106Ru 2.95E-04 
6.44E-

07 
2.46E-04 

5.37E-

07 
2.41E-04 

5.25E-

07 
22.14 

125Sb 2.41E-04 
3.22E-

07 
2.08E-04 

2.78E-

07 
2.02E-04 

2.69E-

07 
18.84 

144Ce 2.05E-04 
3.37E-

07 
1.61E-04 

2.65E-

07 
1.57E-04 

2.58E-

07 
29.74 
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As expected, the isotopes with the shortest half-lives are the ones that change the 

most when additional shutdown days are added between cycles. This is because they decay 

more over an additional 600 days before discharge than isotopes with longer half-lives. 

Half-lives of each isotope can be found in Table 3.3. The ranking of the four shortest half-

lives corresponds directly to the ranking of the four highest sensitivities to total days shut 

down. 

 

  



 

 

114 

 

4. CONCLUSIONS AND FUTURE WORK 

PNAR and spectral photon measurements were investigated in order to improve 

the state-of-the-art of nuclear safeguards measurements performed by the IAEA. Spectral 

photon measurements are useful for determining the operating history of SNF, such as 

burnup and cooling time. Ratios between different isotopes can be used to reduce 

dependence on calibration factors. Passive photon measurements are limited by self-

shielding to only being able to measure a small portion of a typical SNF assembly 

(typically from the outer fuel pins). They can provide these operating history parameters 

to other techniques, such as PNAR. PNAR measures the neutron multiplication of SNM 

and is sensitive to the bulk fissile content of the entire assembly. If similar fuels are being 

measured or operating parameters such as those obtained from spectral photon 

measurements are known, this multiplication can be used to calculate fissile content in the 

assembly and detect the diversion of a significant quantity of pins from the assembly. 

The PNAR concept has been tested on fresh and spent fuel and shown to correlate 

with neutron multiplication and Pueff content. Measurements were performed on spent fuel 

from the Fugen reactor as well as fresh fuel at LANL to assess the capability of the PNAR 

ratio to predict multiplication and fissile content of SNM. The PNAR detector and these 

fuels were modeled in MONTEBURNS and MCNPX in order to determine the 

multiplication of the materials being measured and to benchmark simulations for further 

investigation of the PNAR technique. 

 Fugen fuel, a very difficult measurement scenario in comparison to typical PWR 

fuel measurements, showed a 73% change in signal from a range of 7.1 to 19.2 
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GWd/MTHM and suggested an ability to measure multiplication with a standard deviation 

of 1%. Fugen PNAR ratios trended well with Pueff, with a 77% change in signal and a 

standard deviation of 4% in plutonium content. It is important to note that these Pueff 

values could likely be improved if initial isotopics of the fuel were known rather than 

relying on calculating MOX isotopics by simulating typical LEU fuel history.  

Fresh fuel measurements also showed a direct correlation between neutron 

multiplication and PNAR ratio. This change in signal was 40-45% from a range of initial 

enrichment from 0.2% to 3.2% 235U. This change in initial enrichment is relevant because 

it results in a similar change in neutron multiplication from fresh to spent fuel. Fresh fuel 

measurements showed that the position of the assembly within the detector has a worst-

case effect of 7% on the PNAR signal for ½” water gap and 3% for a ¼” water gap. Fresh 

fuel measurements also showed that for the 6 cm radius assemblies in these measurements, 

the distribution of pins has a negligible effect on the measured PNAR ratio, which 

indicates that PNAR would do well at detecting a diversion of pins. The C/E ratios for the 

section 1, cadmium covered, and FFM fission chambers were very flat, indicating that the 

physics of these detectors is being well simulated by the MCNPX simulations. The C/E 

ratio for the bare fission chambers in section 3 show a slight slope which needs to be 

investigated further. Future PNAR work includes further measurements to quantify the 

ability of PNAR to detect pin diversion, and investigate the slope in the C/E ratio for the 

section 3 bare fission chambers. Experiments should also be performed on typical spent 

fuel assemblies, such as 17x17 PWR assemblies. 
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Spectral photon measurements have been obtained from a wide variety of spent 

nuclear fuel pins using both broad-energy and low-energy HPGe detectors. The spectra 

obtained from these measurements were analyzed, and 13 isotopic and elemental 

signatures were identified. These signatures were then simulated in a sensitivity study in 

order to determine how each one is affected by fuel operating parameters including initial 

enrichment, power history (power level, days shutdown, burnup, and cooling time), 

moderator density, and boron concentration. Future work includes further simulations to 

aid in developing a methodology to use these sensitivities to gather information from spent 

fuel measurements.  
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APPENDIX A 

 

MCNPX Input Deck for Fresh Fuel PNAR Measurement 
 

PNAR ASSEMBLY 1 319 -- SINRD + PNAR Detector 

c 

c 

***********************************************************

******* 

c                            CELL CARDS 

c 

***********************************************************

******* 

c 

c 

c ----------------- Begin Detector Cells ------------------

-- 

c Note: #'s <=502 define the FA and the FA region from Holly 

Trellue 

c       #'s 6XX refer to detectors in section 1 

c       #'s 7XX refer to detectors in section 2 

c       #'s 8XX refer to detectors in section 3 

c       #'s 9XX refer to global detector housing 

c 

c ----- concentric cylinders around FA ----- 

c -- FA region ... void for now 

c 502 0 -502 imp:n=1 

c 

c -- Water (or Air) gap between detector & FA 

c replace mat 9920 with water (4) or air (3) from Holly's 

Fugen FA 

c 920 9920 -1.0 #343 -920   imp:n=1 

c            710 #711 #712 740 #741 #742 780 #781 #782 imp:n=1 

c fill taper (i.e., remove poly) with water 

925 9920 -1.0 920 -905  imp:n=1 

c 

c -- Stainless Steel housing 

901 7 -8.03   990 930 925 910 -901   imp:n=1    $ OD 

905 7 -8.03   905 -925               imp:n=1    $ taper 

910 7 -8.03   920 -910               imp:n=1    $ ID 

c 

c -- Air gap for SINRD detectors (sec. 3) 
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c void for now, use air in Fugen file from Holly (mat 3? or 

4?) 

930 3 -0.0011455  970 950 -930 

                  715 #711 #712 740 #741 #742  

                  781 #781 #782 #725 #726 #727  imp:n=1 

931 3 -0.0011455  950 -970  523  514 

                  740 #741 781 #781 #725 #726 #727  imp:n=1 

932 3 -0.0011455  950 -970 -533 -524 

                  740 781 #725 #726 #727  imp:n=1 

933 3 -0.0011455  950 -970 -513  534 

                  740 #742 781 #782 #725 #726 #727    imp:n=1 

c 

c -- Cd liner for PNAR (see sec. 3) 

