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ABSTRACT

The steady leaps in miniaturization made in the realm of integrated circuit (IC)

design has opened up prospects for a vast number of interesting possibilities. One of

the possibilities is the idea of a locomotive integrated circuit. Unlike a typical IC that

is soldered on a printed circuit board (PCB), locomotive ICs can be untethered and

free to move around its environment. Recent research has demonstrated locomotive

ICs that can potentially be used for non-invasive medical procedures including precise

drug delivery targeted to specific problematic region of the body

Recent research has demonstrated locomotion using a variety of schemes including

using electrolytic bubbles and manipulation of Lorentz force in a uniform magnetic

field. In this work a wireless front end for a locomotive IC that relies on surface

acoustic wave (SAW) devices is explored. A SAW device is a piezoelectric material

that converts electrical stimulus into mechanical vibrations. For this work, the SAW

device has been designed specifically to enable the mechanical vibration generated

by electrical stimulation at 177MHz to potentially actuate motion.

This work demonstrates a complementary metal-oxide semiconductor (CMOS)

front end IC implemented in 180nm process that can potentially be used for locomo-

tion by means of electrical excitation of a SAW device with an on-chip PLL frequency

synthesizer. The energy required to power the IC is obtained through resonant wire-

less power transfer between a pair of PCB inductor coils. The IC also contains power

conditioning blocks that rectify the alternating voltage across the receiver inductor

coil and generates a regulated DC voltage that powers the PLL frequency synthe-

sizer. The entire proposed locomotive system consisting of PCB receiver coil, CMOS

IC and SAW device fits inside an area of 1.5cmX1.9cm.
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NOMENCLATURE

CMOS Complementary Metal Oxide Semiconductor

IC Integrated Circuits

IDT Inter Digitated Transducers

LIC Locomotive Integrated Circuits
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1. INTRODUCTION

1.1 Overview of Locomotive ICs

The steady leaps in miniaturization made in the realm of IC design has opened

up prospects for a vast number of interesting possibilities. In 1959, at a lecture

in CalTech, the physicist Dr. Richard Feynman presented the wild idea that with

miniaturization, we will be able to, in a sense, swallow the surgeon [1]. His vision

consisted of an extremely small mechanical contraption that goes into the blood

vessel, navigates its way into the heart, looks around and operates on a faulty valve,

instead of a surgeon operating on the same valve by means of an open heart surgery.

While this vision of a completely autonomous surgeon is still in the realm of a

fantastic fiction, the tools to make such a machine are now well within our grasp.

Recent research has already demonstrated implantable biomedical ICs [2]. A key

component to realizing a completely autonomous implantable biomedical IC is the

ability for that IC to move around. Recent research has demonstrated a variety

of propulsion schemes for ICs or miniature micro-systems that enables locomotion.

For example, [3] demonstrates a mm-sized wirelessly powered locomotive implant for

biomedical applications. The authors have envisioned applications involving non-

invasive medical procedures including precise drug delivery targeted to specific prob-

lematic region of the body. This research demonstrated locomotion by manipulating

the Lorentz forces on current carrying wires. This approach required the use of

external magnets to provide a uniform static magnetic field and demonstrated two

mechanisms for generating propulsion- one based on magnetohydrodynamics (MHD)

and the other based on asymmetries in fluid drag forces experienced by a structures

oscillating due to alternating currents flowing through a loop of wire. Despite demon-
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strating a novel scheme for IC locomotion, the research had some key limitations both

of which severely compromises the scope for miniaturization. Firstly, this implemen-

tation required powerful external magnetic field, which will necessitate the use of

big external magnets. Secondly, this scheme required external antenna to harvest

electro-magnetic energy, which makes the overall system bigger than it needs to be.

Despite these serious limitations, the research demonstrated a wirelessly powered

locomotive IC capable of controlled motion in water.

[4] presented a controlled drug delivery system on a chip using electrolysis. The

scheme controlled drug delivery by using the force of bubbles generated during elec-

trolysis to open reservoirs and release drugs. While this system was not locomotive,

the idea of using bubbles to generate generate force was further refined in [5] and

proposed as a locomotive IC. In [5] [6], the authors demonstrated a locomotive IC

that utilizes electrolytic bubbles for motion. Bubbles generated by on-chip electrol-

ysis created the counterforce that propelled the IC. Unlike the work described in [3],

this work did not require any external magnets. Moreover, [5] demonstrated locomo-

tion using on-chip coils for wireless power transfer. The use of on-chip coils, while

reducing the efficiency of WPT, leads to a more miniaturized system. Additionally,

the research demonstrated controlled motion by sending control signals by amplitude

modulating the carrier/power signal. These control signals are demodulated on-chip

and used to control the direction of motion by selecting one of the various electrolysis

systems. The authors imagine using their system in applications like tumor biopsy

and abdominal dialysis, in which the controllable nature of their locomotive IC en-

ables precise orientation and stabilization of their system to achieve the required

application.

A few other potential locomotive schemes have been demonstrated in literature

especially in the field of capsule endoscopy. For example, [7] describes a locomotive
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mechanism that was inspired from the locomotion principles of inchworms. This

mechanism employed shape memory alloy (SMA) wires to close and open “legs” on

a microcapsule with which the microcapsule can anchor or crawl along the inside

walls of the intestine. A similar mechanism, also using SMA, was proposed in [8].

A good summary of the wide variety of locomotive schemes proposed for capsule

endoscopy can be found in [2].

1.2 Organization

This chapter continues with the discussion of SAW device as a potential actua-

tor that can enable a miniaturized locomotive system. In the second chapter some

system level considerations for locomotive IC are discussed. Next, since locomotive

systems typically involve wireless power delivery, a simple analysis scheme to com-

pare the nature of resonance in a two coil near field wireless power transfer system is

presented in the third chapter. Following the discussion on wireless power transfer,

the individual circuits used in CMOS front end for a potential locomotive system

using SAW device is presented in chapter four. Next, in chapter five, silicon mea-

surement results are presented that shows the correct operation of the CMOS front

end.

1.3 SAW Transducers

In this work, a CMOS front end for a potential locomotive system using surface

acoustic waves is explored. SAW devices are piezoelectric, which means these devices

convert electrical stimuli into mechanical vibrations and vice versa. The key idea

in using a SAW based locomotive scheme is that by fabricating a suitable SAW

device and exciting it electrically at its resonant frequency, the resulting mechanical

vibrations will actuate motion. While SAW device has been used as a locomotive

scheme in [9], the system presented in that work was not miniature since the SAW
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device was excited by electrical power from an external amplifier delivered to the

SAW device through a pair of wires. This thesis describes the electrical circuits

involved in realizing a locomotive IC that uses a SAW device as an actuator. The

CMOS front end proposed in this work is used to excite a single SAW device. The

locomotive system realized using this architecture has only one degree of freedom.

That is, the SAW device either turned “ON” propelling the system in one direction

or turned “OFF” whereby the system comes to a stop. The activation of SAW

mechanism is done by means of an external power (WPT into the receiver coil)

switched on and off. A more advanced system will have, for example, amplitude

modulated (on-off keying) signal on the carrier used for WPT. This modulation

scheme will provide control signals to control multiple actuators by which controlled

locomotion along multiple degrees of freedom can be achieved.

Figure 1.1: Typical SAW device in use
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Electrical excitation of the piezoelectric substrate of the SAW device is done

by utilizing comb-like metal structures called IDTs (Inter Digitated Transducers) as

shown in Fig. 1.2. Lithium niobate (LiNbO3) and zinc oxide (ZnO) are very popular

piezoelectric substrate found in literature. For this work, aluminium metal was used

to form IDT on lithium niobate substrate. The role of the IDT is to convert electrical

energy to mechanical energy and vice versa. In a typical application, a pair of these

IDT structures separated by a short distance forms a SAW device as shown in Fig.

1.1. At the input IDT, the electrical stimulus generates surface acoustic waves. These

mechanical waves travel through the surface of the substrate to the output IDT where

the mechanical energy in the waves is converted back into electrical energy.

Figure 1.2: IDT structures formed by depositing Al on a LiNb03 substrate
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An important property of the IDT that is that the mechanical response of the

SAW device is highly band selective in nature. The resonant frequency f0 of the SAW

device is related to the speed of sound through subtrate (ν) and the periodicity of

the lattice l as f0 =
ν

l
. Then the wavelength of surface acoustic wave is l. As a result

of this resonant response, SAW devices find applications as band select filters in RF

microelectronics. As the surface waves traverse from the input IDT to the output

IDT, it experiences a delay. The nature of the delay can be a function of the medium

surrounding the surface. This is because surface acoustic waves have a horizontal

and vertical shear component that can couple with the medium in contact with the

surface of the SAW device. This property of SAW devices have been exploited for

making sensors used to detect chemicals, humidity and vibrations [10], [11], [12].

In recent years surface acoustic waves have been used to drive microfluidics.

