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ABSTRACT

This research investigates the microgrid-based solution to future distribution sys-

tems with high penetration of distributed energy resources (DERs). A clustered sys-

tem architecture is envisioned, in which microgrids are formulated as key building

blocks of a smart distribution system. Accordingly, the control and operation can be

simplified significantly with the system configured as an interconnected of coupling

operated microgrids.

By leveraging the highly controllable power electronics (PE) interfaces - volt-

age source inverters (VSIs), and advanced measurement technology - synchrophasor,

we propose a novel interface control strategy, through which desirable power shar-

ing behavior among coupled microgrids can be achieved. Angle droop method is

adopted for real power sharing instead of the widely used frequency droop control,

which eliminates the need for secondary level frequency control. For reactive power

sharing, voltage droop control implemented with integrator is adopted, which pro-

vides effective support for voltage dynamics and interaction among interconnected

microgrids. Better transient performance can be achieved with the proposed inter-

face control strategy compared with conventional power systems interfaced through

synchronous generators (SGs). For the proposed system configuration and interface

control strategy, small signal and transient stability problems are investigated. Sev-

eral criteria are derived, based on which the system stability can be evaluated with

computationally efficient algorithms and dynamic security assessed and managed in

a timely manner.

With future distribution grids configured as microgrid interconnections, a three

level hierarchical control framework is proposed. At the primary level the model
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reference control (MRC) is performed for interface parameter online tuning, through

which each VSI-interface is controlled to track a designed reference model. At the

secondary level, a droop gain management scheme is proposed to adjust the angle

and voltage droop gains based on system stability assessment results. At the tertiary

level, an AC power flow (ACPF)-based supervisory control strategy is employed to

dispatch the nominal setting to each microgrid central controller (MGCC).
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NOMENCLATURE

AC Alternating current

ACPF AC power flow

CP Connection point

DER Distributed energy resource

DOE U.S. department of energy

DSA Dynamic security assessment

DSO Distribution system operator

ESS Energy storage system

GPS Global positioning system

IED Intelligent electronic device

LUC Local unit controller

MGCC Microgrid central controller

MRAC Model reference adaptive control

MRC Model reference control

PCC Point of common coupling

PE Power electronic

PMU Phasor measurement unit

SG Synchronous generator

SMIB Single machine infinite bus

SOC State of charge

TB Tie branch

VSI Voltage source inverter

µG Microgrid
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1. INTRODUCTION∗

This research is motivated by the emerging need to design, control and schedule

future distribution systems. Today’s electric infrastructure is comprised of a com-

plex system of power generation, transmission networks and distribution systems.

Electricity is generated by large power plants located near available resource such as

hydro and fossil-fuel generation far from load centers. The transmission systems are

the vital link between power production and usage responsible for delivering power

from remote location of power generation to the commonly populated areas where

power is demanded. The distribution systems are responsible for carrying power

from the high voltage transmission systems to individual customers [46].

In current industrial practice, distribution systems are mostly passive, less re-

liable with little intelligence compared with transmission systems [31]. However,

technology advancement, environmental concern and economic incentives proliferate

the integration of distributed energy resources (DER) [24]. With high penetration

level of DER and the related smart grid technologies that in development, future

distribution systems will be as active if not more than today’s transmission systems.

Operating principle used for current distribution grids will not be suitable for the

smart and active future distribution systems. Thus novel system architecture and

corresponding control and stability assessment frameworks are of urgent need to

realized the envisioned smart grid concept.

Smart distribution can be realized through real-time management of all the dis-

tributed generation (DG) units integrated; however, timely management of a large

∗This section is in part a reprint with permission from Yun Zhang and Le Xie of the material
in the paper: “Online Dynamic Security Assessment of Microgrid Interconnections in Smart Dis-
tribution Systems,” Power Systems, IEEE Transactions on, vol. 30, no. 6, 2015. Copyright 2015
IEEE.
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and time variant number of setting points can be an overwhelming task when the

DER penetration level becomes high [31]. A promising management strategy is to

package DER and associated loads into energy clusters, which are typically referred

to as “microgrids”. If the system can be configured as an interconnection of micro-

grids, the task of managing individual DG units with heterogeneous physical nature

and dynamical behavior can be simplified. And the number of control points man-

aged by system coordinator will be reduced significantly [31]. In current practice,

microgrids are commonly integrated with the external system at a single point of

connection, known as the point of common coupling (PCC). The operation status

of internal DG units and loads will be managed by the local microgrid central con-

troller, while the PCC voltage profile will be controlled by the distribution system

operator for interconnection level management [47].

In this thesis, microgrids are considered as the building blocks for future dis-

tribution system with well-designed interaction behavior. Novel interface control

strategies are proposed using angle droop method for real power sharing among in-

terconnected microgrids. For a multi-microgrid distribution system with angle droop

controlled interfaces, small signal and transient stability criteria are derived allowing

for online stability assessment to guarantee system dynamic security. To support

high penetration of DERs, a three-level hierarchical control framework is customized

for the proposed system configuration. Fig. 1.1 shows the control diagram for the

proposed microgrid-based distribution systems.

1.1 The Microgrid Concept

Since its recent introduction, the concept of microgrid has been widely discussed;

however, a world-wide “official” definition has not been identified during this re-

search.
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Figure 1.1: Control diagram for microgrid-based distribution systems.

The U.S. Department of Energy (DOE) offered a description of microgrids [43]:

A Microgrid, a local energy network, offers integration of DER with local elastic

loads, which can operate in parallel with the grid or in an intentional island mode

to provide a customized level of high reliability and resilience to grid disturbances.

This advanced, integrated distribution system addresses the need for application in

locations with electric supply and/or delivery constraints, in remote sites, and for

protection of critical loads and economically sensitive development.

A more succinct definition had been provided later on by the Microgrid Exchange

Group as follows [4]:

A Microgrid is a group of interconnected loads and distributed energy resources within

clearly defined electrical boundaries that acts as a single controllable entity with re-

spect to the grid. A Microgrid can connect and disconnect.

Great efforts had been made to study and construct microgrids. In current prac-

tice, microgrids are mostly divided into three categories: 1) remote microgrids, 2)

facility microgrids and 3) utility microgrids. The remote microgrids are mostly lo-

cated in distant areas where the utility grid is inaccessible, and thus do not have

3
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Figure 1.2: Mainstream types of DER technologies.

the grid-connected operation mode. Facility microgrids are typically integrated at

the medium voltage level and have little impact on utility grids. Facility microgrids

are mainly formulated in North America specifically for industrial or institutional

application where technology is matured. Utility microgrids are generally integrated

at high voltage level and have massive impact on utility power systems [1].

Different from conventional power systems in which synchronous generators (SG)

are the major energy source, electric power is mostly generated though DERs in

microgrids. DERs can be considered as small scale power generation units supplying

all or a portion of their local loads, and may also be capable of injecting power into the

utility grid if local power surplus presents. DER technologies can be largely divided

into renewable and nonrenewable depending on their prime movers [46]. Fig. 1.2

shows the mainstream types of DER technologies implemented in current industrial

practice [12].

As a collection of technologies with different characteristics, the DER family

includes various types of units with heterogeneous profiles. With high level of DER

integrated, the net load profiles could be significantly altered, either increasing or

reducing peaks [12]. Combining and clustering DERs at the distribution level into

4



Figure 1.3: Radial distribution system.

the microgrid-based configuration is considered a promising solution to future smart

distribution systems [31].

1.2 Architecture of Future Distribution Systems

Two types of distribution system configuration exist in today’s practice: radial

or network [49]. Arranged like a tree, a radial distribution system involves just one

power source for a cluster of clients as shown in Fig. 1.3. It is the least complex and

most inexpensive distribution grid to build; however, any failure in the power line will

result in a blackout due to the single source configuration. A network distribution

system has multiple sources of supply operated in a coupling manner, which provides

great opportunities for coupled microgrids application, shown in Fig. 1.4, and adds

a huge advantage in terms of reliability [18].

In order to successfully integrate large amount of DERs, many technical chal-

lenges must be overcome to guarantee system stability and sustainability and at

the meantime ensure that the potential benefits of DERs are fully harnessed [44].

A promising solution is to configure the distribution system as coupling operated

microgrids interfaced through power electronic-based interfaces, shown in Fig. 1.4

[60].

5
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Defined as a energy resource and load cluster, each microgrid packages closely lo-

cated DER units, energy storage systems and loads at the point of common coupling

(PCC) such that the uncontrollable or semi-controllable units (renewable and loads)

can be partnered with controllable units (fuel-based sources) and storage. Each power

generation and/or consumption unit is controlled by its local unit controller (LUC),

and all the LUCs are managed by an intelligent microgrid central controller (MGCC).

Then at the upper level, the distribution system operator (DSO) only needs to co-

ordinate each microgrid interface and distributes the task of controlling individual

DER units to each microgrid central controller (MGCC) as shown in Fig. 1.5. Such

system architecture is similar to the large transmission level multi-machine systems

[29], whereas different system interfaces are adopted. Generally, synchronous gen-

erators (SGs) are utilized as interfaces for large multi-machine power systems while

voltage source inverters (VSI) are widely used as power electronic (PE) interfaces

for DER or microgrid considering their advantage in power conversion efficiency and

6
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their more compact and economical installation compared with current source in-

verters [27]. With the VSI-based interfaces, the physical inertia on the resource side

will be decoupled from the grid side. Thus the interaction behaviors among cou-

pling operated microgrids will be primarily determined by the VSI interface control

functions [23].

1.3 Microgrids as Building Blocks of Future Distribution Systems

In current practice, electric power systems are divided into three subsystems,

power generation, transmission and distribution systems. Electric power is mostly

generated by highly centralized power plants and carried through high voltage trans-

mission network over long distances to consumer communities. At substations, elec-

tricity from transmission lines is reduced to lower voltage and supplied to the end

customers through distribution systems.

Today’s transmission network is by the large reliable and controllable; however, it

suffers from cascading failures, low efficiency and poor utilization of resources. Only

one third of fuel energy is converted into electric power due to losses in the waste

7



heat. Further more, around 7% of the electric power generated will be lost in the

transmission and distribution lines before delivered to the end customers. Due to the

load profile variation, approximately 20% of today’s generation capacity is configured

just to meet the peak demand existing 5 % of the time. It is expected that these

issues aggravated in future grid with high penetration of renewable resources due to

their intermittent behavior [31].

On the other hand, today’s distribution systems are generally passive, less reliable

with little intelligence. Unlike evolutionary step-by-step improvements in transmis-

sion systems, revolutionary changes are envisioned providing great opportunity for

the “smart grid” concept. In the foreseeable future, large central power plants will

continue to serve as bulk power source, while many new customers will be supplied

by renewable resources that would today be out of reach of the existing transmission

grid. New lines will be built to connect these new resource and customer clusters,

and new methods will need to be employed to accommodate their heterogeneous

performance characteristic [17].

Bringing electric power sources closer to loads, the microgrid configuration con-

tributes to the voltage profile enhancement, the reduction of transmission and dis-

tribution bottlenecks, lower losses, better utilization of waste heat, and postpones

investments in large-scale generation and new transmission systems [31]. In the cur-

rent practice, the power rating of microgrids are still quite small compared with the

utility grid. In grid-connected mode, the dynamical impact of a microgrid on the

external system is negligible, which validates the single machine infinite bus models

commonly used in microgrid dynamical studies. However, when developed into the

next level and deployed into large area, microgrids can become building blocks of

future distribution systems. Appropriate control and management strategy needs to

be in place so that a microgrid can be presented to the macro grid as a well-behaved

8



single controllable entity.

1.4 Challenges for Systematic Control of Coupling Operated Microgrids

The control and operation problems of individual microgrid have been studied

extensively, e.g. topology formulation, power management strategy, islanding and

resynchronizing operation, etc. [31], [48], [55]. For stability studies, small signal

stability of microgrids was investigated in [41], which proposes an adaptive droop

controller ensuring relative stability at different loading conditions. In [22], a stabil-

ity assessment approach is proposed for parallel-connected inverters to examine the

system (microgrid) stability in a decentralized manner. However, it still remains an

open area of research for the coupling operation of microgrids at the interconnection

level. High penetration of intermittent energy resources could have significant effect

on the dynamic behaviors of microgrids. Excessive interaction of microgrids could

result in power swings and losing synchronized coupling even if all microgrids are

individually stabilized. A systematic stability analysis could provide key insights for

the distribution system operator to effectively assess system-wide dynamic security

of microgrid interconnections.

In large scale system theory, a well-established method for stability analysis of

interconnected systems is to utilize properties of individual subsystems in conjunc-

tion with the interconnection structure to obtain sufficient conditions for asymptotic

stability in the large [42], [2]. Numerous stability analysis algorithms and results for

interconnected systems had been tailored and applied to conventional power systems,

e.g. [45], [5]. However, several fundamental and unique features differ interconnected

microgrids from conventional power systems: 1) energy resources are commonly in-

tegrated through power electronic (PE) converters decoupling their physical inertia

from the grid; 2) the (external) behavior of microgrids will be primarily determined

9



by the control scheme of their interfaces; 3) microgrids are generally integrated at the

distribution level, where lines cannot be considered lossless; 4) commonly, intelligent

electronic devices (IEDs) with synchro-phasor capability are equipped at the PCC to

realize seamless transition between grid-connected and islanded modes; 5) modeling

and control framework capable of handling meshed networks might be desirable with

an eye to their potential for loss reduction and better support of DER integration

[10]. Clearly these unique features advocate a fresh control framework customized

for the coupling operation of microgrids in future smart distribution systems.

