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ABSTRACT  

 

Lattice preferred orientation (LPO) in olivine-rich rocks reflects deformation 

conditions and kinematics in the Earth’s mantle. Harzburgites with a strong lineation and 

weak foliation have recently been identified in the eastern part of the Red Hills massif in 

the Dun Mountain Ophiolite Belt in New Zealand. While studies have characterized the 

LPO in lineated rocks for minerals such as pyroxene and quartz subjected to 

constrictional strain, little work has focused on characterizing the crystallographic -

preferred orientation of olivine in lineated peridotites. Microstructural data and fabric 

geometry suggest that spinel does not reflect the strain experienced by the rock as a 

whole, in spite of being used as an indicator for the average foliation and lineation. 

Additionally, this study supports existing work involving the relationship between the 

development of LPO and rotation of crystallographic axes in response to the principal 

stretches of the finite strain ellipsoid. The data suggest the pencil glide system can be 

activated not only in response to experimentally determined strain rates and 

temperatures, but  also in response to the rotation of the principal stretches of the finite 

strain ellipsoid.    
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NOMENCLATURE 

 

RHUM Red Hills Ultramafic Massif 

LPO Lattice Preferred Orientation 

SPO Shape Preferred Orientation 

SEM Scanning Electron Microscopy 

TEM Transmission Electron Microscopy 

EBSD Electron Backscatter Diffraction 

X-ray CT X-Ray Computed Tomography 
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1. INTRODUCTION  

 

Lattice preferred orientation (LPO) of naturally deformed rocks forms under a 

range of conditions, and occurs in response to slip on specific crystallographic planes 

that are activated under a unique set of conditions. Thus, analysis of these textures 

(LPOs) for a particular mineral yields constraints on deformation conditions including 

water content, stress, strain rate, temperature, pressure and strain as well as kinematics 

(e.g., Flinn, 1965; Katayama et al., 2004; Sullivan et al., 2010). Olivine rheology has 

been well characterized through rock deformation experiments, and the LPO of olivine 

deformed primarily under simple-shear conditions has been the focus of many studies 

(Hirth and Kohlstedt, 2003; Katayama et al. 2004; Jung et al., 2006). In general, olivine 

in the upper mantle deforms by dislocation creep, a mechanism that involves 

development of a LPO. Five main LPO types have been identified through investigation 

of experimentally deformed samples and each is well characterized for a range of 

conditions. The two most common textures observed in both naturally and 

experimentally deformed rocks are the A and D types (Jung et al., 2006; Karato et al., 

2008; Kaplanis et al., 2013; Hansen et al., 2014). The A type slip system (001)[100], is 

dominant under high temperature, dry, and low flow stress conditions, and the D type 

slip system (0kl)[100], also known as pencil glide, occurs under dry conditions, lower 

temperatures and higher flow stresses (Zhang and Karato, 1995; Zhang et al., 2000). The 

remaining B, C, and E types are less common and dominate under a range of conditions 

of water content, temperatures, and flow stresses.  
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However, the development of LPO may not depend solely on the previously 

mentioned deformation conditions. This statement is well supported in studies involving 

the development of a preferred orientation in response to fabric geometry (3D grain 

shape) in crustal material (Schmid and Casey, 1986; Lloyd et al., 2011; Llana-Funez and 

Rutter, 2014), but this relationship is poorly constrained for minerals common in the 

upper mantle. However, previous work may suggest a significant link between LPO 

formation and fabric geometry for olivine in the upper mantle. For example, a 

compression experiment for olivine over a range of deformation conditions was not able 

to produce the D-type pattern in olivine (Ave’Lallemant and Carter, 1970). Furthermore, 

some studies record the existence of the D-type pattern in association with torsion 

experiments (Bystricky et al., 2000; Hansen et al., 2014). Additionally, previous work 

records the existence of the B-type olivine fabric in response to a kinematic effect due to 

strain partitioning during melt segregation (Hotlzman et al., 2003). The development of 

the B-type fabric has also been attributed to pure shear dominated deformation and 

elongation normal to the shear direction (Karato et al., 2008). Thus, these studies support 

a clear relationship between fabric geometry and the development of a LPO in olivine.  

L-tectonites, or rocks with a dominantly linear fabric, have been extensively 

studied for naturally and experimentally deformed quartz-rich rocks, and these fabrics 

are generally considered to develop as a result of constrictional strain, forming distinct 

crystallographic fabrics (Flinn, 1965; Tullis, 1977; Lister and Hobbs, 1980; Sullivan et 

al., 2010). This strong, linear alignment of minerals with a weak or nonexistent foliation 

is not common in the literature (Pfiffner and Ramsay, 1982), and knowledge concerning 
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the tectonic evolution of large domains of L tectonites is lacking, largely due to the 

difficulty in understanding the complicated, polyphase deformational histories of the 

associated areas (Sullivan, 2013). However, constrictional deformation is a significant 

structural feature in various geologic settings around the world and should not be 

ignored (e.g., Holst and Fossen, 1987; Sylvester and Janecky, 1988; Poli and Oliver, 

2001; Solar and Brown, 2001; Sullivan, 2013). 