950  9950 -8.65  910  965 -950            imp:n=1 

9501 9950 -8.65  910 -950 960 -965        imp:n=1 

951  9950 -8.65  910 -960 -950  521  512 #725 #726 #727  

imp:n=1 

952  9950 -8.65  910 -960 -950 -531 -522 #725 #726 #727 

imp:n=1 

953  9950 -8.65  910 -960 -950 -511  532 #725 #726 #727 

imp:n=1 

c 

c fill windows in Cd liner with air 

954 3 -0.0011455  910 -950 -960  511 -512     imp:n=1 

955 3 -0.0011455  910 -950 -960 -521  522     imp:n=1 

956 3 -0.0011455  910 -950 -960  531 -532     imp:n=1 

c 957 3 -0.0011455  920 -950 -960  511 -512     imp:n=1 

c 958 3 -0.0011455  920 -950 -960 -521  522     imp:n=1 

c 959 3 -0.0011455  920 -950 -960  531 -532     imp:n=1 

c 

c -- Polyethylene region ... verify material & density 

990 9990 -0.96  910 925 930 630 #631 #632 830 #831 #832 

               -990 imp:n=1 

c 

c -- Region outside of detector 

995 9920 -1.0     -995 901 920          imp:n=1 

996 0           920 995 -996 imp:n=1 

999 0           996 920                 imp:n=0 

c ----- 

c 

c ------ section 1, PNAR w/o Cd ------ 

c ---- hole for FFM ... rotate 120 deg. for 3 FFM's 

630 0 -630 fill=630 imp:n=1 

631 like 630 but TRCL=931 

632 like 630 but TRCL=932 
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c 

c -- PNAR, no Cd FC 

635 9942 -2.7     640      u=630 imp:n=1   $ Al 

640 9941 -10.97    650 -640 u=630 imp:n=1   $ U 

650 0                 -650 u=630 imp:n=1   $ void 

c 

c ------ section 2, Ion Chambers for PG ------ 

c ---- hole for IC ... rotate 120 deg. for 3 FFM's 

830 0 -830 fill=830 imp:n=1 

831 like 830 but TRCL=931 

832 like 830 but TRCL=932 

c 

c -- Ion Chamber 

835 9942 -2.7     840      u=830 imp:n=1   $ Al 

840 0                 -840 u=830 imp:n=1   $ void 

c 

c ------ section 3, SINRD Gd, Gd+Hf & Cd for PNAR ------ 

c ---- windows for Gd+Hf 

c -- Gd+Hf screen for window 1 

510 3 -0.0011455   513 -514  950 -965  #725 #726 #727 imp:n=1    

$ Air 

515 3 -0.0011455   513 -514  965 -970 #725 #726 #727 imp:n=1    

$ Air 

c 515 9943 -7.9     513 -514  965 -970  imp:n=1    $ Gd 

c -- Gd+Hf screen for window 2 

520 3 -0.0011455  -523 524  950 -965 #725 #726 #727 imp:n=1    

$ Air 

525 3 -0.0011455  -523 524  965 -970 #725 #726 #727 imp:n=1    

$ Air 

c 525 9943 -7.9     -523 524  965 -970  imp:n=1    $ Gd 

c -- Gd+Hf screen for window 3 

530 3 -0.0011455  533 -534  950 -965 #725 #726 #727 imp:n=1    

$ Air 

535 3 -0.0011455  533 -534  965 -970 #725 #726 #727 imp:n=1    

$ Air 

c 535 9943 -7.9     533 -534  965 -970  imp:n=1    $ Gd 

c 

c ---- hole for bare FC ... rotate 120 deg. for 3 FFM's 

710 0   -715 fill=710 imp:n=1 

711 like 710 but TRCL=931 

712 like 710 but TRCL=932 

c 

c -- Bare FC 

715 9942 -2.7   720 u=710 imp:n=1   $ Al 

720 9941 -10.97  730 -720 u=710 imp:n=1   $ U 



 

 

126 

 

730 0               -730 u=710 imp:n=1   $ void 

725 9950 -8.65 711 -712 950 imp:n=1 

726 9950 -8.65 713 -714 950 imp:n=1 

727 9950 -8.65 716 -717 950 imp:n=1 

c 

c ---- hole for Cd FC ... rotate 120 deg. for 3 FFM's 

740 0   -740 fill=740 imp:n=1 

741 like 740 but TRCL=931 

742 like 740 but TRCL=932 

c 

c -- Cd covered FC 

745 9950 -8.65  750      u=740 imp:n=1   $ Cd 

750 9942 -2.7   760 -750 u=740 imp:n=1   $ Al 

760 9941 -10.97  770 -760 u=740 imp:n=1   $ U 

770 0               -770 u=740 imp:n=1   $ void 

c 

c ---- hole for FFM / PNAR w/Cd  ... rotate 120 deg. for 3 

FC's 

780 0   -781 fill=780 imp:n=1 

781 like 780 but TRCL=931 

782 like 780 but TRCL=932 

c 

c -- FFM / PNAR w/Cd Fission Chamber 

783 9940 -2.52    784  u=780 imp:n=1       $ B4C 

786 9950 -8.65    -784 783 u=780 imp:n=1   $Cd 

787 9990 -0.96    -783 782 u=780 imp:n=1   $Poly 

784 9942 -2.7     785 -782 u=780 imp:n=1   $ Al 

785 9941 -10.97    790 -785 u=780 imp:n=1   $ U 

790 0                 -790 u=780 imp:n=1   $ void 

c ------------------ End Detector Cells -------------------

-- 

c AHWR model 

c  cell cards                                                                

c                              

104 2 -6.55 -104 105 -920 imp:n=1 

107 2 -6.55 -107 108 -920 imp:n=1 

110 2 -6.55 -110 111 -920 imp:n=1 

113 2 -6.55 -113 114 -920 imp:n=1 

116 2 -6.55 -116 117 -920 imp:n=1 

119 2 -6.55 -119 120 -920 imp:n=1 

201 2 -6.55 -201 202 -920 imp:n=1 

204 2 -6.55 -204 205 -920 imp:n=1 

207 2 -6.55 -207 208 -920 imp:n=1 

210 2 -6.55 -210 211 -920 imp:n=1 

213 2 -6.55 -213 214 -920 imp:n=1 
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216 2 -6.55 -216 217 -920 imp:n=1 