1.5 Main Contributions

In this thesis, the microgrid concept is taken to the next level. Microgrids are

considered as the fundamental building blocks of the future smart distribution sys-

tems. Presented to the macro grid as single controllable entities, the control and

management task for the distribution system operator can be greatly simplified.

To achieve desirable interaction behavior, a novel interface control strategy is

proposed, in which angle droop method is adopted for real power sharing control,

while voltage droop method, the version implemented with integrator, is adopted for

reactive power sharing.

For the microgrid-based system architecture with the proposed interface control

strategy, small-signal and transient stability problems are studied. For small-signal

stability, a coordinated criterion is derived based on a sufficient and necessary condi-

tion obtained with Lyapunov theorem, while a distributed criterion is derived based

on a sufficient condition obtained with dissipative system theory and Lyapunov di-

rect method. For transient stability, a sufficient condition is derived based on the

linear matrix inequality (LMI) version of the Kalman-Yakubovich-Popov (KYP) con-

ditions. With these stability criteria, system-wide stability can be assessed in a real

10



time manner, which is highly desirable for systems with large amount of highly in-

termittent resources integrated.

For systems with fast changing operating condition, a three-level hierarchical

control framework is proposed to guarantee system performance, through which con-

servativeness can be reduced significantly in the design of microgrid power sharing

characteristics.
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2. DISSERTATION OUTLINE

The rest of this dissertation is organized as follows. Section 3 introduces the

proposed microgrid interface control strategies. For real power sharing, angle droop

method is compared with the widely used frequency droop control with their pros

and cons discussed in detail. For reactive power sharing, voltage droop method

implemented with integrator is introduced. With the interface control strategy de-

termined, dynamical model the microgrid module is presented. This section also

describes a virtual interfacing scheme for the internal integration VSIs when no

physical interface unit is deployed at the microgrid point of common coupling.

Section 4 presents the stability assessment of multi-microgrid systems. Small-

signal and transient stability criteria are derived, based on which system-wide sta-

bility can be assessed in a real time manner.

Section 5 presents the proposed hierarchical control framework for future distri-

bution systems to guarantee system-wide stability, in which three control levels are

defined. A model reference control (MRC)-based scheme is adopted for online droop

gaining tuning at the primary level, through which the interface inverter of each

microgrid is controlled to track a designed reference model. At the secondary level,

an interactive droop management scheme is proposed to manage the reference model

droop gains based on derived system stability criteria. At the tertiary level, an AC

power flow (ACPF)-based supervisory control strategy is utilized to 1) dispatch the

nominal setting to each microgrid central controller (MGCC) for the primary level

reference tracking, and 2) broadcast an interaction coefficient to each MGCC so that

the droop gains can be managed to guarantee system-wide stability. This section also

presents the management scheme for microgrids interfaced through multiple VSIs.
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Section 6 presents the numerical studies of some example test systems. A single

machine infinite bus system is formulated to demonstrate the proposed interface

control strategy and virtual interfacing scheme. Small-signal stability is evaluated

for a 5-microgrid study system formulated based on IEEE 123-node test feeder.

Transient stability is evaluated for this 5-microgrid but with different tie-branch

parameters. Also with this 5-microgrid system, numerical examples are formulated

to demonstrate the feasibility of the proposed hierarchical control framework.

Section 7 summaries the main contributions of this thesis and presents the topic

to be studied in future work.
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3. INTERFACE CONTROL STRATEGY FOR MICROGRID INTERACTION

3.1 Power Sharing and Interaction among Coupled Microgrids

To manage interaction and power sharing among interconnected units, different

strategies exist in current practice of distributed generation integration.

• Master/Slave Strategy. This strategy is widely used for managing DER units

inside a microgrid, in which internal DER units delivers voltage, current or

power injection profile according to the command of a master unit. The mas-

ter unit will be dedicated to power balancing in islanded mode or microgrid

interface control in grid-connected mode [59].

• Droop-based Control Strategy. Droop method does not require critical commu-

nication among electrically coupled units. Each unit adjusts its output setting

according to designed droop characteristics. This strategy is suitable for in-

teraction and power sharing control in multi-microgrid distribution systems.

Power sharing without communication among microgrids is the most desirable

option as the distribution network can be complex and spanning over a large

geographic area [40].

3.2 Angle Droop Control for Real Power Sharing

Concerning the interfacing of microgrids to the distribution system, it is im-

portant that proper power sharing achieved among coupling operated microgrids.

Droop-based methods are highly desirable due to their minimal communication re-

quirement as the distribution systems can be complex and span over large areas [38].

Motivated by SG operation principle, frequency droop method is mostly adopted

using local frequency signals (real power balance indicator) as feedback to control
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respective interface output. Depending on the stiffness of the power-frequency curve,

the steady state frequency will change with the time varying power production and

consumption mismatch. It is widely known that in order to achieve stable operation,

the alternating current (AC) frequency must be held within tight tolerance bounds.

Such high requirement of frequency regulation limits the allowable range of frequency

droop gain, which in turn, may lead to chattering during frequent load change or

renewable resource fluctuation [40]. If all the microgrids are interfaced through VSIs

as shown in Fig. 1.4, the output voltage angle of each interface can be set arbi-

trarily as long as a synchronized angle reference is available [60]. Thus drooping

the VSI voltage angle instead of frequency can be a better option for power sharing

considering its advantage in transient performance and control flexibility [60], [38],

[39].

In current practice of microgrid interface control, algorithms mimicking SG swing

equations are commonly used to craft synthetic inertia in case that the system fre-

quency is at risk of running into unacceptable level following resource and/or load

disturbances [63]. Such algorithms are basically frequency droop methods utilizing

the frequency deviation signal as power balance indicator due to the nature of SG

swing equations. Nevertheless, several factors limit their application for future dis-

tribution systems: 1) in order to achieve zero steady-state frequency deviation, the

synchronization frequency ωsync need to be accessed by each interface VSI, which is

unfortunately not locally available. Thus the conventional droop methods do not

allow for plug-and-play realization despite their distributed implementation [53]; 2)

the conflict between frequency regulation requirement and the sensitivity of indicat-

ing power imbalance [37]. The frequency regulation constraint limits the allowable

range of the droop gains.

In the case of VSI-interfaced microgrids, the output angle can be changed instan-
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taneously, and thus drooping the angle is a better way for real power sharing. Better

system transient performance could be expected with the angle droop method. For

the angle droop control methods signals from the global positioning system (GPS)

are required for angle referencing, which can be available from deployed intelligent

electronic devices (IEDs) with phasor measurement units (PMUs) embedded [38].

In current practice, the frequency droop methods dominate in real power shar-

ing control among coupled microgrids [15], [40], [41]. Such methods manage the

frequency setting according to the following relationship.

ωref = ω∗ + σω(P ∗I − PI), (3.1)

where P ∗I and PI are the nominal and actual real power injection of the microgrid.

σω is the frequency droop gain.

With (3.1), the P − δ subsystem dynamics can be represented as follows.

∆δ̇ = ∆ω = −σω∆PI , (3.2)

where ∆PI = PI − P ∗I represents the real power imbalance. ∆ω = ωref − ω∗.

If synchrophasor measurement is available, then angle damping can be added so

that

∆δ̇ = −Dδ∆δ − σω∆PI , (3.3)

where ∆δ = δ − δ∗, Dδ is the angle damping coefficient.

With simple manipulation, (3.3) can be rewritten as follows.

τδ δ̇ + δ − δ∗ = σδ(P
∗
I − PI), (3.4)
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Figure 3.1: Current practice and proposed interface control strategies.

where τδ = 1
Dδ

is the time constants for angle tracking. σδ = σω
Dδ

is the angle droop

gain.

From previous discussion, the following advantages come with the angle droop

control strategy: 1) secondary level frequency regulation can be avoided; 2) asymp-

totical stability can be achieved even when no infinite bus presents in the system

model; 3) for a multi-microgrid interconnection, small signal stability can be eval-

uated in a distributed manner, which provides insightful guidance for droop gain

design of each microgrid interface.

3.3 Angle Feedback Control for Interfaces Providing Inertia Support

For large power rating applications that have significant impact on the transmis-

sion system, there is concern that the inertia-less power electronic interfaces may

result in noticeable decrease of overall system inertia so that following large power

plant trips, the system frequency will be at risk of falling below the acceptable limit

before frequency control can respond to mitigate the situation [63]. Synthetic inertia

strategies emulating synchronous generator (SG) behaviors have been proposed to

address this issue [14], [9], [63], [8]. The eletro-static energy stored in the DC link
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Figure 3.2: Diagram of inertia emulating interfaces with angle feedback control.

capacitors can be managed to emulate the kinetic energy transition behavior of SGs

[63]. Correspondingly, the P − δ subsystem dynamics of inertia emulating interfaces

can be represented as follows.

∆δ̇ = ∆ω,

J∆ω̇ = −D∆ω − σω∆PI ,

(3.5)

where J is the virtual inertia constant determined by the SG emulation strategy.

Here we propose an angle feedback control scheme for the SG emulating interfaces

so that the angle droop characteristic follows with the aforementioned advantages.

The relationship among between the state of the art and the proposed strategies are

given in Fig. 3.1.

Assuming synchrophasor measurement is available at the microgrid PCC, angle

feedback control can be utilized to craft the interface SG emulation behavior with

angle droop characteristics, diagram given in Fig. 3.2.

With angle feed back control adopted for a SG-emulating interface i, the small
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signal model of its P − δ subsystem can be represented as follows [60], [20].

∆δ̇i = ∆ωi,

Ji∆ω̇i = −Di∆ωi + ∆PCi −∆PIi ,

τCi∆
˙PCi = −∆PCi −KCi∆δi

(3.6)

where ∆PCi is the angle feedback control variable, τCi is the controller response time

constant, KCi is the angle feedback gain.

3.4 Voltage Droop Control for Reactive Power Sharing

For reactive power sharing, voltage droop method is widely used employing the

following control function.

V − V ∗ = σV (Q∗I −QI), (3.7)

where Q∗I , QI are the nominal and actual reactive power injection. σV is the voltage

droop gain.

It is clear that if a microgrid injects a non-zero amount of reactive power QI ,

its voltage will deviate from its reference V ∗ according to the droop characteristic

defined in (3.7). To avoid sudden change in interface voltage, an integral channel

can be added yielding the first-order voltage droop controller [54]. Implemented

with integrator, we have the following voltage control function representing the Q-V

subsystem dynamics.

τV V̇ + V − V ∗ = σV (Q∗I −QI), (3.8)

where τV is the time constants for voltage tracking.
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3.5 Distributed Control of Multiple VSIs for Virtual Interfacing

If no interface VSI is deployed at the microgrid PCC, virtual interfacing can

be realized by managing the integration VSI of each internal DER unit. Fig. 3.3

shows the diagram of a microgrid with n DER units integrated. The PCC voltage is

not directly controlled by an interface VSI although synchrophasor measurement is

available.

By definition each microgrid acts as a single controllable entity for the intercon-

nection level analysis, of which the dynamics is determined by the control strategy

of a virtual interface. With angle and voltage droop methods adopted for real and
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reactive power interaction, respectively, the PCC voltage phase angle and magnitude

of each microgrid need to be generated as follows according to (3.4), (3.8).

δif = δ∗ +
σδ

τδs+ 1
(P ∗I − PI),

Vif = V ∗ +
σV

τV s+ 1
(Q∗I −QI).

(3.9)

Vif∠δif can not be generated directly since there is no interface VSI deployed at the

microgrid PCC; however, it can be generated indirectly by managing the integration

VSI of each DER unit in a distributed manner.

Using the d-q equivalent circuit of the balanced three phase PCC voltage, the d

axis can be aligned with Vif∠δif as shown in Fig. 3.4. Then the d and q axis current

injection from the PCC to the network can be calculated as

Id =
PI
Vif

, Iq = −QI

Vif
. (3.10)

For the kth DER integration VSI, k = 1 . . .m, let its d and q axis output current

be

Idk = cdkId, Iqk = cqkIq, (3.11)

where cdk and cqk are the participation factors of VSI k respectively for d and q axis

current injection to the network, which are assigned by the MGCC satisfying

m∑
i=1

cdk = 1,
m∑
i=1

cqk = 1. (3.12)

Note the line impedance from VSI k to the PCC as

zk = Rk + jXk, (3.13)
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we have,

Vdk + jVqk − Vif = (Rk + jXk)(Idk + jIqk). (3.14)

Then the d and q axis output voltage of VSI k can be calculated as

Vdk = Vif +RkIdk −XkIqk ,

Vqk = RkIqk +XkIdk .