Recent fieldwork in the Red Hills massif has identified olivine-rich rocks with a 

linear fabric. Analysis of these fairly unexplored fabrics in olivine-rich rocks will 

improve our understanding of the deformation mechanisms and lattice preferred 

orientations associated with the development of L-tectonites in peridotites.  In studies of 

naturally deformed peridotites, mantle massifs and xenoliths, the geometry of spinel 

grains are assumed to reflect the kinematic geometry of the rocks (e.g., Michibayashi et 

al., 2006); the geometry of spinel grains are used to define the orientation context 

(foliation and lineation) within which other data, such as LPO, are viewed.  The linear 

fabric in these rocks, not typical of most reported studies of naturally deformed 

peridotites, offers a new context within which to evaluate the use of spinels for this 

purpose.  

By using a combination of methods involving X-ray CT analysis coupled with 

microstructural work involving analysis of LPO, and grain shape analysis on two 

mutually perpendicular thin sections, this study: 1) discusses the use of the X-ray CT in 

peridotites; 2) examines the relationship between fabric geometry and the development 

of LPO; and 3) compares the development of olivine and spinel fabric in peridotites.  
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The results of this study suggest that while spinel grains are typically used to 

identify foliations and lineations in peridotites, this mineral does not necessarily reflect 

the complete strain experienced by the rock; olivine fabrics and spinel fabrics do not 

reflect the same strain at the deformation conditions experienced by these Red Hills 

peridotites. Further, LPO in olivine appears to be controlled by the development of the 

constrictional fabric, rather than deformation conditions alone. This result supports the 

relationship documented in previous studies investigating LPO development in response 

to a kinematic framework (e.g., Ribe and Yu, 1991; Tommasi et al., 1999; Miyazaki et 

al., 2013; Chatzaras and Kruckenberg, in review). 
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2. GEOLOGIC SETTING 

 

The peridotites described in this study are from the Red Hills ultramafic massif 

(RHUM), part of the Permian Dun Mountain Ophiolite Belt in New Zealand (Figure 1a). 

This massif is the largest in the belt with an area spanning 12 km by 8 km, and has been 

extensively mapped by Walcott (1969), Johnston (1982), Johnston (1990) and Stewart 

(2015). Previous work involving clinopyroxene rare earth element patterns by Sano and 

Kimura (2007) links the ultramafic complex to a paleo-mid ocean ridge setting, but more 

recent geochemical work and extensive mapping by Stewart (2015) suggests the 

complex may have developed during an early stage of subduction. 

Based on lithology and mesoscale fabrics, Stewart (2015) divides the RHUM 

into four distinct units (Figure 1): From west to east, these are the Ellis Stream Complex, 

the Plateau complex, the Plagioclase zone, and the Two Tarns harzburgite. The massif 

likely experienced two stages of melting involving metasomatism and melting of 

refractory mantle (Sano and Kimura, 2007, Stewart, 2015).  Microstructural analysis and 

field work by Stewart (2015) suggests the Two Tarns harzburgite represents an early 

stage of melting and denotes refractory mantle, and a later stage of refertilization is 

responsible for producing the other ultramafic bodies within the massif: the Plateau 

complex, the Plagioclase zone, and the Ellis Stream complex.  The Plateau complex is 

comprised of banded harzburgite and dunite, while rocks in the Plagioclase zone are 

discontinuous lenses and sills of foliated plagioclase lherzolite and plagioclase 

harzburgite. The Ellis Steam Complex is comprised of compositionally banded 
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harzburgite and dunite with minor lherzolite and a strong planar fabric. More dunite is 

recognized in the Ellis Stream complex than the Plateau complex.  Although the later 

episode of metasomatism is focused in the western massif, it is present throughout the 

Red Hills at various scales. 

The olivine-rich rocks focused on in this study are from the Two Tarns 

harzburgite. Geothermobarometric analyses suggest these rocks formed at approximately 

1200°C and > 6 kbar pressure (Stewart, 2015). Orientation information collected in the 

field by Stewart (2015) is recorded in Figure 2. At the mesoscale, the harzburgites 

appear mostly massive with a linear fabric defined by spinel geometry. Foliation in these 

rocks is weakly developed, with the poles forming a girdle dipping to the west. In some 

outcrops, foliation is not observable and is not recorded. 
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3. METHODS 

 

3.1 X-ray Computed Tomography  

Foliation is difficult to discern in mesoscale exposures and hand samples from 

the Two Tarns Harzburgites (Stewart 2015). Therefore, fabric information was obtained 

using X-ray CT scans (Department of Earth Sciences, The University of Minnesota; 

X5000 high resolution microCT with a dual head 225 keV cone-beam X-ray source 

coupled with a Dexela area detector). X-ray CT produces tomographic images (slices) of 

rock and provides fabric information in 3D. In these harzburgites, spinel grains were 

analyzed using the X-ray CT because the mineral’s higher density and atomic number 

results in attenuation of more X-rays than other phases in the rock. The X-ray CT 

identifies the foliation plane (XY) and the XZ plane (Figure 3), based on the average of 

spinel grain geometries in each sample; the intersection between these two planes 

defines the mineral stretching lineation orientation. Nine olivine-rich samples (10 x 5 x 3 

cm) from the Red Hills were scanned, reconstructed, and analyzed to determine spinel 

fabric geometry. This geometry was used to define foliation and lineation in each 

sample. In order to determine dependency of fabric geometry on sample size, two 

samples were cut to 2 x 4 x 1 cm billets and reanalyzed using the X-ray CT: 14RH-07 

and 14RH-13. The X-ray CT also provided grain size data for all spinel grains. The 

software assumes a spinel’s grain size is equivalent to the length of a cube whose 

volume equals that of a spinel grain.  
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3.2 Microstructural Analysis 

