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ABSTRACT

Topics in Analyzing Longitudinal Data. (December 2004)

Hyunsu Ju, B.A., Chung-Ang University;

M.S., Seoul National University

Chair of Advisory Committee: Dr. Suojin Wang

We propose methods for analyzing longitudinal data, obtained in clinical trials

and other applications with repeated measures of responses taken over time. Common

characteristics of longitudinal studies are correlated responses and observations taken

at unequal points in time. The first part of this dissertation examines the justification

of a block bootstrap procedure for the repeated measurement designs, which takes

into account the dependence structure of the data by resampling blocks of adjacent

observations rather than individual data points. In the case of dependent stationary

data, under regular conditions, the approximately studentized or standardized block

bootstrap possesses a higher order of accuracy. With longitudinal data, the second

part of this dissertation shows that the diagonal optimal weights for unbalanced

designs can be made to improve the efficiency of the estimators in terms of mean

squared error criterion. Simulation study is conducted for each of the longitudinal

designs. We will also analyze repeated measurement data set concerning nursing home

residents with multiple sclerosis, which is obtained from a large database termed the

minimum data set (MDS).
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CHAPTER I

INTRODUCTION

The analysis of repeated measures is used to analyze data from clinical trials

and other applications with repeated measures of responses taken over time. A key

strength of these studies, in which repeated measurements are obtained from each

subject, is that this is an effective design with which it is possible to obtain informa-

tion concerning individual patterns of change. This type of design also economizes

on subjects. Another advantage is that subjects can serve as their own controls,

in that the outcome variable can be measured under both control and experimental

conditions for each subject. Common characteristics of longitudinal studies are: (1)

correlated responses, (2) observations taken at unequal points in time. In a longitudi-

nal study subjects are followed over time. At one extreme a small number of subjects

may be studied over long period of time. At the other extreme some longitudinal

studies follow up a relatively large group for a short time.

We propose to study two problems: a) moving block bootstrap methods under a

number of repeated observations (m) per person that is large for the small number of

subjects, b) the diagonal optimal weighting scheme under the working independence

setting if the number of repeated observations (m) per person is small for a large

number of individuals.

In the case of dependent stationary data, under regular conditions, the approx-

imate studentized or standardized block bootstrap possesses a higher order of accu-

The format and style follow that of Journal of the American Statistical Association.
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racy. This property is referred to as the second-order correctness of the bootstrap

approximation, which is more accurate than the normal approximation, as it captures

the second order term. While recent developments in Edgeworth expansion theory,

especially for sums of weakly dependent time series, have broadened the horizon for

bootstrap methods, most existing studies have been devoted to the non-parametric

identically independent (i.i.d.) and block bootstraps. The foremost attraction for us-

ing bootstrap methods in testing hypotheses and confidence interval constructions is

its capability for achieving considerable improvement over standard procedures based

on first-order asymptotics. These improvements are justified by the use of the ana-

lytical tools of Edgeworth expansions.

We use moving block bootstrap (MBB) methods to obtain efficiency of regression

coefficient estimators by blocking the centered residuals in longitudinal data. One of

them is within the moving block bootstrap and the other is a mixed moving block

bootstrap method. For one subject with a correlated series over time, we want to

compare them to the ordinary bootstrap. When the number of subjects (n) is small

and the number of repeated measurements (m) is large, by simulation we conclude

that the ordinary bootstrap variance estimator can be inconsistent and the resam-

pling subject method may not work well for such small subject samples.

In the unbalanced longitudinal data under working independent assumptions,

we consider a subject weighting scheme to reach a certain optimization criterion.

One corresponds to equal weights for each observation, the other corresponds to

equal weights for each subject. An ideal choice of wights depends on the correlated

structure of the data. However, since the actual correlation structure is unknown in

practice, we suggest using the diagonal optimal weight in a simple way with the idea

of creating a working independent model in generalized estimating equations (GEE).

The diagonal optimal weight outperforms the first two weighting schemes and has
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robustness for misspecified correlation structures in a simple mixed linear model.

The remainder of this dissertation is organized as follows: Chapter II includes an

extensive bibliography of work on repeated measures and block bootstrap methods.

Chapter III presents the basic statistical modeling framework in longitudinal data.

Chapter IV demonstrates the moving block bootstrap justification in longitudinal

data theoretically and empirically. Chapter V describes the diagonal optimal weights

in the unbalanced longitudinal data. Chapter VI provides the results of analyzing a

longitudinal data extracted from the minimum data set with multiple sclerosis pa-

tients. A conclusion and some discussions are given in Chapter VII.
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CHAPTER II

LITERATURE REVIEW

The main problem in parameter estimation of linear mixed models under lon-

gitudinal data comes from the evaluation of the likelihood of the function implying

an inversion of the huge unknown variance covariance matrix. Several methods for

obtaining an efficiency of fixed regression parameter estimations have been proposed.

Liang and Zeger (1986) were the first in the field to use working correlation ma-

trices for longitudinal data. The GEE approach is an extension of the quasi-likelihood

to longitudinal data analysis. The GEE method yields consistent and asymptotically

normal solutions, even with misspecification of time dependence. The estimating

equations reduce to score equations for multivariate normal outcomes. The GEE ap-

proach relies on independence across subjects to consistently estimate the variance

of the regression coefficients. The GEE method is feasible in many situations where

the maximum likelihood approaches are not necessary because the full multivariate

distribution of the response vector is not required.

Xie and Yang (2003) presented asymptotic results when either the number of

independent subjects or the cluster sizes (the number of observations for each sub-

ject) or both go to infinity. A set of general conditions, information matrix based,

is developed, which leads to weak and strong consistency as well as the asymptotic

normality of the regression parameter estimators.

Feng, McLerran, and Grizzle (1996) investigated, by simulation, the properties

of a bootstrap method that resample subjects rather than resample observations un-

der the linear model for correlated data with Gaussian error. They showed that for

balanced and near balanced data when the number of independent subjects is small
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(≤ 10), the bootstrap is superior if analysts do not want to impose strong distribu-

tion and covariance assumptions. Huang, Wu, and Zhou (2002) suggested a global

smoothing procedure for estimating the parameters of a varying coefficient model

with repeated measurements. Inference procedures, based on a resampling subject

bootstrap, are proposed to construct a confidence region and to perform hypothesis

testing.

Efron (1979) introduced the bootstrap procedure for estimating sampling distri-

butions of statistics based on independent and identically distributed (i.i.d) observa-

tions. It is well known, in the i.i.d setup, the bootstrap often offers more accurate

approximations than classical large sample approximations. (e.g. Singh (1981), Babu

(1986)). However, when the observations are not necessarily independent, the classi-

cal bootstrap no longer succeeds, as showed by Singh (1981).

Resampling methods for strictly stationary dependent data are based on block-

ing arguments, in which the data are divided into blocks and these blocks, rather

than individual data values or estimated residuals, are resampled. Carlstein (1986)

proposed non-overlapping blocks, where Künsch (1989) and Liu and Singh (1992) in-

dependently introduced the moving block method, which employs overlapping blocks.

Politis and Romano (1992) considered a block of blocks scheme to obtain valid infer-

ence of parameters of the infinite dimensional joint distribution of the process, such

as a spectrum. In both Carlstein’s and Künsch’s bootstrap, blocks of fixed length

are resampled so that the newly generated pseudo time series is no longer station-

ary. To fix this shortcoming, Politis and Romano (1992) suggested the stationary

bootstrap, which joins together blocks of random length–having a geometric distri-

bution with mean p–and thus generates bootstrap sample paths that are stationary

series themselves. Thus, dependency will be reduced for Carlstein’s and Künsch’s

bootstrap. However, in typical applications the underlying dependence is sufficiently
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weak. Therefore, the main contributions come from short lags which are well approx-

imated by the blocking methods, ensuring that these methods work. The moving

blocks method has essentially been shown to be valid for functions of statistics and

smooth functions (see Künsch (1989) and Bühlmann (1994)).

In a time series case, Lahiri (1996) applied a multiple linear regression model

yj = x
′
jβ + εj, j = 1, · · · ,m,

where xj’s are known p× 1 vectors, β is a p× 1 vector of parameters, and ε1, ε2, · · ·
are stationary, strongly mixing random variables. If β̂m is an M-estimator of β cor-

responding to some score function φ, under some conditions, a two-term Edgeworth

expansion for studentized multivariate M-estimator was observed. Also, it was shown

that the block bootstrap has a second order correctness for some suitable bootstrap

analogs of studentized β̂m.

Lahiri (1999) compared the asymptotic behavior of some common block boot-

strap methods based on nonrandom as well as random block lengths. Expansions

for the bias, the variance, and the mean-squared error of different block bootstrap

variance estimators were obtained. It followed from these expansions that using over-

lapping blocks is to be preferred over nonoverlapping blocks, and that using random

block lengths typically leads to mean-squared errors larger than those for nonrandom

block lengths. Conditions for the validity of some block resampling procedures un-

der certain factors, like strength of dependence (weak dependence verses long-range

dependence) and the existence of the second moment, have been obtained in the

literature (Lahiri (1993; 1995)). It was also shown by Lahiri (2001) that the block

bootstrap method is consistent if the block length grows at a rate slower than the

sample size. When the growth rate of blocks is comparable to the sample size, the

resulting approximations are no longer consistent.
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One drawback of this method is that it depends critically on a block length

which has to be chosen by the user. In Hall et al. (1995) it is shown that the

optimal asymptotic rate of the block size for the moving blocks method depends sig-

nificantly on context, being equal to m1/3, m1/4 and m1/5 in the cases of variance or

bias estimation, estimation of a one-sided distribution function, and estimation of a

two-sided distribution function, respectively. The latter two quantities are needed for

construction of equal-tailed and symmetric confidence intervals, respectively. There-

fore, it seems that the strategy of Bühlmann and Künsch (1995) is suboptimal for

constructing confidence intervals. Hall et al. (1995) present a practical rule for se-

lecting the block size empirically. It is based on the fact that the asymptotic formula

is b ∼ Cm1/k, where k = 3, 4 or 5 is known, and C is a constant that depends on

the underlying process. The rule suggested provides a way for estimating the optimal

block for a time series of smaller length than the original.

Paparoditis and Politis (2002) presented a new block bootstrap variation, the

tapered block bootstrap, which is applicable in the general time series case of approx-

imately linear statistics. The asymptotic validity and the favorable bias properties of

the tapered block bootstrap are shown in two important cases: smooth function of

means and M-estimators.

Goncalves and White (2002) found that confidence intervals that rely on boot-

strap standard errors tend to perform better than confidence intervals that rely on

asymptotic closed form variances in multiple linear regression models with autocor-

related and heteroskedastic error. In particular, the coverage error of symmetric

MBB percentile-t confidence intervals based on bootstrap standard error estimates

are substantially smaller than the coverage error typically found in other (asymp-

totic theory-based and bootstrap-based) confidence intervals, especially under strong

autocorrelation.
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CHAPTER III

STATISTICAL MODELS IN LONGITUDINAL DATA

In this chapter we review some common statistical models in longitudinal data.

3.1 Mixed Effects Linear Models

Mixed effects linear models (Hartley and Rao, 1967) have become a popular tool

for analyzing repeated measures data which arise in many fields as diverse as agricul-

ture, biology, economics and geophysics. The increasing popularity of these models

is explained by the flexibility they offer in modeling the within-subjects correlation

often present in repeated measures data, by the handling of both balanced and unbal-

anced data, and by the availability or reliable and efficient software for fitting them.

The most commonly used mixed-effects linear model for a continuous response was

proposed by Laird and Ware (1982) and is expressed below. Let yi be the mi × 1

vector of repeated measurements on the ith subject. Then consider a mixed effects

model described as

yi = xiβ + ziγi + εi, i = 1, . . . , n, (3.1)

where xi and zi are the known matrices of order mi by p and mi by q respectively, and

β is the fixed p by 1 vector of unknown(nonrandom) parameters. The q by 1 vectors

γi are the random effects with E(γi) = 0, and V ar(γi) = σ2B1. Finally εi are the mi

by 1 vectors of random errors whose elements are no longer required to be uncorre-

lated. Let’s assume that E(εi) = 0, V ar(εi) = σ2Ri, Cov(γi, γi′ ) = 0, Cov(εi, εi′ ) =

0, Cov(γi, εi
′ ) = 0 for all i 6= i

′
, and Cov(γi, εi) = 0. Such assumptions seem to be

reasonable in repeated measurement data where subjects are assumed to be indepen-

dent, yet the repeated measures data may be correlated. Note here that Ri is the
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appropriate mi × mi submatrix of a m × m positive definite matrix, where m is

the number of time points in the data set where observations have been made. An

appropriate covariance structure can be assigned to the data by an appropriate choice

of matrices B1 and Ri. Note that since yi is a mi by 1 vector, i = 1, . . . , n, the model

can account for the unbalanced repeated measures data, that is, when data from all

the subjects have not been observed at all time points.

The n submodel in Equation (3.1) can be stacked one below the other to give a

single model



y1

y2

...

yn




=




x1

x2

...

xn



β +




z1 0 · · · 0

0 z2 · · · 0

...
...

. . .
...

0 0 · · · zn







γ1

γ2

...

γn




+




ε1

ε2

...

εn




or

yP
mi×1 = XP

mi×pβp×1 + ZP
mi×nqγnq×1 + εP

mi×1, (3.2)

where the definitions of y, x, z, γ, and ε in terms of the matrices and vectors of

submodels are self explanatory. In view of the assumptions made on, we have

E(γ) = 0, E(ε) = 0,

V ar(γ) = σ2




B1 0 · · · 0

0 B1 · · · 0

...
...

. . .
...

0 0 · · · B1




= σ2In ⊗B1 = σ2B

and

V ar(ε) = σ2




R1 0 · · · 0

0 R2 · · · 0

...
...

. . .
...

0 0 · · · Rn




= σ2R.
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The symbol ⊗ here stands for the Kronecker product (Rao, 1973) defined for two

matrices Us×t = (uij) and Wl×m = (wij) as

U ⊗W =




u11W u12W · · · u1tW

u21W u22W · · · u2tW

...
...

. . .
...

us1W us2W · · · ustW




= (uijW ).

It follows from that

V ar(y) = zV ar(γ)z
′
+ V ar(ε) = σ2[zBz

′
+R] = σ2V.

It may be remarked that in many situations, the variance covariance matrix of y

may not be in the above form where the parameter σ2 has been explicitly factored

out. However, with appropriate (but not necessarily unique) modifications in the

matrices B and R, some parameter σ2 (not necessarily unique) can be factored out.

There are many books dealing at length with linear mixed model. We recommend

a few: Graybill (1976), Seber (1977), Arnold (1981), Hocking (1985), Searle (1997),

and Searle et al. (1992).

