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ABSTRACT

The work presented in this dissertation focuses on extending a recent effort of de-

veloping brittle fracture theory with an aim of achieving bounded crack-tip stress and

strain without the use of extra near-tip cohesive surface. The first model studied in

this dissertation is attributed to modeling the bulk material response in the context

of nonlinear strain-limiting theory elasticity. The second model is a theory of fracture

developed by Sendova and Walton based on incorporation of surface mechanics. In

the first part of this dissertation, we analyze the nonlinear fracture model using a

combination of asymptotic and numerical arguments. We find that the use of non-

linear response relations, for a special case of plane-strain fracture, leads to a highly

nonlinear partial differential equation. We obtain an asymptotic solution to this non-

linear boundary value problem and subsequently develop a numerical model using an

adaptive finite element method.

In the second part of the dissertation, a main focus is to implement the surface-

mechanics class of fracture theory developed by Sendova and Walton using a stable

numerical method such as finite elements. If the surface-tension is assumed to be

dependent linearly on the in-plane curvature, the resulting jump momentum balance

boundary condition will contain higher-order tangential derivatives. We present a

reformulation of the crack-surface boundary condition using the boundary Green’s

function and Hilbert’ transform (as Dirichlet-to-Neumann map) and subsequently im-

plemented the model using an adaptive finite element method.

Both the models, studied in this work, predict a physically reasonable crack-tip

strain compared to the singular prediction from the linearized elasticity model. More-
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over, the crack-tip stress predicted by both the models remain smaller in magnitude

compared to the corresponding prediction from the classical linearized model. Finally,

since the two models studied in this dissertation do not indicate the singular stress

growth in the vicinity of the crack-tip, the crack-tip is not a singular energy sink.

Therefore, the classical fracture criterion based upon the singular solution such as

Stress Intensity Factor (SIF) or local Energy Release Rate (ERR) is not available.

For the nonlinear plane-strain fracture model, we study the behavior of the Critical

Crack-Tip Stress as a possible fracture criterion. The numerical results indicate that

the cleavage stress is maximum along the line directly ahead of the crack-tip and this

result is in agreement with the classical linearized elastic fracture mechanics solution

for pure mode-I loading.

iii



DEDICATION

To my parents.

iv



ACKNOWLEDGEMENTS

First and foremost I would like to submit my deepest gratitude to my disserta-

tion advisor Professor Jay R. Walton for his invaluable guidance and support in my

research project. I feel privileged to be advised by such an outstanding applied mathe-

matician and generous mentor. I would also like to thank him for his advice on various

other topics such as teaching, job search, professional talks and writing style. All his

guidance will be a great source for me to advance in my academic career.

I would like to thank Professor K. R. Rajagopal for agreeing to be a member

of my dissertation committee and also for providing his insightful suggestions on my

research topic. Without his own research on implicit theory of elasticity and invaluable

guidance, practically half of my dissertation wouldn’t have been written. His class on

nonlinear solid mechanics was very important to my research project.

I am also grateful to Professor Wolfgang Bangerth for helping me with questions

on the deal.II library. I extremely appreciative of his patience in going through and

answering my questions regarding code-development, finite elements and numerical

method for solving nonlinear equations. I also would like to thank him for all his

valuable comments and suggestions to improve the quality of my dissertation.

I also thank Professor Prabir Daripa for serving on my dissertation committee and

providing many insightful comments and questions on my research topic. I thank all

my professors at Texas A&M University with whom I took classes and they all made

me what I am today.

I would like to thank the Department of Mathematics at Texas A&M University for

the wonderful research facility offered to me during last six years. I express my thanks

to previous and the current associate head of graduate studies for all the mentorships.

v



I wish to thank Ms. Monique Stewart for all her help in completing the required paper

works on time. I am also very appreciative of the financial support provided by the

Department of Mathematics and the Air Force Office of Scientific Research through

Grant FA9550-08-1-0090.

I would also like to thank my friends Fahad Alrashed, Jun Ren, Vladimir Tomov

for their friendship and selflessly helping me whenever I needed. My special thanks

goes to two of my advisor’s previous students Kun Gou and Lauren Ferguson, who

have helped me immensely with whatever research as well as technical difficulties I

have encountered.

I would also like to acknowledge Professor Dambaru Bhatta and his family from

Edinburg, Texas, for their warm care and encouragement from the day both me and

my wife landed in America for our higher studies.

I am grateful to both my family and my in-law’s family in India for all their support

during my studies in America and they were always a great source of comfort during

my hard times. I am falling short of words to express my love and appreciation for

my wife Veena and my son Mahit, both were integral part of my life at Texas A&M

University. I thank both of them whole heartedly for their love and support.

And finally, I would like to thank god for all the blessings in my life.

vi



NOMENCLATURE

BVP Boundary Value Problem

DEAL.II Differential Equations Analysis Library

DOF Degrees of Freedom

DMB Differential Momentum Balance

FEM Finite Element Method

LEFM Linearized Elastic Fracture Mechanics

IVP Initial Value Problem

JMB Jump Momentum Balance

ODE Ordinary Differential Equation

PDE Partial Differential Equation

vii



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 The Model Framework and Notations . . . . . . . . . . . . . . . . . . . 3

1.2.1 Kinematics and Kinetics of Classical Elasticity . . . . . . . . . . 3
1.2.2 Implicit and Strain-Limiting Constitutive Relations . . . . . . . 7

1.3 Introduction to Brittle Fracture Modeling with Surface-Tension Excess
Property . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2. MODELING A SINGLE PLANE-STRAIN QUASI-STATIC CRACK WITHIN
THE CONTEXT OF A NONLINEAR STRAIN-LIMITING THEORY OF
ELASTICITY . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22

2.1 The Material Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
2.2 Plane-Strain Mode-I Fracture Problem . . . . . . . . . . . . . . . . . . 25
2.3 Linear Elastic Case . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
2.4 Nonlinear Crack-Tip Asymptotic Analysis . . . . . . . . . . . . . . . . 31
2.5 Numerical Solution of the Asymptotic ODE . . . . . . . . . . . . . . . 36

2.5.1 Numerical Optimization Startegy . . . . . . . . . . . . . . . . . 37
2.5.2 Numerical Result . . . . . . . . . . . . . . . . . . . . . . . . . . 38

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

viii



3. NUMERICAL MODEL FOR PLANE-STRAIN FRACTURE IN A CLASS
OF STRAIN-LIMITING NONLINEAR ANISOTROPIC ELASTIC BODIES 42

3.1 Mathematical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Numerical Model . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
3.3 Finite Element Implementation . . . . . . . . . . . . . . . . . . . . . . 50
3.4 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 53

3.4.1 Mesh Refinement Strategy . . . . . . . . . . . . . . . . . . . . 54
3.4.2 Algorithm . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.5 Numerical Results and Discussion . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 Error Reduction Factor . . . . . . . . . . . . . . . . . . . . . . . 64

3.6 Behavior of Cleavage Stress Near the Crack-Tip . . . . . . . . . . . . . 78
3.7 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80

4. A NONLOCAL FINITE ELEMENT FORMULATION OF MODE-III FRAC-
TURE WITH SURFACE TENSION EXCESS PROPERTY . . . . . . . . . 82

4.1 Mode-III Fracture Problem Formulation . . . . . . . . . . . . . . . . . 82
4.2 Governing Equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84
4.3 Boundary Conditions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.4 Weak Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
4.5 Reformulation of the Crack-Face Boundary Condition . . . . . . . . . . 88
4.6 Numerical Implementation . . . . . . . . . . . . . . . . . . . . . . . . . 94

4.6.1 Fredholm Approximation Approach . . . . . . . . . . . . . . . . 94
4.6.2 Nonlocal Approach . . . . . . . . . . . . . . . . . . . . . . . . . 95

4.7 Parameter Determination . . . . . . . . . . . . . . . . . . . . . . . . . 98
4.8 Simulation Results . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100

4.8.1 Error Reduction Factor . . . . . . . . . . . . . . . . . . . . . . . 103
4.9 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 113

5. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . . 115

5.1 Summary . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 115
5.2 Future work . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 121

ix



LIST OF FIGURES

FIGURE Page

2.1 Infinite elastic slab containing a semi-infinite crack. . . . . . . . . . . . 25

2.2 The plot of the values of the objective function f±(v) with v2 = +
√

1− v2
0. 39

2.3 The plot of the values of the objective function f±(v) with v2 = −
√

1− v2
0. 40

3.1 Infinite elastic slab with crack of length 2l under pure mode I loading . 43

3.2 Finite computational domain for pure mode-I fracture problem. . . . . 48

3.3 Computational domain indicating both global and adaptive mesh re-
finement. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 56

3.4 Crack-face displacement u2 both for LEFM and strain-limiting anisotropic
models. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 60

3.5 Stress component σ22 along a line leading up to crack-tip both for LEFM
and strain-limiting anisotropic models. . . . . . . . . . . . . . . . . . . 60

3.6 The log-log plot of the error as a function of the degrees of the freedom. 65

3.7 The displacement vector u in the entire body for the nonlinear strain-
limiting model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.8 The vector plot of the displacement u for the nonlinear strain-limiting
model. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66

3.9 Comparison of dimensionless stress component σ22/σ for LEFM and
strain-limiting anisotropic model and the axis of the crack was assumed
to be along e1. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

3.10 Comparison of strain component ε22 for LEFM and strain-limiting model
and the axis of the crack was assumed to be along e1. . . . . . . . . . . 67

3.11 Comparison of dimensionless stress component σ22/σ for LEFM and
strain-limiting anisotropic model and the axis of the crack was assumed
to be along e2. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 69

x



3.12 Comparison of dimensionless stress component σ22/σ for strain-limiting
anisotropic model with the axis of the crack was assumed to be along
e1 and orthogonal to e1. . . . . . . . . . . . . . . . . . . . . . . . . . . 70

3.13 Plot of dimensionless σ22/σ along line x1 = 1.0, 0 ≤ x2 ≤ 8 both for
LEFM and Strain-Limiting model. . . . . . . . . . . . . . . . . . . . . 71

3.14 Plot of crack-face displacement component u2 for different top face ten-
sile loading. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

3.15 Effect of strain-limiting modeling parameter β on the stress component
σ22 along the line leading up to crack-tip for strain-limiting anisotropic
models. The axis of the crack was assumed to be along e1. The param-
eters used in the computation are α = 1.8, σ = 0.001 and γ̄2 = 1.0. . . 72

3.16 Effect of γ̄2 on the stress component σ22 along the line leading up to
crack-tip for strain-limiting anisotropic model. The axis of the crack
was assumed to be along e2. . . . . . . . . . . . . . . . . . . . . . . . . 73

3.17 Effect of top-face tensile load σ on the stress component σ22 along the
line leading up to crack-tip for the strain-limiting anisotropic model.
The axis of the crack was assumed to be along e1. . . . . . . . . . . . 73

3.18 Convergence of the crack-face opening displacement u2(x1, 0) for various
adaptive refinements of the domain. . . . . . . . . . . . . . . . . . . . 75

3.19 Dimensionless near-tip stress component σ22/σ for various adaptive re-
finements of the domain. . . . . . . . . . . . . . . . . . . . . . . . . . 75

3.20 Near-tip strain component ε22 for various adaptive refinements of the
domain. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76

3.21 u1,1 along line leading up to the crack-tip. . . . . . . . . . . . . . . . . 77

3.22 u1,2 along line leading up to the crack-tip. . . . . . . . . . . . . . . . . 77

3.23 u2,1 along line leading up to the crack-tip. . . . . . . . . . . . . . . . . 78

3.24 Plot of dimensionless cleavage stress σθθ along the line leading up to
crack-tip for strain-limiting anisotropic model. . . . . . . . . . . . . . . 80

4.1 Physical configuration consisting of linear elastic plane Ω under an-
tiplane shear loading with a crack of length 2l. . . . . . . . . . . . . . . 83

xi



4.2 2D finite computational domain Q with Γ0 indicating the mode-III
upper-right crack face. . . . . . . . . . . . . . . . . . . . . . . . . . . . 85

4.3 The log-log plot of the error as a function of the degrees of the freedom. 103

4.4 Solution of the integral equation for different values of γ1. . . . . . . . . 104

4.5 Solution of the integral equation for values of γ1 greater than γmin
1 . . . . 105

4.6 2D plot of the solution for the parameters σ∞23 = 0.001 and γ1 = 1. . . . 106

4.7 Comparison of both FEM implementations and parameters used in the
computations are σ∞23 = 0.001 and γ1 = 1. . . . . . . . . . . . . . . . . . 107

4.8 Crack-opening displace profile for the surface-mechanics model with
parameter values σ∞23 = 0.001 and γ1 = 0.5. . . . . . . . . . . . . . . . . 107

4.9 Crack-surface displacement (u3) for various values surface-tension pa-
rameter and fixed σ∞23 = 0.001. . . . . . . . . . . . . . . . . . . . . . . . 108

4.10 Comparison of the near-tip stress component τ23 for LEFM and surface-
mechanics model with parameter values σ∞23 = 0.001 and γ1 = 1.0. . . . 109

4.11 Comparison of the near-tip strain component ε23 for LEFM and surface-
mechanics model with parameter values σ∞23 = 0.001 and γ1 = 1.0. . . . 110

4.12 Near-tip stress component τ23 for various values surface-tension param-
eter and fixed σ∞23 = 0.001 . . . . . . . . . . . . . . . . . . . . . . . . . 111

4.13 Effect of shear-load on the crack-surface displacement u3 and γ1 = 1 . . 112

4.14 Effect of shear-load on the near-tip stress component τ3 and γ1 = 1 . . 112

4.15 Convergence of the stress component τ23 for parameter value γ1 = 1 . . 113

xii



LIST OF TABLES

TABLE Page

2.1 Updated points and function values by optimization algorithm for the
case of v2 = +

√
1− v2

0. . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3.1 Number of refinements, total number of cells and degree of freedom for
the computational domain. . . . . . . . . . . . . . . . . . . . . . . . . . 58

3.2 Convergence of the center node displacement for various limiting stain
parameter β across refinement cycles. . . . . . . . . . . . . . . . . . . . 61

3.3 Convergence of the center node displacement for various values of the
parameter γ̄2 across refinement cycles. . . . . . . . . . . . . . . . . . . 62

3.4 Convergence of the center node displacement for various values top-face
tensile loading σ across refinement cycles. . . . . . . . . . . . . . . . . . 63

4.1 Total number of cells, degree of freedom and crack cells for each refine-
ment cycles of the square domain . . . . . . . . . . . . . . . . . . . . . 101

4.2 Convergence of the center node displacement for various surface tension
parameter γ1 across refinement cycles. . . . . . . . . . . . . . . . . . . 102

xiii



1. INTRODUCTION∗

This chapter provides an introduction to the phenomenon of brittle fracture model-

ing and direct numerical simulations. Beginning with a motivation for studying brittle

fracture modeling in the context of strain-limiting theory of elasticity in Section 1.1,

the relevant nonlinear response relations are discussed in Section 1.2. Finally, in Sec-

tion 1.3, a brittle fracture model with surface-tension as excess property is outlined.

1.1 Motivation

The classical linearized elastic fracture mechanics (LEFM), one of the widely cele-

brated and most successful theories of applied mechanics, has the well-known inconsis-

tency of predicting stress and strain singularities in the crack-tip neighborhood while

the governing equations of LFEM are derived on the assumption of uniform infinitesi-

mal strains. Also, it predicts an elliptical crack-opening profile and a blunt crack-tip.

Therefore, a large number of studies have been devoted towards correcting these theo-

retical underpinnings by introducing a two dimensional Barenblatt-type cohesive zone

or three dimensional process zone near the crack-tip [9]. However, these ad hoc rep-

resentations are difficult to validate experimentally and also parameters involved may

not have a clear physical meaning.

It is well documented in the Fracture Mechanics literature [9, 21] that within the

classical linearized theory of elasticity both stress and strain has 1√
r

order of singu-

larity, where r is the radial distance from the crack-tip. Clearly no real materials can

withstand infinite stresses and predict singular strain filed near the crack-tip. The

∗Part of this chapter is reprinted with permission from Springer publications, “On the direct
numerical simulation of plane-strain fracture in a class of strain-limiting anisotropic elastic bodies”
by S. M. Mallikarjunaiah, J. R. Walton, International Journal of Fracture, 192(2), 217-232, 2015;
Copyright 2015 by Springer Publications.
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crack-tip strain singularity may be attributed to the two important factors, first is the

“linear” relationship between stress and strain and second is the classical traction-free

crack-face boundary condition. The classical linearized elasticity approach to model-

ing the material response is proved to be useful in predicting the stress-strain fields

in the bulk material “far” away from the crack-tip. But the these models predict a

highly inaccurate results near the crack-edge. Therefore, there is a great scope for

developing new constitutive models resulting from augmenting the classical models to

incorporate the crack-surface effects that might yield improved near-tip stress-strain

predictions.

A large number of archiving literature is devoted towards understanding the frac-

ture through atom-to-continuum modeling, such as molecular dynamics (for more in-

formation see [1]). Another continuum model reformulation is the bond-force based

peridynamic approach [50] of modeling cracks and fracture. This nonlocal formulation

introduces a new force between any two atoms in a horizon. More importantly the

peridynamic theory is a nonlocal numerical tool, hence a great deal of computational

cost is required for the simulation because each particle will interact with its neighbors

within the horizon. A main aspect of this nonlocal theory is that integration rather

than the differentiation is used to define force between material particles. Another

serious issue is constructing the correct peridynamic-BVP correspond to the actual

experiment.

In all the above mentioned brittle fracture theories, the models do not consider

the bulk nonlinear response of solids while deriving the constitutive relations. But,

there is a clear experimental evidence on titanium alloys, Gum metal alloys and other

alloys (see [54]), that these metals respond nonlinearly even when the strains are

below 2.5% [39]. The classical linearized elasticity is incapable of predicting such

nonlinear material response. These considerations, among others, motivated a recent
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introduction of non-linear, strain limiting theories of elasticity.