Nine thin sections were prepared parallel to the lineation and perpendicular to 

foliation as defined by the X-ray CT.  In addition, thin sections parallel to both the 

foliation and lineation were prepared for seven of the nine samples.  Thin sections 

oriented parallel to lineation and perpendicular to foliation were analyzed using a Tescan 

Vega 3 LMU scanning electron microscope (SEM) and Oxford Instruments Nordyls 

Max2 electron backscattered diffraction (EBSD) at Boston College, at 25 kV and 50 nA 

beam current; EBSD maps were created with a step size of 7.5 microns. Modal 

mineralogy, grain size and shape preferred orientation were determined from EBSD map 

data for these samples, using Oxford Instruments AZtecHKL Channel 5 software.  

In addition, for the seven samples for which thin sections were prepared parallel 

to both the foliation and lineation, grain size analyses were carried out using image 

processing software (Image SXM, Barrett (2008)) on grain traces from optical 

photomicrographs of thin sections from the two mutually perpendicular thin sections: (1) 

parallel to lineation and perpendicular to foliation and (2) parallel to lineation and 

foliation. For shape analysis, the software assumes an ellipse for grains, and determines 

the length of long and short axes, as well as the orientation of the long axes for each 

grain. This analysis was carried out only for olivine grains, due to the limited amount of 

spinel and other phases observable in thin section.  

Backscattered electron imaging (BSE) on the electron microprobe at Texas A&M 

was also used to investigate microstructures at a scale below resolution of the optical 

microscope.  
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4. RESULTS 

 

4.1 Fabric Analysis  

Spinel geometries determined through X-ray CT analyses suggest lineations and 

foliations consistent with those collected by Stewart (2015) in the field (Figure 2). Spinel 

lineations are consistent, with an average orientation of 30º at 101. However, highly 

variable foliation is recorded from both field observations and X-ray CT.   

X-ray CT data suggest variable strain geometries for spinel grains (Figure 4). 

Four samples (14RH-11, 14RH-02, 14RH-02b, 14RH-10) from the Red Hills record 

prolate fabric ellipsoids (S1>S2≈S3, where S1, S2, S3 are the maximum, intermediate, and 

minimum stretches) and 5 samples (14RH-03a, 14RH-14, 14RH-13, 14RH-12, 14RH-7) 

fall in the flattening field with oblate fabric ellipsoids (S1≈S2>S3).  

Reanalysis of two samples using smaller sample sizes indicates that the 

resolution of the analyses is related to the size of the samples; for the larger samples 

(average size: 10 x 5 x 3 cm) analyzed, spinel grains > ~300 µm are resolved. Two 

samples (14RH-07 and 14RH-13) that record oblate fabrics from large samples were 

reanalyzed using a smaller sample size (average size: 2 x 4 x 1 cm) (Figure 5).  Analyses 

of the smaller samples allow for resolution of finer-grained spinel (>100 µm). The 

reanalysis of the smaller samples suggest more prolate geometries for both samples 

(Figure 4).  While the large sample analyzed for 14RH-07 indicates an oblate geometry, 

reanalysis as a smaller sample suggested an overall prolate fabric geometry. When 

Sample 14RH-13 was reanalyzed as a smaller sample, the fabric geometry for spinel 
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became less oblate as well, but the results did not significantly change from those 

derived from the analysis on the larger sample.   

The Lode’s ratio (v) is a function of the principal stretching axes and is used to 

characterize fabric geometry (Ramsay and Huber, 1983). It is determined using the 

following equation: 

𝑣 =
2(ln(S1)−ln(S3))

ln(S1)−ln⁡(S3)
          (1) 

where S1 and S3 are the maximum and minimum principal stretches, respectively. The 

Lode’s ratio falls between -1 and 1, where v<0 describes prolate ellipsoids, v=0 denotes 

plain strain, and v>0 refers to oblate ellipsoids. The Lode’s parameter for each individual 

spinel grain analyzed by the X-ray CT is presented in Figure 5. The average spinel 

grains size is between 100 and 500 um and there is no clear relationship between fabric 

geometry and spinel grain size within any given sample, including both the larger and 

smaller samples. However, when grain size is viewed as two populations:  (1) all grains 

less than 1000 µm, and (2) all grains greater than 1000 µm (Figure 6), the coarser grain 

populations tend to be more prolate compared to the finer grain populations (for six out 

of nine samples: 14RH10, 14RH03a, 14RH14, 14RH13, 14RH12, 14RH07.)  

