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ABSTRACT 

Matrix acidizing has been used in oil and gas well stimulation for permeability and 

productivity enhancement purposes. HCl has been repeatedly used as a stand-alone 

stimulating fluid to decrease skin damage, create highly conductive wormholes in 

carbonate reservoirs, and stimulate sandstone reservoirs as a part of mud acid treatment. 

However, HCl in high-pressure/high-temperature (HP/HT) wells is a concern because of 

its rapid reactivity resulting in face dissolution, corrosion, and associated increased 

inhibition costs. This study investigates the effectiveness of a novel insitu-generated acid 

formulation with slower reaction and corrosion rates in stimulation operations in high 

temperature reservoirs. 

The new insitu-generated acid treatment was applied to stimulate two types of 

sandstone cores (Grey Berea and Bandera). X-Ray Diffraction (XRD) was performed on 

the sandstone cores to analyze their carbonate and clay content. Coreflood studies were 

conducted to investigate the impact of the treatment fluid on the permeability of outcrop 

and reservoir cores. Different flow rates of acid injection were set at 1 and 5 cm3/min. 

The influence of temperature of 250 and 300˚F (121-148˚C) was investigated 

using the resulting effluent samples. These samples were analyzed using Inductively 

Coupled Plasma (ICP) for elemental analysis of key cations. Porosity profiles were 

determined before and after treatment using CT scans. 

Experiments were conducted on both the regular HCl acid system and the insitu- 

generated acid system for comparative purposes. Superior stimulation results were 

achieved at 121˚C (250 ) with the insitu-generated acid system. Although plugging 
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problems caused by clay instability in reaction with HCl remains a major concern, 

positive stimulation results occurred in both Grey Berea and Bandera sandstone cores. 

This insitu-generated acid system efficiently removes carbonate and oxide minerals in 

HPHT sandstone reservoirs. No fines migration was observed with Grey Berea. A 

stimulation Kf/Ki (% increase) ranging from 10 to 30% was achieved with Grey Berea 

sandstone. 

The outcomes of this study will assist in a more cost-effective and efficient 

design of acid treatments with minimal jeopardy to the formation integrity. 
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NOMENCLATURE 

BHT Bottom-hole Temperature 

CI Corrosion Inhibitor 

CT wr CT number of the water-saturated rock 

CT ar CT number of the air-saturated rock 

CT w CT number of water = 0 

CT a CT number of air = -1,000 

FA Fixing Agent 

GCMS Gas Chromatography-Mass Spectrometry 

HPHT High-Pressure High-Temperature 

HPLC              High-Performance Liquid Chromatography 

ICP-OES         Inductively Coupled Plasma-Optical Emission Spectroscopy 

Ki Initial permeability 

Kf Final permeability    

Psi      Pound per square inch 

PV Pore Volume      

PVTB Pore Volume to Breakthrough  

RT Room Temperature 

SEM Scanning Electron Microscope 

TDS Total Dissolved Solids 

UKC Urea Kaolinite Composite 

XRD X-ray Diffraction   
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1. INTRODUCTION AND LITERATURE REVIEW

According to Walker et al.1991, stimulating wells with acid was first reported in 

1896.The chief aim of an acidizing job is to bypass the nearby wellbore damage to 

enhance the well productivity. In sandstone reservoirs, the key objective is to accomplish 

deep penetration into the formation region caused by completion and drilling operations. 

The goal is to bypass formation damage and/or restore the flow capacity in the near 

wellbore zone (a radius of 8 to 24 in. [20.3 to 61 cm]) without fracturing the producing 

regions. In carbonate acidizing, the chief purpose is to dissolve large amounts of 

alkaline-earth metals to form  channels or effective wormholes to increase the 

productivity and injectivity index of the reservoir rock. However, the lack of good 

corrosion inhibitors prevented the widespread use of acid treatments. Not until the early 

1930’s did the acidizing industry flourish due to the introduction of arsenic inhibitors 

(Nitters et al. 2000). 

Matrix acidizing is not capable of mitigating all formation damage; nevertheless, 

it is a valuable technique in removing acid-soluble damaging material. However, sulfate 

scales, paraffin, tar, water blocks, and the majority of emulsions are to a great extent 

unaffected by various types of mineral and organic acids. As a result, not all sources of 

permeability damage are acid-soluble. To mitigate these complexities, special treatments 

are required instead of (or in addition to) matrix acidizing. Successful matrix acidizing 

depends upon several factors including; but not limited to, good evaluation of candidate 

wells, proper design for the comprehensive coverage of all the plugged perforations, 

selection of compatible solvents, acids, and mineralogy to prevent or reduce fluid-fluid 
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and fluid-rock incompatibilities (McLeod 1989). Moreover, a crucial factor in the 

success of any matrix acidizing treatment is proper acid placement so that the target 

zones are sufficiently contacted by adequate acid volumes. In a heterogeneous reservoir, 

acid tends to flow through the path of least resistance flowing predominantly to higher 

permeability zones leaving lower permeability zones unacidized (Hill and Rossen 1994). 

Knowing how the formation will react to the acid designed and to anticipate the 

chemistry of the spent acid invading the lithology is crucial to acidizing success 

(McLeod 1984). Furthermore, the nature of the detrimental material and the knowledge 

of the depth at which the damage enters the formation are of vital importance to the 

success of the acid treatment. Well completion fluid systems design has always been a 

perplexing challenge to engineers and researchers. Cost considerations, material 

incompatibilities, undesired chemical interactions, and physical limitations present 

immense complexities in matrix acidizing treatments (Chiu et al.1993; Coulter and 

Jennings, 1999; McLeod 1984,1989; McLeod et al.1983; Shaughnessy and Kunze 1981). 

 A pressure-buildup test should be executed to determine the degree of skin 

(permeability) damage. However, a buildup test may not reveal the exact formation 

permeability damage. Overall formation damage calculated from the performed test will 

collectively appear as a result of inadequate or too few perforations. It is often more 

cost-effective to re-perforate than to acidize if the quality of the perforations are 

suspected.15 to 200 gal/ft. (0.19 to 2.5 m3) of acid in the target zone is typical in matrix 

acidizing treatments. The acid is pumped at a lower pressure than the formation fracture 

pressure. Formation permeability is considered the main factor in the determination of 
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the acid pumping pressure into the formation. The lower the permeability, the higher the 

pumping pressure. Acid can be pumped into the formation at relatively low pumping 

pressures in high permeability formations. 

Mud acid was introduced into the petroleum industry in 1935 (Smith and 

Hendrickson 1965). Mud acid is a blend of both HF and HCl. Hydrofluoric acid (HF) 

has a unique ability to react with silica and silicates; making it an essential component in 

sandstone acidizing. Reaction products should be maintained in solution in order to 

accomplish successful acidizing treatments. HF by itself is a feeble acid; it is not capable 

of keeping the reaction products in solution. To date, mud acid has been extensively 

used since its discovery. However, the reactions and interactions of sandstone minerals 

with acids are different. The elaborate reactions of mud acid with aluminosilicates will 

be discussed in the next section. Unlike carbonate acidizing, sandstone acidizing can be 

complicated in many aspects. As yet, its reactions remain not fully comprehended. Each 

type of mineral is different with unique elements, structure, surface area, and acid 

sensitivity. This poses additional challenges in acid treatment design. 

 Sandstone reservoirs are composed of several minerals including sand, 

feldspars, clays, zeolites, carbonates, oxides, sulfates, and sulfides. Sandstone 

acidizing consists of three key phases: (1) a preflush, typically of a weak HCl 

solution, (2) a mud-acid stage of HCl and HF, and (3) a post- flush of  HCl, 

ammonium chloride or diesel oil (Gidley 1996). However, Gidley et al. (1996) 

suggested that many complications may occur during sandstone acidizing with mud 

acid. Those problems include, but are not limited to, disintegration of clays in HCl, 
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fluosilicates precipitation, carbonate presence in sandstone resulting in calcium 

fluorides precipitation, silica-gel formation and  deposition. 

Reactions in Sandstone Reservoirs 

Primary Reactions: The primary reaction of HF with sand particles is: 

SiO2 + 6HF H2SiF6 + 2H2O .................................................................... (1) 

The reaction of HF with aluminosilicates is 

Aluminosilicates + HF           H2SiF6 + fluorides of Al...................................... (2) 

For example, the reaction of potassium feldspar with HF is (Li et al. 1998) 

KAlSiO8 + 19HF        K+ + 3H+ + AlF2+ + 3SiF6 
2- + 8H2O .............................. (3) 

Secondary Reactions: These are the reactions of fluorosilicic acid, derived from the 

primary reaction, with aluminosilicates. 

The reaction of fluorosilicic acid with potassium feldspar is 

SiF6
2- + 6KAlSiO8 + 20H+ + 10H2O   6K+ + 6AlF2+ + 18H2SiO3 + H4SiO4 .. (4) 

The reaction with fluorosilicic acid with illite is 

SiF6
2- + KAl3Si3O10 (OH) 2 + 6H+ + 4H2O     K+ +3AlF2 + 4H4SiO4 .......... (5) 

Dissolution of aluminosilicates results in the formation of amorphous silica gel. 

Tertiary Reactions: The tertiary reaction of aluminum fluorides with aluminosilicates in 

the presence of HCl involves further reduction of the fluorine (F)/ aluminum (Al) ratio in 

the dissolved aluminum fluoride species. 

The reaction with K-feldspar will be: 

AlF2+ 
 + KAlSi3O8 + 4H+ + 4H2O               K+ + 2AlF2+ + 3H4SiO2 .................. (6) 
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The reaction will continue reducing F/Al ratio in the spent HF until the remaining HCl is 

consumed. 

Challenges Associated with Mud Acid Jobs 

Several problems could arise during mud acid treatments.The following reactions 

discuss the potential cause of precipitations.Quartz reacts comparatively slowly with HF, 

where aluminosilicates (clay minerals, feldspars, and mica) reacts fairly quickly (Li et al 

1998). Mud acid cannot be used in sandstone with high calcite concentration. Calcite 

reacts very rapidly to completion with HCl but in the presence of HF, the reaction 

continues as follows: 

CaCO3 + 2HF                 CaF2 + H2O + CO2 ...................................................... (7) 

CaF2 has extremely limited solubility. Preflushing near the wellbore with HCl minimizes 

this problem. The reaction products of fluosilicic acid and fluoauminic acid are typically 

water soluble, but their potassium, sodium, and calcium salts are partially unsolvable. 

The salts form by the resulting reactions: 

SiF6
2- + 2K+  K2SiF6 ........................................................................... (8) 

SiF6
2- + 2Na+ Na2SiF6 ......................................................................... (9) 

SiF6
2- + 2Ca+ CaSiF6  ......................................................................... (10) 

Spent or unspent HF should not come in contact with calcium, potassium, and 

sodium ions. Avoid formation water containing calcium chloride, potassium chloride, 

and sodium chloride. Ammonium chloride is considered the only compatible salt 

solution with HF. As soon as the acid spends and pH rises, ferric hydroxide forms. Ferric 

irons is produced from minerals such as chlorite, siderite, hematite, and tubing rust. HF 
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possesses the capability to dissolve carbonates, clays, feldspars, micas, and quartz. HF is 

primarily used to remove clays. Reaction rate of HF with sand and clays is dependent on 

the volume of acid used in sandstone reservoirs to the ratio of the surface area of the 

rock. 

HCl Acidizing in Carbonate Reservoirs 

In carbonate reservoirs, HCl has always been the “go-to solution”; it has been 

comprehensively used as a stand-alone stimulating fluid to decrease skin damage and 

create optimized wormholes in carbonate reservoirs. Also, carbonate and iron scales are 

typically removed by using HCl in strengths of 5 to 15%. HCl is also used as a pre-flush 

for HCl/HF (mud) acid to remove drilling mud and to mitigate clay damage. HCl is used 

with HF at a strength of 1.5 to 3% (King 1986). HCl systems have been looked upon 

favorably due to their affordable cost and high rock-dissolving power, with the added 

benefit of soluble reaction products (Coulter and Jennings 1999). However, HCl in high-

pressure high-temperature (HP/HT) wells is a major challenge because of its rapid and 

uncontrolled reaction rate. HCl and its based fluids have major drawbacks. First, in 

stimulating shallow formations as they may cause face dissolution if injected at low rates 

and may potentially collapse weakly consolidated formations. Second, the associated 

high cost of inhibition, third, the HCl sensitivity of clay minerals and zeolites, and 

sludging tendencies in asphaltene rich crudes. Chrome-based tubulars (Cr-13) and 

duplex steel corrosion is another major concern. According to Tuttle (1987), the 

corrosion rate largely depends on “the susceptibility of the material under the 

environmental conditions to which it is exposed”. Corrosion problems become more 
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intensified at elevated temperatures, and special pricey additives such as intensifiers are 

necessary to compensate for the corrosion inhibition loss at elevated bottom-hole 

temperatures (BHT) temperatures. Therefore, corrosion inhibitors and intensifiers must 

be supplemented to the acid solution before the treatment is injected to minimize the 

rates of corrosion. The most efficient category of corrosion inhibitors are typically film-

forming amines and their salts. However, they begin to decompose at 482˚F (Schauhoff 

and Kissel 2000). 