In a series of recent papers, Rajagopal [34–40] has offered a new approach to mod-

eling the stress-strain behavior of non-dissipative elastic solids beyond the classical

Cauchy and Green formulations. In particular, he notes a need for developing non-

linear response relations within infinitesimal strain assumption. Infinitesimal strain

approximation to classical Cauchy elasticity always lead to a linear relationship be-

tween stress and linearized strain. To derive logically consistent nonlinear relationships

between stress and linearized strain, Rajagopal [34] introduces a general approach in

which stress and strain are connected through an implicit relation. He shows how

one can accommodate linearization procedure to derive nonlinear implicit response

relations for linearized strain as a nonlinear function of stress. A special sub-class of

such models are strain-limiting in that the norm of strain remains uniformly bounded

even as the norm of the stress becomes unbounded. Recently Rajagopal and cowork-

ers [8, 12–17, 26, 27, 32, 33, 38, 41, 42] have studied the classical problems of elasticity

within the context of these new class of nonlinear elastic response relations.

1.2 The Model Framework and Notations

In this section we develop the modeling framework by first introducing the kine-

matical setting and notation we use for classical finite elasticity.

1.2.1 Kinematics and Kinetics of Classical Elasticity

LetX be any arbitrary point in a stress-free reference configuration B of a material

body with x = f(X, t) being the corresponding point in the current configuration

and f denotes a deformation of the body. Let u and F denote the displacement and

deformation gradient through

u := x−X , (1.1)

3



and

F :=
∂f

∂X
. (1.2)

The left and right Cauchy-Green tensors B and C are defined by

B := FF T (1.3)

and

C := F TF , (1.4)

respectively, and the Green-St. Venant tensor E is defined by

E =
1

2
(C − I). (1.5)

Let T denote the Cauchy Stress Tensor. Then the first and second Piola-Kirchhoff

Stress Tensors, S and S, respectively, are defined by

S := TF−T det(F ) (1.6)

and

S := F−1S. (1.7)

A material body is said to be Cauchy Elastic if its constitutive class is determined

by a response function of the form:

S = Ŝ(F ). (1.8)

It is said to be Green Elastic (or equivalently Hyperelastic) if the stress response

4



function is the gradient of a scalar valued potential

Ŝ(F ) = ∂F ŵ(F ). (1.9)

We now show the steps of the linearization of the general constitutive equation (1.8)

and derive the governing linearized theory of elasticity. First, note that the deforma-

tion gradient defined in (1.2) can be written as

F = I +∇u, (1.10)

in which I is the second order Identity tensor. Also assume that the reference config-

uration is residual stress free, i.e.

Ŝ(I) = 0. (1.11)

Another crucial assumption in the deriving the linearized theory of elasticity is

∇u→ 0. (1.12)

Then we may conclude from (1.8), (1.10) that

Ŝ(F ) = Ŝ(I +∇u) (1.13)

= Ŝ(I) +DŜ(I) [∇u] + o (∇u) (1.14)

= C [∇u] + o (∇u) (1.15)

= C [ε] + o (∇u) , (1.16)

where C is the fourth order elasticity tensor, ε is the infinitesimal strain tensor and

o(·) is the little-o notation. Then using (1.16) in (1.8), we obtain the asymptotic form

5



of the constitutive linearized theory of elasticity as

S = C [ε] + o (∇u) . (1.17)

Then within the assumption (1.12) the stress S is a linear function of the infinitesimal

strain ε, i.e.

S = C [ε] . (1.18)

For an isotropic body, the above equation (1.18) can be written as

S = 2µ ε+ λ (tr(ε)) I (1.19)

and for homogeneous body, the Lamé parameters µ, λ are constants.

It is important to note that the linearized model given in (1.19) is invertible and

one can express the linearized strain ε as a linear function of stress S as

ε =
1

2µ
S − λ

2µ (2µ+ 3λ)
tr(S)I, (1.20)

the above relation (1.20) between the linearized strain and the stress is still linear.

More importantly the classical fracture boundary value problem, formulated using the

constitutive relation (1.20) along with the traction-free crack-face boundary condition,

could still predict singular strains in the neighborhood of the crack-tip. Specifically,

both stresses and strains will have 1√
r

singularity, where r is the radial distance from the

crack-tip [9,21]. This is clearly unphysical and violation of the linearization assumption

(1.12). Thus it is important to have response relations that predicts bounded strains

even when stress becomes very large in the near-tip neighborhood. In the following

section, we will show a derivation of the nonlinear strain-limiting response relations
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within the context of Rajagopal’s Implicit theory of elasticity [34].

1.2.2 Implicit and Strain-Limiting Constitutive Relations

Rajagopal ( [34]) considered isotropic implicit elastic constitutive relations of the

form:

0 = F(B,T ) (1.21)

between the Cauchy stress and left Cauchy-Green tensors. He also considered the

special case:

B := F(T ) (1.22)

with special attention given to Strain Limiting theories for which there exists a con-

stant M > 0 such that

sup
T∈Sym

|F(T )| ≤M. (1.23)

As Rajagopal [34] notes, the isotropic form (1.22) has the general representation

B = ᾱ0I + ᾱ1T + ᾱ2T
2 (1.24)

in which the coefficients ᾱi i = 0, 1, 2 are scalar-valued functions of the isotropic

invariants: {
ρ, tr(T ), tr(T 2), tr(T 3)

}
.

1.2.2.1 A Class of Anisotropic Strain-Limiting Models

Mai and Walton [28] introduced a class of strain-limiting models of the form:

E = F(S̄) (1.25)
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relating the Green-St.Venant strain and Second Piola-Kirchhoff stress tensors with the

right-hand-side a uniformly bounded function of S̄. The class of models defined by

(1.25) give rise to very distinct and interesting nonlinear approximation that is not

possible within the classical Cauchy or Green elasticity.

An advantage of (1.25) over (1.22) is that under the assumption of “small” dis-

placement gradients,

sup |∇xu| = o(δ), δ << 1 (1.26)

with | · | denoting the Frobenius norm, it follows that:

E = ε+ o(|∇u|)

and hence that (1.25), in the infinitesimal strain regime, can be approximated by:

ε = F(S̄) (1.27)

in which ε denotes the customary linearized strain tensor

ε :=
1

2

(
∇u+∇uT

)
. (1.28)

Remark 1: Two natural questions to ask are: (i) Under what conditions does (1.25)

have an equivalent Cauchy Elastic formulation? (ii) Under what conditions does (1.25)

have an equivalent Green or hyperelastic formulation? The first question concerns the

invertibility of the response function F(·) in (1.25) while the second involves the exis-

tence of a complementary energy function for (1.25), that is, a scalar-valued potential

w(S̄) for which F(S̄) = ∂S̄w(S̄). These questions are addressed below for the specific

models employed in the simulations. In particular, use is made of the observation that
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a necessary condition for the existence of a complementary energy function for (1.25)

is that the Fréchet derivative DS̄F(S̄)[·] of the response function F(·) be a self-adjoint,

fourth-order tensor when regarded as a linear transformation on Sym, the vector space

of symmetric, second-order tensors over R3.

Another advantage of (1.25) over (1.22) is that it readily can accommodate anisotropic

behavior. In particular, Mai and Walton [28] introduced a family of strain-limiting

anisotropic models constructed within the class of models (1.25) taking the form:

E = φ(K[S̄])K[S̄] (1.29)

with K[·] denoting the fourth-order, linearized compliance tensor inverse to the lin-

earized elasticity tensor E[·]. Both K[·] and E[·] are constructed to be positive definite,

self-adjoint operators on Sym, and they satisfy

K[E[ε]] = ε, E[K[σ]] = σ. (1.30)

Two important special cases studied in the simulations presented below are isotropy

and transverse isotropy. For isotropic material,

E[ε] := 2µε+ λ(ε · I)I = 2µ

(
ε+

ν

1− 2ν
(ε · I)I

)
(1.31)

with µ and λ denoting the customary Lamé parameters and ν denoting Poisson’s ratio.

In (1.31), (ε · I) is the trace-inner-product and I denotes the second-order identity

tensor. For transversely isotropic material,

E[ε] := 2µε+ λ(ε · I)I + γ(ε ·M )M (1.32)
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with M = m ⊗m being the norm-one, rank-one, structural tensor with the unit-

vector m defining the axis of symmetry. It is useful to note that (3.9) and (3.10) have

the following direct, representations as fourth-order tensors:

E = 2µ

(
I +

ν

1− 2ν
I ⊗ I

)
(1.33)

E = 2µ

(
I +

ν

1− 2ν
I ⊗ I + γ̄M ⊗M

)
(1.34)

in which I denotes the fourth-order identity tensor, γ̄ := γ
2µ

and in (1.34), ν is the

Poisson’s ratio corresponding to pure tension in the direction of the axis of symmetry

m.

In the subsequent numerical study, we utilize a sub-class of (1.29) in which

φ(K[S̄]) = φ̃(|K1/2[S̄]|) (1.35)

in which φ̃(r) is a positive, monotone increasing function for which rφ̃(r) is uniformly

bounded for 0 < r < ∞, and K1/2[·] denotes the unique, positive-definite square-root

of the compliance tensor K[·] viewed as a linear transformation on Sym. For illustrative

purposes in the finite element implementation, we consider the special case of (1.35)

in which

φ̃(r) :=
1

(1 + (βr)α)1/α
. (1.36)
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Substitution of (1.36) in (1.35) gives the uniform bound

|E| = φ̃(|K1/2[S̄]|)|K[S̄]|

≤ 1

β

|K[S̄]|
|K1/2[S̄]|

=
1

β

√
S̄ ·K2[S̄]

S̄ ·K[S̄]

≤ 1

β

√
ξm, for all S̄ ∈ Sym (1.37)

where ξm denotes the maximum eigenvalue of K[·] viewed as a linear transformation

on Sym.

Remark 2: The model (1.25), (1.35) is readily seen to have an associated comple-

mentary energy function. Indeed, we first observe that

∂S|K1/2[S]| = ∂S
√
S ·K[S] =

K[S]

|K1/2[S]|
. (1.38)

It follows that

∂Sŵ(|K1/2[S]|) =
ŵ′(|K1/2[S]|
|K1/2[S]|

K[S]

and hence that ŵ(|K1/2[S]|) is a complementary energy function for the model (1.25),

(1.35) provided

ŵ′(r) = rφ̃(r) (1.39)

or equivalently

w(r) =

∫
rφ̃(r)rdr.

Remark 3: To investigate the invertibility of the model (1.25), (1.35), we first apply
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the operator E1/2[·] to the constitutive relation obtaining

E1/2[E] = φ̃(|K1/2[S]|)K1/2[S̄]. (1.40)

Taking the norm of both sides of (1.40) gives

|E1/2[E]| = φ̃(|K1/2[S]|)|K1/2[S̄]| = ψ(|K1/2[S]|) (1.41)

where ψ(r) := r φ̃(r). Therefore, if ψ(r) is monotone, and hence invertible with inverse

ψ−1(r), one has

|K1/2[S]| = ψ−1(|E1/2[E]|)

and hence that the constitutive relation can be inverted to give

S̄ = ξ(|E1/2[E]|)E[E] (1.42)

with

ξ(r) :=
1

φ̃ (ψ−1(r))
.

Remark 4: It is natural to ask why we chose the model (1.29), (1.35) rather than

the apparently simpler model

φ(K[S̄]) = φ̃(|K[S̄]|). (1.43)

The reason is that the model (1.29), (1.43) is not hyperelastic for any non-constant

function φ̃(r). To see this, as noted above, it suffices to show that the Fréchet derivative

DSF(S)[·] is not a self-adjoint fourth-order tensor. To that end, one merely needs to
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observe that

DS|K[S]|[Hs] =
K[S] ·K[Hs]

|K[S]|
(1.44)

where Hs is an arbitrary symmetric second-order tensor. It then follows from (1.29),

(1.35) and (1.44) that

DSF(S) = φ̃(|K[S]|)K +
φ̃′(|K[S]|)
|K[S̄]|

K[S]⊗K2[S]. (1.45)

Since K[S] ⊗ K2[S] 6= K2[S] ⊗ K[S], it is clear that the fourth-order tensor (1.45) is

self-adjoint as an operator on Sym if and only if φ̃′(r) = 0 for all 0 ≤ r.

Remark 5: From the above comments, it is evident that the model (1.29), (1.35),

(1.36) is both invertible and hyperelastic. In particular, the complementary energy

has the form ŵ(|K[S]|) with

ŵ(r) =

∫
r dr

(1 + (βr)α)1/α
(1.46)

from which it is evident that the complementary energy grows linearly with |S̄|, that

is,

ŵ(|K[S]|) = O(|S̄|) as |S̄| → ∞. (1.47)

Also, substitution of (1.36) into (1.42) gives the equivalent hyperelastic formulation of

(1.29), (1.35), (1.36):

S̄ =
E[E]

(1− (β|E1/2[E]|)α)1/α
, (1.48)

with associated strain energy function w̌(|E1/2[E|)

w̌(r) :=

∫
r dr

(1− (βr)α)1/α
. (1.49)
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Thus, from (1.47), (1.48) and (1.49), it is clear that both the stress and the strain

energy can become unbounded even though the strain remains bounded. However,

asymptotic arguments were given in [41] and [23] for a special class of strain-limiting

models that at a mode III or mode I crack tip, neither the stress nor the strain become

singular. The direct numerical simulations given in the next chapters for the more

general class of models considered here, are fully consistent with these asymptotic

results.

Remark 6:

Another important motivation behind the construction of the model (1.29), (1.35),

(1.36) is that as β → 0, the model converges to the linear stress-strain relation

E = K[S̄]. (1.50)

It is important to recognize that (1.50) is not linearized elasticity since it involves the

nonlinear Green-St. Venant strain tensor E. The linearized theory of elasticity arises

from (1.50) when E is infinitesimally small. Thus, one might define the infinitesimal

strain regime by this requirement in which case (1.50) reduces to the linearized elastic

model

ε = K[σ] (1.51)

where ε is the linearized strain tensor and σ is “the” stress tensor since there is no

longer a distinction between the Cauchy and Piola-Kirchhoff stress tensors. However,

another approach to defining the infinitesimal strain regime for (1.29), (1.35), (1.36)

is to require that β � 1. This gives rise to a nonlinear relation between the stress

S̄ and the strain E that, by constitutive restriction, must be infinitesimal and hence

satisfy E ≈ ε. This latter notion of infinitesimal regime has the advantage over (1.51)
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in that the infinitesimal strain assumption can never be violated even if the stress

becomes unbounded in contrast to the linearized theory of elasticity (1.51) for which

the infinitesimal strain assumption is violated for boundary value problems in which

there are strain concentrating features such as crack tips, re-entrant corners, etc. For

this reason, we adopt this latter notion of infinitesimal strain model that takes the

form

ε = φ̃(|K1/2[S]|)K[S] (1.52)

in which S can be viewed unambiguously as “the” stress due to the infinitesimal strain

assumption.

1.3 Introduction to Brittle Fracture Modeling with Surface-Tension Excess Property

The second part of this dissertation is devoted to the numerical implementation of

the brittle fracture model developed by Sendova and Walton [47]. A main goal is to

reformulate the crack-face boundary condition that contains higher-order tangential

derivatives and then implement the model using a stable numerical method (such as

finite elements). The simplest fracture boundary value problem to study within the

context of the theory of developed by Sendova and Walton (in [47]) is the case of anti-

plane shear or mode III fracture. For the scope of this dissertation, we consider only the

two-dimensional case, but the model can be easily extended to three dimensions. Also,

the problem studied is quasi-static and we assume no crack-growth due to loading. Our

main aim is to study the deformation of the crack under loading and also to understand

the stress-strain concentration in the crack-tip neighborhood.

Oh, Walton and Slattery [31] developed a new fracture theory based on the earlier

work of Slattery et al. [49] and the theory they presented in [31] is based upon an exten-

sion of continuum mechanics to the nanoscale2. In [31] they assumed an existence of a

2The word nanoscale in [31] is used to the neighborhood (within 10 nm) of a material interface
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two-dimensional dividing surface (similar to Gibbs isotherm) lying along the material

interface between bulk intact material and air or vaccum. This surface can account for

atomistic effects through an ascribed surface excess properties such as internal energy,

free energy, stress, mass, etc. They studied the classical Griffith problem of a mode-I

crack in an infinite linear elastic body under tensile stress and by assigning surface

tension as an excess property of the dividing surface. They have also included a bulk

correction term for the intermolecular forces near the interface. Because of the highly

nonlinear nature of the problem, they seek a singular perturbation solution using a

perturbation parameter. They showed that the fracture tip is sharp contrary to the

blunt crack-tip of the LEFM model and another important result was that stress at

the crack-tip was finite. A significant advantage of the fracture modeling approach of

Oh, Walton and Slattery [31] is that it doesn’t require any adjustable parameter for

bridging domains (such as near and far from the fracture-tip). Further, this theory

is based on the classical continuum approach to modeling the material behavior and

takes into account of forces in the vicinity of the fracture surfaces.

Then, Sendova and Walton [47] developed a more detailed brittle fracture model

with surface tension (cases of both constant and curvature dependent) as excess prop-

erty of the dividing surface. They consider the case of straight mode-I crack of finite

length in an infinite linear elastic body subjected to uniform tensile loading. To de-

rive the governing equations, Sendova and Walton considered an arbitrary part of the

body intersecting the dividing surface (which coincides with the crack-surface Σκ in

the reference configuration). The parameterized crack-surface (both upper and lower

crack-surfaces) in the reference configuration is given by

Σ±κ =
{
X : |X1| ≤ 1, X2 = 0±

}
, (1.53)
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where X is a point in the reference configuration and (·)± denotes upper and lower

crack-surfaces. Then the corresponding, parameterized, upper-lower crack surface in

the current configuration is given by

Σ± =
{
x : x1 = X1 + u1(X1, 0

±), x2 = u2(X1, 0
±), |X1| ≤ 1

}
, (1.54)

where x = (x1, x2) is the arbitrary point in the current configuration and (u1, u2) is

the corresponding displacement vector. Then Sendova and Walton [47] balances the

forces acting on the arbitrary part containing the crack-tip and obtained two balance

equations, namely a differential momentum balance equation for bulk body and a

jump momentum balance equation across both upper and lower crack surfaces. The

equation of differential momentum balance equation derived in [47] is same as the one

derived from classical linear elastic fracture mechanics model i.e.

Div Tκ + bκ = 0 in Ω , (1.55)

inwhich Tκ is the first Piola-Kirchhoff stress and bκ is the mutual body force term.