Strain ellipsoid values for olivine derived from Image SXM analyses are 

presented in Figure 4. For this analysis carried out using photomicrographs taken on an 

optical microscope, a resolution of 60 µm was achieved. Six out of the seven samples 

analyzed record prolate fabrics for olivine. Spinel fabric analyses derived from the X-ray 

CT are overlain for comparison (Figure 4). Four out of the six samples that yield prolate 

values for olivine, indicate oblate values for spinel based on X-ray CT analyses (14RH-
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03a, 14RH-12, 14RH-14, 14RH-13). Samples 14RH-11 and 14RH-10 yield prolate 

shapes from both olivine and spinel analysis, and the olivine analyzed from sample 

14RH-02b records oblate shapes while the spinel for this sample is characterized as 

prolate. Note that sample 14RH-02b, the only sample that records oblate fabric for 

olivine, is part of a folded pyroxene band. 

4.2 Microstructural Analysis  

The Two Tarns harzburgites consist of olivine and orthopyroxene with 

clinopyroxene, hornblende, and spinel (Table 1.) All thin sections show some degree of 

serpentinization, although typically < 5%. Grain size distributions for olivine (Figure 7) 

vary from sample to sample, with a range in grain size from 30 to 5000 µm (minimum 

grain diameter reported is 30 µm due to resolution of the EBSD analyses). The coarse 

grain size populations of orthopyroxene, olivine, and clinopyroxene range in size from 

1000 to 5000 µm (Figure 8A). These larger orthopyroxene grains often contain 

exsolution lamellae of clinopyroxene (Figure 8B) and coarse olivine grains show well-

developed subgrains and undulatory extinction (Figure 8A, C).   

Three samples (14RH-02, 14RH-13, and 14RH-14) show, locally, a fine-grained 

(15 µm <150 µm), polymineralic matrix (Figure 8C, D). These fine-grains are comprised 

of olivine, orthopyroxene, clinopyroxene and spinel and are often located adjacent to 

larger grains with irregular, sometimes curved grain boundaries. Fine-grained zones 

locally align grain boundaries between coarser grains (Figure 8C, D).  Coarse olivine 

grains are often located near other olivine grains of similar size and orientation, 

separated by fine-grained material with variable compositions (Figure 8C). Large 
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orthopyroxene grains are occasionally surrounded by finer-grained olivine and 

orthopyroxene (Figure 8E). Fine-grained orthopyroxene (Figure 8H) and spinel (Figure 

8C, D) locally surround larger olivine grains. Clinopyroxene grains are frequently 

surrounded by a finer grained matrix of clinopyroxene and olivine (Figure 8G). Spinel 

grains (~500 µm) often have curved and irregular grain boundaries (Figure 8F).   

The mean spinel orientation derived from the X-ray CT (labeled L1 in Figure 9) 

is defined as the average orientation of all spinel long axes. However, within a sample, 

spinel orientations are highly variable (Figure 9). Olivine grains, in all samples, exhibit a 

strong SPO parallel or subparallel to the average lineation defined by X-ray CT analyses 

of spinel.     

Spinel grains do not record a LPO (Figure 9) and misorientation within a single 

grain is below one degree (Figure 10). Olivine in all samples are characterized by [100] 

maxima parallel or subparallel to the lineation; [010] and [001] produce girdles 

perpendicular to the foliation, consistent with D-type (pencil glide) LPO for olivine 

(Figure 9; Jung et al., 2006; Karato et al., 2008; Kaplanis et al., 2013; Hansen et al., 

2014). Because of the heterogeneous grain size distributions, we investigated LPO in 

different grain size populations for all samples and the LPO does not vary with grain size 

(e.g., Figure 11).  
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5. DISCUSSION 

 

5.1 Melt-Related Deformation and Deformation Mechanisms 

Samples are composed predominantly of coarse-grained (1000 µm to 5000 µm) 

olivine with orthopyroxene and less commonly clinopyroxene and spinel. However, 

fine-grained (15 µm to 150 µm) polyphase material comprised of olivine, clinopyroxene, 

orthopyroxene and spinel (Figure 8C, D, E, G, H) is present locally in three thin 

sections. These fine grains are commonly found at the boundaries of larger grains that 

often exhibit irregular or curved boundaries (Figure 8F), suggesting they formed by 

reaction in the presence of melt (Stewart 2015). Preservation of the melt-related 

microstructures suggests that the associated event occurred later or at the same time as 

sub-solidus deformation. The fine-grained clinopyroxene surrounded by olivine (Figure 

8D, G) suggests incomplete melting and partial dissolution of the larger clinopyroxene 

grains (Niu, 1997), and the fine-grained matrix comprised of orthopyroxene and olivine 

surrounding larger orthopyroxene grains (Figure 8E) may have developed in response to 

the following reaction: 

𝑜𝑟𝑡ℎ𝑜𝑝𝑦𝑟𝑜𝑥𝑒𝑛𝑒 + 𝑙𝑜𝑤⁡𝑠𝑖𝑙𝑖𝑐𝑎⁡𝑚𝑒𝑙𝑡⁡ → 𝑜𝑙𝑖𝑣𝑖𝑛𝑒 + ℎ𝑖𝑔ℎ⁡𝑠𝑖𝑙𝑖𝑐𝑎⁡𝑚𝑒𝑙𝑡   (1) 

The larger orthopyroxene grains experienced incomplete dissolution or melting, with the 

smaller orthopyroxene grains representing portions of unmelted material (Niu, 1997). 

