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ABSTRACT 

The assessment of directional permeability in carbonate formations is challenging due to 

their complex pore structure and anisotropic pore-network properties. Previous studies 

have shown that permeability is controlled by the conducting pore network; which is the 

portion of the connected pore system that contributes to both fluid and electric current 

flow in the formation. Conventional permeability assessment techniques attempt to 

quantify the conductive pore network volume fraction using well-log-based estimates of 

acoustic or non-shale porosity. However, these porosity estimates do not represent the 

anisotropic conducting pore network as they fail to account for the directional pore-

network connectivity in carbonate rocks. As a result, conventional well-log-based 

permeability assessment techniques are unreliable for quantifying directional permeability 

in carbonate formations. This thesis introduces a method for depth-by-depth assessment 

of the directional conducting pore network volume fraction and directional permeability 

using combined interpretation of well logs and pore-scale images from carbonate 

formations. 

 

The proposed method takes advantage of the similarity between electric current and fluid 

flow paths in the rock-fluid system to estimate depth-by-depth directional conducting pore 

network volume fraction and permeability. In the field example presented, water 

saturation estimates were used to correct the electrical resistivity for the effect of 

hydrocarbon saturation. Then, well-log based rock classification was performed to identify 
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different petrophysical rock types in the formation. Three-dimensional pore-scale images 

were obtained from each rock type using an X-ray micro computed tomography scanner.  

Then pore-scale simulations of electrical current and fluid flow were conducted to develop 

conducting pore-network and permeability models for each rock type. Finally, these pore-

scale models were applied for depth-by-depth assessment of directional conducting pore-

network volume fraction and directional permeability. 

The proposed method was applied in the pore-scale and well-log domain. In pore-scale 

domain, the method was used for the assessment of directional permeability in three 

carbonate rock types with complex pore structure. The pore-scale directional permeability 

estimates were cross-validated using permeability estimates obtained from a Lattice 

Boltzmann fluid flow simulator.  In the well-log domain, the proposed technique was used 

to estimate permeability in the Canyon Reef formation of the SACROC oil field. The 

permeability estimates were cross-validated using available core measurements. The 

results showed a significant improvement using the proposed permeability assessment 

technique in both the pore-scale and well-log-scale domains. I observed a 52% and 34% 

decrease in the relative error associated with pore-scale and well-log domain permeability 

estimates, as compared to conventional porosity-permeability models. 
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NOMENCLATURE 

List of Acronyms 

2D Two-Dimensional 

3D Three-Dimensional 

CT Computed Tomography 

GR Gamma Ray 

KNN k-Nearest Neighbors algorithm 

LBM Lattice Boltzmann method 

MICP Mercury Injection Capillary pressure 

PEF Photoelectric Factor 

PT Pore Type 

R35 Pore-throat radius corresponding to 35% of mercury saturation 

SACROC Scurry Area Canyon Reef Operators Committee 

List of Symbols 

A Pore cross-sectional area, μm2 

a Height of each pore-throat radius mode 

b Mean value of pore-throat radius in each mode 

e Permeability prediction error 

BV Number of black pixels in Micro-CT image 
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E Average electric field magnitude 

Ex Average electric field magnitude in the direction of macroscopic flow 

h Height of micro-CT sample 

F Formation factor 

J Volume Current Density 

kcore Core permeability, md 

kest Estimated permeability, md 

L Shortest Distance Between Inlet and Outlet of Electrical Current Flow Path 

Le Effective Tortuous Path Traversed by Electrical Current 

n Number of core measurments 

ϕc Conducting porosity, fraction 

σ Electrical conductivity, S/m 

ρ Electrical Resistivity 

pinlet Inlet Pressure for LBM simulator 

Poutlet Outlet Pressure for LBM simulator 

τ Tortuosity 

TV Total volume of pixels in segmented micro-CT image 

R Effective Electrical Resistance 

ν Electric potential, volts 



ix 

TABLE OF CONTENTS 

Page 

ABSTRACT .......................................................................................................................ii 

DEDICATION .................................................................................................................. iv 

ACKNOWLEDGEMENTS ............................................................................................... v 

NOMENCLATURE .........................................................................................................vii 

TABLE OF CONTENTS .................................................................................................. ix 

LIST OF FIGURES ........................................................................................................... xi 

1. INTRODUCTION AND LITERATURE REVIEW ................................................... 1

1.1 Background .................................................................................................... 2 

1.2 Problem Statement ....................................................................................... 10 

1.3 Research Objectives ..................................................................................... 11 

1.4 Method Overview ........................................................................................ 12 

1.5 Outline of Thesis .......................................................................................... 13 

2. METHOD .................................................................................................................. 15

2.1 3D Pore-Scale Imaging ................................................................................ 15 

2.1.1 Instrumentation ........................................................................... 16 

2.1.2  Sample Preparation .................................................................... 18 

2.1.3 Image Segmentation ................................................................... 18 

2.1.4  3D Image Post-Processing and Renditions ................................ 20 

2.2 Pore Scale Numerical Simulations............................................................... 21 

2.2.1 Electrical Current Flow Simulation ............................................ 22 

2.2.1.1 Electrical Current Simulation Workflow .................. 23 

2.2.1.2 Pore-Space Mesh Generation .................................... 24 

2.2.2 Electrical Tortuosity Calculation ................................................ 25 

2.2.3 Directional Conducting Pore-network Assessment .................... 26 

2.2.1.3 Electrical Current Simulation  ................................... 24



x 

2.2.4 Fluid Flow Simulation ................................................................ 26 

3. PORE-SCALE DIRECTIONAL PERMEABILITY ASSESSMENT ...................... 28

3.1 Introduction .................................................................................................. 28 

3.2 3D Pore-Scale Images of Carbonate Rock Samples .................................... 31 

3.3 Directional Pore-Network Volume Fraction Assessment ............................ 32 

3.4 Connected Porosity Assessment .................................................................. 34 

3.5 Results .......................................................................................................... 36 

3.5.1 Electrical Potential Distribution ................................................. 36 

3.5.2 Permeability Assessment ............................................................ 37 

3.6 Conclusions .................................................................................................. 40 

4. FIELD APPLICATION: SACROC UNIT ............................................................... 41

4.1 Introduction .................................................................................................. 41 

4.2 SACROC Geological Setting ....................................................................... 42 

4.3 Micro-CT Image Acquisition and Processing  ............................................. 42

4.4 Pore-scale Numerical Simulation of Fluid Flow using Lattice Boltzmann

Method ............................................................................................................... 43

4.5 3D Micro-CT Images ................................................................................... 43

4.6 Results .......................................................................................................... 45 

4.7 Conclusion ................................................................................................... 49 

5. CONCLUSIONS AND SUMMARY ....................................................................... 51

REFERENCES ................................................................................................................. 53 



xi 

LIST OF FIGURES 

Page 

Figure 1.1—Carbonate pore-network model. Black and white regions represent the 

pore space and matrix, respectively. The shaded regions represents 

the stagnant pores. Modified from (Vik et al., 2007) ......................... 2 

Figure 1.2—Tortuous electrical current flow path.  Le is the effective tortuous path 

traversed by the current and L the shortest distance connecting the 

two ends of the traversed path. ........................................................... 8 

Figure 1.3—Workflow for the proposed permeability assessment technique. ................ 13 

Figure 2.1—A 2D gray-scale image slice of a carbonate rock sample.  The pore space 

is represented by the black pixels while the mineral grains are 

represented    by the light gray pixels ............................................... 16 

Figure 2.2—Zeiss Xradia 520 versa desk-top X-ray micro-tomography scanner at the 

W.D. Von Gonten Laboratories. (1) rock sample, (2) sample

positioning stage, (3) x-ray beam line, (4) x-ray source, (5) x- ray

aperture, (6) x-ray source filter, (7) x-ray detection system ............. 17 

Figure 2.3—Example of core samples used for micro-CT imaging (a) 4 inch core 

sample, (b) quarter inch samples used for micro-CT imaging. ........ 18 

Figure 2.4—Example of a voxel gray-scale histogram. The first peak in the gray-scale 

histogram corresponds to the high-intensity pixels representing the 

grains while the second peak corresponds to the low-intensity     

pixels       representing the pores....................................................... 19 

Figure 2.5—(a) Gray-scale micro-CT image. (b) Segmented binary image. The pore 

spaces are represented by black pixels whereas the grains are 

represented    by white pixels............................................................ 20 

Figure 2.6—(a) 3D ImageJ rendition of segmented image (b) 3D Rendition of pore 

network extracted from segmented image. ....................................... 21 

Figure 2.7— Pore-scale electrical resistivity computation workflow .............................. 23 

Figure 2.8—(a) Voxelized 3D pore network, (b) tetrahedral mesh of a 3D 

pore-network. .................................................................................... 24 

Figure 2.9—Illustration of tortuosity computation from electrical current streamlines. . 25 



xii 

Figure 3.1—3D micro-CT pore-scale images of the three carbonate rock samples used 

in the study ........................................................................................ 31 

Figure 3.2—Delaunay Triangulation of 3D tetrahedral mesh. The beige and blue 

regions represent the grains and pores, respectively......................... 32 

Figure 3.3— (a) 2D slice of segmented image before and after the purify command 

was implemented .............................................................................. 35 