Further in [47] they have considered a surface tension as an excess property to the

dividing surface, which yields a new expression for the jump momentum balance (JMB)

along the crack surface, given by

J
(

divσ T(σ) ⊗ n±
)
m

F−TN± + JTκKN± = 0. (1.56)

Where the symbol F is the deformation gradient, J = detF, divσ indicates the surface-

divergence, N−[N+] and n−[n+] are outward unit normals to the upper[lower] crack

profile in the reference and current configuration, respectively. The subscript (·)m

refers to the quantities in material description. The double bracket term J·K indicates
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the jump across the fracture surface from the bulk material phase of the body to the

phase bounded by the opened fracture surface. In [49], the authors showed the surface

Cauchy stress tensor, T(σ) is modeled as Eulerian and may be written as a constant

multiple (which is an excess property, i.e. surface tension) of a projection tensor onto

the tangent space to the crack-surface in the current configuration (Σ), i.e.

Tσ = γ̃P, (1.57)

in which γ̃ is surface tension and it is a function of tangential component. Then the

jump momentum balance in Cartesian component form3 is

σ12 =− (1 + u1,1)2 + u1,2u2,1√
(1 + u1,1)2 + u2

2,1

(
γ̃′(X1)(1 + u1,1)2

(1 + u1,1)2 + u2
2,1

+
γ̃′(X1)

[
u2

2,1u1,12 + u2,1(1 + u1,1)(u1,11 − u2,12)− (1 + u1,1)2u2,11

](
(1 + u1,1)2 + u2

2,1

)2

)
, (1.58)

σ22 =−
√

(1 + u1,1)2 + u2
2,1

(
γ̃′(X1)(1 + u1,1)u2,1

(1 + u1,1)2 + u2
2,1

−
γ̃(X1)(1 + u1,1)

[
u2

2,1u1,12 + u2,1(1 + u1,1)(u1,11 − u2,12)− (1 + u1,1)2u2,11

](
(1 + u1,1)2 + u2

2,1

)2

)
,

(1.59)

where X ∈ Σ+ and a similar expression holds for Σ− and also ui,j = ∂ui
∂xj

. Further

in [47], Sendova and Walton assumed that the linear elastic constitutive behavior to

model the response of the bulk material in the reference configuration, hence Hooke’s

law can be used to model the response of the material. Further they [47] have consid-

ered two cases for the surface tension, either a constant or an expression that depends

3For a detailed derivation of the JMB please refer the Appendix A in [47]
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linearly on the curvature of the fracture surface and no mutual body force correction

term (bκ = 0 in (1.55)). They analyze the fracture boundary value problem appeal-

ing to Dirichlet-to-Neumann and Neumann-to-Dirichlet maps and derived a singular

integrodifferential equation for the upper, crack-face, opening displacement on the

compact interval |X1| < 1. Then the singular integrodifferntial equation was analyzed

through regularization to a second-kind Fredholm integral equation. For the model

using curvature-dependent surface tension, Sendova and Walton [47] prove that crack-

tip stresses are bounded and crack-surfaces (both upper and lower) closes with a sharp

crack-tip.

In [19], for the first time, Ferguson proposed a finite element based numerical

implementation of the brittle fracture model developed by Sendova and Walton [47].

For the classical Griffith crack problem in the case of constant surface tension, the

numerical results presented in [19] agrees very well with the theoretical results of

[47]. Further, Walton [53] studied the case of mixed-mode fracture BVP and gave

a modification to curvature-dependent surface tension model. For the mixed-mode

(combination of both mode-I and mode-II4) type of loading the only symmetry that

exists is that the displacement vector field is symmetric through origin. Hence deriving

a singular integrodifferential system was not straight forward. It was shown that,

when the surface tension is assumed to be constant on the crack-surface, the classical

square-root crack-tip stress singularity is replaced by a weak (logarithmic) singularity.

But a modified model in which the surface tension is assumed to depend upon odd-

order tangential derivatives of the tangential displacement component and even-order

tangential derivatives of the normal displacement component as

4In Mode-II fracture the shear stresses acting parallel to the plane of the crack and perpendicular
to the crack front.
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γ̃ = γ0 + γ1 u1,1(X1, 0) + +γ2 u1,111(X1, 0) + γ3 u2,11(X1, 0), (1.60)

yields bounded crack-tip stress. In the above surface-tension model (1.60), the con-

stants γ0, γ1, γ2 and γ3 denotes dimensionless surface-tension parameters.

Remark 6: It should be noted that the fracture modeling approach, studied

in [47, 53], by ascribing the excess property (such as surface tension, surface energy

etc) is different from the Barenbalt-type cohesive zone model. The latter theory intro-

duces an entirely new cohesive surface in the bulk material near the fracture edge and

has adjustable parameters (such as traction and width of the cohesive zone) in the

constitutive law. More importantly, cohesive zone approach has several disadvantages

such as the parameters involved may not have a clear physical meaning and are diffi-

cult to validate experimentally. Although the cohesive zone model has been studied

extensively the physical existence of the cohesive zone is still an issue of debate. But

the former approach uses the conventional continuum mechanics ideas and assumes

the existence of surface Cauchy stress tenor and models it as a projection into the

surface tangent plane. One of the most significant features of the surface-mechanics

model [47] is that it doesn’t introduces any artificial surface near the physical crack-

tip and avoids adjustable ad hoc choices of parameters that are present in most other

models (including cohesive and process zone models).

However, FEM based numerical implementation of Sendova and Walton [47] mod-

eling approach is challenging due to fact that the JMB has higher order tangential

derivatives. One would require higher order smoothness for the test functions on the

crack-surface compared to rest of the domain. In the second part of this dissertation,

we study a reformulation of the fracture boundary conditions to remove the higher-

order derivatives in the case of mode-III fracture. The resultant boundary condition
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along with the bulk-material response relation is solved using two different approaches.

Both methods agree very well and the numerical predictions are consistent with the

theoretical predictions presented in [47].

The rest of this dissertation is organized as follows: In Chapter 2, we formulate

and study the asymptotic behavior the solution fracture BVP for a single plane-strain

crack using strain-limiting theory of elasticity. We present an asymptotic and numer-

ical optimization technique to study the solution behavior near the mode-I crack-tip.

Further in Chapter 3 we study a finite elements based numerical implementation of

a single, static, pure mode-I crack in a class of nonlinear strain-limiting anisotropic

elastic body. We derive a linearized version of the strong form using Damped New-

ton’s method and obtain the solution to the weak-form using Finite Element Method

(FEM). In Chapter 4, we have outlined an approach for implementing a brittle frac-

ture theory with surface tension excess property. We give an elaborate procedure of

the reformulation of the crack-surface boundary condition as an Fredholm second kind

integral equation for the Neumann data. We present the results of the finite elements

based numerical implementation, in particular, we will show that the numerical results

agree very well with the theoretical results of [47]. Finally, in Chapter 5 we give a

detailed explanation on the results obtained in this dissertation and also some ideas

for future research. We are particularly interested in developing computational models

for the curvature-dependent class of surface-mechanics based brittle fracture theory

and also to study dynamic fracture problems in the context of both theories presented

in this dissertation.
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2. MODELING A SINGLE PLANE-STRAIN QUASI-STATIC CRACK WITHIN

THE CONTEXT OF A NONLINEAR STRAIN-LIMITING THEORY OF

ELASTICITY∗

In this chapter, we study a crack-tip asymptotic analysis of the solution to non-

linear crack-boundary value problem. The nonlinear response relation studied in this

chapter, is derived within the context of the general implicit theory of elasticity. We

demonstrate, using a combination of asymptotic and numerical procedure, the state

of crack-tip stress-strain in a static, isotropic, nonlinear elastic body. Our main aim

is to layout an approach for modeling brittle fracture using strain-limiting theory of

elasticity.

2.1 The Material Model

The problem studied in this chapter is a straight, mode-I crack in an infinite,

isotropic, elastic body subjected to plane-strain loading. The crack is assumed to be

lying along X2 = 0. The response of the body is modeled using a special class of

strain-limiting constitutive relation. The issue here is to understand the asymptotic

behavior of the solution to the nonlinear fracture BVP in a neighborhood of the crack-

tip. In contrast to the classical linearized models, the nonlinear response relations

introduced by Rajagopal [34] and Mai and Walton [28], limit the crack-tip strains to

a physically realistic level. Hence, these strain-limiting models of elasticity offers an

intriguing framework to study brittle fracture.

For the problem on hand, with the aim toward understanding the crack-tip asymp-

∗Part of this chapter is reprinted with permission from Elsevier Publications, “Modeling fracture
in the context of a strain-limiting theory of elasticity: A single plane-strain shear crack” by Kun Gou,
M. Mallikarjuna, K. R. Rajagopal, Jay R. Walton, International Journal of Engineering Science,
Special Issue on “Qualitative Methods in Engineering Science”, 88, 73-82, 2015; Copyright 2015
Elsevier.
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totics, we consider a special form of nonlinear elastic response relation as:

ε = ε̂ (T) := φ (|K[T]|)K2[T] (2.1)

and where φ(·) is a monotone decreasing function satisfying

lim
r→∞

rφ(r) = M <∞. (2.2)

In the strain-limiting model (2.1), the stresses have been non-dimensionalized by the

reference shear modulus. Also, in (2.1), the symbol K[·] denotes a general linearized

elastic compliance tensor and | · | denotes the Frobenius norm as:

|K[T]|2 := K[T] : K[T] = T : K2[T], (2.3)

where the colon-operator ( : ) denotes the trace inner product between second order

tensors and also the symbol T denotes the Cauchy stress tensor. To invert the above

strain-limited constitutive relation (2.1), define a 4th order positive-definite, elasticity

tensor E as the inverse of the compliance tensor, i.e.

E[·] = K−1[·]. (2.4)

Both K[·] and E[·] are constructed to be positive definite, self-adjoint operators and

they satisfy

K[E[ε]] = ε, E[K[T]] = T . (2.5)

Taking the action of E on (2.1) yields

E[ε] = φ (|K[T]|)K[T]. (2.6)
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Then taking the norm of both sides of the equation (2.6) gives

|E[ε]| = φ (|K[T]|) |K[T]|. (2.7)

Then define

ψ (|K[T]|) = φ (|K[T]|) |K[T]|, (2.8)

and taking the inversion of the equation (2.8) gives

|K[T]| = ψ−1 (|E[ε]|) . (2.9)

Finally we write the inverted constitutive relation for stress in-terms of strain as:

T =
E[ε]

φ (ψ−1 (E[ε]))
. (2.10)

For the special form of φ(·)

φ(r) =
1

1 + βr
(2.11)

considered, the above inverted stress-strain relation (2.10) reduces to

T =
E[ε]

1− β |E[ε]|
, (2.12)

where β is a modeling parameter and 1
β

is the limiting-strain norm.

It should be clear that in general for the implicit nonlinear response relations it is

not possible to express either second Piola-Kirchhoff stress tensor in terms of Green-

St. Venant tensor E or the Cauchy stress tensor T in terms of left Cauchy-Green

tensor B. But note that a special form of the strain-limiting model (2.11) considered

here is globally invertible and hence we can construct the inverted constitute relation
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(2.12). But the inverted form (2.12) is not utilized to derive the main analytical result

about the crack-tip asymptotic stress and strain behavior. The inversion procedure

is included here for the special sub-class of more general class of Rajagopal’s Implicit

Theory of Elasticity [34].

2.2 Plane-Strain Mode-I Fracture Problem

X1

X2

r
θ

crack-tip

Figure 2.1: Infinite elastic slab containing a semi-infinite crack.

Consider a semi-infinite, quasi-static, Griffith crack in an infinite planar as depicted

in Figure 2.1. The figure also illustrates the cartesian coordinates X1, X2 and the polar

coordinates r, θ, lies in the X1−X2 plane, are centered at the crack-tip. A main issue

here is to study the asymptotic behavior of the solution to the nonlinear fracture

boundary value problem in a neighborhood of the crack-tip. The use of strain-limited

response relations to study fracture readily prevents the crack-tip strain singularity,
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but it leaves open to investigate whether or not crack-tip stress becomes unbounded

within the asymptotic expansions considered for the primary variable.

The vector x = (x1, x2) denotes a point in the current configuration of the body.

As usual u(x1, x2) denotes the displacement of the material point X = (X1, X2).

Further, the stress-strain response relation formulated in this work is valid under

the assumption of infinitesimal strain, i.e. the displacement gradient is assumed to

be very small2. Therefore there is no distinction between the reference and current

configurations. Hence we can interchange the symbols x and X.

In this part of the dissertation, we study a strain-limiting nonlinear fracture BVP

through a formal, crack-tip, asymptotic analysis and then in the subsequent chapter

we develop a finite element numerical model. Also we would like to emphasize a point

on the finite element numerical results of the model, that the numerical simulations

can never fully resolve the asymptotic behavior of the crack-tip stress field, but it can

be used to gain an useful insight into the stress behavior predicted by the reference

linearized elasticity model. The strain-limiting model admit a logically consistent

linearization yielding a nonlinear relationship between stress and linearized strain,

such nonlinear relationship can’t be obtained by the linearization procedure of the

classical model. Further, the sequence of finer computational meshes near the crack-

tip neighborhood will only lend the support to rigorous asymptotic analysis, but won’t

fully resolve the crack-tip stress behavior.

In this chapter, we study the asymptotic behavior of the crack-tip stress, analyti-

cally, using a special form of strain-limited bulk nonlinear constitutive relation (2.1).

2For a detailed discussion on how small does the displacement gradient have to be for the linearized
theory to apply, please refer [39].
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To that end, we introduce the Airy stress potential Φ(x, y) which satisfies

div(adj(D2Φ)) = 0, (2.13)

where div(·) is the usual divergence operator, adj(·) denotes the adjugate3 matrix and

the symbol D2(·) is the Hessian operator. Conveniently, we can then define

T := adj(D2Φ) (2.14)

this guaranties the satisfaction of the equilibrium equation (without the body force

term)

div (T) = 0. (2.15)

Then the above constitutive relation (2.1) can be rewritten as follows

ε̂ (T) = φ (|K[T]|)K2[T]

= φ
(
|K[adj(D2Φ)]|

)
K2[adj(D2Φ)] (2.16)

= φ
(
|K[D2Φ]|

)
K2[D2Φ].

In the above equations, we have used the well-known identities for a 2-dimensional,

plane-strain problem. To study a question of whether or not the nonlinear fracture

boundary value problem admits the classical crack-tip stress singularity, it is natural

to perform the asymptotic analysis of the strain compatibility equation for the Airy

stress potential Φ. To this end we consider the compatibility equation for the strain

tensor in the form:

3The adjugate matrix of a square matrix is the transpose of its cofactor matrix.

27



0 = div div
(
φ
(
|K[D2Φ]|

)
K2[D2Φ]

)
. (2.17)

Expanding the above equation

0 = div div (K(A)) + 2
∇φ(|A|)
φ(|A|)

· div (K(A)) +
D2φ(|A|)
φ(|A|)

·K(A) (2.18)

where

A := K[D2Φ]. (2.19)

Symmetry and the Boundary Conditions:

For the plane-strain problem on hand, the horizontal displacements are symmetric and

the vertical displacements are antisymmetric with respect to the vertical axis. i.e. if

u = (u(x, y, z), v(x, y, z), w(x, y, z)) is the displacement in the body, then

u(x,−y, z) = u(x, y, z), v(x,−y, z) = −v(x, y, z), (2.20)

and the usual plane-strain assumption yields w = 0. Therefore, the asymptotic anal-

ysis can be done over the upper-half plane.

The classical pure mode-I problem imposes zero traction on the crack-face (i.e.

along x2 = 0+ and |x1| < 0) with far-field tensile loading applied remotely to the

body. Also the symmetry implies that the crack-opening displacement (i.e. v(x, y))

vanishes along the line ahead of the semi-infinite crack.

In order to simplify the calculations, we formulate the nonlinear fracture problem

in a polar coordinate system (r, θ) centered at the crack-tip. Therefore, for the problem

on hand, the boundary conditions are given by

∂θΦ(r, 0+) = ∂3
θΦ(r, 0+) = Φ(r, π−) = ∂2

θΦ(r, π−) = 0 for r > 0. (2.21)
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The goal is to study the asymptotic behavior of solutions to (2.18), subjected to the

boundary conditions (2.21), in the neighborhood of the crack-tip (i.e. r → 0+). To

that end, it is helpful to recall the asymptotic analysis of the classical linear elastic

case.

2.3 Linear Elastic Case

In the case of classical, linearized, elastic, plane strain fracture problem, the com-

patibility equation is given by

0 = div divA =
1

µ
C142Φ (2.22)

where

C1 :=
1

4

(
1 +

µ

κ

)
, (2.23)

µ is the reference shear modulus, κ is the bulk modulus and 42 denotes the classical

bi-harmonic operator. The bi-harmonic equation admits solutions of the form

Φ(r, θ) = rα Φ̂(θ). (2.24)

Since the bi-harmonic operator seperates

42Φ(r, θ) = rα−4 Lb
[
Φ̂(θ)

]
(2.25)

where

Lb
[
Φ̂(θ)

]
:= Φ̂′′′′(θ) +

(
α2 + (α− 2)2

)
Φ̂′′(θ) + α2(α− 2)2Φ̂(θ). (2.26)
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The goal is to find nontrivial solutions to the fourth-order ordinary differential equation

0 = Lb
[
Φ̂(θ)

]
(2.27)

subject to the homogeneous boundary conditions

Φ̂(π) = Φ̂′′(π) = Φ̂′(0) = Φ̂′′′(0) = 0. (2.28)

A convenient strategy for finding such solutions is to introduce the Fourier expansion

Φ̂(θ) =
∞∑

n=0

an cos(γnθ) (2.29)

which takes advantage of the obvious symmetries of Φ̂(θ). The expansion (2.29) sat-

isfies the boundary conditions (2.28) provided

γn =
1

2
+ nπ, for n = 0, 1, . . . . (2.30)

Substitution of (2.29) into (2.27) gives

0 =
∞∑
n=0

anMn(α) cos(γnθ) (2.31)

where

Mn(α) := γ4
n −

(
α2 + (α− 2)2

)
γ2
n + α2(α− 2)2. (2.32)

Nontrivial solutions to (2.31) can be constructed by choosing

an = 0 for n = 2, 3 . . . (2.33)
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and finding the values of α for which

Mn(α) = 0 for n = 0, 1. (2.34)

One sees immediately that α must satisfy

γ2
0 + γ2

1 = α2 + (α− 2)2. (2.35)

The above equation (2.35) has two roots α = 1
2

and α = 3
2
. But for α = 1

2
the

displacement ur → ∞. Also since the stresses behave as rα−2 like r → 0+, choosing

α = 3
2

gives rise to the classical square-root singularity in stresses at the crack-tip.