Consider a drop of liquid placed near an IDT. As the IDT is driven by a sinusoidal

input at its resonant frequency, surface waves are generated. As these waves come

into contact with the drop, the acoustic energy refracts into the drop because of the

difference in the velocity of sound between the substrate and liquid. The resulting

energy transfer causes recirculation of liquid which was demonstrated in [13] as shown

in Fig. 1.3. This phenomenon has been demonstrated in [9] as a propulsion scheme

for a locomotive system. At slightly higher SAW energy, there is also a horizontal

component to the energy transfer that results in a net force to the entire drop in the

direction of propagation of the surface wave. This was demonstrated in [14] as shown

in Fig. 1.4. The use of even higher SAW power facilitates acoustic streaming to have

sufficient energy to bring about microfluidic jetting and eventually atomization as

shown in Fig. 1.5
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Figure 1.3: Mixing of a fluorescent dye in a water droplet due to agitation by SAW
[13]

Figure 1.4: Acoustic streaming of droplet in the direction of surface acoustic waves
[14]

Figure 1.5: Transition from vibration to atomization in droplet as SAW power is
increased [15]: (a) Vibration (b) Actuation or streaming (c) Jetting and (d) Atom-
ization
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Modelling of SAW device has been covered in detail in [16]. As shown in Fig.

1.6 shows a simple analytical model of the SAW device. The electrical equivalent

circuit of the an IDT is a parallel resonance circuit consisting of capacitances CT and

a complex admittance Ya(f). The capacitance CT has nothing to do with surface

waves and is due to charge density along the IDT when a voltage is applied across

the electrodes. The admittance Ya(f) arises because of the interaction of the IDT

with the surface waves generated by it. Ya(f) consists of a real part Ga(f) called

radiation conductance and an imaginary part Ba(f) called radiation susceptance.

Therefore the total electrical admittance offered by the IDT to the electrical source

driving it is given by

Ytotal(f) = Ga(f) + j(Ba(f) + 2πfCT ). (1.1)

It can be shown that Ba(f) and Ga(f) are Hilbert transform of each other. [16]

develops a transmitter response function µ which depends on frequency f and met-

allization ratio η.

Ga(f) = 2|µ|2yO
W

λ
, (1.2)

where yO is equal to 0.21mmho for LiNbO3. Additionally,

Ba(f) = Ga(f)(
sin(2x)− 2x

2x2
), (1.3)

where x =
Nπ(f − fo)

fo
. For a metallization ratio of η = 0.5, it can be shown that

µ = 0.75K2N

sin(Nπ
f − fo
fo

)

Nπ
f − fo
fo

(1.4)
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around the resonant frequency fo of IDT. The constant K2 is equal to 4.6% for y-cut

LiNb03 wafer. Using this information, Ga(f) and therefore Ba(f) can be calculated.

The capacitance CT can be calculated using the relation, CT = NCSW where N is

the number of electrode pairs used in IDT, CS is 4.6pF/cm for y cut LiNbO3 wafer

and W is the beam width of IDT. For the SAW device used in this project, N is 10,

W is 980µm and fo is 177MHz and the S11 can be simulated in MATLAB as shown

in Fig. 1.7 using the equivalent circuit shown in Fig. 1.6.

Figure 1.6: Electrical equivalent circuit for SAW IDT
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Figure 1.7: S11 for IDT modelled using the electrical equivalent circuit shown in 1.6
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While this simple model can give some intuition regarding the operation of SAW

device, this model does not consider effects such as reflections and echo of the acous-

tic waves and the effect of the finite mass and stiffness of the IDT. More realistic

models can be formulated utilizing finite element modelling softwares like ANSYS

or COMSOL Multiphysics. A setup for modelling two port SAW device is shown

in Fig. 1.8 [17]. In addition to the electromechanical modelling at the interface

between the driver circuit and the IDT, for locomotion, the interaction between the

surface waves and the medium surrounding it should also be modelled to quantify

the coupling efficiency of the device. Modelling of SAW device and its mechanical

coupling is beyond the scope of this work.

Figure 1.8: Modelling SAW device in COMSOL [17]. Color gradient shows the
displacement in nm along the y direction when the transmitter IDT is excited by a
sinusoidal voltage.
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2. SYSTEM CONSIDERATIONS FOR LOCOMOTIVE IC

While the locomotive ICs described in [3] and [5], demonstrated very different

locomotion mechanism, both had a few similarities in their underlying system archi-

tectures. In this chapter, the various design considerations to architect a locomotive

system are discussed.

2.1 Powering Locomotive ICs

In the design of a locomotive IC (LIC), one of the first items to consider is the

choice of power supply for such LICs. Unlike a typical IC, which is soldered on to

a PCB, an LIC by its very nature is untethered. As such, a reliable mechanism to

power the LIC is a primary consideration. An obvious choice is to use a battery cell

to power the LIC. Unfortunately, the use of a battery restricts the miniaturization of

the system. With batteries, there is an inherent trade-off between the size and stor-

age capacity, both of which are critical parameters in an application like implantable

biomedical devices. Both the works described in [3] and [5] relies on external mag-

netic/electromagnetic fields to power their devices. While near field WPT offer high

efficiencies, such systems have limited range. Radiative WPT on the other hand have

longer range but suffers from lower efficiency. As of now, near field WPT is the more

prevalent choice for WPT to implantable biomedical devices. Alternatively, energy

harvesting circuits can be potentially used. For example, a biomedical implant can

be potentially powered by vibration [18].

Extensive literature is available that describes the effective wireless power trans-

fer through biological tissue as depicted in Fig. 2.1. [19] shows that using a lower

frequency of 4MHz for inductive wireless power transfer through biological medium

results in very little tissue loss. [20] concludes that for a cortical implant electromag-
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netic energy transfer is optimum at 20MHz. More recently, [21] and [22] presents the

analysis techniques for radiative power transfer into biomedical implants and con-

cludes that the optimum frequency is from sub-GHz to low-GHz range depending on

the dimensions of the transmit antenna. [23] generalizes the results of other works and

presents a closed form analytical solution to analyse efficiency of near field/inductive

wireless power transfer through any medium. Additionally, [23], [24] discusses vari-

ous cases involving wireless power transfer between planar PCB transmitter coil and

PCB as well as on-chip planar receiver coils in the presence of biological medium

as well as air and shows that the optimum coils for biological and on-chip applica-

tions tend to have only two or fewer number of turns and the optimum frequency for

on-chip receiver is close to 100MHz.

Figure 2.1: Biological medium between two coils [23]
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The radiative WPT system demonstrated in [3] achieved an efficiency of -36dB

at 5cm separation between transmitter and receiver antenna. This means that if

2W of power is transmitted, 500µ W will be received. With a rectifier efficiency of

55%, this translates to a usable power of close to 250µW for the locomotive implant.

The near field/inductive WPT system demonstrated in [5] on the other hand showed

an efficiency that decreased as distance between transmitter and receiver coils were

swept from 0.5cm to 2.5cm as shown in Fig. 2.2. At 0.5cm, the measured efficiency

of WPT was 15%. This means that for a transmitter power of 2W, 300mW of power

is available at the receiver. From these numbers, it is evident that radiative WPT

systems offer better range than inductive WPT. But unfortunately, the usable voltage

generated across the receiver antenna in a radiative WPT scheme is considerably

lower than in an inductive WPT and therefore requires a more complex charge pump

based rectifier topology as shown in Fig. 2.3(b). Dickson chargepump based rectfier

topologies have been proposed in [25] and [26]. [3] used a multistage rectifier topology

as shown in Fig. 2.3(c). A similar circuit design was also adopted in [33]

It can be seen from Fig. 2.2, the measured efficiency 15% is significantly lower

than the simulated efficiency of 26%. This was because [5] relied on on-chip receiver

coil which has significantly lower Q (quality factor). The measured Q was only half

that of the simulated Q for the on-chip receiver coil. Based on simulations, it was

evident that using an on-chip receiver coil may not be the best solution of delivering

large receiver power. On the other hand, with a larger area for flux coupling and

very high Q, PCB based receiver coils are better suited for WPT. Therefore, for this

project a PCB based receiver coil was employed to power the locomotive system.
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Figure 2.2: Efficieny of WPT as a function of the distance between coils [5]

(a) (b)

(c)

Figure 2.3: (a) Diode connected CMOS rectifier used in [5] (b) Dickson chargepump
based rectifier with threshold compensation shown conceptually (c) Synchronous self
driven rectifier used in [3]
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2.2 System Architecture

A typical locomotive system architecture is shown in Fig. 2.4. A receiver coil is

employed for harvesting magnetic/non radiative energy transmitted by an external

transmitter coil. The AC voltage across this receiver coil is then converted to a DC

voltage using a rectifier. This rectified output voltage is an unregulated supply since

it is a function of the distance between the transmitter and receiver coils. A reference

circuit (usually a bandgap circuit) generates a supply independent reference voltage

that can then be used to generate a regulated supply, using a regulator circuit, which

power the rest of the IC including the propulsion mechanism.

