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ABSTRACT

Local experts are critical for many location-sensitive information needs, and yet

there is a research gap in our understanding of the factors impacting who is recognized

as a local expert and in methods for discovering local experts. Hence, this thesis: (i)

proposes a geo-spatial learning-based framework, Local Expert Learning (LExL), for

integrating multidimensional factors impacting local expertise, e.g. user-based, list-

based, location-based and content-based features; (ii) accomplishes a comprehensive

controlled study over AMT-labeled local experts on eight topics and in four cities,

which not only leverages the candidates’ basic information, but also considers the

location authority impacting a candidate’s expertise; and (iii) develops a prototype

system, Local Experts Visualizing and Rating System (LEVRS), for visualizing and

rating local experts. We find significant improvements (around 45% in precision and

50% in NDCG) of finding local experts compared to two state-of-the-art alternatives

as well as evidence of the generalizability of the learned local expert ranking models

to new topics and new locations.
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1. INTRODUCTION

Identifying experts is a critical component for many important tasks. For exam-

ple, the quality of movie recommenders can be improved by biasing the underlying

models toward the opinions of experts [2]. Making sense of information streams –

like the Facebook newsfeed and the Twitter stream – can be improved by focusing

on content contributed by experts. Along these lines, companies like Google and

Yelp are actively soliciting expert reviewers to improve the coverage and reliability

of their services [11].

Indeed, there has been considerable e↵ort toward expert finding and recommen-

dation, e.g., [3, 6, 10, 16, 18, 21]. These e↵orts have typically sought to identify

general topic experts – like the best Java programmer on github – often by mining

information sharing platforms like blogs, email networks, or social media. However,

there is a research gap in our understanding of local experts. Local experts, in con-

trast to general topic experts, have specialized knowledge focused around a particular

location. Note that a local expert in one location may not be knowledgeable about

a di↵erent location. To illustrate, consider the following two local experts:

• A “food” local expert in San Francisco is someone who may be good at cooking,

very familiar with local restaurants or often post reviews or discounts of dishes

in local restaurants.

• A “health and nutrition” local expert in Houston is someone who may be

knowledgeable about local health providers, local health insurance options,

local pharmacies and markets o↵ering specialized nutritional supplements.

Identifying local experts can improve location-based search and recommendation,
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and create the foundation for new crowd-powered systems that connect people to

knowledgeable locals. Furthermore, after these local experts have been detected,

their knowledge can be applied in various aspects. For instance:

• Surface content of local experts. Currently, users mainly encounter Twit-

ter content of other users they are following without regard for the expertise

of these users. In many cases, a user may be interested in local content, so by

exploiting local experts, we can instead surface content from these local experts

focused on local information. For example, a traveler new to California can find

local tasty dishes according to the tweets of food local experts in California.

• Rerank Twitter stream. Now tweets of a stream in Twitter are displayed

in chronological order. With the detected local experts, the order of tweets can

be reranked based on the impacts and emergency of a query topic in a specific

location. Suppose at the time that Ebola case is found in Dallas, people in

Dallas can obtain more local health precautions from the collection of health

local experts in Dallas rather than the global report about Ebola.

• Location-based recommendations. Twitter presently provides Who-To-

Follow feature to recommend other accounts that a user may have interests in.

However, Who-To-Follow recommends the Twitter accounts basically according

to the contacts of a user. If local experts can be recognized, then we can support

location-based recommendations based on not only a user’s current location,

but also the query location in the user’s search history, such as recommending

“football” local experts in “Texas” where the two words have been searched

for several times, or even show an advertisement of discount tickets for a Texas

football game.
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And yet, compared to general topic expert finding, there has been little research

in uncovering local experts or on the factors impacting local expertise.

This thesis focuses on developing robust models of local expertise and visualiza-

tion of the discovered local experts. More precisely, the main contributions of this

thesis are:

• Local Expert Learning (LExL) framework. LExL is a geo-spatial learning-

to-rank framework (Section 3) for identifying local experts, which makes use

of the fine-grained GPS coordinates of millions of Twitter users, their rela-

tionships in Twitter lists and their tweet content is proposed and evaluated.

The framework investigates multiple classes of features (Section 4) that impact

local expertise including:

(i) user-based features (e.g., the number of users a candidate is following, the

number of posts this candidate has made);

(ii) list-based features (e.g., the number of lists the candidate is a member of,

the number of lists the candidate has created);

(iii) local authority features (e.g., the distance between candidate and the query

location, the average distance from a candidate’s labelers to the candidate);

(iv) tweet content features (e.g., the average tweet score calculated with TFIDF,

the average tweet Entropy, etc.).

Through a controlled and comprehensive study (Section 5) over Amazon Me-

chanical Turk, the results of finding local experts with the proposed local expert

learning approach have a large and significant improvement in multiple metrics,

like Precision@10, NDCG@10, comparing to two state-of-the-art alternatives.

In addition, the relative impacts of di↵erent groups of features are investigated,

and the generalizability of the approach in order to reusing the learned models
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is also examined. The findings indicate that the learning features can lead to

finding local experts more accurately and high-quality local expert models can

be built with fairly compact features, which shows potential adaptability of

fitting more constrained cases. Finally, the proposed local expertise models

are generalizable: in many scenarios, local experts can be discovered on new

topics and in new locations with tradeo↵ of a little accuracy. This allows us to

uncover unknown local experts in emerging areas.

• Local Experts Visualizing and Rating System (LEVRS). We pair the

creation of LExL with a prototype local expert system called LEVRS. LEVRS

embeds a LExL model and visualizes the learnt local experts (Section 6) on

a map for showing the results we get from the experiments, which can also

support future work on local experts study by incorporating the collection of

new ground truth.
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2. RELATED WORK

Previous work about local experts discovery can be classified into three mainly as-

pects: expertise retrieval, work in Twitter-like systems and previous local expert

ranking methods.

2.1 Expertise Retrieval

Expertise retrieval has long been recognized as a key research challenge. The pro-

posed methods can basically be separated into two categories according to the source

of expertise indicators used. First, content-based methods leverage textual content

and related documents which contain terms semantically relevant to the candidates’

expertise areas. Several works adopt content-based approaches to identify the most

appropriate community members for answering a given question in QA systems, e.g.,

[17]. Al-Kouz et al. use user profile and post to match topic expertise on Facebook

[1]. Balog et al. proposed a candidate generative model which represent a candidate

directly by terms and a document model which first finds documents that are rele-

vant to the topic and then locates the experts associated with these documents [3].