Remark 1:

Restricting the domain of the operator Lb [·] to functions satisfying the homogeneous

boundary conditions (2.28), it follows from the above analysis that when α = 3
2
, the

null-space of Lb [·] is a two-dimensional subspace spanned by cos(γ0θ) and cos(γ1θ).

2.4 Nonlinear Crack-Tip Asymptotic Analysis

The non-linear fracture model (2.18) along with the boundary conditions (2.21)

does not admit elementary separation of variable solutions of the type (2.24). However,

it does admit solutions in the form of an asymptotic series

Φ(r, θ) ∼
∞∑

j,k=0

rαj+kΦ̂jk(θ), as r → 0+ , (2.36)

where α is any positive real number and it’s leading value defines the crack-tip singu-

larity. Then the asymptotic behavior near the crack-tip of solutions to (2.18) can be
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obtained from the observation that for functions of the form (2.36),

div div (φ(|A|)K(A)) ∼ rα−4 L̂
[
Φ̂(θ)

]
as r → 0+ (2.37)

where L̂ [·] is a nonlinear, fourth-order differential operator. Before the construction

of the explicit form of the operator, we first note that

A(r, θ) = rα−2Â(θ) (2.38)

with

µÂ(θ) :=

(
1

4

(µ
κ
− 1
)

Φ̂
′′
(θ) +

(
α2

4

(µ
κ
− 1
)

+
α(α− 1)

2

)
Φ̂(θ)

)
j1(θ)⊗ j1(θ)

+

(
1

4

(µ
κ

+ 1
)

Φ̂
′′
(θ) +

(
α2

4

(µ
κ
− 1
)

+
α

2

)
Φ̂(θ)

)
j2(θ)⊗ j2(θ)

+
α− 1

2
Φ̂
′
(θ)(j1(θ)⊗ j2(θ) + j2(θ)⊗ j1(θ)) , (2.39)

where j1(θ), j2(θ) denote the standard orthonormal polar basis. In order to construct

the explicit form of the operator L̂ [·] in (2.37), we need to consider the cases for the

value of α (i.e. 1 < α ≤ 2 and α > 2) separately. First, notice that for the choice of φ

as in (2.11), one can easily show that

φ(rα−2|Â(θ)|) ∼

 1 if α > 2

r2−α

β|Â(θ)| if α < 2
as r → 0+, (2.40)

and also

φ′(s) = −βφ(s)2 (2.41)

φ′′(s) = 2β2φ(s)3 (2.42)
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From (2.38), (2.39), (2.40) and (2.41), it is evident that for α > 2, the asymptotic

forms of the nonlinear operators in (2.18) as r → 0+ are strictly greater powers of

r than the linear operator in (2.18). Indeed, the asymptotic order of the nonlinear

terms in (2.18) as r → 0+ is r2(α−3). Thus for α > 2, the nonlinear operator (2.17) has

the same asymptotic behavior as r → 0+ as does the linear operator in (2.18). Hence

for α > 2, the only nontrivial asymptotic (as r → 0+) null-spaces of the nonlinear

operator (2.17) occur for α = 5/2, 7/2 . . . in agreement with the linear theory. Also,

α = 5/2 corresponds to the cusp-shaped displacement profiles and bounded crack-tip

stress distributions.

For α < 2, all the three terms in (2.18) have asymptotic order rα−4 as r → 0+.

The asymptotic ordinary differential operator L̂[Φ̂(θ)] takes the form

µL̂[Φ̂(θ)] = L̂1[Φ̂(θ)] + L̂2[Φ̂(θ)] + L̂3[Φ̂(θ)]. (2.43)

Where L̂i[·], i = 1, 2, 3 are defined as follows

L̂1[Φ̂(θ)] := lim
r→0+

rα−4 div div (K(A)) (2.44)

L̂1[Φ̂(θ)] := C2

[
Φ̂
′′′′

(θ) +
(
α2 + (α− 2)2

)
Φ̂
′′
(θ) + α2(α− 2)2Φ̂(θ)

]
(2.45)

and C2 is given by

C2 =
1

8µ

(
µ2

κ2
+ 1

)
(2.46)

L̂2[Φ̂(θ)] := lim
r→0+

rα−4 2
∇φ(|A|)
φ(|A|)

· div (K(A))

=
−2

|Â(θ)|
{H1 · F1 +H2 · F2}. (2.47)
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Where H1, H2, F1, F2 are defined as follows

H1 := (α− 2)|Â(θ)| (2.48)

H2 :=

(
|Â(θ)|2

)′
2|Â(θ)|

(2.49)

F1 :=
α− 2

8µ2

(
µ2

κ2
− 1

)
(Φ̂′′(θ) + α2Φ̂(θ)) +

α(α− 1)(α− 2)

4µ2
Φ̂(θ) +

(α− 1)

4µ2
Φ̂′′(θ)

+
(
α(α− 2)Φ̂(θ)− Φ̂′′(θ)

)
(2.50)

F2 :=
(α− 1)(α− 2)

4µ2
Φ̂′(θ) +

1

8µ2

(
µ2

κ2
− 1

)
(Φ̂′′′(θ) + α2Φ̂′(θ)) +

1

4µ2
(Φ̂′′′(θ)

+ αΦ̂′(θ)) +
2(α− 1)

4µ2
Φ̂′(θ). (2.51)

From (2.39), one can show that

µ2|Â(θ)|2 =
(
L̂4[Φ̂(θ)]

)2

+
(
L̂5[Φ̂(θ)]

)2

+
(α− 1)2

2

(
Φ̂′(θ)

)2

(2.52)

in which L̂4[·] and L̂5[·] are the second-order linear operators defined as follows

L̂4[Φ̂(θ)] :=
1

4

(µ
κ
− 1
)

Φ̂
′′
(θ) +

(
α2

4

(µ
κ
− 1
)

+
α(α− 1)

2

)
Φ̂(θ) (2.53)

L̂5[Φ̂(θ)] :=
1

4

(µ
κ

+ 1
)

Φ̂
′′
(θ) +

(
α2

4

(µ
κ

+ 1
)

+
α

2

)
Φ̂(θ). (2.54)

From (2.52), one has

d

dθ
|Â(θ)|2 = 2L̂4[Φ̂(θ)]L̂4[Φ̂

′
(θ)] + 2L̂5[Φ̂(θ)]L̂5[Φ̂

′
(θ)] + (α− 1)2Φ̂(θ)Φ̂

′
(θ). (2.55)
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Next one shows that the operator L̂3[·] in (2.43) takes the form

L̂3[Φ̂(θ)] := lim
r→0+

rα−4 K(A) · D2φ(|A|)
φ(|A|)

= β|Â|

(
S1

(2− α)(1− α)

β|Â|
+ S2

[(
1

β|Â|

)′′
+

(2− α)

β|Â|

]

− 2(α− 1)2

4µ2
Φ̂′(θ)

(
1

β|Â|

)′)
. (2.56)

Where S1 and S2 are given by

S1 :=
1

8µ2

(
µ2

κ2
− 1

)(
Φ̂′′(θ) + α2 Φ̂(θ)

)
+
α(α− 1)

4µ2
Φ̂(θ) (2.57)

S2 :=
1

8µ2

(
µ2

κ2
− 1

)(
Φ̂′′(θ) + α2 Φ̂(θ)

)
+

1

4µ2

(
Φ̂′′(θ) + α Φ̂(θ)

)
(2.58)

Remark 2:

One important observation for the analysis below is that the asymptotic nonlinear

operator L̂[·] is homogeneous of degree 1 even though the full nonlinear operator in

(2.37) has no homogeneity properties. Clearly, it is easy to sees that

L̂[ξΦ̂(θ)] = ξL̂[Φ̂(θ)] (2.59)

for all scalars ξ.

Remark 3:

Since the operator L̂[·] is nonlinear, the nullset is in general not a subspace of its

domain. However, by virtue of (2.59), it is scale invariant in that

ξNull{L̂} ⊂ Null{L̂} (2.60)
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for all ξ ∈ R.

In order to fully resolve whether or not the nonlinear strain-limiting model predicts

the bounded crack-tip stress and strains, we have the following theorem,

Theorem 2.4.1. Consider the following initial value problem (IVP)

L̂[Φ̂(θ)] = 0 (2.61)

Φ̂′(0) = Φ̂′′′(0) = 0 (2.62)

Φ̂(0) = v0 (2.63)

Φ̂′′(0) = v2 (2.64)

and then seek values of v0 and v2 for which

Φ̂(π) = Φ̂
′′
(π) = 0. (2.65)

Then, for 1 ≤ α ≤ 2, only when v0 = v2 = 0 does the solution to the IVP (2.61)-(2.64)

satisfy the boundary conditions (2.65). Namely, there is only trivial solution Φ̂ ≡ 0

for the boundary value problem (2.61), (2.62) and (2.65).

A numerical argument for the proof of the theorem (2.4.1) is postponed to next

section. First we will describe a shooting technique based numerical optimization

strategy for the two-point boundary value problem (2.61)–(2.65).

2.5 Numerical Solution of the Asymptotic ODE

In [41] Rajagopal and Walton showed that, for the case of a single anti-plane

shear crack problem, governed by a class of strain-limiting constitutive model, the

fracture BVP does not admit classical crack-tip stress singularity. The proof in [41]

depends mainly on the factorization of the corresponding governing second order quasi-
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linear PDE. But for the problem considered here, the governing fourth-order PDE

doesn’t seem to admit a similar factorization. Therefore, we employ a combination of

asymptotic and numerical strategy for the proof of the above stated theorem 2.4.1. To

that end, we first explain a shooting technique based numerical optimization algorithm

and then present a discussion towards the existence of trivial solution for a particular

range of α.

2.5.1 Numerical Optimization Startegy

Let Φ̂(θ;v;α) denote the solution of the IVP (2.61)-(2.64), in which

v :=

 v0

v2

 (2.66)

with |v|2 =
√
v2

0 + v2
2 6= 0, and 1 ≤ α ≤ 2. By virtue of the scale invariance of the

solution (2.59) ξΦ̂(θ; v;α) with any ξ ∈ R, is also a solution to the same initial value

problem (2.61)-(2.64). Then define the objective functions as

f±(v) = |Φ̂±(π;v;α)|+ |Φ̂′′±(π;v;α)|, (2.67)

with Φ̂±(π;v;α) denoting the numerical solution of the IVP (2.61)-(2.64). Thus, for

our numerical search by shooting technique for the solution, we only need to consider

|v|2 = 1, hence v0 and v2 are connected by the relation v2 = ±
√

1− v2
0. Therefore, only

two parameters v0 and α are needed for this numerical study. But the actual numerical

calculations were carried out in both directions of v2, i.e. for both v2 = +
√

1− v2
0 and

v2 = −
√

1− v2
0.

The following algorithm presents a detailed description of the optimization proce-

dure used to find the minimum value of the objective function f±(v) for a particular
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value of v0 and α.

Algorithm 2.5.1 1. For any −1 ≤ v0 ≤ 1 and 1 ≤ α ≤ 2, using the fourth order

Runge-Kutta method, find the solution Φ̂±(θ; v0;α) for the initial value problem

(2.61)–(2.64).

2. Then construct the function

f±(v) = |Φ̂±(π;v;α)|+ |Φ̂′′±(π;v;α)|. (2.68)

3. Find the minimum value of the objective function f±(v) on the rectangular do-

main

1 ≤ α ≤ 2 , −1 ≤ v0 ≤ 1, (2.69)

by considering 103 points on each edge.

4. Then select the each local minimum point of the function f±(v) as the initial

guess for Newton’s method based optimization procedure. This procedure will

give the updated minimum value of the function.

5. If all the updated function values are bigger than the tolerance, we can then

conclude that there is only a trivial solution for the IVP (2.61)–(2.64), Otherwise,

there exists a nontrivial solution.

2.5.2 Numerical Result

For the numerical computations, we need to consider two cases based on the sign

of v2. The plots of f±(v0;α) is shown in Figures 2.2 and 2.3. As explained in the

algorithm, we choose several local minimum points from the plot, and use each of them

as an initial guess in Newton optimization algorithm to search the updated function

values. Four points are selected from the plot as demonstrated in column one of Ta-
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original point value of f(v0;α) updated point updated f(v0;α)
(-0.0101 1.347) 0.047809 (-0.0106 1.3481) 0.02314
(0.0101 1.245) 0.048936 (0.0105 1.2285) 0.02197
(-0.0303 1.204) 0.05290 (-0.03148 1.1885) 0.03758
(-0.0303 1.163) 0.05275 (-0.03189 1.1746) 0.03835

Table 2.1: Updated points and function values by optimization algorithm for the case
of v2 = +

√
1− v2

0.

ble 2.1. The second column titled as value of f(v0;α) illustrates the corresponding

function values at these points. Using each of these points as initial guess in optimiza-

tion generates updated point for local minimum, as shown in column three. The last

column calculates the function values in the updated points respectively.

From the values in the second and last columns, we can see that they are all bigger

than 0.01, not small enough to produce a solution. We thus conclude that no nontrivial

solution exists for the IVP (2.61)–(2.64).

Figure 2.2: The plot of the values of the objective function f±(v) with v2 = +
√

1− v2
0.
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Figure 2.3: The plot of the values of the objective function f±(v) with v2 = −
√

1− v2
0.

A suggestive proof4 of the theorem 2.4.1

Proof. The proof of this theorem mainly based on the numerical optimization argu-

ment of the IVP (2.61)-(2.64). We first find the minimum value of the objective

function f±(v) on each of the four sides of the rectangular domain and then using

Newton’s optimization method with previously computed minimum value of f± and

α as the initial guess. By this procedure we get the minimum values of the objective

function (2.68) on the rectangular domain (2.69) greater than 0.01. But the same

procedure for the linear crack problem yield zero as the global minimum of (2.68)

occurring for α = 1.5. Hence we conclude that there is no nontrivial solution for the

IVP (2.61)-(2.64) satisfying the boundary condition (2.65).

To be clear we make no claims about the robustness and optimality of the numerical

procedure applied here–our principal focus was to obtain preliminary results about the

solution behavior to this highly nonlinear problem. Although the numerical procedure

4The proof presented here is not mathematically rigorous but it will still give a clear idea of the
asymptotic behavior of the solution to nonlinear crack-BVP.
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employed here uses only uniform grid points to compute the minimum value of the

objective function, but the result obtained is consistent with similar result obtained for

the scalar anti-plane shear fracture problem [41]. We believe that the present numerical

result is encouraging and we will focus on a more efficient numerical algorithm in the

future. A more suited numerical optimization procedure is to choose the non-uniform

or adaptive grid points near the local minimum values of the objective function and

this will be a topic of future study.

2.6 Conclusions

In this chapter, we have extended the previous contribution [41] of studying brittle

fracture in the context of strain-limiting theories of elasticity to the more challenging

plane-strain setting. It is clear that the use of strain-limiting, nonlinear response

relations avoids logical inconsistent crack-tip strain singularity. Then a main issue

on hand is to verify whether or not the new models predict the same classical crack-

tip stress singularity. Here we presented argumets for the plane-strain fracture that

any crack-tip stress singularity cannot exist within the general class of asymptotic

forms (2.36) for the Airy stress potential. Using a combination of asymptotic and

numerical optimization algorithm, we have demonstrated that the use of nonlinear,

strain-limiting response relations to study crack-tip solution behavior in brittle elastic

solids, predicts bounded stress in the neighborhood of crack-tip.
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3. NUMERICAL MODEL FOR PLANE-STRAIN FRACTURE IN A CLASS OF

STRAIN-LIMITING NONLINEAR ANISOTROPIC ELASTIC BODIES

In this chapter, we develop a numerical model for the opening mode fracture within

the context of strain-limiting theory of elasticity. We first derive a governing quasi-

linear elliptic partial differential equation for the displacement-vector in the body and

then give a detailed finite element formulation along with the corresponding numerical

results. Our main aim is to illustrate whether or not the nonlinear strain-limiting

response relations predict a physically reasonable crack-tip stress and strain.

3.1 Mathematical Model

Consider a two-dimensional (2D) infinite, linear, anisotropic elastic body Ω con-

taining a straight, Griffith crack of length 2l and occupies the segment −l ≤ x1 ≤ l

and x2 = 0. The body is subjected to a far-field, uniform, tensile load σ. The phys-

ical domain and the loading condition is depicted in Figure 3.1. In this chapter, our

attention is restricted to the numerical implementation of a quasi-static fracture prob-

lem, hence we assume no crack-growth due to loading. The plane-strain assumption

yield two independent displacement components which only depend on the in-plane

coordinates. Let u = (u1(x1, x2), u2(x1, x2)) denote the displacement field in the body.

For the quasi-static problem on hand, we utilize a strain-limiting nonlinear response

relation developed in [28] of the form:

E = F(S̄), (3.1)

relating the Green-St.Venant strain E and Second Piola-Kirchhoff stress tensor S̄.

The right-hand-side of the above equation (3.1) is a uniformly bounded function of S̄.
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Figure 3.1: Infinite elastic slab with crack of length 2l under pure mode I loading

Then under the assumption of “small” displacement gradients of the form:

sup |∇xu| = o(δ) δ � 1, (3.2)

with the symbol | · | denoting the Frobenius norm and o(·) is the little-o notation, it

follows that:

E = ε+ o(|∇u|) (3.3)

and hence that (3.1), in the infinitesimal strain regime, can be approximated by:

ε = F(S̄) (3.4)
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in which ε denotes the customary linearized strain tensor, i.e.