Unfortunately, the cost of these additives exceeds 5% of the total treatment cost 

(Nitters et al. 2000). Furthermore, the excessive addition of corrosion inhibitors may 

induce other problems, such as the adsorption of the corrosion inhibitor on the surface of 

the pay zone; changing its wettability or causing severe emulsion problems, particularly 

in low permeability reservoirs (Schechter 1992). In more extreme environments or less 

corrosion-resistant metallurgy, a higher loading of corrosion inhibitor intensifiers 

become necessary. Fluid incompatibility issues can occur when these inhibitors are 

combined with other additives present in the treatment fluid. Not to mention, with 

regards to illitic-sandstone reservoirs, HCl-based fluids are not a viable option as when 

HCl directly contacts illite, it breaks down inducing fines migration resulting in a sharp 

decrease of permeability due to clogged formation pores (Mahmoud et al. 2011). 

Literature repeatedly proved that the majority of the clay minerals are basically unstable 

in HCl at temperatures larger than 300˚F. 
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Clay and Mineral Reactions 

Clays are layered silicates formed by the erosion and/or disintegration of rocks, caused 

by the chemical reactions of other rock-forming silicate minerals. The layers are 

composed of various combinations of two fundamental units: 

Fig. 1—1 Structure of the tetrahedral layer (Reprinted from geology.uprm.edu 2013) 

Fig. 1—2 Structure of the octahedral layer (Reprinted from Averill and Eldredge 2012) 
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1. Tetrahedral layers consisting of linked silicon-oxygen tetrahedra Fig. 1—1.

2. Octahedral layers in which hydroxyl ions fall in two planes, above and below a plane

of magnesium or aluminum ions Fig. 1—2. 

Sedimentary rocks are formed of clay minerals in the form of crystal packs. 

They are particularly tiny materials with a maximum dimension of a normal clay particle 

is less than 0.005 mm. There are three main clay minerals in Berea and Bandera 

sandstone cores: kaolinite, illite, and chlorite. Kaolinite is composed of a two-layer 

structure, K+ exchange cation with a negligible base exchange capacity. Kaolinite is a 

non-swelling clay, but will readily disperse and migrate. Formation damage from 

fines is situated in the vicinity of the wellbore region within approximately 3-55 ft 

radius. Kaolinite has the ability to adsorb water; which is held tightly to the clay 

surfaces. Conversely, illites are interlayered, thus, possess the poorest characteristics 

of the dispersible and swellable clays. Moreover, illites are the most problematic to 

stabilize. Also, this type of clay can adsorb water, due to concentration imbalances 

between the ions found at the interchange locations on the clays and the solute 

content of the fluid in clay contact. Chlorite with HCl, becomes unstable and Al and 

Fe are leached from clays, leaving the amorphous silica gel which causes damage 

Fig. 1—3 shows the SEM picture of the various clays showing the variations in 

morphology (Wilson 1982). 
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Fig. 1—3 SEM picture of different clays showing the variations in morphology (Reprinted from Wilson 1982) 

Clay Instability 

Simon and Anderson (1990) studied the stability of clays in HCl and their 

temperature limitations. Kalfayan and Metcalf (2000) modified McLeod’s work to 

consider the effect of certain mineral sensitivities such as zeolites and the 

importance of using higher HCl:HF ratios to avoid precipitations, and Economides 

and Nolte (2000) modified the guidelines to account for chlorites and zeolites. Since 

then, widespread research has been devoted to the subject of mineral sensitivity to 

acids. Hibbeler and O’driscoll (1996) presented the guidelines to designing the acid 

treatment at different temperatures. Walsh et al. (1982) presented guidelines to the 

minimum HCl requirement to prevent precipitations based on the concentration of 

HF and the amount of remaining carbonates after the pre-flush. Gdanski (1999, 

1998) defined the secondary and tertiary reactions in sandstone reservoirs and the 
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effect of both temperature and HF concentration on these reactions. Thomas et al. 

(2002) highlighted the effect of HCl: HF ratio on the formation of hydrated silica. 

Amaefule et al. (1988) stated that rock-fluid interactions in illite and 

smectite-rich sandstone reservoirs, can be classified in two main  categories: (a) 

chemical interactions caused by the rock minerals contact with incompatible fluids, 

and (b) excessive flow and pressure rates. 

Thomas et al. (2001) described that HCl has destabilized illite and 

chlorite in the investigated cores from producing sandstone formations. The 

degradation of illite and chlorite contr ibuted to  significant core damage. 

Decomposition of clay minerals readily consume HCl at elevated BHT. To 

avoid Fe precipitation, HCl acid should be avoided with chlorite content ranging 

from 0.5-2%. This is explained by the fact that when chlorite contacts HCl, it 

discharges iron and other clays and feldspars releases sodium or potassium. Silica 

gel forms, polymerizes, and creates colloidal particles inducing plugging problems. 

Literature shows that clays react to acetic acid in the same manner it reacts to fresh 

water, however, it does not decompose clays. In numerous reports, acetic acid 

encouraged smectite and illite clays to swell. Fortunately, this issue can be alleviated 

by the addition of 5% NH4Cl. This process helps prevent the disintegration and clay 

swelling after clay ion exchange completion. Fig. 1—4 shows the percentage of 

chlorite destroyed by acid at 180°F while Table 1-1 shows the different cations 

leached from chlorite by various acids. 
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Table 1—1 Ions leached from chlorite by various acids. 

Fluid 

Ionic Concentration 

(mg/l) 

Amorphous 

Material 

Percent Chloride 

Destroyed 

Mg Al Si Ca Fe 

DI Water 

10% Acetic 

Acid 

10% Formic 

Acid 

3% HCl Acid 

1 

27 

158 

158 

1 

11 

214 

265 

7 

26 

110 

125 

6 

35 

73 

65 

1 

53 

460 

565 

0% 

4% 

35% 

55% 

0% 

30% 

92% 

100% 

Fig. 1—4 Percent chloride destroyed by acid at 180°F. 
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Mineral Type Temperature, °F 

Zeolites 75-150 

Chlorite 150-175 

Illite 190 

Smectite 200 

Kaolinite 225 

Table 1—2 stability limit of clays in HCl (Reprinted from Coulter and Jennings 1999). 

Coulter and Jennings (1999) summarized the efforts done in the subject of 

mineral sensitivity with HCl. General consensus in literature have proven that all clays 

become unstable in HCl at different temperatures (Coulter and Jennings 1999). 

 The stability of temperatures of the different clay minerals with HCl are 

displayed above in Table 1—2. 

 Hibbeler and O'Driscoll (1996) published their recommendations for the 

maximum mud acid concentrations based on different temperatures. Their 

recommendations are summarized in Table 1—3. 
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Temperature 
Maximum HCl Concentration, 

wt% 

Maximum Mud Acid strength, 

wt% 

<180˚F 

180-220 ˚F 

>220 ˚F 

15 

10 

7.5 

12-3% 

9-3% 

7.5-1.5% 

Table 1—3 Hibbeler and O’Driscoll guidelines (Reprinted from Hibbeler and O’Driscoll 1996). 

Clays have much higher surface areas compared to feldspars making them more 

reactive. Quartz on the other hand has a very small surface area which is why its reaction 

with acids could be completely ignored. Clay concentration is crucial to detect, as they 

affect the acid design greatly. Table 1— 4 has a list of the surface areas of different 

sandstone minerals. This is also shown in Fig. 1—5. 

Mineral Surface Area 

Quartz 

Feldspar 

Kaolinite 

Smectite 

Illite 

<0.1 cm2/g 

few m2/g 

15-30 m2/g 

82 m2/g 

113 m2/g 

Table 1— 4 Relative surface area of sandstone minerals (Reprinted from McLeod and Norman 

2000). 
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Fig. 1—5 Size of different sandstone minerals (Reprinted from McLeod and Norman 2000). 

Mud Acid Alternatives 

With the advancement of technology, alternative fluids to mud acids were 

introduced to stimulate sandstone reservoirs as several cases reported formation 

damage (Smith and Anderson 1990; Nasr-El-Din et al. 1998; Thomas et al. 2002). The 

following disappointing results were attributed to the shortcomings of the conventional 

mud acid system. Those problems include, but are not limited to, formation damage 

caused by HCl-sensitive clays (e.g., illite) decomposition, rapid rate of reaction and 

corrosion rates associated with high temperatures resulting in reaction products 

precipitation during secondary and tertiary reactions. Efforts have been made to 

overcome the problems associated with mud acid treatments. These attempts included 

the practice of retarded mud acid systems (Gdanski 1985, 1998; Gdanski and Shuchart 

1996; Al-Dahlan et al. 2001). Nevertheless, at elevated temperatures, these systems 

proved to have similar problems as the conventional mud acid treatment. For instance, 

according to Dahlan et al. 2001, aluminum chloride retarded HF system is predisposed to 

aluminum fluoride precipitation. Fluoboric-based retarded mud acid might form a 

potassium-based precipitate (KBF4) if it contacts clays such as illite or K-feldspars. In an 
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attempt to improve sandstone acidizing, organic acids such as acetic or formic acid were 

presented as alternatives to HCl owing the reason to their retarded reaction rate, lower 

corrosivity, easier inhibition, and a reduced tendency to form acid/oil sludge in 

asphaltene-rich crudes (Domelen and Jennings 1995). Organic acids provide more 

conductive length as it spends slower on the rock and penetrates deeper into the 

formation compared to regular HCl. A combination of 13/9% acetic/formic acid is 

utilized as it has similar overall acid strength as 15% HCl. However, the rock-dissolving 

capacity of 13/9% acetic/formic acid is noticeably lower than that of 15% HCl. (Harris, 

1961; Smith et al., 1970; Chatelain et al. 1976; Fredd and Fogler; Huang et al. 2000; 

Nasr-El-Din et al.2001). Nevertheless, organic acids have many drawbacks. Several case 

studies showed that formic acid can help trigger fines flocculation (Chang et. al 2008). 

These acids cannot be used at high acid concentrations to prevent precipitation of their 

calcium salts (calcium acetate and formate). Organic acids possess a small dissociation 

constant. Their low dissolution capability may still hinder wormhole propagation leading 

to inadequate formation stimulation. The release of CO2 from carbonate dissolution 

prevents organic acids from reacting to their full capacity. Moreover, the extent of 

hydrogen ion generation diminishes with elevating temperature, and, lastly, the cost of 

organic acid is considerably more expensive than that of HCl for a comparable mass of 

rock dissolved. Nasr-El-Din et al. 2007b observed that not all of the solid beads 

containing lactic acid hydrolyzed in the field and some of the lactic acid beads reacted 

with mill scales. Apelblat (1993) detected that an insoluble precipitate of calcium citrate 

formed from the reaction of carbonates with citric acid. To mitigate these problems, 
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many researchers proposed a blend of organic-HCl acids. However, there have been 

allegations that the organic acid spending amount will be additionally reduced when it is 

mixed with HCl due to the CO2 release by the HCl-CaCO3 reaction. In a study by Buijse 

et al. 2004, only 24% of the 10 wt% acetic acid was spent in a 15 wt% HCl/10 wt% 

acetic acid solution. In a further attempt to reduce the rate of acid-rock reactions, 

chelating agents such as EDTA (ethylene diamine tetra-acetic acid), HEDTA 

(hydroxyl ethylene diaminetriacetic acid), and GLDA (glutamic acid-N, N-diacetic 

acid) were evaluated. GLDA was found to be compatible with the sandstone mineralogy 

having up to 18 wt% illite (Mahmoud et al. 2011). At 300˚F, GLDA, HEDTA, and 

EDTA showed decent compatibility with illitic-sandstone cores. Moreover, the optimum 

ratio of GLDA/HF concentration was 20 wt% GLDA/1 wt% HF giving a major increase 

in sandstone permeability. Nonetheless, Fernier et al. 2000 found out that an EDTA in an 

acid solution has inadequate solubility in the acid at pH < 4 and that EDTA is not 

typically biodegradable while NTA has a lower stability constant for Fe and Ca, it was 

also found to be an animal carcinogen (Fernier et al. 2000; 2001ab; 2003). 

Despite the technological advancements in the area of acidizing, success rates are 

hardly consistent and fairly low (estimated 50%-70%) particularly in sandstones. In fact, 

Nitters et al. (2000) specified that major companies report treatment failures as high as 

25 to 30%. Severe problems may arise when an acid job fails; further damage to the well 

may occur, not to mention the cost of the treatment is squandered. Nonetheless, with 

properly engineered matrix acidizing treatments, considerable production enhancements 
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can be attained. The success of matrix stimulation can be enhanced if it is systematically 

implemented. 

These findings fueled the desire to test a novel in-situ generated acid system that 

had similar dissolution power compared to regular HCl but with a lower reaction rate, 

more clay stabilization properties, and finally results in lower corrosion rates. 

In the area of matrix acidizing, urea hydrochloride contribution has been a 

practically untouched subject. The aim of this work is to primarily investigate the 

performance of urea hydrochloride as an alternative to regular HCl in the dissolution of 

carbonate minerals in sandstone formations. Second, to identify the effect of mineralogy 

of the cores on the outcome of the urea hydrochloride treatment. Third, is to identify the 

effect of additives on the stimulation of Grey Berea and Bandera sandstone cores and, 

finally to evaluate the effect of temperature and flow rate on the outcome of the 

treatment. 