219 2 -6.55 -219 220 -920 imp:n=1 

222 2 -6.55 -222 223 -920 imp:n=1 

225 2 -6.55 -225 226 -920 imp:n=1 

228 2 -6.55 -228 229 -920 imp:n=1 

231 2 -6.55 -231 232 -920 imp:n=1 

234 2 -6.55 -234 235 -920 imp:n=1 

301 2 -6.55 -301 302 -920 imp:n=1 

304 2 -6.55 -304 305 -920 imp:n=1 

307 2 -6.55 -307 308 -920 imp:n=1 

310 2 -6.55 -310 311 -920 imp:n=1 

313 2 -6.55 -313 314 -920 imp:n=1 

316 2 -6.55 -316 317 -920 imp:n=1 

319 2 -6.55 -319 320 -920 imp:n=1 

322 2 -6.55 -322 323 -920 imp:n=1 

325 2 -6.55 -325 326 -920 imp:n=1 

328 2 -6.55 -328 329 -920 imp:n=1 

331 2 -6.55 -331 332 -920 imp:n=1 

334 2 -6.55 -334 335 -920 imp:n=1 

337 2 -6.55 -337 338 -920 imp:n=1 

340 2 -6.55 -340 341 -920 imp:n=1 

343 2 -6.55 -343 344 -920 imp:n=1 

346 2 -6.55 -346 347 -920 imp:n=1 

349 2 -6.55 -349 350 -920 imp:n=1 

352 2 -6.55 -352 353 -920 imp:n=1 

401 2 -6.55 -401 402 -920 imp:n=1 

404 2 -6.55 -404 405 -920 imp:n=1 

407 2 -6.55 -407 408 -920 imp:n=1 

410 2 -6.55 -410 411 -920 imp:n=1 

413 2 -6.55 -413 414 -920 imp:n=1 

416 2 -6.55 -416 417 -920 imp:n=1 

419 2 -6.55 -419 420 -920 imp:n=1 

422 2 -6.55 -422 423 -920 imp:n=1 

425 2 -6.55 -425 426 -920 imp:n=1 

428 2 -6.55 -428 429 -920 imp:n=1 

431 2 -6.55 -431 432 -920 imp:n=1 

434 2 -6.55 -434 435 -920 imp:n=1 

437 2 -6.55 -437 438 -920 imp:n=1 

440 2 -6.55 -440 441 -920 imp:n=1 

443 2 -6.55 -443 444 -920 imp:n=1 

446 2 -6.55 -446 447 -920 imp:n=1 

449 2 -6.55 -449 450 -920 imp:n=1 

452 2 -6.55 -452 453 -920 imp:n=1 

455 2 -6.55 -455 456 -920 imp:n=1 

458 2 -6.55 -458 459 -920 imp:n=1 
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461 2 -6.55 -461 462 -920 imp:n=1 

464 2 -6.55 -464 465 -920 imp:n=1 

467 2 -6.55 -467 468 -920 imp:n=1 

470 2 -6.55 -470 471 -920 imp:n=1 

105 1 -10.48 -105 -920 imp:n=1 

108 1 -10.48 -108 -920 imp:n=1 

111 1 -10.48 -111 -920 imp:n=1 

114 1 -10.48 -114 -920 imp:n=1 

117 1 -10.48 -117 -920 imp:n=1 

120 1 -10.48 -120 -920 imp:n=1 

202 1 -10.48 -202 -920 imp:n=1 

205 1 -10.48 -205 -920 imp:n=1 

208 1 -10.48 -208 -920 imp:n=1 

211 1 -10.48 -211 -920 imp:n=1 

214 1 -10.48 -214 -920 imp:n=1 

217 1 -10.48 -217 -920 imp:n=1 

220 1 -10.48 -220 -920 imp:n=1 

223 1 -10.48 -223 -920 imp:n=1 

226 1 -10.48 -226 -920 imp:n=1 

229 1 -10.48 -229 -920 imp:n=1 

232 1 -10.48 -232 -920 imp:n=1 

235 1 -10.48 -235 -920 imp:n=1 

302 1 -10.48 -302 -920 imp:n=1 

305 1 -10.48 -305 -920 imp:n=1 

308 1 -10.48 -308 -920 imp:n=1 

311 1 -10.48 -311 -920 imp:n=1 

314 1 -10.48 -314 -920 imp:n=1 

317 1 -10.48 -317 -920 imp:n=1 

320 1 -10.48 -320 -920 imp:n=1 

323 1 -10.48 -323 -920 imp:n=1 

326 1 -10.48 -326 -920 imp:n=1 

329 1 -10.48 -329 -920 imp:n=1 

332 1 -10.48 -332 -920 imp:n=1 

335 1 -10.48 -335 -920 imp:n=1 

338 1 -10.48 -338 -920 imp:n=1 

341 1 -10.48 -341 -920 imp:n=1 

344 1 -10.48 -344 -920 imp:n=1 

347 1 -10.48 -347 -920 imp:n=1 

350 1 -10.48 -350 -920 imp:n=1 

353 1 -10.48 -353 -920 imp:n=1 

402 1 -10.48 -402 -920 imp:n=1 

405 1 -10.48 -405 -920 imp:n=1 

408 1 -10.48 -408 -920 imp:n=1 

411 1 -10.48 -411 -920 imp:n=1 

414 1 -10.48 -414 -920 imp:n=1 
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417 1 -10.48 -417 -920 imp:n=1 

420 1 -10.48 -420 -920 imp:n=1 

423 1 -10.48 -423 -920 imp:n=1 

426 1 -10.48 -426 -920 imp:n=1 

429 1 -10.48 -429 -920 imp:n=1 

432 1 -10.48 -432 -920 imp:n=1 

435 1 -10.48 -435 -920 imp:n=1 

438 1 -10.48 -438 -920 imp:n=1 

441 1 -10.48 -441 -920 imp:n=1 

444 1 -10.48 -444 -920 imp:n=1 

447 1 -10.48 -447 -920 imp:n=1 

450 1 -10.48 -450 -920 imp:n=1 

453 1 -10.48 -453 -920 imp:n=1 

456 1 -10.48 -456 -920 imp:n=1 

459 1 -10.48 -459 -920 imp:n=1 

462 1 -10.48 -462 -920 imp:n=1 

465 1 -10.48 -465 -920 imp:n=1 

468 1 -10.48 -468 -920 imp:n=1 

471 1 -10.48 -471 -920 imp:n=1 

601 2 -6.55 -601 imp:n=1 

602 2 -6.55 -602 imp:n=1 

603 2 -6.55 -603 imp:n=1 

900 9920 -1 -922 104 107 110 113 116 119 201 204 207 210 213 

216 219 222 225  

          228 231 234 301 304 307 310 313 316 319 322 325 

328 331 334 337  

          340 343 346 349 352 401 404 407 410 413 416 419 

422 425 428 83 

          431 434 437 440 443 446 449 452 455 458 461 464 

467 470 601 602 603  

          imp:n=1 

902 0 -921 104 107 110 113 116 119 201 204 207 210 213 216 

219 222 225  

          228 231 234 301 304 307 310 313 316 319 322 325 

328 331 334 337  

          340 343 346 349 352 401 404 407 410 413 416 419 

422 425 428 83 

          431 434 437 440 443 446 449 452 455 458 461 464 

467 470 601 602 603  

          imp:n=1 

83  5 -15.1 -83 imp:n=1 

c 

c    Fill assembly 
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c 

***********************************************************

****************** 

c 

c  SURFACE CARDS 

c 

c 

***********************************************************

****************** 

c 

c ----------------- Begin Detector Surfaces ---------------

----- 

c Note: #'s <=502 define the FA and the FA region from Holly 

Trellue 

c       #'s 6XX refer to detectors in section 1 

c       #'s 7XX refer to detectors in section 2 

c       #'s 8XX refer to detectors in section 3 

c       #'s 9XX refer to global detector housing 

c 

c 

83 rcc 0 0 9.425 0 0 3.15 0.45 

c --------------- Global --------------- 

c -- concentric cylinders around FA 

901 rcc   0 0 -5       0 0 59.0   26.365      $ Stainless 

steel outer OD 

905 trc   0 0 44.04    0 0 9.96   6.33 9  $ Stainless steel 

taper ID 

910 rcc   0 0 -5       0 0 49.04  6.56    $ Stainless steel 

inner OD - .23 cm thick 

920 rcc   0 0 -11       0 0 133.0   6.33    $ water gap 

921 rcc   0 0 70 0 0 52 6.33 

922 rcc   0 0 -11 0 0 81 6.33 

925 trc   0 0 44.04    0 0 9.96   6.6475  9.3175    $ taper 

of detector 

930 rcc   0 0 -4.6825  0 0 31.6825 26.135 $ air in section 3 

(t=0.23 

950 rcc   0 0 -4.6825  0 0 31.6825 6.61 $ Cd liner for PNAR 

sec. 3 - 0.5 mm thick 

960 rcc   0 0 4.6975   0 0 15.145  7.1275 $ Hf window opening 

(see sec. 3) 