ε :=
1

2

(
∇u+∇uT

)
. (3.5)

The above constitutive equation (3.4) can be written for the special case of strain-

limiting response relation in the infinitesimal regime as:

ε = φ̃
(
|K1/2[S]|

)
K[S] (3.6)

with φ̃(r) given by

φ̃(r) :=
1

(1 + (βr)α)1/α
. (3.7)

in which both α and β are modeling parameters and 1
β

gives the limiting-strain norm.

Note that when β = 0, the model (3.6)-(3.7) will be the reference linearized elasticity

model. Further, a main motivation for considering such a nonlinear function (3.7) is

from the study of Buĺic̆ek et al [12]. They have provided a proof of the existence of

weak solution to the anti-plane stress problem on V-notch domains. The existence and

uniqueness of solution to the new class of strain-limiting nonlinear elasticity models

was studied for both convex and non-convex domains. The form of the nonlinear func-

tion considered here (3.7) is same as the one studied in [12]. The authors have proved

the existence of weak solution to the non-convex anti-plane stress scalar problem for

a ∈ (0, 2)1 and further for the convex domains the weak solution exists for a ∈ (0,∞).

Remark 1: Mai and Walton [28] showed that models of the type (3.1), (3.4), (3.7)

can fail to be rank-one convex (strongly elliptic) if strains become too large but are

rank-one convex otherwise. Also Mai and Walton [28] gave the sufficient condition for

1Note that the symbol a in equation (2.6) of [12] is same of the parameter α used in our study.
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the invertibility of the strain-limiting models of the type (3.1) and showed how one

can construct the hyperelastic models from (3.1).

Then we consider an inverted form of the above constitutive relationship (3.1),

also we know that there is no distinction between the Stress tensors S̄ and σ, one can

rewrite the stress as a function of strain as:

σ =
E[ε]

(1− (β|E1/2[ε]|)α)1/α
. (3.8)

In this chapter, we study two important cases of isotropy and transverse isotropy. For

isotropic elastic material,

E[ε] := 2µε+ λ(ε · I)I = 2µ

(
ε+

ν

1− 2ν
(ε · I)I

)
(3.9)

with µ and λ denoting the customary Lamé parameters and ν denoting Poisson’s ratio.

In (3.9), (ε · I) is the trace-inner-product and I denotes the second-order identity

tensor. For transversely isotropic material,

E[ε] := 2µε+ λ(ε · I)I + γ(ε ·M )M (3.10)

with M = m ⊗m being the norm-one, rank-one, structural tensor with the unit-

vector m defining the axis of symmetry. For the structural tensor M , we consider

two special cases such as:

(1) M = e1 ⊗ e1 then ε ·M = ε11(x1, x2)

(2) M = e2 ⊗ e2 then ε ·M = ε22(x1, x2).

Where ε11 and ε22 are respectively 1 − 1 and 2 − 2 component’s of the strain-tensor.

The case (1) corresponds to the case in which the axis of the crack is assumed to be
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along e1. and in case (2) the axis of the crack is assumed to be orthogonal to e2.

For the remainder of this chapter, all calculations are shown for case (1). But some

representative numerical results are also presented for case (2).

Then rewriting (3.10) as:

E[ε] := µ (2 ε+ γ̄1 (ε · I)I + γ̄2 ε11e1 ⊗ e1) , (3.11)

in which γ̄1 = 2ν
1−2ν

and γ̄2 = ν
µ
. Using (3.11) in (3.8) and non-dimensionalize the

stresses by the shear modulus and length scales by l (half length of the crack). Hence

the only material parameter required for the computations is Poisson’s ratio ν.

In the absence of body force, the stress tensor needs to satisfy the equilibrium

equation

div σ = 0 in Ω , (3.12)

where div is the divergence operator.

For the classical, isotropic, problems in elasticity, there are two main methods that

one can use to solve the boundary value problems. In the first method, one work

with displacement field as the primary unknown and then the conservation of linear

momentum leads to Navier equations. In such approaches the strain-compatibility

conditions will be automatically satisfied. The second method introduces a scalar

potential which automatically satisfies equilibrium equation and then work with the

compatibility condition for strains. The latter method needs higher regularity for

the space of test functions if one chooses to solve the corresponding boundary value

problem (BVP) using a finite element method. Therefore, we choose work with the

former method, hence in our finite element formulation displacement is the primary

unknown and we seek the (weak -)solution to equilibrium equation.
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3.2 Numerical Model

In the case of two-dimensional, pure mode-I type of loading the horizontal dis-

placements are symmetric and the vertical displacements are anti-symmetric, i.e.

u1(X1,−X2) = u1(X1, X2), (3.13)

u2(X1,−X2) = −u2(X1, X2), (3.14)

u3(X1, X2) = 0 (plane strain assumption). (3.15)

Also in plain-strain problems normal stresses are symmetric and shear stresses are

anti-symmetric, i.e.

σ11(X1,−X2) = σ11(X1, X2), (3.16)

σ22(X1,−X2) = σ22(X1, X2), (3.17)

σ12(X1,−X2) = −σ12(X1, X2). (3.18)

Therefore, the solution to pure mode-I problem is symmetric about both X1 and X2

axes. Hence we reduce the problem from the entire plane to the upper right quarter-

plane. But for the numerical implementation we approximate the upper right quarter-

plane by a finite square domain D = [−b, 0]× [b, 2b] and the same is depicted in Figure

3.2. Further, since the nondimensionalized half-length of the crack is 1, then we have

to choose b sufficiently large. The upper crack surface in the undeformed configuration

is denoted by Γ0 = [0, 1]×{0}. So that the mid-point of the upper-crack face is at the

origin.

Using the inverted constitutive relation (3.8) in the equilibrium equation (3.12) we
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Figure 3.2: Finite computational domain for pure mode-I fracture problem.

get a second order, quasilinear partial differential equation (PDE)

−∇ ·

(
∇u +∇uT + γ̄1∇ · u I + γ̄2 u1,1e1 ⊗ e1(

1− (β |E1/2 [ε] |)α
)1/α

)
= 0 in D. (3.19)

Boundary Conditions:

Here we briefly explain the boundary conditions for our numerical simulation. The

classical fracture boundary value problem imposes zero-traction on the crack-face Γ0.

The right-face Γ2 is also kept traction-free. The top-face Γ3 is still subjected to the

uniform tensile-load σ. But the symmetry of the solution results in some new boundary

condition on the bottom-face Γ1 and the left-face Γ4. First on the bottom-face, the

opening plane displacement component vanishes along the line directly ahead of the
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crack-tip (i.e. for 1 ≤ X1 ≤ b, X2 = 0) and the shear component of the stress also

vanish along the bottom-face i.e.

u2(X1, 0) = 0, (3.20)

σ12(X1, 0) = 0. (3.21)

Similarly, along the left-face Γ4 (i.e. for 1 ≤ X2 ≤ b, X1 = 0) both the horizontal

displacement component and the shear component of the stress tensor along with

u1,2(0, X2) are all zero, i.e.

u1(0, X2) = 0, (3.22)

u1,2(0, X2) = 0, (3.23)

σ12(0, X2) = 0. (3.24)

Combining all the above we have the following boundary conditions,

on Γ0 σ ~n = 0, (3.25)

on Γ1 u2(x, 0) = 0 and σ12(x, 0) = 0, (3.26)

on Γ2 σ ~n = 0, (3.27)

on Γ3 σ ~n =

0

σ

 (3.28)

on Γ4 u1(0, y) = 0, σ12(0, y) = 0

and u2,1(0, y) = 0. (3.29)
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Here ~n denotes a unit normal vector, σ is the uniform tensile load on the top surface

and σ12 is the (1, 2)−component of the Cauchy stress tensor σ. Finally, the PDE

(3.19) together with the boundary conditions (3.25)-(3.29) constitutes the nonlinear

fracture boundary value problem for the new class of strain-limiting elastic bodies.

3.3 Finite Element Implementation

For the nonlinear material model studied in this chapter, one needs to solve the

quasilinear elliptic PDE system (3.19) subjected to the boundary conditions (3.25)-

(3.29). But this doesn’t seems to admit a possibility of an exact solution, hence we

choose to solve the BVP by a finite element method. First we linearize the PDE

(3.19) using damped Newton’s method and then use a standard Galerkin FEM to find

the numerical solution. In the method implemented here, we compute the (n + 1)st

approximate solution using the previous nth solution and to achieve a better global

convergence of the numerical solution we use a damping parameter, αn. Further,

we use a back tracking line search algorithm to compute αn at each inner Newton

iterations.

The Newton’s method used to solve the above boundary value problem takes the

form:

F ′ (un, δun) = −F (un) (3.30)

un+1 = un + αnδun. (3.31)

Here αn is the step length, and the function F (·) is given by the following:

F (u) = −∇ ·

(
∇u +∇uT + γ̄1∇ · u I + γ̄2 u1,1e1 ⊗ e1(

1− (β |E1/2 [ε] |)α
)1/α

)
. (3.32)

In the Newton’s method (3.30) the symbol F ′ denotes the Fréchet derivative of F in
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the direction of δu and is defined as:

F ′(u, δu) = lim
h→0

F (u + h δu)− F (u)

h
. (3.33)

Using (3.32) in (3.33) and after a lengthy calculation we get the following expression

for F ′:

F ′ = −∇·

[
∇δu +∇δuT + γ̄1∇ · δu I + γ̄2 δu1,1e1 ⊗ e1

(1− βα |E1/2 [ε] |α)
1/α

− βα E[ε] θ1{u} θ2{u, δu}
(1− βα |E1/2 [ε] |α)

1+1/α

]
,

(3.34)

in which the functions |E1/2 [ε] |, θ1{u} and θ2{u, δu} are defined as follows:

∣∣E1/2 [ε]
∣∣2 = E1/2[ε] : E1/2 [ε]

= ε : E1/2[E1/2 [ε]]

= ε : E [ε]

=
1

2

(
∇u +∇uT

)
:
(
∇u +∇uT

)
+ γ̄1 (∇ · u)2 + γ̄2 (u1,1)2

θ1{u} =
∣∣E1/2 [ε]

∣∣α−2

θ2{u, δu} =
1

2

(∣∣E1/2 [ε]
∣∣2)′

=
(
∇u +∇uT

)
:
(
∇δu +∇δuT

)
+ γ̄1 (∇ · u) (∇ · δu) + γ̄2 u1,1 δu1,1.

Substituting (3.34) in (3.30), we get the linearized PDE in which we want to solve for

the Newton update δu by knowing the previous solution u,

−∇ ·

[
(∇δu +∇δuT ) + γ̄1 (∇ · δu) I + γ̄2 δu1,1e1 ⊗ e1

(1− βα |E1/2 [ε] |α)
1/α

− βα E[ε] θ1{u} θ2{u, δu}
(1− βα |E1/2 [ε] |α)

1+1/α

]

= ∇ ·

[
(∇u +∇uT ) + γ̄1 (∇ · u) I + γ̄2 u1,1e1 ⊗ e1

(1− βα |E1/2 [ε] |α)
1/α

]
. (3.35)
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Starting with the above linearized strong formulation (3.35), one can find the weak

formulation by integrating (3.35) against the test function v = (v1, v2) over the domain

D and using the boundary values appropriately.

The weak formulation of the solution algorithm requires finding δu ∈ U such that

Au(δu,v) = Lu(v) ∀ v ∈ U (3.36)

in which Au(δu,v) and Lu(v) are bilinear and linear forms respectively given by:

Au(δu,v) =

∫
D

{(
∇δu +∇δuT + γ̄1∇ · u I + γ̄2 u1,1e1 ⊗ e1

)
: v

(1− βα |E1/2 [ε] |α)
1/α

+
βα θ1{u} θ2{u, δu} E[ε] : v

(1− βα |E1/2 [ε] |α)
1+1/α

}
dD , (3.37)

Lu(v) =−
∫
D

(
∇u +∇uT + γ̄1∇ · u I + γ̄2 u1,1e1 ⊗ e1

)
: v

(1− βα|E1/2 [ε] |α)
1/α

dD

+

∫
Γ4

v2 σ , (3.38)

where U is the Sobolev space given by

U :=
{
u ∈ H1(D) : u2|Γ1

= 0 and u1|Γ4
= 0
}
. (3.39)

A corresponding conforming finite element formulation is given by: for any h > 0,

let Th be the discretization of D into quadrilaterals K with diameter hK less than h.

Let Uh be the finite dimensional subspace of U defined by:
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Uh =
{

uh ∈ C0
(
D̄, R2

)
: uh|K ∈ (Q1)2 ∀ K ∈ Th,

uh2|Γ1
= 0, uh1|Γ4

= 0
}
∩H1

(
D, R2

)
, (3.40)

in which uh = (uh1, uh2) is a smooth test function. Then the discrete finite element

formulation reads: find δuh ∈ Uh such that

Au(δuh,vh) = Lu(vh) ∀ vh ∈ Uh. (3.41)

3.4 Numerical Implementation

To solve the nonlinear fracture boundary value problem and the corresponding

variational formulation developed in the previous section, we have used a continuous

Galerkin Finite Element Method (FEM) [18]. The C++ language based computational

program was developed using the open source deal.II library [5, 6]. More information

about the library can be found using the webiste http://www.dealii.org/.

For our computational model, we assume that the material is a transversely isotropic

brittle elastic solid. The various parameters used in the computation are as follows: the

Poisson’s ration is 0.35, the strain-limiting parameter β = 0.0, 0.09, 0.5, 1.0, 2.0, 10.0

and α = 1.0, 0.9, 1.8. In most of the computations, (dimensionless) uniform loading

on the top face was fixed as σ = 0.001. We have also studied the effect of σ on the

solution and also on the crack-tip stress.

Our main aim in this chapter is to illustrate the difference in predictions of stress

and strain near the crack-tip exhibited by the reference linearized model and the

nonlinear strain-limiting model. Also, we are interested in knowing whether or not

the strain-limiting model predict a smooth cusp-shaped crack-opening displacement
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profile.

3.4.1 Mesh Refinement Strategy

The accuracy of the finite element solution of the discrete weak form (3.41) depends

primarily on the mesh size. This can be realized by deriving a priori error estimates

which are mainly in terms of the exact solution u and the computed numerical solution

uh. For the simple case of Laplace equation, one can obtain a priori error estimates [18]

as

||u− uh|| ≤ Ch2, (3.42)

in which h is the maximum size of the each element and the constant C depends on

the exact solution u, the domain, shape functions and also on the dimension of the

problem, but it is independent of the mesh size h. But for the problem considered

in this work we don’t have the exact solution on hand. Hence the numerical value of

the constant C is unknown and therefore the numerical bound as given in (3.42) can’t

be computed. Also, a global mesh refinement based approach can reduce the error

in the numerical solution, but computationally this may not be an efficient strategy.

In addition, for the domain with high stress concentration region, such as crack or

re-entrant notch, a fine mesh is necessary in the neighborhood of these regions where

the solution varies considerably.

A major issue in generating adaptive meshes for the computations is how to es-

timate which cell is to be refined or coarsened. To this end a number of studies

available in the finite element literature [4, 22], which provide a criteria for the adap-

tive mesh refinements. In this work, we employ a posterior error estimator developed

for Laplace equation by Gago et al. in [22] and the same as been implemented in the

deal.II library. The numerical code exploits the KellyErrorEstimator functionality of

the deal.II library to get adaptive meshes for the numerical simulations.
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Here we briefly explain the adaptive mesh refinement idea of [22]. Suppose ηK

denotes the error indicator in the finite element solution and it is defined as:

ηK =
h

24

∫
∂K

[∂nuh]
2 ds, (3.43)

where [∂nuh] is the jump in the normal derivative of the finite element solution of uh,

across the element boundary ∂K. After the computation of the error estimator for each

cell we then need to decide which cells should be refined or coarsened. In the numerical

code, we refine the 30% of cells with highest error indicator ηK and coarsen those of

3% of elements with lowest errors. The implemented solution algorithm consists of

the successive application of the following loop, i.e.

SOLVE → ESTIMATE → MARK → REFINE. (3.44)

Figure 3.3 illustrates the global and adaptive refinements of the computational domain.

Both figures are obtained by refining the computational domain 6 times globally and

adaptively. In the case of adaptive refinement of the domain, we notice that around

the crack-tip the density of the mesh is far larger than the other parts of the domain.

Small cells near the crack-tip are justified in order to capture the sharp variations in

the quantities of interest. However, we do not need such high levels of refinement in

the large portion of the domain away from the crack-tip neighborhood, using a highly

refined mesh (in the case of global mesh refinement) is a waste of computational effort

and cost. This point is clearly emphasized in Figure 3.3.

3.4.2 Algorithm

The main steps involved in the computation of the numerical solution of the non-

linear fracture boundary value problem are listed as follows:
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(a) Global-refinement (b) Adaptive-refinement

Figure 3.3: Computational domain indicating both global and adaptive mesh refine-
ment.

(1) Load the run-time parameters such as uniform far-field load σ, modeling param-

eters β and α, the material parameter poisson’s ration ν, from the parameter-file.

(2) Create a coarse domain [0, b] × [0, b] and indicate the boundary parts such as

crack-face, bottom boundary (excluding crack-face), left, right and top boundary.

Mark these parts of the boundary for applying boundary conditions later.

(3) Set up the vector valued, bilinear (i.e. Q1), finite element and the corresponding

degrees of freedom.

(4) Start with a function u0 = 0 and modify it in such a way that the values of u0

along the boundary are equal to the correct boundary values.

(5) Assemble the system for the Newton update, δun, and add in the contribution of

the boundary condition on the top surface.
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(6) Solve the resulting linear system using a conjugate gradient method since the

matrix for the Newton update is symmetric and positive definite.

(7) Compute a step length, αn, using a backtracking line search algorithm.

(8) Then compute the new approximate solution by

un+1 = un + αnδun.

(9) Repeat the inner Newton iterations.

(10) Post-processing: output the numerical results, these include the displacements

(both u1 and u2) on the entire body, the crack-face displacement u2(x1, 0), the

stress component σ22 and the strain component ε22 along the line ahead of the

crack-tip.

3.5 Numerical Results and Discussion

The discrete weak formulation (3.41) defined in the previous section was solved us-

ing a Finite Element Method (FEM). The main objective of the numerical computation

is to study the effect of the modeling parameters such as the strain-limiting parameter

β and the power of the nonlinear function φ(·) on the solution of the nonlinear fracture

boundary value problem.