Urea 

According to Walker 1988 Urea, or carbamide, is an organic compound known with 

the chemical formula of CO(NH2)2. The urea molecule is composed of two amino (-

NH2) groups linked to a carbonyl (C=O) functional group. Urea has many distinctive 

characteristics; it is a white, odorless solid, with high water solubility, and typically non-

toxic when used in minute quantities. It is slightly basic, which gives it the advantage of 

acting as a buffering medium for acid reactions. Urea has long been used since its 

synthetic discovery by Friedrich Wöhler in 1828 by treating  silver 

cyanate with ammonium chloride using the following reaction: 

http://en.wikipedia.org/wiki/Organic_compound
http://en.wikipedia.org/wiki/Chemical_formula
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Carbon
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Nitrogen
http://en.wikipedia.org/wiki/Carbonyl
http://en.wikipedia.org/wiki/Functional_group
https://en.wikipedia.org/wiki/Friedrich_W%C3%B6hler
https://en.wikipedia.org/wiki/Silver_cyanate
https://en.wikipedia.org/wiki/Silver_cyanate
https://en.wikipedia.org/wiki/Ammonium_chloride
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AgNCO + NH4Cl → (NH2)2CO + AgCl…………………………………..…. (11) 

Also, in the laboratory, urea is formed when phosgene reacts with ammonia as shown by 

the following reaction: 

COCl2 + 4 NH3 → (NH2)2CO + 2 NH4Cl………………………………….… (12) 

The appearance and structure of urea can be seen as follows in Fig. 1—6 and Fig. 1—7 

respectively: 

Fig. 1— 6 Appearance of urea. 

Fig. 1— 7 Structure of urea (Reprinted from Urea 2015). 

Urea has many uses in a multitude of industries. In the oil and gas industry, it is 

used to help isolate straight chain and branched hydrocarbons in petroleum. Moreover, 

urea is extensively utilized in the production of many plastics and resins. Polyurea, on 

the other hand, is a unique product used to prevent corrosion and renew damaged 

http://science.jrank.org/pages/5126/Petroleum.html
http://science.jrank.org/pages/5816/Resins.html
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surfaces of pipes and pipelines, tanks, and compressors. For industrial purposes, urea is 

manufactured from synthetic ammonia and carbon dioxide. The properties of urea are 

shown in Table 1—5. Ever since the decomposition of urea was first presented by 

Wöhler (1829), the understanding of its products, by‐products and reaction pathways 

have been the subject of several studies. Knowing which products, the scope of chemical 

reaction or when are they formed is obviously of practical interest when understanding 

its chemical kinetics and most recently its interactions with the reservoir rock formation. 

The main decomposition products of urea are ammonia (NH3), isocyanic acid (HNCO), 

and carbon dioxide (CO2). 

Chemical formula CH4N2O 

Molar mass 60.06 g·mol−1 

Appearance White solid 

Density at 25 ˚C {77˚F},100 kPa 1.32 g/cm3 

Melting point 133 to 135 °C (271 to 275 °F 

Solubility in water 107.9 g/100 ml (20 °C) 

Solubility 500g/L glycerol,50g/L ethanol 

Basicity (pKb) PKBH
+ = 0.18 

Table 1—5 Properties of Urea in the Urea-HCl solution including chemical formula, molecular 

 weights, density, and solubility constants (Reprinted from Williams 2001; Godfrey et al. 1997). 

http://en.wikipedia.org/wiki/Ammonia
http://en.wikipedia.org/wiki/Carbon_dioxide
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Urea is remarkably stable owing to its resonance stabilization. This diminishes 

the electrophilicity of the carbon atom (Wheland 1955). 

Urea decomposes into ammonium cyanate (see reaction 3). Ammonium cyanate 

decomposes into ammonia and cyanic acid (see reaction 4) followed by a second 

reaction where HNCO is hydrolyzed into carbon dioxide and ammonia (see reaction 5). 

For dry solid urea, 

(NH2)2CO (s) → NH3 (g) + HNCO (g)...………………….…………………. (13) 

For urea-water solutions, 

NH2CONH2      →   NH4+OCN-………………………………………………. (14) 

 Urea ammonium cyanate 

NH4+OCN-  ⇌         NH3      +      HOCN ………………...………….......... (15) 

Ammonium cyanate       ammonia         Cyanic acid 

HOCN         +      H2O   +       Heat    →    NH3 +       CO2.......................... (16) 

Cyanic acid          water      ammonia          carbon dioxide 

The quest for trustworthy information is crucial as the decomposition reactions 

for urea are complex and are contingent on various conditions such as temperature, 

heating rate, pressure, open or closed vessel, and mass and heat transfer limitations are 

also thought to be essential (Schaber et al. 2004). The impact of each parameter is not 

yet completely understood. The following mechanisms are related with intramolecular 

and intermolecular proton-exchange interactions involving both amino groups or the 

amino and the carbonyl groups (Estiu and Merz 2004). 
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The thermolysis of solid urea studies two focal decomposition areas and involves 

thermogravimetric analysis of urea decomposition shown in Fig. 1—8. In the first 

region, above its melting point of 133 °C (271°F) and up to 250 °C (482°F), urea starts 

to slowly vaporize and then starts to decompose according to reaction pathway (see 

reaction 13). Other problems arise with temperature elevation as the production of biuret 

from urea and isocyanic acid or the formation of cyanuric acid, ammelide, ammeline or 

melamine. The decomposition of biuret back into HNCO is also believed to happen in 

this similar area. 

After 250 °C (482°F), the high‐performance liquid chromatography (HPLC) 

analysis showed that there is no noticeable quantities of urea, only some residual 

by‐products that begin to decompose into HNCO in this second region; above 350 °C 

(662°F) and up to 500 °C (932°F). 

Fig. 1—8 Thermogravimetric analysis of urea pyrolysis. Mass losses (−) and 1st derivative (‐‐). Reprinted from Schaber 

et al.2004. 
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The HPLC plot shown in Fig.1—9 shows the different distribution of urea pyrolysis 

products at a wide array of temperatures from 100-350 ˚C (212-662°F).  

Fig. 1—9 HPLC Mass Plot: urea pyrolysis reaction (100.0 g of urea initially)(Reprinted from Schaber et. al 2004). 

Urea Hydrochloride 

Urea Hydrochloride is an organic salt that hydrolyses insitu bottomhole releasing H+ ions 

which reacts with earth-alkaline elements forming in-situ ammonium chloride (NH4Cl) 

which acts as a clay stabilizer. Urea Hydrochloride is 71% as strong as HCl Acid and 

twice as strong as Phosphoric acid. With the constant need to search for the optimum 

acidizing solution, the aim of this work was done to determine the feasibility of using 

this novel in-situ generated acid as a potential stand-alone fluid for dissolving carbonates 

(Calcium and Magnesium) in sandstone reservoirs, especially, illite-rich sandstone and 

to investigate the formulation in corrosivity reduction and clay stabilization compared to 

regular HCl during stimulation operations at high temperature reservoirs. Urea-HCl is 

given by the following formula CH5ClN2O and has a molecular weight of 96.5162 
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g/mol. The structure and appearance of urea-HCl can be seen as follows in Fig. 1—10 

and Fig. 1—11 respectively: 

Fig. 1—10 Structure of urea-HCl (Reprinted from urea hydrochloride 2005). 

Fig. 1—11 Appearance of urea-HCl. 

Urea hydrochloride can be produced with any desired ratio of urea and HCl. A 

combination of 1:4 and 4:1 moles of urea with HCl can be formed to fit the desired 

purpose. However, a typical ratio is between 0.5 moles of urea with 1 mole of HCl. A 

more ideal composition contains at least roughly 1 mole of urea to one mole of HCl. The 

mixing of both components results in a slight exothermic reaction (Sargent et al. 1997). 

The molar ratio of the fixing agent (FA): HCl is provided to be 1.7. It is proposed 

that the adduction between HCl and urea via hydrogen bonding allowed for the 

dissolution of urea beyond the typical solubility limit. A proposed theory is that FA 
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complexes with the HCl molecules to keep them in solution having higher concentration 

than 37 wt% (Jiang et al. 2013). 

Applications 

• Urea-HCl helps eliminate the accumulation of water-insoluble metal salts on

surfaces such as Ca, Mg, Ba, Al, Sr, and Be 

• Urea hydrochloride also provides a method to reduce the solids content of

industrial liquids containing water-insoluble metal salts 

• Removal of carbonate scale from boilers

• Urea hydrochloride is an affordable and useful agent in the dissolution of metal

salt dispersions or suspensions, especially, calcium carbonate 

• Urea hydrochloride adjusts pH of dying baths and recreational waters, as well as,

acting as a corrosion inhibitor and an anti-scaling agent 

• Used in ore reduction, food processing, pickling, industrial acidizing, and general

cleaning 

Advantages 

• Retarded reaction rate, greater ability to get the acid deeper into the formation

before spending 

• The acid is released insitu, this leads to the reduction of CI loading, and as a

result a reduction in the overall cost of the acid job 

• Urea hydrochloride is less corrosive to metal equipment, tubing, and smart

completion 

• NH4Cl is generated insitu, thereby acting as a clay stabilizer
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• The HCl in the formula forms soluble reaction products so there is a lower

chance to form insoluble precipitations 

• No need for Fe-control agents as the effluent pH is 0. The effluent samples

generated contain live acid 

• Urea-HCl has a significantly lesser tendency to discharge hydrogen chloride gas

• No fluoride into the formulation, therefore, no risk of damaging the formation

and creating insoluble precipitates (CaF2 ,Na2SiF2  , and K2SiF6 ) 

• The capacity to leave the formation water-wet and clean for optimum oil and gas

production/injection 

• Both urea and HCl are readily available and affordable

• Environmentally friendly as urea is biodegradable (93-98%) in a 24-hour cycle

• The formulation has a pH reduction capability

• The urea-HCl can act as a pre-flush before the mud acid treatment

Hydrolysis of Urea Hydrochloride 

In this section two proposed methodologies for the study of urea-HCl hydrolysis is 

presented. The first suggested mechanism is based not only on other studies available 

from the literature, but also on the conditions detailed below. 

According to Walker and wood (1903), the salts of weak bases (urea in this 

study) are incompletely disintegrated in aqueous solution into free acid and base, with a 

greater extent of hydrolysis as the base is weaker. Moreover, the concentration of the 

free mineral acid in the aqueous solution is roughly proportional to the rate at which 

methyl acetate is transformed into methyl alcohol and acetic acid. It is therefore 
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plausible to approximate the hydrolysis magnitude of the hydrochloride of the weak base 

by matching the rate at which a certain solution of methyl acetate is catalyzed under its 

impact with the rate at which the methyl acetate is catalyzed by a comparable solution of 

pure HCl. The rate of catalysis of methyl acetate by regular HCl was 0.00315; the rate of 

catalysis by regular urea hydrochloride under similar conditions was 0.00174. A normal 

solution of urea hydrochloride comprises less than half the quantity of urea 

hydrochloride. Consequently, about 55% of the whole formulation is decomposed by 

water into free urea and HCl .The range of 77 to 104˚F (20 - 40˚C), has no effect on the 

hydrolysis of urea Hydrochloride. Moreover, the addition of NaCl slightly decreased the 

hydrolysis rate. The following equations propose the possible hydrolysis of urea-HCl in 

water. 

(NH2)2CO (s) + HCl →    NH2CONH3
+ .Cl ………….………........................ (17) 

NH2CONH3
+ .Cl + H2O   → (NH2)2CO + H3O++ Cl- ……….…..…………....(18) 

The second suggested mechanism is advocated by Shaw and Bordeaux (1995) by 

employing the method of initial rates. Earlier works presented by Walker and Hambley 

1895; Fawsitt 1902; Werner 1918, 1920; Price 1919; and Warner 1942 have studied the 

reaction of urea decomposition in the presence of acids and bases. The reaction of HCl 

with urea hydrochloride was found not to be catalyzed by the acid. Several of the above-

mentioned works collectively agreed that ammonium cyanate is an intermediate in the 

decomposition of urea in aqueous solution. 

Nessler technique allowed the measurement of ammonium ion concentrations that 

corresponded to urea conversion to reaction products. The technique of initial rates was 
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applied (i.e., Δu / Δt can be set equal to du/dt, where u is the urea concentration and t is 

time). Product-time curves were generated and were found linear for all temperatures. In 

the reaction of water only, however, the curves displayed some departure from linearity. 

The effect was amplified with increasing urea conversion. 