Figure 3.4— (a) 2D slice of segmented image before and after the purify command 

was implemented .............................................................................. 35 

Figure 3.5—Electrical potential distribution in sample 1. The isolated pores are 

enclosed by non-conductive grains and thus they have zero   

potential value. .................................................................................. 36 

Figure 3.6—a) Crossplot of the XY-directional LBM permeability and connected 

porosity in Sample 1 b) Crossplot of the XY-directional LBM 

permeability and directional conducting pore-network in        

Sample 1. .......................................................................................... 38 

Figure 3.7—a) Crossplot of the z-direction LBM permeability and connected porosity 

in Sample 1 b) Crossplot of the z-direction LBM permeability and 

directional conducting pore-network in Sample 1. ........................... 38 

Figure 3.8— (a) Crossplot of the LBM permeability and permeability estimated from 

the connected porosity (b) Crossplot of the LBM permeability and 

permeability estimated from the directional conducting 

pore-network ..................................................................................... 39 

Figure 4.1— The 3D pore-scale images of the six micro-CT samples used in the 

SACROC Unit. The white and black regions represent the grains 

and  pores, respectively ..................................................................... 44 

Figure 4.2— Permeability-porosity crossplots for pore type 1: (a) permeability-total 

porosity crossplot, (b) permeability-connected porosity crossplot, 

and       (c) permeability-effective porosity crossplot. ...................... 45 

Figure 4.3— Permeability-porosity crossplots for pore type 2: (a) permeability-total 

porosity crossplot, (b) permeability-connected porosity crossplot, 

and       (c) permeability-effective porosity crossplot. ...................... 46 

Figure 4.4— Pore-scale derived relationships between electrical resistivity and 

conducting pore-network for (a) pore type 1 and (b) pore type 2. .... 47 



xiii 

Figure 4.5—SACROC Unit Field Example: conventional well logs and results of     

well-log interpretation, permeability assessment, and pore 

typing.Track 1: depth; Tracks 2-5: GR, caliper, neutron porosity     

(in water-filled limestone units), bulk density, compressional-wave 

slowness, and apparent resistivity logs; Track 6: estimates of 

volumetric concentrations of calcite and clay; Track 7: estimates of 

total porosity, compared to core measurements (red dots); Track 8: 

estimates of water saturation; Track 9: estimates of connected 

porosity based on compressional-wave slowness measurements   

using Wyllie’s time-average   equation (Wyllie et al., 1956) and 

estimates of conducting pore-network   based on the identified 

relationships between electrical resistivity   and permeability in    

each pore type;Track 10: estimates of permeability using the   

core-based porosity-permeability; 11: estimates of permeability   

based on the proposed method; Track 12: identified pore types. ..... 48 



1 

1. INTRODUCTION AND LITERATURE REVIEW

Directional permeability assessment in carbonate formations is challenging due to the 

complex pore structure and anisotropic pore network properties of carbonate rocks. 

Permeability is controlled by the conducting pore network (Wempe and Mavko, 2002; 

Berg 2012); which is the portion of the connected pore space that supports fluid and 

electrical current flow in the rock-fluid system. The volume fraction of the conducting 

pore network; referred to as the conducting porosity, is not equivalent to the connected 

porosity (Katz and Thompson, 1987). The connected pore space is made up of poor-

connected stagnant pores that do not actively contribute to fluid flow in the pore network. 

Consequently, the use of empirical correlations between permeability and total or 

connected porosity leads to prediction errors in permeability assessment. 

Conventional permeability assessment techniques attempt to quantify the conducting 

porosity using well-log-based estimates of acoustic or non-shale porosity. These estimates 

of porosity do not represent the conducting porosity because they do not account for 

stagnant pore-spaces. They also do not account for the directional pore-network 

connectivity in carbonate rocks and are thus unreliable for directional permeability 

assessment. This thesis introduces as new method for quantifying the directional 

conducting pore network volume fraction and directional permeability in heterogeneous 

carbonate formations using conventional well logs and pore-scale images. 
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1.1 Background 

 Carbonate formations are highly susceptible to post-depositional diagenetic processes 

that significantly alter the primary porosity in carbonate rocks, resulting in isolated pores 

and pore systems with varying levels of connectivity (Lucia, 1995; Lucia, 2007; Sok et 

al., 2010). In addition to isolated pores, carbonate pore networks also consist poorly 

connected stagnant pores that constitute part of the connected pore volume, but do not 

actively contribute to the fluid or electrical flow in the formation (Fatt et. al., 1966). 

Permeability and electrical resistivity in carbonate formations are controlled by the 

conducting pore network (shown in Figure 1.1); which is the portion of the connected 

pore volume that contributes to both fluid and electric current flow in the formation (Katz 

and Thompson, 1987, Wempe and Mavko, 2002, Berg 2012). The continuous assessment 

of conducting pore-network from well-logs is however challenging.  

 

 

Figure 1.1—Carbonate pore-network model. Black and white regions represent the pore 

space and matrix, respectively. The shaded regions represents the stagnant pores. Modified 

from (Vik et al., 2007) 
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The assessment of conducting porosity and permeability in carbonate formations can be 

improved by taking advantage of the similarities between fluid and electrical current flow 

in the rock fluid system. Similar to fluid flow, electrical current is influenced by tortuosity, 

shape, and connectivity of the pore network (Archie, 1942; Wyllie and Spangler, 1952; 

Walsh and Brace, 1984). Several authors have tried to take advantage of this similarity by 

using core-based empirical resistivity-permeability correlations to estimate permeability 

from electrical resistivity measurements (Carothers, 1968; Ogbe and Bassiouni, 1978, 

Kosinski and Kelly, 1981, Mazac et. al., 1985). However, the use of these correlations 

often yields poor results due to the scatter in the permeability-resistivity crossplots 

(Huntley, 1987). The scatter can be attributed to the different rock types present in the 

formation and the strong influence of the pore-throat radius on permeability which is not 

accounted for in empirical resistivity-permeability correlations (Archie, 1942; Katz and 

Thompson, 1987) 

 

Other authors have used percolation theory concepts to deduce the relationship between 

electrical resistivity and permeability (Ambegaokar et. al., 1971; Katz and Thompson, 

1987). Using percolation theory arguments, Katz and Thompson (1987) derive a direct 

relationship between permeability and the formation factor given by 

 
21
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where k is the permeability, σo is the electrical conductivity of the rock, σ is the electrical 

conductivity of the formation water and lc is the smallest pore throat in the connect pore 

network determined from mercury injection capillary pressure (MICP) measurements. 

The equation has been successfully used to estimate permeability of various rock 

sandstone and carbonate rock types (Katz and Thompson, 1987; Garing et. al., 2014).  

However, the application of this method requires MICP measurements, which are not 

typically available at every desired depth in the formation. Furthermore, the method like 

resistivity-permeability correlations does not account the effect of hydrocarbon saturation 

on electrical resistivity measurements.  

 

Other studies have deduced the pore-throat size and other pore-network properties that 

influence permeability from electrical resistivity measurements. By building on Archie’s 

work on saturation assessment from electrical resistivity logs and permeability model 

developed by Kozeny-Carman (1927), Wyllie and Rose (1950) theoretically derived a 

relationship between electrical resistivity and permeability. The Wyllie and Rose 

permeability model is given by 

 ,
b

c

wi

k a
S


  (2) 

where k is the permeability in millidarcies, ϕ is the total porosity in percent, Swi is the 

irreducible water in percent, and,  a, b, c are all model parameters determined from 

empirical porosity-permeability correlations. Based on this general expression, various 
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other permeability relationships have been developed. These include Tixier’s (1949), 

Timur’s (1969) and Coates’ (1974) equations which are given by 
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The irreducible water saturation (Swi) in equations (2) to (5) characterizes the pore-throat 

size distribution of the rock. However, real time, in-situ, depth-depth assessment of 

irreducible water saturation requires NMR measurements. In the absence of NMR logs it 

is common practice to assume a constant value for irreducible water saturation in the 

formation. This assumption transforms equations (2) to (4) back into simple porosity-

permeability correlations. Although these correlations have been successfully applied in 

siliciclastic formations, their use leads to large prediction errors in carbonate formations. 

This error stems from the multi-scale heterogeneity and complex pore structure of 

carbonate rocks (Lucia, 1995) 

 

Previous studies have shown that permeability is controlled by the conducting pore 

network; which is the portion of the pore volume that supports fluid and electrical current 

flow (Katz and Thompson, 1986; Wempe and Mavko, 2002; Berg 2012). The conducting 
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pore network does not include isolated vuggy pores or poorly connected stagnant pores-

space which constitute part of the connected pore volume but do not actively contribute to 

fluid flow in the formation. 