3.1.1 Estimation of effects when V is known

If B1 and R1, . . . , Rn are assumed to be known, then the Best (minimum mean

squared error) Linear Unbiased Estimator (BLUE) using the generalized least squares

estimator of β is given by (assuming that it uniquely exists)

β̂ = [X
′
(ZBZ

′
+R)−1X]−1X

′
(ZBZ

′
+R)−1y

=

[
n∑

i=1

x
′
i(ziB1z

′
i +Ri)

−1xi

]−1 [
n∑

i=1

x
′
i(ziB1z

′
i +Ri)

−1yi

]
. (3.3)

The variance covariance of β̂ is

σ2[X
′
(ZBZ

′
+R)−1X]−1 = σ2

[
n∑

i=1

x
′
i(ziB1z

′
i +Ri)

−1xi

]−1

.
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Similarly, the Best Linear Unbiased Predictor (BLUP) of γ is given by BZ
′
(ZBZ

′
+

R)−1(y −Xβ). Further an unbiased estimator of σ2 is obtained as

σ̂2 =
1

v
ε̂
′
V −1ε̂,

where ε̂ = y − X(X
′
V −1X)−X

′
V −1y and v = N − Rank(X) is the error degrees

of freedom. If X
′
(ZBZ

′
+ R)−1X does not admit an inverse, for most estimation

problems a generalized inverse would replace the inverse in Equation (3.3), provided

estimability of the function under consideration has been ensured.

The BLUE of β and BLUP of γ above can also be obtained by solving the system

of mixed model equations


X

′
RX X

′
R−1Z

Z
′
R−1X Z

′
R−1Z +B






β̂

γ̂


 =



X

′
R−1y

Z
′
R−1y


 .

In addition, if multivariate normality is assumed for γi and εi, i = 1, . . . n, then,

y ∼ NP
mi

(Xβ, σ2[ZBZ
′
+R]).

In this case β̂ and γ̂ are also the maximum likelihood estimator and maximum like-

lihood predictor of β and γ, respectively.

Consider the problem of testing a linear hypothesis of the form H0 : Lβ = 0,

where L is a full (row) rank matrix. Then the usual test statistic for testing H0 is

F =
β̂
′
L
′
(L(X

′
V −1X)−1L

′
)−1Lβ̂

σ̂2Rank(L)
,

which under the null hypothesis H0 is distributed as Fv1,v2 , where v1 = Rank(L), v2

is the error degree of freedom, and V = (ZBZ
′
+R).

3.1.2 Estimation of σ2 and V

When the matrices B and R (or V ) are unknown, estimation of these matrices

can be carried out using the standard likelihood based methods under the assumption
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of joint multivariate normality of γ and ε. In practice, certain structures on either

one or both of these matrices is assumed so that V is a function of a few unknown

parameters, say θ1, . . . θs. The above method is iterative in that first for a fixed value

of V , an estimator of β using the form the BLUE is obtained. Then the likelihood

function of V is maximized with respect to θ1, . . . θs in order to get an estimate of V.

These two steps are employed until a certain user specified convergence criterion is

met.

The ML estimator of θ1, . . . θs and hence V (B and R) and of σ2 are obtained by

maximizing the logarithm of the normal likelihood function

l(θ) = −1

2
log |σ2V | − 1

2σ2
(y −Xβ̂)

′
V −1(y −Xβ̂)− N

2
log(2π) (3.4)

simultaneously with respect to these parameters. The ML estimator of σ2 expressed

in terms of V̂ will be σ̂2
n = ε̂

′
V̂ −1ε̂/n. The ML estimator of θ1, . . . θs, generally have

to be obtained using the iterative schemes.

Alternatively, estimators of θ1, . . . θs, and finally of σ2 can be obtained by maxi-

mizing the function:

−1

2
log |V | − N

2
log(y −Xβ̂)

′
V −1(y −Xβ̂)− N

2

[
1 + log

(
2π

N

)]
,

which is obtained from the log-likelihood function after factoring and profiling a

residual variance σ̂2
N .

Similarly, another set of estimators commonly known as the Restricted Maximum

Likelihood (REML) estimators is obtained by maximizing the function (after profiling

β̂ )

−1

2
log |V | − 1

2
log |X ′

V −1X| − N − k

2
log(y −Xβ̂)

′
V −1(y −Xβ̂)

−N − k

2

[
1 + log

(
2π

N − k

)]
,
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where k = Rank(X). The ML and REML estimators are known to be asymptotically

equivalent.

Suppose θ̂ = (θ̂1, . . . , θ̂s)
′

is the ML estimate of θ = (θ1, . . . θs)
′
. Let h(θ) be a

certain, possibly vector valued, function of θ. Then the three asymptotic tests to test

H0 : h(θ) = 0 against the alternative H1 : h(θ) 6= 0 are given by

Wald’s Statistic: TW = Nh(θ̂)
[
H(θ̂)

′
I(θ̂)−1H(θ̂)

]−1

h(θ̂)

Likelihood Ratio Test (LRT) Statistic: TL = 2
[
l(θ̂)− l(θ̂0)

]

Rao’s Statistic: TR =
1

N
U(θ̂0)

′
I(θ̂0)

−1U(θ̂0),

where θ̂0 is the ML estimator of θ under the null hypothesis H0, U(θ) = ∂l
∂θ
, H(θ) =

∂h(θ)
∂θ

, and I(θ) is the Fisher information matrix.

Under certain regularity conditions each of statistic TW , TL, and TR has an

asymptotic χ2
r distribution under H0, where r = Rank(H(θ)). Since REML and

ML estimates are asymptotically equivalent one may alternatively use the REML

estimates in the above expressions.

Since under certain regularity conditions, the ML estimator θ̂ follows a multivari-

ate normal distribution with the mean vector θ and the variance covariance matrix

I−1(θ), one can perform a test for the hypothesis about any component θi of θ using

the standard normal distribution. This asymptotic test is also known as Wald’s test.

Using this asymptotic result, approximate confidence intervals can be constructed as

well.

3.1.3 Estimation of Effect When V is Estimated

Suppose B̂ and R̂ are the estimators of B and R respectively, obtained by using

one of the above two methods. Then the respective estimator of β and γ are obtained
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by solving the plug-in version of the mixed model equation,



X

′
R̂X X

′
R̂−1Z

Z
′
R̂−1X Z

′
R̂−1Z + B̂






β̂

γ̂


 =



X

′
R̂−1y

Z
′
R̂−1y


 ,

where the estimator B̂ and R̂ respectively have been used for B and R in the

mixed model equation. Upon solving, we obtain β̂ = (X
′
V̂ −1X)−1X

′
V̂ −1y and

γ̂ = B̂Z
′
V̂ −1(y − Xβ̂), where V̂ is obtained by substituting B̂ and R̂ for B and R

respectively in V. Note that β̂ is an estimator of the BLUE (X
′
V −1X)−X

′
V −1y of β

and γ̂ is an estimator of the BLUP BZ
′
V −1(y−X(X ′V −1X)−X

′
V −1y) of the random

effect vector γ.

For simplicity, let us define the estimator of σ2 by σ̂2, whatever the method may

have been used for the estimation. The estimated variance and covariance matrices

of these estimators are: V̂ ar(β̂) = σ̂2C11 = σ̂2(X
′
V̂ −1X)−, Ĉov(β̂, γ̂) = σ̂2C21 =

−σ̂2B̂Z
′
V̂ −1XC11 , and V̂ ar(γ̂) = σ̂2C22 = σ̂2((Z

′
R̂−1Z + B̂−1)−1 − C21X

′
V̂ −1ZB).

It may however be cautioned that

σ̂2



C11 C

′
21

C21 C22




usually underestimates V ar(β̂
′
, γ̂

′
)
′
, the true variance covariance matrix of (β̂

′
, γ̂

′
)
′
.

Let us consider a simple case with a random intercept for an unbalanced data.

The model is given by

E(yi|γi) = µ1mi
+ γi1mi

= xiβ + γi1mi
, (3.5)
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where xi = [1mi
] and β = µ. The likelihood and log-likelihood are

L = Πn
i=1(2π)

−mi
2 |Vi|− 1

2 exp

[
−1

2
(yi − µ1mi

)
′
V −1

i (yi − µ1mi
)

]
,

and logL = −1

2
N log 2π − 1

2

n∑
i=1

log(σ2 +miσ
2
γ)−

1

2
(N − n) log σ2

− 1

2σ2

n∑
i=1

mi∑
j=1

(yij − µ)2 +
σ2

γ

2σ2

n∑
i=1

(yi· −miµ)2

σ2 +miσ2
γ

, (3.6)

with yi = [yi1, yi2, · · · , ymi
]
′

and yi ∼ N(µ1mi
, Vi), where Vi = σ2

γJmi
+ σ2Imi

. We

define λi = σ2 +miσ
2
γ and SSE =

∑n
i=1

∑mi

j=1(yij − ȳ..)
2. The log-likelihood can be

derived as follows:

l = −1

2
N log 2π − 1

2

n∑
i=1

log λi − 1

2
(N − n) log σ2

−SSE
2σ2

−
n∑

i=1

mi(ȳi. − µ)2

2λi

. (3.7)

The likelihood estimation equations are

∂l

∂µ
=

n∑
i=1

mi(ȳi. − µ)

λi

, (3.8)

∂l

∂σ2
= −(N − n)

2σ2
− 1

2

n∑
i=1

1

λi

+
SSE

2σ4
+

n∑
i=1

mi(ȳi. − µ)2

2λ2
i

, (3.9)

and
∂l

∂σ2
γ

= −1

2

n∑
i=1

mi

λi

+
n∑

i=1

m2
i (ȳi. − µ)2

2λ2
i

. (3.10)

We have a solution for µ, which is

µ =

∑n
i=1

miȳi.

λi∑n
i=1

mi

λi

=

∑n
i=1

miȳi.

σ2+miσ2
γ∑n

i=1
mi

σ2+miσ2
γ

=

∑n
i=1

ȳi.

var(ȳi.)∑n
i=1

1
var(ȳi.)

(3.11)

with var(ȳi.) = σ2
γ + σ2

mi
= 1

wi
. For σ2

γ and σ2,

SSE

σ4
− (N − n)

σ2
+

n∑
i=1

mi(ȳi. − µ)2

λ2
i

−
n∑

i=1

1

λi

= 0

n∑
i=1

m2
i (ȳi. − µ)2

λ2
i

=
n∑

i=1

mi

λi

(3.12)
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with λ = σ2 +miσ
2
γ.

There is no analytic solution for the estimators in general, but there is when the

data are balanced (i.e. mi = m and λi = λ for all i). In balanced case, we have µ = ȳ..,

σ2 = MSE, λ = SSA
n

= (1 − 1
n
)MSA, σ2

γ = λ−σ2

m
=

(1− 1
n

)MSA−MSE

m
, where MSA =

SSA
n−1

= 1
n−1

∑n
i=1m(ȳi. − ȳ..)

2 and MSE = SSE
n(m−1)

= 1
n(m−1)

∑n
i=1

∑n
j=1(yij − ȳ..)

2. If

we use Ri = σ2Imi
, we obtain Vi = σ2

γJmi
+ σ2Imi

and V −1
i = 1

σ2 (Imi
− σ2

γ

σ2+miσ2
γ
Jmi

).

Define mij as 1 if yij exists and 0 if yij does not exist; i.e, nij is the number of data

on subject i at time j, either 0 or 1.

1) Estimating the fixed effect.

β̂ = [
1

σ2

n∑
i=1

(X
′
iXi −

σ2
γ

σ2 +miσ2
γ

X
′
iJmi

Xi)]
−1

×
n∑

i=1

1

σ2

{
mij[yij −

σ2
γ

σ2 +miσ2
γ

yi.]

}T=max(mi)

j=1

(3.13)

2) Predicting the random effect

BZ
′
V −1(y − xβ̂) = σ2

γ

{
miȳi.

σ2 +miσ2
γ

−
∑mi

j=1mijβ̂j

σ2 +miσ2
γ

}
,

γBLUP
i =

miσ
2
γ

σ2 +miσ2
γ

(ȳi. −
∑mi

j=1mijβ̂j

mi

). (3.14)

3.1.4 Tests for Fixed Effect Parameters

Consider the problem of testing a linear hypothesis of the form H0 : Lβ = 0,

where L is a full-rank matrix. A suggested test statistic for H0 is

F =
β̂
′
L
′
(LC11L

′
)−1Lβ̂

σ̂2Rank(L)
.

The exact distribution of F is complicated by many facts. For example, β̂ is

only an approximate version of the BLUE since B1 and R1, . . . Rn are unknown and



17

hence their estimates have been used in their expressions. The matrix σ̂2C11 is also

an estimated version of the variance covariance matrix of β̂. Further, the distribution

of F also depends on the type of unbalancedness that exists in the data. However,

for large samples, the test statistic F will have an approximate F distribution with

numerator degrees of freedom v1 = rank(L) and denominator degrees of freedom v2

approximately estimated (Searle et al., 1992).

3.1.5 Selection of Appropriate Structure for B and R

Given numerous choices of structures for B and R, one of the problems a prac-

titioner faces is the selection of appropriate structure. Under the model fitting infor-

mation, Akike’s Information Criterion (AIC) and Schwarz’s Bayesian Criterion (BIC)

are often used.

Akike’s Information Criterion (AIC) is defined as

AIC = −2l(θ̂) + 2q, (3.15)

where l(θ) is the log-likelihood function (or unrestricted log-likelihood function) and

l(θ̂) is the maximum log-likelihood function (or unrestricted maximum log-likelihood

function) and q is the number of the estimated covariance parameters. The structure

expressed in terms of θ with the smallest AIC is preferred.

Schwarz’s Bayesian Criterion (BIC) is defined as

BIC = −2l(θ̂) + q log(N∗), (3.16)

where N∗ = N for ML and (N − k) for REML. Similar to AIC interpretation, a

model with a small value of BIC is preferred.

Keselman et al. (1998) indicate through extensive simulation studies that the

AIC performs better than BIC in trying to identify the true models. The poor
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performance of BIC might be due to the fact that the penalty criterion is a function

of N , the total number of observations rather than the number of subjects.

In the context of selecting a covariance structure for R, LRT on a covariance

structure can be performed to decide if the particular covariance structure is deemed

adequate. One can use the log-likelihood ratio test statistic or the chi-square statistic

associated with that. The degree of freedom of the chi-square distributions are deter-

mined by taking the difference between the number of parameters in the full model

and that in the reduced (under the null hypothesis) model.

3.2 Generalized Estimating Equations (GEE)

The generalized estimating equations (GEE) are the marginalization modeling

methods for analyzing repeated measurement data. The GEE approach is an exten-

sion of quasi-likelihood to longitudinal data analysis. The method is semiparametric

in that the estimating equation is derived without fully specifying the joint distri-

bution of a subject’s observations. It is only required that the likelihood for the

marginal distribution and a working covariance matrix for the vector of repeated

measurements be obtained for each subject. The GEE estimators are consistent and

asymptotic normally distributed even with misspecifying covariance structure. The

estimating equations reduce to the score equations for multivariate normal outcomes.

The method avoids the need for multivariate distributions by assuming a functional

form of the marginal distribution at each point. The covariance structure is con-

sidered as a nuisance. The GEE approach relies on independence across subjects

to estimate consistently the variance of the regression coefficient, even when the as-

sumed correlation is incorrect. There are many books dealing with GEE in detail. We

recommend some books: Hand and Croweder (1996), Diggle et al. (1994), Lindsey

(1999), Dobson (2002), Davis (2002).
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3.2.1 Assumptions of the Method

The GEE model requires the first and second moment conditions. The marginal

response

µij = E(yij) (3.17)

has linked to a linear combination of the covariates,

g(µij) = xijβ, (3.18)

where yij is the response of subject i at time j, xij = (xij1, . . . xijp) is the corresponding

1×p vector of covariates, and β = (β1, . . . βp)
′
is a p×1 vector of unknown parameters.

g(·) is the link function.