In our numerical code, the initial uniform coarse mesh was adaptively refined thir-

teen times so that the final mesh had close to 1, 947, 554 total degrees of freedom, with

over 200,000 active cells. Table 3.1 shows the number of refinement cycle, the number

of total active cells and the total DOF used for a square domain with b = 8. The

zeroth refinement cycle refers to the initial coarse mesh of the domain, which contains

64 cells and 1 cell on the crack-face. We typically ran the program for 13 refinement
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cycles, for which the final cycle has more than a thousand cells along the crack face.

Cycle Total Active Cells Total DOF

0 64 578

1 124 1,118

2 238 2,214

3 454 3,974

4 862 7,626

5 1,639 14,800

6 3,115 28,390

7 5,908 53,832

8 11,209 102,376

9 21,229 195,536

10 40,138 370,704

11 75,844 699,422

12 143,176 1,323,432

13 210,508 1,947,554

Table 3.1: Number of refinements, total number of cells and degree of freedom for the
computational domain.

To validate our numerical code for the nonlinear problem, we have performed two

tasks. We first created a domain without a crack in it and tested the code for the

prescribed tensile load. We observed that the value of the stress component σ22 is

uniform throughout the domain. Secondly, we considered the “real” domain that is

described in Section-(3.2) and set β = 0 in the nonlinear constitutive model (3.19).
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Suppose uL2 (Γ0) denotes the Y-displacement of the linear problem on the crack-face,

similarly uNL2 (Γ0) indicates the crack-face Y-displacement of the nonlinear problem

(with β = 0 and α = 1.0). Then the “relative-difference” (RD) in values of u2(Γ0) on

the crack-face is obtained using the formula:

RD :=

∣∣uL2 (Γ0)− uNL2 (Γ0)
∣∣
∞

|uL2 (Γ0)|∞
(3.45)

in which |·|∞ denotes the l∞ norm. The computed value of the above quantity RD

is 4.6497e-7, which is reasonable and we believe that this difference is not significant.

Hence we believe that, when β = 0, the solution to the nonlinear fracture problem

tend to the general solution to the reference linear fracture problem. Also, solution to

the nonlinear fracture problem is sensitive to the limiting-strain modeling parameter

β, the following simulation results clearly shows that for β � 1, even very near

the (mathematical) crack-tip, both stress and strain remain smaller in magnitude

compared with the corresponding values from classical LEFM model. Further, in

all the following graphs, the “dots” means the value of the variable presented in the

corresponding graph. A uniform mesh points are selected along the bottom-face of the

domain, but the underlying computational mesh is fine and there is clearly a ”large”

number of quadrature points exist between any two points used to plot the following

graphs.

Figure 3.4, and 3.5 indicates the comparison of LEFM and the strain-limiting

model with parameters β = 0, α = 1.0, σ = 0.001 and γ̄2 = 1.0. In the computations

for all these figures the axis of the crack was assumed to be along e1. The crack-face

displacement profile u2 is depicted in Figure 3.4 and the plot of dimensionless stress

component (σ22/σ) is shown in Figure 3.5.
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Figure 3.4: Crack-face displacement u2 both for LEFM and strain-limiting anisotropic
models.

Figure 3.5: Stress component σ22 along a line leading up to crack-tip both for LEFM
and strain-limiting anisotropic models.

It is clear from Figure 3.4 and 3.5 that the solution to the nonlinear crack problem
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with β = 0 captures the corresponding solution of the linear crack problem and predicts

the same stress concentration at the crack-tip as the linearized model. Hence one can

recover the classical singular solution as β → 0 from the strain-limiting nonlinear

models.

Cycle β = 0.0 β = 2.0 β = 10.0

0 0.000557145 0.000106602 5.4342e-06

1 0.000608284 0.000116602 7.114743e-06

2 0.000622366 0.0001207938 7.8831114e-06

3 0.000628506 0.0001235774 9.122183e-06

4 0.000631589 0.000124788 1.14572e-06

5 0.000633133 0.0001253948 1.171491e-06

6 0.000633905 0.0001256988 1.1823871e-06

7 0.000634292 0.00012584341 1.21945981e-06

8 0.000634485 0.00012584562 1.2414361e-06

9 0.000634582 0.00012584574 1.242891e-06

10 0.000634654 0.00012584574 1.243571e-06

11 0.000634654 0.00012584574 1.243571e-06

12 0.000634654 0.00012584574 1.243571e-06

13 0.000634654 0.00012584574 1.243571e-06

Table 3.2: Convergence of the center node displacement for various limiting stain
parameter β across refinement cycles.

Before, we start presenting the results of the numerical simulation of the nonlinear

fracture boundary value problem, first we look at the convergence of the center-node
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opening displacement (i.e. u2(0, 0)) for various parameters such as β, σ and γ̄2. Ta-

ble 3.22 indicates the convergence of the center-node displacement for various limiting-

strain parameter across refinements. The other parameters used for computations are

α = 1.0, σ = 0.001 and γ̄2 = 1.0.

Cycle γ̄2 = 0.0 γ̄2 = 1.0 γ̄2 = 10.0

0 0.000581406 0.0001106602 4.81513e-05

1 0.00063155 0.0001207938 5.33073e-05

2 0.00064616 0.0001235774 5.46268e-05

3 0.000652708 0.000124788 5.51194e-05

4 0.000655983 0.0001253948 5.5367e-05

5 0.00065762 0.0001256978 5.54911e-05

6 0.000658435 0.0001258488 5.5553e-05

7 0.000658842 0.00012584558 5.55838e-05

8 0.000658855 0.00012584562 5.55866e-05

9 0.000658855 0.00012584574 5.55866e-05

10 0.000658855 0.00012584574 5.55866e-05

11 0.000658855 0.00012584574 5.55866e-05

12 0.000658855 0.00012584574 5.55866e-05

13 0.000658855 0.00012584574 5.55866e-05

Table 3.3: Convergence of the center node displacement for various values of the
parameter γ̄2 across refinement cycles.

2The table depicts the values up to 9-decimal places for the presentation purpose only, the actual
numerical-code computes these values using double precision.
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Table 3.3 show how the center-node displacement i.e. u2(0, 0) converges as the

computational domain refined adaptively using KellyErrorEstimator 3 class of deal.II

library. It is clear from Table 3.3 that the solution converges for a fixed value of γ̄2

and also decreases with increasing value of γ̄2.

Cycle σ = 0.001 σ = 0.01

0 0.0001106602 0.00548815

1 0.0001207938 0.00598835

2 0.0001235774 0.0061249

3 0.000124788 0.00618387

4 0.0001253948 0.00621322

5 0.0001256978 0.00622773

6 0.00012584887 0.00623487

7 0.0001259021 0.0062451197

8 0.00012591142 0.0062452785

9 0.0001259242 0.006245386

10 0.0001259242 0.006245386

11 0.0001259242 0.006245386

12 0.0001259242 0.006245386

13 0.0001259242 0.006245386

Table 3.4: Convergence of the center node displacement for various values top-face
tensile loading σ across refinement cycles.

3For more information on how to use KellyErrorEstimator class in the finite element program
please refer to the documentation of deal.II library and also video lectures of Professor Bangerth [3].
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Table 3.4 shows the convergence of center-node displacement for different top-face

tensile load σ. The table clearly indicates the convergence of the solution for each

value of σ. The local refinement based adaptive solution algorithm offers distinctive

advantage over the global refinement of the computational domain.

3.5.1 Error Reduction Factor

We know that from equation (3.42), the accuracy of the finite element solution

depends on the mesh size and it is clear from Figure 3.3 that a very high grid resolution

is required in the neighborhood of the crack-tip to adequately capture the variation in

the quantities of interest (such as stress and strain). In order to realize the accuracy of

the finite element solution, we need to compute the error in the finite element solution

as a function of mesh-size4. But for the current boundary value problem we don’t have

exact (solution) displacement field in the body. Hence we define “Error Reduction

Factor” (ERF), as a function of number of degrees of freedom, by considering the

displacement field obtained from finest mesh (i.e. after last refinement) as an “exact

solution”. For the problem studied here the ERF is given by:

ERF =
|uLR2 (0, 0)− ui2(0, 0)|
|uLR2 (0, 0)− ui−1

2 (0, 0)|
, i = 2, 3, . . . LR, (3.46)

in which the term uLR2 (0, 0) denotes the center-node displacement (y-displacement)

at the last-refinement and we compute this quantity as a function of the number of

degrees of freedom. The computed quantity, ERF, is approximately 2.0, which is

reasonable for the linear finite element used to approximate the quasi-linear elliptic

partial differential equation. Figure 3.6 depicts the log-log plot of the difference in the

4In the case of adaptive finite element method the accuracy of the numerical solution depends on
the number of degrees of freedom.
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error, which is the difference in the center-node displacement (u2(0, 0)) of the current

refinement level with the last refinement level. We notice that the error is reduced

considerably for the higher values of the modeling parameter β.

Figure 3.6: The log-log plot of the error as a function of the degrees of the freedom.

Figure 3.7a, 3.7b denotes the 2D plots of the displacement components u1 and u2

respectively. Both figures, 3.7a and 3.7b, depicts the symmetry boundary conditions.

Whereas Figure 3.8 depicts the vector plot of the both displacement components. The

vector direction in Figure 3.8 indicates that the displacement is large towards to the

top-face compared to the bottom-face.

65



(a) x-displacement (b) y-displacement

Figure 3.7: The displacement vector u in the entire body for the nonlinear strain-
limiting model.

Figure 3.8: The vector plot of the displacement u for the nonlinear strain-limiting
model.
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Figure 3.9: Comparison of dimensionless stress component σ22/σ for LEFM and strain-
limiting anisotropic model and the axis of the crack was assumed to be along e1.

Figure 3.10: Comparison of strain component ε22 for LEFM and strain-limiting model
and the axis of the crack was assumed to be along e1.
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Figure 3.9 shows the comparison of the non-dimensional stress component (σ22/σ)

for LEFM and nonlinear strain-limiting models. For the nonlinear problem, σ22 was

computed using the parameter values β = 2.0, a = 1.8. For these computations the

axis of the crack was assumed to be along e1. It is clear from the figure that in

the case of LEFM the stress component becomes large upon approaching the crack-

tip along the radial line ahead of the crack-tip. In addition, our LEFM numerical

results predict the same classical singular near-tip stress concentration (i.e. 1√
1−x),

which clearly indicates that our numerical code is correctly capturing the classical

singularity. Further, it is clear from the graph that the strain limiting model does not

predict the same magnitude of stress concentration near the crack tip as exhibited by

the classical LEFM model. The growth of the stress near the crack-tip in the case of

nonlinear model is far-slower compared with the reference classical linearized model.

Although this is purely a numerical argument and nevertheless the result is consistent

with the previous asymptotic study of the pure mode-I problem by Gou et al. [23].

Also, it is important to know that the asymptotic analysis only gives the behavior

of the solution as r → 0+ (where r is the radial distance from the crack-tip). Even

working with large density of mesh near the crack-tip, we are only 10−4 away from the

crack-tip. Therefore we need “very” small mesh-size (h� 10−4) near the crack-tip to

fully resolve about the growth of near-tip stress in the nonlinear model.

Figure 3.10 depicts the comparison of the strain component ε22 both for LEFM

and stain-limiting models. The parameter values used for the computation are same

as the values used in the computation for Figure 3.9. As expected the magnitude

of ε22 is much smaller than the predicted value of the classical linearized model. In

the case of strain-limiting nonlinear model, ε22 remains bounded near 0 compared to

the unphysical singular prediction of LEFM. The numerical data from the simulation

of the classical model are fitted with the curve 1√
x−1

. They both agree very well
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up to some accuracy. Figure 3.10 clearly shows the advantage of formulating brittle

fracture theory within the context of nonlinear strain-limiting models of elasticity. One

can guaranteed to have physically reasonable crack-tip strain and is consistent with

the assumption of the starting point of the derivation of the model. Further, another

important point to notice that these results are obtained without the use of unphysical

crack-edge cohesive zone or the use of extra elements near the crack-tip.

Figure 3.11 is same as in Figure 3.9, except the orientation of the crack-axis is now

orthogonal to e1. The parameters used in the computations are β = 2.0 and α = 1.8.

Again it is clear from the figure that even very near the crack-tip the value of σ22 in

the case of nonlinear model is small in magnitude compared with it’s counterpart from

the classical model.

Figure 3.11: Comparison of dimensionless stress component σ22/σ for LEFM and
strain-limiting anisotropic model and the axis of the crack was assumed to be along
e2.
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Figure 3.12: Comparison of dimensionless stress component σ22/σ for strain-limiting
anisotropic model with the axis of the crack was assumed to be along e1 and orthogonal
to e1.

Figure 3.12 indicates that the value of σ22 is higher in the case of axis of the crack

orthogonal to e1 compared to the same when the axis of the crack assumed along e1.

The parameters used in the computation are β = 2.0, a = 1.8, σ = 0.001.

Figure 3.13 show that both linear and nonlinear stress component σ22 agree very

well away from the crack-tip for a certain set of parameter values. It is only near the

crack tip that the two solutions differ with the linearized elastic solution exhibiting

the customary square-root singularity in stress and strain while the strain-limiting

solution remains orders of magnitude smaller in stress and strain. For the illustrative

purpose the numerical results are shown in Figure 3.13 are along a line x1 = 1.0 and

0 ≤ x2 ≤ 8. The parameters used in the computation are β = 2.0, α = 1.8, σ = 0.001,

γ̄2 = 1.0 and the axis of the crack was assumed to be along e1.
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Figure 3.13: Plot of dimensionless σ22/σ along line x1 = 1.0, 0 ≤ x2 ≤ 8 both for
LEFM and Strain-Limiting model.

Figure 3.14: Plot of crack-face displacement component u2 for different top face tensile
loading.
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Figure 3.15: Effect of strain-limiting modeling parameter β on the stress component
σ22 along the line leading up to crack-tip for strain-limiting anisotropic models. The
axis of the crack was assumed to be along e1. The parameters used in the computation
are α = 1.8, σ = 0.001 and γ̄2 = 1.0.

Figure 3.14 shows the effect of the top-face load on the crack-face displacement.

It is clear from the plot that the displacement increases with the increasing top-face

load. The crack-face displacement is significantly “small” for the nonlinear model

compared to the linear model and is indicative of the strain-hardening behavior. For

the computations the axis of the crack was assumed to be along e1 and the parameters

used are β = 2.0, α = 1.8, σS = 0.001 and γ̄2 = 1.0.
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Figure 3.16: Effect of γ̄2 on the stress component σ22 along the line leading up to
crack-tip for strain-limiting anisotropic model. The axis of the crack was assumed to
be along e2.

Figure 3.17: Effect of top-face tensile load σ on the stress component σ22 along the
line leading up to crack-tip for the strain-limiting anisotropic model. The axis of the
crack was assumed to be along e1.
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Figure 3.15 shows the non-dimensional stress component (σ22/σ) along the bottom

face leading up to the crack-tip for increasing values of the strain-limiting parameter

β. When β � 1 the crack-tip stresses significantly less than that when β < 1 (such

as β = 0.5). With the value β = 0.0 one can recover the classical crack-tip stress

behavior and also the bounded crack-tip stress and strain results obtained using the

nonlinear models without the use of extra-elements (or cohesive law) in the crack-tip

neighborhood.

Figure 3.16 indicates the effect of γ̄2 on the nonlinear σ22 along the line ahead of the

crack-tip. The graph shows that the crack-tip σ22 increases with the increasing value

of γ̄2. The parameters used in the computation are β = 2.0, α = 1.8, σ = 0.001. In

Figure 3.17 a plot is presented showing the effect of the top-face load on the crack-tip

stress. The figure clearly indicates that the value of crack-tip σ22 increases with the

increasing top-face loading. Again, the parameters used in the computation are same

as the ones used in Figure 3.16.

Figure 3.18 shows the convergence of the crack-opening displacement u2(x1, 0) as

the computational mesh is refined. The local refinement criterion used in our program

introduces more and more active cells in the neighborhood of the crack-tip. Various

parameters along with the crack-axis orientation used in the computation are same

as those used in the computation for Figure 3.15. This figure strongly indicates the

convergence of the solution in our finite element algorithm.
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Figure 3.18: Convergence of the crack-face opening displacement u2(x1, 0) for various
adaptive refinements of the domain.

Figure 3.19: Dimensionless near-tip stress component σ22/σ for various adaptive re-
finements of the domain.
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Figure 3.20: Near-tip strain component ε22 for various adaptive refinements of the
domain.

Figures 3.19 and 3.20 shows the near-tip stress-strain values for various adaptive

refinement levels of the domain. In Figure 3.20, an important trend in the conver-

gence of strain component ε22 can be observed, unfortunately the stress component in

figure 3.19 doesn’t shows the similar convergence trend. But the obtained numerical

results indicate that, even very near (with the finer mesh), the mathematical crack-

tip, both stress and strain remains orders of magnitude smaller compared with the

respective values predicted by the classical model.
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(a) u1,1 behind the crack-tip (b) u1,1 in-front of the crack-tip

Figure 3.21: u1,1 along line leading up to the crack-tip.

(a) u1,2 behind the crack-tip (b) u1,2 in-front of the crack-tip

Figure 3.22: u1,2 along line leading up to the crack-tip.
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(a) u2,1 behind the crack-tip (b) u2,1 in-front of the crack-tip

Figure 3.23: u2,1 along line leading up to the crack-tip.

Figures 3.21, 3.22 and 3.23 indicates the comparison of the partial derivatives of

u1 and u2 both in the case of linear and nonlinear problems. In each case, we see that

the near-tip value in the nonlinear model never become close the value from the linear

problem.

3.6 Behavior of Cleavage Stress Near the Crack-Tip

The results presented in this chapter for the strain limiting model (and also in [41]

and [23]) show that stresses and strains predicted by the strain limiting model are much

smaller than those predicted by the LEFM model. Of course numerical simulations can

never prove bounded stresses in the neighborhood of the crack-tip. However, through

increasing mesh refinement one can get increasingly more reliable stress estimates to

within microns of a physical crack-tip. The simulations performed to date suggest that

for a centimeter long crack, the level of refinements implemented resolve the stresses

to within a micron of the crack-tip, and show those predicted by the strain limiting

model are one to two orders of magnitude smaller than those predicted by LEFM.