 

For well-connected siliciclastic rocks having predominantly intergranular pores with 

uniform pore size distributions, the conducting, connected and total porosity are close  

(Wempe and Mavko, 20012). Consequently, porosity-permeability correlations can be 

used for permeability assessment in sandstone formations. On the other hand, carbonates 

include a variety of pore types with varying level of connectivity (Dunham, 1962; 

Choquette and Pray, 1970; Lucia, 1995). Some of these pores are isolated and poorly 

connected due to the complex heterogeneous pore systems created by diagenetic processes 

such as dissolution and dolomitization. As a result, carbonate formations exhibit poor 

correlations between permeability and total porosity. Consequently, the use of empirical 

total porosity-permeability correlations is not reliable for permeability assessment in 

carbonate formations. Furthermore, permeability-porosity correlations are based on scalar 

quantities like porosity and irreducible water saturation and provide little information 

about the anisotropic nature of permeability. The directional permeability is a function of 

the directional pore network connectivity which is reflected in the directional conducting 

pore network of the formation.  
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Well-log-based assessment of the directional conducting pore-network volume fraction 

(i.e., conducting porosity) is challenging. Previous studies have used acoustic well-logs to 

quantify the conducting pore-network in carbonate formations (Brie et. al., 1985; 

Kazatchenko et. al., 2003). These studies took advantage of the effect of isolated vuggy 

porosity and fractures on acoustic wave propagation. Acoustic waves travel faster in dual 

porosity carbonate rocks with isolated and connected pores than in carbonate rocks with 

intergranular porosity.  Consequently, the porosity estimated from the Wyllie-time 

average equation (Wyllie et. al., 1956) is lower than the actual total porosity measured 

from a helium porosimeter. The authors refer to the Wyllie-time average porosity as the 

effective porosity and assert that it is representative of the conducting pore volume 

(Kazatchenko et. al., 2003). However, since acoustic porosity estimates do not account for 

dead-end pore spaces they are not equivalent to the conducting pore volume. 

 

Well-log-based assessment of conducting pore network volume fraction and permeability 

can be improved by taking advantage of the similarity between fluid flow and electrical 

current flow in porous media.  Like fluid flow, electrical current is influenced by the pore 

size distribution, and tortuosity of the pore network (Archie, 1942; Winsauer et. al., 1952, 

Wyllie and Spangler, 1952). By modelling the pore network as a bundle of tortuous 

capillary tubes Wyllie and Rose, (1950) developed a theoretical model for the formation 

factor introduced by Archie (1942). Wyllie and Rose formation factor expression is given 

by 
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 ,F



  (6) 

where, F is the formation factor, ϕ is the porosity and  τ is the tortuosity is defined by 

Rose and Bruce (1949) as 

 

2

,eL

L


 
  
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 (7) 

where Le is the effective tortuous path traversed by the current and L  is the shortest 

distance connecting the two ends of the traversed path shown in Figure 1.2.  

 

 

Figure 1.2—Tortuous electrical current flow path.  Le is the effective tortuous path 

traversed by the current and L the shortest distance connecting the two ends of the 

traversed path. 
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The formation factor relationship presented in Equation (8) was subsequently re-derived 

by Wyllie and Spangler, 1952, and Walsh and Brace (1984). However, these authors did 

not account for the effect of the variable cross sectional area of electrical current carrying 

capillary tubes on the electrical resistivity. Taking into account the variable cross-sectional 

area created by the constriction of the pore-space at the pore-throat produces expression 

for the formation factor given by  

 ,
c

F C



  (8) 

where F is the formation factor, τ is the tortuosity of the flow path, ϕc is the conducting 

pore-network, and C is the constriction factor (Berg, 2012). The constriction factor is a 

geometric factor describing the reduction in the effective flow area from the pore body to 

the pore throat. 

 

Based on Equation (9) the conducting pore-network can be determined from electrical 

resistivity, tortuosity and constriction of the pore space.   However, there is no method for 

independently quantifying the tortuosity and constriction factor from well logs. 

Furthermore depth-depth assessment of the formation factor from well logs is very 

challenging due to the effect of fluid saturations on electrical resistivity well logs.  This 

limitation can be addressed by using numerical simulation of electrical current flow in 

three dimensional pore-scale images to develop models for the conducting pore-network 

in the formation. Several studies have used three dimensional X-ray microtomography 
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(micro-CT) images to numerically derive electrical resistivity, directional permeability 

and tortuosity in porous media (Chen and Doolen, 1998; Dong, 2007; Chi and Heidari, 

2014; Sok et. al., 2010; Øren and Bakke, 2002). However, due to the multi-scale 

heterogeneity of carbonate formations, reliable rock classification must be performed to 

identify the different rock types in the formation. After rock classification is conducted, 

pore-scale conducting porosity and permeability models developed for each rock type can 

then be applied for depth-by-depth assessment of directional permeability in the 

formation. This thesis introduces a method for estimating directional permeability and 

directional conducting porosity in carbonate formations based on electrical resistivity 

well-logs and pore-scale numerical simulations of electrical current flow in carbonate 

rocks.  

1.2 Problem Statement 

The assessment of directional permeability in carbonate formations is challenging due to 

the complex pore structure and anisotropic pore-network properties of carbonate rocks. 

The permeability is controlled by the conducting pore network; which is the portion of the 

connected pore volume that contributes to both fluid flow in the formation. This same 

portion contributes to electrical current flow in the rock-fluid system. Well-log based 

assessment of the conducting pore-network remains a challenge for petroleum engineers 

and geoscientists. Existing permeability assessment techniques attempt to quantify the 

effective porosity using well-log-based estimates of acoustic or non-shale porosity. 
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However, these estimates of porosity do not represent the anisotropic conducting pore 

volume as they fail to account for the directional pore-network connectivity in carbonate 

rocks. As a result, conventional well-log-based permeability assessment techniques are 

not reliable for quantifying directional permeability in carbonate formations. This thesis 

introduces a new method for the depth-by-depth assessment of directional conducting 

pore-network and directional permeability using combined interpretation of well logs and 

pore-scale images from carbonate formations.  

1.3 Research Objectives 

The main objective of this thesis is to develop and apply a new directional permeability 

assessment technique based on electrical conducting pore-network estimates derived from 

pore-scale images and electrical resistivity well-logs. The detailed list of objectives for 

this research are as follows: 

I. Introduce a workflow of estimating directional conducting pore-network volume 

fraction (i.e., conducting porosity) and directional permeability in carbonate 

formations based on electrical resistivity well-logs and pore-scale numerical 

simulations of electrical current flow in three dimensional micro-CT images.  

II. Estimate directional conducting pore network volume fraction in the pore-scale 

and well-log domain by using numerical simulations of electrical current flow to 

characterize directional pore-network properties.  

III. Apply the proposed permeability assessment technique to estimate pore-scale 
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directional permeability in different carbonate rock types. 

IV. Develop and apply pore-scale conducting porosity and permeability models for 

depth-by-depth assessment of conducting porosity and permeability in the Canyon 

Reef formation of the SACROC oil field.  

1.4 Method Overview 

Figure 1.3 shows the workflow describing the proposed permeability assessment 

technique. First, joint interpretation of well-logs is conducted to assess the petrophysical 

and compositional properties of the formation. Then, petrophysical rock classification is 

performed based on the depth-by-depth estimates of petrophysical properties, mineralogy 

and MICP measurements. High-resolution three-dimensional pore-scale image of each 

rock type are obtained using an X-ray tomography machine. Pore-scale numerical 

simulations are used to estimate the directional conducting pore network volume fraction 

and permeability of the micro-CT images in each rock class. The results of the pore-scale 

simulations were used to develop conducting porosity and permeability models for each 

rock class. Deep resistivity well-logs are corrected for fluid saturation using Archie’s 

equation. Then the conducting porosity models, deep resistivity logs and fluid corrected 

resistivity well-logs are all used for the depth-by-depth assessment of conducting porosity 

in the formation. Finally, the pore-scale permeability models and well-log based estimates 

of conducting porosity are used for the depth-depth assessment of directional permeability 

in the formation. 
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Figure 1.3—Workflow for the proposed permeability assessment technique. 

 

1.5 Outline of Thesis 

This thesis consists of five sections. Section 2 provides a description of each process in 

the integrated workflow used to assess conducting porosity and permeability.  The section 

provides detail description of the well-log interpretation, petrophysical rock classification, 
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the pore-scale imaging process and various numerical methods used to simulate current 

and fluid flow in the rock-fluid system. 

 

Section 3 elaborates on the pore-scale application of the proposed method to estimate 

directional conducting pore network volume fraction and permeability of three carbonate 

rock samples. The results of the pore-scale numerical simulations of fluid and electrical 

current flow are presented to demonstrate the similarities between fluid and electrical 

current flow paths. Estimates of the connected and conducting porosity are presented to 

demonstrate the difference between the connected and conducting porosity. Finally the 

directional permeability estimates based on the proposed technique are compared to 

empirical porosity-permeability correlations. 

 

Section 4 presents the application of the proposed method to estimate permeability and 

conducting porosity in the SACROC oil field. The details of the methods used for well-

log interpretation, petrophysical rock classification are presented. The pore-scale models 

used for the assessment of conducting pore-network and permeability are also presented. 

The final well-log domain permeability estimates from the proposed method are compared 

to permeability estimates from conventional porosity-permeability correlations.   