The second moment condition is that the variance of yij as a function of the

mean,

V ar(yij) = φV (µij), (3.19)

where V (·) is the variance function and φ is a possible unknown scale parameter. For

normally distributed responses, a natural choice is

g(µij) = µij, V (µij) = 1, V ar(yij) = φ.

If the response variable is binary, the choice is

g(µij) = log(
µij

1− µij

), V (µij) = µij(1− µij), φ = 1.

If the response variable is Poisson count,

g(µij) = log(µij), V (µij) = µij, φ = 1,

are often used.
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3.2.2 Working Correlation Matrix

It is required for the GEE models to choose the form of a mi × mi working

correlation matrix Ri(α) for each yi = (yi1, . . . yimi
)
′
. The (j, j

′
) element of Ri(α) is

the known, hypothesized, or estimated correlation between yij and yij′ . This working

correlation matrix may depend on a vector of unknown parameter α, which is same

for all subjects. Although this correlation matrix can differ from subject to subject,

we can commonly use a working correlation matrix R = R(α) that approximates

the average dependence among repeated observations of subjects. We should choose

the form of R to be consistent with the empirical correlations. The R is called a

working correlation matrix because with nonnormal response, the actual correlation

among subjects’ outcomes may depend on the mean values, and hence on xijβ. The

commonly used specific choices of the form of the working correlation matrix are

• Independence:

R = I - the GEE reduce to the independence estimating equation.

• Exchangeable:

Rjj′ = α for j 6= j
′

- same structure as in random-intercepts model.

• AR(1):

Rjj′ = α|j−j
′ |.

• m-dependent:

Rjj′ =





α
|tj−t

j
′ | if |tj − tj′| ≤ m

0 if |tj − tj′| > m
.

• Unstructured:
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Rjj′ = αjj′ - m(m + 1)/2 parameters to be estimated. It is most effi-

cient in some cases, but useful only when there are relatively few observations.

The missing data make a more complicated estimation of R, and the estimate

obtained using nonmissing data is not guaranteed to be positive definite

y′Ry > 0 for all y 6= 0, (3.20)

which is a problematic inversion of R.

The GEE method yields consistent estimates of the regression coefficient and

their variance, even with misspecfication of the structure of the covariance matrix.

For ith subject, let Ai be the mi ×mi diagonal matrix with marginal variance

of yij, i.e. Ai = diag{v(µi1), . . . v(µimi
)}. Also, let Ri(α) be the mi × mi invertible

working correlation matrix for the ith subject. The working covariance matrix for

yi = (yi1, . . . yimi
)
′
is

Vi(α) = φA
1/2
i Ri(α)A

1/2
i . (3.21)

The working correlation matrix is not usually known and must be estimated. It

is estimated in the iterative fitting process using the current value of the parameter

vector β to compute appropriate functions of the standardized Pearson residuals

rij =
yij − µ̂ij√

[Vi]jj
. (3.22)

It is noted that, in the normal case, the denominator is
√

[Vi]jj = 1, namely rij =

yij − µ̂ij. The V ar(rit) = φ and

φ̂ =

∑n
i=1

∑mi

t=1 r
2
it∑n

i=1mi − p
, (3.23)

where p is the number of regression parameters. As an example of estimating α,

suppose we assume an exchangeable correlation structure. Then

corr(yit, yit′ ) ≈ corr(rit, rit′ )φ
−1 ≈ E(rit, rit′ ), (3.24)
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so that the method of moment estimator is

α̂ = φ̂−1

∑n
i=1

∑mi

t 6=t′ ritrit
′

∑n
i=1mi(mi − 1)− p

. (3.25)

3.2.3 Solving the GEE

The GEE estimate of β is the solution of

U(β) =
n∑

i=1

(
∂µ(xiβ)

∂β

)′

[Vi(α̂)]−1 (yi − µ(xiβ)) = 0p, (3.26)

where α̂ is a consistent estimate of α and 0p is the p×1 vector (0, . . . 0)
′
. The iterative

procedure begins with starting value β0 and calculate updated value βs+1 from βs by

βs+1 = βs −
[

n∑
i=1

∂µ

∂β

′

V −1
i

∂µ

∂β

]−1 [
n∑

i=1

∂µ

∂β

′

V −1
i (yi − µi)

]
. (3.27)

The estimator β̂ can be obtained by Fisher scoring, which can be viewed as iteratively

weighted least square estimates.

For the normal case,

µi = xiβ,

∂µi

∂β
= xi,

Vi(α̂) = Ri(α̂). (3.28)

Thus,

n∑
i=1

x′i
[
Ri(α̂)

]−1
(yi − xiβ) = 0, (3.29)

and solving for β yields

β̂ =
{ n∑

i=1

x′i[Ri(α̂)]−1xi

}−1{ n∑
i=1

x′i[Ri(α̂)]−1yi

}
, (3.30)

which is solved as an iteratively weighted least square estimate.
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The GEE method has some desirable properties that make it an attractive

method for dealing with correlated data. It reduced to the independence estimating

equation when mi = 1, and is the maximum score equation for multivariate Gaussian

data. Also, it is shown by that

√
n(β̂ − β) → N(0, I),

if the mean model is correct even if a working covariance matrix in Equation (3.21)

Vi is incorrectly specified, where

I = M−1
0 M1M

−1
0 , (3.31)

M0 =
n∑

i=1

∂µ

∂β

′

V −1
i

∂µ

∂β
, and (3.32)

M1 =
n∑

i=1

∂µ

∂β

′

V −1
i Cov(yi)V

−1
i

∂µ

∂β
. (3.33)

The property listed means that we don’t have to specify the working correlation

matrix correctly in order to have a consistent estimator of the regression parameters.

Choosing the working correlation closer to the true correlation increases the statistical

efficiency of the regression parameter estimator, so we should specify the working

correlation as accurately as possible based on knowledge of the measurement process.

3.2.4 Robust Variance Estimate

The model based estimator of V ar(β̂) is given by

V̂ ar(β̂) = M̂−1
0 , (3.34)

where M̂0 =
∑n

i=1

(
∂ bµi

∂β

)′
V̂ −1

i

(
∂ bµi

∂β

)
and V̂i = Vi(α̂). This is the GEE equivalent

for the inverse of the Fisher information matrix that is often used in generalized

linear models as an estimator of the covariance estimate of the maximum likelihood
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estimator of β. It is a consistent estimator of the covariance matrix of β̂, if the mean

model and working correlation matrix are correctly specified.

Liang and Zeger (1986) recommended that the variance-covariance of β̂ be esti-

mated by

V̂ ar(β̂) = M̂−1
0 M̂1M̂

−1
0 , (3.35)

where

M̂1 =
n∑

i=1

∂µ

∂β

′

V̂ −1
i (yi − µ̂i)(yi − µ̂i)

′
V̂ −1

i

∂µ

∂β
. (3.36)

This estimator was defined by Royall (1986) and is known as robust or information

sandwich estimator. It has the property of being a consistent estimator of the co-

variance matrix of β̂, even if the working correlation matrix is misspecified. Note

that if the true correlation structure is correctly modeled, then V ar(yi) = Vi and it

simplifies from Equations (3.31) and (3.33) to

V ar(β̂) = M−1
0 M1M

−1
0 = M−1

0 M0M
−1
0 = M−1

0 , (3.37)

which can be estimated by a model-based estimator, V̂ ar(β̂) = M̂−1
0 .

3.2.5 Hypothesis Testing

After estimating the vector of regression coefficient β̂, it may be of interest to

test the hypothesis concerning the elements of β. Consider a hypothesis of the form

H0 : Cβ = d,

where C is a c×pmatrix of constants with imposing c linearly independent constraints

on the element of β and d is a p× 1 vector of constants. Because β̂ is asymptotically

normal, the Wald statistic

QC = (Cβ̂ − d)
′
[
CV̂ ar(β̂)C

′
]−1

(Cβ̂ − d) (3.38)

has an asymptotic χ2
c distribution if H0 is true.
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CHAPTER IV

MOVING BLOCK BOOTSTRAP

4.1 Introduction

Many longitudinal designs are the case that the number of subjects n is large

and the number of replications mi is bounded. Liang and Zeger (1986) proved that

the GEE estimator is consistent and asymptotically normal with misspecification of

covariance parameters. That asymptotic property is considered when the number of

subjects n goes to infinity and mi is bounded. Xie and Yang (2003) proved the almost

sure existence and strong consistency of GEE estimators, which are focused on three

large sample settings:

• n→∞ and m = m(n) = max1≤i≤n(mi) is bounded above, for all n;

• n is bounded but m→∞;

• m→∞ as n→∞.

We will consider the case of the longitudinal design in which the number of

subjects n is bounded and the number of replications m, the same number for all

subjects, is large. The model on which we focus is given by

yi = xiβ + ei, (4.1)

where i = 1, · · · , n, xi is m×p design matrix, β is p×1 vector of unknown parameters,

yi = (yi1, · · · , yim)
′
, and ei = (yi1, · · · , eim)

′
. Note that Equation (3.1) is rewritten

as Equation (4.1) with ei = ziγi + εi using the marginal model representation. The

repeated observations are correlated for each subject. Since bootstrap methods that
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resample small subjects or resample observations independently may not work well,

we will investigate the moving block bootstrap method developed for time series

correlated data.

4.2 Inadequacy of the Standard Bootstrap for Dependent Data

We refer to the nonparametric resampling scheme of Efron (1979), introduced

in the context of iid (identical independent distributed), as the standard bootstrap.

There are also some alternative terms such as “naive” and “ordinary” bootstrap in

the literature for Efron’s (1979). For notational simplicity in this section, we consider

the one subject model which is given by

yj = θ + ej, (4.2)

where yj = (y1, · · · , ym)
′
.

Definition 4.2.1 A sequence of random variables {yj}j∈Z is called stationary if for

every j1 < j2 < · · · < jp, p ∈ N and for every m ∈ Z, the distributions of (yj1 , . . . yjp)
′

and (yj1+m, . . . yjp+m)
′
are the same.

Definition 4.2.2 A sequence of random variables {yj} is said to be k-dependent if

for s − r > k, the two subsequence {, . . . , yr−2, yr−1, yr} and {ys, ys+1, ys+2, . . .} are

independent.

Suppose that y1, y2, . . . is a stationary sequence. Let θ = Eyj , σ2 = V ar(yj),

and γj = Cov(y1, y1+j). The variance of sample mean ym for stationary distribution

is

V ar{√m(ym − θ)} = σ2 +
2

m

m−1∑
j=1

(m− j)γj. (4.3)

Suppose that

2

m

m−1∑
j=1

(m− j)γj → γ (4.4)



27

as m→∞. It seems reasonable to get

√
m(ym − θ) →d N(0, σ2 + γ). (4.5)

Let us consider k-dependent sequence. For an k-dependent sequence, we have γp = 0

for all p > k, and therefore

2

m

k∑
j=1

(m− j)γj → 2
k∑

j=1

γj. (4.6)

This leads to the cental limit theorem for k-dependence.

• (CLT for k -dependent sequences): If for some k ≥ 0, y1,y2, . . . is a stationary

k-dependent sequence with Eyj = θ and V ar(yj) = σ2 <∞, then

√
m(ym − θ) →d N(0, τ 2), (4.7)

where

τ 2 = σ2 + 2
k∑

j=1

Cov(y1, y1+j). (4.8)

We sketch the idea of the proof as follows.

Let M = M(m) be integer that goes to ∞ as m→∞, but at a slower rate than

m so that m/M →∞. Then
∑m

j=1 yj may be broken into two parts as follows:

m∑
j=1

yj = (y1 + · · ·+ yM) + (yM+1 + · · · yM+k)

+(yM+k+1 + · · · y2M+k) + (y2M+k+1 + · · · y2M+2k) + · · ·

= A1 +B1 + A2 +B2 + · · · ,

where the Aj each consists of M term and the Bj each consist of k terms. Thus we

obtain for m = r(M + k)

√
m(ym − θ) =

1√
m

r∑
j=1

(Aj − θ) +
1√
m

r∑
j=1

(Bj − θ). (4.9)
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The key is that the Aj are iid, so we can use the CLT. On the other hand, the Bj

have an asymptotically negligible contribution to the sum.

As one example, the first order moving average process can be modeled as follows:

yj = θ + εj + φεj−1, (4.10)

where εj are iid N(0, σ2). The mean, variance and covariance of yj are

E(yj) = θ, V ar(yj) = (1 + φ2)σ2 and

γs = E[yjyj+s]− E[yj]E[yj+s] =





(1 + φ2)σ2, s = 0

φσ2, s = 1

0, s > 1

(4.11)

So the
√
m(ym− θ) → N(0, (1+2φ+φ2)σ2) from the k-dependent CLT results. The

ordinary central limit theorem gives us
√
m(ym − θ) → N(0, (1 + φ2)σ2), since the

stationarity implies V ar(yj) = (1 + φ2)σ2 for all j.

Definition 4.2.3 Let {yj}j∈Z be a sequence of random vectors. Then the strong

mixing or α-mixing coefficient of {yj}j∈Z is defined as

α(m) = sup{|P (A ∩B)− P (A)P (B)| : A ∈ σ({yj : j ≤ p}),

B ∈ σ({yj : j ≥ p+m+ 1}, p ∈ Z)}, m ∈ N.

The sequence {yj}j∈Z is called strongly mixing (or α-mixing) if α(m) → 0 as m→∞.

• (CLT for strongly mixing sequences): Let y1, y2, . . . be a sequence of stationary

of random variables with strong mixing coefficient α(·).

(i) Suppose that
∑∞

m=1 α(m) <∞. Then

0 ≤ σ2
∞ ≡

∞∑
j=−∞

Cov(y1, y1+j) <∞. (4.12)
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If, in addition, σ2
∞ > 0, then

1√
m

m∑
j=1

(yj − Ey1) → N(0, σ2
∞). (4.13)

(ii) Suppose that for some δ ∈ (0,∞), E|y1|2+δ <∞ and
∑∞

m=1[α(m)]δ/2+δ <

∞. Then (4.12) holds. If in addition, σ2
∞ > 0, then (4.13) holds.

As another example, we consider the first-order stationary autoregressive process.

Suppose ε1,ε2, . . . are iid N(0, σ2). For j ≥ 1,

yj+1 = θ + ρ(yj − θ) + εj+1, (4.14)

for some ρ with |ρ| < 1. Let y1 ∼ N(θ, σ2
y). From the stationarity assumption, it can

be shown that V ar(yj+1) = ρ2σ2
y + σ2, and V ar(yj+1) = σ2

y = σ2

1−ρ2 for all j. We may

write

yr+1 − θ = ρr(y1 − θ) + ρr−1ε2 + · · ·+ ρεr + εr+1. (4.15)

It is easy to see that Cov(y1, y1+r) = ρr σ2

1−ρ2 . Therefore,

V ar[
√
m(ym − θ)] = σ2

y +
2

m

m−1∑
j=1

(m− j)ρjσ2
y

=
σ2

1− ρ2

[
1 + 2

m−1∑
j=1

ρj − 2

m

m−1∑
j=1

jρj

]
.