In acid, a rapid quantitative conversion of the cyanate ion to ammonium ion 

occurrs and is shown in (see reaction 22). If insufficient acid is available (see reaction 

22) is does not go to completion. However, if adequate acid is existent all the cyanate

ion is quantitatively converted to ammonium ion. Cyanate forms ammonium ions which 

in turn dissociates releasing H+ ions shown by (see reaction 23).This closed loop retards 

the rate of reaction as H+ ions circulates between both reactions, allowing less available 

ions at any given time to attack the carbonate surface. This reaction, on the other hand, 

might not go to completion under certain conditions. But, the reaction is complete at 

room temperature in sufficiently concentrated acid solution. At RT, the reaction is 

extremely slow. At pH of 1.4, the Eo for the reaction in the presence of acid is the same 

as in water alone which is equivalent to 30.9 Kcal, the frequency factor corresponds to 

5*1013 sec -1. According to Warner 1942, the constant in acid has a slight tendency to be 

higher than that in water. Werner (1918, 1920) established the structure of urea in 

aqueous solution as I shown in (see reaction 19). 
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(19) 

(21) 

(22) 

(23) 

(24) 

(25) 

(20) 

(26) 

          The reaction was observed to be a first order reaction with respect to urea over a 

wide range of concentration. This is displayed by (see equation 1): 

Rate = = k1. [u]1  ……...……………………………………..............(1) 

k1 = koe
–Ea/RT………………………………………………………………...(2) 

Eo= 30.9 Kcal 

R= 1.986 Cal mol-1K-1 

Ko= 5* 1013 @ 80˚C =176˚F=353 K 

K= 5*1013
*exp [ ] 

          The first order rate constant was calculated based on data gathered by Warner 

1942 using the Arrhenius (see equation 2) and was found to be K= 3.15*10-16   sec -1. 

Fig. 1—12 references the observed retardation factor for an aqueous solution with 

HCl and the FA (urea in our study) at 68 ˚F (20 ˚C). Retardation factor signifies the time 

it took for the retarded HCl of an equal effective concentration to consume a calcite 

sample, compared to regular HCl (HCl amounts being between 15 and 28 wt%).The 
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percentage of effective HCl is directly proportional to the retardation factor provided by 

urea but no further increase in retardation was observed from 23 to 28 wt% HCl. 

Fig. 1—12 Observed Retardation Factor with Urea (Reprinted from patent no. 20150037234). 

Fig. 1—13 depicts two retarded acid systems. The data displayed indicates the 

pore-volume to breakthrough (PVBT) for two fluids at various injection rates, which is 

the number of PV of acid that is pumped into a core before breakthrough is observed on 

the opposite end of the core sample. An indication of retarded acid reaction rates can be 

seen where a lower pumping rate provides the lowest PVBT. The treatment fluid (square 

points 104) having HCl and FA (urea or a urea derivative) showed significant retarded 

reaction rates relative to the typical retarded acid system (square points 102) at a 

temperature of 300˚F. A proposition can be made that urea acts as an inhibitor/retarder, 

urea molecules and CaCO3 compete for H+ ions causing a retarded reaction rate.  
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Fig. 1—13 Comparative PVTB between a typical retarded acid system vs. Urea hydrochloride system at 300˚F 

(Reprinted from Patent no. 955394). 

The Intercalation of Urea in the Interlamellar Spaces of Kaolinite 

One of the suggested modes of action of the novel insitu-generated system is the contact 

of urea present in the urea-HCl solution after hydrolysis with the kaolinite mineral 

present in the sandstone core mimicking the dynamic intercalation technique. In other 

words, it is possible that some of the urea in the urea-HCl formulation binds with the 

kaolinite present in sandstones for a sufficient time period. Literature showed that 90% 

intercalation occurred in 15 minutes (Yan et al. 2005) at 90˚C. Therefore, it is plausible 

that the timing of the experiment (the time it takes to inject 5 PV of acid into the core) 

provided enough contact time between urea and kaolinite. The following proposition 

mimics the static/dynamic intercalation technique where urea molecules diffuse into the 

kaolinite crystal layers and delaminates it forming urea-kaolinite complex (UKC) 

displayed by the XRD patterns in Fig. 1—14. 
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During the intercalation process, the water amount present in the kaolinite is 

vital, as the catalysis action of the percentage of water present in kaolinite permits urea 

to form single molecules containing adsorbed water on its surface. This phenomenon 

allows the single urea molecules to effortlessly penetrate the kaolinite interlayers (Yan et 

al.2005). Fig. 1—14, below, shows the UKC after reaching equilibrium, where A, B, and 

C represents the three distribution structures of intercalated urea molecules. 

Fig. 1—14 Kaolinite-urea system after reaching equilibrium. A, B and C represent the three distribution structures of 

intercalated urea molecules (Reprinted from Yan et. al 2005). 

In the kaolin group, kaolinite is the most profuse mineral, they are characterized 

by a 1:1 dioctahedral structure with the chemical configuration of Al2Si2O5(OH)4. 

Kaolinite possesses a unique asymmetric layered assembly with (SiO)6 macrorings on 

one side and aluminol groups on the opposite side. 

Infrared spectra of the raw kaolinite and the UKC have been collected displayed 

in Fig. 1—15. The raw kaolinite demonstrates four OH-stretching bands Fig. 1—15a. at 

3695, 3668, 3653 and 3619 cm-1. These four peaks occur for UKC as well, but the 

absorption band located at 3695cm-1, initiated by the inner surface hydroxyl of kaolinite, 
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is feeble. The two absorption bands situated at 3668 and 3653 cm-1 almost vanish, 

which is attributed to the inner surface hydroxyls of kaolinite. The band located at 3619 

cm-1, triggered by the inner hydroxyl of kaolinite, shows negligible change. This 

phenomenon confirms that urea molecules are bonded with the inner surface hydroxyls 

of kaolinite, but not with the inner hydroxyls. The UKC is not stable. According to Yan 

et al. 2005, during UKC heating, the gas generated by the decomposed urea in the 

composite caused the kaolinite in the composite to delaminate forming a number of 

perfect and thin crystal pieces. Fig. 1—16 shows the XRD patterns of (a) raw kaolinite 

and (b) kaolinite–urea intercalation composite. 

Fig. 1—15 Infrared absorption spectra of (a) raw kaolinite and (b) kaolinite–urea intercalation composite (Reprinted from 

Yan et. al 2005). 

OH-stretching bands for raw 

kaolinite and UKC 
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Fig. 1—16 XRD patterns of (a) raw kaolinite and (b) kaolinite–urea intercalation composite (Reprinted from Yan et. al 

2005). 
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2. EXPERIMENTAL METHODS

Materials 

Materials used for this study include the following: 

 30 wt% urea-Hydrochloric acid (HCl) was provided by a local service company

 Additives obtained from a local service company: such as corrosion inhibitor,

intensifier, acid dispersant, anti-sludge, non-emulsifier, iron control were used 

 Deionized water (TDS = 20 ppm) was used to prepare 2 and 5 wt% KCl solution

The characteristics of the treatment fluid are listed in Table 2—1. The core 

composition of Grey Berea and Bandera cores were determined using XRD techniques 

shown in Table 2—2 and 2—3. 

Density, g/cc Viscosity, cp Concentration of HCl,% pH 

1.1128 1.656 16.3 0 

Table 2—1 Characteristics of the treatment fluid. 

Two types of Grey Berea cores with different mineralogy and a type of Bandera 

outcrop core with dimensions of 1.5 in. diameter and 6 in. length were used. The 

coreflood experiments were run at various flow rates of (1, 2, and 5 cm3/min) and 

different temperatures (250 and 300˚F) to determine the optimum flow rate with which 

urea-HCl can dissolve the cementing material (Calcium and Magnesium) in sandstone. 
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Complete fluid analysis, including pH, density, and viscosity measurements, 

were measured for the coreflood effluent samples to investigate the reaction of urea-HCl 

with Grey Berea and Bandera sandstone cores. 

Mineral Compositions wt% 

Quartz 86 

K-Feldspar 3 

Illite 1 

Chlorite 2 

Kaolinite 5 

Calcite 2 

Dolomite 1 

Table 2—2 Mineralogy of Grey Berea Core. 

Mineral Compositions wt% 

Quartz 57 

Plagioclase 12 

Dolomite 16 

Chlorite 1 

Illite 10 

Kaolinite 3 

Table 2—3 Mineralogy of Bandera Core. 
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Core Preparation 

 All types of sandstone cores were oven-dried at 250˚F for 12 hours and the dry weight 

of the cores was measured. The cores were then saturated with 5 wt% KCl under a 

vacuum pump. The deionized water, used throughout the experiments, was attained from 

a purification water system having a resistivity of 18.2 MΩ.cm at RT. The weight of the 

saturated core was obtained after the measurement of the initial permeability to ensure 

that the core was completely saturated. The difference between the dry weight and the 

weight of the saturated cores divided by the density of the brine used in the experiments, 

was used to calculate the porosity of the cores (see equation 3). 

…………………………………………...………………….. (3) 

Where:  

Vp: pore volume, cm3; ρ: brine density, g/cm3 

Initial and final permeability measurements were performed separately from the acid 

injection. Permeability was measured both at room and high temperature (250˚F) by 

injecting a 2 or a 5 wt % KCl brine. Darcy’s equation for laminar flow was used for the 

permeability calculation (see equation 4) 

     ...................................................………………………………...(4) 

k: permeability, md; L: core length, inch; d: core diameter, inch; q: flow rate, cm3/min; 

µ: dynamic viscosity, cp; Δp: psia. 
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Solution Preparation 

1. An example of solution preparation of 15 wt% HCl solution

To prepare 100 g of the solution: 

HCl acid weight = ×100 = 41.1 g 

Plus the following additives were added in shown in Table 2—4. 

Type of additive Loading 

Acid inhibitor 0.6 vol % 

Anti-sludge 5 gpt 

Non-emulsifier 1 gpt 

Iron control 7.5 gpt 

Table 2—4 Types of acid additives used with HCl in this study. 

Finally, deionized water was added. 

DI H2O weight = 100 – (weight of HCl acid + additives) 

2. An example of solution preparation of  30 wt% urea-HCl solution

To prepare 250 ml of the solution: 

The base fluid of 30 wt% urea-HCl solution was provided by a local service company 

plus the addition of the subsequent additives in a sequential order with the following 

loading amounts shown in Table 2—5. 
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Type of additive Loading 

Acid inhibitor 0.6 vol % 

Acid dispersant 5 gpt 

Anti-sludge 2 gpt 

Non-emulsifier 2 gpt 

Iron control 5 gpt 

Intensifier 4 vol % 

Table 2—5 The types of acid additives used for urea/ HCl in this study.

Equipment 

Coreflood 

The coreflood setup used in the experiments is shown in Fig. 2—1. A back 

pressure of 1200 psi was applied to all experiments to keep the CO2, resulting from 

carbonate dissolution, in solution. The overburden pressure applied was approximately 

1700 psi. A low-pressure transducer of the range 0-300 psi was used for all experiments. 

A pressure transducer was linked to a computer to measure the pressure drop across the 

core during the whole set of experiments. A Teledyne ISCO D500 precision syringe 

pump, having a maximum allowable pressure of 2000 psi, was utilized to inject the acid 

treatment into the core. The pressure drop across the samples was automatically recorded 

with time, while injecting the treatment. 



40 

Fig. 2—1 A schematic diagram of the Coreflood Apparatus (Reprinted from Mahmoud et. al 2011). 

CT Scan 

Computed-tomography (CT) scanning is considered one of the best tools to pinpoint the 

damage in sandstone cores with high precision (Bartko et al.1995). 

CT scans were conducted on the cores before and after the treatment to monitor 

changes in core porosity. The relationship between the CT number and the porosity can 

be described as follows (see equation 5, Izgec et al. 2005): 

Porosity =  ……………………………………………………….. (5) 

Where CT wt is the CT number of the water-saturated rock, CT ar is the CT 

number of the air-saturated rock, CT w is the CT number of water = 0, and CTa is the CT 

number of air = -1,000. 

Brine 
DI 

water 
Acid 
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The CT scanner shown in Fig. 2—2 was used to get CT numbers and generate 

porosity profiles for the cores used in the coreflood experiments.The cores were CT-

scanned dried and then saturated with its inlet direction facing the entrance of the 

scanner. 

The CT number is correlated to bulk density as displayed in (see equation 6) 

(Izgec 2009). 

ρbulk = aCTN + b…………………………………………………………………………….…..(6)

Where is ρbulk the bulk density, CTN signifies the CT number, a is the slope, b is the 

intercept of the linear relation between CTN and the bulk density. 

Fig. 2—2 CT-scan device. 

Hot Rolling Oven 

All the sandstone cores used were dried at 220  in the oven for 4 hours to a maximum 

of 12 hours to ensure the evaporation of any insitu water initially present in the core. 
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X-Ray Diffraction (XRD) 

D8 DISCOVER displayed in Fig. 2—3 is an analytical technique used to determine the 

atomic and molecular crystal structure, in which the crystalline atoms cause a beam of 

incident X-rays to diffract into various specific directions. A crystallographer can emit a 

3D image of the electron density within the crystal by measuring the angles and 

intensities of these diffracted beams. XRD specimens mechanically crushed to fine 

powder and and put in a concave sample base. Clay-size portion samples are separated 

from the bulk sample on a glass slide. XRD provides semi-quantitative information on 

the relative abundance of bulk and clay minerals present in the samples examined. These 

percentages are crucial to effective stimulation treatment design.