Second, graph-based methods based on social link analysis, so they consider each

expert candidate’s importance or social influence, e.g., [20]. For example, Campbell

et al. utilize the link between authors and receivers of emails to improve expert

finding in an email-based social network [6]. Moreover, there exist hybrid models

considering both textual content and social relationships in expert finding, e.g., [18].

2.2 Work in Twitter-like Systems

Recently, e↵ort has focused on expert finding in Twitter-like systems. Weng et al.

consider both tweet content and link structures among users to find topic experts on
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Twitter [18]. Based on the list meta-data in Twitter, Ghosh et al. built the Cognos

systems to help find experts on a specific topic [10]. They rank experts by taking

into account the overall popularity of a candidate and topic similarity. In the past

year, a few e↵orts have begun to examine local aspects of expertise finding [7, 15].

Li et al. investigate expertise in terms of a user’s knowledge about a place or a class

of places [15].

2.3 Previous Local Expert Ranking Methods

A previous approach by [7] focused on the local expert ranking problem using

a linear combination of topical authority and local authority. In their work, Cheng

et al. identified several factors, including local authority and topical authority, for

assessing local expertise. Topical authority was designed to capture the candidate’s

expertise on a topic area, e.g., how much does this candidate know about web devel-

opment? They adopted a language modeling approach [3] adapted to Twitter lists,

where each candidate was described by a language model based on the Twitter list

labels that the crowd has applied to them. Local authority was designed to cap-

ture a candidate’s authority with respect to a location, e.g., how well does the local

community recognize this candidate’s expertise? Several approaches were suggested,

including one which measured the average distance spread of list labelers to a candi-

date, with respect to a query location – so that candidates who were listed by many

people in an area of interest (e.g,. Joe has been labeled by 100 people from College

Station) would be considered locally authoritative (e.g., Joe is well-recognized in

College Station). These two aspects of local expertise – topical authority and local

authority – were combined in a linear fashion to arrive at an overall score for each

candidate.

Compared to these works, this thesis introduces the first learning-based method
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for ranking local experts. Generally, learning-to-rank can be classified into three

main types: pointwise methods, in which a single score is predicted for each query

document through solving a regression problem; pairwise methods, in which the

relative quality of each document pair is judged in a binary classification problem;

and listwise methods, in which the evaluation metric is optimized as the direct goal

[12]. Thus, comparing the previous work on general expertise retrieval, Twitter-like

System, and linear local expert ranking model, the learning-based method can utilize

the collected four kinds of features to build a more general model and in the presence

of ground truth training data to attack the problem of learning local experts.
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3. LEXL: LOCAL EXPERT LEARNING

The learning approach framework for finding local experts – LExL: Local Expert

Learning is introduced in this section. Given a query, containing a topic and a

location, the goal of LExL is to identify high-quality local experts. To attack the

problem of learning local experts, we need to formalize who can be defined as a local

expert, and discuss how the learning approach can e↵ectively solve this problem.

The characteristics of the dataset and the reasons to choosing a specific learning to

rank algorithm will also be discussed below.

3.1 Problem Statement

At first, we want to denote who can be defined as a local expert. The local experts

we are looking for are people who are likely to live in or live close to the target local

area, and are well recognized locally for their local knowledge about a particular topic.

For example, Rudy’s, a Texas barbecue restaurant, may have higher local expertise

for a specific query location, like College Station, than McDonald’s. Assume there is

a pool of local expert candidates V = {v
1

, v
2

, ..., vn}, each candidate is described by a

matrix of topic-location expertise scores (e.g., column i is College Station, while row

j is “food”), and that each element of the matrix indicates the extent of expertise

that the candidate is on the corresponding topic in the corresponding location. Given

a query q that includes both a topic t and a location l, the goal is to find the set

of k candidates with the highest local expertise in query topic t and location l. For

example, find the top 10 experts on tq = “food’ in lq = College Station, TX.
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3.2 Overview of Approach

How to find local experts e�ciently and accurately? To tackle this problem, a

geo-spatial approach is proposed that integrates geo-crowd knowledge about each

candidate into the learning-to-rank framework. Concretely, apart from the analysis

of several obvious features of Twitter users, like the number of their followers and the

text mining about the tweet content, the in-depth relationships in the geo-located

Twitter lists has been exploited with LExL. Furthermore, we can find local experts

faster by isolating the critical features that are more correlated with local expertise.

Figure 3.1: Twitter List Example

3.2.1 “Hidden” Feature: Geo-Located Twitter Lists

Besides the basic obvious features, like user profile and tweet content, are there

any other features can reveal the subscribe relationships and topic expertise at the

same time? A Twitter list allows a Twitter user to organize who she/he follows into

logical lists. For example, Figure 3.1 shows one list named “100 Business Leaders”

which contains 100 Twitter accounts including Tim Cook, Carl Icahn, and Warren

Bu↵ett. Twitter list is a form of crowd-sourced knowledge, which aggregates the

individual judgement on a topic that the list represents for and can reveal the crowd

9



Data Type Total # of Records
Lists 12,882,292
User List Occurrences 85,988,377
Geo-Tagged List Relationships 14,763,767

Table 3.1: Geo-tagged Twitter list data

perspective on how a Twitter user in the list is perceived [10]. In this thesis, the geo-

social information of 13 million lists has been exploited – provided by the authors of

[7]. The data provides the fine-grained location information of both the list creator

(or labeler) and the member of the list (or labelee). In total, there are 86 million user

occurrences on these lists, of which we have 15 million geo-tagged list relationships.

Thus, the aggregate list information may reveal not only the general crowd perspec-

tives on each user, but also the local crowd perspectives. High-level statistics of the

dataset are listed in Table 3.1. Further details of the dataset collection method can

be found in [7].

3.2.2 Crawling Tweets for the Pool of Candidates

What can determine a Twitter user has expertise in a specific topic? The first

factor coming to our minds is the tweets they posted. The tweet content is the

first evidence and foundation of their topical/locational expertise. For example, if

a tweet is like “The new Kyle Field is awesome!”, then we can say this candidate

has very high probability that she/he is in College Station and a fan or expert of

football. So, we want to implement text mining to judge their level of expertise.