Since
m−1∑
j=1

jρj =
ρ {1 + (m− 1)ρm −mρm−1}

(1− ρ)2
, (4.16)

we see that 2
m

∑m−1
j=1 jρj → 0. Thus

V ar
[√
m(ym − θ)

] → σ2

1− ρ2
(1 +

2ρ

1− ρ
) =

σ2

1− ρ2

(
1 + ρ

1− ρ

)
. (4.17)

Since ym is normal, this implies that

√
m(ym − θ) →d N(0, σ2

∞), (4.18)
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where σ2
∞ = σ2

1−ρ2

(
1+ρ
1−ρ

)
. The ordinary central limit theorem gives us

√
m(ym− θ) →

N(0, σ2/(1− ρ2)) since the stationarity implies V ar(yj) = σ2/(1− ρ2) for all j.

If we want to estimate the sampling distribution of the random variable Tm =

√
m(ym− θ) using the standard bootstrap, then the bootstrap version T ∗m of Tm from

χm = (y1, . . . ym), equal number of bootstrap variables y∗1, . . . y
∗
m, is given by

T ∗m =
√
m(y∗m − ym), (4.19)

where y∗m = 1
m

∑m
j=1 y

∗
j . The conditional distribution of T ∗m under the standard boot-

strap method still converges to a normal distribution, but with a wrong variance.

This is justified as follows. First,

sup
x
|P ∗(T ∗m ≤ x)− Φ(x/σ)| = o(1) as m→∞, a.s. (4.20)

with Ey1 = θ, and σ2 = V ar(y1) ∈ (0,∞). If the covariance
∑k

j=1Cov(y1, y1+j) 6= 0

and σ2
∞ 6= 0, defined in (4.12), then for any x 6= 0,

lim
m→∞

[P ∗(T ∗m ≤ x)− P (Tm ≤ x)] = [Φ(x/σ)− Φ(x/σ∞)] 6= 0 a.s. (4.21)

As a result in the previous examples, the standard bootstrap method fails drastically

for dependent data. It ignores the dependence structure and fails to account for the

lag-covariance terms in the asymptotic variance (Singh, 1981).

Let θ̂ be an estimator of a level-1 parameter θ and Tm =
√
m(θ̂m − θ)/sm be

a scaled version of θ̂m such that Tm →d N(0, 1). If we set sm to be an asymptotic

standard deviation of
√
m(θ̂m − θ), then Tm is called a normalized or standardized

version of θ̂m. If sm is an estimator of the asymptotic standard deviation of
√
m(θ̂m−

θ), then Tm is called a studentized version of θ̂m. Hall (1992) showed that it could be

possible to expand the distribution function of Tm in a series of the form

P (Tm ≤ x) = Φ(x) +m−1/2p1(x; γ)φ(x) + o(m−1/2) (4.22)
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uniformly in x ∈ R, where Φ and φ, respectively, denote the distribution function

and the density (with respect to the Lebesque measure) of the standard normal dis-

tribution on R and where p1(·; γ) is a polynomial such that its coefficients are smooth

functions of some population parameters γ. The right side of (4.22) is called a first-

order Edgeworth expansion for the distribution of Tm.

Next, let T ∗m denote the bootstrap version of Tm based on the bootstrap method.

The expansion of T ∗m in an Edgeworth expansion of the form

P ∗(T ∗m ≤ x) = Φ(x) +m−1/2p1(x; γ̂m)φ(x) + op(m
−1/2) (4.23)

uniformly in x ∈ R, where p1(·; ·) is the same function of (4.22) and where γ̂m is

a data-based version of the population parameter γ, generated by the resampling

method. Relation (4.22) and (4.23) may be readily combined to assess the rate of

approximation of the bootstrap distribution function estimator P ∗(T ∗m ≤ x). It follows

that

sup
x∈R

|P ∗(T ∗m ≤ x)− P (Tm ≤ x)|

= m−1/2 sup
x∈R

|p1(x; γ̂m)φ(x)− p1(x; γ)φ(x)|+ op(m
−1/2)

= op(m
−1/2), (4.24)

provided γ̂m is a consistent estimator of γ and the coefficients of the polynomial

p1(·, t) is continuous in a second argument t. In this case, the bootstrap approximation

P ∗(T ∗m ≤ x) to P (Tm ≤ x) has a smaller order of error than the normal approximation

to P (Tm ≤ x), which is only of the order O(m−1/2). This property is referred to as the

second-order correctness of the bootstrap approximation, as it captures the second-

order term asymptotically.

Singh (1981) established the second-order correctness of the standard bootstrap

method of Efron (1979) for the normalized sample mean of iid random variables,
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and provided the first theoretical confirmation of the superiority of the bootstrap

approximation over the classical normal approximation.

The standard iid bootstrap estimation under independent assumption has

sup
x∈R

∣∣∣P ∗
{√

m
ȳ∗m − E∗(ȳ∗m)√
V ar∗(

√
mȳ∗m)

≤ x
}
− P

{√
m
ȳm − θ

σ
≤ x

}∣∣∣ = op(m
−1/2). (4.25)

As a result, the standard bootstrap method fails for dependent data like below,

sup
x∈R

∣∣∣P ∗
{√

m
ȳ∗m − E∗(ȳ∗m)√
V ar∗(

√
mȳ∗m)

≤ x
}
− P

{√
m
ȳm − θ

σ∞
≤ x

}∣∣∣ 6= op(m
−1/2). (4.26)

Proof.

∣∣∣P ∗
{√

m
ȳ∗m − E∗(ȳ∗m)√
V ar∗(

√
mȳ∗m)

≤ x
}
− P

{√
m
ȳm − θ

σ∞
≤ x

}∣∣∣

=
∣∣∣P ∗

{√
m

ȳ∗m − E∗(ȳ∗m)√
V ar∗(

√
mȳ∗m)

≤ x
}
− P

{√
m
ȳm − θ

σ
≤ x

}

+ P
{√

m
ȳm − θ

σ
≤ x

}
− P

{√
m
ȳm − θ

σ∞
≤ x

}∣∣∣

= op(m
−1/2) +Op(1)

= Op(1). (4.27)

The standard bootstrap cannot be taken into account for the dependent struc-

ture. Note that in (4.22) γ̂m is not a consistent estimator of γ. Recall that σ2 =

V ar(y1) and σ2
∞ =

∑∞
k=−∞Cov(y1, y1+k). Figure 1 is the Lynx data collected by

Brockwell and Davis (1991) which contain data about Canadian Lynx Trappings in

1821-1934. Figure 2 shows the results for a single replicate using block simulation,

and tells us that the standard bootstrap method fails to reproduce the original de-

pendent structure. Figure 3 presents several series with autocorrelated data. In the

standard bootstrap methods, the dependence structure could not be preserved. The

moving block bootstrap should be used for dependent data.
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Figure 1: Canadian lynx trappings in 1821-1934
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Block simulation, b=20

1820 1840 1860 1880 1900 1920

4
5

6
7

8
9

Block simulation, b=10

1820 1840 1860 1880 1900 1920

4
5

6
7

8

Block simulation, b=1

1820 1840 1860 1880 1900 1920

4
5

6
7

8
9

Figure 2: The block simulation for Canadian lynx trapping data
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Figure 3: The block simulation for three AR(1) series
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4.2.1 Short and Long Memory Process

In this section, we consider the correlation structure. We assume that the process

follows stationarity condition for each subject. The series {yij, j ∈ Z}, with index set

Z = {0,±1,±2, · · · }, 1 ≤ i ≤ n0, is said to be stationary if

i) E|yij|2 <∞ for all j ∈ Z,

ii) Eyij = 0 for all j ∈ Z,

and

iii) γyi
(r, s) = γyi

(r + j, s+ j) for all r, s, j ∈ Z.

If {yij, j ∈ Z} is stationary then γyi
(r, s) = γyi

(r− s, 0) for all r, s ∈ Z. It is therefore

convenient to redefine the auto-covariance function of a stationary process as the

function of just one variable,

γyi
(k) ≡ γyi

(k, 0) = cov(yi(j+k), yij) for all j, k ∈ Z. (4.28)

The function γyi
(·) will be referred to as the the auto-covariance function of {yij}

and γyi
(k) as its value at lag k. The autocorrelation function (ACF) of {yij} is defined

analogously as the function whose value set lag k is

ρyi
(k) ≡ γyi

(k)

γyi
(0)

= Corr(yi(j+k), yij) for all j, k ∈ Z. (4.29)

Definition 4.2.4 (Short Memory and Long Memory). The covariance between yi1

and yi(1+k) decrease rapidly as k →∞. The autocorrelation function is geometrically

bounded, i.e. ,

|ρ(k)| ≤ Cr−k, k = 1, 2, · · · , (4.30)



37

where C > 0 and 0 < r < 1 which is called a “short memory process”. “A long

memory process” is a stationary process for which

ρ(k) ∼ Ck2d−1 as k →∞, (4.31)

where C > 0 and d < 1/2. [ Some authors make a distinction between “interme-

diate memory” process for which d < 0 and hence
∑∞

k=−∞ |ρ(k)| < ∞, and “long

memory” process for which 0 < d < 1/2 and
∑∞

k=−∞ |ρ(k)| = ∞ ].

All stationary invertible autoregressive moving average (ARMA) processes are

short memory. In the case d > 0, the autocorrelations decay to zero so slowly that

they are not summable, i.e
∑∞

k=−∞ |ρ(k)| = ∞ and V ar(yij) decays to zero more

slowly than 1/m. If d < 0, then the autocorrelation are summable,
∑∞

k=−∞ |ρ(k)| <
∞, but they still decay to zero more slowly than the exponential rate achieved by

the stationary invertible ARMA process. There is a non-negligible correlation even

between distant past and distant future. We will use the terminology of Brockwell

and Davis (1991) for long memory whenever d 6= 0.

When the sample ACF of a time series decays slowly, there is a need to difference

the series until it seems stationary. Lone memory time series were considered in

Hosking (1981) and Granger and Joyeux (1980) as intermediate compromises between

the short memory ARMA models and the fully integrated nonstationary processes in

the Box-Jenkins sense. Figure 4 shows the correlation decays exponentially with the

difference in time for the stationary and short memory case.
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Figure 4: The correlation decays exponentially with the difference in time
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4.3 Moving Block Bootstrap Methods for Longitudinal Data

The major drawback with model-based resampling is that in practice not only

the parameters of a model, but also its structure, must be identified from the data.

If the chosen structure is incorrect, the resampled series will be generated for the

wrong model, and they will not have the same statistical properties as the original

data. The model-based approach is inconsistent if the model used for resampling is

misspecified.

The moving bootstrap involves resampling possibly overlapping blocks. The

MBB does not force one to select a model and the only parameter required is the

block length. If the block is long enough the original dependence will be reasonably

preserved in the resampled series. This approximation is better if the dependence is

weak and the blocks are as long as possible, thus preserving the dependence more

faithfully. But the distinct values of the statistics must be as numerous as possible

to provide a good estimate of the distribution of the statistics and this points toward

short blocks.

Unless the length of the series is considerable to accommodate longer and more

number of blocks the preservation of the dependence structure may be difficult, espe-

cially for complex, long range dependent structures. In such cases, the block resam-

pling scheme tends to generate resampled series that are less dependent than the orig-

inal ones. Furthermore, the resampled series often exhibits artifacts which are caused

by joining randomly selected blocks. Then, the asymptotic variance-covariance ma-

trices of the estimators based on the original series and those based on the bootstrap

series are different and a modification of the original scheme is needed. This suggests

a strategy intermediate between model-based and block resampling. The idea comes

from pre-whitening the series by fitting a model is intended to remove much of the
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dependence between the original observations. A resampling series is generated by

block resampling of residuals from the simple fitted model, and the innovation series

is then post-blackened by applying the simple estimated model to the resampled in-

novations. The post-blackened version works more consistently in practice (Davison

and Hinkley, 1997).

Bühlmann (1997) suggested the sieve bootstrap which is model based. The AR(p)

model is just used to filter the residual series. If the model used in the sieve bootstrap

is not appropriate, the resulting residuals cannot be treated as iid. A hybrid approach

between the model based method and moving block bootstrap, named post-blacken

bootstrap, was suggested by Davison and Hinkley (1997). The procedure is similar

to the sieve bootstrap, but the residuals from AR(p) model are not resampled in an

iid manner but by using the MBB bootstrap. If some residual dependent structure

is present in the AR residuals, this is kept from the blockwise bootstrap. The simple

linear model is used to pre-whiten the series by fitting the model that is intended to

remove much of the dependence present the observations. A series of innovations is

then generated by block resampling of residuals obtained from the fitted model, and

the innovation series is then post-blackened by applying the estimated model to the

resampled innovations.

The Block Bootstrap Algorithm in Longitudinal Model

We continue to assume (4.1) as our longitudinal model under consideration.

1) Let êij, i = 1, · · · , n0, j = 1, · · · ,m be the residuals from the model fit.

êij = yij − xijβ̂,

where β̂ is the ordinary least square estimate.

2) Now assuming that m = bk with b and k integers: Let B∗
1 , · · · , B∗

k denotes k

uniform draws with replacement from the integers {0, 1, · · · ,m− b}. These represent
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the starting point for each block of length b. A block bootstrap resample of residuals,

(ê∗i1, · · · , ê∗im), is defined by:

ê∗i,(j−1)b+s = êi,B∗j +s, (1 ≤ j ≤ k, 1 ≤ s ≤ b) for each i.

3) The bootstrapped response, y∗ij, are then generated from the estimated model

with residuals ê∗ij and the original covariates:

y∗ij = xijβ̂ + ê∗ij. (4.32)

4) From the resampled responses y∗ij, and original covariates we fit the model and

obtain new parameter estimates.

5) Repeating steps 2) through 4) a large number, R, of times one obtains R

bootstrap replicates from which features of the distribution of the parameter estimates

can be estimated. In particular, the bootstrap variance estimates are simply variance

of the B computed values for each parameter.

We consider the six different kinds of block bootstrap methods in a balanced

longitudinal design in which the number of subjects is small and the number of

replications is large.

1) MBB1: Within block bootstrap

For each i subject, we construct overlapping blocks with m − b + 1 blocks and

block size b, i.e B1, · · · , Bm−b+1. Let us define m/b = k which is assumed to be an

integer for simplicity, in general k = [m/b]. We can add the k blocks with replacement

among B1, · · · , Bm−b+1. We get the B∗
1 , · · · , B∗

k with kb = m, and create ê∗i1, · · · , ê∗im
from êi1, · · · , êim, where êij = yij − β̂0 − β̂1xij. We can add up to n0 individuals and

plug this into the model and the results is a pseudo sample series y∗11, · · · , y∗n0m. From

the model y∗ij = β̂0 + β̂1xij + ê∗ij, we fit model and produce new parameters β̂∗0 and β̂∗1 .
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2) MBB2: Mixed block bootstrap

We have m − b + 1 blocks and block size b, i.e B1, · · · , Bm−b+1 and add up to

n0 subjects. We sample n0k blocks with replacements among B1, · · · , Bn0(m−b+1).