Figure 2.4: System Architecture for a typical LIC
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2.3 Direction Control and Communication

Both the locomotive systems presented in [3] and [5] employed mechanisms to

control direction. For example, [5] which employed electrolytic bubble based propul-

sion, had four electrodes along the four edges of the IC. By selectively activating one

or more of the electrodes, controlled navigation along all directions in two dimen-

sions can be achieved. Since the system is completely isolated except for the WPT

signal, some form of wireless communication scheme needs to be implemented that

can be used to send control signals to the locomotive system. This is accomplished

by modulating the carrier signal used for WPT. By recovering the modulating signal

from the carrier using a demodulator circuit, the bits for navigation control can be

recovered.

Due to the constrained dimensions of the overall system, no energy storage ele-

ments can be used to store power in the LIC. As a result, the LIC will have to contin-

uously harvest wireless energy in real time. This means that communication scheme

employed, which typically uses the same link for data and power transfer, should not

impact the power transfer efficiency at any time. In the context, phase and frequency

modulation schemes looks attractive since both of them operate with a constant car-

rier amplitude and hence do not impact the power transfer efficiency. Unfortunately,

these modulation schemes requires circuits like phase/frequency locked loop in the

receiver, which increases the power consumption considerably. This is a problem in

locomotive systems that are powered wirelessly. On the other hand, even though

amplitude modulation results in degradation of carrier power, it does not require

any clock synchronisation at the receiver and so the demodulator circuit consumes

less power. The impact on duty cycle is minimized by employing a low modulation

depth. [5] employed a simple amplitude shift keying scheme with modulation depth
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of 15%. As shown in Fig. 2.5, the demodulator consisting of an envelope detector,

a low pass filter and a cascaded limiting amplifiers realized from inverters did not

require a biasing circuit, thereby reducing the system complexity. [3] employed an

amplitude shift keying with a minimum of 9% modulation depth and also used pulse

width encoding to further reduce impact on carrier power.

Figure 2.5: Demodulator used in [5]

18



3. WIRELESS POWER TRANSFER ∗

In this chapter, the need for resonant coupled magnetic power transfer is moti-

vated and the optimum type of resonance in the transmitter and receiver coils that

provides maximum efficiency of power transfer are discussed.

3.1 Introduction

Any change in the magnetic flux through a coil of wire induces a voltage across it.

The simplest WPT scheme consists of two coils as shown in Fig. 3.1(a). The source

VG sets up an alternating current through the transmitter coil (inductance) LT which

in turn creates a time varying magnetic field around it. A portion of this magnetic

flux is coupled into the receiver coil LR which is in the vicinity of the transmitter

coil. This coupled flux induces a voltage across the receiver coil and delivers power to

the load RL. In principle, such a scheme closely resembles a transformer with a key

difference that the coupling efficiency between coils is quite low in a WPT system

owing to the larger distance separating the two coils.

Using Biot-Savart law, it can be shown that the magnetic field at a distance z

along the centre line of a coil of radius R carrying a current I is described by

Bz =
µ0

4π

2πR2I

(z2 +R2)3/2
(3.1)

From this expression, it is evident that in order to maximize magnetic field generated

by a given coil at a given distance, the current through the coil needs to be maximized.

Now consider the WPT system shown in Fig. 3.1(a). Assuming weak coupling

∗Parts of the data reported in this chapter is reprinted with permission from “Resonant Coupling
Analysis for a Two-Coil Wireless Power Transfer System,” by Rajiv Jay and Samuel Palermo, IEEE
DCAS 2014.
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(a)

(b)

Figure 3.1: (a) A simple two-coil WPT system (RG models the source impedance)
(b) Transmitter coil in resonance

between the two coils, the current through the transmitter coil can be given by

IT =
VG

RG + ZT

, (3.2)

where ZT is the impedance offered by transmitter coil. ZT can be modelled as a coil

inductance jωLT in series with an equivalent series resistance (ESR) of the coil, RT .

Therefore, the current through the transmitter coil is

IT =
VG

RG +RT + jωLT

. (3.3)

In Fig. 3.1(a) the transmitter coil current, and hence the magnetic flux generated

by the transmitter coil, is dependant on the impedance (and ESR) of the coil at

the frequency of operation of the WPT system. This dependence of the magnetic

flux generated by the transmitter coil (and so, of the WPT efficiency) on the coil

impedance can be easily removed by introducing resonance. Consider a capacitor in
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series with the transmitter coil as shown in Fig. 3.1(b). Then, the current through

the coil becomes

IT =
VG

RG +RT + jωLT −
j

ωCT

. (3.4)

Now, if the source frequency is chosen to be ω0 = 1√
LTCT

, then the inductive and

capacitive reactances cancel out, maximizing the magnitude of current IT as

IT,max =
VG

RG +RT

; if ω0 =
1√
LTCT

. (3.5)

This, in turn, maximizes the magnetic field generated by the coil and hence the

efficiency of coupling as well.

Having established the motivation to have the transmitter coil in resonance, the

next logical step is to enquire if resonance in the receiver coil can benefit the WPT

system. Moreover, the possibility of employing a parallel resonance (capacitor in

shunt with the coil) in place of the series resonance described above can be investi-

gated. The aim of the following analysis will be to determine whether one resonance

configuration is better than the other for a given pair of coils.

3.2 Analysis of Coil Coupling in a WPT system

In the following subsections, a comparison of the WPT performance with series

and parallel resonances at transmitter and receiver coils is made. A coil is said to be

in series resonance when the capacitor resonating with the coil is in series with it.

Similarly, for the coil to be in parallel resonance, the capacitor is in shunt with it. In a

real WPT system, the transmitter coil will see an additional load because of the load

RL connected to the receiver coil. Thus the load the the receiver is “reflected” onto

the transmitter coil. This reflected load can be shown in series with the transmitter

coil and so can be bracketed with RT shown in Fig. 3.2. In this analysis, a source VG
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driving the transmitter coil is considered to have a source impedance RG. Assuming

QT to be the quality factor of the transmitter coil, the ESR of the transmitter coils

is RT = QTωLT .

3.2.1 Series Versus Parallel Resonance at Transmitter

The transmitter coil can be configured with series or shunt capacitors as shown in

Fig. 3.2(a) and Fig. 3.2(b) respectively. From the previous section it was concluded

that efficiency of WPT can be maximized for a given transmitter coil and a given

distance of seperation between the coils by maximizing the magnitude of alternating

current through the coil.

(a) (b)

(c)

Figure 3.2: Transmitter coil in (a) series resonance and (b) parallel resonance. (c)
depicts the circuit in (b) after narrowband impedance transformation.
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In the series resonance configuration shown in Fig. 3.2(a), the current through

the coil is given by (3.5) as derived in the previous section. Now, if the transmitter

coil was considered to be high-Q, then the ESR of the coil will be very small and the

current through the coil can be approximated as

ITseries ≈
VG
RG

; if RG � RT . (3.6)

To analyse the parallel resonance configuration shown in Fig. 3.2(b), a nar-

rowband impedance transformation can be applied as shown in Fig. 3.2(c). This

transformation of the circuit is justified since the source VG is driving the circuit

at frequency ω0. For this circuit, at resonance, the admittances of the capacitance

CT and the inductance LT together add up to zero. That means that the effective

impedance seen by the driver consists of just the resistance Q2
TRT . So at resonance,

the voltage across this resistance Q2
TRT can be derived as

VT =
Q2

TRT

RG +Q2
TRT

VG ≈ VG; if RG � Q2
TRT . (3.7)

If the transmitter coil was considered to have very high-Q, then Q2
TRT will be much

larger than the driver impedance RG. Then the current through the coil can be

written as

ITparallel =
VT
jω0L

≈ VG
jω0L

; if RG � Q2
TRT (3.8)

From equations (3.6) and (3.8), it can be observed that the expression for current

through the coil at resonance is different for series and parallel resonance configura-

tions. For a given high-Q coil, if the source resistance RG is greater than the coil

impedance ω0L, then the magnitude of ITseries will be smaller than the magnitude

of ITparallel and so the parallel configuration is preferred. On the other hand, if the
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source resistance RG is lower than the coil impedance ω0L, then ITseries will have

a larger magnitude than ITparallel and using series configuration is more efficient for

WPT.

Note that the assumption of a high-Q transmitter coil was invoked in the above

derivation. As typical biomedical applications employ a PCB transmitter coils which

can provide very high Q, this assumption is justified. Generally, reflected load seen

at the transmitter coil due to the load RL at receiver can be approximated as k2 LT

LR
RL

[27]. Since the coupling coefficient k � 1, and assuming moderate to low load RL at

the receiver, this reflected load at the transmitter can be neglected.

3.2.2 Series Versus Parallel Resonance at Receiver

The two resonance configurations at the receiver coil is compared in this section.

The voltage that couples into the receiver coil can be modelled as a voltage source VI

in series with the receiver coil. The following analysis compares the power delivered

to the load RL connected at the receiver coil for a given induced voltage VI at the

receiver coil, for the two configurations shown in Fig. 3.3(a) and Fig. 3.3(b). The

equivalent series resistance of the receiver coil is represented by the resistance RR in

Fig. 3.3.