Finally, Section 5 summarizes the main results and conclusion of this thesis and provides 

recommendations for future work.  
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2. METHOD 

This section describes the methods used to estimate numerical simulation methods used 

for the pore-scale assessment of the directional permeability and conducting porosity in 

this thesis. The first step of the process is acquiring 3D pore-scale images of representative 

rock samples using X-ray tomography (micro-CT) imaging. Image processing techniques 

are applied to convert the gray-scale micro-CT images into segmented binary images 

which are used as inputs for the numerical simulation of fluid and electrical current flow 

in the 3D pore-scale images. The electrical resistivity of the pore network is obtained by 

solving the Laplace equation for the electrical potential distribution within 3D micro-CT 

images.  The Lattice Boltzmann method is used to simulate fluid flow in each micro-CT 

image and Darcy’s law is used to estimate the permeability in the direction of fluid flow. 

2.1 3D Pore-Scale Imaging  

3D pore-scale images used in this thesis were acquired using an X-ray micro-computed 

tomography (micro-CT) scanner. Micro-CT imaging is a non-destructive 3D imaging 

technique used to characterize the internal structure of a material at a micron-level spatial 

resolution. Micro-CT scanners use x-rays to penetrate the sample from different angles to 

create a series of two-dimensional (2D) x-ray absorption images of a rotating sample 

specimen. The 2D absorption images are reconstructed into a digital three dimensional 

micro-CT image by a computer algorithm based on the mathematical principles of 

tomography. The final output is a stack of two dimensional gray-scale images of the 3D 
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volume. Figure 2.1 shows an example of a 2D gray-scale image slice of a carbonate rock 

sample. The level of x-ray absorption correlates to the material density therefore the 

intensity of each pixel represents the density of the material at a given point. Consequently, 

the low-density pores are represented by the dark pixels, whereas the high density calcite 

grains are represented by the light gray pixels. 

 

 

Figure 2.1—A 2D gray-scale image slice of a carbonate rock sample.  The pore space is 

represented by the black pixels while the mineral grains are represented by the light gray 

pixels 

 

2.1.1 Instrumentation 

Majority of the micro-CT images in this thesis were obtained using a Zeiss Xradia 520 

versa desk-top X-ray micro-tomography scanner at the W.D. Von Gonten Laboratories 

(Figure 2.2). The sample, noted by (1) in Figure 2.1 was placed on the sample positioning 
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stage, noted by (2). A series of electronic motion controllers were used to position the 

specimen in the center of the x-ray beam line, noted by (3). High energy x-ray beams 

generated from the x-ray source, noted by (4), pass through an aperture, noted by (5). X-

ray source filters (6) were used to narrow the x-ray energy spectrum range. The resulting 

absorption profile is captured by a high resolution x-ray detector system (item 7). The 

three dimensional images were reconstructed on a desktop computer (not shown) using a 

built-in X-radia software package. 

 

 

Figure 2.2—Zeiss Xradia 520 versa desk-top X-ray micro-tomography scanner at the 

W.D. Von Gonten Laboratories. (1) rock sample, (2) sample positioning stage, (3) x-ray 

beam line, (4) x-ray source, (5) x- ray aperture, (6) x-ray source filter, (7) x-ray detection 

system 
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2.1.2  Sample Preparation 

The micro-CT samples used in this thesis were obtained from 4 inch diameter whole 

core samples vertical to the bedding plane. The core samples were cut into smaller half 

inch samples for micro-CT imaging.  Figure 2.3 shows an example of the samples used 

for micro-CT imaging is shown in.  

 

 

Figure 2.3—Example of core samples used for micro-CT imaging (a) 4 inch core sample, 

(b) quarter inch samples used for micro-CT imaging. 

 

2.1.3 Image Segmentation 

An image segmentation process is required to distinguish the pore space from the matrix 

grains and convert the gray-scale image into a binary image. Fiji ImageJ (Schindelin et 

al., 2012), an open source scientific imaging processing software was used to convert the 

gray-scale images into a sequence of binary images, where black and white regions 

represent  pixels represent the pores and white pixels represent the grains. The threshold 

3 mm
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function available in ImageJ was used to segment the gray-scale images. The algorithm 

segments partitions the each image pixel based on its intensity. 

 

Figure 2.4 shows an example of a voxel intensity histogram. The first peak in the gray-

intensity histogram corresponds to the high-intensity pixels representing the grains while 

the second peak corresponds to the low-intensity pixels representing the pores. A gray-

scale threshold value is selected at the transition between the grains and pores. Pixels with 

intensity values higher than the threshold values are partitioned from pixels with intensity 

values lower that the threshold value. If the thresholding segmentation does not satisfy a 

visual inspection, adjustments are made using different image processing techniques to 

ensure the segmented image is representative of the original gray-scale image.  

 

 

Figure 2.4—Example of a voxel gray-scale histogram. The first peak in the gray-scale 

histogram corresponds to the high-intensity pixels representing the grains while the second 

peak corresponds to the low-intensity pixels representing the pores. 
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Figure 2.5 shows an example of a segmented gray-scale image. The pore spaces are 

represented by black pixels while the grains are represented by white pixels. 

 

 

 (a) 

 

 (b) 

Figure 2.5—(a) Gray-scale micro-CT image. (b) Segmented binary image. The pore 

spaces are represented by black pixels whereas the grains are represented by white pixels. 

 

2.1.4  3D Image Post-Processing and Renditions 

The 2D segmented slices were reconstructed using the ImageJ BoneJ volume viewer 

plugin (Douebe et. al, 2010) available on Fiji ImageJ to visualize the 3D segmented image 

the stack. This plugin shows stacks as volumes in a 3D- Cartesian (xyz)-space. In addition 

to the volume rendering, the BoneJ 3D viewer plugin was used to extract and visualize the 

3D pore space from the segmented stack. Figure 2.6 shows an example of the 

reconstructed image stack and the 3D pore-space rendition obtain from ImageJ.  

300 μm 300 μm 
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(a) 

 

 (b) 

Figure 2.6—(a) 3D ImageJ rendition of segmented image (b) 3D Rendition of pore 

network extracted from segmented image. 

 

2.2 Pore Scale Numerical Simulations  

This section outlines the various pore-scale numerical simulations used to calculate the 

conducting porosity and permeability of the 3D micro-CT images. 

300 μm 

300 μm 



 

22 

 

 

2.2.1 Electrical Current Flow Simulation 

The electrical resistivity of each pore-scale image is obtained by solving the Laplace 

equation for the electrical potential distribution within the pore-network. 

The Laplace equation is given by 

   0v   , (9) 

where, σ is the electrical conductivity and ν is the electric potential at each point in the 

pore network. I assumed the pore-space in the micro-CT image was fully saturated with 

formation water and the conductivity, σ in Equation (9) is equivalent to the conductivity 

of formation water. The electric current in the pore network was calculated from the 

electric field potential using Ohm’s law which is given by 

 J v   , (10) 

where  J  is the volume current density. The effective resistance of the pore network was 

then obtained by calculating the total power in the conducting pore network system which 

is given by 

 P d  


     , (11) 

The effective directional electric resistance is given by, 

 

2V
R

P
 , (12) 
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where R is the effective resistance and V is the electrical potential difference across the 

entire micro-CT sample. The sample resistivity can be estimated from the effective 

resistance. The sample resistivity is given by  

 
A

R
h

  , (13) 

where ρ is the resistivity, A is the area of each 2D micro-CT slice in pixels and the h  is 

the height of the sample in pixels.  

2.2.1.1 Electrical Current Simulation Workflow 

Figure 2.7 shows the electrical current simulation workflow used in this thesis. First, 

Delaunay triangulation was used to generate a tetrahedral mesh of the voxelized 3D pore-

space extracted from the micro-CT images. Then, Elmer, a finite element solver was used 

to solve for the total current flow within the 3D pore-network. Finally the electrical 

resistivity in any desired direction was calculated from the total current and electric 

potential difference across the pore-network.  

 

 

Figure 2.7— Pore-scale electrical resistivity computation workflow 
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2.2.1.2 Pore-Space Mesh Generation 

Delaunay triangulation was used to generate a tetrahedral mesh of the 3D pore space based 

on the procedures and algorithms developed by (Fang and Boas, 2009). Figure 2.8 shows 

an example of a tetrahedral mesh of a 3D pore-network.  

 

 

(a) 

 

(b) 

Figure 2.8—(a) Voxelized 3D pore network, (b) tetrahedral mesh of a 3D pore-network. 

 

2.2.1.3 Electrical Current Simulation 

After mesh generation the electrical potential distribution and the effective electrical 

resistance of the pore-network was obtained using Elmer, an open source multiphysics 

solver created by the center for IT science in conjunction with various Finnish 

Universities. The inputs to the solver include the tetrahedral mesh generation and the 

100 μm 
100 μm 



 

25 

 

 

electrical potential difference. The solver outputs determines the, total current, effective 

resistance and electrical potential at each point within the pore network. 

2.2.2 Electrical Tortuosity Calculation 

The electrical pore-network tortuosity was estimated from the electric field streamline 

tortuosity introduced by (Matyka and Koza, 2012).  The streamline tortuosity is given by  

 
x

x

E

E
 




, (14) 

where, E is the average electric field magnitude at each point in the pore network and 

xE  is the average electric field magnitude in the direction of macroscopic flow at each 

point in the pore network (Figure 2.9). 