965 rcc   0 0 4.3975   0 0 15.745  7.1275 $ Hf window screen 

(see sec. 3) 

c change 970 from Gd foil to Air 

970 rcc   0 0 4.3975   0 0 15.745  7.13   $ Gd foil for Gd+Hf 

window(see sec. 3) 
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990 rcc   0 0 27       0 0 26.6825 19.365 $ PolyEth 

995 rpp  -30 30 -30 30 -11 70     $ water 

996 rpp  -40 40 -40 40 -15 80   $outside world 

c 

c -- Planes to define Gd+Hf windows 

c - window 1 

511 P   0 0 0   0 0 1    .4764  .8792 0    $ edge 1 of window 

opening 

512 P   0 0 0   0 0 1    .2002  .9798 0    $ edge 2 of window 

opening 

513 P   0 0 0   0 0 1    .5373  .8434 0    $ edge 1 of Gd+Hf 

screen 

514 P   0 0 0   0 0 1    .1304  .9914 0    $ edge 2 of Gd+Hf 

screen 

c - window 2 

521 P   0 0 0   0 0 1   -.9996 -.0270 0    $ edge 1 of window 

opening 

522 P   0 0 0   0 0 1   -.9486 -.3165 0    $ edge 2 of window 

opening 

523 P   0 0 0   0 0 1   -.9990  .0436 0    $ edge 1 of Gd+Hf 

screen 

524 P   0 0 0   0 0 1   -.9239 -.3827 0    $ edge 2 of Gd+Hf 

screen 

c - window 3 

531 P   0 0 0   0 0 1    .5232 -.8522 0    $ edge 1 of window 

opening 

532 P   0 0 0   0 0 1    .7484 -.6633 0    $ edge 2 of window 

opening 

533 P   0 0 0   0 0 1    .4617 -.8870 0    $ edge 1 of Gd+Hf 

screen 

534 P   0 0 0   0 0 1    .7934 -.6088 0    $ edge 2 of Gd+Hf 

screen 

c 

c ---------------------------------------------------------

--- 

c                         SECTION 1 

c ---------------------------------------------------------

--- 

c -- concentric cylinders for PNAR FC, no Cd  (OD's)in section 

1 

c    cylinders centered at a radial distance of 10.57cm from 

z-axis 

630  rcc  0  10.57  41.13   0  0  11.52  1.2700    $ Aluminum 

640  rcc  0  10.57  45.13   0  0   6.35  1.1700    $ 0.8um 

U235 



 

 

132 

 

650  rcc  0  10.57  45.13   0  0   6.35  1.169867   $ Void 

c 

c ---------------------------------------------------------

--- 

c                         SECTION 2 

c ---------------------------------------------------------

--- 

c -- concentric cylinders for Ion Chamber (OD's)in section 2 

c    cylinders centered at a radial distance of 8.0cm from 

z-axis 

830 rcc   0 -8.0 32.0   0 0 6.2   1.2700    $ Al 

840 rcc   0 -8.0 32.1   0 0 6.0   1.16992   $ Void 

c 830 rcc   5.1423 6.1284 32.0   0 0 6.2   1.2700    $ Al 

c 840 rcc   5.1423 6.1284 32.1   0 0 6.0   1.169867   $ Void 

c 

c ---------------------------------------------------------

--- 

c                         SECTION 3 

c ---------------------------------------------------------

--- 

c -- concentric cylinders for Gd+Hf FC's (OD's)in section 3 

c    cylinders centered at a radial distance of 8.4cm from 

z-axis 

715 rcc   5.402 -6.437 6.555   0 0 11.55   1.2700   $ Al 

720 rcc   5.402 -6.437 7.825   0 0  6.35   1.1700   $ 0.8um 

U235 

730 rcc   5.402 -6.437 7.825   0 0  6.35   1.169867  $ Void 

711 rcc   5.000 -6.000 6.555   0 0 11.55   2.0  $Cd inner 

712 rcc   5.000 -6.000 6.455   0 0 11.75   2.1  $cd outer 

713 rcc   2.700 7.330 6.555 0 0 11.55 2.0 

714 rcc   2.700 7.330 6.455 0 0 11.75 2.1 

716 rcc   -7.700 -1.330 6.555 0 0 11.55 2.0 

717 rcc   -7.700 -1.330 6.455 0 0 11.75 2.1 

c 

c -- concentric cylinders for Cd covered FC (OD's)in section 

3 

c    cylinders centered at a radial distance of 8.22cm from 

z-axis 

740 rcc   -5.2822 -6.296 6.355     0 0 11.95  1.4690    $ 

2mm Cd (plus liner) 

750 rcc   -5.2822 -6.296 6.555     0 0 11.55  1.2700    $ Al 

760 rcc   -5.2822 -6.296 7.825     0 0 6.35   1.1700    $ 

0.8um U235 

770 rcc   -5.2822 -6.296 7.825     0 0 6.35   1.169867   $ 

void 



 

 

133 

 

c 

c -- boron carbide & cd 

c 

c -- concentric cylinders for FFM / PNAR w/Cd FC's (OD's)in 

section 3 

c    cylinders centered at a radial distance of 12.9cm from 

z-axis 

781  rcc  0  -12.9  2.730   0  0  19.15   5.0000    $ B4C 

782  rcc  0  -12.9  6.555   0  0  11.55   1.2700    $ Aluminum 

783  rcc  0  -12.9  4.830   0  0  14.95   3.0000    $ Poly 

784  rcc  0  -12.9  4.730   0  0  15.15   3.1       $ cd 

785  rcc  0  -12.9  7.825   0  0   6.35   1.1700    $ 0.8um 

U235 

790  rcc  0  -12.9  7.825   0  0   6.35   1.169867   $ Void 

791  py   -11.4 

792  py   -11.3 

c ------------------ End Detector Surfaces ----------------

----- 

c 

c    Pellet 

104  c/z 0.000 -1.265 0.54 

107  c/z 1.096 -0.633 0.54 

110  c/z 1.096 0.633 0.54 

113  c/z 0.000 1.265 0.54 

116  c/z -1.096 0.633 0.54 

119  c/z -1.096 -0.632 0.54 

201  c/z 0.000 -2.530 0.54 

204  c/z 1.265 -2.191 0.54 

207  c/z 2.191 -1.265 0.54 

210  c/z 2.530 0.000 0.54 

213  c/z 2.191 1.265 0.54 

216  c/z 1.265 2.191 0.54 

219  c/z 0.000 2.530 0.54 

222  c/z -1.265 2.191 0.54 

225  c/z -2.191 1.265 0.54 

228  c/z -2.530 0.000 0.54 

231  c/z -2.191 -1.265 0.54 

234  c/z -1.265 -2.191 0.54 

301  c/z 0.000 -3.795 0.54 

304  c/z 1.298 -3.566 0.54 

307  c/z 2.439 -2.907 0.54 

310  c/z 3.287 -1.898 0.54 

313  c/z 3.737 -0.659 0.54 

316  c/z 3.737 0.659 0.54 

319  c/z 3.287 1.898 0.54 
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322  c/z 2.439 2.907 0.54 