Consider the series resonance configuration as shown in Fig. 3.3(a). The current

through the load RL is given by

ILseries =
VI

RL +RR + jωLR −
j

ωCR

(3.9a)

=⇒ ILseries =
VI

RL +RR

; if ω0 =
1√
LRCR

. (3.9b)

Now, consider the parallel resonance configuration as shown in Fig. 3.3(b). At
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(a) (b)

(c)

Figure 3.3: Receiver coil in (a) series resonance and (b) parallel resonance. (c) depicts
the circuit in (b) after narrowband impedance transformation.

resonance frequency ω0, a quality factor QR is defined as

QR = ω0CRRL. (3.10)

QR helps transform the parallel impedances of RL and CR shown in Fig. 3.3(b) to a

series arrangement of RL,S and CR,S as shown in Fig. 3.3(c) through a narrowband

impedance transformation. The equivalent series capacitance CR,S and the equivalent

load resistance RL,S in Fig. 3.3(c) is related to CR and RL in Fig. 3.3(b) by

CR,S =
Q2

R + 1

Q2
R

CR, & (3.11a)
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RL,S =
RL

Q2
R + 1

. (3.11b)

Note that the effective load seen by the coil has now decreased by a factor of

Q2
R + 1 when compared to the series resonance configuration. For this transformed

circuit, the current through the equivalent load RL,S is

ILparallel =
VI

RL,S +RR + jωLR −
j

ωCR,S

, (3.12a)

=⇒ ILparallel =
VI

RL,S +RR

; if ω0 =
1√

LRCR,S

. (3.12b)

Notice that the resonance frequency ω0 is not exactly the same as the condition

derived in (3.9b) for the series resonance configuration. The resonance frequencies

in these two cases are equal only if QR � 1. But unlike the assumption made on the

quality factor QT of the transmitter coil, QR may not always be greater than 1.

The power delivered to the load at resonance in the two configurations are

Pseries = I2LseriesRL (3.13a)

Pparallel = I2LparallelRL,S (3.13b)

Assuming the receiver coil to be high-Q (not to be confused with QR of considered

in the derivation of ILparallel) then, the ESR of the receiver coil is much smaller than

the load. That is, RR � RL and RR � RL,S . Under this condition, substituting

for currents in expressions (3.13) from (3.9b) and (3.12b), the power delivered to the

load in the two configurations are
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Pseries =
V 2
I

RL

(3.14a)

PParallel =
V 2
I

RL,S

. (3.14b)

Since RL,S < RL, the power delivered will be more in the parallel resonance

configuration.

Revisiting the expressions for load current in series and parallel resonances ((3.9a)

and (3.12a)), it can be observed that if the load resistances RL � ωL, then there

is no benefit of having a capacitance cancel out the jωL term. This is because

the magnitude of the load current is going to be dominated by RL. Typically, in

any application, the load RL is usually a rectifier circuit which can be modelled as

a resistance and a capacitance in series. Hence even in the absence of an explicit

capacitance CR in Fig. 3.3(a), it is still possible to have cancellation of jωL term.

It may be possible that the −j
ωC

term introduced by the rectifier load can dominate

over jωL of the coil. In such a case, the WPT system is best served by redesigning

the coil such that jωL term matches −j
ωC

at ω = ω0.

In a typical application in biomedical implants, the receiver coil can be an on-chip

integrated inductor. The Q of such on-chip inductor is significantly lower than the Q

of a PCB inductor. In this case, the optimum resonance configuration is determined

by the relative values of RL,S, RL and RR.
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3.3 Experimental Results

To explore the analysis made in the previous section, a WPT system involving

a PCB coil transmitting power to an on-chip integrated coil was considered. Coil

dimensions from [23], summarized in Table 3.1, were utilized with a 5mm separation

in air. Fig. 3.5 shows the setup in ANSYS HFSS used to simulate coupling between

a PCB based transmitter coil and an on-chip receiver coil. A two-port model of

the coil coupling was obtained from HFSS, which was then plugged into a circuit

simulator (Cadence Virtuoso) as shown in Fig. 3.6 to simulate the various resonance

configurations discussed in the previous section. Choosing the resonant frequency to

be 100MHz and based on the inductance of the coils extracted from HFSS simula-

tions, the resonance capacitances CT and CR were chosen to be 204pF and 265pF

respectively. Fig. 3.4 shows the on-chip coil structure used in HFSS simulation.

(a) (b)

Figure 3.4: (a) Integrated (on-chip) coil model used in HFSS. (b) shows the cross
section of (a) along the dotted line

The transmitting PCB coil was simulated to have a quality factor of close to

167 and gives the RT of around 50mΩ. Now, setting up the on-chip receiver coil

with parallel resonance and a load RL = 1kΩ, and driving the transmitter through
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Table 3.1: Details of the coils
PCB Coil On-Chip Coil

Turns 1 2

Outer Diameter (mm) 14 2

Trace Width (µm) 3500 140

Trace Spacing (µm) 500 200

Substrate 1-oz FR-4 0.18µm CMOS

Inductance(nH) 12 9.4

|ωL| (ohm, at 100MHz) 7.5 5.9

Q of coil 167 8

ESR of coil 0.045 0.74

Capacitance(pF) 204 265

RG= 100mΩ, it can be seen from the plots in Fig. 3.7(a) that series or parallel

resonance gives about the same efficiency of around -20dB at 100MHz. On the other

hand, when transmitter coil is driven through an RG= 50Ω, the analysis in the

previous section predicts that for the transmitter coil, ITparallel ≈
VG
j7.5Ω

is greater

than ITseries =
VT
50

. Therefore the coupling in parallel resonance is expected to be

higher than in series resonance configuration. And indeed, it can seen from the

simulation plots in Fig. 3.7(b) that parallel resonance offers close to 25dB higher

efficiency than series resonance at 100MHz.

Since in any WPT system, the receiver coil generally drives a rectifier, a simple

gate-cross coupled rectifier was designed in 0.18 µm CMOS as shown in Fig. 3.8(a)

and the resonance configurations at the receiver coil was contrasted with this circuit

driving 1kΩ as load. With the transmitter in parallel resonance configuration with

RG = 50Ω, it can be seen from the plots in Fig. 3.8(b) that parallel resonance

configuration at the receiver offers close to 20dB higher efficiency at 100MHz when

compared to series resonance configuration. This observation is also in concordance
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with the predictions made in the analysis presented in the previous section.

To validate the predictions in a real-world setting, a pair of PCB coils described

in Table 3.1 was fabricated and WPT efficiencies were measured using a network

analyser (RG = RL = 50Ω) for cases involving series and parallel resonances at

transmitter and receiver coils. From the analysis in the previous section, for the

transmitter coil, ITparallel ≈
VG
j7.5Ω

is greater than ITseries =
VT
50

. Therefore parallel

resonance is predicted to be better at transmitter coil. Moreover, it was concluded

from the analysis that parallel resonance is better at receiver coil as well. As shown

in Fig. 3.9, in both transmitter and receiver coils, parallel resonance offers close to

10dB higher performance.

3.4 Summary of Coupling Analysis

Various combinations of resonance configurations can be employed in a inductive

WPT system with two coils. The analysis presented in this section shows that in

a system with a high-Q transmitter coil driven by a source with significant source

impedance, a parallel resonance configuration is preferred at the transmitter coil.

Moreover, for a typical system, parallel resonance seems to be more efficient at

the receiver coil as well. With the right configuration, the efficiency of WPT can

improve by as much as 20dB. Though the analysis neglected the loading seen by the

transmitter coil due to the receiver, the trend predicted by the analysis was validated

with laboratory measurements on PCB based WPT system.
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Figure 3.5: Setup in ANSYS HFSS

Figure 3.6: Simulation setup for measuring WPT efficency
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(a)

(b)

Figure 3.7: Coupling efficiency with parallel resonance at on-chip receiver coil with
RL= 1kΩ when transmitter coil is driven through (a) RG = 100mΩ and (b) RG =
50Ω.
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(a)

(b)

Figure 3.8: (a) Rectifier Circuit (b) Coupling efficiency with the on-chip receiver coil
driving the rectifier.
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(a)

(b)

Figure 3.9: Measurement results for PCB based transmitter and receiver coil pair (a)
Series versus parallel resonance at transmitter with receiver coil in parallel resonance,
and (b) Series versus parallel resonance at receiver with transmitter coil in parallel
resonance.
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4. BUILDING BLOCKS FOR LOCOMOTIVE IC

In this chapter, the various circuits required to build a wirelessly powered loco-

motive IC are explored. Fig. 4.1 shows the system block diagram for the locomotive

IC system described in this work. As explained in the first chapter, this project

focusses on driving a SAW device with a wirelessly powered CMOS front end for

potential locomotion. Wireless power delivery is accomplished by means of a pair of

PCB based transmitter and receiver coils. A PLL is used to generate the signal to

drive the SAW device.