 

 

Figure 2.9—Illustration of tortuosity computation from electrical current streamlines. 
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2.2.3 Directional Conducting Pore-network Assessment 

The conducting pore-network in the formation can be obtained from the expression for the 

formation factor introduced by Wyllie and Rose (1950), and Berg (2012). The Wyllie and 

Rose expression for the formation factor is given by  

 ,F



  (15) 

where, ϕ is the total porosity and  τ is the tortuosity. However, the electrical resistivity is 

a function of the conducting porosity, not the total porosity. Therefore the conducting  

porosity can be expressed as  

 ,c
F


   (16) 

where, ϕc is the conducting pore-network. The electrical tortuosity and formation factor 

are both directional pore-network properties that vary in the vertical and horizontal 

direction directions. Consequently, the conducting pore-network defined in Equation (16) 

is a directional pore network property that has a magnitude equivalent to the conducting 

porosity and direction determined by the electrical current flow in the rock-fluid system.  

2.2.4 Fluid Flow Simulation 

To obtain develop pore-scale relationship between permeability and the conducting pore-

network, I estimated directional permeability from fluid flow in each 3D pore-scale image. 

I used the Lattice Boltzmann method to simulate fluid flow in three-dimensional pore-
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network. The Lattice Boltzmann method is a discrete computational fluid dynamic method 

based upon the Boltzmann equation. The lattice Boltzmann method is applied as an 

alternative to solving the Naviers stokes equation for complex fluid flow problems. The 

method has been widely applied to simulating fluid flow in porous media (Chen and 

Doolen, 1998; Dong, 2007; Chi and Heidari, 2014; Sok et. al., 2010; Øren and Bakke, 

2002)   

 

The pore-scale directional permeability in this thesis was estimated using Palabos (2013), 

an open source parallel lattice Boltzmann solver to simulate single-phase fluid flow in all 

three directions of the 3D micro-CT image. The inputs to the simulator include a voxelized 

segmented micro-CT image, a predetermined pressure gradient, the dimensions of the 

voxelized image and the fluid viscosity. The solver output the average velocity within the 

pore network 

 

From the average velocity the permeability was calculated using Darcy’s law, 

 
inlet outletp pk

U
h


  , (17) 

Where U is the fluid velocity, μ is the fluid viscosity, Pinlet is the inlet pressure, Poutlet is 

the outlet pressure and h is height of the voxelized segmented image. 
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3. PORE-SCALE DIRECTIONAL PERMEABILITY ASSESSMENT 

This section presents the application of the proposed method to carbonate rocks with 

different rock fabric and complex pore structure. The proposed method was use to estimate 

directional conducting pore-network and permeability of 3D micro-CT images obtained 

from the Pore Scale Modelling Consortium at the Imperial College, London.  The 

permeability estimates obtained using the proposed technique were compared to 

permeability estimates from empirical porosity permeability correlations.  

3.1 Introduction 

Assessment of directional permeability has been a challenge in anisotropic carbonate 

formations with complex pore structure. Unlike siliciclastic rocks which are dominantly 

have intergranular pores with uniform pore size distributions, carbonate pore systems 

feature a wide array of pore types with varying level of connectivity (Dunham, 1962; 

Choquette and Pray, 1970; Lucia, 1995). Some of these pores are isolated and poorly 

connected due to the complex heterogeneous pore systems created by diagenetic 

processes. As a result, carbonate formations have poor correlations between permeability 

and porosity. Thus, permeability-porosity correlations are commonly not suitable for to 

directly determine permeability in carbonate formations. 
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Previous studies tried to incorporate critical pore-network properties into carbonate 

permeability assessment by classifying carbonate rocks into different rock types and 

applying specific porosity-permeability correlations in each rock class. Methods such as 

the rock fabric number (Lucia, 1999) and Lonoy’s (Lonoy, 2006) pore type classification, 

classify various rocks based on the rock texture observe in thin section images and the 

dominant pore size in each rock class.  Other methods such as the Leverett’s J-function 

(Leverett, 1941) and Winland’s R35 (Pittman, 1992) characterize rocks based on pore-

throat size distributions obtained from saturation-dependent mercury capillary pressure 

measurements. These rock classification permeability assessment techniques attempt to 

describe and quantify the amount of connected pore space available for fluid flow. 

However, fluid flow is controlled by the conducting (not the connected) porosity; which 

is the portion of the pore space that actively contributes to fluid and electrical current flow 

in the rock-fluid system. Furthermore, these permeability assessment techniques do not 

account for the anisotropic pore-network properties that affect directional permeability.   

 

The assessment of permeability and conducting pore-network in carbonate rocks can be 

improved by taking advantage of the similarity between fluid flow and electrical current 

flow in porous media (Katz and Thompson, 1987).  Similar to fluid flow, electrical current 

is influenced by the size, shape, and connectivity of the pore-space (Archie, 1942). 

Previous studies have also used percolation theory arguments and laboratory measurement 

to demonstrate that fluid and electrical current flow are both controlled by a portion of the 

connected pore volume (Katz and Thompson, 1987). This portion of the pore volume 
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corresponds to the conducting pore-network. Therefore, the conducting pore-network can 

be obtained by quantifying the portion of the pore volume that contributes to electrical 

current flow. 

 

However deducing the conducting porosity directly from electrical resistivity well log 

measurements in carbonate formations can be very challenging due to complex pore 

morphology of carbonate rocks. This limitation can be addressed by numerically deriving 

the electrical resistivity from three dimensional pore-scale images of rock samples in the 

formation. In the past decade, recent studies have used high-resolution X-ray micro-CT 

images to numerically derive the permeability and electrical resistivity in both sandstone 

and carbonate rocks (Øren and Bakke, 2002; Chen and Doolen, 1998).  Therefore the 

conducting porosity-permeability relationship can be obtained by simulating electrical 

current and fluid flow in 3D micro-CT images of representative rock samples in the 

formation. The pore-scale conducting-permeability models can then be applied for depth-

by-depth assessment of directional permeability in the formation.   

 

This research introduces new method for the assessment of directional conducting pore-

network volume fraction based on numerical simulations of fluid and electrical current 

flow in pore-scale core images from typical rock types in the formation. I successfully 

applied the introduced method to estimate pore-scale directional conducting pore-network 

and permeability in three carbonate rock types with complex pore structures. I compared 
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the permeability estimates obtained from the proposed method to permeability results 

obtained from the application of conventional correlations between connected porosity 

and permeability. 

3.2 3D Pore-Scale Images of Carbonate Rock Samples 

Figure 3.1 shows the 3D pore-scale images of the three carbonate rock types used in this 

study. The images were obtained from the pore-scale modelling group at the Imperial 

College, London. 

 

   
Sample 1 Sample 2 Sample 3 

 

Figure 3.1—3D micro-CT pore-scale images of the three carbonate rock samples used in 

the study 

 

300 μm 300 μm 300 μm 
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3.3 Directional Pore-Network Volume Fraction Assessment 

First, each pore-scale image was subdivided into smaller 8 to 10 smaller subsamples to 

model the relationship between conducting pore-network and permeability in each rock 

type. Then a finite element solver is used to solve the Laplace’s equation for the electrical 

potential distribution within the 3D pore network. Finally ohm’s law is used to calculate 

the electrical current and resistivity in all desired directions (x, y, z) from the electrical 

potential distribution. 

The input for the electrical current simulator is a tetrahedral mesh of the binarized 3D 

micro-CT image shown in Figure 3.2. 

Figure 3.2—Delaunay Triangulation of 3D tetrahedral mesh. The beige and blue regions 

represent the grains and pores, respectively 
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The mesh is obtained through Delaunay triangulation of the voxelized 3D micro-CT image 

using a procedure created and developed by (Fang and Boas, 2009). I assumed that the 

grains are non-conductive and the pore space is fully saturated with conductive saline 

water of resistivity similar to the formation water. The electrical potential at the top and 

bottom of the pore network were set to boundary conditions of 10 and 0 volts respectively. 

A zero flux boundary was imposed on the non-conductive grains. 

After obtaining the electric potential distribution with the pore-network, I estimated the 

tortuosity in all desired direction from the electrical flow streamlines. The streamline 

tortuosity is obtained by calculating the ratio between the average length of the electrical 

potential streamlines within the pore-network and height of the micro-CT sample. 

To calculate the directional permeability in all desired direction in each micro-CT image 

I used the lattice Boltzmann method (LBM) to simulate fluid flow in the voxelized micro-

CT image. In lieu of solving the macroscopic Navier stokes equation, the lattice 

Boltzmann method simulates the flow of a Newtonian fluid by discretizing the Boltzmann 

transport equation on a lattice mesh. I use Palabos (2013), an open source parallel lattice 

Boltzmann solver to simulate single-phase fluid flow in all three directions of the 3D 

micro-CT image. Finally, directional permeability is calculated from Darcy’s law. 
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3.4 Connected Porosity Assessment 

To compare the proposed method with empirical porosity permeability correlations 

I estimated the connected porosity for the micro-CT image subsamples in each rock type. 