One important step is crawling their tweets. After building the pool of local expert

candidates according to the experimental setup (Section 5.1), for the 1387 filtered

candidates in Twitter, the crawled tweets dataset is from May. 17, 2015 to Sep.

5, 2015, 16 weeks in total, which is processed to become the tweet content features

10



(Section 4.4).

3.2.3 Learning Approach

A previous approach by [7] focused on the local expert ranking problem using a

linear combination of topical authority and local authority. To build a more general

model and in the presence of ground truth training data (Section 5.2), here propose to

transform the local expert ranking problem from an unsupervised linear combination

of local authority and topical authority into a supervised learning-to-rank framework,

which can combine any number of local expertise features.

To select the appropriate algorithm for learning, a library of learning to rank

algorithms, RankLib,1 is used since it currently supports eight popular algorithms.

The following discussion mainly focuses on LambdaMART[5, 19], which has the best

performance among four di↵erent learning to rank algorithms in the experiments

(Section 5.3.1). The basic idea of LambdaMART is to train an ensemble of weak

models and to linearly combine the prediction of each one of them into a final model

which is stronger and more accurate. LambdaMART tunes the parameters of the

regression trees based on a gradient-based optimization method, and the gradient

of parameters is calculated according to the selected evaluation metric, e.g. NDCG,

thus the evaluation metric is optimized directly when learning.

1http://sourceforge.net/p/lemur/wiki/RankLib/
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4. FEATURES FOR LOCAL EXPERTISE

How to represent expertise of a candidate accurately and comprehensively? In

this part, four classes of features are introduced that potentially contribute to local

topic expertise of a candidate: user-based features, list-based features, local authority

features and tweet content features. This last two groups of features are especially

important as they naturally integrate expertise propagation into a framework that

models the relationships between di↵erent kinds of locations, and measure the relative

level between tweet content and topic. All 33 features are summarized in Table 4.1.
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4.1 User-Based Features

The first group of features captures user-oriented aspects that are independent

of the query topic and query location.

• User Network (Nfollower, Nfriend): The first two features measure the number

of followers that a candidate has, as well as the number of friends that this

candidate has, where friends represent users that is both following and followed

by the candidate.

• User Activity (Nfav, Nstatus): These two features are basic measures of a user’s

activity-level on Twitter, where Nfav capturing the number of favorite tweets

the user marked and Nstatus is the number of tweets posted by the user.

• Longevity (Tcreate): The final user feature is simply the UTC datetime that an

account was created. In this way, the longevity (or freshness) of the user can

be integrated into the ranking model.

4.2 List-Based Features

The second group of features extract expertise evidence directly from the Twitter

lists, but ignoring the geo-spatial features of the lists (those aspects are part of the

following two groups of features). Twitter lists have been recognized as a strong

feature of expertise in previous work [10]. In particular, lists can shed light on a

candidate from two perspectives:

• Appearing on Lists (Nlisted, Tlisted): On one hand, lists that a candidate appears

on will reflect how that candidate is perceived by others. The aggregated

information from all lists indicates how well the candidate is recognized.
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• Maintaining Lists (Nlist, Tlist): On the other hand, lists the candidate cre-

ates (if any), reflect the candidate’s personal interest, which may reflect his

expertise. For example, a candidate with a list about food may himself be a

foodie.

For these features, all lists as well as a more focused group of on-topic lists are

considered (e.g., if the query is for “entrepreneurs”, we only consider entrepreneur-

related lists, these lists are selected by keywords matching). Moreover, a new feature

is defined to characterize the quality of on-topic lists. This new feature – list score,

Slist – is defined as:

Slist =

PN
on topic

(c)
i=1

Qlist(i)

Non topic(c)

where Qlist(i) is the quality of each list and Non topic(c) is the number of on-topic lists

the candidate is in. Here, Qlist(i) represents the average number of times each user

in the list has been labeled with the topic of interest:

Qlist =
1

k

kX

j=1

Non topic(j)

where k is the number of users in the list.

4.3 Local Authority Features

The third set of features focus on the local authority of a candidate, as revealed

through the geo-located Twitter lists. The main idea is to capture the “localness”

of these lists. Intuitively, a candidate who is well-recognized near a query location is

considered more locally authoritative. The local authority of a candidate is measured

in multiple ways:

• Candidate-List Distance (du, dut): The first two features measure the average

distance from candidate c to all the users who appear on c’s lists. The main
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idea here is that a candidate is considered a local expert if she is closer to the

people on the lists she maintains. One version captures all of the lists (du) and

one only considers on-topic lists (dut).

• Candidate-Labeler Distance (dl, dlt): The next two features measure the aver-

age distance from a candidate c to all of the users who have labeled c, capturing

the localness of the people who have listed the candidate. Again, one version

with all lists (dl) and one with on-topic lists (dlt) are considered.

• Candidate-Query Distance (dql, dcq): These two features measure distance from

the query location. The first (dql) is the distance from a candidate’s labelers to

the query location; labelers who are closer to the query location are considered

more authoritative. The second (dcq) is the distance from a candidate to the

query location; candidates closer to the query location (regardless of whether

they have been labeled by locals) are considered more authoritative.

In all cases, the distances are measured using the Haversine distance, which gives

the great-circle distance around the earth’s surface. Apart from these six basic dis-

tance features, two features in a previous study of local experts [7] are also adopted:

Candidate Proximity and Spread-Based Proximity. The Candidate Proximity is a

decaying distance function between the candidate and a query location defined as:

Proxc(lc, lq) =

✓
dmin

d(lc, lq) + dmin

◆↵

where d(lc, lq) denotes the Haversine distance between the candidate location lc, and

the query location lq, and we set dmin = 100 miles. In this case ↵ = 1.01, indicates

how fast the local authority of candidate c for query location lq diminishes as the

candidate moves farther away from the query location.
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The Spread-Based Proximity captures the average “spread” of a candidate’s la-

belers with respect to a query location:

Proxsp(l(Uc), lq) =

P
u2U

c

Proxc(lu, lq)

| Uc |

where u denotes one of the labelers Uc of candidate c. The “spread” measure considers

how far an “audience” u is from the query location lq on average. If the “core

audience” of a candidate is close to a query location on average, the candidate gets

a high score of Proxsp.

4.4 Tweet Content Features

As a key aspect of determining topical authority of a candidate, the tweet content

cannot be omitted. Thus, the last group of features focuses on the tweet content,

and it provides more statistical findings rather than raw data just based on counting.