Figure 4.1: LIC System Architecture

One of the most important design constraint for this project is to minimize the

power consumption of all circuit blocks in the system. Additionally, since the rectifier

output drops as the distance between the transmitter and receiver coils increases,in

order to maximize the range of operation for the wireless power transfer, the circuits

need to operate at low supply voltages.
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4.1 Power Conditioning Blocks

Wireless power delivered to a reciever coil needs to be recfified and a regulated

supply generated to power the PLL frequency synthesizer. The power conditioning

signal chain includes a rectifier circuit, a reference generation circuit and a regulator

circuit.

4.1.1 Rectifier

The role of the rectifier is to generate the unregulated supply that powers the

proposed locomotive system from the alternating voltage across the receiver coil.

The simplest form of the full wave rectifier is shown in Fig. 4.2(a). As shown in

Fig. 4.2(b), in each of the half cycle, two of the four diodes in the bridge conducts

charging the capacitance CL.

In a typical CMOS process, the diodes can be realized by a diode connected

NMOS and PMOS transistors as shown in Fig. 4.3(a). The minimum input swing

required in this case is equal to ∆Vmin = Vth,nmos +Vth,pmos. The efficiency of such an

arrangement is mostly limited by the forward drop offered by the NMOS and PMOS

transistors that are conducting in each half cycle. Consequently, the rectified output

DC voltage is less from the AC amplitude by atleast Vdrop = Vth,nmos + Vth,pmos. The

Vdrop can be quite large for low alternating voltage across the input of the rectifier

and can contribute to lower efficiency.

One easy way to get around this problem is by replacing the diode connected

NMOS and PMOS topologies with a cross coupled CMOS topology as shown in Fig.

4.3(b). While the minimum input swing required in for this circuit is still equal to

∆Vmin = Vth,nmos + Vth,pmos, the forward drop is only ∆Vmin = VDS,nmos + VSD,pmos,

which is considerably less compared to the previous circuit.

Unfortunately, this topology suffers from reduced efficincy due to reverse currents.
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(a)

(b)

Figure 4.2: (a) Simple full wave rectifier (b) Operation of a full wave rectifier. The
dotted blue arrows indicates the direction of current

Consider an input voltage ∆VIN is applied to the input of the gate cross coupled

CMOS rectifier shown in Fig. 4.3(b). When ∆VIN is very high, gate induced drain

leakage (GIDL) can occur which results in the capacitance CL losing its charge and

thus lowering rectifier efficiency. GIDL occurs when a large gate to drain voltage

exists in a transistor which is OFF.

When ∆VIN is small, there is another mechanism by which the load capacitor

can discharge. Consider a sinusoid input to the rectifier with a swing of amplitude
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∆VIN = VIN+ − VIN− = 1V . Consider that the rectifier output is 0.8V obtained

by one of the PMOS and one of NMOS transistors turning ON in each half cycle.

As shown in Fig. 4.4(a), under normal operations, as the input swings from one

extreme of amplitude to the other polarity one of the transistors MP1 and MP2 is

conducting and the other is OFF. Now as the input swings, there is a phase when

∆VIN is momentarily zero. Then, as shown in Fig. 4.4(b), the role of source and

drain reverses and the transistors turn ON, leading to the capacitance CL discharging

thus reducing the efficiency.

Various techniques have been proposed in literature to improve rectifier efficiency.

These techniques includes using active diodes that provide current direction control

as demonstrated in [28] and [29] or using bootstrapped capacitances to cancel Vth of

the transistors as demonstrated in [30] and [31]. While active diodes serves to improve

efficiency for low frequencies (less than 40MHz), at higher frequencies, bootstrapping

techniques are preferred. This is because at higher frequencies, the efficiency of the

rectifier is limited by the delay in the active diode comparator. [32] gives a good

summary of all the various techniques to improve the efficiency of the rectifier.

In this project, a simple gate cross coupled CMOS rectifier as shown in Fig.

4.3(b) was implemented. The table 4.6 shows the dimensions of the transistors used

in the rectifier. The load capacitance was chosen to minimize the ripple observed on

the rectifier output while driving a load resistance. Ideally, a large load capacitance

benefits from reduced ripple, but in this project the use of an integrated capacitance

means that the maximum capacitance that can be used was restricted by the area

available in the layout budgeted for the rectifier circuit.
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Table 4.1: Sizing of transistors for rectifier

Reference Designator W L Fingers

MP1, MP2 15µ m 180nm 48

MP1, MP2 6µ m 180nm 48

(a)

(b)

Figure 4.3: (a) CMOS rectifier realized using diode connected transistors (b) Gate
cross-coupled CMOS rectifier
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(a)

(b)

Figure 4.4: Operation of PMOS transistors in gate cross coupled CMOS rectifier
with 1V sinusoid input and 0.8V rectified output (a) at extremes of input swings (b)
when input polarity shifts (Note:dotted blue arrow indicates the direction of current)
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4.1.2 Regulator

Since the rectifier output is unregulated and depends on the distance between the

coils used for wireless power delivery, there should be a circuit that provides a steady

power supply to guarantee the performance of the PLL frequency synthesizer. This

requirement is achieved in this project by means of a LDO as shown in figure 4.5.

The LDO circuit operates by using negative feedback to fix the potential across the

resistor R2 as equal to a potential VREF so that the current through that resistance

is I =
VREF

R2

. Now by Kirchoff’s current law, the current through the resistance R1

and R2 are equal. Therefore the potential drop across the resistance R1 is equal to

R1 × I or R1
VREF

R2

. Therefore, the output potential is

VOUT =

(
1 +

R1

R2

)
VREF . (4.1)

Tables 4.2 and 4.3 shows the details of the transistors and passives used in this

circuit. The single stage amplifiers used in the regulator circuit was designed for a

tail current of 5.2µA to obtain a gain of 35dB with a power supply of 1.1V. The

DC loop gain of the regulator was 55dB with a dominant pole compensation at the

VREG output node. The phase margin for regulator is 55o from simulations for the

minimum supply of 1.1V.

Fig. 4.7 shows the power supply ripple rejection performance of the regulator

circuit with a supply of 1.2V and with a load RL = 1kΩ. As shown in the figure,

the ripple rejection if -14dB at 100MHz and -17dB at 200MHz. This rejection is

important because unless a large off-chip capacitance is used at the output of the

recifier, there will be ripple at the rectfier output. Therefore, the supply ripple

rejection is an important parameter for the circuits that uses the rectifier output as

its supply. Eventhough the supply rejection is bad at lower frequencies, this is not
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Figure 4.5: Regulator circuit used in this work

a problem for the locomotive system because for this system, the ripple frequency

at the output of the rectifier is at the frequency of wireless power transfer (which is

100MHz) and its harmonics. Therefore, the rejection at 100MHz is the specification

that the designer should consider. From 4.13, it can be seen that the rectifier output

has a ripple (peak to peak) of around to 100mV. This translated to a ripple (peak

to peak) of 14mV at the output of the regulator which is acceptable for the circuits

used in this project.
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Table 4.2: Sizing of transistors for regulator circuit

Reference Designator W L Fingers

MP1, MP2, MN1 1µm 2µm 4

MN2, MN3, MN4 1µm 2µm 2

P1 30µm 180nm 40

Table 4.3: Passives used in regulator circuit

Reference Designator Value W L Series Bars

CC , CL 11pF 50µ m 50µ m -

R1, R2 26kΩ/bar 0.35µm 6µm 8,22

Figure 4.6: Load regulation of regulator circuit
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Figure 4.7: PSRR of regulator circuit

Figure 4.8: Power consumption of regulator circuit as supply is swept
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4.1.3 Reference Generator

The reference voltage VREF required by the regulator is generated using a refer-

ence circuit shown in Fig. 4.9. This circuit also generates the bias currents required

else where in the IC like in the amplifier of the regulator and the VCO and charge

pump in the PLL synthesizer. In the 180nm CMOS process in which this project

was taped out allowed the realization of forward biased pn junctions in the form of

PNP transistors whose base and collector are tied to ground as shown in Fig. 4.9.

The circuit works by employing negative feedback to force potentials VA and VB

shown in Fig. 4.9 to the same value. Then the VA is the forward conduction voltage

of the diode D2, VEB2. This means that the voltage drop across reistance R1 is the

difference in forward drop for D1 and D2, ∆VEB = VEB2−VEB1. If the diodes D1 and

D2 are sized in a ration n:1, then ∆VEB = VT ln(n) which is PTAT (Proportional To

Absolute Temperature). Addionally, the potential VEB1 is CTAT (Complementary

To Absolute Temperature) [34]. Therefore the potential VB is a summation of the

drop across R1(PTAT) and D1 (CTAT). The current through TP1−TP4 can be shown

to be

IREF =
∆VEB

R1

+
VEB2

R2

, (4.2)

if R2, R3 are identical.