I used Fiji ImageJ, an open source scientific imaging processing software to estimate the 

connected porosity in each pore-scale image. The procedure for calculating the connected 

porosity is outlined in this section. 

First, the BoneJ purify command was used to eliminate the isolated pore space from the 

segmented image, then the volume fraction command was used to calculate the connected 

porosity. The total porosity is defined by 

t

BV

TV
  , (23) 

where, t  is the total porosity, BV  is the number of black pixels in the segmented 

image stack and TV  is the total number of pixels in the segmented image stack. 

Similarly the connected porosity is defined as 

purify

c

BV

TV
  , (24) 

where, t  is the total porosity, purifyBV is the number of black pixels in the segmented 

image stack after the purify command has been implemented and TV  is the total number 

of pixels in the segmented image stack. Figure 3.3 is a side-by-side comparison between 
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a slice of segmented image before and after the purify command was implemented. Figure 

3.4 is similar comparison between the three dimensional pore-network before and after 

the purify command was implemented.    

Before After 

Figure 3.3— (a) 2D slice of segmented image before and after the purify command was 

implemented 

Figure 3.4— (a) 2D slice of segmented image before and after the purify command was 

implemented 

Before After 

300 μm300 μm

300 μm 300 μm
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3.5 Results 

3.5.1 Electrical Potential Distribution 

Figure 3.5 shows an example of the electrical potential distribution within the extracted 

pore-network of sample 1. The electrical potential at the top and bottom of the pore 

network were set to boundary conditions of 10 and 0 volts respectively.  

 

 

Figure 3.5—Electrical potential distribution in sample 1. The isolated pores are enclosed 

by non-conductive grains and thus they have zero potential value. 

 

The electrical potential field distribution in the 3D pore-network is very non-uniform as a 

result of the presence of isolated pores and dead pore-space. The isolated pores in the pore-

10 V

0 V

Isolated pore

100 μm 
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network are surrounded by non-conducting grains and therefore assume the zero potential 

boundary value. Consequently, the potential gradient and electrical current through the 

isolate pore-space are both equal to zero.  In addition to the isolated pores, the pore 

network also consists of stagnant pore space.  Stagnant pore-spaces correspond to portions 

of the pore space with very low electric potential gradient represented by a marginal 

change in electric potential. In sample 1, I observed the presence of dead pore-space in the 

upper right corner of pore network shown in Figure 3.3. The electrical potential value in 

this portion of the pore-space remains relatively constant which indicates very low 

potential gradient and current flow in this part of the pore-network.   

3.5.2 Permeability Assessment 

Each micro-CT image was divided into 2003 voxelized subsamples. The conducting pore-

network and permeability of each subsample was numerically derived by simulating fluid 

and electrical current flow in 3D pore-network. Figure 3.6(a) shows the relationship 

between the directional LBM permeability and the connected porosity for Sample 1 and 

Figure 3.6(b) shows the relationship between the directional LBM permeability and the 

conducting porosity in xy-direction. Figure 3.7 (a) and (b) show the same relationships in 

the z-direction for Sample 1. 
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(a) (b) 

Figure 3.6—a) Crossplot of the XY-directional LBM permeability and connected porosity 

in Sample 1 b) Crossplot of the XY-directional LBM permeability and directional 

conducting pore-network in Sample 1. 

 

 
 

(a) (b) 

Figure 3.7—a) Crossplot of the z-direction LBM permeability and connected porosity in 

Sample 1 b) Crossplot of the z-direction LBM permeability and directional conducting 

pore-network in Sample 1. 
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The correlations between directional permeability and connected porosity such as the 

correlations shown in Figure 3.6(a) and Figure 3.7(a) were used for the assessment of 

pore-scale directional permeability in each micro-CT subsample. I also estimated the 

directional permeability using similar correlations between the directional permeability 

and the directional conducting pore-network (Figure 3.6(b) and Figure 3.7(b)) for a 

comparison between the proposed method and conventional permeability assessment 

techniques. Figure 3.8(a) shows the crossplot of the LBM permeability and permeability 

estimated from the connected porosity while Figure 3.8(b) show the crossplot of the LBM 

permeability and permeability estimated from the directional conducting pore-network. I 

observed a 54% reduction in the relative error in permeability assessment using the 

proposed method as compared to conventional permeability assessment techniques. 

 

     

                  (a) 

     

                    (b) 

Figure 3.8— (a) Crossplot of the LBM permeability and permeability estimated from the 

connected porosity (b) Crossplot of the LBM permeability and permeability estimated 

from the directional conducting pore-network 
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3.6 Conclusions 

A stronger relationship (based on the obtained coefficient of correlation) between 

directional permeability and directional conducting pore-network, as compared to 

relationships between permeability and connected porosity. The reason for this result is 

that fluid flow in carbonate rocks is controlled by directional pore-network connectivity 

and presence of dead-end spaces, which are more accurately represented by conducting 

porosity, as compared to connected or total porosity. Although connected porosity is a 

measure of connectivity in the pore network, it does not account for the presence of poorly 

connected stagnant pore spaces or the anisotropic rock properties 

 

Consequently, more accurate estimates of directional permeability were obtained using 

the directional conducting pore-network model as compared to the connected porosity-

permeability correlations. I observed a relative improvement of approximately 52% in the 

pore-scale permeability assessment, compared to the application of connected porosity-

permeability correlations.  
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4. FIELD APPLICATION: SACROC UNIT

Section 3 presented the application of the proposed method for pore-scale assessment of 

directional permeability in carbonate rocks with complex pore structure. This section 

presents the application of the proposed method to field example: the SACROC Unit 

4.1 Introduction 

Carbonate formations consist of a wide range of pore types with different shapes, pore-

throat sizes, and varying levels of pore-network connectivity. Such heterogeneous pore-

network properties affect the fluid flow in the formation. Characterizing pore-network 

properties (e.g., effective porosity and permeability) in carbonate formations is, however, 

challenging due to the heterogeneity at different scales and complex pore structure of 

carbonate rocks. In this section I use an integrated technique for the multi-scale 

characterization of carbonate pore structure based on Mercury Injection Capillary Pressure 

(MICP) measurements, X-ray micro-computed (micro-CT) three-dimensional (3D) rock 

images, and well logs. The pore types were determined based on the pore-throat radius 

distributions obtained from MICP measurements. I introduce a new method for assessment 

of directional conducting pore-network and permeability in the well-log domain, based on 

pore-scale numerical simulations of fluid and electrical current flows in 3D micro-CT core 

images, obtained in each pore type. Finally, I use pore-scale derive models for the depth-

by-depth conducting pore-network, permeability in the formation. 
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4.2 SACROC Geological Setting 

SACROC Unit located in the Midland basin, west Texas. The producing formation in this 

field is the Canyon Reef, a Pennsylvanian-age limestone. The Canyon Reef has 

heterogeneous distribution of petrophysical properties, as the result of exposure to high-

amplitude sea-level fluctuations (Kane, 1979; Brnak et al., 2006). Geological 

interpretations show that the SACROC Unit is composed of bedded bioclastic limestone 

and thin shale beds representing the Strawn, Canyon, and Cisco Groups of the 

Pennsylvanian 

4.3 Micro-CT Image Acquisition and Processing 

I obtained high resolution pore-scale images of each pore type use a high resolution 

micro-CT scanner.  I scanned core samples of 2-4 mm in length at a resolution of 2-

3µm/voxel. The X-ray source voltage and power is set to 70-80KV, and 5-6 watts, 

respectively. 5000-6000 projections were acquired over the 360º sample rotations. The 

resulting images were captured by a flat panel detector and reconstructed using a built-in 

image processing software package. The final result is a stack of two-dimensional (2D) 

gray-scale images (Figure 2). I converted the gray-scale image stack into a binarized 

image stack (Figure 3). The binarized images were in turn converted into binary digital 

matrices that serve as input files to the pore-scale numerical simulations. 
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4.4 Pore-scale Numerical Simulation of Fluid Flow using Lattice Boltzmann Method 

I calculated the pore-scale directional permeability by simulating fluid flow in the 

pore-scale images obtained from each pore type. I used the Lattice Boltzmann method 

(LBM) to simulate fluid flow in the voxelized micro-CT image. In lieu of solving the 

macroscopic Navier Stokes equation, the LBM simulates the flow of a Newtonian fluid 

by discretizing the Boltzmann transport equation on a lattice mesh. I used Palabos (2013), 

an open-source parallel Lattice Boltzmann solver to simulate single-phase fluid flow in all 

three directions of the 3D micro-CT image. The permeability in each direction was then 

calculated from Darcy’s law. 

4.5 3D Micro-CT Images 

Table 1 lists the total voxel image dimensions, resolution, and total porosity of each 

micro-CT image in each pore type. Fig. 4.1 shows the 3D micro-CT pore-scale images 

obtained from each pore type. The pore space in the micro-CT images in pore-type 3 

(PT3_S1 and PT3_S2) was not readily visible at a resolution of 2 μm/voxel. Thus, I did 

not conduct our analysis in pore type 3. 
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Table 1: 3D Micro-CT Samples with their associated matrix volumes, micro-CT 

resolutions, total porosity, and pore type. The rock samples are named according to their 

pore type (PT) and sample number (e.g., PT1_S1 corresponds to the first sample in pore 

type 1).   