• Posting Frequency (twPc): The average number of tweets that the candidate c

posted in one week.

• Tweet Score (tws): The average TFIDF per word of a candidate c. This feature

can reflect how important and distinct the tweets that a candidate posted

among all tweets.

tf -idft,d = tft,d ⇥ idft

tws =

P
n
week

P
t2q tf -idft,d

ntnweek

tft,d is the term frequency of a term t in one document(i.e. one week tweets of a

candidate). idft is the inverse document frequency of a term t, as log N
df

t

, which
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is composed by the total number of documents in a collection (one week tweets

of all candidates), N , and document frequency, dft, the number of documents

in the collection that contain a term t.

• Tweet Entropy (twH): The average Entropy of a candidate’s one week tweets.

This feature shows how informative the candidate’ tweets are.

H = �
n
wordX

i=1

p(ti) · logp(ti)

p(ti) is the appearance times of a word in one document divided by the appear-

ance times of all words in one document. twH is the average entropy according

to each week’s Entropy H.

• Topic Bayesian Scores (twBt): Use Naive Bayes method in scikit-learn library

1 to output the posteriors of all 8 topics for each candidate, which are calculated

with priors learnt based on the topic pages crawled from Wikipedia.

• Location Bayesian Scores (twBl): Similar to Topic Bayesian Scores. Implement

for 4 locations instead of the topics.

1http://scikit-learn.org
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5. EVALUATION

After introducing LExL, this section presents the experimental setup, including

the collection of ground truth data via AMT, alternative local expert ranking meth-

ods, and metrics for comparing these methods. A series of experiments are designed

to answer the following questions: What is the performance of this learning-based

local expert ranking approach comparing to existing methods? Which features are

most important for identifying local experts? How stable are the results across dif-

ferent topics and locations? Can a local expert model trained on one topic generalize

to other topics? The results of these experiments show that LExL outperforms the

alternatives and also has high generalizability.

5.1 Experimental Setup

The dataset used in the experiments is described in Section 3.2, which has 15

million geo-tagged list relationships in total.

5.1.1 Queries and Candidates

Our query set is built on a collection of eight topics and four locations similar to

those in [7], which is representative and reflects real information needs. The topics

are divided into general local expertise topics – “food”, “sports”, “business”, and

“health” – and into more specialized local expertise topics – “chefs”, “football”,

“entrepreneurs”, and “healthcare”. The locations are Chicago, Houston, New York

City and San Francisco, which all have relatively dense coverage in the dataset for

testing purposes.

We retrieved a set of candidates for ranking based on topics derived from list

names before all experiments. Each list name has been applied case folding, stopword
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removal, and noun singularization. String patterns like “FoodDrink” were separated

into two tokens “food” and “drink”. Finally, each candidate is associated with all

topics derived from this process, composing a set of potential candidates to be ranked

by the proposed method LExL.

5.1.2 Method: LExL

There are a wide variety of learning-to-rank approaches accessible within an open

source library, RankLib. In this thesis, four popular learning-to-rank strategies are

evaluated: Ranknet, MART, Random Forest and LambdaMART. For each topic, the

collected candidates are randomly partitioned into four equal-sized groups with their

four categories of features for accomplishing four-fold cross validation to report the

results. In LambdaMart, the NDCG value is optimized directly over the training set

and averaged over all locations. Since LambdaMart adopts a boosting tree strategy

(the number of boosting iterations is set to 1,000), the models can easily su↵er from

overfitting. Hence, we adopt three approaches to combat this overfitting. First, the

model is tuned to have best NDCG value over a validation dataset that is partitioned

from the training data. 1/3 of the training set is used for validation. Second, we adopt

an early stopping strategy for terminating training once the NDCG does not improve.

Third, we limit the number of trees and leaves per tree to 10 to prevent overfitting.

Since LambdaMART performs the best in our evaluation and is significantly less

computationally expensive (about 1/6 of the computing time of Random Forest), the

following in-depth discussions are basically based on this method, and the discussion

of the other three strategies, Ranknet, MART and Random Forest, is delayed to the

experiments described below.
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5.1.3 Baselines

Apart from the three strategies, LExL is also compared with two state of the art

approaches as baselines for finding local experts:

• Cognos+ [10]. The first baseline method is the Cognos expert ranking

scheme. Cognos was originally designed for identifying general topic experts,

so the ranked lists from Cognos are independent of query location. Hence,

the Cognos implemented in our experiments is modified by incorporating a

distance factor when calculating the cover density ranking [8], where each la-

bel is weighted by a distance factor range in [0,1], which is similar to the

way implemented in Candidate Proximity discussed in Section 4.3. Thus, this

location-sensitive version of Cognos is referred as Cognos+.

• LocalRank [7]. The second baseline method is the LocalRank framework pro-

posed in [7]. This framework ranks candidates by a linear combination of local

authority and topical authority. The best performing combination reported

in that paper, spatial proximity plus direct labeled expertise (SP+DLE), is

choosed as the baseline to compare.

Note that both of these alternative methods are unsupervised, whereas the learning-

based approach proposed here integrates labeled training data to bootstrap the

ranker. Naturally, the supervised approach is expected to perform well. The goals

here are to measure the improvement as well as investigate the importance of di↵erent

features for local experts discovery.

5.2 Gathering Ground Truth

Since there is no publicly-available data that directly specifies a user’s local ex-

pertise given a query topic and a query location, we rely on an evaluation based on

21



ground truth by employing human raters (turkers) on Amazon Mechanical Turk to

rate the level of local expertise for candidates via human intelligent tasks (HITs).

5.2.1 Pooling strategy

It is too expensive to manually label the local expertise for every candidate with

each query pair (location + topic). Moreover, many candidates are irrelevant to the

query location and do not possess expertise on the topic of interest. Hence, a pooling

strategy is adopted to improve the e↵ectiveness of obtaining relevance judgments

by reducing the number of irrelevant candidates presented to turkers to improve

the e↵ective utilization of turkers [14]. In order to build the pool of local expert

candidates, the candidate set is sampled for each query pair, which only considers

the candidates who appear at least one on on-topic list. 100 candidates are selected

for each query pair, and then they are randomly assigned to di↵erent HITs.