The reference voltage can be shown to be

VREF = IREF ×R4 =
R4

R1

∆VEB +
R4

R2

VEB2. (4.3)

By suitably scaling the resistor ratios, one can potentially make the reference

voltage independant of temperature by cancelling the positive and negative temper-

ature coefficients of the PTAT and CTAT terms. For the application presented in
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this work, the primary requirement calls for a supply independant reference voltage

and so, for the design of this circuit, cancellation of temperature coefficient was not

pursued. Tables 4.4 and 4.5 shows the details of the transistors, diodes and passives

used in this circuit. A single stage amplifier designed for a gain of 35dB with a power

supply of 1.1V and a tail current of 5.2µA was used to set the negative feedback in

the reference circuit.

One of the important design metric for the reference generation circuit is that

the output voltage should vary very little with supply voltage. Fig. 4.10(a) shows

the power supply ripple rejection of this circuit across the frequency of ripple in a

AC simulation. As seen from this plot, at the frequency of wireless power transfer

of 100MHz, the ripple rejection is less than -32.5dB. Fig. 4.11(a) and 4.11(b) shows

the variation of reference voltage and current outputs as the supply voltage is varied.

As can be seen from these plots, the variation of voltage and current outputs are

respectively 0.4% and 0.97%. The minimum supply voltage to ensure all transistors

are in saturation was 1.2V. At this supply, the circuit consumed 17.7µW of power

as shown in Fig. 4.10(b).
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Figure 4.9: Reference generator circuit used in this work

Table 4.4: Sizing of transistors and diodes for reference circuit

Reference Designator W L Fingers

TP1, TP2, TP3, TP4, MP1, MP2, MP3, MN1, MN5 1µm 2µm 4

MN2, MN3, MN4 1µm 2µm 2

D1, D2 (Emitter Area) 1.2µm 3µm 1, 8

Table 4.5: Passives used in reference circuit
Reference Designator Value W L Series Bars

CC , CL 1pF 12µm 12µm -

R1 52.5kΩ 0.35µm 6µm 2

R2,R3 472.4kΩ 0.35µm 6µm 18

R4 314.9kΩ 0.35µm 6µm 12
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(a)

(b)

Figure 4.10: (a) PSRR of reference generator circuit (b) Power consumption of ref-
erence generator circuit as supply is swept
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(a)

(b)

Figure 4.11: Variation of (a) Voltage output and (b) Current output, as supply
voltage of reference generator circuit is swept
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4.2 Simulation of Power Conditioning Blocks

The reference block was designed to generate an output voltage of 0.81V and

an output current of 2.6µA. The regulator output was designed to be 1.1V and

works with a minimum rectified output of 1.25V. To simulate the power conditioning

blocks a test bench was setup as shown in Fig. 4.12. Wireless power delivery was

simulated using a two port model for the coupling between a pair of PCB based coils

as described in a previous chapter. The rectifier was driven by the receiver coil in

the WPT system as shown in 4.13. The output of the rectifier was used to power

the reference and regulator blocks. The regulator was setup to drive a 1kΩ load as

is typical in the system proposed in this work. Fig. 4.14 shows the operation of

reference and regulator circuits under these conditions. Based on this simulation,

the rectifier outputs an average voltage of 1.35V for a 2.1V peak amplitude at its

input. Therefore the simulated efficiency of rectifier is 65%.

Figure 4.12: Testbench for simulating the operation of power conditioning blocks

50



Figure 4.13: Waveforms at the input and output of rectifier
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Figure 4.14: Waveforms at reference and regulator outputs
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4.3 PLL Frequency Synthesizer

PLL based frequency synthesizers have been discussed in lenght in literature [35],

[36]. For this work, the frequency synthesizer was implemented using a third order

charge pump PLL as shown in Fig. 4.15. The SAW device specification required

the output frequency of the synthesizer to cover the range 165MHz to 195MHz in

steps of 3MHz. This means the reference of the PLL fREF should be 3MHz and the

feedback divider needs to be programmed for a division ratio between N = 55 to

N = 65 to cover the required range of frequency.

Figure 4.15: Block diagram of PLL Frequency Synthesizer

4.3.1 Reference Clock for PLL Synthesizer

For this project, the entire system containing CMOS IC and SAW device is com-

pletely isolated. The only external signal available to the system is the alternating

voltage generated by the wireless power delivered to the receiver coil. Therefore, we

use this alternating voltage to generate the reference clock for the PLL. This is done
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as shown in Fig. 4.16. The clock waveform across the rectifier input is sensed by

means of inverter based buffer and then divided by means of a reference divider. In

this project, wireless power transfer was done at 100MHz frequency. Therefore, a ref-

erence clock for PLL of 3.125MHz can be generated from this 100MHz by employing

a divider of M = 32.

Figure 4.16: Reference clock generation for PLL frequency synthesizer

Such an arrangement provides flexibility in synthesizing frequencies outside the

specifications provided. This flexibility was important in this project because at the

time of circuit design and tape out, data from SAW devices were not available and

there was a possibility that once fabricated the SAW devices might show a resonant

frequency different from the specifications worked out and hence would require a

different frequency synthesizer output frequency. By changing both the frequency of

wireless power transfer and the divide ratio, any frequency can be synthesized.

Thus, the synthesized frequency fOUT can be written as fOUT = N
fWPT

M
, where,

fWPT is the frequency of wireless power transfer and, M and N are respectively the

reference clock divider and feedback divider ratios respectively.
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4.3.2 Phase Detector, Charge Pump and Loop Filter

A standard phase detector circuit was shown in Fig. 4.17 was employed for this

project. Spur rejection was not very critical for this project since the load (SAW

device) inherently has a frequency selective response. Therefore a simple charge

pump circuit used as shown in Fig. 4.18. The charge pump current was designed to

be 20µA. The loop filter components were chosen as R1 = 11kΩ, C1 = 117pF and

C2 = 5.8pF (= C1/16). With these values, the loop bandwidth of the PLL can be

calculated as ωn =

√
KPDKV CO

NC1

. For N = 60 and fOUT = 180MHz bandwidth can

be calculated to be fn = 68kHz. The damping factor for the PLL can be calculated

as ζ =
ωnR1C1

2
≈ 0.7. The bias current for the chargepump was mirrored from the

current output of the reference generator circuit.

Figure 4.17: Phase frequency detector circuit used in this work
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Figure 4.18: Charge pump circuit used in this work

Table 4.6: Sizing of transistors for charge pump

Reference Designator W L Fingers

MN1, MN2,MN3 1µm 2µm 16,2,2

MNSW1, MNSW2 0.5µ m 0.18µm 16,2

MP1, MP2 4µ m 2µm 16,2

MPSW1, MPSW2 0.5µ m 0.18µm 16,2
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4.3.3 Voltage Controlled Oscillator

The VCO was implemented as a three stage CML based ring oscillator as shown

in Fig. 4.19. Each delay cell used in the ring oscillator was implemented as shown in

Fig. 4.20. The VCO was designed to meet the range of frequency from 130MHz to

210MHz which is more than the specification of the synthesizer output frequencies

with a gain KV CO = 300MHz/V . As shown in Fig. 4.20 varactor (transistors MC1

and MC2) based frequency tuning was employed in place of the more popular resistor

tuning. While resistor based tuning offers a wider tuning range, it also results in

swing variation with frequency (for a constant tail current). Typically, an amplitude

control loop is employed to vary the tail current as the resistive load is tuned so

that the over all swing remains unchanged. The use of this amplitude control loop

would involve burning additional power. Since power was a critical parameter in the

wirelessly powered system considered in this work and since varactor based tuning

was sufficient to cover the required range of frequencies, the VCO was implented with

varactor based tuning for the delay cell. Fig. 4.21 shows the buffer circuit employed

to generate CMOS compatible output swing from the CML output of VCO. This is

required since a CMOS divider circuit is employed in the PLL which requires CMOS

levels at its input. The bias currents for the VCO and buffer were mirrored from

the current output of the reference generator circuit. Fig. 4.22 shows the transient

simulation output waveforms at the VCO output and at the buffer outputs. The

swing at the VCO output is 300mV peak and at the buffer output is 1.1V peak.