(3.15)

The corresponding voltage setting for the DER integration VSIs can be obtained as

V ref
k = |Vdk + jVqk |,

δrefk = δif + tan−1(
Vqk
Vdk

),
(3.16)

where k = 1 . . . n.

The above procedure can be simplified if the current injection of each VSI is

determined by its electrical distance to the microgrid PCC through controlling all

VSIs with the same voltage reference. All the equal-potential VSI nodes can be

represented as one equivalent node connected to the microgrid PCC through a line

with impedance

zeq =
1∑n
k=1

1
zk

= Req + jXeq. (3.17)

Then the d and q axis voltage for each VSI will be

Vd = Vif +ReqId −XeqIq,

Vq = ReqIq +XeqId.

(3.18)
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And the voltage reference setting for each VSI will be

V ref = |Vd + jVq|,

δref = δif + tan−1(
Vq
Vd

).
(3.19)
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4. STABILITY ASSESSMENT FOR MICROGRID-BASED DISTRIBUTION

SYSTEMS∗

In order to successfully integrate large amount of DERs, many technical chal-

lenges must be overcome to guarantee system stability and sustainability and at the

meantime ensure that the potential benefits of DERs are fully harnessed [44]. Stabil-

ity assessment is considered a fundamental and important problem in power system

design and operation [51].

4.1 Representation of Microgrid Modules for System-wide Stability Analysis

In the proposed system configuration, each microgrid is connected to the system

at the point of common coupling (PCC) through a VSI interface with synchropha-

sor measurement capability. Angle and voltage droop methods are utilized for au-

tonomous real and reactive power sharing among interconnected microgrids. At the

PCC of interface i ∈ {1, . . . , n}, we specify the angle and voltage droop control law

by combining (3.4) and (3.8).

τδi δ̇i + δi − δ∗i = σδi(P
∗
Ii
− PIi),

τViV̇i + Vi − V ∗i = σVi(Q
∗
Ii
−QIi),

(4.1)

where δi, Vi are the PCC voltage angle and magnitude. P ∗Ii , Q
∗
Ii

are the nominal

real and reactive power injections. PIi , QIi are the actual real and reactive power

injections. τδi , τVi are the angle and voltage tracking time constants. σδi , σVi are the

angle and voltage droop gains which represent the sensitivity of indicating real and

∗This section is in part a reprint with permission from Yun Zhang and Le Xie of the material
in the paper: “Online Dynamic Security Assessment of Microgrid Interconnections in Smart Dis-
tribution Systems,” Power Systems, IEEE Transactions on, vol. 30, no. 6, 2015. Copyright 2015
IEEE.
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Figure 4.1: Feedback loop for the proposed droop controller.

reactive power imbalance, respectively.

Then in the n-microgrid interconnected system, dynamical behavior of each inter-

face is determined by the control law given in (4.1), and constrained by the network

physics in an instantaneously coupling manner, as shown in Fig. 4.1. For the ith

microgrid in the system, it is well known that its real and reactive power injection

PIi , QIi are related with the interface states Vi, δi through the power flow equations

governed by Kirchoff’s law. PIi and QIi are not locally determined but the result

of system interaction, which can be considered as the feedback from the network.

The key idea of the proposed microgrid interface control strategy is to define the

real and reactive power sharing characteristics according to the angle and voltage

droop control function. The interface states δi and Vi are determined by the network

feedback measurement PIi , QIi , together with the reference setting P ∗Ii , δ
∗
i , Q

∗
Ii
, V ∗i

dispatched by the DSO.

The nominal real and reactive power injections P ∗Ii , Q
∗
Ii

are dispatched by the DSO

solving an AC power flow problem and remain constant during a dispatch interval,

e.g. 15 minutes. The actual real and reactive power injections are determined by the
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following power angle relationship.

PIi = V 2
i Gii +

n∑
k=1, k 6=i

ViVkYiksin(δik + π/2− θik),

QIi = −V 2
i Bii +

n∑
k=1, k 6=i

ViVkYiksin(δik − θik),
(4.2)

where Gii is the self-conductance of the ith microgrid, and Yik, θik are, respectively,

the modulus and phase angle of the transfer admittance between the ith and the kth

microgrids.

For a n-microgrid distribution system, the equilibrium states of interest are the

solutions of (4.1) and (4.2) with δ̇i = 0, V̇i = 0, and PIi = P ∗Ii , QIi = Q∗Ii , i = 1 . . . n.

The nominal power injections P ∗Ii , Q
∗
Ii
, i = 1 . . . n satisfy the AC power flow equations

given in (4.3).

P ∗Ii = V ∗2i Gii +
n∑

k=1, k 6=i

V ∗i V
∗
k Yiksin(δ∗ik + π/2− θik),

Q∗Ii = −V ∗2i Bii +
n∑

k=1, k 6=i

V ∗i V
∗
k Yiksin(δ∗ik − θik).

(4.3)

4.2 Small-signal Stability of Coupled Microgrids without Inertia Support

For a n-microgrid distribution system, the local stability properties of the equi-

librium solution δ∗i , V
∗
i , P ∗Ii , Q

∗
Ii

, i = 1 . . . n, can be derived from linearizing (4.1),

(4.2) and (4.3) around the equilibrium solution. The corresponding small signal (SS)

model of the n-microgrid system can be formulated as in (4.4).

ẋ = Asx+Bsu,

u = Jx,

(4.4)
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where

x = [xT1 . . . xTn ]T , u = [uT1 . . . uTn ]T ,

in which xi = [∆δi,∆Vi]
T , ui = [∆PIi ,∆QIi ]

T , and

As = diag(Asi ), B
s = diag(Bs

i ), i = 1 . . . n,

in which

Asi =

 − 1
τδi

− 1
τVi

 , Bs
i =

 −σδi
τδi

−σVi
τVi

 .
J is the extended power flow Jacobian matrix formatted as

J =


∂u1
∂x1

. . . ∂u1
∂xn

...
. . .

...

∂un
∂x1

. . . ∂un
∂xn

 . (4.5)

Since the small signal (SS) model (4.4) is linear and time invariant, it suffices to

evaluate the eigenvalues of the matrix Ascl = As + BsJ . Small signal stability of the

system equilibrium can be concluded if all the eigenvalues of Ascl have negative real

parts. Small signal stability assessed through eigenvalue analysis only suggests that

the system solutions tend to the equilibrium of interest for initial conditions suffi-

ciently close to it. However, it is important not only to establish such local stability

properties of the equilibrium solution, but also to study the transient stability prop-

erties when the system experiences large disturbances. Similar with conventional

transient analysis, we will focus on the synchronization stability of interconnected

systems, which falls into the category of short-term angle stability problems.
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4.2.1 Coordinated Stability Criterion

If all the eigenvalues of As have negative real parts, the system is asymptotically

stable. With high penetration level of DERs, a large number of interconnected micro-

grids may need to be managed in real time to realize smart distribution. Computing

eigenvalues of a large-scale system matrix is not a trivial task, thus the corresponding

assessment could be challenging for on-line applications.

Here instead, we consider the well-known Lyapunov theorem [30]: the system

(4.17) is stable if and only if there exists a positive-definite matrix P such that

AsTP + PAs < 0, (4.6)

which can be formulated as a convex optimization problem involving LMIs [56].

Actually, this is a convex feasibility problem which can be solved by interior-point

algorithms [6].

Accordingly, the above coordinated stability criterion can be stated as follows.

Criterion 1 [60]: the multi-microgrid system (4.17) is asymptotically stable if

and only if the LMIs problem (4.7) is feasible.

AsTP + PAs < 0,

P > 0.

(4.7)

4.2.2 Distributed Stability Criterion

For the coupling operation of a large number of microgrids, it would be desirable

to perform on-line assessment of system-wide stability in a distributed manner. As a

natural generalization of Lyapunov theory for open systems, the dissipative system

theory is very useful for analyzing interconnected systems [56], [57]. Accordingly the
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following procedures can be performed: 1) given that the interfacing control strategy

ensures module local stability, dissipative dynamic equivalents (singular-perturbed

model) are obtained for all microgrid modules; 2) based on the module equivalents,

their storage functions can be constructed as Lyapunov function candidates; 3) each

module agent assess system stability with a distributed criterion derived based on

an upper bound of the module interaction strength; 4) system-wide stability may be

concluded by collecting the assessment results from module agents.

For a general minimal finite dimensional linear system (FDLS) represented by

state space matrices A,B,C,D, the dissipativeness can be evaluated from the LMIs

in (4.8).

 ATQ+QA QB − CT

BTQ− C −D −DT

 ≤ 0,

Q = QT ≥ 0.

(4.8)

According to Theorem 3 of [57], the minimal FDLS is dissipative with respect to the

supply rate w = 〈u, y〉 if and only if (4.8) has a solution. And with solution Q, the

function 1
2
〈x,Qx〉 defines a quadratic storage function. Here 〈x, y〉 stands for the

inner product of vector x and y.

For the ith microgrid, (3.4) and (3.8) can be rewritten into the state space form

(4.9).

ẋi = Aixi +Biui,

yi = Cixi,

(4.9)
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where xi = [∆δi,∆Vi]
T , ui = [−∆PIi ,−∆QIi ]

T , Ci = I so that yi = xi. And

Ai =

 − 1
τδi

− 1
τVi

 , Bi =

 σδi
τδi

σVi
τVi

 .
Since the model (4.9) is strictly proper with Di = DT

i = 0, the LMIs in (4.8)

reduces to (4.10) with the unique solution Qi = B−1
i .

ATi Qi +QiAi ≤ 0, QiBi = CT
i = I,

Qi = QT
i > 0.

(4.10)

Hence, module i is dissipative with respect to 〈ui, yi〉 if the interface control

strategy generates positive angle droop gain and voltage droop gain, since

Qi = QT
i = B−1

i =

 τδi
σδi

τVi
σVi

 > 0,

ATi Qi +QiAi = 2

 − 1
τδi

− 1
τVi


 τδi

σδi
τVi
σVi


= 2

 − 1
σδi

− 1
σVi

 < 0.

Rearrange the n-module system modeled (4.4) into the following state space form.

ẋ = Ax+Bu,

u = −Hx,
(4.11)
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where

x = [xT1 . . . xTn ]T , u = [uT1 . . . uTn ]T ,

in which xi = [∆δi,∆Vi]
T , ui = [−∆PIi ,−∆QIi ]

T , and A = diag(Ai), B = diag(Bi).

H is the same as the extended Jacobian matrix J defined in (4.5).

Formulate the system-wide storage matrix as Q = B−1 = diag(Qi). Clearly with

all modules dissipative, Q is positive definite. Consider the time derivative of the

storage function S(x) = 1
2
〈x,Qx〉, we have

˙S(x) =
1

2
(ẋTQx+ xTQẋ)

=
1

2
[xT (A−BH)TQx+ xTQ(A−BH)x]

= xT (AQ− HT +H

2
)x.

(4.12)

Obviously, S(x) is a Lyapunov function if M c1 = AQ− HT+H
2

is negative definite.

Notice that F = −HT+H
2

is a Hermitian matrix, F T = F and all of its entries

are real. According to Theorem 8.1.4 in [30], the Rayleigh quotient for a Hermitian

matrix is bounded by its eigenvalues:

λmin = min RF (x), λmax = max RF (x), (4.13)

where RF (x) , 〈Fx,x〉
〈x,x〉 , λmin and λmax correspond to the smallest and largest eigen-

value of F . Here λmax is defined as the interaction coefficient representing a upper

bound of coupling strength of modules for a specific system operation condition.
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Then following (4.12), we have

˙S(x) = xT (AQ− HT +H

2
)x

= xTAQx+ xTFx

≤ xTAQx+ λmaxx
Tx

=
N∑
1

xTi (AiQi + λmaxI)xi,

Thus if M c
i , i = 1 . . . N are all negative definite, the interconnected system is asymp-

totically stable.

Accordingly, the distributed stability criterion can be stated as follows.

Criterion 2 [60]: If a) the interconnected system (4.17) have all modules exhibit

positive inertia and damping coefficients, and b) the assessment matrices M c
i =

AiQi + λmaxI, i = 1 . . . N are all negative definite, then the system is asymptotically

stable.

This is a distributed criterion in the sense that it only requires each microgrid

module to check their internal stability property. The assessment can be performed

by each agent checking its angle feedback gain Ki and voltage droop gain σVi since

AiQi + λmaxI =

 − 1
σδi

+ λmax

− 1
σVi

+ λmax

 . (4.14)

The only piece of information need to be broadcast by the system coordinator is the

interaction coefficient λmax defined in (4.13). It can be obtained through calculating

the extended Jacobian matrix defined in (4.5) based on real time operation condition.
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4.3 Small-signal Stability of Coupled Microgrids with Inertia Support

As discussed in Section 3.3, synthetic inertia can be added to the interface control

function if inertia support is required by the transmission network, to which the

microgrid-based distribution system is connected.

4.3.1 System Modeling and Order Reduction

With inertia support, each microgrid can be represented as in (3.6) and (3.8),

and thus the model of a n-microgrid system can be formulated in the following state

space form.