However, the finer grained orthopyroxene is also found in contact with larger olivine 

grains (Figure 8H) and may result from the following reaction where olivine reacts with 

a high silica melt to form orthopyroxene (Soustelle et al., 2010): 
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𝑜𝑙𝑖𝑣𝑖𝑛𝑒 + ℎ𝑖𝑔ℎ⁡𝑠𝑖𝑙𝑖𝑐𝑎⁡𝑚𝑒𝑙𝑡 → 𝑜𝑟𝑡ℎ𝑜𝑝𝑦𝑟𝑜𝑥𝑒𝑛𝑒 + 𝑙𝑜𝑤⁡𝑠𝑖𝑙𝑖𝑐𝑎⁡𝑚𝑒𝑙𝑡 (2) 

Fine-grained spinel (<150 µm) in the melt-related matrix (Figure 8D) and coarser 

grained spinels (~500 um) with curved grain boundaries (Figure 8F) suggests that melt-

related events may have also had a local influence on this mineral (Soustelle et al., 

2010). These irregular grain shapes indicate that spinel grains likely formed in the 

presence of melt.  It is not, however, clear from the current data what deformation 

mechanism dominated their deformation. In contrast, undulatory extinction, subgrains, 

shape preferred orientation, and the presence of a LPO for olivine grains suggest 

deformation by dislocation creep (Figures 8 and 9) (Passchier and Trouw, 2005), and the 

absence of a LPO combined with no significant internal deformation in spinel (Figure 

9,10) suggests that dislocation motion was not the dominant deformation mechanism in 

spinel grains. However, transmission electron microscopy (TEM) analysis on spinel 

grains would provide more data on evidence for dislocation creep. 

5.2 Prolate vs. Oblate Fabrics 

Fabric analyses of spinels using X-ray CT indicate four samples with prolate 

fabric ellipsoids and five samples with oblate fabric ellipsoids (Figure 4). However, 

reanalysis of two samples using smaller samples yield more prolate fabrics than 

indicated by analyses of the larger samples, suggesting Lode’s parameter may be 

strongly dependent on sample size (Figure 6). As the sample size decreased, X-ray CT 

analysis was able to resolve smaller grains.  For example, in sample 14RH-07, the 

minimum spinel grain size analyzed changed from 300 µm to 100 µm for larger and 

smaller samples, respectively, suggesting either that the smaller grains (between 100 µm 
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and 300 µm) yield more prolate geometries, or, that the sample size influences the 

results for all grains. Plots of grain size vs. Lode’s parameter (Figure 5 and 6) do not 

suggest that smaller grains are more prolate. Additional analyses are necessary to resolve 

this question. It is important to note that while spinel grains show a range of geometries 

and shape preferred orientations (Figure 9), olivine grains exhibit a strong SPO parallel 

or subparallel to the lineation determined from the X-ray CT analyses of spinel, as well 

as strong point maxima of [100] parallel or subparallel to lineation, indicating that the X-

ray CT data were reliable for defining foliation and lineation in these rocks.  

Fabric geometry of olivine grains, determined using Image SXM on grain traces 

from optical photomicrographs, suggests olivine grains have a stronger lineation than 

foliation, with the exception of one sample, 14RH-02b, which records oblate shapes 

(Figure 4). However, this sample is part of a folded pyroxene band (Stewart, 2015), 

which may have influenced its fabric.  

5.3 Olivine vs Spinel Rheology 

Spinel geometries derived from X-Ray CT analyses are variable, indicating both 

prolate and oblate elliposids (Figure 4). Variability in spinel fabric is also evident in its 

SPO, which differs from that of olivine (Figure 9). While olivine grains show a strong 

SPO parallel or subparallel to the lineation defined by the average spinel geometries, 

spinel grains do not show a strong shape preferred orientation, and only relatively few 

grains are oriented parallel to the average lineation derived by X-ray CT (Figure 9).  In 

addition, no LPO is indicated for spinel grains, while olivine grains show a strong LPO, 

with [100] point maxima and [010] and [001] girdles perpendicular to the lineation 
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(Figure 9).  These data suggest that while olivine deformed by dislocation creep, 

resulting in strong shape preferred orientations (Figure 9), spinel grains are not strongly 

deformed, and did not experience significant dislocation creep. However, the olivine 

LPO and SPO are consistent with the lineation and foliations as defined by spinel 

geometries, indicating that spinel grains did deform concurrently with the olivine, yet 

they do not record as strong a shape preferred orientation as olivine.  

These LPO and SPO data for olivine and spinel, and the greater variability in 

spinel geometries (oblate to prolate geometries) relative to olivine (dominantly prolate) 

suggest that spinel is stronger than olivine at these deformation conditions. However, the 

deformation mechanism for spinel grains is not clear. It is possible that the finer grained 

spinel population, which tend to be more oblate than the coarser grained population 

(Figure 6), precipitated from melt, and thus, do not preserve the constrictional 

deformation seen in the older, larger grains. Coarser grains, in turn, may have deformed 

by limited dislocation activity, or stress-induced diffusion; compositional analysis could 

provide information on preferential chemical zoning in spinels (e.g., Ozawa, 1989).   