Table 4.8 summarizes the dimensions of the transistors used in the VCO design.
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Figure 4.19: Three stage ring oscillator used in the PLL Frequency Synthesizer

Figure 4.20: Delay cell used in ring oscillator

Table 4.7: Sizing of resistors used in VCO

Reference Designator Value W L Series Bars

R1, R2 11.7kΩ/bar 0.35µm 3.1µm 4
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Figure 4.21: VCO buffer circuit
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Table 4.8: Sizing of transistors used in VCO

Reference Designator W L Fingers

MC1, MC2 0.7µm 1µm 4

MN1, MN2, MN3, MN4 0.8µm 0.8µm 2

MN5, MN6, MN7, MN8 0.5µm 1.5µm 2

MP1, MP2, MP3, MP4 4µm 1.5µm 4

MSW1, MSW2 3µm 0.18µm 2

MT1, MT2 1.2µm 2µm 2,10

MT3, MT4 1µm 2µm 2,12

Figure 4.22: Transient simulations showing the differential outputs at the VCO and
Buffer for 180MHz VCO operation
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4.3.4 Divider

The architecture employed in this work called for the use of two dividers in the

PLL - one for the reference clock and the other for the feedback clock. Since the

synthesized output frequency range is from 165MHz to 195MHz with a reference of

3MHz, this meant that the divider ratio should be programmable from N = 55 to

N = 65. This was accomplished using a cascade of ÷2/ ÷ 3 cells (shown in 4.24)

as shown in Fig. 4.23. It can be shown that with “n′′ stages cascaded, divide ratio

can be programmed from N = 2n when all CON signals are ’zero’ to N = 2n+1

when all CON signals are ’one’. With n = 5, divide ratio can be programmed

from N = 32to63 and with n = 6 divide ratio can be programmed from N = 64 to

N = 127. Based on the topology descibed in [37] the implentation shown in 4.25

can be programmed from N = 32 to N = 127 based on seven control bits. Table

4.9 shows how the seven control bits can be selected to obtain particular divide

ratio. Figures 4.26 and 4.27 shows some typical divider waveforms encountered in

the synthesizer. At the reference clock divider, an input frequency of 100MHz is

divider by 32 to obtain output frequency of 3.125MHz. Similarly at the feedback

divider, an input frequency of 175MHz from the VCO is divided by 56 to obtain

output frequency of 3.125MHz. Clearly, in the second case, the output duty cycle

is not 50%. Fortunately, the duty cycle at the output of divider need not be 50%

since the divider output is fed into the phase detector which is edge triggered and

therefore insenstive to duty cycle.
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Figure 4.23: Programmable divider using cascade of ÷2/÷ 3 cells

Figure 4.24: A single ÷2/÷ 3 cells: if CON = 0 then the circuit divides by 2 and if
CON = 1 then the circuit divides by 3
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Figure 4.25: Programmable divider used in this work that can be programmed to
divide from N = 32 to N = 127 with bits P6 − P0

Table 4.9: Progammable divider

MSB LSB Divide ratio (N)

P6 P5 P4 P3 P2 P1 P0

1 X 0 0 0 0 0 32

1 X . . . . . .

1 X . . . . . .

1 X 1 1 1 1 1 63

0 0 0 0 0 0 0 64

0 . . . . . . .

0 . . . . . . .

0 1 1 1 1 1 1 127
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Figure 4.26: Divide by 32 operation of the programmable divider to obtain 3.125MHz
output

Figure 4.27: Divide by 56 operation of the programmable divider to obtain 3.125MHz
output
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4.4 Simulation of PLL

Fig. 4.28 shows the control voltage of the PLL as the PLL locks. The simulation

setup involved post layout extracted cells for the VCO, loop filter and charge pump,

and schematic level PFD and dividers. The reference clock for the PLL was generated

from a fWPT =100MHz input across the coil. Using a reference divider of M = 32

results in fREF = 3.125MHz and with feedback divider of N = 56, output frequency

fOUT =175MHz can be synthesized. As can be seen, the PLL control voltage output

settles to the final value of 382mV within 15µs.

Figure 4.28: Control voltage settling in closed loop PLL
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4.5 Driver Circuit

The clock waveform synthesized by the PLL is used to drive the SAW device. A

pair of CMOS inverters were employed as driver circuits for this purpose as shown

in Fig. 4.29. The transistors in the driver circuit were sized so as to deliver a short

circuit current of 485mA. Because the SAW devices were unavailable at the time

of tape out, the driver impedance could not be matched to the SAW device at the

resonance frequency of the SAW device. This implied that an external impedance

matching network be employed off-chip as shown in Fig. 4.29.

Figure 4.29: Driver circuit with off-chip matching network

4.6 SAW Actuator

The proposed locomotive system employs only one SAW device. This means that

the system can move only in one direction along a straight line. Even though [9] had

demonstrated SAW based locomotion, the size of the SAW device employed in that

work was much larger with the finger length of approximately 1.5cm. The device was

powered by an amplifier supplying 1.7W of power trough a pair of wires at the SAW

resonant frequency of around 11MHz. While [9] demonstrated a novel tunable surface
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acoustic wave device that enabled control of direction by changing the frequency of

excitation of SAW device, the power requirement and larger size makes it unsuitable

to be used in a miniature locomotive system driven by a wirelessly powered CMOS

front end.

For this work, a smaller SAW device was fabricated. As the pitch between fin-

gers is reduced, the resonance frequency of the SAW device increases. A very high

resonance frequency creates difficulty in the design of the CMOS front end. This

is because generating a larger frequency using a PLL inside the CMOS front end

results in larger power consumption in it. This in turn limits the power available

for locomotion and consequently the range of operation of the wirelessly powered

locomotive system will be reduced.

4.7 Summary

In this chapter the various circuits required to implement a CMOS front end to

drive a wirelessly SAW based locomotive IC were discussed. Since the wireless power

harvested is limited, minimizing the power consumption of the circuits is the most

important design criteria for this project. Table 4.10 shows the simulated post layout

power consumption of individual blocks in a typical use case whereby the rectifier

output is 1.25V and the reference clock obtained from the wireless power transfer

at 100MHz is used to synthesize 177MHz. The total simulated power consumption

was 529µW. Though this is almost twice the power consumption reported in other

locomotive systems found in [3] and [5], the higher power consumption is due to

the higher resonant frequency of SAW device which requires a frequency of close to

200MHz to be synthesized on chip. This requirement inherently puts a minimum

bound on the power consumption of the CMOS front end because of the higher

switching in the internal nodes in the PLL. In comparison, neither of the two refer-
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ences involved any such high frequency switching node inside their respective signal

chain. The clock recovery, demodulator and MCU used in [5] is operated at very

low switching speed of 1Mbps. Similarly, the maximum data rate employed by [3]

was only 25Mbps. Eventhough the carrier frequency (=1.86GHz) in [3] was much

higher, this signal was observed only at the input of the rectifier circuit and so did

not increase power consumption of other blocks in the signal chain.

Table 4.10: Power consumption of circuit

Block Power Consumption (µW)

Reference 18

Regulator 11

Reference Clock Divider 100

Feedback Clock Divider 120

Chargepump 15

Phase Detector 80

V CO 170

Bias 15

Total 529
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5. MEASUREMENT RESULTS

5.1 Silicon Versions and Measurement Setup

The proposed locomotive system containing the receiver coil, CMOS IC and SAW

device all on a single PCB is completely isolated except for the wireless power being

transferred to the receiver coil. Consequently, setting the control bits for the two

programmable dividers requires attention. Moreover, in order to validate the correct

operation of individual blocks in the CMOS IC, a few of the internal nodes should

be accessible for observing with an oscilloscope. Based on these considerations, two

versions of the CMOS ICs were fabricated- Version 1, which was meant for validating

the circuit blocks, and Version 2 which was meant for the attempted demonstration

of locomotion.

Fig. 5.1 shows the silicon die for Version 1. This silicon was packaged in a 36 pin

QFN package and soldered on to a regular PCB with the intention of characterizing

the operation and performance of individual circuit blocks. To achieve this, the

internal nodes, which are the outputs of various blocks in the signal chain, were

buffered and brought out as pins for observability. For ease of debug, the power

conditioning block and PLL frequency synthesizer were separated out and powered

by different supply pins. Additionally, the buffers used with the internal nodes

utilized a separate power supply as well, to ensure that the switching noise of the

buffers do not couple on to the analog blocks. Additionally, this version also included

a scan chain programming for setting the control bits of the programmable dividers.

Fig. 5.2 shows the silicon die for Version 2 which was used as an unpackaged die

to demonstrate locomotion. The locomotive system consisted of a PCB containing

the receiver coil as well as the CMOS die and SAW device wirebonded on it. The
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Figure 5.1: Die for Version 1 used in the locomotive system

VDD/VSS (regulator output and ground) nets inside the CMOS die is wirebonded

to traces on the PCB. These PCB traces are then used to select the control bits

of the dividers as shown in Fig. 5.3 by means of wirebonding. Also included on

the PCB is the π matching network to match the impedance offered by the SAW

device at its resonance frequency to the output impedance of the driver. As shown

in figures 5.3(a) and 5.3(b), the receiver coil used for harvesting wireless power is on

one side of the PCB and the CMOS die and SAW devices are wirebonded on the

other side. For demonstration of locomotion, the side with the SAW device will be

immersed in water with the receiver coil on the top, facing up and away from the

water. When wireless power is provided to the receiver coil by means of a transmitter

coil, the rectifier, reference and regulator circuits wakes up and generates a regulated
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power supply for the PLL frequency synthesizer which in turn generates the electrical

excitation to the SAW device which propels the PCB forward. The SAW device is

immersed in water to enable this propulsion scheme. Careful attention was given

to keep the complete PCB based system as small as possible to facilitate effective

motion. The dimensions of the PCB which includes the receiver coil, the CMOS die,

the off-chip matching network and the SAW device is 1.5cmX1.9cm.