Fig. 2—3 X-ray diffraction (Reprinted from ammrf.org.au/my scope/ xrd 2014) 

http://www.azom.com/ads/abmc.aspx?b=6651
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Inductively Coupled Plasma Optical Emission Spectrometry (ICP-OES) 

Optical emission spectroscopy (OES) utilizes quantifiable measurement of the optical 

emission from excited atoms to measure cation concentration. Those atoms dissolved in 

solution are aspirated into the excitation region where they are dissolved and atomised 

by a plasma. Electrons can either be in their stable state or excited when they are given 

energy. This is the excited state. A photon of light is emitted when an electron falls from 

its excited state to its ground state. Each element has a distinctive set of wavelengths that 

it can emit. A schematic is given in Fig. 2—4. 

Fig. 2—4 An illustration of ICP theory. 

          An Optima 7000 ICP-OES Spectrometer was utilized in this research, Fig. 2—5, 

to investigate the core effluent samples collected for the iron, magnesium, silicon, 

aluminum, and calcium concentrations. 
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Fig. 2—5 Optima 7000 ICP-OES Spectrometer (Reprinted from .sisc.com.vn). 

Steps for Using ICP-OES 

1. Ventilation must be working.

2. Open the air and argon tanks and modify their pressures.

3. Switch the machine on.

4. Select the appropriate method from the computer attached to the ICP.

5. Light the lamp and leave it for 30 minutes to warm up.

6. Aspirate deionized water and select auto zero.

7. Aspirate the calibration blank (2% HNO3) and select auto zero.

8. Calibrate using standards (5, 15, and 30) ppm and check the linearity of the

standard and the correlation coefficient value. 

9. Analyze samples.

10. Close the Winlab program window after closing the air and argon and bleeding

them from the pipes. The results will be shown in ppm. 
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11. If any samples are deviated from the range of the standard curve (0-30 ppm),

make the appropriate dilution and reanalyze them again. 

Titrator 

The acid titration is based on the volumetric method for determining the acid 

concentration. The Thermo Scientific Orion 950 Titrator utilized in this study is shown 

in Fig. 2—6. An auxiliary reagent (NaOH) of an identified concentration (1M) is applied 

to the pre-dose volume of titrant (acid solution). A dispenser is used to add the auxiliary 

reagent, until a pH electrode measures a pre-set pH value of 7. Then the volume of the 

reagent of a known molarity will be used for molarity calculations. The effluent sample 

acid concentrations is calculated using the flowing equation: 

Macid  Vacid = Mbase  Vbase…………………….............................................................. (7) 

Where Macid is the acid molarity, Vacid is the acid volume, Mbase is the base molarity, and 

Vbase is the base volume. 

The titration is used to measure the equivalence of HCl in the 30 wt% urea-HCl 

solution. 
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Fig. 2—6 Thermo Scientific Orion 950 Titrator (Reprinted from .coleparmer.com 2015). 

Dean Stark 

The Dean-Stark tool is a piece of glassware used for water accumulation or other liquids 

from a reactor displayed in Fig. 2—7. The apparatus is used in an arrangement with 

a reflux condenser and a batch reactor for water continuous removal (Circulation 

system), shown in Fig. 2—8, produced during the chemical interactions performed at a 

specified temperature. It was invented by E. W. Dean and D. D. Stark in 1920 for the 

determination of the water content in petroleum. The apparatus usually consists of 

vertical cylindrical piece of glass with a full length volumetric graduation and a 

precision tap on its bottom .The topmost of the cylinder fits with the bottom of the 

condenser and the fluid collected drips into the distilling trap (Dean and Stark 1920).The 

following de-contamination method aims to de-contaminate the outcrop cores from any 

water remains. Throughout the reaction, the reaction solvent vapors (toluene) dissolves 

any solvents present in the core and is condensed by the cooling water circulating around 

the lines. 

https://en.wikipedia.org/wiki/Laboratory_glassware
https://en.wikipedia.org/wiki/Chemical_reactor
https://en.wikipedia.org/wiki/Reflux_condenser
https://en.wikipedia.org/wiki/Batch_reactor
https://en.wikipedia.org/wiki/Temperature
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Fig. 2—7 Dean Stark Apparatus.  Fig. 2—8 Circulation system. 

Gas Chromatography-Mass Spectrometry 

Gas chromatography–mass spectrometry (GC-MS) shown in Fig. 2—9 is 

an analytical technique combining both the characteristics of gas-

chromatography and mass spectrometry to classify various compounds within a given 

sample. GC-MS is used to implement a particular test where it positively detects the 

physical presence of a specific substance in any given sample. The GC-MS consists of 

two central equipments: the gas chromatograph and the mass spectrometer. The relative 

affinity and the variance in the chemical characteristics between different molecules in a 

mixture, for the static phase of the column, will encourage molecule separation as the 

sample travels throughout the column. The molecules are reserved by the column and 

are eluted at different (retention times). This practice allows the mass spectrometer to 

capture, ionize, accelerate, deflect, and detect the ionized molecules independently. The 

mass spectrometer ensures this by breaking every molecule into ionized fragments and 

https://en.wikipedia.org/wiki/Analytical_chemistry
https://en.wikipedia.org/wiki/Gas-chromatography
https://en.wikipedia.org/wiki/Gas-chromatography
https://en.wikipedia.org/wiki/Mass_spectrometry
https://en.wikipedia.org/wiki/Gas_chromatograph
https://en.wikipedia.org/wiki/Mass_spectrometer
https://en.wikipedia.org/wiki/Molecule
https://en.wikipedia.org/wiki/Ion
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detecting their fragments. Both of the two components, used together, permit a greater 

extent of compound identification than either unit used individually. 

Precise identification of a certain molecule by gas chromatography or mass 

spectrometry alone is not reliable nor possible. The mass spectrometry process normally 

necessitates a pure specimen while gas chromatography uses a flame ionization detector 

were it cannot distinguish between compound molecules having equivalent retention 

times, resulting in two or more molecules that co-elute.  In this study, GCMS tests were 

run on both unheated and treated 30 wt% urea-HCl at 250 ºF to detect any possible 

decomposition products which might potentially contribute to some of the damage 

observed in Grey Berea sandstone cores. 

Fig. 2—9 GC/MS Instrument (Reprinted from gcms confirmation 2010). 

https://en.wikipedia.org/wiki/Flame_ionization_detector
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3. RESULTS AND DISCUSSION

In an attempt to counteract some of the major issues encountered by the use of regular 

HCl, urea-HCl with its retarded reaction rate capacity, lower corrosivity, and clay 

stabilization properties is experimented and evaluated as an acidizing alternative in the 

stimulation of Grey Berea and Bandera sandstone cores. 

For this reason, three flow rates (1, 2, and 5 cm3/min) and two temperatures (250 and 

300˚F) were tested on different sandstone mineralogy. The coreflood outcomes were 

compared based on the ratio of final to initial permeability. After the injection of 5 PV of 

acid, the flow switched back to brine and collecting the effluent samples was started at 

every quarter of PV. The injection of brine and the collection of samples were stopped 

based on two scenarios: 

1) The effluent sample became colorless.

2) The pressure drop stabilized, which means that the acid was pushed out by the

brine. 

The cores were scanned after treatments using a CT scanner to determine their 

porosity profile before and after treatment. The effluent samples were diluted a 1,000 

times for Berea sandstone and 2,000 times for Bandera sandstone to make sure that the 

concentration of each of the cations was below 30 mg/l. These samples were analyzed 

using inductively coupled plasma (ICP) analysis using Optima 7000 DV ICP-OES 

system and WinLab 32 TM software for the following elements: Ca, Mg, Al, Fe, and Si. 

XRD was performed on the different sandstone cores to analyze their carbonate and 

clay content while GCMS detected the decomposition products on the treated and 
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unheated treatment fluid at 250 ˚F. Complete fluid analysis such as density and pH 

measurements for the resultant effluent samples was done to study the reaction of urea-

HCl with Grey Berea and Bandera sandstone. 

XRD Results 

The following Table 3—1 shows the quantitative mineralogy compositions of both Grey 

Berea and Bandera rock samples. 

Mineral Composition Bandera 

(%) 

Berea 

(%) 

Quartz SiO
2 57 86 

K-feldspar KAlSi
3
O

8 - 3 

Calcite CaCO
3 - 2 

Dolomite CaMg(CO
3
)
2 16 0 

Illite (K,H
3
O)(Al,Mg,Fe)

2
(Si,Al)

4
O

10
[(OH)

2
,(H

2
O)] 10 1 

Kaolinite Al
2
Si

2
O

5
(OH)

4 3 5 

Chlorite (Mg, Fe)
5
Al(AlSi)

3
O

10
(OH)

8 1 2 

Plagioclase NaAlSi
3
O

8 12 - 

Table 3—1 Quantitative XRD mineralogy for Grey Berea and Bandera sandstone. 
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Qualitative XRD was performed on 3 different types of sandstone cores with 

different mineralogy. Bandera sandstone consisted of dolomite, albite, some kaolinite, 

illite, and chlorite shown in Fig. 3—1. Moreover, the G-14 and G-15 cores (a different 

type of Grey Berea core having different mineralogy) shown in Fig. 3—3 had no calcite 

at all in their mineralogy. Dolomite and clay minerals such as Kaolinite, chlorite, and 

illite were present in abundance. Whereas the previous type of Grey Berea outcrop 

exhibited different mineralogy shown in Fig. 3—2. No dolomite was found but had 

calcite and kaolinite present with chlorite, illite, and albite.  

Fig. 3—1 Bandera Sandstone XRD Results 

 

Bandera 

• Dolomite 

• Some 

Kaolinite 

• Chlorite and 

Illite 
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Fig. 3—2 Grey Berea Sandstone XRD Results.

Fig. 3—3 Grey Berea Sandstone with Different Mineralogy XRD Results. 

Grey Berea 

• No

Dolomite

• Calcite

• Kaolinite

Berea with different 

mineralogy 

• No Calcite

• Dolomite

• Kaolinite

• Chlorite and

Illite
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CT Scan 

Cores were scanned using a CT scanner for better understanding of the porosity profile 

of the core Fig. 3-22, 27, 29, 34, and 3-41 show porosity profiles for the 6 in. long, cores 

treated by the novel urea-HCl solutions at flow rates of (1-5) cm3/min, and at a 

temperature of (250 - 300) ºF. 

          The decrease in the CT number typically suggests a lower density. This was 

observed in Be-13 coreflood experiment shown by Fig 3–41. This might indicate an 

increase in the core porosity after the treatment (i.e. the core was stimulated) or through 

the dissolution of a heavy material. 

          CT number increases were observed in four coreflood experiments (Be-02, 03, 10, 

and 11). The increase in CT number suggests a precipitation of a high density material 

compared to sandstone. This indicates a reduction in the core porosity (i.e., the core was 

damaged). The scans were taken before and after the coreflood experiments throughout 

the length of the core. The cores were saturated with the same type of brine used before 

scanning. As a result, changes in the CT number were caused by changes in the core 

porosity only. These changes might have occurred because of the precipitation of 

reaction products due to the development of secondary and tertiary reactions. Another 

cause could be due to the precipitation of urea and iron oxides or colloidal silica gel 

deposition. 

Gas Chromatography- Mass Spectrometry (GCMS) Results 

The following two graphs Figs. 3–4 and 3–5 show GCMS results for both heated and 

unheated urea-HCl solution. The objective of the test was done to determine the thermal 
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stability of the formulation i.e. whether or not there is urea-HCl decomposition at a 

temperature of 250˚F. The x-axis is the retention time for different components in the 

sample and in this case, the urea, which is the amount of time the sample spent 

interacting with the column and the y-axis is the relative abundance, which is the signal 

intensity normalized to the peak that gave the highest amount of signal. In Fig. 3–4, the 

unheated urea appears lower because the borate signal is much higher in the (untreated 

urea-HCl) graph than it is in the bottom graph (treated urea-HCl), so it is normalized to 

the borate peak instead of the urea peak like it is in the treated one. 

        In the top graph, the untreated formulation, the 3.45E9 corresponds to the signal 

intensity for the borate signal and since the urea is ~20% of the relative abundance of 

this signal, it is normalized to the 3.45E9 that means that the urea signal is ~ 6.40E8 

counts. This actually means that in comparison to the heated urea-HCl sample shown by 

Fig. 3—5, which is 4.88E8, there is a higher amount of urea in the untreated sample. 

        In the heated urea-HCl graph at 250˚F, the unidentified peak region shows more 

peaks compared to the untreated sample. The following signifies the occurrence of 

secondary and tertiary reactions within the formulation itself. 
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Fig. 3—4 Untreated urea-HCl graph. 
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Fig. 3—5 Heated Urea-HCl at 250˚F graph. 

Viscosity and Density Measurements 

The dynamic viscosity was first measured at RT using an Ubbelohde capillary 

viscometer. The viscosity was then measured at high temperature using an oil bath. 

Increments of 10˚C (50˚F) was added until a temperature of 90˚C (194˚F) was reached. 

urea 

borate 

Unidentified peaks 

urea 

borate 

Unidentified peaks 
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The treatment fluid was poured into the capillary tube of the 0C type viscometer. Three 

viscosity timings were recorded with a stopwatch and the averages were taken. The 

viscosity was calculated by multiplying the timing in seconds with the constant value, C, 

of 0.003. The viscosity measured was then divided by the density of the treatment fluid 

at high temperature and was extrapolated to 121.1˚C (250 ˚F). 