We construct B∗
1 , · · · , B∗

n0k with kb = m, and plug this into the model and obtain a

pseudo series y∗11, · · · , y∗n0m. Similarly, from the model y∗ij = β̂0 + β̂1xij + ê∗ij, we fit

the model and produce new parameters β̂∗0 and β̂∗1 .

3) One-line moving block bootstrap

One can make up to one long series and perform the moving block bootstrap

using a time series without splitting the different individual consecutive data.

4) Standard bootstrap

This is a special case of b = 1 in MBB2.

5) Resampling subject bootstrap

This is a special case of b = m in MBB2.

6) Stratified standard bootstrap

This is a special case of b = 1 in MBB1.

4.4 Justification of Moving Block Bootstrap in Longitudinal Data

We consider the justification of moving block bootstrap in longitudinal data. We

focus on the within block bootstrap method (MBB1) in the six different kinds of

synario in previous section. Let’s consider the relationship between the GEE and M-

estimators. The robust approach can be extended to the regression setup to analyze

a predictor-outcome relationship. Suppose we have model (4.1) with n = n0. The

estimator β̂ is called a robust regression estimator or an M-estimator if it solves

n0∑
i=1

m∑
j=1

x
′
ijψ(yij − xijβ) = 0, (4.33)

for some choice of function ψ(·).
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4.4.1 Expansion for M-estimator

It is known that

(

n0∑
i=1

m∑
j=1

x
′
ijxij)

1/2(β̂n0m − β) ∼ Np

(
0,

Eψ2(e11)

(Eψ′(e11))2
Ip

)
, (4.34)

where Ip denotes the identity matrix of order p.

Let êij = yij − xijβ̂n0m denote residuals. Define

σi(k) = Eψ(ei1)ψ(ei(1+k)), k ≥ 0; τ = τi = Eψ
′
(ei1) for each i

σ̂im(k) = (m− k)−1

m−k∑
j=1

ψ(êij)ψ(êi(j+k)), 0 ≤ k ≤ m− 1, τ̂im = m−1

m∑
j=1

ψ
′
(êij).

Also, let σi(k) = σ(k) and σ̂im(k) = σ̂m(k).

Assumption 4.4.1 (A.1) (i) ψ is twice differentiable, and ψ
′′

satisfies a Lipschitz

condition of order δ1 > 0,

(ii) ψ, ψ
′
, ψ

′′
are bounded.

(A.2) (i) for each i Eψ(ei1) = 0, τ ≡ Eψ
′
(ei1) 6= 0,

(ii) σ∞ ≡ σ(0)− 2
∑∞

k=1 |σ(k)| > 0.

(A.3) There exists ρ > 0 such that

(i) sup{|P (A ∩ B) − P (A)P (B)| : A ∈ F r
−∞, B ∈ F∞

r+k, r ≥ 1} ≤
ρ−1 exp(−ρk) for all k ≥ 1,

(ii) for all r ≥ 1, and all k ≥ ρ−1, there exists a F r+k
r−k -measurable random

variable ẽir,k such that E|eir − ẽir,k| ≤ ρ−1 exp(−ρk),
(iii) for all r, k, q ≥ ρ−1 and A ∈ F r+q

r−q ,E|P (A|Fj : j 6= r)−
P (A|Fj : 0 < |j − r| ≤ q + k)| ≤ ρ−1 exp(−ρk), and

(iv) for all r ≥ ρ−1, k ≤ r and all tr−k, . . . , tr+k ∈ R with |tr| > ρ,

E|E(exp(
√−1

∑n0

i=1

∑r+k
j=r−k tjψ(eij))|Fj : j 6= r| < exp(−ρ).

(A.4) max{‖xij‖ : 1 ≤ j ≤ m} = O(1) and lim infm→∞m−1λm ≡ λ > 0, where

λm denotes the smallest eigenvalue of (
∑m

j=1 x
′
ijxij).
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Let Dn0m = (
∑n0

i=1

∑m
j=1 x

′
ijxij)

−1/2 and dij = Dn0mx
′
ij, 1 ≤ j ≤ m. When eij

are weakly dependent for each i, the asymptotic covariance of D−1
n0m(β̂n0m−β) matrix

is given by

Covn0m ≡ (Eψ
′
(e11))

−2 ×
n0∑
i=1

m∑

k=0

LikmEψ(ei1)ψ(ei(1+k)), (4.35)

where Li0m = Ip and Likm =
∑m−k

j=1 (dijd
′
i(j+k) + di(j+k)d

′
ij), 1 ≤ k ≤ m− 1.

To define the studentized version of β̂n0m, note that the asymptotic matrix

D−1
n0m(β̂n0m − β) is given by

Σn0m ≡ Cov
( n0∑

i=1

m∑
j=1

dijψ(eij)
)

=

n0∑
i=1

m−1∑

k=0

Likmσ(k).

Therefore, a natural estimator of Σn0m is

Σ̂n0m =

n0∑
i=1

l∑

k=0

Likmσ̂m(k),

where 1 ≤ l ≡ lm ≤ m−1 is an integer. If l→∞ slowly withm, then ‖Σ̂n0m−Σn0m‖ =

op(1). Σ̂n0m is non singular with high probability for m large, and can be inverted to

define the studentized statistic,

Tn0m = Σ̂−1/2
n0m D−1

n0m(β̂n0m − β).

Next, we extend Lahiri’s (1996) results for longitudinal case:

assume that (A.1),(A.2),(A.3)(i),(ii), and (A.4) hold. Then, there exists a se-

quence of statistics {β̂m} such that

P (β̂n0m satisfies (4.33) and ‖D−1
n0m(β̂n0m − β)‖2 ≤ C logm) = 1− o(m−1/2).

If we have a unique solution β̂n0m, then ‖D−1
n0m(β̂n0m − β)‖ = OP ((logm)1/2). When

(4.33) has a unique solution, one can obtain the strong consistency of β̂n0m as in Lahiri

(1992). The next result gives a first order Edgeworth expansion for the studentized

M-estimator.
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Theorem 4.4.1 Assume that Assumptions (A.1)-(A.4) hold and that {β̂n0m} is a

sequence of measurable solutions of (4.33). Then, there exist a polynomial pm(·) on

Rp such that

sup
B∈B

∣∣∣P (Tn0m ∈ B)−
∫

B

(1 + pn0m(x))dΦ(x)
∣∣∣ = o(m−1/2) (4.36)

for every class B of Borel subsets of Rp satisfying

sup
B∈B

Φ((∂B)ε) = O(ε) as η ↓ 0. (4.37)

Here ‖pn0mφ‖∞ = O(m−1/2) with sup norm ‖‖∞, Φ denotes the standard normal

distribution on Rp (p ≥ 1), and the coefficient of pn0m(·) are continuous functions of

cross-product moments of ψ(eij), ψ
′
(eij), and ψ

′′
(eij). Here ∂B denote the boundary

of a set B ⊆ Rp and (∂B)ε = {x : ‖x− y‖ < ε for some y ∈ ∂B}.

Proof.

We follow Lahiri (1996) notation and definitions. For a smooth function h : Rp →
R, let us Djh denote the partial derivative of h(x) with respect to the jth coordinate

of x, 1 ≤ j ≤ p. For p× 1 vectors ν = (ν1, . . . , νp)
′ ∈ Zp

+ and w = (w1, . . . , wp)
′ ∈ Rp,

let |ν| = ν1 + · · ·+νp, ν! = ν1! · · · νp!, w
ν = Πp

i=1(wi)
νi , and ‖w‖ = (w2

1 + · · ·+w2
p)

1/2.

Let Dν denote the differential operator Dν1
1 · · ·Dνp

p , namely Dν = Πp
j=1

(
∂

∂t(j)

)ν(j)

. For

ν ∈ Zp
+ with 1 ≤ |ν| ≤ s, let χν denote the νth cumulant and µν is the νth moment

of w. Note that
√−1

|ν|
µν = DνΦ̂(0), Dαµ̂(t) = (

√−1)|α|
∫
wαe

√−1t
′
wµ(dw), t ∈ Rp,

and
√−1

|ν|
χν = (Dν log Φ̂)(0).

We consider w is a Rp-valued random vector with Ew = 0 and E‖w‖s < ∞ for

some integer s ≥ 3.

Let m3 = [logm log log(3 +m)], v1m = m−1/2(logm)1/2, vm = m−1/2,
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v2m = vm(logm)−1, and v3m = vm(logm)−3/2. Furthermore, define

Gn0m = D−1
n0m(β̂n0m − β), G1n0m =

n0∑
i=1

m∑
j=1

dijψ(eij) dij = (

n0∑
i=1

m∑
j=1

x
′
ijxij)

−1/2xij,

Dn0m = (

n0∑
i=1

m∑
j=1

x
′
ijxij)

−1/2, ψ̃ = ψ(·)− µ̂n0m, An0m =

n0∑
i=1

m∑
j=1

dijd
′
ijψ

′
(eij),

A = τIp = Eψ
′
(eij)Ip, τ = τi = Eψ

′
(ei1) for each i,

Wi1j = ψ(ei1), Wi2j = ψ
′
(eij)− τ,Wi3j = ψ

′′
(eij)− Eψ

′′
(ei1), and

Wi4j(k) = ψ(eij)ψ(ei(j+k))− σi(k).

Also, write χ(U) = (−1)p/2D1 · · ·DpE exp(
√−1t

′
U)|t=0 for a random vector U in Rp.

Let ∆ = D−1
n0m(t− β), t ∈ Rp. Then, by Taylor’s expansion, one can get

[ n0∑
i=1

m∑
j=1

dijd
′
ijψ

′
(eij)

]
∆ =

n0∑
i=1

m∑
j=1

dijψ(eij) +
1

2

n0∑
i=1

m∑
j=1

dij(d
′
ij∆)2ψ

′′
(eij)

+Rn0m(t), (4.38)

where ‖Rn0m(t)‖ ≤ C
∑n0

i=1

∑m
j=1 ‖dij‖3+δ1‖∆‖2+δ, t ∈ Rp.

Following Lahiri (1992), we obtain that

Gn0m = (A−1 + τ−2(A− An0m))G1n0m + (2τ 3)−1

n0∑
i=1

m∑
j=1

dij(d
′
ijθ1n0m)2Eψ

′′
(eij)

+R
′
n0m, (4.39)

where P (‖R′
n0m‖ > C(σ∞)v2m) = o(vm),

Tn0m = Σ−1/2
n0m

[
G1n0m + τ−1G1n0m

(
m−1

n0∑
j=1

m∑
j=1

Wi2j

−(mτ)−1

n0∑
i=1

m∑
j=1

(d
′
ijG1n0m)Eψ

′′
(ei1)

)

+ τ−1(A− An0m)G1n0m + (2τ 2)−1

n0∑
i=1

m∑
j=1

dij(d
′
ijG1n0m)2Eψ

′′
(ei1)

]

+
∑

|β|=1

(Σ̂n0m)βDβ(Σ−1/2
n0m )G1n0m +R†n0m. (4.40)
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If we have Tn0m = T1n0m + Rn0ms, where Rn0ms is the remainder term that under

the moment condition E‖y11‖s < ∞ satisfies P (‖Rn0ms‖ > δm,s) = δm,s for some

sequence δm,s = o(m−(s−2)/2), then the random variable T1n0m is called a (s − 2)th

order stochastic approximation to Tn0m. Note that the (s − 2)th order Edgeworth

expansions for Tn0m and T1n0m coincide. The reason for T1n0m is that the first term

is the same as Tn0m, but the remaining terms consist of all independent variables

for deriving a more simple expansion. The stochastic approximation T1n0m can be

expressed in the form

T1n0m = Σ−1/2
n0m G1n0m +

p∑
r=1

G
′
1n0mΛn0rmG1n0mqr +

p∑
r=1

W̃
′
2n0mΛ1n0rmG1n0mqr

+
∑

|ν|=1

(Σ̂1n0m)νΛνmG1n0m, (4.41)

where q1 = (1, 0, . . . , 0), · · · , qp = (0, 0, . . . , 1) are the standard basis of Rp, W̃2n0m =

((A−An0m)
′
:
∑n0

i=1m
−1

∑m
j=1Wi2j)

′
and Λn0rm,Λ1n0rm,Λνm are nonrandom matrices

satisfying max{m1/2‖Λn0rm‖+ ‖Λ1n0rm‖+ ‖Λνm‖ : 1 ≤ r ≤ p, |ν| = 1} = o(1). In the

following C, C(·) dentes pure constants which depend on each arguments, and the

dependance of C(· · · ) on p, α, and the finite moments of ψ(eij), ψ
′
(eij), and ψ

′′
(eij)

will be suppressed for notational simplicity. Using Lahiri’s (1992,1996) arguments,

we can show that

P
(
‖

n0∑
i=1

m∑
j=1

dijψ(eij)‖ > C(logm)1/2
)

= o(m−1/2),

P
(
‖An0m − A‖ > Cm−1/4(logm)−2

)
= o(m−1/2), (4.42)

P
(
|

n0∑
i=1

m∑
j=1

dijudijldijz| > Cm−5/8
)

≤ Cm−3/4 (4.43)

for all 1 ≤ u, l, z ≤ p, where diju denote the uth component of dij, we have Tn0m =

T1n0m + Rn0m, where P (‖Rn0m‖ > Cv2m) = o(vm). We know that the first order

Edgeworth expansions for T1n0m and Tn0m coincide.
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Let G2n0m =
∑n0

i=1

∑m
j=a dijWi1j with a = [m(1−2δ0)/2],

A2n0m = ((
∑n0

i=1

∑m
j=a dijkdijlWi2j))p×p,

Ŵ2n0m = ((A
′
2n0m − EA

′
2n0m) :

∑n0

i=1m
−1

∑m
j=1Wi2j)

′
,

Σ̂2n0m =
∑n0

i=1

∑l
k=0(m− k)−1Likm

∑m−k
j=a [Wi4j −G

′
2n0mγijk], and

T2n0m = Σ−1/2
n0m G1n0m +

p∑
r=1

G
′
2n0mΛn0rmG2n0mqr +

p∑
r=1

Ŵ
′
2n0mΛ1n0rmG2n0mqr

+
∑

|ν|=1

(Σ̂2n0m)νΛνmG2n0m.