325  c/z 1.298 3.566 0.54 

328  c/z 0.000 3.795 0.54 

331  c/z -1.298 3.566 0.54 

334  c/z -2.439 2.907 0.54 

337  c/z -3.287 1.898 0.54 

340  c/z -3.737 0.659 0.54 

343  c/z -3.737 -0.659 0.54 

346  c/z -3.287 -1.898 0.54 

349  c/z -2.439 -2.907 0.54 

352  c/z -1.298 -3.566 0.54 

401  c/z 0.930 -4.974 0.54 

404  c/z 2.115 -4.597 0.54 

407  c/z 3.172 -3.942 0.54 

410  c/z 4.038 -3.049 0.54 

413  c/z 4.660 -1.972 0.54 

416  c/z 5.000 -0.776 0.54 

419  c/z 5.038 0.467 0.54 

422  c/z 4.772 1.682 0.54 

425  c/z 3.843 3.292 0.54 

428  c/z 2.924 4.130 0.54 

431  c/z 1.828 4.718 0.54 

434  c/z 0.622 5.022 0.54 

437  c/z -0.622 5.022 0.54 

440  c/z -1.828 4.718 0.54 

443  c/z -2.924 4.130 0.54 

446  c/z -3.843 3.292 0.54 

449  c/z -4.772 1.682 0.54 

452  c/z -5.038 0.467 0.54 

455  c/z -5.000 -0.776 0.54 

458  c/z -4.660 -1.972 0.54 

461  c/z -4.038 -3.049 0.54 

464  c/z -3.172 -3.942 0.54 

467  c/z -2.115 -4.597 0.54 

470  c/z -0.930 -4.974 0.54 

105  c/z 0.000 -1.265 0.4255 

108  c/z 1.096 -0.633 0.4255 

111  c/z 1.096 0.633 0.4255 

114  c/z 0.000 1.265 0.4255 

117  c/z -1.096 0.633 0.4255 

120  c/z -1.096 -0.632 0.4255 

202  c/z 0.000 -2.530 0.4255 

205  c/z 1.265 -2.191 0.4255 

208  c/z 2.191 -1.265 0.4255 

211  c/z 2.530 0.000 0.4255 
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214  c/z 2.191 1.265 0.4255 

217  c/z 1.265 2.191 0.4255 

220  c/z 0.000 2.530 0.4255 

223  c/z -1.265 2.191 0.4255 

226  c/z -2.191 1.265 0.4255 

229  c/z -2.530 0.000 0.4255 

232  c/z -2.191 -1.265 0.4255 

235  c/z -1.265 -2.191 0.4255 

302  c/z 0.000 -3.795 0.4255 

305  c/z 1.298 -3.566 0.4255 

308  c/z 2.439 -2.907 0.4255 

311  c/z 3.287 -1.898 0.4255 

314  c/z 3.737 -0.659 0.4255 

317  c/z 3.737 0.659 0.4255 

320  c/z 3.287 1.898 0.4255 

323  c/z 2.439 2.907 0.4255 

326  c/z 1.298 3.566 0.4255 

329  c/z 0.000 3.795 0.4255 

332  c/z -1.298 3.566 0.4255 

335  c/z -2.439 2.907 0.4255 

338  c/z -3.287 1.898 0.4255 

341  c/z -3.737 0.659 0.4255 

344  c/z -3.737 -0.659 0.4255 

347  c/z -3.287 -1.898 0.4255 

350  c/z -2.439 -2.907 0.4255 

353  c/z -1.298 -3.566 0.4255 

402  c/z 0.930 -4.974 0.4255 

405  c/z 2.115 -4.597 0.4255 

408  c/z 3.172 -3.942 0.4255 

411  c/z 4.038 -3.049 0.4255 

414  c/z 4.660 -1.972 0.4255 

417  c/z 5.000 -0.776 0.4255 

420  c/z 5.038 0.467 0.4255 

423  c/z 4.772 1.682 0.4255 

426  c/z 3.843 3.292 0.4255 

429  c/z 2.924 4.130 0.4255 

432  c/z 1.828 4.718 0.4255 

435  c/z 0.622 5.022 0.4255 

438  c/z -0.622 5.022 0.4255 

441  c/z -1.828 4.718 0.4255 

444  c/z -2.924 4.130 0.4255 

447  c/z -3.843 3.292 0.4255 

450  c/z -4.772 1.682 0.4255 

453  c/z -5.038 0.467 0.4255 

456  c/z -5.000 -0.776 0.4255 
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459  c/z -4.660 -1.972 0.4255 

462  c/z -4.038 -3.049 0.4255 

465  c/z -3.172 -3.942 0.4255 

468  c/z -2.115 -4.597 0.4255 

471  c/z -0.930 -4.974 0.4255 

601  box 0.200 -4.395 -1 0.000 -1.201 0 -0.400 0.000 0 0 0 2 

602  box 3.707 2.371 -1 1.040 0.601 0 0.200 -0.346 0 0 0 2 

603  box -3.906 2.025 -1 -1.040 0.600 0 0.200 0.346 0 0 0 2 

900  rcc 0.0 0.0 -11.0 0.0 0.0 133.0  5.6 

c 

 

c 

***********************************************************

****************** 

c 

c  DATA CARDS 

c 

c 

***********************************************************

****************** 

c 

c ----- Fugen FA source ----- 

c sdef rad=d1   ext=d2   pos=fcel=d3   cel=d4   axs 0 0 1   

par=sf   TR 999 

sdef rad=d1 ext=d2 pos=0 0 11.0   axs=0 0 1    par=sf  

si1 0 0.05 

sp1 -21 1 

si2 -.15 .15 

sp2 0 1 

c 

c kcode 1000 1.0 100 1100 

c ksrc  0 -1.265 30 

c       1.096 -0.633 30 

c       1.096 0.633 30 

c       0 1.265 30 

c       -1.096 0.633 30 

c       -1.096 -0.633 30 

c  

nps 5E6 

dbcn 101 

prdmp -15 -120 1  

print 

c 

c 

c ********************************************* 
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c                    TALLIES 

c ********************************************* 

c 

c ----------------------------------- 

c  SECTION 1 

c  FFM (for PNAR NO Cd) 

c ----------------------------------- 

f6404:n   (640<630) 

fc6404 FFM Tally, No Cd for PNAR 1 (sec. 1) 

fm6404    (-1 9941 -6) 

sd6404    1 

tf6404    1 

fq6404    f m 

c 

f6414:n  (640<631) 

fc6414 FFM Tally, No Cd for PNAR 2 (sec. 1) 

fm6414    (-1 9941 -6) 

sd6414    1 

tf6414    1 

fq6414    f m 

c 

f6424:n  (640<632) 

fc6424 FFM Tally, No Cd for PNAR 3 (sec. 1) 

fm6424    (-1 9941 -6) 

sd6424    1 

tf6424    1 

fq6424    f m 

c 

c ----------------------------------- 

c  SECTION 2 

c ----------------------------------- 

c turn these off, not set up for ion chambers yet 

c f864:n   (860<830) (860<831) (860<832) t 

c fc864 Ion Chambers tally (sec. 2) 