The faster it takes for the fluid to pass between the two marks on the capillary 

tube, the lower the viscosity of the fluid. The higher the temperature, the lower the 

viscosity. The Fig. 3—6 below shows the temperature in celsius versus kinematic 

viscosity in centipoise. At our desired temperature of 250˚F, the viscosity reached 0.2 cp. 

The kinematic viscosity is the proportion of the dynamic viscosity μ to the density of the 

fluid ρ. Kinematic viscosity was calculated using (see equation 8): 

ν = ……………………………………………………………………………….. (8) 

The density of both HCl and urea-HCl was measured both at RT using the DMA 

35 portable density meter and at high temperature using the DMA 4100 high temperature 

density meter. Increments of 10˚C (50˚F) was added from RT till 90˚C (194˚F) then the 

density was extrapolated to 121.1˚C (250˚F). The higher the temperature, the lower the 

density of the fluid. 

The viscosity and density of urea-HCl is shown in Table 3—2 below, with the 

addition of all six types of additives, was found to be higher than regular HCl with its 

additives included. While the pH of both solutions were of similar acidity of 0. The HCl 

equivalence was almost the same in both acid systems. 

https://en.wikipedia.org/wiki/Density
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Acid Type 
Viscosity 

timings 

Viscosity, 

cp 

Density 

average 

Density, 

g/cc 

Concentration 

of HCl,% 

pH 

HCl+ 

additives 

7min:7 sec 

1.22 

1.0771 

1.0773 15 0 

7min:11 

sec 
1.0774 

7min:13 

sec 
1.0775 

Urea-HCl 

+additives 

9:00 

1.596 

1.102 

1.1023 16.7 0 9:04 1.1025 

9:11 1.1023 

Table 3—2 Viscosity and density measurements at 75˚F. 

Fig. 3—6 Temperature vs kinematic viscosity measurements from RT to 250˚F (121.11 ˚C).
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Coreflood Studies 

Coreflood experiments were run using the coreflood setup shown in the previous seciton. 

This methodology was designed to provide further insight into the complex action of 

urea-HCl and, with equal importance, achieve a coherent experimental approach for 

future work. As such, the equipment was chosen to cover a range of experimental 

conditions, including the operating temperatures of the coreflood system and the 

temperature range for urea’s decomposition. To ensure inert conditions, argon and 

nitrogen were used. 

In this section, the effect of temperature and flow rates in the acidizing 

treatments is studied. Five sets of coreflood experiments were conducted on 6 and 4 in. 

Grey Berea and Bandera sandstone of a wide range of permeabilities (4-163 md) up to 

300˚F. The first set of experiments was performed with 15 wt% HCl as a control for 

comparative reasons against the 30 wt% urea-HCl treatment. In the second set of 

experiments, 30 wt% urea-HCl solutions (17.6 wt % HCl) with the addition of the 6 

types of additives were used. The experiments were performed at temperatures up to 

300°F.The third set of experiments was performed with 30 wt% urea-HCl acid solution 

adding only a corrosion inhibitor and a corrosion inhibitor intensifier to study the effect 

of the insitu-generated acid (17.6 wt % HCl) on the dissolution of carbonate minerals in 

sandstone cores. In the fourth set of experiments, 30 wt% urea-HCl solutions (17.6 wt % 

HCl equivalence) with the addition of the 6 types of additives were used to stimulate 

Bandera sandstone. In the fifth and final set of experiments, 30 wt% urea-HCl solutions 
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(17.6 wt % HCl) with all of the 6 types of additives were used on a different type of 

Grey Berea core having different mineralogy (G-14 and 15). 

Prior to the acid treatment, the cores were saturated utilizing 5 wt% KCl brine, 

the initial permeability was measured when the pressure stabilized. During the coreflood 

runs, 5 wt% KCl brine was injected while the core was heated to the desired 

temperature. Followed by that, 5 PV of the acid treatment was injected. Subsequently, 

the cores were flushed again with 5 wt% KCl brine. Finally, the cores were left to cool 

down and 5 wt% KCl brine was pumped at a steady rate until the pressure drop re-

stabilized and the final permeability was measured. This procedure was repeatedly done 

for all of the first 4 sets of experiments. In the final set of experiments (section-E), 

however, 2 wt% KCl brine was pumped instead. 

These runs were implemented to evaluate the success of the acid as a stand-alone 

stimulation fluid. For each coreflood experiment, the pressure drop across the core was 

plotted using Lab-View software.  

Some results showed a significant amount of iron dissolved and precipitated on 

the injection face of the cores, i.e. where the contact occurs between the acid and the 

rock, producing a decrease in final permeability, which indicated severe formation 

damage. The damage increased with the increase of the amount of iron in the solution. 

At higher temperatures and lower flow rates, the damage was significant. Core length 

did not affect the degree of damage.  
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List of Experiments 

The entire experiments composed of 30 wt% urea-HCl solutions with all of the additives 

included performed at a temperature of 250˚F resulted in core sample damage from a 

range of (13-35%) on Grey Berea sandstone composed of calcite with no dolomite 

content available. Conversely, all of the 30 wt% urea-HCl with the addition of only the 

CI and the intensifier resulted in a range of stimulation (3-30%).The Grey Berea 

sandstone (G-14 and 15) with different mineralogy containing dolomite with no calcite 

showed a permeability enhancement of up to 30%. Specifically. The G-15 with all of the 

6 types of additives included showed the most enhancement (30%), while, the G-14 core 

sample with the addition of only CI and intensifier showed only a slight enhancement of 

around 3%. 

 Grey Berea Experiments 

 Table 3—3 below shows the initial and final brine permeability measurements for 11 

Grey Berea sandstone cores and their respective percent regain permeability values were 

obtained for each test. The treatment outcome and description is also mentioned below. 

In the following table, S: signifies stimulation, SD: signifies severe damage, and D: 

signifies damage. 
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Core 

ID 

Test 

ID 

Formation Permeability Treatment 

outcome 

Test 

Description Initial 

K 

Final 

K     

Kf/Ki % 

Regain 

Be-

02 

Test 

1 
GB 73.3 55.5 0.757 24.28 D 

30 wt% 

Urea-HCl at 

250 ˚F with 

all additives 

Included 

Be-

03 

Test 

2 
GB 80.2 

No 

stabili-

zation 

- - SD 

30 wt% 

Urea-HCl at 

300 ˚F with 

all additives 

Included 

Be-

05 

Test 

3 
GB 85.2 99.4 1.666 17 S 

15 wt% 

HCl at 250 

˚F 

Be-

06 

Test 

4 
GB 93.2 112.1 1.203 20.27 S 

15wt % 

HCl at 300 

˚F 

Be-

08 

Test 

5 
GB 49.4 54.6 1.105 10.53 S 

30wt% 

Urea-HCl at 

250˚F- Only 

CI and 

Intensifier 

Included- 

Be-

09 

Test 

6 
GB 34.7 24.8 0.714 28.53 D 

30wt% 

Urea-HCl at 

250 ˚F 

with all 

additives 

Included 

Table 3—3 Berea sandstone experiments summary. 
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Core 

ID 

Test 

ID 

Formation Permeability Treatment 

outcome 

Test 

Description 

Initial 

K 

Final 

K     

Kf/Ki % 

Regain 

Be-

10 

Test 

7 
GB 49.1 31.9 0.649 35.03 D 

30wt% Urea-

HCl at 250 ˚F 

with all 

additives 

Included 

Be-

11 

Test 

8 
GB 46.2 40 0.865 13.41 D 

30wt% Urea-

HCl at 250 ˚F 

with all 

additives 

Included 

Be-

13 

Test 

9 
GB 103.5 120.2 1.161 13.14 S 

30wt% Urea-

HCl Only CI 

and 

Intensifier 

Included-at  

250˚F 

G-14 
Test 

10 
GB 162.9 167.78 1.03 3 S 

30wt% Urea-

HCl- Only CI 

and 

Intensifier 

Included-at 

250˚F 

G-15 
Test 

11 
GB 126.8 165.6 1.306 29.4 S 

30wt% Urea-

HCl  at 250 

˚F 

with all 

additives 

Included 

Table 3—3 Continued. 
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Bandera Experiments 

Table 3—4 below shows the initial and final brine permeability measurements for 2 

Bandera sandstone cores and their respective percent damage permeability values were 

obtained for each test. Test description and outcome was also mentioned. Bandera has a 

lower permeability compared to both types of Grey Berea cores. Both coreflood 

experiments resulted in a range of permeability damage from (5-22%). 30 wt% urea-HCl 

with all of the additives included at 250 ˚F resulted in 22% damage using a flow rate of 2 

cm3/min ,on the other hand, using a higher flow rate of 5 cm3/min resulted in a 4.87% 

damage only (no significant damage was found). The test with the lower flow rate 

showed 5 times more damage compared to the test performed at a higher flow rate. The 

following phenomenon can be attributed to the higher residence time induced by the 

lower flow rate resulting in more contact time between the acid and the formation. 

However, it is important to take into consideration that Ba-01 initially was 3 times more 

permeable than Ba-02. Any minor amount of Fe precipitation or silica gel residue or fine 

migration would magnify the permeability reduction as there is originally a lesser 

number of pore throats available in in Ba-02. 

This can be attributed to the damage due to the urea-HCl decomposition in 

formulation inciting urea precipitation and/or an additive incompatibility causing 

wettability alterations and induced formation damage. 
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Core 

ID 

Test 

ID 
Fm 

Permeability 
Treatment 

outcome 
Test Description Initial 

K 

Final 

K 
Kf/Ki 

% 

Regain 

Ba-01 
Test 

1 

Ban-

01 
12.3 11.7 0.95 4.87 Damage 

30wt% Urea-HCl 

@ 250 ˚F 

with all additives 

Included 

Ba-02 
Test 

2 

Ban-

02 
4.5 3.5 0.78 22.2 Damage 

30wt% Urea-HCl 

@ 250 ˚F 

with all additives 

Included 

Table 3—4 Bandera sandstone experiments summary. 

Coreflood Experiments 

Section-A: 15 wt % HCl -All of the Additives Included-250˚F @ 5 cm3/min-Berea 

Sandstone 

The following coreflood experiments were done using 15 wt% HCl. These experiments 

acted as a control against which the urea-HCl results were compared. Each test was 

repeated once on Grey Berea sandstone. A temperature of 250 and 300˚F was set with a 

flow rate of 5 cm3/min used throughout the tests. 5 wt% KCl and 5 PV of 15 wt% HCl 

were injected in the injection direction at RT till the temperature of 250 ˚F was reached 

and the pressure drop stabilized. The flow was then switched to brine, continuous 



65 

injection was maintained and final permeability was measured. The effluent samples 

resulting from the coreflood experiments were collected every quarter PV. 

The pressure drop profile explains the pressure drop in psi on the x-axis versus 

the pore volume injected on the y-axis. By comparing the initial and final permeability, 

Fig. 3—7 and 3—9, an enhancement in the permeability was achieved despite the 

damage resulting from injecting HCl at that high temperature. 

Viscosity and ,as a result, the pressure drop increased as the flow was switched 

from brine to acid injection as the acid by default has a higher viscosity compared to 5 or 

2 wt% KCl. The pressure drop at the end of the graph is lower than the pressure drop at 

the beginning of the graph. This can be attributed to the enhancement associated with the 

dissolution of the cementing material in sandstone. With the dissolution of the cementing 

material, the viscosity decreased and the pressure drop declined signifying a 

permeability enhancement. Moreover, the pressure drop elevation was due to the release 

of CO2 owing to the reaction of the treatment fluid with the carbonates, accordingly, a 

back pressure of 1200 psi was applied to keep the gas in solution. However, when the 

salt concentration increased, the solubility of CO2 in water diminished and some gas was 

released increasing the pressure as displayed in Figs. 3—8. Table 3—5 summarizes the 

15 wt% HCl experimental conditions. 

From ICP analysis Fig. 3—11, no precipitate was observed in the effluent 

samples signifying no fines migration. However, high iron content was observed in the 

core effluent samples. That is attributed to the dissolution of chlorite and illite clays in 

the sandstone by HCl. 
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It can be observed that the stimulation at 300˚F is higher than at 250˚F as more 

carbonates are dissolved at higher temperatures. ICP results confirm that. The Ca2+ and 

Mg2+ curve is broader at 300˚F compared to 250˚F. This signifies more carbonates 

dissolution by the acid and, thereby, more stimulation. The high Fe2+ concentration can 

be attributed to the illite and chlorite attack by HCl. Al3+, on the other hand, is 

present due to the dissolution of kaolinite and feldspars. Minute quantities of Si4+ are 

observed due to the physical dissolution of silica with HCl. Table 3—6 and 3—7 

show the properties of the Grey Berea core used in the 15 wt% HCl experiments. 
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Test 

ID 

Initial 

Brine K 

Final 

Brine 

K 

Treatment 

Conditions 

Test Description 

Be-

05 
85.3 99.4 

Injecting 5 wt% 

KCl at 5 cm3/min 

at 75˚ F 

Injecting 5 PV 

HCl at 5 cm3/min 

at 250˚ F 

 

15 wt% HCl plus all the additives 

included at 250 ˚F–  Ki and Kf were 

measured in the injection direction 

Be-

06 
93.2 112.1 

Injecting 5 wt% 

KCl at 5 cm3/min 

at 75˚ F 

Injecting 5 PV 

HCl at 5 cm3/min 

at 300˚ F 

15 wt% HCl plus all the additives 

included at 300 ˚F –  Ki and Kf were 

measured in the injection direction 

Table 3—5 Summarizing 15 wt% HCl experimental conditions. 