The reason for T2n0m is that the first term is the same as T1n0m, but the remaining

terms consist of truncated independent variables for obtaining the simplified forms of

expansion. Using an Edgeworth expansion under dependence for T1n0m (Lahiri (1994;

1996)), we have

P (‖T1n0m − T2n0m‖ > Cvm) = o(vm). (4.44)

Let Qn0m(t) = E exp(
√−1t

′
T2n0m), t ∈ Rp. We have the reduction to truncated statis-

tics T2n0m, and obtain the following result for the Fourier transform of the Edgeworth

expansion for the density of T2n0m

max
|α|≤p+1

∫

Γm

|Dα(Qn0m(t)−Ψn0m(t))|dt = o(vm), (4.45)

where Γm = {t ∈ Rp : ‖t‖ < v−1
3m}, and Ψn0m is a Fourier transform which can be

defined as in (4.47) (cf. Lahiri (1994) p.216). Next we write tm = t
′
Σ
−1/2
n0m . Also, using

the results of Lahiri (1994), we have

|Dα[E(1 +
√−1t

′
∆n0m) exp(

√−1t
′
mG1n0m)−Ψn0m(t)]| ≤ C(α)m−1/2m−δ (4.46)

for some constant C(α) and δ > 0, where ∆n0m = T2n0m − Σ
−1/2
n0m G1n0m and

exp(‖t‖2/2)Ψn0m(t) = 1 + E(
√−1t

′
mG1n0m)3/3! +RΨ, (4.47)
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where

RΨ =
√−1

n0∑

h=1

m∑
j=1

m∑

k=1

E
[
vh1jkWh1jWhjk

+ Ŵ
′
2n0m,j

( p∑
r=1

(t
′
mqr)Λ1n0rmdhj

)
Wj1k

]

× [1− t
′
mG3n0m(1, {i})G3n0m(1, {j})′tm]

− √−1

n0∑

h=1

m∑
j=1

l∑

k=0

m∑
i=1

( ∑

|ν|=1

(Ln0km)ν(m− k)−1t
′
Λνmdhj

)

× E{W4n0i(k)W1n0j(1

− t
′
mG3n0m(1, {i, k})t′n0mG3n0m(1, {j}))}. (4.48)

Therefore, by Taylor expansion for m3 < ‖t‖ ≤ m3(m/a)
1/2 and weak dependence of

∆n0m (Lahiri (1994) p.216)

∫

Γ1m

|DαQn0m(t)|dt = o(vm) (4.49)

for all ‖α‖ ≤ p + 1, where Γ1m = {t ∈ Γm : ‖t‖ > m3}. Combining the results in

(4.45)-(4.49) and using the results of Lahiri (1994; 1996), we obtain

sup
B∈B

∣∣∣P (T2n0m ∈ B)−
∫

B

(1 + pn0m(x))dΦ(x)
∣∣∣ ≤

C max
‖α‖≤p+1

∫
|Dα(Qn0m(t)−Ψn0m(t))|dt+ C

∫

Γ1m

|DαQn0m(t)|dt,

= o(m−1/2) (4.50)

where C > 0 is a constant. We have the same first order Edgeworth expansions for

T2n0m, T1n0m, and Tn0m, namely, three statistics are close to each other. We obtain

that

sup
B∈B

∣∣∣P (Tn0m ∈ B) −
∫

B

(1 + pn0m(x))dΦ(x)
∣∣∣ = o(m−1/2), (4.51)

with ‖pn0mφ‖∞ = O(m−1/2). The proof is then complete. ¤
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4.4.2 Expansion for bootstrap M-estimator

Define the bootstrap M-estimator β̂∗n0m as a solution of the equation in t ∈ Rp

n0∑
i=1

( m∑
j=1

x
′
ij(ψ(y∗ij − xijt))− µ̂m

)
= 0, (4.52)

where µ̂m = 1
b
E∗n0m{ψ(ê∗11) + · · ·+ ψ(ê∗1b)} and y∗ij is given in (4.32). The Σ∗

n0m is the

conditional covariance matrix of
∑n0

i=1

∑m
j=1 dijψ(ê∗ij) which is given by

n0∑
i=1

k∑
u=1

Covm(
b∑

j=1

di,(u−1)b+jψ(ê∗ij)). (4.53)

The natural estimator of Σ∗
n0m is

Σ̂∗
n0m =

n0∑
i=1

b−1∑
j=0

k∑
u=1

b−j∑

l=1

D∗
i,lujσ̂

∗
n0m(j), (4.54)

whereD∗
luj = (1−2−1I(j = 0))(D̃∗

luj+D̃
∗′
luj), D̃

∗
luj = d(u−1)b+ld

′
(u−1)b+l+j. The bootstrap

version T ∗n0m of Tn0m is given by

T ∗n0m = (Σ̂∗
n0m)−1/2D−1

n0m(β̂∗n0m − β̂n0m). (4.55)

By assumptions, there exists a sequence of statistics {β̂∗n0m} such that

P (β̂∗n0m satisfies (4.52) and ‖D−1
n0m(β̂∗n0m − β̂n0m)‖2 ≤ C logm) = 1− op(m

−1/2).

(4.56)

Theorem 4.4.2 Assume that the conditions in Theorem 4.4.1. hold. Suppose that

T ∗n0m is defined for some measurable sequence {β̂∗n0m} satisfying (4.56) and also sup-

pose that mδb−1 = O(1) and b = O(m(1−κ)/4) for some δ > 0, and κ > max{p+3, 5}δ0.
Then

sup
B∈B

∣∣∣P ∗(T ∗n0m ∈ B)− P (Tn0m ∈ B)
∣∣∣ = op(m

−1/2) (4.57)

for any class B of Borel subset of Rp.
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Proof.

Let G∗n0m = D−1
n0m(β̂∗n0m − β̂n0m), G∗1n0m =

∑n0

i=1

∑k
u=1W

∗
i1u,

A∗n0m =
∑k

u=1W
∗
i2u, Ân0m = En0mA

∗
n0m, τ ∗1n0m = m−1

∑n0

i=1

∑m
j=1 ψ

′
(ê∗ij),

τ̂1n0m = E∗
n0m(τ ∗1n0m), ξ∗uj = jth component of B∗

u, for u = 1, · · · , k,

W ∗
i1u =

b∑
j=1

di((u−1)b+j)ψ̃(ξ∗uj), W ∗
i2u =

b∑
j=1

di((u−1)b+j)d
′
i((u−1)b+j)ψ

′
(ξ∗uj), 1 ≤ k ≤ m.

As in the proof of Theorem 4.5.1 and in Lahiri (1996)’s result, we have

T ∗n0m = T ∗1n0m +R†∗n0m, (4.58)

where Pn0m(‖R†∗n0m‖ > Cv2m) = Op(v3m). We also use T ∗1n0m and T ∗1n0m which is the

same definition of T1n0m and T2n0m in Theorem 4.5.1. The stochastic approximation

T ∗1n0m is given by

T ∗1n0m = (Σ̂∗
n0m)−1/2G∗1n0m +

p∑
r=1

G∗
′

1n0mΛ̂n0rmG
∗
1n0mqr

+

p∑
r=1

W̃ ∗′
2n0mΛ̂1n0rmG

∗
1n0mqr +

∑

|ν|=1

(Σ̂∗
1n0m)νΛ̂νmG

∗
1n0m, (4.59)

where W̃ ∗
2n0m = ((Ân0m − A∗n0m)

′
: (τ ∗1n0m − τ̂1n0m))

′
and Λ̂n0rm, Λ̂1n0rm, and Λ̂νm are

random matrices which satisfy

max {√m‖Λ̂n0rm − Λ1n0rm‖+ ‖Λ̂1n0rm − Λ1n0rm‖

+‖Λ̂νm − Λνm‖ : 1 ≤ r ≤ p, |ν| = 1} = op(1). (4.60)

The characteristic function of the Edgeworth expansion for density of T ∗n0m, Ψ∗
n0m(t),

is shown to satisfy

Ψ∗
n0m(t) exp(‖t‖2/2) = 1 +

n0∑
i=1

k∑
u=1

Em(
√−1t∗

′
mW

∗
i1u)

3/3! +R∗Ψ∗ , (4.61)
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where t∗m = t
′
(Σ∗

n0m)−1/2,

R∗Ψ∗ = −√−1

n0∑
i=1

k∑
j=1

k∑
u=1

EmV
∗
ju(t) · (t∗mZ∗1j) · (t∗

′
mZ

∗
1u)

+
√−1

n0∑
i=1

k∑
u=1

EmV
∗
uu(t), (4.62)

, and

V ∗
jk =

p∑
r=1

(t
′
qr)[W

∗
1jΛ̂n0rmW

∗
1k + Ŵ ∗

2m,jΛ̂1n0rmW
∗
1k]−W ∗

1jL̄
∗
1m(t)W ∗

1k

+k−1
∑

|ν|=1

[
b∑

j=0

(L∗jm)ν(W4k(j)− EmW4k(j))](t
′
Λ̂νm)W ∗

1k, (4.63)

with L̄∗1m(t) =
∑b

j=0

∑
|ν|=1(L

∗
jm)νγ∗jn(t

′
Λνm).Now, using the results of Bhattachararya

and Ranga Rao (1986) and Lahiri (1996), we have

∫

Γ2m

|Dα(Q∗n0m(t)−Ψ∗
n0m(t))|dt = Op(v3m), (4.64)

where Γ2m = {t : ‖t‖ < mb−1(logm)−10} and Q∗n0m(t) = E∗
n0m exp(

√−1t
′
T ∗n02m).

Finally, using Lahiri (1994)’s results, it is shown that

max
|α|≤p+1

∫

Γ3m

|Dα(Q∗n0m(t))| = Op(v3m), (4.65)

where Γ3m = Γm/Γ2m. Similar to (4.50), we have

sup
B∈B

∣∣∣P ∗(T ∗2n0m ∈ B)−
∫

B

(1 + p∗n0m(x))dΦ∗(x)
∣∣∣ ≤

C max
‖α‖≤p+1

∫
|Dα(Q∗n0m(t)−Ψ∗

n0m(t))|dt+ C

∫
|DαQ∗n0m(t)|dt,

(4.66)

where C > 0 is a constant and p∗n0m is obtained from pn0m on replacing population

moments by sample moments in coefficients. If we have b = m1/4, we obtain

sup
B∈B

∣∣∣P ∗(T ∗2n0m ∈ B) −
∫

B

(1 + p∗n0m(x))φ(x)dx
∣∣∣ = op(vm), x ∈ Rp. (4.67)
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We have the empirical Edgeworth expansion (Bhattacharya and Qumsiyeh (1988),

Lahiri (1994)) for T2n0m

sup
B∈B

∣∣∣P (T2n0m ∈ B) −
∫

B

(1 + p∗n0m(x))φ(x)dx
∣∣∣ = op(vm). (4.68)

From (4.64)-(4.68), assuming p∗n0m − pn0m = o(vm), we have

sup
B∈B

∣∣∣P ∗(T ∗2n0m ∈ B)− P (T2n0m ∈ B)
∣∣∣ = op(vm). (4.69)

We have the same first order Edgeworth expansion forms for T ∗2n0m, T ∗1n0m, and T ∗n0m,

since those are close to each other. We obtain

sup
B∈B

∣∣∣P ∗(T ∗n0m ∈ B)− P (Tn0m ∈ B)
∣∣∣ = op(vm). (4.70)

¤

Theorem 4.4.2 shows that the MBB indeed provides more accurate approximation

for studentized multivariate M-estimator of the regression parameter vector β than

normal approximation. Consequently, Theorem 4.4.2 is useful for constructing second-

order correct multivariate inference procedures for β under multiple regression model.

The studentized moving block bootstrap statistics obtain the second order accuracy

for the bounded n = n0 case.

4.5 Simulation Work

The block bootstrap captures the dependence in the series of residuals without

the need to know the correlation structure. It can be simple and account for correla-

tions in a regression model with correlated error.

To define the bootstrap version of β̂n0m, first form the observed blocks of resid-

ual length b as ξih = (êij, · · · , êi(h+b−1)), 1 ≤ h ≤ q, where q = m − b + 1 and
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êij = yij − xijβ̂n0m, 1 ≤ j ≤ m, 1 ≤ i ≤ n. Next draw ξ∗i1, · · · , ξ∗ik randomly, with re-

placements from ξi1, · · · , ξiq, where m/b = k is assumed to be an integer for simplicity.

Note that each ξ∗ik has b components. Denote the lth component of ξ∗ik, 1 ≤ l ≤ b

by ξ∗ikl. Also, set ê∗i((b−1)k+l) = ξ∗ikl, 1 ≤ l ≤ b, and we have the bootstrap pseudo-

observations

y∗ij = xijβ̂nm + ê∗ij, 1 ≤ i ≤ n0, 1 ≤ j ≤ m. (4.71)

Adapting Shorack’s approach, we obtain the bootstrapped estimator β̂∗n0m as a solu-

tion of the equation t ∈ Rp,

g
′
n0m =

n0∑
i=1

m∑
j=1

x
′
ij

(
(y∗ij − xijβ)− µ̂nm

)
= 0, (4.72)

where µ̂n0m = b−1En0m{e∗11+· · ·+e∗n0b}, and En0mdenotes the conditional expectations

under the MBB resampling scheme, given ê11, · · · , ênm. Centering the above equation

by µ̂n0m makes the estimating equation conditionally unbiased at β = β̂n0m and

ensures the bootstrap analog. The bootstrap estimator is as follows:

β̂∗n0m = (

n0∑
i=1

m∑
j=1

x
′
ijxij)

−1

n0∑
i=1

m∑
j=1

x
′
ij(y

∗
ij − µ̂n0m). (4.73)

Consider the following specific model in simulation work:

yij = β0 + β1xij + γi + eij, i = 1, · · · , n0 , j = 1, · · · ,m,

eij = φei(j−1) + uij,

γi ∼ N(0, σ2
γ), and uij ∼ N(0, σ2

u).

In particular, let n0 = 5, m = 20, and xij = (1, · · · , 20)
′
.

β0 = 10, β1 = 1, b = 4, k = 5,

σ2
γ = 1, σ2

u = 1, and φ = 0.75.
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4.5.1 Bootstrapping the distribution of statistics

Let R be the number of bootstrap simulations (r = 1, · · · , R), and β̂∗ be the

bootstrap estimate of β for the r samples. The important result is that the distribu-

tion of β̂∗, estimated by the empirical distribution function of the β̂∗,r, (r = 1, · · · , R),

approximates the distribution of β̂. Now we define the studentized statistics as follows

T̂ ∗ =
β̂∗ − β̂

Ŝ∗
β̂∗

. (4.74)

The difference between the distribution functions of T̂ and T̂ ∗ tends to 0, when the

number of observations is large; thus we can use the quartiles of T̂ ∗ instead of T̂ to

construct intervals or tests. Let (T̂ ∗,r, r = 1, · · · , R) be the r-th sample of T̂ ∗, where

T̂ ∗ is calculated in the same way as T̂ , replacing yij with y∗ij. Let q̂α be the percentile

of the T̂ ∗,r. It can be shown that P (T̂ ≤ q̂α) tends to α, when m tends to infinity.

This gives a bootstrap confidence interval for β

ÎR =
[
β̂∗ − q̂1−α

2
Ŝ∗

β̂∗ , β̂∗ − q̂α
2
Ŝ∗

β̂∗

]
. (4.75)

For large m and R, the coverage probability of ÎR is close to 1 − α. The bootstrap

estimation of the variance is calculated using the empirical variance of the R sample

(β̂∗,r, r = 1, · · · , R):

Ŝ∗2 =
1

R− 1

R∑
r=1

(β̂∗,r − β̂∗)2, (4.76)

where β̂∗ is the sample mean β̂∗ =
∑R

r=1 β̂
∗,r/R.

Coverage accuracy, where coverage is the probability that a confidence interval

includes β, is the important property for a confidence interval procedure. Bootstrap

confidence interval methods differ in their asymptotic properties. Our simulation

results are given in Table 1. MBB1 and MBB2 are similar to each other. Those two

block bootstrap methods obtained correct coverage probability at the nominal level
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Table 1: Coverage probability and length of CI (β̂∗1): 500 replications; φ = 0.75, SOB
is stratified ordinary bootstrap, SB is a standard bootstrap estimation, and β̂1 is a
robust estimation with unknown covariance structure.