Sample Name Pore 

Type

Volume (pixel3) Resolution 

(μm/pixel)

Total Porosity 

(%)

PT1_S1 1 1000x1000x2000 2.7 4.00 

PT 1_S2 1 600x600x600 2.0 5.80 

PT 2_S1 2 600x600x600 2.0 6.00 

PT 2_S2 2 600x600x600 2.0 2.87 

PT 3_S1 3 900x900x900 2.0 0.60 

PT 3_S2 3 900x900x900 2.0 0.20 

Figure 4.1— The 3D pore-scale images of the six micro-CT samples used in the SACROC 

Unit. The white and black regions represent the grains and pores, respectively 
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4.6 Results 

Figs. 4.2 and 4.3 show the relationships between permeability and total, connected, and 

conducting pore-network for pore type 1 and 2, respectively. 

(a) (b) 

(c) 

Figure 4.2— Permeability-porosity crossplots for pore type 1: (a) permeability-total 

porosity crossplot, (b) permeability-connected porosity crossplot, and (c) permeability-

effective porosity crossplot. 
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(a) (b) 

 (c) 

Figure 4.3— Permeability-porosity crossplots for pore type 2: (a) permeability-total 

porosity crossplot, (b) permeability-connected porosity crossplot, and (c) permeability-

effective porosity crossplot. 
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Figure 4.4 shows the conducting-resistivity trends for pore types 1 and 2 used for the 

assessment of conducting pore-network in the well-log domain. 

(a) 

(b) 

Figure 4.4— Pore-scale derived relationships between electrical resistivity and 

conducting pore-network for (a) pore type 1 and (b) pore type 2. 
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Figure 4.5 shows the final well-log interpretation and permeability assessment results in 

the well-log domain. 

Figure 4.5—SACROC Unit Field Example: conventional well logs and results of well-

log interpretation, permeability assessment, and pore typing. Track 1: depth; Tracks 2-5: 

GR, caliper, neutron porosity (in water-filled limestone units), bulk density, 

compressional-wave slowness, and apparent resistivity logs; Track 6: estimates of 

volumetric concentrations of calcite and clay; Track 7: estimates of total porosity, 

compared to core measurements (red dots); Track 8: estimates of water saturation; Track 

9: estimates of connected porosity based on compressional-wave slowness measurements 

using Wyllie’s time-average equation (Wyllie et al., 1956) and estimates of conducting 

pore-network based on the identified relationships between electrical resistivity and 

permeability in each pore type; Track 10: estimates of permeability using the core-based 

porosity-permeability 11: estimates of permeability based on the proposed method; 

Track 12: identified pore types.(Reprinted from Oyewole et al., 2015) 
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I calculated the average relative error associated with the permeability estimates obtained 

using the proposed method and conventional correlations between core permeability and 

total porosity. The average relative error is given by  

1

( )1
,i i

i

n
est core

i core

k k
e

n k


  (25) 

where kcore is the ith core permeability measurement, kest is the ith well-log-based 

permeability estimate, n is the total number of core measurements and e is the relative 

error in estimates of well-log-based permeability. 

I observed a 34% decrease in the relative error associated with the proposed 

permeability assessment technique as compared to the application of core-based 

correlations between total porosity and permeability (Figures 4.2 and 4.3). 

4.7 Conclusion 

The results demonstrated that electrical resistivity measurements can be applied for direct 

assessment of conducting pore-network and permeability, in the presence of numerically 

derived pore-scale models and sufficient MICP measurements for initial pore typing. I 

observed a relative improvement of approximately 34% in permeability assessment, 

compared to the application of core-based correlations between total porosity and 

permeability. I also demonstrated that electrical resistivity logs can be used to characterize 
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the pore-structure in heterogeneous formations. The combination of numerically derived 

electrical resistivity-conducting pore-network and electrical resistivity-permeability 

models presented in this research can significantly reduce the need for extensive number 

of cores for characterization of pore network in carbonate formations. The MICP 

measurements and pore-scale numerical analysis can be conducted using rock-cuttings, 

which are smaller in size and readily available as compared to conventional core plugs. 

Nevertheless, additional core data and incorporation of reliable upscaling techniques can 

further improve the proposed technique. 
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5. CONCLUSIONS AND SUMMARY 

This thesis introduced a new directional permeability assessment technique in carbonate 

formations based on conducting pore-network estimated from electrical resistivity 

measurements. First, I accounted for the heterogeneous distribution of pore types in the 

formation by performing well-log-based petrophysical rock classification in the 

formation. Then, I obtained three-dimensional micro-CT images of samples in each rock 

type. I derived models for the conducting pore-network in each rock type by conducting 

numerical simulations to measure the electrical conductivity in each micro-CT image. 

Finally, I applied these models for a depth-by-depth assessment of conducting pore 

network volume fraction and permeability in the formation. 

 

I successfully applied the proposed technique in various carbonate rocks and in the 

SACROC (Scurry Area Canyon Reef Operators Committee) Unit. The estimates of 

permeability in the well-log domain were cross-validated using the available core 

measurements. I observed a 34% improvement in the relative errors in estimates of 

permeability (compared to core measurements), as compared to the core-based porosity-

permeability models. 

 

I also demonstrated that electrical resistivity logs can be used to characterize the pore 

structure in heterogeneous formations. The combination of numerically derived electrical 

resistivity-conducting pore network volume fraction and electrical resistivity-permeability 
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models presented in this thesis can significantly reduce the need for extensive number of 

cores for characterization of pore network in carbonate formations. The MICP 

measurements and pore-scale numerical analysis can be conducted using rock cuttings, 

which are smaller in size and readily available as compared to conventional core plugs. 

Nevertheless, additional core data and incorporation of reliable upscaling techniques can 

further improve the proposed technique. 

 

The proposed directional permeability assessment technique can be applied for the well-

log-based assessment of directional permeability and conducting pore network volume 

fraction in carbonate formations with anisotropic petrophysical properties. Furthermore, 

assessment of directional conducting pore network volume fraction can enhance the 

interpretation of electrical resistivity logs and the assessment of hydrocarbon saturation in 

complex carbonate formations. Finally, the introduced method improves reservoir 

characterization, which has significant influence on completion decisions. 

 

 

 

 

 

 



 

53 

 

 

REFERENCES 

Ambegaokar, V., Halperin, B. I., and Langer, J. S., 1971, Hopping Conductivity in 

Disordered Systems: Phys. Rev. B 4, 2612. 

Archie, G.E., 1942, The electrical resistivity log as an aid in determining some reservoir 

characteristics:  Transactions of the AIME, 146, 54-62.  

Bassiouni, Z., and Ogbe, D., 1978, Estimation Of Aquifer Permeabilities From Electric 

Well Logs: The Log Analyst, 19, 21-27 

Berg, C.F., 2012, Re-examining Archie’s law: conductance description by tortuosity and 

constriction: Physical Review E, 86, 1-9.   

Brie, A., Johnson, D.L., and Nurmi, R.D. 1985. Effect of Spherical Pores on Sonic and 

Resistivity Measurements: SPWLA 26th Annual Logging Symposium, Dallas, 

Texas, USA, 17–20 June. Paper W. 

Brnak, J., Petrich, B., and Konopczynski, M.R., 2006, Application of smart well 

technology to the SACROC CO2 EOR project: Presented at the Symposium on 

Improved Oil Recovery, SPE.  

Carman, P. (1937), Fluid flow through a granular bed: Trans. Inst. Chem. Eng., 15, 150–

167. 

Carothers, J. E., 1968, A statistical study of the formation factor relation: Log Analyst, 9, 

5, 13–20.  



 

54 

 

 

Chen, S., and Doolen, G.D., 1998, Lattice Boltzmann method for fluid flows: Annual 

Review of Fluid Mechanics, 30, 329-364.  

Chicheng, X. and Torres-Verdín, C., 2013, Core-based petrophysical rock classification 

by quantifying pore-system orthogonality with a bimodal Gaussian density 

function: Presented at the International Symposium, Society of Core Analysts 

Choquette, P.W. and Pray, L.C. 1970. Geologic Nomenclature and Classification of 

Porosity in Sedimentary Carbonates: AAPG, 54, 207–250. 

Clerke, E.A., 2009, Permeability, relative permeability, microscopic displacement 

efficiency, and pore geometry of m_1 bimodal pore systems in Arab d limestone: 

SPE Journal, 14, 3, 524-531.  

Clerke, E.A., Mueller III, H.W., Phillips, E.C., Eyvazzadeh, R.Y., and Jones, D.H., 2008, 

Application of Thomeer hyperbolas to decode the pore systems, facies and 

reservoir properties of the Upper Jurassic Arab D limestone, Ghawar field, Saudi 

Arabia: a Rosetta stone approach: GeoArabia , 13, 4,  113-160.  

Coates, G.R. and Dumanoir, J.L., 1974, A new approach to improved log-derived 

permeability: The Log Analyst, 17-31. 