Ki, md Kf, md Increase,% Q, cm3/min Φ, % 

85.20 99.40 16.67 5 15.80 

Table 3—6 Berea-05 rock, flow, and % stimulation/damage properties. 
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Fig. 3—7 Initial permeability of Berea-05 core at 75 ˚F. 
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Fig. 3—8 Pressure drop profile of Berea-05 during HCl injection at 250˚ F. 

Fig. 3—9 Final permeability of Berea-05 core at 75˚F. 
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It is evident from the pH versus PV graph shown in Fig. 3—10 that the pH of 

the effluent samples containing 5 wt% KCl brine started from approximately 8. The 

pH sharply declined as the 5 PV of the treatment fluid was injected to reach a pH of 

0.This signified that the effluent samples contained live acid and not all of the acid 

was spent dissolving the carbonates in the core. Subsequently, the pH rose as the 

core was flushed with brine. 

 

Fig. 3—10 pH of effluent samples from Berea-05 core at 75˚F. 

 

    



 

71 

 

       

 

Fig. 3—11 ICP analysis for 30wt%Urea-HCl with Berea-05 core. 

Ki, md Kf, md Increase,% Q, cm3/min Φ, % 

93.2         112.1 20.28 5 12.6 

 
Table 3—7 Berea-06 rock, flow, and % stimulation/damage properties. 
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Fig. 3—12 Initial permeability of Berea-06 core at 75˚F. 

 

Fig. 3—13 Pressure drop profile during urea-HCl injection at 300 ˚F. 
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Fig. 3—14 Final permeability of Berea-06 core at 75 ˚F. 

 

Fig. 3—15 ICP analysis for 15 wt% HCl with Berea-06 core. 
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Section-B: 30 wt% Urea-HCl -All of the Additives Included @ 5 cm3/min-Berea  

Sandstone 

For the following experiments at 250 ˚F, each test was repeated twice on Grey Berea 

sandstone. A temperature of 250˚F was set with a flow rate of 5 cm3/min used 

throughout the tests. 5 wt% KCl and 5 PV of treatment fluid was injected in the injection 

direction. The effluent samples resulting from the coreflood experiments were collected 

every quarter PV. 

Grey Berea with (5% kaolinite, 2% chlorite, 1% illite, and 3% carbonates) 

showed damage after its treatment using an additive package, including the six types of 

additives mentioned earlier, given by a local company. The damage can be attributed to 

a multitude of factors. This damage might be a collection of one or more factors 

depending on the dominant mechanism(s). Formation damage could be induced by fines 

migration or precipitation of silicate gel inside the core since flowing HCl in the cores 

containing illite and chlorite encouraged the pressure drop to elevate due to t he  

migra t ion  of  clay reaction products, formation of reaction product and/or 

viscosity increase, illite and chlorite (having a high surface area) are attacked by 

HCl, the aluminum layer is removed. This in turn weakens the clay structure 

making it more susceptible to fluid flow effects. 

Another potential reason might be due to some acid-additive incompatibility with 

the core that potentially alters its wettability or urea-HCl decomposition at 250 ˚F as 

revealed by the GCMS results. This urea-HCl decomposition could have incited 

precipitations inside the core or other secondary and tertiary reaction depositions 
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reducing its permeability. According to literature, the product distribution is temperature 

dependent and considering the working temperature at which the coreflood system is 

running impacts ammonia production. That is to say, the temperature ought to be as low 

as possible, otherwise, the formation of other unwanted by-products could be 

problematic (Fang and DaCosta 2003). 

 Moreover, urea dissociated from the acid formulation leaving some regular HCl, 

could have decomposed clays such as illite and chlorite, consequently, inducing 

formation damage. 

The reproducibility of the coreflood was achieved by repeating Be-02 test with 

Be-09 (24.28 and 28.53 % damage respectively) under similar experimental conditions 

as shown in Table 3—8. While, Be-10 was the repeat of Be-11 (35.03 and 13.41 % 

damage respectively). It is noteworthy to say that the percentage of damage in the 

second set of experiments (Be-10 and Be-11) was higher and lower respectively than the 

first set of experiments (Be-02 and Be-09). The following can be attributed to two 

causes, however, further experimentation and investigations are required to confirm the 

higher (35.03%) and lower (13.41%) damage respectively compared to the first set of 

experiments (Be-02 and Be-09). This could be the effect of using a lower flow rate of 1 

cm3/min versus 5 cm3/min of the latter. The lower flow rate contributed to a higher 

residence time of the acid contacting the formation inducing the damage. On the other 

hand, the higher flow rate could have exceeded the critical velocity of the clay particles 

inducing clay dislocation, as a result, fines migration and subsequent formation damage 

took place. 



 

76 

 

By comparing ICP results Fig. 3—21 and 3—25, it can be seen that the high iron 

content in the core effluent is attributed to the dissolution of chlorite which results in 

leaving amorphous silica rich residue that damages the formation. It can be noticed 

accordingly that the pressure drop at the end of the coreflood experiment is greater than 

the pressure drop at the beginning of the pressure drop profile. Finally, the spikes in the 

pressure drop profile Fig. 3—2 are a result of the fines migration caused by injecting 

HCl in an illite- rich formation. Table 3—8 summarizes the 30 wt% Urea/ HCl 

experimental conditions. 

The damage highlighted from the ICP results in some cores may be due to fines 

migration due to the formation unconsolidation after the dissolution of the cementing 

material (carbonate and dolomite). The maximum concentrations of Ca occurred almost 

after the injection of a limited PV injection of acid. However, the maximum peak for the 

dissolved concentrations of Fe and Al is after a larger PV of acid was injected, which 

shows that acid first reacted with calcite and dolomite in the core and then with the 

chlorite. The aluminum sheet contacts the acid as kaolinite has 1:1 layered structure. 

Illite and chlorite, on the other hand, both have 2:1 layered structure, which contain the 

aluminum sheet in between the two silicon sheets. This arrangement makes it more 

challenging for acid to contact the aluminum sheet. Thus less Al was dissolved in the 

effluent solutions. 
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Test 

ID 

Initial 

Brine K 

Final 

Brine K 

Treatment Conditions Test Description 

Be-

02 

73.3 55.5 

5 cm3/min for brine and 

acid injection throughout 

the test 

30 wt% urea-HCl plus all the 

additives 250˚F –K measured 

at 75˚F 

Be-

09 

34.7 24.8 

5 cm3/min for brine and 

acid injection throughout 

the test 

30 wt% urea-HCl plus all the 

additives at 250˚F –K 

measured at 75˚F 

Be-

10 

49.1 31.9 

3 cm3/min for brine 

injection and 1 cm3/min 

for acid injection 

30 wt% urea-HCl plus all the 

additives – K measured at 

250˚F 

Be-

11 

46.2 40 

3 cm3/min for brine 

injection and 1 cm3/min 

for acid injection 

30 wt% urea-HCl plus all the 

additives –K measured at 

250˚F 

Be-

03 

80.2 - 

5 cm3/min for brine and 

acid injection throughout 

the test 

30 wt% urea-HCl plus all the 

additives 250˚F –K measured 

at 75˚F 

 
Table 3—8 Summarizing 30 wt% Urea/ HCl experimental conditions. 

Ki,md Kf, md Decrease,% Q, cm3/min Φ, % 

73.3 55.5 24.28 5 18.6 

 
Table 3—9 Berea-02 rock, flow, and % stimulation/damage properties (Urea-HCl plus additives). 
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Fig. 3—16 Initial permeability of Berea-02 core at 75 ˚F. 

 

Fig. 3—17 Pressure drop curve of Berea-02 during urea-HCl injection at 250˚F. 
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Fig. 3—18 Final permeability of Berea-02 core at 75 ˚F. 

 

Fig. 3—19 pH of effluent samples from Berea-02 core. 
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The density of effluent samples from Berea-02 core at 75˚F is plotted as shown 

in Fig. 3—3. The density of brine pumped is around 1.025 g/cm3, then as the 5 PV of 

treatment fluid is injected, the density starts to suddenly increase as the acid dissolves 

more Ca, Mg, Al, and Fe. As the acid becomes spent and less available H+ ions attack 

the carbonates, less cation dissolution occurs and as a result a gradual decrease in density 

is observed. As soon as the flow is switched back to brine, the density returns back to its 

original value. 

 

Fig. 3—20 Density of effluent samples from Berea-02 core at 75˚F. 
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Fig. 3—21 ICP analysis for 30 wt% urea-HCl with Berea-02 core. 

 

Fig. 3—22 Porosity profile before and after 30 wt% urea-HCl treatment for Berea-02. 
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Ki, md Kf, md Decrease,% Q, cm3/min Φ, % 

34.70 24.80 28.53 5 12.80 

Table 3—10 Berea-09 rock, flow, and % stimulation/damage properties. 

The pressure drop at the end of the following pressure drop profile displayed in 

Fig. 3—23 is greater than the pressure drop at the beginning of the graph. This can be 

attributed to the damage associated with urea-HCl or additive decomposition 

precipitating inside the core. 

 

Fig. 3—23 Pressure drop profile during 30 wt% urea-HCl injection at 250 ˚F for Berea-09. 
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Fig. 3—24 Final permeability of Berea core-09 at 75˚F. 

 

Fig. 3—25 ICP analysis for 30 wt% urea-HCl with Berea-09 core. 
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Ki, md Kf, md Decrease,% Q, cm3/min Φ, % 

49.10 31.90 35.03 1 18.30 

Table 3—11 Berea-10 rock, flow, and % stimulation/damage properties. 

 

Fig. 3—26 Pressure drop profile during urea-HCl injection at 250 ˚F for Berea-10 core. 
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Fig. 3—27 Porosity profile before and after 30wt% urea-HCl treatment for Berea-10. 

Ki, md Kf, md % decrease Q, cm3/min Φ, % 

46.20 40.0 13.41 1 11.40 

Table 3—12 Berea-11 rock, flow, and % stimulation/damage properties. 
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Fig. 3—28 Pressure drop profile during urea-HCl injection at 250˚F for Berea-11. 

 

Fig. 3—29 Porosity profile before and after 30 wt% urea-HCl treatment for Berea-11. 
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The second set of tests was conducted at 300  with experimental conditions of 

Be-03 shown in Table 3—13. The final permeability after the injection of almost 5 PV 

Urea-HCl was measured shown in Fig. 3—32, and it was noticed that the pressure drop 

across the core did not stabilize. The following is displayed in Fig. 3—30, which is an 

indication of significant damage to the core. This severe damage can be attributed to 

more sensitive-clay dispersion and migration and the decomposition of the insitu- 

generated acid mixture. To further analyze and confirm the damage and its source, a CT 

scan and ICP were run as shown by Fig. 3—34 and 3—35. Significant amounts of Fe 

dissolution was found due to the acid attack on illites and chlorites. Moreover, the 

degree of damage at 300˚F was higher compared to what was achieved at 250˚F. 

As expected, the final porosity displayed in Fig. 3—34, shows a higher CT 

number. This signifies a higher density core suggesting either a lower porosity was 

achieved due to a higher density precipitate deposited inside the rock (density of 

precipitate is higher than the void spaces) such as Fe precipitation. Another reason for 

the damage seen could be due urea decomposition at high temperature leading to 

precipitations inside the core or the development of secondary and tertiary reactions of 

chlorinated complexes contributing to this severe loss of porosity. 

Ki, md Kf, md Increase/Decrease,% Q, cm3/min Φ, % 

80.20 - - 5 18.70 

Table 3—13 Berea-03 rock, flow, and % stimulation/damage properties. 
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Fig. 3—30 Pressure drop curve of Berea-03 during urea-HCl injection at 250 ˚F. 

 

Fig. 3—31 Initial permeability of Berea-03 core at 75 ˚F. 
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Fig. 3—32 Final permeability of Berea-03 core at 75 ˚F. 

 

Fig. 3—33 pH of effluent samples from Berea-03 core at 75˚F. 
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Fig. 3—34 Porosity profile for the before and after treatment for Berea-03 core.  

 

Fig. 3—35 ICP analysis for 30wt% Urea-HCl for Berea-03 core. 
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Section-C: 30 wt% Urea-HCl -Only CI and Intensifier Included-250˚F @ 5 

cm3/min- Berea Sandstone 

For the following experiments shown in Table 3—14 and 3—15, each test was repeated 

twice on Grey Berea sandstone. A temperature of 250˚F was set with a flow rate of 5 

cm3/min used throughout the tests. 5 wt% KCl and 5 PV of treatment fluid were injected 

in the injection direction. The effluent samples resulting from the coreflood experiments 

were collected every quarter PV. 