∆δ̇

∆V̇

ε∆ω̇

ε∆ṖC


=



O O I O

O AV O O

O O Aω Fω

Ff O O Af





∆δ

∆V

∆ω

∆PC


+



O O

O BV

Bω O

O O


 ∆PI

∆QI

 , (4.15)

where ∆δ = [∆δ1 . . .∆δn]T , ∆V = [∆V1 . . .∆Vn]T , ∆ω = [∆ω1 . . .∆ωn]T , ∆PI =

[∆PI1 . . .∆PIn ]T , ∆QI = [∆QI1 . . .∆QIn ]T . Here the perturbation parameter ε = 1.

O represents the n × n zero matrix, I represents the n × n identity matrix. And

AV = −diag( 1
τVi

), BV = −diag(
σVi
τVi

), Aω = −diag(Di
Ji

), Bω = −diag( 1
Ji

), Fω =

diag( 1
Ji

), Af = −diag( 1
τCi

), Ff = −diag(
KCi
τCi

), , i = 1 . . . n.

In (4.15) the real and reactive power injections PI , QI are related with δ, V by

the power flow equations [3]. Thus through linearizion ∆PI , ∆QI can be related

with ∆δ, ∆V as follows.

 ∆PI

∆QI

 = H̄

 ∆δ

∆V

 =

 H̄11 H̄12

H̄21 H̄22


 ∆δ

∆V

 , (4.16)

33



in which H̄ can be obtained by rearranging the extended Jacobian matrix J defined

in (4.5).

For differential systems having dynamics evolving in multiple time scales, it is

not practical in most cases to handle all dynamics in a single model. The so called

“time scale decomposition” technique is commonly used to solve such problems [19].

Assuming that the fast modes converge quickly to the algebraic equations as ε = 0,

the system (4.15) and (4.16) reduces to

 ∆δ̇

∆V̇

 =

 Aδ O

O AV


 ∆δ

∆V

+

 Bδ O

O BV

 H̄
 ∆δ

∆V

 , (4.17)

where Aδ = A−1
ω FωA

−1
f Ff = −diag(

KCi
Di

), Bδ = −A−1
ω Bω = −diag( 1

Di
).

Clearly, the order-reduced system model (4.17) can be rearranged into the form

of (4.4) with simple manipulation.

4.3.2 Stability of the Order-reduced System

The stability of system (4.17) can be evaluated by checking the eigenvalues of the

state matrix

AS = AR +BRH̄ (4.18)

where AR = blkdiag(Aδ, AV ), BR = blkdiag(Bδ, BV ).

It is clear that the order-reduced system model (4.17) cab be rearranged into the

same form of the system model without inertia support (4.11). Thus the coordinated

and distributed criteria derived in Section 4.2 can also be applied to evaluate the

small-signal stability of the order-reduced system (4.17).

34



4.3.3 Stability of the Original System

Assume by design the order-reduced system (4.17) is stable, i.e. AS defined in

(4.18) is a Hurwitz matrix with all eigenvalues having negative real parts. The

stability bound problem of the singular perturbed system modeled in (4.15) and

(4.16) can be formulated to find the maximal singular perturbation parameter ε∗,

such that for all 0 ≤ ε < ε∗ system (4.15), (4.16) is stable given the stability of the

order reduced system (4.17) [7].

The linear time-invariant (LTI) singular perturbed system (4.15) can be rear-

ranged into the following partitioned form.

 ẋ1

ẋ2

 =

 A11 A12

A21

ε
A22

ε


 x1

x2

 , A(ε)x, (4.19)

where A11 =

 O O

BV H̄21 AV +BV H̄22

, A21 =

[
Fω +BωH̄11 BωH̄12

]
,

A12 =

 I

O

, A22 = Aω.

The stability bound problem is to find the maximal positive parameter ε∗ such

that A(ε) is stable for all 0 < ε < ε∗. For this ε-bound problem [28] gives an

important result as stated in the following lemma.

Lemma 1 (Kokotovic et al. [28]): If both A0 = A11 − A12A
−1
22 A21 and A22 are

Hurwitz stable matrices, then there exists an ε∗ such that for all ε ∈ (0, ε∗), the

full-order system (4.19) is stable.

According to Lemma 1, there must exist an infinitely small ε = 0+ > 0 such that

system (4.19) is stable, i.e. all eigenvalues of A(ε)|ε=0+ have negative real parts. Thus

when the perturbation parameter ε sweep from ε = 0+ to ε > ε∗, either 1) a real
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eigenvalue of A(ε) enters the right half plane via the origin, or 2) a pair of conjugate

complex eigenvalues passes the imaginary axis to the right half plane if ε∗ 6=∞. For

the special case ε = ε∗, some eigenvalues of A(ε) will lie on the imaginary axis [7].

With the following Lemma, this stability bound problem can be converted to a

equivalent non-singularity analysis problem.

Lemma 2 (Lancaster et al. [30]): Let the eigenvalues of matrices A ∈ Rm×m and

B ∈ Rn×n be λ1, . . . λm and µ1 . . . µn, respectively. Then the eigenvalues of their

Kronecker product A
⊗

B are the mn products of the form λjµk, 1 ≤ j ≤ m and

1 ≤ k ≤ n. And the eigenvalues of their Kronecker sum, defined as A
⊕

B ,

A
⊗

In×n + Im×m
⊗

B, are of the mn sums of the form λj + µk.

According to Lemma 2, if all eigenvalues of matrix A(ε) lie in the open left half

plane, all the eigenvalues of A(ε)
⊕

A(ε) lie in the open left half plane as well, which

means that A(ε)
⊕

A(ε) is nonsingular. Thus A(ε) Hurwitz stable ⇔ A(ε)
⊕

A(ε)

nonsingular. Then the stability bound problem of system (4.19) can be solved with

the following Theorem.

Theorem 1 (Liu et al. [34]): The stability bound ε∗ of system (4.19) is:

ε∗ = min{αi : αi ∈ λ+
R(N,−M)}, (4.20)

where λ+
R(N,−M) is the set of finite positive real generalized eigenvalues of the

matrix pair N and −M , i.e. λ+
R = {α ∈ R+ : det(N + αM) = 0} [7]. And

M ,

 A11 A12

On×2n On×n

⊕
 A11 A12

On×2n On×n

 ,
N ,

 O2n×2n O2n×n

A21 A22

⊕
 O2n×2n O2n×n

A21 A22

 .
(4.21)
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If no finite positive real eigenvalues exists for (N,−M), define ε∗ , +∞.

In our study system the perturbation parameter ε = 1, thus according to Theorem

1, the following criterion is proposed for stability assessment of a SG-interfaced n-

microgrid system.

Criterion 3 : if the order-reduced system (4.17) is stable, i.e. the state matrix

in (4.18) is Hurwitz stable, and the perturbation parameter bound obtained with

Theorem 1 is larger than 1, i.e. ε∗ > 1, then the original system modeled in (4.19)

or (4.15) is also stable.

4.4 Transient Stability Assessment

Small signal stability only suggests that the system solutions tend to the equilib-

rium of interest for initial conditions sufficiently close to it. However, it is important

not only to establish the local stability properties of the equilibrium solution, but

also to study the transient stability properties when the system experiences large

disturbances.

It had been shown that conventional power system interfaced through SGs are

generally not asymptotically stable in the large [58]. There are often multiple equilib-

rium solutions due to two essential factors: 1) the second order SG swing equation;

2) the sinusoidal power angle relationship. For the proposed multi-microgrid dis-

tributed system with angle droop controlled VSI interfaces, it will be shown that

asymptotically stable in the large may be achieved with conservative droop gain de-

sign. On the other hand if voltage phase angle of all interfaces can be contained in

a limited range, conservativeness in droop gain design can be significantly reduced.

In practical situations, the voltage regulation behavior is generally much slower

than the transient phenomena which are of interest in transient stability studies [58].

If for each microgrid interface, τVi is much larger than τδi by design, the PCC voltage
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can then be assumed constant during the transient period, i.e. Vi = V ∗i . And the

transient stability problem can be significantly simplified.

Note zi = δi− δ∗i , i = 1 . . . n, and let mi be the number of branches connected to

the ith microgrid. Then from (4.1), (4.2) and (4.3) we have,

τδi żi + zi = −σδi
mi∑
j=1

ejφj(yj),

φj(yj) = sin(yj + y0
j )− siny0

j ,

(4.22)

where ej = V ∗i V
∗
k Yik, yj = zi − zk = δik − δ∗ik, and y0

j = δ∗ik + π/2− θik.

Formulate the incidence matrix H and the connectivity matrix C such that the

n-microgrid system with states z = [z1 . . . zn]T and output y = [y1 . . . yn]T can be

represented as follows.

ż = Az +Bφ(y),

y = Cz,

(4.23)

where A = diag(−1/τδi), D = diag(−σδi/τδi), i = 1 . . . n. E = diag(ej), j = 1 . . .m.

B = DHE. The system nonlinearities φ(y) = [φ1(y1) . . . φm(ym)]T . It should be

noted that here m =
n∑
i=1

mi equals to twice the total number of system branches.

The n-microgrid system represented by (4.23) is a multi-variable Lur’e system

with time invariant sector-bounded memoryless nonlinearities. From (4.22) we see

that the functions φj, j = 1 . . .m satisfy the [−1, 1] sector conditions

−y2
j ≤ yjφj(yj) ≤ y2

j , j = 1 . . .m, (4.24)

for all yi ∈ R.

In order to prove stability of the system (4.23) with nonlinearity sector conditions
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given in (4.24), a loop transformation procedure can be performed [6]. Define

φ̄j(yj) =
1

βj − αj
(φj(yj)− αjyj), (4.25)

where the sector lower bound αj = −1 and the sector upper bound βj = 1 for all

j = 1 . . .m.

Obviously 0 ≤ yjφ̄j(yj) ≤ y2
j for all yj ∈ R. Let Λ = diag(αj) and Γ = diag(βj −

αj), so that φ̄(y) = Γ−1(φ(y) − Λy). Substitute φ(y) = Γφ̄(y) + Λy into (4.23), we

have

ż = Āz + B̄φ̄(y),

y = C̄z,

(4.26)

where Ā = (A+BΛC), B̄ = BΓ and C̄ = C.

Now the nonlinearities are contained within [0, 1] sectors

0 ≤ yjφ̄j(yj) ≤ y2
j , j = 1 . . .m, (4.27)

or, equivalently,

φ̄j(yj)(φ̄j(yj)− yjφ̄j(yj)) ≤ 0, j = 1 . . .m, (4.28)

for all yi ∈ R.

To prove stability of the n-microgrid system represented by (4.26), consider the

Lyapunov function of the form

V (z) = zTPz + 2
m∑
j=1

λj

∫ C̄jz

0

φ̄j(yj) dyj, (4.29)

where C̄j denotes the ith row of C̄.
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According to Lyapunov theorem, seek P and λj, j = 1 . . .m, such that

dV (z)

dt
< 0, (4.30)

for all nonzero z satisfying (4.26) and (4.27).

The S -procedure [6] can be utilized to derive sufficient condition for (4.30):

The LMI in P > 0, Λ = diag(λj) ≤ 0 and T = diag(τj), j = 1 . . .m,

 ĀTP + PĀ PB̄ + ĀT C̄TΛ + C̄TT

B̄TP + ΛC̄Ā+ TC̄ ΛC̄B̄ + B̄T C̄TΛ− 2T

 < 0 (4.31)

holds [61].

4.5 Stability Assessment Framework

In this section, a stability assessment framework, shown in Fig. 4.2, is pro-

posed for future distribution systems, which can be implemented online to guarantee

system-wide operation stability. In Section 4.2, coordinated and distributed criteria

are derived, based on which the system small-signal stability can be evaluated online

in a timely manner. In Section 4.4, sufficient condition for system transient stability

is derived for based on Lyapunov direct method. The Lyapunov function proving

transient stability is obtained by solving the LMIs formulated based on the multi-

variable Popov criterion. As a general numerical method, the proposed small-signal

and transient stability assessment criteria are well suited for automatic computation

and can be integrated into the droop management procedure at the secondary control

level to guarantee system transient stability.

The stability condition in (4.31) is actually the LMI version of Kalman-Yakubovich-

Popov conditions corresponding to the multi-variable Popov criterion [16]. The sys-
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Figure 4.2: Stability assessment framework.

tem will be asymptotically stable (a.s.) in the large if the LMIs given in (4.31) are

feasible. However, this global stability criterion will require the angle droop gains

σδi , i = 1 . . . n to be sufficiently small, which may result in over-conservative design

of interface control with limited droop-based power sharing capability. Such conser-

vativeness can be significantly reduced with the following procedure:

Step 1: consider the sectors φj(yj) ∈ [−1, 1], j = 1 . . .m;

Step 2: transform the sectors to [0, 1] according to (4.26);

Step 3: solve the LMIs formulated in (4.31);

Step 4: if (4.31) is feasible the system (4.23) is a.s. in the large, otherwise go to Step

5;

Step 5: take the upper half of the sectors and perform Step 2;

Step 6: perform Step 3;
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Step 7: if the LMIs in (4.31) are feasible, regional stability can be concluded and

goto Step 6, otherwise goto Step 5;

Step 6: calculate guaranteed stability region according to the sector condition spec-

ified in Step 5;

Step 7: if the initial condition z0 falls into the stability region the system (4.23) will

be transient stable and z0 → 0 at steady state, otherwise droop management will be

requested for smaller angle droop gains.