5.2.2 HIT design

Each HIT includes instructions and examples of local expertise, Fig. 5.1a, along

with twelve candidates to judge. Turkers can access the information about the query

pair, Fig. 5.1b, and a link to a candidate’s Twitter page including account profile,

recent tweets, lists and home location. Turkers are then asked to rate each candidate’s

local expertise on a five-point scale, corresponding to no local expertise (0), di�cult

to tell (1), a little local expertise (2), some local expertise (3), and extensive local

expertise (4). The topic and location are kept the same within a single HIT, so

the turkers can get familiar with the style of HITs with the task and make more

consistent judgments. Several evaluation criteria [14] are adopted in order to collect

high accuracy and reliable ground truth judgments. First, two out of the twelve

candidate’s are set as trap questions, where we have already judged the candidates

as either clearly local experts (4) or obviously having no local expertise (0). These
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(a) Instructions for HIT (b) Rating Questions

Figure 5.1: Design of HIT

trap candidates are chosen to identify turkers who give random judgments or make

judgments only by the candidate’s home location (e.g., quickly assigning high scores

to candidates whose locations are Houston in the map instead of looking at their

Twitter information for a task seeking local experts on Houston healthcare). We

also maintain a turker qualification type in AMT which only allows turkers whose

results are consistently in good quality to continue working on our HITs. For each

candidate, we collect five judgments from distinct turkers and the majority judgment

is taken as the final local expertise rating; if there is a tie in the vote, the ceiling of

the average is taken as the final rating.
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Topic Accuracy  value

food 0.6845 0.5320
sport 0.7889 0.4903
business 0.7119 0.4596
health 0.7639 0.4461
chef 0.6640 0.4679
football 0.7758 0.3834
entrepreneur 0.7128 0.2868
healthcare 0.7675 0.5952
Average 0.7337 0.4576

Table 5.1: Turker agreement for topics

5.2.3 Turker Agreement

After run the HITs experiments, 16k judgments were collected in total across the

eight topics and four locations based on the above settings. But are these assessments

of local expertise reliable? To answer this, the accuracy and the kappa statistic [9] are

calculated to explore the validity of turker judgments. The accuracy for a candidate

c given a query pair q is defined as

Accuracy(c, q) =
No. of majority judgments

No. of judgments

Accuracy ranges from 0 to 1, with 0 meaning every judgment for the candidate is

unique and agrees with no other judgment, and 1 meaning all raters give a consistent

judgment for the candidate. The kappa statistic also measures inter-rater reliability,

ranging from 0 to 1, with larger values indicating more consistency in the judgments.

In Table 5.1, we show the accuracy and kappa values for each topic, where we treat

local expertise scores of 2, 3, and 4 as relevant, and scores of 0 and 1 as irrelevant.

The average accuracy across all topics is 0.74, which indicates that around 3 out of

4 raters agree on whether one candidate is a local expert. The accuracy is higher in
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some topics (e.g., football), indicating that assessing local expertise may be inherently

easier in some cases. For kappa, an average of 0.46 means “moderate agreement.” As

in the case of accuracy, there is variability in the scores, with the topic entrepreneur

being the most controversial topic to judge and healthcare being the easiest.

5.2.4 Evaluation Metrics

To evaluate the quality of local expertise approaches, three metrics are adopted

across all experiments: Rating@k, Precision@k and NDCG@k.

Rating@k measures the average local expertise rating for a query pair to output

the top-k experts for each approach, defined as:

Rating@k =
kX

i=1

rating(ci, q)/k

where c is candidate and q is the query pair. In our scenario, k=10. The Rating@10

here ranges from 0 to 4, where a value of 4 says the majority of the raters believe

everyone of the top 10 experts found by the local expertise method has extensive

local expertise. Since Recall will calculate the fraction of relevant ratings that are

retrieved based on all Turkers’ judgements across query topics and locations, the

value of Recall won’t change for di↵erent learning methods and di↵erent sets of

features. Thus we utilize Rating@k instead of Recall.

Precision@k measures the percentage of the top-k suggested local experts that

are actually local experts. Here, candidates with a rating 3 or 4 are considered as

relevant; all others are irrelevant. Note that this is a more conservative approach

than the one for inter-judge reliability; we want more distinguishing power deployed
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between approaches for comparing local expertise methods.

Precision@k =
kX

i=1

ri/k

where ri =

8
><

>:

1 if rating(ci,q) � 3

0 else

NDCG@k compares how close each method’s top-k ranking order of local experts

is to the ideal top-k ranking order.

NDCG@10 =
DCG@10

IDCG@10

DCG@10 =
10P
i=1

2

rating

i�1

log2(i+1)

and IDCG@10 =
10P
i=1

2

rating

0
i�1

log2(i+1)

. ratingi represents the

actual rating of the candidate in position i, rating
0
i represents the rating of the

candidate in position i given the ideal decreasing ranking order of all candidates.

DCG@10 is the discounted cumulative gain (DCG) of the learned ranking order

until position 10 and IDCG@10 is the maximum possible DCG up to position 10.

5.3 Results

In this section, the result of a series of experiments to evaluate the e↵ectiveness

of local expert finding using a learning-based method versus the two unsupervised

methods and other in-depth study of the feature importance and model generaliz-

ability is reported as below.

5.3.1 Comparison versus Baselines

We begin with comparing the proposed learning method (LExL) versus the two

baselines. Table 5.2 shows the Precision@10, Recall@10, and NDCG@10 of each
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method averaged over all queries.1 We consider the LambdaMART version of LExL,

in addition to methods using Ranknet, MART and Random Forest.2 First, we ob-

serve that three versions of LExL clearly outperform all alternatives, resulting in a

Precision@10 of around 0.7, an average rating@10 of around 3, and an NDCG of

more than 0.8.

Methods Precision@10 Rating@10 NDCG@10

Cognos+ 0.0906† 1.456† 0.2055†

LocalRank 0.5049† 2.491† 0.5500†

LExL [Ranknet] 0.6366† 2.606† 0.6846†

LExL [MART] 0.6870 2.838 0.8353
LExL [Random Forest] 0.7247 3.026 0.8401
LExL [LambdaMART] 0.7137 2.922 0.8544

Table 5.2: Evaluating the proposed learning-based local expertise approach
versus two alternatives. ’†’ marks statistical significant di↵erence with
LExL[LambdaMART] according to paired t-test at significance level 0.05.

Cognos has been shown to be e↵ective at identifying general topic experts. How-

ever, even a modified version, including a distance factor, is not compatible with local

expert finding. For example, Cognos may identify a group of “healthcare” experts

known nationwide, but it has di�culty localizing these experts, which results in the

poor performance.