Methods CI(β̂∗1) Probability Length

MBB1 (0.849,1.168) 0.949 0.318
MBB2 (0.844,1.163) 0.952 0.320
SOB (0.805,1.091) 0.768 0.286
SB (0.804,1.086) 0.747 0.282
β̂1 (0.840,1.169) 0.950 0.329

of 95%. The standard bootstrap or stratified ordinary bootstrap did not perform well

in highly correlated longitudinal data with low coverage probabilities.
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CHAPTER V

DIAGONAL OPTIMAL WEIGHT FOR UNBALANCED

LONGITUDINAL DATA

5.1 Introduction

In this chapter, we investigate four different kinds of weight schemes in an un-

balanced longitudinal data. We focus on the longitudinal design in which the number

of subjects is large and the number of replications is small. The observations for each

subject would be take at unequal points in time. One weight scheme corresponds to

equal weight for subjects, and the other weight scheme corresponds to equal weight

for observations. We introduce the diagonal optimal weight in GEE with working in-

dependent correlation matrix in minimizing the variance of the regression parameter

over all choices.

5.2 Diagonal Optimal Weight

In this section, we can see the optimal weight scheme in a working independent

setting in a case when max(mi) is bounded and n is large. The model is

yij = β0 + xijβ1 + eij, i = 1, · · · , n, j = 1, · · · ,mi. (5.1)

Let Vi = cov(ei)/σ
2, V = diag(Vi) and N =

∑n
i=1mi with ei = (ei1, · · · , eimi

)
′
.

Suppose we wish to estimate Q′β, the estimator β̂ = (
∑n

i=1 x
′
iV

−1
i xi)

−1
∑n

i=1 x
′
iV

−1
i yi

is the best linear unbiased estimator (BLUE) of β. The conventional GEE is given

by

gn(β) =
n∑

i=1

mi∑
j=1

x
′
ijw

−1
i (yij − xijβ) = 0, (5.2)
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where wi is a weight for subject i. We represent the above equation

gn(β) = X
′
W (Y −Xβ), (5.3)

whereW = diag(Imi
wi). Let β̃ = (X

′
WX)−1X

′
WY thenQ

′
β̃ is unbiased forQ

′
β, but

it is not a BLUE, unless W = V −1. We can make a choice to weight the estimating

function. For example, 1) wi = 1
N

and 2) wi = 1
nmi

(Huang et al., 2002). We

suggest using the optimal weight wi in working independence setting for minimizing

var(Q
′
β̃) over all choices of wi. The variance of var(Q

′
β̃) is written as var(Q

′
β̃) =

Q
′
A−1BA−1Q. After we apply the Lagrange multiple technique, we get the optimal

weight form with a condition
∑n

i=1miwi = N

wi =
(
L
′
xi
′xiA

−1BL− 1

2
λmi

)
/
(
L
′
x
′
iVixiL

)
(5.4)

λ = 2

[∑n
k=1(mkL

′
x
′
kxkA

−1BL/L
′
x
′
kVkxkL)−N

]

∑n
k=1

(
m2

k/L
′x
′
kVkxkL

) , (5.5)

where L
′
= Q

′
(
∑n

i=1wix
′
ixi)

−1, A =
∑n

i=1wix
′
ixi, and B =

∑n
i=1w

2
i x

′
iVixi. We define

w
(1)
i = 1

N
, w

(2)
i = 1

nmi
, w

(3)
i = D-optimal, and W

(4)
i = V −1

i (true optimal), which is a

non-diagonal mi ×mi matrix. We show that for only intercept term regression, the

diagonal optimal weight w
(3)
i and the true optimal weight W

(4)
i have exactly the same

optimality.

Lemma 5.2.1 For only an intercept term, the diagonal optimal weight w
(3)
i and the

true optimal weight W
(4)
i give the same optimality.

Proof.

x
′
iV

−1
i xi = x

′
iWixi (5.6)

For general mi, we have

x
′
iV

−1
i xi = 1

′ 1

σ2
ε

(
Imi

− σ2
γ

σ2
ε +miσ2

γ

Jmi

)
1 (5.7)
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=
1

σ2
ε

1
′
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σ2

ε
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2
γ
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γ
) 0 . . . 0

0 0 1
σ2

ε
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0 0 0 · · · 1
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1

= x
′
iWixi,

where

wi =
1

σ2
ε

(
1− miσ

2
γ

σ2
ε +miσ2

γ

)
, (5.8)

which leads to the optimal estimating equation, completing the proof.

5.3 Simulation Results

We generate the simplest case example. Assume that the total number of subjects

is 40 and the total number of observations is 160. The first group consists of 10

replications for 10 subjects, and the second group is composed of 2 replications for

30 subjects. The correlation structure is compound symmetric. The fixed covariates

are intercept and time effect, and one random intercept model is considered. The

notation is total data N =
∑40

i=1mi = 160 and subject n = 40. The first group has

mi = 10 replications and the second group has mi = 2.



60

As we can see in the Lemma (5.2.1), the diagonal optimal weight w
(3)
i is the same

as the true optimal weight in case of a single intercept term with known variance, as

Table 2 shows. Table 3 presents the results of a slope estimator with known variance.

Table 4 includes the results of a slope estimator with unknown variance and known

structure using REML. In Table 5, we see the results of a slope with unknown vari-

ance and unknown structure (misspecified variance) using REML. Table 6 presents

the diagonal optimal weights for two unbalanced groups for the linear combination of

regression parameters. Table 7 shows the results for the linear combination of regres-

sion parameters with known variance. In Table 8, we investigate that the performance

of the diagonal wight with unknown variance and known structure. Table 9 is the re-

sults in the case of unknown variance and unknown structure (misspecified variance).

In summary, we conclude that for only intercept term the diagonal optimal weight

is the exactly the same as the true optimal and for intercept and slope regression

estimators the diagonal optimal weight performs better rather than the observational

weight and individual weight. We also observe that when the correlation is high the

diagonal optimal weight reaches the individual weight, and when the data has a low

correlation the diagonal optimal weight arrives at the observational weight.
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Table 2: Empirical bias, Empirical standard error and Average standard error for an
intercept estimator β̂0 with known Vi: 500 replications.

ρ Methods EB(β̂0) ESE(β̂0) Avg(SE(β̂0))

0.909 w
(1)
i 0.041 0.498 0.471

w
(2)
i 0.059 0.388 0.361

w
(3)
i = (0.412, 1.980) 0.015 0.366 0.361

W (4) 0.015 0.366 0.361

0.667 w
(1)
i -0.021 0.214 0.217

w
(2)
i 0.022 0.172 0.173

w
(3)
i = (0.459, 1.929) -0.016 0.164 0.173

W (4) -0.016 0.164 0.173

0.333 w
(1)
i -0.008 0.178 0.168

w
(2)
i 0.030 0.165 0.150

w
(3)
i = (0.575, 1.727) -0.008 0.155 0.146

W (4) -0.008 0.155 0.146

0.010 w
(1)
i 0.002 0.085 0.100

w
(2)
i 0.036 0.106 0.123

w
(3)
i = (0.973, 1.049) 0.002 0.085 0.100

W (4) 0.002 0.085 0.100
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Table 3: Empirical bias, Empirical standard error and Average standard error for a
slope estimator β̂1 with known Vi: 500 replications.

ρ Methods EB(β̂1) ESE(β̂1) Avg(SE(β̂1))

0.909 w
(1)
i 0.000 0.087 0.087

w
(2)
i 0.197 0.139 0.118

w
(3)
i = (1.485, 0.192) 0.000 0.033 0.033

W (4) 0.001 0.024 0.024

0.667 w
(1)
i -0.001 0.042 0.042

w
(2)
i 0.197 0.064 0.056

w
(3)
i = (1.584, 0.027) -0.001 0.025 0.024

W (4) -0.001 0.024 0.024

0.333 w
(1)
i -0.002 0.039 0.038

w
(2)
i 0.196 0.056 0.047

w
(3)
i = (1.426, 0.291) -0.001 0.031 0.032

W (4) -0.001 0.031 0.031

0.010 w
(1)
i -0.001 0.027 0.027

w
(2)
i 0.197 0.033 0.029

w
(3)
i = (1.027, 0.958) -0.001 0.027 0.027

W (4) -0.001 0.027 0.027
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Table 4: Empirical bias, Empirical standard error and Average standard error for a
slope estimator β̂1 with unknown Vi, we assume the correlation structure is known
and use the restricted maximum likelihood estimator (REML) V̂i: 500 replications.

Avg(ρ̂) Methods EB(β̂1) ESE(β̂1) Avg(SE(β̂1))

0.905 w
(1)
i 0.000 0.093 0.087

w
(2)
i 0.197 0.146 0.118

w
(3)
i 0.000 0.039 0.033

W (4) 0.000 0.026 0.024

0.658 w
(1)
i 0.000 0.042 0.042

w
(2)
i 0.200 0.068 0.056

w
(3)
i 0.002 0.025 0.024

W (4) 0.001 0.024 0.024

0.329 w
(1)
i 0.000 0.037 0.038

w
(2)
i 0.198 0.051 0.047

w
(3)
i 0.001 0.033 0.033

W (4) 0.001 0.033 0.031

0.027 w
(1)
i 0.001 0.026 0.027

w
(2)
i 0.200 0.030 0.030

w
(3)
i 0.002 0.026 0.027

W (4) 0.002 0.026 0.027
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Table 5: Empirical bias, Empirical standard error and Average standard error for a
slope estimator β̂1 with unknown Vi, we assume the correlation structure is unknown
(Misspecified) and use the restricted maximum likelihood estimator (REML) V̂i: 500
replications.

Avg(ρ̂) Methods EB(β̂1) ESE(β̂1) Avg(SE(β̂1))

0.906 w
(1)
i -0.001 0.088 0.096

w
(2)
i 0.198 0.142 0.115

w
(3)
i -0.001 0.058 0.086

W (4) 0.000 0.049 0.027

0.658 w
(1)
i 0.000 0.042 0.048

w
(2)
i 0.198 0.067 0.051

w
(3)
i 0.000 0.041 0.048

W (4) 0.000 0.039 0.045

0.326 w
(1)
i 0.000 0.038 0.040

w
(2)
i 0.198 0.056 0.042

w
(3)
i 0.000 0.038 0.040

W (4) 0.000 0.038 0.039

0.026 w
(1)
i 0.001 0.026 0.027

w
(2)
i 0.200 0.032 0.029

w
(3)
i 0.000 0.026 0.027

W (4) 0.001 0.026 0.027
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Table 6: Differences in weights for β̂0 and β̂1 in two group cases and for β̂0 + β̂1xq,
where xq = is q-th percentile. Diagonal optimal weights for two unbalanced groups
for the linear combination Q′β of regression quantiles

ρ Q
′

xq wi1 wi2

0.909 Q
′
= (1, 1) 10-th 0.902 1.163

Q
′
= (1, 1.5) 25-th 0.792 1.347

Q
′
= (1, 2.5) 50-th 0.427 1.955

Q
′
= (1, 6.5) 75-th 0.048 2.587

0.667 Q
′
= (1, 1) 10-th 0.915 1.142

Q
′
= (1, 1.5) 25-th 0.820 1.300

Q
′
= (1, 2.5) 50-th 0.514 1.810

Q
′
= (1, 6.5) 75-th 0.168 2.387

0.333 Q
′
= (1, 1) 10-th 0.942 1.097

Q
′
= (1, 1.5) 25-th 0.880 1.200

Q
′
= (1, 2.5) 50-th 0.694 1.511

Q
′
= (1, 6.5) 75-th 0.364 2.059

0.010 Q
′
= (1, 1) 10-th 0.997 1.004

Q
′
= (1, 1.5) 25-th 0.995 1.009

Q
′
= (1, 2.5) 50-th 0.988 1.020

Q
′
= (1, 6.5) 75-th 0.911 1.148
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Table 7: Empirical bias, Empirical standard error and Average standard error for the
linear combination of regression parameters with known Vi: 500 replications.

ρ Methods EB(β̂0 + 2.5β̂1) ESE(β̂0 + 2.5β̂1) Avg(SE(β̂0 + 2.5β̂1))

0.909 w
(1)
i -0.009 0.371 0.401

w
(2)
i 0.234 0.365 0.361

w
(3)
i -0.013 0.342 0.361

W (4) -0.013 0.342 0.361

0.667 w
(1)
i -0.007 0.189 0.188

w
(2)
i 0.238 0.182 0.173

w
(3)
i -0.006 0.172 0.173

W (4) -0.006 0.172 0.173

0.333 w
(1)
i -0.013 0.155 0.153

w
(2)
i 0.236 0.159 0.150

w
(3)
i -0.010 0.150 0.147

W (4) -0.010 0.150 0.147

0.010 w
(1)
i 0.001 0.087 0.090

w
(2)
i 0.242 0.102 0.101

w
(3)
i 0.001 0.087 0.090

W (4) 0.001 0.087 0.090
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Table 8: Empirical bias, Empirical standard error and Average standard error for
the linear combination of regression parameters with unknown Vi, we assume the
correlation structure is known and use the restricted maximum likelihood estimator
(REML) V̂i: 500 replications.

Avg(ρ̂) Methods EB(β̂0 + 2.5β̂1) ESE(β̂0 + 2.5β̂1) Avg(SE(β̂0 + 2.5β̂1))

0.904 w
(1)
i 0.007 0.419 0.397

w
(2)
i 0.249 0.402 0.357

w
(3)
i 0.007 0.376 0.357

W (4) 0.007 0.376 0.357

0.662 w
(1)
i 0.001 0.187 0.187

w
(2)
i 0.243 0.185 0.173

w
(3)
i 0.001 0.174 0.172

W (4) 0.001 0.174 0.172

0.329 w
(1)
i 0.007 0.153 0.153

w
(2)
i 0.250 0.158 0.150

w
(3)
i 0.007 0.149 0.146

W (4) 0.007 0.149 0.146

0.025 w
(1)
i 0.000 0.088 0.092

w
(2)
i 0.244 0.105 0.102

w
(3)
i 0.000 0.089 0.092

W (4) 0.000 0.089 0.092
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Table 9: Empirical bias, Empirical standard error and Average standard error for the
linear combination of regression parameters with unknown Vi, we assume the correla-
tion structure is unknown (Misspecified) and use the restricted maximum likelihood
estimator (REML) V̂i: 500 replications.