c fm864    (-1 9941 -6) 

c sd864    1 1 1 1 

c tf864    4 

c fq864    f m 

c 

c ----------------------------------- 

c  SECTION 3 

c  FFM (for PNAR and SINRD WITH Cd) 

c ----------------------------------- 

c  *** Bare 1 *** 

f7204:n   (720<710) 
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fc7204 Bare Tally for SINRD 1 (sec. 3) 

fm7204    (-1 9941 -6) 

sd7204    1 

tf7204    1 

fq7204    f m 

c 

c  *** Bare 2 *** 

f7214:n   (720<711) 

fc7214 Bare Tally for SINRD 2 (sec. 3) 

fm7214    (-1 9941 -6) 

sd7214    1 

tf7214    1 

fq7214    f m 

c 

c  *** Bare 3 *** 

f7224:n   (720<712) 

fc7224 Bare Tally for SINRD 3 (sec. 3) 

fm7224    (-1 9941 -6) 

sd7224    1 

tf7224    1 

fq7224    f m 

c 

c *** Cd 1 *** 

f7604:n   (760<740) 

fc7604 Cd Tally for SINRD 1 (sec. 3) 

fm7604    (-1 9941 -6) 

sd7604    1 

tf7604    1 

fq7604    f m 

c 

c *** Cd 2 *** 

f7614:n   (760<741) 

fc7614 Cd Tally for SINRD 2 (sec. 3) 

fm7614    (-1 9941 -6) 

sd7614    1 

tf7614    1 

fq7614    f m 

c 

c *** Cd 3 *** 

f7624:n   (760<742) 

fc7624 Cd Tally for SINRD 3 (sec. 3) 

fm7624    (-1 9941 -6) 

sd7624    1 

tf7624    1 

fq7624    f m 
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c 

c *** FFM & PNAR w/Cd 1 *** 

f7904:n   (785<780) 

fc7904 FFM 1 Tally in FC U 

fm7904    (-1 9941 -6) 

sd7904    1 

tf7904    1 

fq7904    f m 

c f7902:n (781.1<780) 

c fc7902 FFM 1 Tally on outside b4c 

c e7902  0.00000001 80log 10 

c fs7902    781.2 781.3 

c sd7902    1 1 1 

c c7902     0 1 

c tf7902    1 

c fq7902    f m 

c f7802:n (784.1<780) 

c fc7802 FFM 1 Tally on outside cd 

c e7802  0.00000001 80log 10 

c fs7802    784.2 784.3 

c sd7802    1 1 1 

c c7802    0 1 

c tf7802    1 

c fq7802    f m 

c f7702:n (783.1<780) 

c fc7702 FFM 1 Tally on inside cd 

c e7702  0.00000001 80log 10 

c fs7702   783.2 783.3 

c sd7702    1 1 1 

c c7702   0 1 

c tf7702    1 

c fq7702    f m 

c f7602:n (782.1<780) 

c fc7602 FFM 1 Tally on Al outside 

c e7602  0.00000001 80log 10 

c fs7602   782.2 782.3 

c sd7602    1 1 1 

c tf7602    1 

c fq7602    f m 

c 

c *** FFM & PNAR w/Cd 2 *** 

f7914:n   (785<781) 

fc7914 FFM Tally for SINRD, PNAR w/Cd 2 (sec. 3) 

fm7914    (-1 9941 -6) 

sd7914    1 
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tf7914    1 

fq7914    f m 

c f7912:n (781.1<781) 

c fc7912 FFM 2 Tally on outside b4c 

c e7912  0.00000001 80log 10 

c fs7912    781.2 781.3 

c sd7912    1 1 1  

c c7912  0 1 

c f7812:n (784.1<781) 

c fc7812 FFM 2 Tally on outside cd 

c e7812  0.00000001 80log 10 

c fs7812    784.2 784.3 

c sd7812    1 1 1  

c c7812   0 1 

c f7712:n (783.1<781) 

c fc7712 FFM 2 Tally on inside cd 

c e7712  0.00000001 80log 10 

c fs7712   783.2 783.3 

c sd7712    1 1 1 

c c7712  0 1 

c f7612:n (782.1<781) 

c fc7612 FFM 1 Tally on Al outside 

c e7612  0.00000001 80log 10 

c fs7612   782.2 782.3 

c sd7612    1 1 1 

c 

c *** FFM & PNAR w/Cd 3 *** 

f7924:n   (785<782) 

fc7924 FFM Tally for SINRD, PNAR w/Cd 3 (sec. 3) 

fm7924    (-1 9941 -6) 

sd7924    1 

tf7924    1 

fq7924    f m 

c f7922:n (781.1<782) 

c fc7922 FFM 3 Tally on outside b4c 

c e7922  0.00000001 80log 10 

c fs7922    781.2 781.3 

c sd7922    1 1 1  

c c7922  0 1 

c f7822:n (784.1<782) 

c fc7822 FFM 3 Tally on outside cd 

c e7822  0.00000001 80log 10 

c fs7822    784.2 784.3 

c sd7822    1 1 1  

c c7822  0 1 
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c f7722:n (783.1<782) 

c fc7722 FFM 3 Tally on inside cd 

c e7722  0.00000001 80log 10 

c fs7722   783.2 783.3 

c sd7722    1 1 1 

c c7722  0 1 

c f7622:n (782.1<782) 

c fc7622 FFM 1 Tally on Al outside 

c e7622  0.00000001 80log 10 

c fs7622   782.2 782.3 

c sd7622    1 1 1 

c 

c 

c OPTIMIZE ON TOTAL FISSION RATE 

c f4:n (640 640 720 760 760 790 790) 

c fm4  (-1 9941 -6) 

c sd4   1 

c 

c ---------------------------------------------------------

- 

c                     VARIANCE REDUCTION 

c ---------------------------------------------------------

- 

c ----- NOT USING VARIANCE REDUCTION for now ----- 

c CUT:n 2j 0 0 

c FCL:n 12j 1 5j 1 6j 1 7j 1 7j 1 6j 1 91j 

c WWG 4 0 

c WWP:n  5 3 5 0 -1 

c 

c MESH geom cyl   origin 0 0 -50   axs 0 0 1   vec 0 -1 0   

ref 0 0 22 

c     imesh 6.999 19.1 50   iints 1 1 7 

c     jmesh 40 49.9 94.1 105 145    jints 1 3 1 3 1 

c     kmesh 1   kints 1 

c ---------------------------------------------------------

- 

c 

c 

********************************************************** 

c  MATERIAL CARDS 

c 

********************************************************** 

c 

c ----------------- Begin Detector System -----------------

--- 
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c  Material 9920 is Water 

m9920       1001.70c 2.0 

            8016.70c 1.0 

mt9920      lwtr.60t 

c 

c Material 9940 is boron carbide (density = 2.52 g/cc) 

m9940     5010 0.16 

          5011 0.64 

          6000. 0.2 

          nlib=.70c 

c Material 9939 is enriched boron (natural density around 

2.4 g/cc) 

m9939     5010 0.9 

          5011 0.1 

          nlib=.70c 

c  Material 9941 is UO2 in FC (density = 10.97 g/cc) 