Further, preferential melt-rock reaction in a stress field may have influenced the shape of 

grains.  Further analysis is necessary to determine whether spinel grain geometries 

formed from melt-rock reaction, precipitation from a melt, or from deformation 

(dislocation or diffusion) (Secher, 1981; Christiansen, 1985; Ozawa, 1989). Because 

internal deformation is not significant, it is possible that spinel may be deforming by 

passive rotation in a weaker matrix (Christiansen, 1985). This study would benefit from 

(1) transmission electron microscopy (TEM) to look for evidence of dislocations and (2) 
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compositional analyses on coarse vs. fine grains to look for zoning and evidence for 

diffusion.  

5.4 Development of Lattice Preferred Orientation 

Development of lattice preferred orientation is commonly attributed to 

deformation conditions such as stress, strain rate, temperature, and water content (e.g., 

Flinn, 1965; Katayama et al., 2004; Sullivan et al., 2010). As demonstrated in laboratory 

experiments, distinct LPOs are expected to form in response to these deformation 

conditions (e.g., Katayama et al., 2004; Jung et al., 2006). However, existing work also 

suggests that the kinematic context may play a significant role in LPO development 

(Bystricky et al 2000; Hansen et al., 2014). 

The relationship between strain rate and stress for olivine is determined from the 

following flow law: 

 ɛ̇ = 𝐴𝑑
𝜎𝑛

𝑑𝑝
exp [−

𝑄+𝑃𝑉

𝑅𝑇
] 

 

where ε is strain rate, Ad is a material parameter, σ is differential stress, n is a constant 

and its value depends on the dominant creep process, d is the grain size with exponent p, 

E* is activation energy, V is activation volume, Q is activation energy, P is pressure, R 

is the gas constant, and T is temperature (Kohlstedt et al., 1995; Mei and Kohlstedt, 

2005). Using variables from Hirth and Kohlstedt (2003) and Hansen et al. (2011), two 

deformation mechanism maps for olivine are shown in Figure 12 (van der Wal et al., 

1993). Based on geothermometry by Stewart (2015), deformation conditions are 

(2) 
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estimated at 1200ºC and 600 MPa. The estimated differential stress is calculated using 

the following equation: 

σ = (.015/Dg)
1/1.33 

where Dg is the mean grain size of each olivine-rich rock and σ is stress in MPa (van der 

Wal et al., 1993).  The minimum grain size cutoff is <60 um, based on resolution of 

EBSD maps; this cutoff excludes fine grains formed by melt-related processes from the 

average grain size used for paleopiezometry. Stresses for these rocks range from 18 to 30 

MPa (Figure 12). The flow law in equation 2 suggests these rocks formed at strain rates 

between 10
-10 

and 10
-8

 s
-1

. Note that these strain rates are very fast. The deformation 

mechanism map created using variables from Hirth and Kohlstedt (2003) suggests the 

rocks deformed by disclocation creep, which is consistent with the interpretation made 

from thin-section analysis. However, the deformation mechanism map created using 

variables from Hansen et al. (2011) suggests deformation involved grain boundary 

sliding accommodated by dislocation activity. It is possible that melt may have 

facilitated the GBS.  

Furthermore, the observed D-type LPO (Figure 9, 10) is commonly associated 

with high stresses and low temperatures (~900ºC; Carter and Ave’Lallemant, 1970; 

Nicolas and Christensen, 1987), but geothermometry reported by Stewart (2015) 

suggests these Red Hills rocks formed at much higher temperatures (1200ºC) than are 

usually associated with pencil glide texture. Thus, there is not a clear relationship 

between LPO and deformation conditions in these rocks. 

(3) 
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We propose an alternative interpretation for the observed LPO based on the 

relationship between olivine crystallographic axes and the orientation and magnitude of 

the finite strain ellipsoid (e.g., Ribe and Yu, 1991; Tommasi et al., 1999; Miyazaki et al., 

2013; Chatzaras and Kruckenberg, in review). In Figure 9, olivine [100] develop a point 

maximum near the maximum principal strain axis (the lineation orientation), and the b- 

and c- axes form a girdle on the plane defined by the intermediate and minimum 

principal strain axes. In samples where the lineation is much stronger than the foliation, 

the intermediate and short finite strain axes are very close in value, often becoming 

interchangeable. Thus, the girdled pattern we see for [010] and [001] may have formed 

due to these axes becoming interchangeable during constrictional deformation. This 

relationship between three-dimensional deformation and LPO development supports the 

arguments made in Chatzaras and Kruckenberg (in review) based on their analyses of 

peridotite xenoliths from west Antarctica. The D-type olivine LPO recorded for all 

prolate peridotites from the Red Hills is similar to the LPOs associated with the west 

Antarctica samples that exhibit prolate spinel ellipsoids. Antarctica xenoliths with oblate 

spinels record the AG type LPO, and samples comprised of spinel shapes approximating 

plane strain exhibit the A-type LPO. Although the Red Hills rocks record a range of 

fabric geometries for spinel (Figure 4), most samples record prolate fabrics for olivine 

and the D-type olivine LPO is present in all samples. It is important to note that fabric 

analysis was limited to spinel in the Antarctica study; olivine and fabrics are not 

reported. Analysis of the Red Hills rocks records conflicting fabric geometries from the 

two minerals; the two minerals reflect different strain, although not different strain 



 

20 

 

orientations, suggesting that olivine deformed more easily at these conditions than 

spinel.  Characterization of olivine fabrics in samples where spinel fabrics and olivine 

LPOs are variable, as in the Antarctica xenoliths, would improve our understanding of 

the development of olivine vs. spinel fabric geometry.  