Figure 5.2: Die for Version 2 used for debug
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(a) (b)

(c)

Figure 5.3: PCB used to demonstrate locomotion (a) Top view depicting receiver
coil used to harvest wireless power and the capacitance in resonance with it (b)
Bottom view of the PCB on which CMOS die and SAW devices are wirebonded (c)
Wirebonding from pads on CMOS die to PCB- the pads on the bottom and top are
respectively input to rectifier and driver output while pads on left and right are used
to short control bits to VDD/VSS
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5.2 Measurements on WPT

Fig. 5.4 shows the variation of wireless power transfer efficiency as measured using

a network analyzer. Both the transmitter and receiver coils were PCB based coils

whose dimensions are summarized in Table 5.1. Wireless power transfer efficiency

was 80% at 5mm separation and decreased to 25% at 1cm separation. As mentioned

in the first chapter, the efficiency of wireless power transfer using on-chip receiver coil

demonstrated by [5] was 15% at 5mm separation between transmitter and receiver

coils. It is evident from these measurements that WPT utilizing PCB based receiver

coil offers better efficiency.

Table 5.1: Details of TX and RX coils used in WPT
Parameter Value

Turns 1

Outer Diameter (mm) 14

Trace Width (µm) 3500

Trace Spacing (µm) 500

Substrate 1-oz FR-4

Inductance(nH) 12

Q 167

5.3 Measurements on Silicon

The power conditioning blocks and PLL were separately characterized with silicon

from Version 1. With the transmitter and receiver coils separated by a distance of

5mm, the input power to the transmitter coil was varied and the rectifier, reference

and regulator outputs were observed. Fig. 5.5 shows the resulting variation as a

function of input power to the transmitter coil. As can be seen from this plot, the
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Figure 5.4: Wireless power transfer efficiency variation with separation between TX
and RX coils

reference wakes up and regulator provides regulated supply for a minimum input

power of 8dBm. The efficiency of rectifier was 60% when loaded by reference and

regulator circuits which offered an equivalent load of 33kΩ to the rectifier.

Fig. 5.6 shows the frequency characteristics of the VCO as its control voltage is

swept. Fig. 5.7 shows the outputs of reference divider and feedback divider in lock

and VCO output at 177MHz. As can be seen from this figure, the PLL is in lock

since all three waveforms are triggered together.
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Figure 5.5: Output of power conditioning blocks as input power to the transmitter
coil is varied

Figure 5.6: Measured frequency characteristics of the VCO
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Figure 5.7: Transient waveforms showing frequency locking in PLL
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5.4 Measurements on SAW Device

As explained in the previous chapter, the impedance of SAW device was not

available at the time of tapeout. As a result, the opportunity to optimize the driver

impedance was lost. Instead, an off-chip π matching network was employed to match

the impedance of the SAW device at resonance to that of the driver. To design the

matching network, the SAW device was first characterized using a network analyzer

as shown in Fig. 5.8. As seen from this plot, the SAW device has a resonance

at 177MHz which is within the predicted range of 165MHz to 195MHz. Though

the measured S11 has a resonance at 177MHz, it is still very different from the

S11 simulated using the equivalent circuit model in Chapter 1. This is because the

equivalent circuit model does not take into account acoustic reflections and echo and

also the impact of the mass and stiffness of the metal IDT on the generation of

surface waves. The values of series inductor and shunt capacitances of the matching

network can be obtained using simulations as C1 = 5.8pF and L1 = 150nH. Based

on commercially available inductor datasheets, an equivalent series resistance (ESR)

of 2Ω was assumed for the inductor resulting in a reasonable Q ≈ 30. As shown

in Fig. 5.9, the peak power delivered to the SAW device from the output driver

increases from 0.05mW when driven directly to around 0.5mW when driven through

the matching network. In both the cases, a pair of bond wire inductances were

assumed to connect to SAW devices and CMOS driver output pads. Each of the

bond wire were assumed to be an inductance of 3nH with a ESR of 1Ω (with Q ≈ 2).

From these simulations, it is evident that the use of matching network has increased

the power delivered to the SAW device by a factor of 10.
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Figure 5.8: |S11| of the SAW device as characterized using a network analyzer

Figure 5.9: Power delivered to the SAW device with and without impedance matching
network
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5.5 Summary

Table 5.2 summarizes the key metrics of the locomotive system proposed in this

work and compares it to the locomotive systems presented in [3] and [5]. As sum-

marized in the table, the power consumption of this project is quite high. While

the novelty of this work was to propose a complete locomotive system that uses

SAW based propulsion scheme, the fact that the SAW device require electrical exci-

tation at a frequency between 165MHz and 195MHz meant that there were multiple

blocks including the VCO and divider that consumed switching power. Moreover,

using the WPT frequency of 100MHz meant that a second reference clock divider

was employed which further increased power consumption. Additionally, this work

employed external components including an off-chip impedance matching network

and a PCB based receiver coil, which limits the overall size of the system. While [5]

demonstrated a smaller locomotive system, their first prototype presented in [6] uti-

lized a system on a PCB that enclosed a circular area of 5cm diameter. The work

presented here is smaller than that. Moreover, [3] requires an external magnetic

field to enable propulsion using Lorentz force. This in turn meant the use of larger

external magnets which in turn makes the overall size of the system much larger.

Both [3] and [5] utilized a communication scheme that enabled digital information

to be transmitted to the locomotive system that can be used to control direction of

motion. Both these references employed a form of on amplitude modulation scheme

on the carrier used to power these systems wirelessly to achieve this communication.

Since the work presented here employed a single SAW device, there was no scope for

direction control and hence there was no requirement for a communication scheme.
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Table 5.2: Summary of locomotive system

Specification This Work [3] [5]

Technology 180nm CMOS 350nm CMOS 65nm CMOS

Supply 1.1V 2V/1.3V 0.7V

Battery No No No

Propulsion SAW Electrolytic Lorentz

Scheme bubbles force

RF Carrier 100MHz 10MHz 1.86GHz

Frequency (Power) (Power & (Power &

Communication) Communication)

Total Power 550µW (CMOS) 207µW/ 180µW 267µW

Consumption + 500µW (SAW)

1.5cm X 1.9cm (RX coil)

Size 1.5mm X 1.5mm (Die) 4.6mm X 4.6mm 2mm X 2mm

1cm X 1cm (SAW device)

External Yes No Yes

Components (PCB coil, (PCB antenna,

matching network) Magnet)

80



6. CONCLUSION

With higher levels of integration possible, locomotive ICs are becoming popular

topic for research. Since locomotive systems typically employ wireless power harvest-

ing, resonant magnetic coupling was analysed in a typical two coil near field wireless

power transfer system. It was shown that using a simple rearrangement of circuit

components, the efficiency of wireless power transfer can be improved significantly.

The analysis was validated by measurement results that showed up to 10dB improve-

ment in wireless power transfer by changing the nature of resonance from series to

parallel in both transmitter and receiver coils.

This work implemented the CMOS building blocks for a SAW transducer based

locomotive IC. The CMOS IC included a PLL that provides the electrical excitation

for the SAW device and power conditioning blocks including a rectifier that generates

a DC voltage from the receiver coil in a wireless power transfer system, a reference

generator circuit and a regulator that provides a regulated power supply for the PLL.

Silicon measurements were made on the fabricated CMOS front end and it was shown

that the front end functions as expected and consume 529µW of power. Addionally

wireless power transfer was demonstrated with a pair of PCB based coils that can

deliver power to the CMOS front end with efficiency of close to 80% at 5mm and

25% at 1cm

6.1 Future Work

This project utilized PCB based receiver coil for harvesting inductive/near field

wireless power. The dimensions of the coil limited the overall dimensions of the

system. The system can be further miniaturized by use of on-chip receiver coils.

Additionally, the output impedance of the driver can be designed to match the
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impedance of the SAW device. This will remove the need for the off-chip impedance

matching network that also limits miniaturization of the system.

The challenge in employing on-chip coils is that wireless power transfer efficiency

is reduced. This is the result of low Q and lower area of flux coupling offered by a

smaller on-chip coil. Consequently, rectifier efficiency can be improved by using more

advanced circuit topologies. The overall power requirements can be reduced by using

new architecture in place of PLL to excite SAW transducer. One possibility is to use

the SAW device itself as a resonant structure as in a LC tank VCO. Such a circuit

will employ a negative resistance to create oscillations at the resonant frequency of

the SAW device. As a result, such a structure will be inherently self-tuned and will

not require a PLL loop and reference clock to tune it, thus saving power consumed

by those blocks.

As the next step after demonstrating locomotion using a SAW device powered

by the CMOS front end presented in this work, a locomotive system with multiple

SAW devices can be pursued. Unlike the work presented here, such a system will

have ability to move in multiple directions. Similar to the work presented in [5], a

communication scheme that can be implemented as an amplitude modulation of the

carrier used for wireless power transfer. Using a on-chip demodulator, the commu-

nicated bit stream can be decoded and by enabling or disabling one or more of the

SAW devices, the direction of motion can be selected.
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