As previously mentioned, the urea in the novel insitu-generated system after 

hydrolysis could have contacted the kaolinite mineral present in the sandstone core. In 

other words, it is possible that the urea in the urea-HCl formulation binded with the 

kaolinite present in sandstones (as urea starts to slightly decompose at 110˚C). The 

timing of the experiment (the time it takes to inject 5 PV of acid into the core) provided 

enough contact time between urea and kaolinite. The following proposition mimics the 

dynamic intercalation technique where urea molecules diffuse into the kaolinite crystal 

layers and delaminates it forming urea-kaolinite complex (UKC). The reaction 

temperature of 250˚F (121.1°C) used in the coreflood shown in Fig. 3—4 could have 

promoted the fast movement of urea molecules and, as a result, increased the contact and 

collision probability between urea molecules and kaolinite. The retardation effect that 

urea offers is sufficient to replace further retarding agents. This achieves cost savings 

and a more environmentally friendly approach compared to acid retarders that are 

difficult to handle and dispose of. Moreover, the addition of any enough material will 

dilute the acid to a lower concentration, as a result, reducing its activity and efficiency. 
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The decrease in the CT number seen in Fig. 3—41 typically suggests a lower 

density. This might indicate an increase in the core porosity after the treatment (i.e., the 

core was stimulated) or through the dissolution of a heavy material. 

Ki, md Kf, md Increase,% Q, cm3/min Φ, % 

49.40 54.60 10.53 5 11.50 

Table 3—14 Berea-08 rock, flow, and % stimulation/damage properties. 

 

Fig. 3—36 Pressure drop curve during urea-HCl injection at 250˚F Berea-08. 
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Fig. 3—37 Final permeability of Berea core-08 at 75 . 

 

Fig. 3—38 ICP analysis for 30 wt %Urea-HCl with Berea-08 core. 
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Ki, md Kf, md Increase,% Q, cm3/min Φ, % 

103.50 120.20 13.14 5 16.90 

Table 3—15 Berea-13 rock, flow, and % stimulation/damage properties. 

 

Fig. 3—39 Pressure drop curve during urea-HCl injection at 250 ˚F for Berea-13. 
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Fig. 3—40 ICP analysis for 30 wt % urea-HCl with Berea-13 core. 

 

Fig. 3—41 Porosity profile before and after 30 wt% urea-HCl treatment-only CI and intensifier Included for Berea-13. 



 

96 

 

Section-D: 30 wt% Urea-HCl -Only CI and Intensifier Included-250˚F @ 2 and 5 

cm3/min- Bandera Sandstone 

For the following experiments, each test was repeated twice on Bandera sandstone. A 

temperature of 250˚F was set with a flow rate of 2 cm3/min was used with Ba-02 test and 

5 cm3/min used with Ba-01 test. 5 wt% KCl and 5 PV of treatment fluid were injected in 

the injection direction. The effluent samples resulting from the coreflood experiments 

were collected every quarter PV. The treatment fluid did not cause any noticeable 

damage to the Bandera core at 250 . The concentrations of iron in all the effluent 

samples were high ( and above. There was some precipitation at the 

bottom of some of the effluent samples after treating the Bandera core. 

To further analyze and confirm the damage and its source, ICP shown in Fig. 3—

45 and 3—50 were run. From CT scan and ICP analysis, it can be deduced that HCl first 

reacted with carbonate and dolomite and subsequently reacted with chlorite. That 

explains the peak for Ca and Mg being at a lower pore volume than for the Al and Fe. Al 

is dissolved from clays and feldspars whereas Fe is dissolved from illite and chlorite. 

The following could be due to the effect of using a lower flow rate of 2 cm3/min versus 5 

cm3/min of the latter. The lower flow rate could have increased the resident time of the 

acid contacting the rock causing more clay decomposition and as a result further 

damage. 

Bandera with (3% kaolinite, 1% chlorite, 10% illite, and 16% dolomite) was 

damaged but not with the same extent as Grey Berea sandstone. In Bandera sandstone, 

two counter reacting mechanisms come to play. HCl mobilizes illite whereas HCl 
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dissolves the high amount of dolomite present in the core. Depending on whichever 

reaction is dominant, stimulation or damage will occur. 

Ki, md Kf, md Decrease,% Q, cm3/min Φ, % 

12.30 11.70 4.87 5 14.0 

Table 3—16 Bandera-01 rock, flow, and % stimulation/damage properties.  

 

Fig. 3—42 Initial permeability of Bandera-01 core at 75˚F. 



 

98 

 

 

Fig. 3—43 Pressure drop profile during urea-HCl injection at 250 ˚F.   

.  

Fig. 3—44 Final permeability of Bandera-01 core at 75˚F 
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.  

Fig. 3—45 ICP analysis for 30wt%Urea-HCl with Bandera-01 core. 

 

Fig. 3—46 pH of effluent samples from Bandera-01 core. 
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Ki, md Kf, md Decrease, % Q, cm3/min Φ, % 

4.50 3.50 22.22 2 19.80 

Table 3—17 Bandera-02 rock, flow, and % stimulation/damage properties. 

 

Fig. 3—47 Initial permeability of Bandera-02 core at 75˚F. 

 

 

 

 

Injecting 5wt% KCl at 5 cm3/min at 75˚F 
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Fig. 3—48 Pressure drop curve of Bandera-02 core during urea-HCl injection at 250˚F. 

 

Fig. 3—49 Final permeability of Bandera-02 core at 75˚F. 
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Fig. 3—50 ICP analysis for 30 wt% urea-HCl with Bandera-02 core. 

Section-E: 30 wt% Urea-HCl - 250˚F @ 1cm3/min- Berea Sandstone with Different 

Mineralogy 

For the following experiments, each test was repeated once on Grey Berea sandstone 

with different mineralogy shown by the XRD analysis shown previously. A temperature 

of 250˚F was set with a flow rate of 1 cm3/min for the injection of 5 PV of the treatment 

fluid while 2 wt% KCl was injected at 3 cm3/min through the attached core sample until 

a steady state pressure drop across the core sample is reached, shown in Fig. 3—5. 

Initial and regained permeability were measured in the production direction, and acid 

was pumped in the injection direction. Darcy’s law was used to calculate the initial and 
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regained (final) permeability of the core sample. The effluent samples resulting from the 

coreflood experiments were collected every quarter PV. 

By comparing the initial and final permeability displayed in Figs. 3—51 and 3—

53 an enhancement in the permeability (with varying degrees) was achieved despite the 

damage resulting from injecting HCl at a high temperature. From the ICP analysis 

displayed in Fig. 3—6 and 3—58, high iron content was detected in the core effluent 

from the dissolution of chlorite and illite. Despite the damaging mechanisms, the 

permeability enhancement proves that dissolving the carbonate content (dolomite in this 

case), is possibly the main mechanism causing the permeability enhancement. The 

second suggested mechanism is the urea-kaolinite intercalation mechanism forming 

UKC which could be a supporting reason in the stimulation outcome. 

G-14: 30 wt% Urea-HCl-Only CI and Intensifier Included on Berea Sandstone with 

different mineralogy 

Ki, md Kf, md Increase,% Q, cm3/min Φ, % 

162.90 167.78 3 1 14.70 

Table 3—18 Berea-G-14 rock, flow, and % stimulation/damage properties. 
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Fig. 3—51 Initial permeability of Berea-G-14 core at 250˚F.                                   

 

Fig. 3—52 Pressure drop profile of Berea-G-14 core during urea-HCl injection at 250˚F. 

Acid Injection 5 PV 

at 250˚F at cm3/min 

 

Brine Injection at 

250˚F at 3 cm3/min 
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Fig. 3—53 Final permeability of Berea-G-14 core at 250˚F. 

 

Fig. 3—54 ICP analysis for 30 wt% urea-HCl with Berea-G-14 core. 

Brine Injection at 

250˚F  
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G-15: 30 wt% Urea-HCl-All of the Additives Included on Berea Sandstone with 

different mineralogy 

Ki, md Kf , md Increase,% Q, cm3/min Φ, % 

126.8 165.6 30 1 14.7 

Table 3—18 Berea-G-15 rock, flow, and % stimulation/damage properties. 

 

Fig. 3—55 Initial permeability of Berea-G-15 core at 250˚F. 
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Fig. 3—56 Pressure drop curve of Berea-G-15 core during urea-HCl injection at 250 ˚F. 

 

Fig. 3—57 Final permeability of Berea-G-15 core at 75˚F. 
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Fig. 3—58 ICP analysis for 30 wt% Urea-HCl with Berea-G-15 core. 

It is evident from the density versus PV graph shown in Fig. 3—8 , that the 

density originally started with the 2 wt% KCl then it gradually increased throughout the 

5 PV of acid injection. The density increased as the acid dissolved more cations such as 

Ca2+, Mg2+ ,Fe2+,and Al3+.The density again decreased from the peak of 1.08 g/cm3 as 

the brine was flowed back. 
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Fig. 3—59 Density of 2 sets of effluent samples from Berea-G-15 and G-14 core at 75˚F. 

The addition of the full additive package on the 30 wt% urea-HCl was used with 

a different type of Grey Berea core having different mineralogy. According to the XRD 

results, G-14 and G-15 cores had no calcite in their mineralogy. Dolomite and clay 

minerals such as Kaolinite, chlorite, and illite were present. 

Approximately a 30% permeability enhancement was achieved with G-15. 

However, using only the corrosion inhibitor and intensifier on G-14 sandstone caused a 

slight enhancement of permeability of 3%. 

According to the pH versus PV graph shown in Fig. 3—9, the pH of the effluent 

samples starts from around 4 increasing throughout the 5 PV of the treatment fluid 

injected ending with a pH of 6 where all of the acid is spent ending with a brine post-
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flush of 2 wt% KCl. Unlike previous Grey Berea experiments, there is no live acid 

remaining which indicates that all of the acid dissolved the existing minerals and clays. 

A suggested explanation could be the hydrolysis of urea resulting in the formation of 

two moles of ammonia and one of carbon dioxide, causing the pH of the mixture to 

increase as the reaction proceeds. Moreover, there is a possibility of having a higher 

kaolinite content compared to the other type of Berea sandstone. This could have 

encouraged more intercalation with urea forming more UKC, thus, buffering the 

solution. 

Fig. 3—60 pH of 2 sets of effluent samples from Berea-G-15 and G-14 core at 75˚F. 
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4. CONCLUSIONS AND RECOMMENDATIONS 

Clay instability and decomposition at high BHT is one of the most, critical and frequent, 

problems occurring during acid treatments, especially when using regular HCl in high 

temperature reservoirs. One of the numerous advantages presented by using the new 

insitu-generated system proposed in this research is the lack of need to use iron control 

agents at a low pH of 0. Moreover, there is no need for clay stabilizers due to the NH4Cl 

insitu-generation. An added benefit is the lack of need to use acid retarders, as the urea 

in the formulation helps in the retardation mechanism depending on the % equivalence 

of HCl. In this study, different variables were changed. Based on the results obtained, 

the following conclusions can be drawn: 

1. A stimulation Kf/Ki (% increase) ranging from 10 to 30% was achieved using 

urea-HCl for the stimulation of Grey Berea sandstone with different mineralogy. 

2. Grey Berea with clays (5% kaolinite, 2% chlorite, 1% illite, and 3% carbonates) 

showed damage after treatment using the new additive package, possibly due to 

additive incompatibility with the rock. 

3. The generated NH4Cl from urea-HCl hydrolysis can act as a clay stabilizer and 

alleviate formation damage. 

4. The insitu-generated acid caused stimulation for Grey Berea cores at 250˚F.  

5. The urea-HCl can act as a preflush before the mud acid treatment to dissolve 

carbonates in sandstone reservoirs. 

6. The HCl in the formulation dissolves the acid soluble materials insitu at BHT. 

7. As a weak base, urea has a buffering effect on the acidic system. 
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8. Greater stimulation was obtained with Berea sandstone compared to Bandera 

sandstone.  

9. Pumping the urea-HCl acid solution at lower flow rates caused more damage 

compared to higher flow rates. 

10. Pumping the urea-HCl acid solution at a temperature of 300˚F caused more clay 

instability and decomposition and, thus, further formation damage occurred. 

         It is recommended that the type and order of additives should be identified and 

taken into consideration when the acid treatment is designed. It is also recommended to 

perform additive compatibility tests while designing field treatments to prevent additive 

precipitation and emulsions causing formation damage. An advantage of the urea present 

in the mixture is that it contributes to the retarded rates of reaction. 

         The sandstone permeability enhancement is suggested to occur with the 

combination of two scenarios: 

1. H+ attack to the carbonate site causing the formation of acid-soluble Ca2+ 

and Mg2+ salts, and   

2. The intercalation of the urea in the urea-HCl mixture with the kaolinite in 

the sandstone cores to form a UKC. 

           Bandera sandstone is rich in dolomite and illite. Therefore, two counter-reacting 

effects come to play. At 250 ˚F HCl mobilizes illite and decomposes it, weakening the 

clay structure and causing fines migration, on the other hand, the HCl in the formula 

dissolves large amounts of dolomite, inducing stimulation. Depending on the dominance 

of each of the above-mentioned counter-reacting mechanisms, permeability 

enhancement or reduction will occur, thus influencing the treatment outcome. 
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