The above procedure is integrated into the stability assessment framework, as

shown in Fig.4.2 [61].

4.6 Application in Distribution System Black Start

As an ancillary service, black start is procured for the restoration of the power

system in the event of a complete or partial blackout. Generating units with self start

capability are contracted, e.g. on an annual basis, to start up the predefined system

restoration and load recovery process. To be capable of providing black start service,

on-site diesel or gas turbine generators are commonly deployed to power the auxiliary

systems of a large generating unit, which can be started by batteries or other form

of energy storage devices. Once in service, the large generating unit can be used to

energize part of the local network and provide supplies for other stations within its

service area [50]. In current practice, system restoration is performed by managing

the contracted black start units in a top-down manner, beginning with the start-up of

black start units and ending with the connection of loads. And the restoration service

is generally carried out manually according to predefined guidelines and procedures

[50], [36].

Black start of future distribution systems is an innovative and promising aspect

for fully harnessing the benefits from the potentialities of microgrid-based configura-
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tion. By definition, microgrids are capable of running in the islanded mode servicing

their critical loads [23]. And also, generally with some form of energy storage systems

embedded microgrids possess self-start capability, and thus can be natural candidates

for black start resources when developed to the commensurate power scale. A corre-

sponding bottom-up black start strategy can be utilized to assist system restoration

after a complete or partial blackout is experienced by the envisioned future distribu-

tion systems configured as coupling operated microgrids.

It would be inefficient in both the technical and economical sense if all con-

ventional power plants were obliged to provide a black start service [50]; however,

configured as multi-microgrid systems, future distribution networks could manage

restoration from all microgrids simultaneously.

4.6.1 Microgrid Black Start for Local Restoration

The black start of each microgrid involves a sequence of control actions defined

through predefined rules and criteria to be checked during the local restoration stage.

In order to provide the performance required of a black start service, the following

technical capabilities are required for a microgrid [36]:

• Autonomous local power supply feeding local control systems and to launch

local generation.

• Bidirectional communication between the microgrid central controller (MGCC)

and the local controller (LC) of each distributed generation (DG) unit.

• Updated information about local load status, generation profile and the avail-

ability of DGs to black start.

• Automatic load management after system collapse, e.g. disconnection of se-

lected (non-critical) demand blocks.
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• Islanding from the distribution network before the black start procedure.

During microgrid local restoration, a set of electrical problems had been identified

in [36] for the black start procedure:

• Building the internal low voltage (LV) network, including the distribution

transformer energization.

• Connecting DGs.

• Regulating voltage magnitude and frequency.

• Connection controllable demand blocks.

And a sequence of actions defined to restore microgrid service as follows [35].

• Partitioning the microgrid around each DG with black start capability allowing

it to feed its own critical loads.

• Building the internal LV network.

• Synchronizing the black start DG islands.

• Connecting controllable loads.

• Restoring service of uncontrollable load and DG units.

4.6.2 Microgrid Resynchronization for System Restoration

After local service is restored for some microgrids and the medium voltage (MV)

network re-energized and available for their coupling operation, stability conditions
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need to be verified before operating grid connection switches for microgrid resyn-

chronization. Then those microgrids can be resynchronized and clustered into multi-

microgrid islands and finally merged together as a whole synchronized interconnec-

tion.

During the microgrid resynchronization procedure, it is assumed that 1) each mi-

crogrid is interfaced through a VSI of which the PCC voltage angle and magnitude

can be directly managed; 2) synchrophasor measurement (PMU) is available at each

microgrid PCC. Then the following procedure can be performed for module (or group

of modules) synchronization.

Step 1: calculate the post synchronization operation point oK+1 with the estimated

power injection of each microgrid P̂Ii , Q̂Ii , i = 1 . . . n.

Step 2: evaluate system transient stability from the initial condition oK = (1∠0◦ . . . 1∠0◦)

to the post synchronization operation point oK+1 according to the assessment frame-

work shown in Fig. 4.2.

Step 3: if the transient stability criterion (4.31) discussed in Section 4.5 is passed,

dispatch the reference setting to each microgrid according to oK+1 and close the inter-

microgrid tie-breakers. Break the loop as the system is synchronized successfully.

Step 4: if the transient stability criterion (4.31) is not passed, let P̂
′
Ii

= 0.5P̂Ii , Q̂
′
Ii

=

0.5Q̂Ii , i = 1 . . . n, and calculate the corresponding post synchronization operation

point oK+1
′
.

Step 5: go to Step 2.
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5. HIERARCHICAL CONTROL FRAMEWORK FOR FUTURE

DISTRIBUTION SYTEMS∗

The control and operation problems of individual microgrid have been studied

extensively, e.g. topology formulation, power management strategy, islanding and

resynchronizing operation, etc. [31], [48], [55]. For stability studies, small signal

stability of microgrids was investigated in [41], which proposes an adaptive droop

controller ensuring relative stability at different loading conditions. In [22], system

(microgrid) stability is investigated for parallel-connected inverters. However, it still

remains an open area of research for the coupling operation of microgrids at the

interconnection level. High penetration of intermittent energy resources could have

significant effect on the dynamic behaviors of microgrids. Excessive interaction of

microgrids could result in power swings and losing synchronism even if all microgrids

are individually stabilized.

Assuming voltage source inverters (VSIs) are readily deployed as interfaces, a hi-

erarchical control framework is proposed for future distribution systems to guarantee

system-wide stability, in which three control levels are defined as shown in Fig. 5.1.

A model reference control (MRC)-based scheme is adopted for online droop gaining

tuning at the primary level, through which the interface inverter of each microgrid is

controlled to track a designed reference model. At the secondary level, an interactive

droop management scheme is proposed to manage the reference model droop gains

based on derived system stability criteria. At the tertiary level, an AC power flow

(ACPF)-based supervisory control strategy is utilized to 1) dispatch the nominal

∗This section is in part a reprint with permission from Yun Zhang and Le Xie of the material in
the paper: “Interactive Control of Coupled Microgrids for Guaranteed System-wide Small Signal
Stability,” Smart Grid, IEEE Transactions on, to appear, 2016. Copyright 2016 IEEE.
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Figure 5.1: The interactive control framework for future distribution systems.

setting to each microgrid central controller (MGCC) for the primary level reference

tracking, and 2) broadcast an interaction coefficient to each MGCC so that the droop

gains can be managed to guarantee system-wide stability [62].

5.1 Primary Level Control for Droop Gain Tuning

Assuming voltage source inverters (VSIs) are readily deployed as interfaces, the

envisioned smart distribution system can be configured as interconnected microgrids.

At the primary level, the interface VSIs can be controlled to 1) shape the microgrid

external behavior with desirable dynamical response characteristic, 2) track the ref-

erence droop characteristics designed based on steady-state performance standards

and system-wide stability criterion.

Considering microgrids as aggregated units interfaced through VSIs, the PCC

voltage of each microgrid could be shaped through the interface control scheme imple-

mented by the MGCC [60], [23], [33]. For effective load sharing among VSI-interfaced

units, droop-based methods are widely used to achieve a communication free control

realization [44]. Originated from the power balancing principle of synchronous gen-

erators in large power systems, frequency deviation from nominal value is commonly
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used as the indicator of local real power mismatch, i.e. an imbalance between the

input mechanical power and output electric real power will cause a change in lo-

cal frequency. Similarly, voltage magnitude deviation indicates local reactive power

mismatch [60]. Emulating the behaviors of synchronous generators, frequency-droop

methods are commonly used for real power sharing [25], [23], [13], [41], [15]; however,

the acceptable range of frequency deviation is tightly constrained by the regulation

requirement. Using frequency droop for real power sharing may cause the so-called

“chattering” phenomenon with high penetration of inertia-less units interfaced by

VSIs [37]. Actually, both the dynamical behavior and droop characteristics of an in-

terface VSI can be artificially crafted [44] by its control function implemented. With

synchrophasor measurement available for each interface VSI, angle droop methods

can be used for real power sharing. Instead of frequency deviation, the difference

between the interface VSI voltage phase angle and a synchronized reference is em-

ployed to indicate local real power mismatch. With angle droop methods, better

dynamic performance can be expected [37], [32].

In our previous work [60], an interface control strategy is proposed using angle-

droop (P -δ) method for real power sharing and voltage droop (Q-V ) for reactive

power sharing. Corresponding stability criteria are derived to evaluate system-wide

small signal stability. Here taking a step further, we propose a MRC-based scheme

for the primary level control to track a reference model designed at the secondary

level based on a distributed system-wide stability criterion. As an angle droop based

method, signals from the global positioning system (GPS) are required for angle

referencing, but no communication is necessary among the interface VSIs at the

primary level [37].

When external behaviors of a VSI-interfaced microgrid is studied at the intercon-

nection level, only the interface control function is modeled with the fast switching
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transients and high frequency harmonics neglected as a common practice [44]. The

objective of the interface control is to track the nominal setting of the PCC voltage,

i.e. Vt∠δt tracking its reference setting V ref
t ∠δreft . Taking advantage of fast respond-

ing power electronic switches, the switching frequency can be designed much higher

than the PCC voltage fundamental frequency in consideration of power quality. Thus

the phasor representation Vt∠δt is validated to represent the averaged VSI behavior

without compromising modeling accuracy.

In current practice of droop-based interface control, the droop gains are commonly

pre-designed at fixed and very conservative values to guarantee system stability for

all the possible operation points [23], [13]. Consequently, the ability of autonomous

power sharing among microgrids will be significantly limited. Such control design

approach does not require online tuning, whereas the operation optimality will be

significantly sacrificed since the droop gains need to be constrained by the worst

case scenario of all. Especially for a system with large penetration level of renewable

energy a wide range of operating conditions need to be considered, which deteriorates

autonomous power sharing capability. Here we propose a MRC-based scheme at the

primary control level for droop gain online tuning of each microgrid interface so that

the real time system stability and regulation requirement satisfied with respect to a

specific operation point dispatched by the DSO.

With the proposed interface control scheme implemented, dynamics of each mi-

crogrid can be represented as follows.

τδ δ̇ + δ − δ∗ = σδ(PG + PR − PL − PI),

τV V̇ + V − V ∗ = σV (QG +QR −QL −QI),

(5.1)

where τδ = 1
Dδ

is the time constants for angle tracking. σδ = σω
Dδ

is the angle droop
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gain. QG is the total reactive power generated in the microgrid. QR corresponds to

the total reactive power for regulation, which can be controlled for model reference

tracking. QL is the total reactive power consumption. QI is the reactive power

injection. τV is the time constants for voltage tracking. σV is the voltage droop gain.

With the plant model (5.1), the objective is to choose an appropriate control law

such that all signals in the closed-loop plant are bounded and the states δ, V track

the desired values δr, Vr of the reference model given by

τδr δ̇r + δr − δ∗ = σδr(P
∗
I − PI),

τVr V̇r + Vr − V ∗ = σVr(Q
∗
I −QI),

(5.2)

where P ∗I , Q∗I are nominal real and reactive power injection. τδr , τVr are the designed

time constants for tracking voltage angle and magnitude, respectively, which range

from several to tens of seconds for smoothing out fast disturbance. σδr ,σVr are the

P -δ and Q-V droop characteristics determined by the secondary level control scheme.

In order to track the reference model (5.2), we propose the following control law

PR = −k∗P (δ − δ∗) + l∗P (P ∗I − PI)− PG + PL + PI ,

QR = −k∗Q(V − V ∗) + l∗Q(Q∗I −QI)−QG +QL +QI ,

(5.3)

where k∗P , l∗P , k∗Q, l∗Q are control parameters to be calculated.

The close-loop dynamical model can be obtained by combining (5.1) and (5.3).

τδ
1 + σδk∗P

δ̇ + δ − δ∗ =
σδl
∗
P

1 + σδk∗P
(P ∗I − PI),

τV
1 + σV k∗Q

V̇ + V − V ∗ =
σV l

∗
Q

1 + σV k∗Q
(Q∗I −QI).

(5.4)

If the plant model parameters were known, by matching the transfer function of
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(5.4) with that of (5.2), the control parameters can be calculated as follows.

k∗P =
τδ − τδr
τδrσδ

, l∗P =
τδσδr
τδrσδ

, k∗Q =
τV − τVr
τVrσV

, l∗Q =
τV σVr
τVrσV

. (5.5)

The above transfer function matching approach guarantees that the close-loop

plant states converge to the reference model exponentially fast for any bounded

signal [21]

ri(t) = [P ∗I (t)− PI(t), Q∗I(t)−QI(t)]
T . (5.6)

Depending on how the VSI control is implemented, the up to date plant model

parameters might be unknown to the MGCC. Then an adaptive law can be imple-

mented with on-line estimates of the plant model parameters. And the corresponding

direct or indirect model reference adaptive control (MRAC) schemes can be utilized

for the aforementioned control objective [21].