LocalRank has a much better Precision@10 of around 0.5 compared to Cognos+,

1Note that the results reported here for LocalRank di↵er from the results in [7] as the experi-
mental setups and ground truth are di↵erent. First, our rating has 5 scales, which is intended to
capture more detailed expertise level. Second, [7] only considers ideal ranking order for the top 10
results from LocalRank when calculating IDCG@10, while we consider a much larger corpus, thus
the IDCG@10 is larger and this leads to smaller NDCG value.

2Ranknet is a pairwise learning method. For each pair of candidates (A,B), it aims to find the
probability that candidate A has more local expertise than B. MART is a boosted tree model in
which the output of the model is a linear combination of the outputs of a set of regression trees.
Random Forest is a way of averaging multiple deep decision trees, trained on di↵erent parts of the
same training set, with the goal of reducing the variance [13].
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which indicates that 50 percent of the candidates it identifies have at least “some

local expertise” for the query. The average Rating@10 is 2.49, which means the

candidates are generally rated between “a little expertise” and “some expertise”.

Since LocalRank explicitly builds on both topical and local signals (by exploiting

the distance between a candidate’s labelers and the query location), it performs

much better than Cognos+. However, LocalRank is only a linear combination of

these two factors, and so it does not exploit either additional factors (like the tweet

content features presented in this paper) nor take advantage of a learning approach

for optimizing the weighting of these factors.

For the four LExL learning approaches, Ranknet performs comparably to Local-

Rank, but the remaining three all result in significantly better performance, with

both Random Forest and LambaMART achieving comparably good results. These

two methods have a Rating@10 of around 3.1, indicating that the local experts

discovered have from “some local expertise” to “extensive local expertise”. The

Precision@10 and NDCG@10 also support the conclusion that these learning-based

methods result in high-quality local experts. Since LambdaMART is significantly less

computationally expensive (around 1/6 of the computing time of Random Forest),

we focus our remaining discussion on this method.

5.3.2 E↵ectiveness Across Topics and Locations

Given the good performance of LExL with LambaMART, next we turn to compar-

ing the e↵ectiveness of this approach across the four general topics and four narrower

topics. Before turning to a location comparison in the following discussion. Is the

e↵ectiveness of local expert finding consistent across topics? And does it vary by the

specificity of the topic?

We observe in Table 5.3 that NDCG@10 is consistently high for the four general
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topics, with an average value of 0.8276. Precision@10 and Rating@10 are also con-

sistent for general topics except for the topic of “health” which has relatively low

values. We attribute this poor showing due to data sparsity: (i) First, through man-

ual inspection we find that there are inherently only a limited number of candidates

with high local expertise for the “health” topic in the training and testing datasets.

(ii) Second, since we only consider candidates with “some local expertise” and “ex-

tensive local expertise” as good matches for a query, this additionally reduces the

number of possible local experts. However, the learning framework is still e↵ective at

identifying even those few local experts in “health” since a high NDCG@10, 0.8674,

it shows.

Topics Precision@10 Rating@10 NDCG@10

food 0.7938 2.906 0.7288
sports 0.8625 3.444 0.8867
business 0.8125 3.306 0.8274
health 0.5562 2.273 0.8674

chefs 0.7750 2.925 0.8715
football 0.5953 2.634 0.9236
entrepreneurs 0.6889 2.767 0.7734
healthcare 0.6253 2.658 0.9565

General topic AVG 0.7563 3.098 0.8276
Subtopic AVG 0.6711 2.746 0.8813

Table 5.3: Quality of local expert rankings across topics

We observe comparable results for the four narrower topics. The Precision@10 is

lower than for the general topics (0.67 versus 0.75), but the NDCG@10 is higher (0.88

versus 0.83). Part of the higher NDCG results may be attributed to the decrease in

the denominator of NDCG for these narrower topics (the Ideal DCG), so the ranking

method need only identify some of a pool of moderate local experts rather than
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identify a few superstar local experts.

Locations Precision@10 Rating@10 NDCG@10

Chicago 0.6901 2.758 0.8671
Houston 0.6410 2.601 0.8595
New York 0.6895 2.689 0.8625
San Francisco 0.6538 2.725 0.8694

Table 5.4: Quality of local expert ranking in di↵erent locations

In a similar fashion, the quality of LExL across the four query locations is eval-

uated as shown in Table 5.4. For the most part, the Precision@10, Rating@10, and

especially NDCG@10 show good consistency across these four locations, suggesting

the potential of a learning-based method to identify factors associated with each

location for uncovering local experts.

5.3.3 Evaluating Feature Importance

Given the strong performance of the learning approach for local experts, what

is the significance of the di↵erent kinds of features used for learning? Recall that

the learning model is built upon four kinds of features – user-based, list-based, local

authority, and tweet content features. To assess the importance of these di↵erent

features, we train four di↵erent LExL models, one for each feature type. For example,

the model is trained only using user-based features and then evaluate the quality of

local experts identified.

From Table 5.5, the four feature classes result in varying levels of local expert

quality. The user-based, list-based and tweet content features perform relatively well

(especially when compared to LocalRank), though not as well as the local authority

features. These results suggest that intelligent combinations of many features via
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Features Precision@10 Rating@10 NDCG@10

User-based 0.6486† 2.651† 0.7439†

List-based 0.6517† 2.670† 0.7713†

Local Authority 0.6856† 2.792 0.8366
Tweet Content 0.6404† 2.593† 0.7273†

All Features 0.7137 2.922 0.8544

Table 5.5: Quality of local expert ranking using di↵erent sets of features, ’†’ marks
statistical significant di↵erence with All Features case according to paired t-test at
significance level 0.05.

a learning method can outperform a simple combination of two carefully selected

features (as in LocalRank). The Local Authority features achieve the highest Preci-

sion@10, Rating@10 and NDCG@10 among all four kinds of features. We attribute

these results to Local Authority features integrating distance bias factors into cap-

turing local expertise. We can observe that the combination of all features performs

the best of all. One more interesting result is that Tweet Content features didn’t

perform as well as we expected. This can be explained by that the key words related

to topic and location in tweet content didn’t appear very often. For example, a NFL

quarterback shares his feelings about life more often than football. Thus, we can say

that tweet content is not the determining factor of finding local experts.

But which specific features are most informative, regardless of feature category?