5.5 Tectonic Setting for the L Tectonites 

The melt-related microstructures and well-developed olivine prolate fabrics of 

the Two Tarns harzburgites are consistent with the interpretation of Stewart (2015) that 

the harzburgites experienced oblique transtensional deformation during pervasive 

melting.  Stewart (2015) suggests that the Two Tarns harzburgites developed during the 

first of three stages that affected the Red Hills rocks between 285 and 274 Ma.  

Subduction is thought to have initiated along a mid-ocean ridge transform fault, and 

Stage 1 is associated with homogenous and highly oblique transtensional deformation, 

consistent with the development of linear fabrics (Sullivan, 2013; Stewart, 2015). Stage 

1 is also linked to the formation of homogenous and pervasive melts in response to 

decompression melting and volatiles (e.g. Shervais, 2001). The microstructures in these 

rocks suggest relatively low stresses and fast strain rates are associated with the 

constrictional deformation in the presence of melt at this stage. Continued subduction in 

Stage 2 increased the dip of the descending plate, causing dextral and normal motion. 

Further mantle upwelling transported melt into more focused and narrower channels at 

shallower depths, forming more compositionally heterogeneous units adjacent to the 

Two Tarns in the DMOB. 
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6. CONCLUSION 

 

In lineated harzburgites from the Red Hills ultramafic massif, olivine and spinel 

preserve different microstructures, fabrics and LPOs. Olivine grains display evidence for 

dislocation creep, including subgrains, undulose extinction, a strong shape-preferred 

orientation, and lattice preferred orientations with [100] parallel to the lineation.  Spinel 

exhibits weak to no shape preferred orientation nor LPO.  Further, X-ray CT analyses for 

spinel indicate a range of oblate to prolate fabrics (L>S L=S and L<S ellipsoids), while 

olivine grains analyzed using Image SXM on traces of optical photomicrographs yield 

prolate fabrics (L<S tectonites).  These texture and fabric data suggest that olivine 

deformed more easily at these conditions than spinel.  The olivine SPO and LPO, 

however, are parallel or subparallel to the average lineation as defined by spinel 

geometries, indicating that spinel fabrics were formed concurrently with the olivine 

deformation. Evidence for melt during deformation, in the form of fine-grained 

polyphase material, including spinel, and spinel microstructures (e.g., irregular grain 

shapes; cuspate-lobate grain boundaries between olivine and pyroxenes), suggest that 

spinel geometries formed during melt migration concurrent with olivine deformation. 

Whether these spinel geometries formed by deformation (dislocation or diffusion creep), 

melt-rock reaction, passive rotation, or precipitation from a melt requires additional 

research.  

Pencil-glide is typically associated with deformation at relatively lower 

temperatures and higher stresses than suggested by the compositions and microstructures 
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(e.g., grain size) in these rocks.  We propose an alternative explanation for the D-type 

LPO that considers the kinematic context of these rocks.  While L-tectonites in 

peridotites have only rarely been described, LPO development in other minerals have 

been tied to the development of prolate fabric geometries. In addition, these results are 

consistent with analyses of Chatzaras and Kruckenberg (in review) of peridotite 

xenoliths that ties the development of LPO to strain geometry; crystallographic axes 

rotate relative to the principal stretches of the strain ellipsoid.  We propose the pencil 

glide system can be activated not only in response to deformation conditions of stress, 

strain rate, and temperature, but in response to constrictional strain during the 

development of L-tectonites.    
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Figure 1: a) Map showing the Red Hills location in the Dun Mountain Ophiolite Belt of New Zealand and 

b) the location of the Red Hills rocks analyzed in this study (Stewart, 2015). 
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Figure 2: Equal area, lower hemisphere projection of foliation and lineation. Black dots denote 

orientations derived from this study from X-ray CT analysis and lineation is defined by long axis of spinel. 

Red dots represent orientation data taken in the field (Stewart, 2015). 
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Figure 3: Grey pixels are spinel grains produced using the X-ray CT. The XY plane (foliation) and XZ 

plane are shown. The intersection of the XY and XZ plane defines the lineation.  
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Figure 4: Flinn diagram; S1, S2, and S3 are the maximum, intermediate, and minimum axes of the finite 

strain ellipsoid, respectively. Olivine (green dots) 3D fabric shape was derived from grain tracing and 

Image SXM, and spinel (black dots) 3D fabric shape was derived from the X-ray CT. * indicates results 

from smaller samples (14RH-13* and 14RH-07*) Ellipsoids from Chatzaras and Kruckenberg (in review).  
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Figure 5: Lode’s parameter derived from X-ray CT data for each individual spinel grain analyzed. Data is 

shown for both large and small samples.  
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Figure 6: Lode’s parameter derived from X-ray CT data for three different grain size populations: (1) all 

spinel grains, (2) all spinel grains < 1000 µm, and (3) all spinel grains > 1000 µm. Lode’s parameter vs. 