78



Since strains remain bounded by constitutive assumption in the limiting strain model,

the crack tip cannot be a singular sink of energy unless stresses blow up much faster

upon approaching the crack-tip than the LEFM solution. Assuming that the crack-tip

is not a singular sink for the limiting strain model, then the classical fracture criteria

used in LEFM that are based upon the singular energy sink nature of the crack-tip

do not apply for the strain limiting model. Therefore One needs to develop a local

fracture criterion within the class of strain-limiting elasticity models. To this end, the

behavior of the cleavage stress in the neighborhood of crack-tip offers an alternative

criterion and is relatively easy to implement.

In this section, we are interested in studying the behavior of the crack-tip cleavage

stress for the nonlinear models. The same was also discussed in the paper of Sendova

and Walton [47] for pure mode-I problem. For the plane-strain fracture on hand, we

study the behavior of the cleavage stress in the neighborhood of the crack-tip. The

expression for the cleavage stress is given by

σθθ = σ11 sin2 θ + σ22 cos2 θ − σ12 sin 2θ, (3.47)

in which θ is the polar angle. To numerically evaluate σθθ, we consider a quadrant of a

circle in front of crack-tip with crack-tip as the center and radius (r) 1 unit. We then

estimated σθθ using (3.47) for an array of values of θ ∈ [0, π/2] and r ∈ [0, 1] (r → 0+

is the crack-tip). We have chosen 50 equally spaced data points in r− and 90 equally

spaced points in θ−direction and then computed the value of σθθ for each value of r

and in each θ direction.
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Figure 3.24: Plot of dimensionless cleavage stress σθθ along the line leading up to
crack-tip for strain-limiting anisotropic model.

The computed numerical values of σθθ, for a certain set of parameter values and a

particular orientation of the crack, yields σθθ as a monotonically decreasing function

of θ. Of all the computed values of σθθ using the relation (3.47), we noticed that the

maximum occurs at θ = 0.0.

Figure 3.24 depicts cleavage stress σθθ(r, θ) for the different values of θ. In the

numerical computations, we have used the parameter values such as β = 2.0, a = 1.8,

σ = 0.001 and γ̄2 = 1.0 and the axis of the crack was assumed to be along e1 direction.

It is clear from the plot that the numerical value of the cleavage stress is large when

θ = 0 compared to the all other values of θ. This result is in agreement with the

classical linearized solution for pure mode I loading.

3.7 Conclusions

In this chapter, we have presented a computational model for the plane-strain

fracture using nonlinear strain-limiting response relations. The bulk constitutive model
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is a nonlinear relationship between the classical linearized strain and the Cauchy stress

tensors. One will not lead to such nonlinear relationship from the linearization process

within the context of classical elasticity. Also the models introduced by [34] have a

distinctive advantage over classical models, in that the strains are guaranteed to be

bounded in the neighborhood of a sharp crack or re-entrant corner even if the stress

becomes “large”. To this end, the main aim of this study whether or not the strain-

limiting models predicts the classical stress singularity.

In this chapter, we have laid out an approach for implementing a conforming finite

element algorithm to the solution of nonlinear fracture boundary value problem. The

numerical results presented in this chapter indicate that even very near the crack-

tip, both stress and strain remain much smaller in magnitude than the corresponding

predictions from LEFM. The numerical results outlined in this chapter supports the

asymptotic near-tip stress-strain behavior presented in the previous chapter and also

in the work of Gou et al. [23]. Further, we have demonstrated numerically that the

solution to the nonlinear crack problem do tend to the general solution to reference

linearized model as β → 0. When β = 0, the current model predict the same singular

stress-strain concentration in the neighborhood of the crack-tip.

The nonlinear fracture model studied here doesn’t predict the same singular crack-

tip stress concentration, hence a fracture criterion based on the crack-tip Stress Inten-

sity Factor (SIF) or local Energy Release Rate (ERR) is not available. Therefore for

a possible local fracture criteria, we here implement Critical Crack-Tip Stress (CCTS)

criterion as described by Sendova and Walton in [47]. To that end, we have studied

the behavior of the cleavage stress component σθθ in a quadrant of circle with crack-tip

as the center. The numerical results obtained indicates that σθθ is a monotonically

decreasing function of θ with the maximum occurs when θ = 0, which is in agreement

with the classical LEFM solution for the pure mode-I loading.
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4. A NONLOCAL FINITE ELEMENT FORMULATION OF MODE-III

FRACTURE WITH SURFACE TENSION EXCESS PROPERTY∗

In this chapter we study a stable nonlocal finite element implementation of an anti-

plane strain mode-III2 fracture incorporating the effects of crack-surface interfacial

mechanics. The problem studied in this chapter is quasi-static and we assume no

crack growth due to loading or breaking of atomic bonds. The issue addressed in this

chapter is on implementing the the brittle fracture theory with surface tension excess

property using stable numerical methods such as finite elements. The main emphasis

is on the reformulation of the jump momentum balance boundary condition due to its

inclusion of higher order tangential derivatives of the displacement.

4.1 Mode-III Fracture Problem Formulation

We consider a two-dimensional (2D) infinite, homogeneous, isotropic, linearly elas-

tic plate Ω under far-field antiplane shear loading σ∞23 with a straight crack Ω of length

2l, as shown in Figure 4.1. The symbol ⊗ in Figure 4.1 indicate that the forces acting

in the direction of outside of the plane of the paper and the symbol � shows the

direction of forces into the plane.

The assumption of anti-plane shear loading is characterized by the non-zero out

of plane displacement u3(X1, X2) which only depend upon in-plane coordinates and is

anti-symmetric about the x2 axis. The displacements in the X, Y and Z directions

∗Part of this chapter is reprinted with permission from Springer publications, “Numerical simula-
tion of mode-III fracture incorporating interfacial mechanics” by L. A. Ferguson, M. Muddamallappa,
J. R. Walton, International Journal of Fracture, 192(1), 47-56, 2015; Copyright 2015 by Springer
Publications.

2Mode-III or tearing mode crack is one in which shear stress acting parallel to the plane of the
crack and parallel to the crack-front.
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are given by:

u1(X1, X2) = u2(X1, X2) = 0, u3(X1,−X2) = −u3(X1, X2). (4.1)

The only non-vanishing and independent components of the stress tensor σ are τ13

(which is anti-symmetric) and τ23 (which is symmetric) and the corresponding compo-

nents of strain tensor ε are ε13 and ε23. We also nondimensionlize the space variables

by the half-length of the crack (l) and stresses by the reference shear modulus (µ).

Ω

Σ−l l

X1

X2

⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗⊗
σ∞23

�������������
σ∞23

Figure 4.1: Physical configuration consisting of linear elastic plane Ω under antiplane
shear loading with a crack of length 2l.
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4.2 Governing Equations

The differential momentum balance (DMB) yields the usual equilibrium equation

for the classical linearized model, given by

∆u3 + bf = 0 in Ω, (4.2)

in which bf is the body force term. For the case of antiplane shear, the only nonzero

stress components are τ13 and τ23 and by the constitutive Hooke’s law are given by

τ13 =
∂u3

∂x1

, (4.3)

τ23 =
∂u3

∂x2

. (4.4)

The symmetry in the displacement and stresses about x and y axes allow one to reduce

the problem to the upper right quadrant. Therefore the resulting finite computational

domain Q is the square [0, b] × [0, b] as shown in Figure 4.2. We need to take b

sufficiently large to approximate the infinite problem. Also Γ0 = [0, 1]×{0+} represents

the upper-right crack-face.

Since the DMB derived here is a linear, we use superposition principle to move the

top-face solution which has the fixed loading σ∞23 and combine with the solution on

the crack-face. This means that the far-field loading σ∞23 is now being applied to the

crack-face.
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Γ4

Γ3

Γ2

Γ1

Q

1Γ0

x1

x2

⊗⊗⊗⊗⊗
-σ∞23

(0, 0)

(b, b)

Figure 4.2: 2D finite computational domain Q with Γ0 indicating the mode-III upper-
right crack face.

4.3 Boundary Conditions

After the superposition, since the top-face load has been moved to the crack-surface,

the top edge Γ3 is traction-free i.e.

∇u3 · n = 0, (4.5)

where n is the unit outward normal. The right edge Γ2 and left edge Γ4 were also kept

traction free, therefore same boundary condition (4.5) apply on these parts. Moreover,

symmetry demands that the out-of-plane displacement component u3(x1, 0) vanishes

along the line ahead of the crack-tip, i.e.

u3(x1, 0) = 0, on Γ1 . (4.6)
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Then significant difference between LEFM and the theory developed by Sendova and

Walton in [47] occurs at the crack-surface. The interface is modeled as a dividing

surface endowed with excess property such as surface tension. For the current anti-

plane shear fracture model, we assume that the surface tension depends linearly on

the curvature of the out of plane displacement of the fracture surface as

γ̃ = γ0 + γ1u3,11(x1, 0) . (4.7)

Then the resulting jump momentum balance equation together with the superposed

far-field load gives the following boundary condition over the crack-surface

τ23(x1, 0) = −γ1 u3,111(x1, 0)− σ∞23 . (4.8)

In (4.7) the term (·),11 is the second order derivative in tangential direction and γ0,

γ1 are the surface tension constants. Also note that the surface tension γ̃ and the

parameters γ0, γ1 defined in (4.7) are all in the non-dimensional form.

4.4 Weak Formulation

To derive the weak formulation for the problem on hand we recall the resulting

boundary value problem from the previous section

∆u3 + bf = 0 in Q, (4.9)

∇u3 · n = 0, on Γ2, Γ3, Γ4 (4.10)

u3(x1, 0) = 0 on Γ1, (4.11)

τ23(x1, 0) = −γ1 u3,111(x1, 0)− σ∞23 on Γ0 . (4.12)
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In [47] Sendova and Walton showed that for the pure mode-I problem, when the surface

tension is assumed to depend linearly on the crack-surface mean curvature (same as

(4.7)), the crack-tip stresses are bounded and the crack-opening displacement takes the

cusp shape at the crack-tip. They have derived a singular integrodifferential equation

for the upper crack-face opening displacement on |X1| < 1 from the jump momentum

balance boundary conditions and the Dirichlet-to-Neumann and Neumann-to-Dirichlet

maps (equations (14) and (15) in [47]). The singular integrodifferential equation was

then analyzed through regularization to a second-kind Fredholm integral equation

and proved that it has a unique solution (continuous not singular) for all, apart from

countably many, values of the surface tension parameters γ0 and γ1. For the mode-III

fracture BVP (4.9)-(4.12), we will use3 the regularization approach to show that this

BVP has a unique continuous solution (and hence non-singular) with bounded stresses

and strains at the crack-tip. Therefore the boundary condition (4.12) is well defined

even though it contains higher-order tangential derivatives than the bulk PDE (4.9).

Next to derive a weak formulation, we multiply the DMB (4.9) by a scalar test

function v and integrate over the domain Q. Using integration by parts and boundary

conditions (4.10)-(4.12) yields

∫
Q

∇u3 · ∇v −
∫
∂Q

v ∇u3 · n =

∫
Q

v bf . (4.13)

There is no contribution from the second term on the left-hand side of (4.13) except

over the crack surface. Therefore the resulting weak formulation takes the form

∫
Q

∇u3 · ∇v −
∫

Γ0

v τC23(x1, 0) =

∫
Q

v bf , (4.14)

3An outline of the proof is given in the section 4.7.
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where the symbol τC23(x1, 0) is the JMB condition (4.12). We cannot substitute the

boundary condition (4.12) into (4.14) directly since it results in a weak form with

higher-order tangential derivatives that cannot be eliminated by integration by parts.

Therefore the issue on hand is how to implement the boundary condition (4.12) into

a numerically stable finite element formulation of the BVP. To this end, we will refor-

mulate the boundary condition (4.12) using boundary Green’s function and Hilbert’s

transform (Dirichlet to Neumann map).

4.5 Reformulation of the Crack-Face Boundary Condition

We consider the JMB crack surface boundary condition (4.12) and rearrange the

equation to obtain

−u3,111(x1, 0) =
1

γ1

[u3,2(x1, 0) + σ∞23] on Γ0 . (4.15)

This can be viewed as a second-order ordinary differential equation (ODE) for u3,1

over the interval [0, 1]. Hence we rewrite the above equation (4.15) as:

L{u3,1} =
1

γ1

[u3,2(x1, 0) + σ∞23] , (4.16)

where L{·} denotes the second order, linear differential operator

L{y}(x) := − y ′′(x) . (4.17)

In order to complete the boundary value problem for u3,1, we need two boundary con-

ditions, to this end we note that the out-of-plane displacement component u3(x1, x2) is
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an odd function in x2, therefore u3,1(x1, x2) required to satisfy the boundary condition

u3,1(0, 0) = 0 , (4.18)

also the regularization on Γ0 ∪ Γ1 implies that the slope of the crack-opening profile

u3,1(x1, 0) is continuous at the crack-tip i.e.

u3,1(1, 0) = 0 . (4.19)

Note that the boundary condition (4.19) is similar to equation (29)1 in [47]. Finally

combining (4.17), (4.18) and (4.19), we have the following two-point boundary value

problem.

Definition 1. Find y(x) := u3,1(x, 0) solving


L{y}(x) = f(x), 0 < x < 1

y(0) = 0,

y(1) = 0,

(4.20a)

(4.20b)

where L{·} is the second-order, linear differential operator defined in (4.17) and the

right-hand-side function is given by

f(x) =
1

γ1

[u3,2(x, 0) + σ∞23]. (4.21)

Then the Green’s function G(x, q) for the operator (4.17) can be computed by

considering the homogeneous equation

0 = L{y}(x) = −y ′′(x) , (4.22)

89



and choose two solutions satisfying the boundary conditions (4.20b)

y1(x) := x

y2(x) := 1− x
=⇒

y1(0) = 0,

y2(1) = 0.

(4.23)

The corresponding Wronskian is

W (y1, y2)(q) = y1(q)y′2(q)− y′1(q)y2(q) (4.24)

= −1. (4.25)

Thus the Green’s function is given by

G(x, q) =


−q(1− x), 0 ≤ q ≤ x ≤ 1,

−x(1− q), 0 ≤ x ≤ q ≤ 1.

(4.26)

Also note that ∫ 1

0

G(x, q) dq = − x
2

(1− x). (4.27)

Then the solution to the two point boundary value problem defined in (4.20a) and

(4.20b) is given by

u3,1(x, 0) = y(x) = G{f}(x) :=

∫ 1

0

G(x, q)f(q)dq. (4.28)
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Using (4.21) in (4.28) yields

u3,1(x, 0) =
1

γ1

∫ 1

0

G(x, q)[u3,2(q, 0) + σ∞23] dq

=
1

γ1

∫ 1

0

G(x, q)u3,2(q, 0) dq − σ∞23

2γ1

x(1− x). (4.29)

Now recall that the Hilbert transform gives the Dirichlet-to-Neumann map

u3,2(x, 0+) = H{u3,1} (4.30)

=
1

π
−
∫ ∞
−∞

u3,1(q, 0+)
dq

q − x
(4.31)

=
1

π
−
∫ 1

0

u3,1(q, 0+)
2q

q2 − x2
dq, (4.32)

since u3,1(x, 0) is odd and u3 vanishes outside the crack surface. In (4.30) the symbol

H denotes the Hilbert transform, also −
∫

denotes a Cauchy principal value. Applying

the BVP solution (4.29) to this equation yields

u3,2(x, 0+) =
1

πγ1

−
∫ 1

0

∫ 1

0

G(q, r)u3,2(r, 0) dr
2q

q2 − x2
dq

− σ∞23

2πγ1

−
∫ 1

0

q(1− q) 2q

q2 − x2
dq. (4.33)

We now need to simplify the two terms in the above equation (4.33). To this end we

observe that since the Green’s function is smooth, we change the order of integration in

the double integral term and swap dummy variables. For the notational simplification,
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we denote the first term by h(x) and the second term by g(x).

h(x) := −
∫ 1

0

∫ 1

0

G(r, q)u3,2(q, 0) dq
2r

r2 − x2
dr

=

∫ 1

0

u3,2(q, 0)−
∫ 1

0

G(r, q)
2r

r2 − x2
dr dq

=

∫ 1

0

k(x, q)u3,2(q, 0) dq, (4.34)

where the inner integral simplifies to

k(x, q) := −
∫ 1

0

G(r, q)
2r

r2 − x2
dr

=

∫ q

0

−r(1− q)
[

1

r + x
+

1

r − x

]
dr +

∫ 1

q

−q(1− r)
[

1

r + x
+

1

r − x

]
dr

= −(1− q)
[
2

∫ q

0

dr − x
∫ q

0

dr

r + x
+ x

∫ q

0

dr

r − x

]
+ q

[
2

∫ 1

q

dr − (x+ 1)

∫ 1

q

dr

r + x
+ (x− 1)

∫ 1

q

dr

r − x

]
= (q + x) ln (q + x) + (q − x) ln |q − x| − q(1 + x) ln (1 + x)− q(1− x) ln |1− x|

(4.35)

The second integral term in (4.33) simplifies as

g(x) :=

∫ 1

0

q(1− q)
q + x

dq +

∫ 1

0

q(1− q)
q − x

dq

=

∫ 1

0

(1− q + x) dq − x(1 + x)

∫ 1

0

1

q + x
dq +

∫ 1

0

(1− q − x) dq + x(1− x)

∫ 1

0

1

q − x
dq

= 1− x(1 + x) ln

(
1 + x

x

)
+ x(1− x) ln

∣∣∣∣1− xx
∣∣∣∣ . (4.36)

Apply these results to (4.33) yields the reformulated JMB condition

τC23(x1, 0) := uC3,2(x, 0) =
1

πγ1

∫ 1

0

k(x, q)u3,2(q, 0) dq − σ∞23

2πγ1

g(x), on ΓC , (4.37)
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where k(x, q) and g(x) are given in (4.35) and (4.36), respectively. Applying this result

to (4.14) yields the final weak form

∫
Q

∇u3·∇v+
1

πγ1

∫ 1

0

v(x, 0)

∫ 1

0

k(x, q)u3,2(q, 0) dq dx =

∫
Q

v bf +
σ∞23

2πγ1

∫ 1

0

v(x, 0) g(x) dx.