Cover, T.M. and Hart P.E., 1967, Nearest neighbor pattern classification: Transactions of 

the IEEE, 13, 1, 21-27. 

Dong, H., 2007, Micro-CT imaging and pore network extraction: PhD dissertation, 

Imperial College London. 



 

55 

 

 

Dunham, R.L. 1962. Classification of Carbonate Rocks According To Depositional 

Texture. American Association of Petroleum Geologists, Memoir 1: 108–121.  

Fang, Q., and Boas D.A., 2009, Tetrahedral mesh generation from volumetric binary and 

gray-scale images: Presented at the Proceedings of ISBI 

Fatt, I., Maleki, M., and Upadhyay, R. N., 1966, Detection and estimation of dead-end 

pore volume in reservoir rock by conventional laboratory tests: SPE Journal, 6, 3, 

206-212.  

Garing C., Luquot L., Pezard A.P., and Gouze P., 2014, Electrical and flow properties of 

highly heterogeneous carbonate rocks: AAPG Bulletin, 98, 1, 49-66. 

Han, W.S., Mcpherson, B.J., Lichtner, P.C., and Wang, F.Pl, 2010, Evaluation of trapping 

mechanisms in geologic co2 sequestration: case study of SACROC northern 

platform, a 35-year CO2 injection site: American Journal of Science, 310, 4, 282-

324. 

Herrick, D.C., and Kennedy, W.D., 2009, A new look at electrical conduction in porous 

media: A physical description of rock conductivity: Presented at the Annual 

Logging Symposium, SPWLA. 

Huntley, D., Relations between permeability and electrical resistivity in granular aquifers, 

1986: Groundwater, 24, 4,466-474. 



 

56 

 

 

Kane, A.V., 1979, Performance review of a large-scale CO2-WAG enhanced recovery 

project, SACROC Unit Kelly-Snyder Field: Journal of Petroleum Technology, 31, 

2, 217-231.  

Kazatchenko, E., Markov, M., and Mousatov, A. 2003. Determination of Primary and 

Secondary Porosity in Carbonate Formations Using Acoustic Data: Presented at 

the SPE Annual Technical Conference and Exhibition, Denver, Colorado, 5-8 

October 2003.  

Kohonen, T., 2001, The self-organizing map: Springer Series in Information Sciences, 30, 

3, 501-505. 

Kosinski, W.K and W.E. Kelly, 1981, Geoelectric soundings for predicting aquifer 

properties: Ground Water, 19, 2,163-171. 

Kozeny, J., 1927 , Uber kapillare Leitung der Wasser in Boden, Sitzungsber. Akad: Wiss. 

Wien, 136, 271–306. 

Levenberg, K., 1944, A method for the solution of certain non-linear problems in least 

squares: Quarterly of Applied Mathematics, 2, 164-168.  

Leverett, M.C. 1941. Capillary Behavior in Porous Solids: Transactions of the AIME, Vol. 

142, No. 1, 159–172. 

Lloyd, S.P., 1982, Least squares quantization in PCM: Transactions of the IEEE on 

Information Theory, 28, 129-137. 

Lonoy, A., 2006, Making sense of carbonate pore systems: AAPG Bulletin, 9, 1381-1405. 



 

57 

 

 

Lucia, F.J., 1995, Rock-fabric/petrophysical classification of carbonate pore space for 

reservoir characterization: AAPG Bulletin, 79, 9, 1275-1300. 

Lucia, F.J., 2007, Carbonate reservoir characterization. Berlin, Germany, Springer-

Verlag. 

MacQueen, J.B., 1967, Some methods for classification and analysis of multivariate 

observations: Proceedings of 5-th Berkeley Symposium on Mathematical Statistics 

and Probability, Berkeley, University of California Press,  1,  281-297. 

Marquardt, D., 1963, An algorithm for least-squares estimation of nonlinear parameters: 

SIAM Journal of Applied Mathematics, 11, 431-441. 

Marzouk, I., Takezaki, H., and Miwa, M., 1995, Geologic controls on wettability of 

carbonate reservoirs: Presented at the Middle East Oil Show, SPE. 

Matyka, M. and Koza, Z., 2012, How to Calculate Tortuosity Easily: AIP Conference. 

Proceedings, 1453, 17-22  

Mazac, O., Kelly W.E., and Landa I., 1985. A hydrogeophysical model for relations 

between electrical and hydraulic properties of aquifers: Journal of Hydrology, 79, 

16, 123-129. 

Øren, P.E. and Bakke, S., 2002, Process-based reconstruction of sandstones and prediction 

of transport properties: Transport in Porous Media, 46, 31-343. 

http://arxiv.org/pdf/1203.5646v1
http://arxiv.org/pdf/1203.5646v1


58 

Oyewole, E., Saneifar, M., and Heidari, Z., 2015, Multi-Scale Characterization of Pore 

Structure in Carbonate Formations: Application to the SACROC Unit. Society of 

Petrophysicists and Well-Log Analysts. 

Palabos, 2013, The Palabos software project: 

http://www.palabos.org/documentation/tutorial/permeability.html. 

Peters, E.J., 2012, Advanced petrophysics, 1 and 2, Austin, Texas: Greenleaf Book Group. 

Pittman, E.D., 1992, Relationship of porosity and permeability to various parameters 

derived from mercury injection- capillary pressure curves for sandstone: AAPG 

Bulletin, 76, 2, 191-198. 

Purcell, W.R., 1949, Capillary pressures - their measurement using mercury and the 

calculation of permeability: Transactions of the AIME, 186, 39-48. 

Schindelin, J., Arganda-Carreras, I., and Frise, E, Fiji: an open-source platform for 

biological-image analysis: Nature methods, 9, 7, 676-682. 

Skalinski, M., Gottlib-Zeh, S., and Moss, B., 2005, Defining and predicting rock types in 

carbonates – preliminary results from an integrated approach using core and log 

data in Tengiz field: Presented at the 46th Annual Logging Symposium, SPWLA 

Skalinski, M. and Kenter, J., 2013, Carbonate Petrophysical Rock Typing: Chevron Patent 

application, US 2013/0179080 A1. 

http://www.nature.com/nmeth/journal/v9/n7/full/nmeth.2019.html
http://www.nature.com/nmeth/journal/v9/n7/full/nmeth.2019.html


 

59 

 

 

Skalinski, M. and Kenter, J., 2014, Carbonate petrophysical rock typing: Integrating 

geological attributes and petrophysical properties while linking with dynamic 

behavior: The Geological Society of London, 406, 1, 229-259.  

Sok, R.M., Knackstedt, M.A., Varslot T., Ghous, A., Latham, S., and Sheppard, A.P., 

2010, Pore scale characterization of carbonates at multiple scales: Integration of 

Micro-CT, BSEM, and FIBSEM: Petrophysics, 51, 6, 379-387.  

Theologou, P.N., Skalinski, M., and Mallan, R.K., 2015, An MICP-based pore typing 

workflow – core scale to log scale: Presented at the 56th Annual Logging 

Symposium, Long Beach, SPWLA. 

Thomeer, J.H.M., 1960, Introduction of a pore geometrical factor defined by the capillary 

pressure curve: Journal of Petroleum Technology, 12, 3, 73-77.  

Thompson, A., Katz, A.J., and Krohn, C.E., 1987, The microgeometry and transport 

properties of sedimentary rock: Advances in Physics, 36, 625-694. 

Timur, A., 1968, An investigation of permeability, porosity and residual saturation 

relationship for sandstone reservoirs: The Log Analyst, 9, 4, 8. 

Tixier, M.P, 1949, Evaluation of permeability from electric-log resistivity gradients: Oil 

& Gas Journal, pp. 113. 

Vik, B., Djurhuus, K., Spildo, K., and Skauge, A., 2007, Characterization of Vuggy 

Carbonates. SPE/EAGE Reservoir Characterization and Simulation Conference, 

Abu Dhabi, UAE, October 28–31. SPE-111434. 



 

60 

 

 

Walsh, J. B., and W. F. Brace, 1984, The effect of pressure on porosity and the transport 

properties of rock: Journal of Geophysics, 89, B11, 9425–9431  

Wempe, W. A., and Mavko, G. 2002, Effective porosity - total porosity model applied to 

Fontainebleau sandstone: SEG Annual Meeting, Salt Lake City, Utah, USA, 6–11 

October. 

Winsauer W. O., Shearin H.M., Masson P.H., Resistivity of brine-saturated sands in 

relation to pore geometry: Bull. Am. Assoc. Petrol. Geologists, 36, p. 278, 1952 

Wyllie, M. R. J., and Rose, W.D., 1950, Some theoretical considerations related to the 

quantitative evaluation of the physical characteristics of reservoir rock from 

electrical log data : Trans. Am. Inst, Mech. Eng., 189, 105-118. 

Wyllie, M. R. J., and Spangler, M. B., 1952, Application of Electrical Resistivity 

Measurements to Problem of Fluid in Porous Media: ibid., Vol. 36, p. 359. 

Wyllie, M.R.J., Gregory A.R., and Gardner, L.W., 1956, Elastic wave velocities in 

heterogeneous and porous media: Geophysics, 21, 41-70. 