Here, we adopt two di↵erent feature selection methods to identify the most informa-

tive features for local expert ranking.3

• Recursive Feature Elimination (RFE). In this approach, a linear regres-

sion model is trained and weight is assigned to each feature. Then features

with the smallest absolute weight are eliminated. For each topic, we keep elim-

inating the unimportant features until only required number of features are

3Both methods are provided in the Scikit Learn package: http://scikit-learn.org/
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Feature REF Tree-based Feature REF Tree-based
Nfollower 2 5 twPc 0 1
Nfriend 1 2 tws 1 2
Nfav 1 1 twH 0 0
Nstatus 5 2 twBbusiness 0 0
Tcreate 5 1 twBentrepreneur 0 0
Nlisted 6 5 twBfood 0 0
Tlisted 6 2 twBchef 0 0
Nlist 1 2 twBsport 0 0
Tlist 3 4 twBfootball 0 1
Slist 7 0 twBhealth 0 2
du 4 7 twBhealthcare 0 1
dut 6 5 twBchi 0 0
dl 0 3 twBhou 0 1
dlt 8 8 twBny 0 0
dql 8 8 twBsf 0 1
dcq 4 3
Proxc 8 8
Proxsp 4 5

Table 5.6: Accumulated Times of Features Selected by Di↵erent Methods

left.

• Tree-Based Feature Selection. In this approach, a number of randomized

decision trees are built on various sub-samples of the dataset. The importance

of a feature is determined by Gini importance or Mean Decrease Impurity,

which is defined as the total decrease in node impurity of all trees in the

ensemble [4]. Features that attach to a node with higher Gini importance are

more informative in the model.

Table 5.6 shows the accumulated number of times that each feature is selected by

the two di↵erent feature selection methods. For 33 features, most of the top features

are from list-based features and local authority features.

The results is aggregated across all queries (topics + locations), and reported
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in Table 5.7 the top features for each feature importance method. There are seven

common top features across both methods, which is highly consistent. Recall that dlt

and dql capture the average distance form candidate to all on-topic labelers and from

query location to on-topic labelers respectively. Proxc shows the distance between

the location of candidate and query location. Based on the selection results, we can

say comparing to the tweet content, a candidate’s list and location-related features

are more decisive for finding local experts.

Method Top-10 Features

RFE dlt, dql, Proxc, Slist, Nlisted, Tlisted,
dut, Nstatus, Tcreate, du

Tree-based dlt, dql, Proxc, du, Nlisted, dut,
Proxsp, Nfollower, Tlist, dcq

Table 5.7: Individual feature importance

Ultimately, how explanatory are these features? We further train two addi-

tional LExL models – one using the top-10 features from the RFE feature impor-

tance method and one using the top-10 features using the tree-based method. Ta-

ble 5.8 shows the evaluation metrics for these two approaches versus the full blown

LExL model with all features. We can observe the di↵erence of Precision@10 and

NDCG@10 is within 0.02 and Rating@10 is within about 0.1 for both methods com-

pared to All Features case. Moreover, the di↵erence between the value of three

evaluation metrics and those of the All Features’ case is not statistically significant.

These results confirm the importance of the List-based features and Local Authority

features and further show that high-quality local expert models may be built using

fairly compact features.
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Method Precision@10 Rating@10 NDCG@10

RFE 0.6965 2.805 0.8516
Tree-based 0.6919 2.797 0.8390
All Features 0.7137 2.922 0.8544

Table 5.8: Performance using selected features

5.3.4 Generalizability of Local Expert Models

Finally, can a learnt model be reused to rank other topics? The generalizability

of the local expert models is explored in this section. In many cases, we can imagine

building a local expert model that is optimized for one type of topic (e.g., healthcare)

but then we want to apply the model to a di↵erent topic (e.g., finance), for example

in cases where training data is unavailable or expensive to collect. Are the models

of local expertise generalizable enough to support high-quality local expert finding

in these new topic areas? Or do the key features and feature weightings vary from

topic to topic, so that a specialized model must be built for each topic?

The first experimental setup here is to train a model on each of four topics and

then to apply this model to a di↵erent topic. Concretely, we train over the four

general topics – health, food, business, and sports – and then rank candidates in

each of the four narrower topics – healthcare, chefs, entrepreneurs, and football.

Intuitively, a model trained over a related topic is expected to perform better than a

model trained over a less similar topic (e.g., a health-based local expert model should

do better for healthcare, but worse for football). But does this hold? And how well

do the less related models perform?

The results of this experiment are shown in Table 5.9. For each of the four

narrower topics, that indeed, the model corresponding to the most related general

topic produces the best results. Perhaps surprisingly, these models perform on par
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with the models trained over the individual topics as in Table 5.3, or even better

in Precision@10 and Rating@10. And for the fluctuation of NDCG@10 is within

0.1 compared with that of their individual model. Since the general topic models

build a more broader measure to define a local expert than the individual models of

narrower topic, it can rank the more related candidates higher, which leads to high

Precision@10 and Rating@10.

Even for models built on very di↵erent topics, we do see encouraging results. For

example, the sports-based model for ranking chefs results in Precision@10 of 0.85,

Rating@10 of 3.1, and NDCG@10 of 0.71 and the health-based model for ranking

football results in Precision@10 of 0.79, Rating@10 of 3.1, and NDCG@10 of 0.79.

These results indicate the potential of learning models that can be extended to new

local expert topics.

In the second experiment, instead of having a model for each general topic, we

train a single model for four general topics altogether, and then test this model

on each subtopic. In Table 5.9 that the general model performs no worse than

each individual model. This is attributed to more training data and avoidance of

overfitting to one topic. It indicates we may find a common local expert model that

is applicable regardless of the specific topic.
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Topic Model Precision@10 Rating@10 NDCG@10

healthcare

health 0.9250 3.708 0.9236
food 0.6250 2.866 0.5927

business 0.7937 3.350 0.8080
sports 0.9250 3.708 0.8897
general 0.8437 3.462 0.8285

entrepreneurs

health 0.7888 3.188 0.6867
food 0.7111 2.755 0.5907

business 0.8083 3.177 0.7663
sports 0.7777 3.125 0.7060
general 0.8000 3.066 0.6823

chefs

health 0.7333 2.941 0.6775
food 0.8750 3.291 0.7670

business 0.8687 3.225 0.7171
sports 0.8583 3.175 0.7173
general 0.8187 3.031 0.7132

football

health 0.7916 3.175 0.7910
food 0.6166 2.683 0.6292

business 0.7062 2.912 0.7157
sports 0.8083 3.216 0.7965
general 0.7312 2.956 0.7714

Table 5.9: Applying a model learned on one topic to rank local experts on a di↵erent
topic.
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6. LEVRS: LOCAL EXPERTS VISUALIZING AND RATING SYSTEM

The experiment results in previous section have shown LExL has satisfying per-

formance on find local experts. Therefore, in this section, a prototype system LEVRS

(Local Experts Visualizing and Rating System) is introduced where the system users

can look for local experts with query of topic and location. Moreover, the system

also receives user feedbacks for the displayed results, which can be used to adjust

the proposed LExL.