m9941     92234 -0.008899 

          92235 -0.820161 

          92236 -0.003794 

          92238 -0.047356 

           8016 -0.119781 

          nlib=.70c 

c 

c  Material 9942 is Aluminum  (density = 2.70 g/cc) 

m9942     13027 1.0 

          nlib=.70c 

c 

c  Material 9943 is NATURAL Gadolinium (density = 7.9 g/cc) 

m9943    64152 0.0020 

         64154 0.0218 

         64155 0.1480 

         64156 0.2047 

         64157 0.1565 

         64158 0.2484 

         64160 0.2186 

         nlib=.70c 

c 

c  Material 9949 is NATURAL Hf (density = -13.31 g/cm3) 

m9949    72174 0.00162 

         72176 0.05206 

         72177 0.18606 

         72178 0.27297 

         72179 0.13629 

         72180 0.35100 

         nlib=.70c 
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c 

c  Material 9950 is NATURAL Cadmium (density = 8.65 g/cc) 

m9950   48106 0.01250 

        48108 0.00890 

        48110 0.12490 

        48111 0.12800 

        48112 0.24130 

        48113 0.12220 

        48114 0.28730 

        48116 0.07490 

        nlib=.70c 

c 

c  Material 9990 is polyethylene (density = 0.96 g/cc) 

m9990       1001.70c 2.0 

            6000.70c 1.0 

mt9990      poly.10t 

c  material 9980 is zr2 

m9980    8016   0.006796 

        24000   0.001743 

        26000   0.001623 

        28000   0.000772 

        40000   0.978381 

        50000   0.010686 

c 

c ----- transformations ----- 

c -- rotation 1 for detectors 

*TR931 0 0 0    120 210 90      30 120 90   90 90 0 

c -- rotation 2 for detectors 

*TR932 0 0 0   -120 -30 90   -210 -120 90   90 90 0 

c -- translation of FA in fuel assembly ... verify trans. < 

available gap 

c    uncomment only one of the following TR999 cases, for 

the desired 

c    orientation of the FA in the detector. 

*TR999 0 0 0  $ no translation, i.e., centered (full gap) -

- pos. 0 

c *TR999 0 1.399 0  $ minimize gap, 0 deg                 -

- pos. 1 

c *TR999 0 1.000 0  $ small gap, 0 deg                    -

- pos. 2 

c *TR999 0 0.500 0  $ medium gap, 0 deg                   -

- pos. 3 

c *TR999 1.2116 0.6995 0  $ minimize gap, 30 deg          -

- pos. 4 
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c *TR999 0.8660 0.5000 0  $ small gap, 30 deg             -

- pos. 5 

c *TR999 0.4330 0.2500 0  $ medium gap, 30 deg            -

- pos. 6 

c *TR999 0.6995 1.2116 0  $ minimize gap, 60 deg          -

- pos. 7 

c *TR999 0.5000 0.8660 0  $ small gap, 60 deg             -

- pos. 8 

c *TR999 0.2500 0.4330 0  $ medium gap, 60 deg            -

- pos. 9 

c ------------------ End Detector System ------------------

--- 

c    Material cards 

c kcode  50000 1.0 30 130 

c ksrc   -0.9333  -0.9333 

c          -2.6 -3.9 

c         0.9333  -0.9333 

c          2.6 -3.9 

c         -0.9333  0.9333 

c          -2.6 3.9 

c         0.9333  0.9333 

c          2.6 3.9 

c 

c  zircaloy-2 

m2 

       40090.70c   -0.5055 

       40091.70c   -0.1102 

       40092.70c   -0.1685 

       40094.70c   -0.1708 

       40096.70c   -0.0275 

       26054.70c -7.965e-5    26056.70c -0.00123822 26057.70c 

-2.835e-5 

       26058.70c -3.78e-6 

       50112.70c -0.00014065  50114.70c -0.00009425 

50115.70c -5.22e-5 

       50116.70c -0.00210685  50117.70c -0.0011136  

50118.70c -0.0035119 

       50119.70c -0.0012441   50120.70c -0.00472555 

50122.70c -0.00067135 

       50124.70c -0.00083955 

       24050.70c   -4.345e-5 

       24052.70c   -8.379e-4 

       24053.70c   -9.5e-5 

       24054.70c   -2.365e-5 

       28058.70c   -3.4135e-4 
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       28060.70c   -1.305e-4 

       28061.70c   -5.65e-6 

       28062.70c   -1.795e-5 

       28064.70c   -4.55e-6 

       72176.70c   -5.206e-6 

       72177.70c   -1.8606e-5 

       72178.70c   -2.7297e-5 

       72179.70c   -1.3629e-5 

       72180.70c   -3.51e-5 

c 

c  Zr2.5Nb 

m6 

       40090.70c   -0.5016 

       40091.70c   -0.1094 

       40092.70c   -0.1672 

       40094.70c   -0.1695 

       40096.70c   -0.0273 

       41093.70c   -0.025 

c 

c   light water 

m4    1001.70c  -0.111898     $ Fresh Water 

      8016.70c  -0.88597021 

      8017.70c  -0.00035524 

mt4    lwtr.10t 

c  air 

m3      6000.70c  -0.000124 

        7014.70c  -0.755268 

        8016.70c  -0.231781 

c        18000.70c  -0.012827 

c 

c  stainless steel 

m7  26054.70c -0.00029225 26056.70c -0.0045877   26057.70c -

0.00010595 

      26058.70c -0.0000141  40090.70c -0.50375   40091.70c -

0.109855 

      40092.70c -0.167916   40094.70c -0.17017   40096.70c -

0.027415 

      50112.70c -0.00015423 

      50114.70c -0.00010494 50115.70c -0.00005406  50116.70c 

-0.00231186 

      50117.70c -0.00122112 50118.70c -0.003851    50119.70c 

-0.0013658 

      50120.70c -0.00518    50122.70c -0.00073617  50124.70c 

-0.00092061 

c m1 is 3.19% uranium in the fuel 
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m1 

       8016.70c   -11.8535 

      92234.70c   -0.0240 

      92235.70c   -2.8119 

      92236.70c   -0.0129 

      92238.70c   -84.5611 

c m8 is du in the fuel 

m8 

       8016.70c   -11.8495 

      92234.70c   -0.0012 

      92235.70c   -0.1763 

      92236.70c   -0.0008 

      92238.70c   -87.9722 

m5 

      98252.70c -1 
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APPENDIX B 

Photon Sensitivity Simulation Base Case Input Decks 

 

MCNPX Input file: 

julia eigenbrodt fuel pin sensitivity simulations BASE 

10    10 -10.02      -10  3 -4             imp:n=1 $region 1 

11    11 -10.02  +10 -11  3 -4             imp:n=1 $region 2 

12    12 -10.02  +11 -12  3 -4             imp:n=1 $region 3 

13    13 -10.02  +12 -13  3 -4             imp:n=1 $region 4 

14    14 -10.02  +13 -2   3 -4             imp:n=1 $region 5 

2     2  -6.55   -1   2  3 -4             imp:n=1 $clad 

3     3  -0.7157 -5   6 -7  8  1  3 -4    imp:n=1 $water 

999   0          +5:-6:+7:-8:+4:-3        imp:n=0 

 