grain size is also provided for the two smaller samples (shown as lighter shades for samples 14RH-07 and 

14RH-13).  
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Figure 7: Grain size distributions for all samples. Grain sizes range from 30 to 5000 µm (cutoff of 30 µm 

used due to resolution of the EBSD). 
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Figure 8: Cross polarized optical microscope image (A-D); EBSD phase maps (E, F, H) backscatter 

electron image (G). A) Sample 14RH-11 showing a distribution of olivine, orthopyroxene, spinel, and 

clinopyroxene. Olivine grains show undulatory extinction and subgrains. B) 14RH-12 with large grains of 

orthopyroxene grains containing exsolution lamellae of clinopyroxene. C) 14RH-13 with a fine-grained, 

polymineralic composition in between coarse-grained olivine with a similar orientation and size. D) Fine-

grained clinopyroxene and olivine surround larger grains of orthopyroxene and olivine. E) 14RH-14 with 

large orthopyroxene grains surrounded by finer-grained olivine F) 14RH-11 showing coarse-grained spinel 

with curved and irregular grain boundaries. G) 14RH-03b showing fine-grained clinopyroxene 

surrounding olivine and coarse grained clinopyroxene. Spinel grain is white.  H) 14RH-12 showing fine-

grained orthopyroxene proximal to coarse- grained olivine. 
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Figure 8: Cross polarized optical microscope image (A-D); EBSD phase maps (E, F, H) backscatter electron image (G). A) Sample 

14RH-11 showing a distribution of olivine, orthopyroxene, spinel, and clinopyroxene. Olivine grains show undulatory extinction and 

subgrains. B) 14RH-12 with large grains of orthopyroxene grains containing exsolution lamellae of clinopyroxene. C) 14RH-13 with a 

fine-grained, polymineralic composition in between coarse-grained olivine with a similar orientation and size. D) Fine-grained 

clinopyroxene and olivine surround larger grains of orthopyroxene and olivine. E) 14RH-14 with large orthopyroxene grains 

surrounded by finer-grained olivine F) 14RH-11 showing coarse-grained spinel with curved and irregular grain boundaries. G) 14RH-

03b showing fine-grained clinopyroxene surrounding olivine and coarse grained clinopyroxene. Spinel grain is white.  H) 14RH-12 

showing fine-grained orthopyroxene proximal to coarse- grained olivine. 
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Figure 9: Olivine and Spinel LPO for whole rock samples. Data is shown as lower hemisphere, equal area 

stereographic projections. Foliation is the E-W diameter and the lineation is horizontal within that plane. 

For spinel LPO, the poles to {010}, {001}, and {100} are shown and for olivine, the poles to {100}, 

{010} and {001} are shown.  Rose diagrams of olivine and spinel SPO are shown relative to the average 

SPO of spinel defined by the X-ray CT. Pole figure legend includes the location of the foliation plane, 

lineation, and S1, S2, and S3 are the maximum, intermediate, and minimum principal strain axes, 

respectively.  
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Figure 10: EBSD phase map showing a spinel grain with a transect from A to B and the Misorientation 

profile below. All Misorientation falls below one degree. 
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Figure 11: Olivine LPO for sample 14RH-13 presented for multiple grain size populations. The LPO does 

not appear to change with respect to which grain size population is evaluated. This analysis was performed 

for all samples, and this dataset is representative of the average trend derived for each sample.  
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Figure 12: Deformation mechanism map for dry olivine at 1200ºC and 600 MPA created using variables 

from Hirth and Kohlstedt (2003) on the left and Hansen et al. (2011) on the right with stress piezometer 

(black line) superimposed (Van der Waal et al., 1993). Mean grain size used for olivine, excluding grains 

<30 µm, was derived from EBSD data for each sample. 
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APPENDIX B 

TABLES 
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Table 1 
       Modal 

Mineralogy 
       

Sample No. Olivine Orthopyroxene Clinopyroxene Spinel Pyrope Anorthite Hornblende 
14RH11 52.79% 27.79% 17.85% 1.56% 0.00% 0.00% 0.00% 
14RH02 77% 16.32% 2.97% 0.01% 0.01148% 0.0002938% 0.2584% 

14RH02b 85.70% 11.90% 2.05% 0.34% 0.00% 0.00% 0.00% 
14RH10 76% 20.40% 2.96% 0.60% 0.00% 0.00% 0.00% 
14RH03a 81% 14.30% 4.44% 0.24% 0.00% 0.00% 0.00% 
14RH14 73.35% 18.19% 6.31% 0.43% 0.07% 0.00% 1.65% 
14RH13 37% 12.44% 13.70% 2.96% 0.2101% 0.061% 33.22% 
14RH12 51% 26.22% 18.26% 1.86% 0.056670% 0.00% 2.15% 
14RH07 74% 20.68% 2.17% 0.1758% 0.005206% 0.0003045% 0.2516% 

*Remainders are fractured or serpentinized areas. 
     

 

 

 

 