The key idea of the proposed MRC-based scheme is to reshape the interface

characteristics according to a designed reference model through managing available

regulation power. We will show in the following that how the reference model can

be determined at the secondary level to guarantee system-wide stability.

5.2 Secondary Level Droop Management for Guaranteed System-wide Stability

In conventional power systems, the secondary level control is commonly imple-

mented to eliminate the frequency deviation from its nominal value introduced by

the P − ω droop control. With the proposed angle droop control method, the fre-

quency deviation approaches zero at the steady state. Thus the frequency restoration

process is not necessary. Instead, a droop management scheme is proposed here to

guarantee system-wide stability at the secondary level, shown in Fig. 5.2. Imple-

mented by MGCCs, droop gains satisfying the small-signal and/or transient stability
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can be calculated based on the stability assessment result. Accordingly, the desirable

P − δ, Q− V droop gains can be designed for reference model to be tracked at the

primary level. Then the stability reserve for each microgrid can be controlled for the

primary level MRC tracking.

In traditional power systems, regulating reserves participate in the finest scale

of balancing during normal conditions. Regulating reserves are responsible for cor-

recting the imbalance from the total load or generation that differs from the forecast

condition. Provided by the governor response, regulating reserves modify the droop

gain of each synchronous generator participating in primary level control. Since

normal imbalances usually do not trigger frequency response, the governor control

parameters are designed based on system regulation requirement and stability con-

straint through contingency analysis [11]. Reserves are commonly not used for system

stabilization due to the response speed limit of conventional units. However in fu-

ture distribution systems with high penetration of VSI interfaced units (or clusters),

stability reserves might be applicable taking advantage of the fast responsive power

electronic interfaces. Other than the regulating and following reserves commonly

configured in conventional large power systems, here we propose to deploy stability

reserves to ensure real time system-wide stability. Energy battery storage systems

can be good candidates for stability reserves since 1) they can be deployed at the

DC link of each microgrid PCC and controlled by the fast responding interface VSI;

2) they can provide both upward and downward reserves for automatic stabilization.

In order to perform the online droop gain tuning scheme defined at the primary

level, we propose to configure stabilizing resource for each microgrid, which can be

provided by the energy battery storage systems deployed at the DC link of microgrid

PCC. We define such stabilizing resource as stability reserve. The proposed stability

reserve is different in nature from the conventional spinning and unspinning operating
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Figure 5.2: Droop management scheme.

reserve. First of all, the conventional operating reserve is the generation capacity

available to the system operator within a short interval of time to meet demand in

case a generator fail to supply. It is designed to support system operation. However,

the proposed stability reserve is for system stabilization purpose provided by the

energy storage units in the microgrid to modify its interface droop characteristic.

Such stabilizing resources are proposed to guarantee system stability without over-

conservative droop gain design for the application scenario that high penetration

level of intermittent renewable energy is integrated.

5.3 Tertiary Level Supervisory Control for Microgrid Dispatch

As the highest level of control for multi-microgrid systems, tertiary control is

responsible for coordinating the operation of all on-line microgrids [44]. The main
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purpose is to mitigate the DER output variation and balance out the long-term mis-

match between power production and consumption through aggregation effect, i.e.

power exchange among interconnected microgrids. For a reliable, secure and eco-

nomical operation, the reference setting of each microgrid interface can be managed

by the DSO with a supervisory control scheme.

Assume effective power sharing is achieved with the primary level control and

system-wide stability guaranteed with the droop management performed at the sec-

ondary level. Since distribution lines commonly have comparative resistance and

reactance, an ACPF problem is formulated to generate the reference setting for each

microgrid. The procedure starts with each microgrid forecasting its total local real

and reactive power injection P ∗I , Q∗I for an operation interval defined by the DSO.

In the ACPF problem formulation, the PCC of the microgrid connected with the

external system is designated as the swing bus; PCCs of all the other microgrids will

be considered as P −Q buses at the beginning. If the physical limits of Vt is hit for

some buses, they will be treated as P − V buses instead.

The ACPF solution oe = [δ∗i , V
∗
i , P

∗
Ii
, Q∗Ii ]

T , i = 1 . . . n, will be sent to each MGCC

for the primary level reference tracking and the secondary level droop management,

respectively. It should be noted that the time frame of droop management can

be designed differently from the microgrid setting point dispatch resolution. For

instance, droop gains for each microgrid may can be managed with a finer resolution

for better support of fast variation resources. However, if frequent change of droop

gains is not allowed, conservative values can be designed based on the contingency

scenarios.

The major difference between the proposed supervisory control and the economic

dispatch (ED) program widely used in conventional power systems is that the full set

of variables including δ∗i , V
∗
i , P

∗
Ii
, Q∗Ii will be dispatched to each microgrid interface,
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whereas only V ∗i , P
∗
Ii

will be dispatched to each generator in conventional ED problem

formulation.

5.4 Management of Multiple Interface VSIs

In current practice of microgrid integration, a single VSI inverter is deployed at

the point of common coupling (PCC) as the power electronic interface; however,

in the future microgrid-based smart distribution systems, the power rating of each

microgrid module could be much larger. For a large utility size microgrid, it is

desirable that it can be integrated with the network at multiple connection points

(CPs). As by definition, a microgrid acts as a single controllable entity to simplify

the interconnection level control implementation. Thus a consistent voltage profile

should be guaranteed for all the connection points by the microgrid interface control

strategy.

First consider the scenario that at each connection point a physical interface

VSI is deployed. For the ith microgrid, assume that there are m CPs each with an

interface VSI deployed. Note the real and reactive power injection of the jth VSI as

P j
ifi

, Qj
ifi

, according to kirchoff’s law we have

PIi =
m∑
j=1

P j
ifi
, QIi =

m∑
j=1

Qj
ifi
. (5.7)

As an example, Fig. 5.3 shows the one-line diagram of a three-microgrid system.

Each microgrid is integrated with the network at two distant CPs. The voltage phase

angle and magnitude of VSI1 and VSI2 can be obtained as

δ1
if1

= δ∗1 +
σδ1

τδ1s+ 1
(P ∗12 − P 1

if1
),

V 1
if1

= V ∗1 +
σV1

τV1s+ 1
(Q∗12 −Q1

if1
),

(5.8)
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Figure 5.3: A three-microgrid system with multiple connection points.

δ2
if1

= δ∗1 +
σδ1

τδ1s+ 1
(P ∗13 − P 2

if1
),

V 2
if1

= V ∗1 +
σV1

τV1s+ 1
(Q∗13 −Q2

if1
),

(5.9)

where P ∗12, Q∗12 are the nominal real and reactive branch flow from µG1 to µG2. P ∗13,

Q∗13 are the nominal real and reactive branch flow from µG1 to µG3. From the power

flow solution we have P ∗I1 = P ∗12 + P ∗13. And from (5.7) we have PI1 = P 1
if1

+ P 2
if1

.

The output terminals of VSI1 and VSI2 are equal potential nodes, i.e. V 1
if1

=

V 2
if1

= V1, δ1
if1

= δ2
if1

= δ1, and thus (5.8) and (5.9) can be combined as

τδ1 δ̇1 + δ1 − δ∗1 = σδ1(P
∗
I1
− PI1),

τV1V̇1 + V1 − V ∗1 = σV1(Q
∗
I1
−QI1).

(5.10)
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Figure 5.4: Virtual interfacing for a three-microgrid system.

Then (5.10) can be used to represent µG1 as a single controllable entity.

Now consider the scenario that for some microgrid, the physical integration VSIs

are deployed at distant nodes from its CPs. With the algorithm proposed in Sec-

tion 3.5, the voltage angle and magnitude references can be generated according to

(3.19) for virtual interfacing. Fig 5.4 shows a three-microgrid system, in which two

integration VSIs are used for virtual interfacing at the connection point CP1 1.

From (5.10) δ1
if1

and V 1
if1

can be calculated, and then according to (3.10) the d

and q axis power injection from CP1 1 into the network can be calculated as

Id =
P 1
if1

V 1
if1

, Iq = −
Q1
if

V 1
if1

. (5.11)

Assume that we want the d and q axis current to be equally shared between VSI 1

and VSI 2, the d and q axis of each integration VSI will be

Id1 = Id2 = 0.5Id, Iq1 = Iq2 = 0.5Iq. (5.12)

Then according to (3.15), the d and q axis output voltage of VSI 1 and 2 can be
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calculated

Vd1 = V 1
if1

+R1Id1 −X1Iq1 , Vq1 = R1Iq1 +X1Id1 ,

Vd2 = V 1
if1

+R2Id2 −X2Iq2 , Vq2 = R2Iq2 +X2Id2 .

(5.13)

From (3.16), the voltage reference for VSI 1 and 2 can be obtained

V ref
1 = |Vd1 + jVq1|, δ

ref
1 = δ1

if1
+ tan−1(

Vq1
Vd1

),

V ref
2 = |Vd2 + jVq2|, δ

ref
2 = δ1

if1
+ tan−1(

Vq2
Vd2

).

(5.14)

It should be noted that this internal VSI management task should be at a much

faster time scale than the tertiary level supervisory control dispatching microgrid

interface reference. The reference signals, V ref
j ∠δj, j = 1 . . .m, should be dispatched

to each VSI with a resolution much higher than the time scale of angle and volt-

age dynamics. It can be as high as the PMU resolution, e.g. 50Hz, if the local

communication is sufficiently fast.
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6. NUMERICAL EXAMPLES

6.1 Real Power Sharing Strategies and Virtual Interfacing Scheme

With the proposed angle droop control for real power sharing, better transient

performance can be expected compared with the frequency droop-based approaches

and strategies emulating synchronous generator behaviour. In conventional power

systems, it is well known that local mode oscillations, one generator swings against

the rest of the system, are resulted from the second order angle dynamics of the SG

swing equations. The corresponding impact is localized to the generator and the line

connecting it to the grid. The rest of the system is normally modeled as a constant

voltage whose frequency is assumed to remain constant, known as the single machine

infinite bus (SMIB) model. On the other hand, the proposed strategy results in a

first order angle dynamics without causing such local oscillation.

Fig. 6.1 shows the diagram of a SMIB system, in which a microgrid is connected to

an infinite bus through a distribution line with impedance Z12 = 1.5042+ j1.3554 Ω.

With the power and voltage based chosen as VB = 4.16 kV , SB = 1 MVA we have

the line impedance in per unit z12 = 0.0869 + j0.0783 p.u.. Assume the infinite bus

voltage Vinf∠δinf = 1∠0◦ p.u., and the PCC voltage magnitude of microgrid i is fixed

at 1 p.u., consider the dynamical response from the initial condition, Vi∠δi = 1∠0◦

p.u., to the equilibrium point Vi∠δi = 1∠30◦ p.u.. The corresponding real power

injection can be calculated as PIi = 3.71 p.u..

Two interface control strategies are compared with parameters given in Table 6.1,

one employing the first order angle droop control, the other emulating synchronous

generator behavior, known as the frequency droop with synthetic inertia. Fig. 6.3

shows the trajectories of the PCC voltage angle and real power injection of micro-
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Table 6.1: Interface control parameters.
Parameters τδi σδi Jvi Dvi
Value (p.u.) 5.0 0.5 10 2

grid i. It can be seen that the local oscillation mode presents with the frequency

droop method but not with the angle droop control, through which better transient

performance can be expected.
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For the scenario that no physical interface VSI is deployed at the microgrid PCC,

diagram shown in Fig. 6.2, the proposed virtual interfacing scheme is adopted man-

aging three DER integration VSIs in a distributed manner. Assume the participation

factors for the three VSI cd1 = cq1 = cd2 = cq2 = 0.25, cd3 = cq3 = 0.5. The elec-

trical distance between each VSI connection point (CP) and the microgrid PCC are
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Figure 6.5: Diagram of the study system based on IEEE 123-bus test feeder [60].

Figure 6.6: Diagram of a 5-microgrid radial system [60].

ze1 = 0.5 + j0.5, ze2 = 0.5 + j1.0 and ze3 = 1.0 + j0.5, respectively. Fig. 6.4 shows

the voltage reference setting for each DER-integration VSI, based on which the PCC

voltage dynamics as shown in Fig. 6.3 can be obtained.
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Figure 6.7: Diagram of a 5-microgrid loop system [60].

6.2 Small-signal Stability of Systems with Angle Droop Controlled Interfaces

In this section, we consider a study system designed based on the IEEE 123-node

test feeder [26], shown in Fig. 6.5, with some modifications to allow for microgrid

application. In current practice, radial distribution systems are more preferred than

loop systems by distribution engineers because 1) simple and inexpensive protection

schemes can be utilized; 2) fast isolation of faulted section [52]. However, radial dis-

tribution systems can have such advantages only if power flows in one direction. In

multi-microgrid systems, power exchange among interconnected modules will be de-

pendent on the operating condition of both module at that time. Thus, bi-directional

power flow need to be considered. As will be shown in our case study, loop system

configurations could be more desirable for multi-microgrid application over the radial

ones mainly due to two of their benefits: 1) more balanced power flow (with reduced

power loss and better regulated voltage profile); 2) dynamically more secure (allow-

ing for more aggressive droop characteristics for load sharing among interconnected

microgrids).