1     cz   0.475    $Clad OD 

2     cz   0.418    $fuel OD 

*3    pz   0.0      $bottom 

*4    pz  10.0      $top 

*5    px   0.6618 

*6    px  -0.6618 

*7    py   0.6618 

*8    py  -0.6618 

10    cz   0.2159 

11    cz   0.3238 

12    cz   0.3777 

13    cz   0.4046 

 

kcode 1000 1.0 30 400 

ksrc  0.0 0.0 5.0 

m10   92234.72c  -0.000306 

      92235.72c  -0.035258 

      92236.72c  -0.000162 

      92238.72c  -0.845728 

       8016.72c  -0.118546 

m11   92234.72c  -0.000306 

      92235.72c  -0.035258 

      92236.72c  -0.000162 

      92238.72c  -0.845728 

       8016.72c  -0.118546 

m12   92234.72c  -0.000306 
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      92235.72c  -0.035258 

      92236.72c  -0.000162 

      92238.72c  -0.845728 

       8016.72c  -0.118546 

m13   92234.72c  -0.000306 

      92235.72c  -0.035258 

      92236.72c  -0.000162 

      92238.72c  -0.845728 

       8016.72c  -0.118546 

m14   92234.72c  -0.000306 

      92235.72c  -0.035258 

      92236.72c  -0.000162 

      92238.72c  -0.845728 

       8016.72c  -0.118546 

m2    40000.66c -98.193 

      24000.50c  -0.10 

      26000.50c  -0.20 

      28000.50c  -0.007 

      50000.40c  -1.500 

m3    1001.71c    0.667 

      8016.71c    0.333 

      5010.71c    0.000100 

      5011.71c    0.000400 

mt3   lwtr.15t 

 

Monteburns input file: 
Calvert Cliffs 

UNSU 

5                 !Number of MCNP Materials to Burn 

10                !MCNP Material "m" Numbers 

11                !MCNP Material "m" Numbers 

12                !MCNP Material "m" Numbers 

13                !MCNP Material "m" Numbers 

14                !MCNP Material "m" Numbers 

1.465334          !Volume of Cells Containing the Materials 

1.828899          !Volume of Cells Containing the Materials 

1.186895          !Volume of Cells Containing the Materials 

0.660927          !Volume of Cells Containing the Materials 

0.347061          !Volume of Cells Containing the Materials 

0.0016006         !Power in MWt 

-200.0            !Q-value for Fission 

0                 !Total Number of Days Burned 

55                !Number of Outer Burn Steps 

10                !Number of Inner Burn Steps 

1                 !Number of Predictor Steps 
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0                 !Step to Restart After 

pwru              !ORIGEN2 Library 

/usr/local/origen-2.2/libs  !Location of ORIGEN2 Library 

0.005             !Fractional Importance Limit 

0                 !Flag for Intermediate keff Calculations 

34                !Number of Automatic Tally Isotopes 

92234.72c 

92235.72c 

92236.72c 

92238.72c 

93237.72c 

94238.72c 

94239.72c 

94240.72c 

94241.72c 

94242.72c 

95241.72c 

95243.72c 

55134.72c 

55137.72c 

60148.72c 

62149.72c 

63154.72c 

63155.72c 

64155.72c 

40091.72c 

43099.72c 

54131.72c 

55133.72c 

60143.72c 

61149.72c 

62153.72c 

63153.72c 

44106.72c 

47510.72c 

51125.72c 

58144.72c 

62151.72c 

62152.72c 

63152.72c 

34 

92234.72c 

92235.72c 

92236.72c 

92238.72c 
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93237.72c 

94238.72c 

94239.72c 

94240.72c 

94241.72c 

94242.72c 

95241.72c 

95243.72c 

55134.72c 

55137.72c 

60148.72c 

62149.72c 

63154.72c 

63155.72c 

64155.72c 

40091.72c 

43099.72c 

54131.72c 

55133.72c 

60143.72c 

61149.72c 

62153.72c 

63153.72c 

44106.72c 

47510.72c 

51125.72c 

58144.72c 

62151.72c 

62152.72c 

63152.72c 

34 

92234.72c 

92235.72c 

92236.72c 

92238.72c 

93237.72c 

94238.72c 

94239.72c 

94240.72c 

94241.72c 

94242.72c 

95241.72c 

95243.72c 

55134.72c 

55137.72c 
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60148.72c 

62149.72c 

63154.72c 

63155.72c 

64155.72c 

40091.72c 

43099.72c 

54131.72c 

55133.72c 

60143.72c 

61149.72c 

62153.72c 

63153.72c 

44106.72c 

47510.72c 

51125.72c 

58144.72c 

62151.72c 

62152.72c 

63152.72c 

34 

92234.72c 

92235.72c 

92236.72c 

92238.72c 

93237.72c 

94238.72c 

94239.72c 

94240.72c 

94241.72c 

94242.72c 

95241.72c 

95243.72c 

55134.72c 

55137.72c 

60148.72c 

62149.72c 

63154.72c 

63155.72c 

64155.72c 

40091.72c 

43099.72c 

54131.72c 

55133.72c 

60143.72c 
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61149.72c 

62153.72c 

63153.72c 

44106.72c 

47510.72c 

51125.72c 

58144.72c 

62151.72c 

62152.72c 

63152.72c 

34 

92234.72c 

92235.72c 

92236.72c 

92238.72c 

93237.72c 

94238.72c 

94239.72c 

94240.72c 

94241.72c 

94242.72c 

95241.72c 

95243.72c 

55134.72c 

55137.72c 

60148.72c 

62149.72c 

63154.72c 

63155.72c 

64155.72c 

40091.72c 

43099.72c 

54131.72c 

55133.72c 

60143.72c 

61149.72c 

62153.72c 

63153.72c 

44106.72c 

47510.72c 

51125.72c 

58144.72c 

62151.72c 

62152.72c 

63152.72c 
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Monteburns feed file: 
TimeStep Feed#PowFr mat#BeginAndEnd(-

1=previous)RemovalGroup#FractionF.P.Removed 

 (i4) (f8.2), (f7.3) (i4)(i4)  grams/day(2f8.1)(i4)(f7.3)  

   1   15.00  1.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

   2   15.00  1.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

   3  425.00  1.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

   4   20.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 
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   5   15.00  1.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

   6   15.00  1.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

   7  425.00  1.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

   8  495.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

   9   15.00  1.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 
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                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  10   15.00  1.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  11  425.00  1.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  12  365.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  13  365.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 
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                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  14  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  15  195.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  16  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  17  925.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  18  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 
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                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  19  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  20  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  21  950.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  22  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 
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                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  23  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  24  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  25  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  26  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 
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  27  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  28  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  29  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  30  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  31  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 
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                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  32  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  33  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  34  150.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  35  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 
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                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  36  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  37  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  38  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  39  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  40  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 



 

 

162 

 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  41  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  42  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  43  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  44  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 



 

 

163 

 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  45  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  46  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  47  150.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  48  950.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 



 

 

164 

 

  49  950.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  50  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  51  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  52  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  53  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 



 

 

165 

 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  54  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  55  900.00  0.000  10   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     11   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     12   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     13   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

                     14   0     0.0     0.0   0  0.000 0 0.00 

0 0.00 

  0                 ! # of feed specs 

  0                 ! # of removal 

 