6.1 Design

To design LEVRS, several questions are needed to take into account. What kind

of data is it going to adopt? How to make the visualization clear and intuitive?

How to make good use of the prototype system for future research? Thus, three key

functions are considered, as follows.

• Where are these local experts? Since the research goal is finding local

experts, it requires the system displays each detected local expert whose lo-

cation is located on a real map. Moreover, we also displayed the distribution

of di↵erent expertise levels across the country, for all candidate experts in our

system.

• Who are they? Since our LExL is a ranking-based local expert detector,

we should display the complete ranking and the basic profile information of

each expert. Then system users can access the Twitter profile information of

each local expert, including user name, profile photo, latest tweets, etc. Our

LEVRS also illustrates the ranking of each expert and credit score he/she

gained in LExL.
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• Not satisfied with the results? As LEVRS shows the ranking of a selected

expert, users may be not satisfied with the current results generated by LExL.

To collect user feedback, we add a module extracting and displaying basic

profile information of each found expert, and asking user to rate if they disagree.

Figure 6.1: Flowchart of LEVRS

6.2 Implementation

As the requirements mentioned in Section 6.1, the prototype system, LEVRS,

needs to support diverse views of local experts in a map, extraction of current infor-

mation of an expert by interacting with Twitter API and ranking and rating data

storage. Thus, basically the prototype LEVRS is implemented with 4 parts, User

Interface, PHP layer, Python execution layer and Data IO. UI gets launched with

the preprocessed data, like user locations, ranking info, etc. from Data IO. When

users send requests to query local experts on one topic and in one location, UI will

change from the state map view to a local view.
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(a) Heatmap of Local Experts

(b) Markers of the Locations of Local Experts

Figure 6.2: State View and Local View of Local Experts

6.2.1 State view: Heatmap

Since the distribution of experts across the country maybe varies in di↵erent

locations, heat map is implement in the state view. When open the main page of
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LEVRS, it straightly shows the heat map of all the existing local experts across topics

calculated by LExL . In Fig 6.2a, we can see there are more local experts in Chicago,

Houston, New York and San Fransisco since the dataset only covers these 4 locations.

But it also denotes that Houston and New York have relative sparse distributions

comparing to Chicago and San Francisco. We attribute this to the population of San

Francisco and Chicago are more concentrated in these two cities, while for New York

and Houston, there are similar size cities close to them, for example, Washington DC

and Dallas. Therefore, the candidates located in those cities are also being considered

as local experts in New York and Houston respectively.

6.2.2 Local view: Markers

As individual, each local expert is required to be located on a real map by design.

Hence, Fig 6.2b shows the exact locations of the local experts after LEVRS get the

query of specific topic and location, for example, showing the food local experts in

San Francisco. Additionally, di↵erent colors of the markers represent the rankings

of these local experts in our prototype system, like the yellow markers are pinning

the experts in the ranking range 50 to 100. Users can get a better understanding of

their expertise level in the query area without knowing the exact rankings.

When one expert on the map has been selected, PHP layer will catch the request

and execute related python crawler to extract current user profile information and

latest 5 posts of this expert, shown in Fig. 6.3. Apart from the crawled information of

an expert, the expert id links to the exact Twitter account of the expert, containing

more types of profile informationsuch as number of followers, biography, and user-

defined location. This provides the similar environment and process for rating a

candidate. Therefore, a button, “Rate Me!” in Fig. 6.4, to present the rerating form

is supported by UI in case users disagree with our rankings after they check the
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Figure 6.3: Basic Information of the Selected Expert

Figure 6.4: “Rate Me” Function
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expert’s current state. Furthermore, PHP layer and Python layer will store user ip,

time of submission, rating score, expert id, respect topic and location with Data IO

after the user submit the rerating form for adjusting the proposed LExL with these

new ratings.

Seeing that for a query topic and location pair, LEVRS demonstrates the rankings

of experts with distinct colors. However, it cannot display the distribution of experts

with in a ranking range. Therefore, a ranking range filter is deployed to LEVRS

so that system users can select the expected local experts within a ranking range.

Fig 6.5 shows how ranking range bar works, and Fig 6.5b with range 0-90 is more

easily showing that top 50 to top 100 local experts (yellow markers) are concentrated

in San Francisco.
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(a) Ranking Range is Top 200

(b) Ranking Range is Top 90

Figure 6.5: Set ranking range as a pre-filter
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7. CONCLUSION AND NEXT STEPS

Local experts discovery plays a critical role to meet many location-sensitive infor-

mation needs. In contrast to earlier lines of research aimed at finding general topic

experts, we built and evaluated a geo-spatial learning-to-rank framework, LExL,

for identifying local experts that leverages the fine-grained GPS coordinates of mil-

lions of Twitter user and carefully curated Twitter list data and tweet content data.

Four categories of features for learning model are introduced, including user-based,

list-based, local authority, and tweet content features. We accomplished a compre-

hensive controlled study over AMT-labeled local experts on eight topics and in four

cities, where our proposed framework LExL performed better than alternatives. We

developed LEVRS prototype system for visualizing and rating local experts.

The framework and prototype system we present thus suggest a number of direc-

tions for further work. (i) By discovering new group of features, we can potentially

identify new relationships between topical and local authority of each local expert

that can improve the performance of detected local experts. For example, now we

only considered one-hop distance between a labeler and a candidate, so we can in-

corporate additional network context as new features. (ii) Currently, four learning-

to-rank algorithms used in LExL have been proposed for many years. We can dive

deep into the algorithms to publish a new one for boosting the performance. (iii) By

enhancing the preliminary prototype system, we can provide real time rankings of

the local experts with incorporating instant learning when some new ratings come

into the system.
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