Here we will demonstrate our modeling and DSA framework for both radial and

loop system configurations. A 5-microgrid radial system is configured with the de-

fault tie-switch status, shown in Fig. 6.6. And also, a loop system is configured by

closing all the tie-switches as shown in Fig. 6.7. Here line parameters of the tie-
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Table 6.2: Inter-module line parameters
Br No. 1 2 3 4 5
R(Ω) 0.11 0.16 0.05 0.16 0.03
X(Ω) 0.08 0.15 0.03 0.15 0.02

Table 6.3: Module generation and load Profiles
Module µG1 µG2 µG3 µG4 µG5

PG (kW) - 600 400 500 800
QG (kVar) - 200 100 400 700
PL (kW) 920 230 450 270 1530
QL (kVar) 470 110 200 120 750

branches are given in Table. 6.2. Aggregated generation and load profiles for each

module are given in Table. 6.3.

6.2.1 Load Sharing Loss and Interaction Coefficient

Start with Case A, shown in Fig. 6.6. In this case, 5 microgrids are connected

through a radial network. At a specific operation point with the generation and load

profiles given in Table. 6.3, PCC voltage profile of each microgrid can be obtained

through an AC power flow program, shown in Table. 6.4. In this case, real power

loss for load sharing is 9 kW. Here we choose the power base SB = 10 kW and

voltage base VB = 4.16 kV. Then the interaction coefficient defined in (4.13) can be

calculated as λmax = 0.5671.

Now consider Case B, shown in Fig. 6.7, in which all tie-switches are closed.

Then a loop 5-microgrid system is configured. With the same generation and load

profiles as the base case, corresponding PCC profile of each microgrid is obtained as

in Table. 6.5. In this case, the real power loss for load sharing reduces to 2 kW, and

the interaction coefficient becomes λmax = 0.1424.

Obviously with the loop configuration, both the real power loss and the interac-
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Table 6.4: PCC voltage profile of each microgrid - Case A
PCC µG1 µG2 µG3 µG4 µG5

V (p.u.) 1.000 1.000 0.996 0.995 0.987
θ(deg.) 0.000 -0.128 -0.472 -0.559 -0.903

Table 6.5: PCC voltage profile of each microgrid - Case B
PCC µG1 µG2 µG3 µG4 µG5

V (p.u.) 1.000 1.003 1.002 1.003 0.999
θ(deg.) 0.000 0.043 0.007 -0.014 -0.045

Table 6.6: Parameter sets of each module
Set Parameter µG1 µG2 µG3 µG4 µG5

1 Jθ 8.00 12.00 12.00 9.00 12.00
Dθ 0.29 0.32 0.33 0.29 0.40
JV 5.00 2.50 6.25 4.00 4.00
DV 0.31 0.25 0.31 0.20 0.25

2 Jθ 8.00 12.0 12.0 9.00 12.0
Dθ 0.47 0.52 0.55 0.47 0.62
JV 10.00 5.00 12.50 8.00 8.00
DV 0.63 0.50 0.63 0.40 0.50

3 Jθ 8.00 12.0 12.0 9.00 12.0
Dθ 1.76 1.60 1.85 1.76 1.90
JV 8.60 8.10 8.00 7.65 7.82
DV 1.67 1.59 1.54 1.47 1.52

tion coefficient for the system are significantly reduced, by 78% and 75%, respectively.

According to the analysis in Section 4.2.2, smaller λmax indicates less damping re-

quirement for module interfaces. Thus more aggressive droop characteristics can be

designed for inter-microgrid load sharing, which could be beneficial to support DER

integration.
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Table 6.7: System-wide stability assessment results
Configuration Parameter max Reλi Criterion 1 Criterion 2

Set 1 0.0231 Unstable N/A
Case A Set 2 -0.0189 Stable N/A

Set 3 0.1071 Unstable N/A
Set 1 -0.0308 Stable Stable

Case B Set 2 -0.0497 Stable Stable
Set 3 -0.0214 Stable N/A

6.2.2 Small-signal Stability Assessment

Following the procedure introduced in Section 4.2, system-wide stability can be

assessed with the stability criteria derived. Here three sets of interface parameters,

shown in Table 6.6, are considered for both radial and loop network configuration

Case A and B. System-wide stability is assessed with the coordinated Criterion 1 and

distributed Criterion 2, with results given in Table. 6.7. For a specific operation point

the assessment procedure starts with module agents evaluating system stability with

Criterion 2. If satisfied (Case B, Set 1 and 2), system-wide stability can be concluded.

However, if Criterion 2 is not satisfied (Case A, Set 1, 2 and 3; Case B, Set 3), the

system coordinator will need to evaluate system-wide stability with Criterion 1. If

satisfied, the operation point considered is asymptotically stable (Case A, Set 2;

Case B, Set 3); otherwise, instability can be concluded (Case A, Set 1 and 3), which

requires module agents to modify their droop gains.

6.3 Transient Stability Assessment and Stability Reserve Management

A 5-microgrid study system is designed based on IEEE 123-node test feeder to

demonstrate the proposed transient stability assessment procedure. Fig. 6.8 shows

the system partition and Fig. 6.9 shows the one line diagram at the interconnection

level when the system is configured as coupling operated microgrids. The tie-branch
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Figure 6.8: Study system based on IEEE 123-node test feeder [62].
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Figure 6.9: Diagram of the 5-microgrid study system.

Table 6.8: Parameters of the tie-branches.
Tie-branch z1 z2 z3 z4 z5
R(Ω) 1.2030 1.0300 1.4512 1.5042 1.4680
X(Ω) 1.1034 0.7400 1.3083 1.3554 1.1550

parameters are given in Table. 6.8.
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Table 6.9: Two consecutive operation points.
PCC µG1 µG2 µG3 µG4 µG5

V ∗K(p.u.) 1.00 1.00 1.00 1.00 1.00
δ∗K(rad) 0.00 -0.38 -0.24 0.34 0.77

V ∗K+1(p.u.) 1.05 0.95 1.00 1.05 0.95
δ∗K+1(rad) 0.00 -0.17 0.03 -0.18 -0.40

Table 6.10: Interface control time constants and droop gains.
Case Parameter µG1 µG2 µG3 µG4 µG5

A τδ(s) 1.20 1.00 0.80 1.00 1.20
σδ 2% 2% 2% 2% 2%
τV (s) 12.0 10.0 16.0 10.0 12.0
σV 2% 2% 2% 2% 2%

B τδ(s) 1.20 1.00 0.80 1.00 1.20
σδ 15% 15% 15% 15% 20%
τV (s) 12.0 10.0 16.0 10.0 12.0
σV 2% 2% 2% 2% 2%

C τδ(s) 1.20 1.00 0.80 1.00 1.20
σδ 120% 150% 100% 120% 150%
τV (s) 12.0 10.0 16.0 10.0 12.0
σV 2% 2% 2% 2% 2%

6.3.1 Transient Stability Assessment

In this section, the transient stability of the study system will be evaluated start-

ing from the initial condition oK to the next operation point oK+1 given in Table.

6.9.

In order to study the impact of microgrid droop gain settings on system stability,

three study cases are formulated. The interface control time constants and droop

gains for each microgrid are given in Table. 6.10.

The local stability of oK+1 can be evaluated with the small signal model (4.4)

formulated in Section 4.1. The system eigenvalues for each study case are plotted in

Fig. 6.10. For Case A and B, the system equilibrium oK+1 is small signal stable since
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Figure 6.10: Eigenvalues for small signal system model.

all the eigenvalues have negative real parts. For Case C, the system equilibrium oK+1

is small signal unstable with a positive eigenvalue 0.0014. Obviously, with smaller

interface droop gains the system tends to have better stability feature.

Now that the system equilibrium oK+1 is small signal stable for Case A and B,

transient stability from the initial condition oK = (V ∗K , δ∗K) to the intermediate

point oK+ need to be evaluated according to the assessment framework in Fig.4.2.

With the assessment procedure given in Section 4.2, the transient stability feature

can be evaluated for Case A and B, given in Table 6.11. For Case A, the LMIs

formulated in (4.31) are feasible with the sector condition φj(yj) ∈ [−1, 1], j =

1 . . . 10, thus global stability can be concluded. For Case B, feasible solution of

(4.31) cannot be obtained with sector condition φj(yj) ∈ [−1, 1], j = 1 . . .m, whereas

regional stability can be established with sector condition φj(yj) ∈ [0, 1], j = 1 . . . 10.

The corresponding stability region is given in Table. 6.12, in which xi = δ∗Ki −

δ∗K+1
i , i = 1 . . . 5. From Table. 6.9, we have x1−x2 = 0.21, x1−x3 = 0.27, x2−x5 =

−1.38, x3− x4 = −0.79, x4− x5 = −0.65. Clearly, the initial condition oK falls into

the stability region of oK+, thus transient stability can be concluded for Case B.
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Table 6.11: Stability assessment results.
Stability Case A Case B Case C

oK+1 (small-signal) Stable Stable Unstable
oK → oK+ (Transient) Globally stable Regionally stable -

Table 6.12: Transient stability region.
Angle bound x1 − x2 x1 − x3 x2 − x5 x3 − x4 x4 − x5

Upper bound (rad) 1.14 1.30 1.07 1.06 0.95
Lower bound (rad) -1.82 -1.19 -1.87 -1.87 -1.72

6.3.2 Stability Reserve and Droop Management

Stability reserve can be configured to manage the droop gains of each microgrid

interface. For a specific system operation condition, model reference tracking can be

performed the MGCC by controlling its stability reserve.

We know that the operation point oK+1 is small signal unstable if the plant model

of each microgrid interface has the droop gains specified as in Table. 6.10 - Case C;

whereas transient stability can be established with the Case A and B droop gains.

Design the reference model of each microgrid with Case A droop gains, and consider

the scenario that starting from the initial condition oK , each MGCC spent 10s for

their reserved to be committed. The system can be stabilized through controlling the

stability reserve of each microgrid. As can be seen from the time domain simulation

result plotted in Fig. 6.11, the system states ∆δ, ∆V and interaction variables ∆PI ,

∆QI start converging to zero when the stability reserves are committed at 10s.

Fig. 6.12 shows the response of the stability reserve of each microgrid, from which

we can observe that PR of each microgrid converge to zero at the steady state. Such
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Figure 6.11: Time domain simulation results - Case C plant model, Case A reference
model.
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Figure 6.12: The stability reserve responses - Case C plant model, Case A reference
model.

phenomena are consistent with our theoretical analysis since

PRi = −lPi∆PIi , (6.1)

At the steady state ∆δi(∞) = 0, ∆Vi(∞) = 0, i = . . . n, then according to (4.4) and

(4.5) we have,

PRi(∞) = −lPi∆PIi(∞) = 0. (6.2)
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Figure 6.13: The stability reserve responses - Case C plant model, 1% reference
model voltage droop.

Table 6.13: Inter-module line parameters
TB No. 1 2 3 4 5
R(Ω) 1.0300 1.4680 1.5042 1.4512 1.2030
X(Ω) 0.7400 1.1150 1.3554 1.3083 1.1034

In the study case above only real power reserve is configured. Actually, reactive

power reserve can be used for voltage droop management with the control law given

in (5.3). Now consider the scenario that the microgrid interface plants have Case C

parameters and the corresponding reference models have the same τδ, σδ, and τV as

in Case A, but with σV = 1% for each microgrid interface. The response of system

states ∆δ, ∆V and the stability reserves PR, QR are plotted in Fig. (6.13), from

which we see that all these variables approach zero at the steady state.

6.4 Hierarchical Control Framework

In this section, a study system designed based on IEEE 123-node test feeder,

shown in Fig. 6.14, will be used to demonstrate the feasibility of the proposed
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Figure 6.14: Study system based on IEEE 123-node test feeder [62].

interactive control framework. Configured as a microgrid-based distribution system,

5 microgrids are interconnected through tie-branches (TBs), with line parameters

given in Table. 6.13.

In each microgrid, various energy sources are configured including wind farm,

solar system, natural gas generators and etc, of which the aggregation will be the

PGi , QGi , i = 1 . . . 5 in our problem formulation. Local load includes residential, com-

mercial and industrial customers, of which the aggregation will be the PLi , QLi , i =

1 . . . 5. And also, utility-scale battery energy storage system is deployed in each

microgrid serving as the regulation power PRi , QRi , i = 1 . . . 5.
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6.4.1 System Operating Condition and Interaction Coefficient

With the ACPF problem formulated in Section 5.3 solved every 15 minutes, the

system operating condition and the corresponding reference setting point for each

microgrid can be obtained. Here nine consecutive operation points are presented in

Fig. 6.15. The corresponding generation and load profile of each microgrid is given

in Table 6.14.

Detailed generation and load profile is given in the appendix. Corresponding to

each system operating condition, the interaction coefficient λmax defined in (4.13)

can be calculated, as plotted in Fig. 6.16. In Fig. 6.15 per unit representation (p.u.)

are used for V ∗t , P ∗I and Q∗I , except for θ∗t radian measure is used. The voltage and

power bases are VB = 4.16 kV, SB = 1 MW, respectively.