Avg(ρ̂) Methods EB(β̂0 + 2.5β̂1) ESE(β̂0 + 2.5β̂1) Avg(SE(β̂0 + 2.5β̂1))

0.906 w
(1)
i 0.014 0.392 0.382

w
(2)
i 0.252 0.373 0.352

w
(3)
i 0.008 0.352 0.350

W (4) 0.007 0.354 0.347

0.657 w
(1)
i -0.004 0.191 0.165

w
(2)
i 0.238 0.184 0.164

w
(3)
i -0.005 0.176 0.159

W (4) -0.005 0.176 0.157

0.326 w
(1)
i 0.004 0.150 0.133

w
(2)
i 0.748 0.152 0.143

w
(3)
i 0.004 0.146 0.132

W (4) 0.004 0.146 0.131

0.024 w
(1)
i 0.001 0.091 0.090

w
(2)
i 0.275 0.104 0.101

w
(3)
i 0.001 0.091 0.090

W (4) 0.001 0.091 0.090
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CHAPTER VI

ANALYZING NURSING HOME RESIDENTS WITH

MULTIPLE SCLEROSIS USING MINIMUM DATA SET

6.1 Introduction

In this chapter, we consider the model selection/comparison for repeated mea-

surement data. The appropriate covariance structure for the response vector of re-

peated measurement for each subject need to be specified by using the information

criterions. We analyze the information on the nursing home residents with multiple

sclerosis in a minimum data set.

6.2 Minimum Data Set with Multiple Sclerosis

The Minimum Data Set (MDS) is a federally-mandated assessment instrument

that includes all nursing home residents (regardless of payment source) in all Medicare-

and Medicaid-certified nursing facilities. Trained clinical professionals (such as nurses,

social workers, or therapists) assess residents by direct observation over all shifts prior

to the MDS assessment. Each MDS item is defined, with guidance on how to ask

questions, what to observe, and whom to contact for information. Each resident’s

preadmission, admission, or transfer notes are reviewed, as well as the current plan

of care and recent physician notes or orders for the resident’s immediate care.

MDS assessments are required for each resident at admission, upon significant

changes in status, and at least annually. In addition, residents are assessed quarterly

on a subset of MDS items. The MDS contains comprehensive assessments of nursing

home residents, including gender, birth, date, marital status, race/ethnicity, place

of residence, and payment source. In addition, the data set include information



70

behavior, psychological well being, cognitive patterns, ability to communicate, a range

of physical functioning variables, disease and infections, medications, and treatments.

Federal requirements for the status and nursing homes to encode and transmit the

MDS began on June 22, 1998.

Multiple sclerosis (MS) is the most common neurologic disease among younger

adults, with as many as 350,000 Americans diagnosed with this disease by a physi-

cian. MS is a demyelinating disease of the central nervous system that may lead

to the manifestation of a range of symptoms, including spasticity, movement dis-

orders, fatigue, bladder and bowel dysfunctions, pain, depression, visual disorders,

numbness, cognitive difficulties, speech disorder, and dysphagia. The clinical course

of MS usually follows a variable pattern over time, but typically is characterized by

either episodic acute periods of worsening condition (relapses, exacerbations, bouts,

attacks), gradual progressive deterioration of neurologic function, or combinations

both. MS is characterized by episodes of neurological symptoms that are often fol-

lowed by fixed neurologic deficits, increasing disability, and medical, socioeconomic,

and physical decline over 30-40 years. Females are about twice as likely as males to

be diagnosed with multiple sclerosis. Females also tend to develop symptoms of MS

at an earlier age than males, while males tend to have a more progressive and severe

from of MS.

6.3 Statistical Analysis for MS Residents

6.3.1 Porell’s model

Porell et al. (1988) used Quarterly Management Minutes Questionnaire sur-

vey data for Medicaid case-mix reimbursement of nursing homes in Massachusetts

from 1991 to 1994 for specification of outcomes and resident attributes. The state-

dependence regression models are considered for the activities of daily living (ADL)
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functional status, incontinence status, and mental status outcomes from longitudinal

residence histories of Medicaid residents spanning 3 to 36 months in length. Outcomes

are specified to be a function of resident demographic and diagnostic attributes and

facility-level operating and nurse staffing attributes. They concluded that the ab-

sence of uniform associations between facility attributes and the various long-term

care health outcomes studied suggests that strong facility performance on one health

outcome may coexist with much weaker performance on each outcome, and this has

implications for the aggregation of individual facility performance measure on multi-

ple outcomes and the development of overall outcome performance measures.

We employ the Porell et al. (1988) model for our MS longitudinal analysis.

The state-dependence specification for the longitudinal modeling of functional and

health outcomes is appropriate for two reasons. First, nursing home residents of

long-term age are inclined to display modest but often irreversible deterioration in

functional status over the long run, making current functional status a good predictor

of subsequent functional status. Second, better adjustments should truly result from

using a resident’s own experience through a lagged outcome measure, rather than from

generic demographic or diagnostic variables alone. State-dependence, through the

specification of the lagged ADL long scale, accounts for much of the high explanatory

power of the model.

Given the MDS format in our analysis, part of the nontrivial work is data man-

agement. To analyze the data, we sort them by residents, and exclude the residents

who have a weight above 500 pounds or below 30 pounds and a height above 100

inches or below 30 inches. After the data is cleaned up, there are 12,858 residents

and a total of 51,505 observations with a diagnosis of MS recorded in the MDS be-

tween June 23, 1998 and December 31, 2000. The response is the ADL long scale

(0-28 scores) and the average is 20.28. The mean of the time difference between the
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dates is 170.8 days. Following Porell et al. (1988) study of nursing home outcomes,

we apply a multiple state-dependence model:

yt+1 = β0 + β1yt + β2Whitet + β3Malet + β4Aget + β5BMIt + β6Cogt + β7Diseaset + εt,

(6.1)

where:

yt+1 = ADL long score at time t+ 1 and

yt = Lagged ADL long score at time t;

White = White residents and other;

Male = Male and Female;

Age = Ages in years;

BMI = Body Mass Index;

Cog = Cognitive scale;

Disease = Resident risk factor (0 or 1);

εt = A random disturbance term.

The R2 and adjusted R2 are both about 0.86. The overall fit reflected seems

very effective. Table 10 shows that the past ADL long score is highly significant,

which implies that the past ADL long score is a good projection of the future ADL

long score. The estimates of age, BMI, and cogscale are significant. Some disease

factors are significant. Among them are congestive heart failure, deep vein thrombosis,

hip fracture, missing limb, osteoporosis, paraplegia, quadriplegia, manic depressive,

diabetic retinopathy, glaucoma. Many other diseases are not significant. Among

infections, only antibiotic resistant infections are significant. The White and Male

variables are not significant.
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Table 10: Model fitting estimates of fixed effects parameters for Porell’s model fitted
to the MDS with MS patient data.

Effects Estimates Standard Error z-value p-value

Intercept 4.244 0.149 28.58 < .0001
Long 0.823 0.003 280.30 < .0001
White -0.037 0.063 -0.59 0.5571
Male 0.006 0.043 0.15 0.8837
Age -0.008 0.001 -5.39 < .0001
BMI -0.007 0.003 -2.35 0.0186
Cogscale 0.098 0.012 8.34 < .0001

6.3.2 Longitudinal data analysis for MS patients

In the MDS data for nursing home residents with MS during 1999-2000, the

number of observations was 51,969, the number of subjects was 12961, the maximum

number of observations per subject was 19, and the minimum number of observation

per subject was 2. We do not include 24 people who received 464 observations because

their weight was below 30 pounds or above 500 pounds and their height was less

than 30 inches. The resulting data set is 51,505 observations and 12,937 subjects.

The linear model assume that the relationship between the mean of the dependent

variable y and the fixed and random effects can be modeled as a linear function, and

the random effect follows a normal distribution:

yij = α + β1Agei + β2Timeij + β3BMIij + β4Cogscaleij + ui + εij,

i = 1, . . . , n, j = 1, . . . ,mi, (6.2)

where ui ∼ N(0, σ2
u), a random individual effect, and εij ∼iid N(0, Ri), a pure error

term. The response variable yij is ADL long scale, observed at time tij. The age

variable is defined as Age = (ab1 − aa3)/365.25, where ab1 is a date of entry and

aa3 is a birthdate. The time variable stands for the resident’s admission time that

is given by Time = R2bstart − R2b, where R2b is a date RN assessment coordinator
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signed as complete, and cogscale denotes a cognitive performance scale measurement.

The unit of the time variable is a day, and the unit of age is a year. The BMI formula

is

BMI =
Weight [in pounds]× 704.5(

Height [in inches]
)2 . (6.3)

In attempting to choose the best covariance structure, the likelihood test can

be used when two models with the same fixed-effects parameters are fit to the data

using ML estimation and one model is a constrained version of the other. The like-

lihood ration test can be computed by taking the difference between the -2 Res Log

Likelihood values of the full and reduced models. From the expression of -2 Res Log

Likelihood, it is clear that,

−2 logL = −2

[
log max

H0

g(Σ|data)- log max
unrestricted

g(Σ|data)

]

=
[
−2 log g(Σ̂H0|data)

]
−

[
−2 log g(Σ̂unrestricted|data)

]
, (6.4)

where Σ̂H0 and Σ̂unrestricted are the maximum likelihood estimators of Σ under H0

and without any restriction on Σ respectively.

REML is often preferred to maximum likelihood estimation as a method of es-

timating covariance parameters in linear models because it takes account of the loss

of degree of freedom in estimating the mean and produces unbiased estimating equa-

tions for the variance parameters. The statistical analysis system (SAS) options in

the PROC MIXED procedure are included in the below parenthesis.

Here are a few selected covariance structures.

1. Σ = σ2I (VC)

2. Σ = σ2
1J + σ2

2I (CS)

3. Σ unstructured (UN)

4. Σ = diag(σ2
1, . . . , σ

2
m) : Banded main diagonal (UN(1))
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5. Σ = σ2




1 ρ · · · ρm−1

ρ 1 · · · ρm−2

...
...

. . .
...

ρm−1 ρm−2 · · · 1




: Autoregressive of order 1 (AR(1))

6. Σ = σ2




σ0 σ1 · · · σm−1

σ1 σ0 · · · σm−2

...
...

. . .
...

σm−1 σm−2 · · · σ0




: Toeplitz (TOEP)

7. Σ = σ2




σ0 σ1 0 · · · 0

σ1 σ0 σ1 · · · 0

0 σ1 σ0 σ1
...

...
...

. . . . . .
...

0 0 0 σ1 σ0




: Two Bands Toeplitz (TOEP(2))

8. Σ = σ2(ρ
dij

ij ), ρii = 1 : Spatial Power or Marcov (SP(POW)(c))

9. Σ = (σij), σij =
σii+σij

2
− λ, if i 6= j : Huynh-Feldt (HF).

Potential problems of using the LR test to compare covariance models include

parameters that may be on the boundary of the parameter space and that the mod-

els being compared may not be nested since the comparison may be inconsistent,

depending upon which model was taken as the full model.

To address these problems in model selection, two other model selection crite-

ria have been used. Two information criteria frequently used in repeated measures

analysis are Akaike’s (1973) Information Criterion (AIC) and Schwarz’s Bayesian In-

formation Criterion (BIC) (1978). Both the AIC and BIC penalize the log-likelihood

for the number of parameters and number of observations. The model with the

smallest AIC (BIC) is best. Table 11 presents model fitting estimates of covariance
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parameters for the first-order autoregressive covariance structure fitted to the MDS

with MS patient data. As Table 12 shows, the results are following that as the age of

the subjects increases, their ADL long scale decreases meaning that they stayed less

in the nursing home. The age of residents are negatively correlated with the ADL

long scale. The time and cogscale effects are positively correlated with the ADL long

scale, namely, when the subjects have a large time effect and the high cognitive scale

effect, they have a high ADL scale. The BMI index has a negative coefficient. This

indicates that a higher BMI index person has a tendency to a lower ADL long scale.

As Table 13 shows, we see that if the AIC and the BIC are used to select the co-

variance structure from the TOEP(2), AR(1), CS candidate models, then the AR(1)

structure would be selected as it has the smallest values. The unstructured (UN)

correlation presents the number of parameters 190 = (19)
2

that need to be estimated,

the Hessian matrix is not positive definite, and the convergence is not met.
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Table 11: Model fitting estimates of covariance parameters for the first-order autore-
gressive covariance structure fitted to the MDS with MS patient data.

Effects Estimates Standard Error z-value p-value

Intercept 35.088 0.503 69.81 < .0001
AR(1) 0.282 0.008 33.68 < .0001
Residual 10.627 0.120 88.90 < .0001

Table 12: Model fitting estimates of fixed effects parameters for the first-order au-
toregressive covariance structure fitted to the MDS with MS patient data.

Effects Estimates Standard Error z-value p-value

Intercept 23.294 0.272 85.63 < .0001
Time 0.001 0.0001 12.54 < .0001
Age -0.049 0.004 -12.47 < .0001
BMI -0.100 0.005 -20.49 < .0001
Cogscale 1.147 0.017 67.77 < .0001

Table 13: Information criteria results for unstructured (UN), banded structure
(TOEP(2)) first-order autoregressive (AR(1)), and compound symmetry (CS) struc-
tures fitted to the MDS with MS patient data.

Model Covariance Parameters -2 Log likelihood AIC BIC

TOEP(2) 2 293773.4 293779.4 293801.8
AR(1) 2 293529.7 293525.7 293548.1
CS 2 294814.7 294820.3 294842.7
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CHAPTER VII

CONCLUSION

7.1 Summary

The main goals of this dissertation are to examine the theoretical and empirical

justifications of moving block bootstrap techniques in longitudinal data that consist of

a large number of replications for relatively small number of subjects, and the diagonal

optimal weights for unbalanced longitudinal designs having a large number of subjects

and a small number of replications. In Chapter III, we presented standard statistical

models for repeated measurement data when the response variable is continuous.

In Chapter IV, moving block bootstrap methods are used for analyzing longitudi-

nal data in which a small number of subjects have a large number of replications over

time by investigating the efficacy and utility of the methodology, theoretically and

empirically, through a small simulation study. Those have second order optimality in

the case of dependent stationary data, under regular conditions.

In Chapter V, we presented a way to find diagonal optimal weights for unbalanced

longitudinal data in terms of the asymptotic mean squared error of regression coeffi-

cient. The performance of diagonal optimal weights was investigated via a simulation

study.

In Chapter VI, we provided a detailed examination of the data set concern-

ing nursing home residents with multiple sclerosis, which was obtained from a large

database termed the minimum data set. Using the AIC and BIC criterion, we se-

lected the correlation structure for each patient and made an inference for fixed effects

allowing for a random intercept factor.
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7.2 Future Work

There are several topics to be considered beyond the works completed in this

dissertation. We now discuss some possible future research work.

The circular block bootstrap (Politis and Romano, 1992), alternatives to mov-

ing block bootstrap, which have an advantage of reducing the bias of the bootstrap

variance, can be extended in longitudinal data. The tapered block bootstrap method

(Paparoditis and Politis, 2001; Paparoditis and Politis, 2002) in which each block end

points are shrunk toward a target value before being concatenated to form a bootstrap

pseudo-series, which indeed leads a more accurate variance estimator, can be used in

a longitudinal setting. We need to explore the optimal block length using the other

block bootstrap methods in longitudinal data. The correlation structure of different

time measurements can be extended to long range dependence and nonstationary

dependence.

While most of our work has focused on linear constraints in our repeated measure-

ment model, developments with nonlinear constraints might also be possible. Other

possible extensions include binary or polytomous data in repeated measurements.

The possible nonparametric or semiparametric estimation methods using block

bootstrap technique in the analysis of longitudinal data pose interesting problems

for future research. Furthermore, it may be desirable to develop a methodology for

irregularly spaced repeated measurement data.
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