The interaction coefficient shows the network stressfulness at a specified opera-

tion point. It can be seen from Fig. 6.15, 6.16 that the higher utilization of the

tie-branches for power exchange the larger interaction coefficient will the system

have. For the operation point at 30 min, the largest real power branch flow is

F2−1 = 0.31 MW from µG2 to µG1 through TB5. The corresponding interaction co-

efficient λmax(15) = 0.008. For the operation point at 60 min, the largest real power

branch flow is F1−3 = 3.58 MW from µG1 to µG3 through TB1. The corresponding

interaction coefficient λmax(60) = 1.316. Apparently, the system interaction coeffi-

cient at 60 min is much larger than that at 30 min with significantly higher utilization

of the network for power exchange.

6.4.2 Droop Gain and System-wide Stability

As discussed in Section 4.2.2, droop gains of each microgrid interface need to

satisfy the criterion in (4.14) so that the system-wide small signal stability can be

guaranteed. Start with the scenario that no real time droop management is per-
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Table 6.14: Generation and load profile for each microgrid (in per unit).
OP Composition µG1 µG2 µG3 µG4 µG5

PG 0.40 0.60 1.50 0.30 0.30
1 QG 0.14 0.27 -0.22 -0.33 0.09

t = 0 PL 0.13 0.20 2.50 0.10 0.10
QL 0.02 0.03 0.02 0.03 0.01
PG 0.63 0.15 0.90 0.60 0.90

2 QG -0.50 0.09 -0.11 0.18 0.27
t = 15 PL 1.05 0.05 1.50 0.20 0.30

QL 0.04 0.01 0.01 0.02 0.03
PG 0.43 0.45 0.30 0.15 0.15

3 QG -0.10 0.18 -0.11 0.09 -0.11
t = 30 PL 0.72 0.15 0.50 0.05 0.05

QL 0.01 0.02 0.01 0.01 0.01
PG 2.55 0.90 1.80 0.15 1.20

4 QG -0.82 0.27 0.09 0.09 0.36
t = 45 PL 0.85 0.30 3.00 0.25 2.00

QL 0.07 0.03 0.01 0.01 0.04
PG 8.63 0.30 3.00 0.30 3.00

5 QG -4.01 0.54 1.80 0.72 1.80
t = 60 PL 2.88 0.10 5.00 0.10 5.00

QL 0.36 0.06 0.20 0.08 0.20
PG 4.71 0.15 1.80 0.90 1.20

6 QG -0.93 -0.11 1.08 0.27 -0.22
t = 75 PL 1.57 0.25 3.00 1.50 2.00

QL 0.08 0.01 0.12 0.03 0.02
PG 3.14 0.75 0.90 1.50 0.30

7 QG -0.16 -0.22 0.09 0.27 0.09
t = 90 PL 1.05 1.25 1.50 2.50 0.10

QL 0.01 0.02 0.01 0.03 0.01
PG 1.30 0.30 0.30 0.30 0.90

8 QG -0.27 -0.11 0.09 0.09 0.18
t = 105 PL 0.43 0.50 0.10 0.50 1.50

QL 0.02 0.01 0.01 0.01 0.02
PG 0.07 0.30 0.75 0.30 1.20

9 QG -0.61 0.09 0.18 -0.11 0.36
t = 120 PL 0.11 0.10 0.25 0.10 2.00

QL 0.06 0.01 0.02 0.01 0.04
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Figure 6.15: Nine consecutive operation points of each microgrid [62].

formed. Each microgrid interface VSI has its droop gain designed a priori without

considering system operating condition, i.e. the plant model (3.4), (3.8) will be used

to represent the interface control dynamics.

To match the reference setting P ∗I , Q∗I , let

PR = P ∗I + PL − PG, QR = Q∗I +QL −QG. (6.3)

Then together with (3.4) and (3.8) we have

∆δ̇ = − 1

τδ
∆δ − σδ

τδ
∆PI ,

∆V̇ = − 1

τV
∆V − σV

τV
∆QI .

(6.4)

With each microgrid interface dynamics represented as in (6.4), the entire 5-microgrid

system can be modeled following the procedure described in Section 4.1.

Assume the plant model parameters are uniformly designed for each microgrid

interface, as given in Table. 6.15.
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Figure 6.16: Variation of the system interaction coefficient [62].

Table 6.15: Interface plant model parameters
Parameter τδ σδ τV σV

Value 8.0 2.0 4.0 2.0

Table 6.16: System operation point at 60 min
State µG1 µG2 µG3 µG4 µG5

V ∗t (p.u.) 1.0000 0.9698 0.9267 0.9695 0.9392
δ∗t (rad) 0.0000 -0.2478 -0.3130 -0.4540 -0.5252
P ∗I (p.u.) 5.7563 0.2000 -2.0000 0.2000 -2.0000
Q∗I(p.u.) -3.6458 0.6000 2.0000 0.8000 2.0000

Time domain simulation is performed the obtained system model for the oper-

ation point at 60 min, as presented in Table. 6.16 (worst case scenario). With the

initial condition ∆Vti = 0.10, ∆δti = 0.05, i = 1 . . . 5, system response for the first

30 seconds is shown in Fig. 6.17, from which we see that the system is unstable as

the state trajectories do not converge to their reference values.

Now consider the scenario that real time droop gains of each microgrid interface

are managed interactively with the DSO through the procedure introduced in Section

5.2. Assume for each module, the PCC voltage phase angle and magnitude are

required to be regulated within ±5◦ (±0.0873rad), ±0.05p.u. from their reference

values, respectively. According to the criterion in (4.14), the regulation capacity of
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Figure 6.17: System state trajectories without droop management.
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Figure 6.18: System state trajectories with interactive droop management.

each microgrid needs to be configured satisfying

P up
Ri

= P dn
Ii
> 0.0873λmax,

Qup
Ri

= Qdn
Ii
> 0.05λmax. (6.5)

For the operation point at 60 min, presented in Table. 6.16, the system interaction

coefficient λmax(60) = 1.316. Then without loss of generality, assume the regulation

capacity is uniformly configured for each microgrid as

P up
Ri

= P dn
Ii

= 0.16(p.u.),

Qup
Ri

= Qdn
Ii

= 0.08(p.u.). (6.6)
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Choosing a 10% margin, i.e. mV = mδ = 0.1, the droop gains of each microgrid can

be determined as follows,

σδr = 0.49,

σVr = 0.56.

(6.7)

Assume successful reference tracking is achieved with the MRC-based primary level

control, the designed droop gains σδr, σVr are used instead of the plant droop gains

σδ, σV to represent microgrid interface dynamics. Keep the time constants unchanged

τδr = τδ = 8.0, τVr = τV = 4.0, and consider the same system operation point at 60

min with the same initial condition specified above, the system state trajectories are

obtained, shown in Fig. 6.18. It can be observed that the system is asymptotically

stable as the state trajectories converge to their reference values at steady state.
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7. CONCLUSION

7.1 Summary

In this work, a novel control framework for multi-microgrid systems is formu-

lated. Revolutionary changes are expected in future distribution grid to support

distributed/renewable energy integration. More active, intelligent and reliable be-

haviors are envisioned in future distribution systems, which requires new design of

both the system architecture and control framework. The concept of microgrid had

been proposed to formulate a local energy cluster that packaging closely located

sources and loads at the point of common coupling (PCC). For the upper level sys-

tem control and management, each microgrid presents to the macro grid as a single

controllable entity. Such system architecture is quite promising in realizing the de-

sirable smart grid functions in a simplified manner.

Even with nicely clustered system architecture, many important technical chal-

lenges need to be solved. First of all, appropriate power sharing among coupling

operated microgrids need to be achieved. Moreover, unlike conventional power sys-

tems employing synchronous generators as dynamical interface handling operational

disturbance and uncertainty, voltage source inverters (VSIs) are commonly utilized

in microgrids for grid connection. Proper interface behavior of those VSIs is desir-

able to provide effective dynamical support to the system. A novel interface control

strategy is proposed in this work to address the aforementioned problems.

Another challenge comes with the intermittent nature of distributed/renewable

generation. With high penetration of DERs, the operating condition of multi-

microgrid systems can vary in a much wider range in a much shorter term com-

pared with large multi-machine systems. In order to achieve sustainable operation,
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hierarchical control is employed for large multi-machine systems, in which the con-

trol parameters are designed based on the worst case scenario (WCS) predicted in

the planning phase. However, for multi-microgrid systems with operating condition

changing dramatically, the WCS approach will result in over-conservative design.

For the novel system architecture, the hierarchical control strategy needs to be

redesigned to allow for high DER penetration. To avoid the over-conservativeness

issue, a model reference control (MRC)-based scheme is proposed for online droop

gain tuning at the primary level. Conservativeness can be significantly reduce by

tuning the interface control parameters in a timely manner according to updated

system operating condition.

At the secondary level, a droop gain management scheme is proposed. The

droop gains of the reference model to be tracked by the primary level control will

be determined based on the small-signal and transient stability assessment result.

Obviously, this scheme is fundamentally different from the secondary level frequency

control performed in convention multi-machine systems aiming at eliminating steady

state frequency deviation from the nominal value. We have shown in our analysis that

with angle droop method employed in the interface control, the frequency deviation

approaches zero at the steady state, thus there is no need to perform secondary level

frequency control.

At the tertiary level, an AC-power flow based supervisory control scheme is pro-

posed for microgrid dispatch. Different from the conventional economic dispatch

program, the full set of the power flow solution V ∗, δ∗, P ∗I and Q∗I will be dispatched

to each microgrid interface. Thanks to the synchrophasor measurement (PMU),

exact power flow management becomes possible with this scheme.
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7.2 Future Work

In the future work, demand side management will be studied. The key idea

is to extend this approach to the scenario that a distribution grid is configured as

an interconnection of both microgrids and dynamical responsive loads. Responding

to different signals, load component in each demand response (DR) category will

provide dynamical support to the system on different aspects.

With PMU deployed at the load bus/node, responsive load components can be

controlled to respond to different indication signals. Fig. 1 shows the complete

signal-processing model of the state of the art PMU. Signals that can serve as good

power imbalance indicators include 1) voltage angle, 2) frequency - Freq, 3) derivative

of frequency ROCOF, 4) voltage magnitude. The first three can be used as real

power response indicator, while the last one as reactive power response indicator.

The derivative of voltage magnitude, although not directly reported, can be easily

calculated from the voltage magnitude, which can also be used as reactive power

response indicator.

Responding to different signals, the responsive load can be classified into the

following categories.

• Non-responsive load. Loads in this class do not respond to any indicator signal,

which can be modeled as constant power load in system dynamical studies:

PLN = P ∗LN , QLN = Q∗LN .

• Load responding to voltage angle. Loads in this class are real power loads

responding to the voltage phase angle of the load bus/node with respect to the
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synchronized reference dispatched by the DSO:

PLA = P ∗LA −
1

σδ
(δL − δ∗L).

• Load responding to frequency. Loads in this class are real power loads respond-

ing to the load bus/node frequency ωL with respect to the nominal frequency

ω0:

PLF = P ∗LF −
1

σω
∆ωL,

where ∆ωL = ωL − ω0.

• Load responding to ROCOF. Loads in this class are real power loads providing

inertia support and responding to the voltage phase angle of the load bus/node

frequency:

PLR = P ∗LR − JLω̇L.

• Load responding to voltage magnitude. Loads in this class are reactive power

loads responding to the voltage magnitude of the load bus/node with respect

to the reference dispatched by the DSO:

QLV = Q∗LV −
1

σV
(VL − V ∗L ).

• Load responding to the derivative of voltage magnitude. Loads in this class are

reactive power loads responding to the derivative of the load bus/node voltage
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magnitude:

QLC = Q∗LC −KV V̇L.

As an aggregation of all the load classes, the dynamical behavior of a load

bus/node can be modeled as follows.

δ̇L = ∆ωL,

JLω̇L +
1

σω
ωL +

1

σδ
(δL − δ∗L) = P ∗L − PL,

KV V̇L +
1

σV
(VL − V ∗L ) = Q∗L −QL,

where P ∗L = P ∗LN + P ∗LA + P ∗LF + P ∗LR , Q∗L = Q∗LN + Q∗LV + P ∗LC , PL = PLN + PLA +

PLF + PLR , QL = QLN +QLV + PLC .

Then a load module can provide similar dynamical support as the microgrid

interface by managing the real and reactive power load PL, QL instead of directly

controlling the voltage and angle profile VL∠δL.

If a load module is so aggregated that the bottom-up load modeling approach re-

quires critical data collection, computation and communication. Data-driven method

can be a good alternative to perform a top-down model identification.
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Miguel Castilla. Hierarchical control of droop-controlled ac and dc microgridsa

general approach toward standardization. Industrial Electronics, IEEE Trans-

actions on, 58(1):158–172, 2011.

[16] Wassim M Haddad, Vikram Kapila, and Vijaya-Sekhar Chellaboina. Guar-

anteed domains of attraction for multivariable luré systems via open lyapunov
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