(4.38)

Note that this weak form has no higher-order derivatives, thus the standard FEM can

now be applied. Specifically, we will solve the following.

Definition 2. Find u ∈ V such that

a(u, v) = L(v), ∀ v ∈ V, (4.39)

where a(·, ·) and L(·) are the bilinear and linear forms, respectively, given by

a(u, v) =

∫
Q

∇u · ∇v +

∫ 1

0

v(x, 0)

∫ 1

0

K(x, q)
∂

∂y
u(q, y)


y=0

dq dx, (4.40)

L(v) =

∫
Q

vb3 +

∫ 1

0

v(x, 0)G(x) dx, (4.41)

where the kernel K is given by

K(x, q) =
1

πγ1

k(x, q), (4.42)

G(x) is given by

G(x) =
σ∞23

2πγ1

g(x), (4.43)

and V is the solution and test space given by

V =

{
w(x) ∈ H1(Q) : w


Γ1

= 0

}
. (4.44)
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4.6 Numerical Implementation

For the numerical implementation of the derived model, we have used two different

approaches for solving this problem using finite elements. In the first, we solve the

Fredholm second type integral equation which defines the reformulated JMB condition

(4.37) to obtain a numerical approximation to the Neumann boundary condition for

u3,2(x, 0) over the crack surface. Then the result can be directly applied to the original

weak formulation with standard finite elements. In the second method, we solve the

variational problem given in Definition 2 using a standard FEM approach, with the

reformulated JMB condition included directly. We will describe these methods in more

detail. In Section 4.8, we will show that both the methods are in good agreement.

For the numerical implementation, we have developed the numerical code using the

deal.II library [5, 6].

4.6.1 Fredholm Approximation Approach

We consider the original weak form (in the absence of body forces)

∫
Q

∇u3 · ∇v +

∫
ΓC

v uC3,2 = 0, (4.45)

where uC3,2(x, 0) solves the Fredholm second kind integral equation of the second kind

u(x)−
∫ 1

0

K(x, q)u(q) dq = −G(x), for 0 ≤ x ≤ 1, (4.46)

(cf. (4.37)) where K(x, q) and G(x) are given in (4.42) and (4.43), respectively. For

the FEM implementation of this weak form, we assemble the system using Gaussian

quadrature to approximate the integrals. In this case, all we require is the value of uC3,2

at the quadrature points. To obtain these values, we have developed an algorithm for
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numerically solving the Fredholm integral equation above. We use composite Simp-

son’s rule to approximate the integral term, i.e.,

∫ 1

0

K(x, q)u(q) dq ≈
n∑
j=0

wjK(x, qj)u(qj), (4.47)

where we have discretized the domain [0, 1] by a set of quadrature points {qj : j =

0, . . . , n}, where n is even, and {wj} are the corresponding quadrature weights. Al-

though the kernel K given in (4.42) and (4.35) is not smooth, all its singular points

are removable. For example, via L’Hôpital’s rule,

lim
x→q

(q − x) ln |q − x| = 0, (4.48)

We use collocation to obtain the value of the solution at the Simpson quadrature

points, i.e., we solve the system

u(qi)−
n∑
j=0

wjK(qi, qj)u(qj) = −G(qi), for i = 0, . . . , n (4.49)

using a known iterative technique (such as Conjugate-Gradient method). This gives a

numerical approximation to the Neumann boundary condition function

uC3,2(x, 0) ≈
n∑
j=0

wjK(x, qj)u(qj) +G(x) (4.50)

which may be applied directly to the weak form (4.45).

4.6.2 Nonlocal Approach

One of the main advantages of FEM is that the assembly of the stiffness matrix

can be split up over the elements, with the contribution over each element computed
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locally and then added into the global matrix. For the variational problem described

in Definition 2, this is exactly what is done for the first term in the bilinear form in

(4.40). However, when we discretize the double integral term

∫ 1

0

v(x, 0)

∫ 1

0

K(x, q)
∂

∂y
u(q, y)


y=0

dq dx (4.51)

over the triangulation, we have to keep track of two elements: one over which the outer

integral is taken and one for the inner integral. For this reason, we call this double

integral nonlocal.

Fortunately, such nonlocal terms, like the standard local integrals, may still be

computed via Gaussian quadrature. Recall that in FEM the test and solution functions

are first approximated by the set of global shape functions {ϕi} so that the only nonzero

contributions of the double integral occur when there is shape function support over

each element. Let K1 and K2 be two elements from our triangulation that have nonzero

intersection with the crack surface ΓC . Then we must assemble double-integral terms

of the form

D =

∫
K1∩ΓC

ϕ1(x, 0)

∫
K2∩ΓC

K(x, q)
∂

∂y
ϕ2(q, y)


y=0

dq dx, (4.52)

where ϕ1 and ϕ2 have support over K1 and K2, respectively.

Although arbitrary quadrilaterals could be used, we assume a rectangular mesh for

simplicity, so that these elements have the form

K1 = [a, b]× [0, c], K2 = [A,B]× [0, C]. (4.53)

We also structure the mesh so that the crack tip coincides with an element vertex. In

this case, the standard bilinear mappings which transform the unit reference element
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K̂ = [0, 1]2 to these real elements reduce to

x(x̂) = a+ (b− a)x̂, q(q̂) = A+ (B − A)q̂, (4.54)

0 = 0̂, y(ŷ) = Cŷ. (4.55)

Applying this mapping converts the double integral in (4.52) to

D =

∫ 1

0

ϕ1(x(x̂), 0)

∫ 1

0

K(x(x̂), q(q̂))
∂

∂ŷ
ϕ2(q(q̂), y(ŷ))


ŷ=0

∂ŷ

∂y
(B − A) dq̂ (b− a) dx̂

(4.56)

=

∫ 1

0

ϕ̂1(x̂, 0)

∫ 1

0

K(x(x̂), q(q̂))
∂

∂ŷ
ϕ̂2(q̂, ŷ)


ŷ=0

1

C
(b− a)(B − A) dq̂ dx̂, (4.57)

where ϕ̂1 and ϕ̂2 are the corresponding reference shape functions.

Finally, we replace both integrals with a 1D Gauss quadrature formula

∫ 1

0

f(x̂) dx̂ =
n∑
t=1

ω̂tf(x̂t), (4.58)

where {x̂t} and {ω̂t} are the quadrature points and weights, respectively. This yields

D = (b− a)
B − A
C

n∑
t,s

ω̂t ω̂s ϕ̂1(x̂t, 0)K(x(x̂t), q(x̂s))
∂

∂ŷ
ϕ̂2(x̂s, ŷ)


ŷ=0

. (4.59)

This term is assembled in the stiffness matrix as usual, with an extra loop for the

second application of the quadrature rule. However, it should be noted that this will

typically result in a nonsymmetric matrix. In addition, note that the kernel function K

is computed at quadrature points in the real elements K1 and K2, not at the reference

quadrature points.

In effect, this approach is doing the same thing as the Fredholm approach discussed
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in Section 4.6.1, in that the interior integral is approximated using a quadrature rule.

The significant difference is that in this nonlocal method, the collocation points over

the surface are not solved for separately, but rather included and solved for in the

global system.

4.7 Parameter Determination

The undetermined parameters in the general surface-mechanics fracture theory

developed by Sendova and Walton in [47], are the surface tension constants γ0 and

γ1. But for the fracture model and the loading condition considered in this work, γ1

is the only undetermined parameter. This value is a material property that can be

determined using calibration experiments. However, even without this calibration, we

can still get an idea of the correct range for this value and for which the solution to

the fracture BVP exhibits bounded crack-tip stress and strain. In this section, we will

prove that there is a lower bound on this range that will guarantee bounded crack-tip

stresses and a cusp-like opening profile.

We showed in Sections 4.5 and 4.6.1 that the JMB condition may be reformulated

as a Fredholm equation of the second kind (4.46). In standard form, this equation is

given by

γ1u(x)−K[u](x) = −σ
∞
23

2π
g(x), for 0 ≤ x ≤ 1, (4.60)

where K is the integral operator

K[ψ](x) =
1

π

∫ 1

0

k(x, q)ψ(q) dq, (4.61)

and the kernel k and data function g are given by (4.35) and (4.36), respectively.

Theorem 4.7.1. The Fredholm integral equation in (4.60) has a unique, continuous

solution u(x) ∈ [0, 1] for all but countably many values of γ1.
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Proof. We already noted in (4.48) that k(x, q) has a limit of zero when x→ q, and this

holds even for q = 1. Similarly, the other logarithmic singularities are removable by

their coefficients. Thus the kernel is a continuous function everywhere in [0, 1]2 except

for the set of removable discontinuity points S = {(x, q)} ∈ [0, 1]2 : x = {1, q}}, which

is a set of measure zero in R2. Thus k is square integrable, i.e., k(x, q) ∈ L2([0, 1]2).

It follows by definition that K is a Hilbert-Schmidt operator. As a consequence, K is

bounded, compact, and has a countable spectrum. Applying the Fredholm Alternative,

we see that (4.60) has a unique solution in C[0, 1] if and only if γ1 is not an eigenvalue

of K. Since the spectrum is countable, this concludes the proof.

Since the JMB condition requires the u3,2(x, 0) be a solution to this Fredholm

equation, then by Hooke’s law, we have shown that the shear stress τ23 along the

crack surface must be bounded for all but countably many values of γ1. To find a

lower bound for these values, we need a bound on the spectral radius of the integral

operator K, which may be obtained using the Hilbert-Schmidt norm. Thus, we require

that

|γ1| > ||K||HS =
1

π
‖k(x, q)‖L2 ≥ ρ(K). (4.62)

We used Mathematica R© to approximate the value of this norm using double nu-

merical integration and obtained the value γmin
1 = 0.1023473774. The simulations

presented below show clearly that, given |γ1| > γmin1 , the numerical solution and cor-

responding crack-tip stress/strain to the fracture BVP (4.9)-(4.12) and the reference

linearized elastic model agree to high accuracy away from the crack tip. It is only near

the crack tip that the two solutions differ with the linearized elastic solution exhibiting

the customary square-root singularity in stress and strain while the surface-mechanics

solution in stress and strain remains much smaller and bounded.
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4.8 Simulation Results

In this section we investigate the numerical solution of the surface-mechanics model.

In our finite element code and in all the following calculations we take the half-length

of the body b = 8 and due to symmetry of the out-of-plane displacement the compu-

tational problem can be reduced to upper-quarter plane. In the first step the problem

was solved using a uniform coarse mesh and then it was adaptively refined. A major

issue in generating adaptive meshes for the computations is how to estimate which

cell is to be refined or coarsened. To this end there are number of studies available

in the finite element literature [4, 22] which provides a criteria for the adaptive mesh

refinements. In this paper we employ a posterior error estimator developed for Laplace

equation by Gago et al. [22] and the same as been implemented in the deal.II library.

The numerical code exploits the KellyErrorEstimator class of the deal.II library to

get adaptive meshes for simulations.

In our numerical code, the initial uniform coarse mesh was adaptively refined

fifteen-times so that the final mesh had close to 1, 000, 000 degrees of freedom, with

over 1,100 elements along the crack surface. Table 4.1 shows the average number of

total cells, total DOF, and number of cells over the crack surface used for a square

domain with b = 8. The zeroth refinement cycle refers to the initial coarse mesh of

the domain, which contains 64 cells and 1 cell on the crack-face. We typically ran the

program for 15 refinement cycles, for which the final cycle has more than a thousand

cells along the crack face.

Table 4.2 shows the convergence of the center-node displacement across the refine-

ment cycles. Since there is only one independent displacement component, hence the

center-node displacement is the value u3(0, 0).
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Cycle Total Cells Total DOF Crack Cells

0 64 81 1

1 124 152 2

2 238 254 4

3 454 521 8

4 865 968 16

5 1,645 1,805 32

6 3,127 3,368 58

7 5,944 6,301 97

8 11,296 11,810 121

9 21,454 22,167 188

10 40,723 41,762 230

11 77,116 78,757 364

12 145,846 148,237 438

13 276,286 279,930 627

14 522,526 528,418 896

15 987,541 997,011 1,166

Table 4.1: Total number of cells, degree of freedom and crack cells for each refinement
cycles of the square domain
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Cycle γ1 = 0.0 γ1 = 0.5 γ1 = 1.0 γ1 = 2.0 γ1 = 4.0

0 0.00089573 0.00014256 7.12801e-05 3.56401e-05 1.78236e-05

1 0.000915728 0.000164825 8.24126e-05 4.12063e-05 2.06032e-05

2 0.000958142 0.0001677034 8.35169e-05 4.17585e-05 2.08792e-05

3 0.000981447 0.000167313 8.36565e-05 4.18283e-05 2.091412e-05

4 0.00099378 0.00016735 8.36752e-05 4.18376e-05 2.09188e-05

5 0.00100012 0.000167357 8.36786e-05 4.18393e-05 2.09196e-05

6 0.0010034 0.000167362 8.36812e-05 4.18406e-05 2.09203e-05

7 0.00100506 0.00016737 8.36848e-05 4.18424e-05 2.09212e-05

8 0.00100535 0.000167376 8.36881e-05 4.1844e-05 2.09222e-05

9 0.00100591 0.00016738 8.36902e-05 4.18451e-05 2.09225e-05

10 0.00100633 0.000167382 8.36904e-05 4.18456e-05 2.09225e-05

11 0.00100655 0.000167382 8.36909e-05 4.18459e-05 2.09225e-05

12 0.00100666 0.000167382 8.36911e-05 4.18459e-05 2.09225e-05

13 0.00100676 0.000167382 8.36911e-05 4.18459e-05 2.09225e-05

14 0.00100676 0.000167382 8.36911e-05 4.18459e-05 2.09225e-05

15 0.00100676 0.000167382 8.36911e-05 4.18459e-05 2.09225e-05

Table 4.2: Convergence of the center node displacement for various surface tension
parameter γ1 across refinement cycles.
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4.8.1 Error Reduction Factor

Here we study “Error Reduction Factor” similar to the one studied for the nonlinear

problem in Chapter 3. For the anti-plane strain problem studied here, the quantity

ERF is defined through the relationship as:

ERF =
|uLR3 (0, 0)− ui3(0, 0)|
|uLR3 (0, 0)− ui−1

3 (0, 0)|
, i = 2, 3, . . . LR, (4.63)

in which the term uLR3 (0, 0) denotes the center-node displacement of the out-of

plane displacement component u3(x1, x2) at the last-refinement and we compute this

quantity as a function of the number of degrees of freedom. The computed quantity,

ERF, is approximately 2.0, which is reasonable for the linear finite element. Fig-

ure 4.3 depicts the log-log plot of the difference in the error, which is the difference in

the center-node displacement (u3(0, 0)) of the current refinement level with the last

refinement level. We notice that the error is reduced considerably for the higher values

of the surface-tension modeling parameter γ1.

Figure 4.3: The log-log plot of the error as a function of the degrees of the freedom.
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Figures 4.4 and 4.5 shows the solution of the Fredholm integral equation (4.46) for

various values of the surface-tension parameter γ1. Figure 4.4 indicates the solution

reduces considerably for the values of γ1 greater than the lower bound of the Hilbert-

Schmidt norm γmin
1 .

Figure 4.4: Solution of the integral equation for different values of γ1.
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Figure 4.5: Solution of the integral equation for values of γ1 greater than γmin
1 .

Figure 4.6 depicts the solution of (4.38) for the parameters σ∞23 = 0.001 and γ1 = 1.

The solution plot depicts that the displacements are larger on the crack-surface than

on far-away region in the domain and the plot also shows the displacement in the

entire body including the applied boundary condition from the symmetry.
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Figure 4.6: 2D plot of the solution for the parameters σ∞23 = 0.001 and γ1 = 1.

Figure 4.7 shows the comparison of the two method implemented and both methods

agree very well. The l2-norm of the difference of the solution on the crack-surface

is 1.5286E−05 and it is considered as reasonable as the two methods uses different

quadrature points. For the remainder of this section, all results were obtained using

the nonlocal FEM implementation. The Figure 4.7 is consistent with the cusp-shaped

displacement profile predicted by the theoretical results [47]. Figure 4.8 demonstrates

how the surface tension parameter γ1 affects the crack-opening displacement. Even

for the small surface-tension parameter the crack-profile is a nice cusp-shaped and

the crack-faces closes with a sharp crack-tip, which is a great improvement in the

corresponding prediction from LEFM.
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Figure 4.7: Comparison of both FEM implementations and parameters used in the
computations are σ∞23 = 0.001 and γ1 = 1.

Figure 4.8: Crack-opening displace profile for the surface-mechanics model with pa-
rameter values σ∞23 = 0.001 and γ1 = 0.5.
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Figure 4.9: Crack-surface displacement (u3) for various values surface-tension param-
eter and fixed σ∞23 = 0.001.

Figure 4.9 demonstrates the effect of the surface tension parameter on the crack-

surface solution. We observe that for γ1 = 0.0 the crack-surface is elliptical (which

is same of the LEFM crack-surface prediction) and for the higher values of γ1 the

crack-surface is cusped opening shape with significantly reduced displacement. Hence

one can recover the classical LEFM elliptical solution for γ1 = 0.0. Even for smaller

nonzero values of γ1 we see cusping although the rest of the surface profile is closer

to the standard elliptical LEFM solution. Figure 4.10 depicts the near-tip stress

τ23 both for LEFM and surface-mechanics model. It is clear from the graph that

our LEFM numerical results are consistent with the classical 1√
1−x stress singularity.

An important observation from Figure 4.10 is that in the case of surface-mechanics

model, the near-tip stress values are orders of magnitude smaller compared with the

corresponding predictions of LEFM. This result is in good agreement with the previous

studies concerning the stress-concentration at the straight mode-I [47] and mixed-mode
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(combination of pure mode-I and mode-II) [53] crack-tips.

Figure 4.10: Comparison of the near-tip stress component τ23 for LEFM and surface-
mechanics model with parameter values σ∞23 = 0.001 and γ1 = 1.0.
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Figure 4.11: Comparison of the near-tip strain component ε23 for LEFM and surface-
mechanics model with parameter values σ∞23 = 0.001 and γ1 = 1.0.

The near-tip strain component ε23 both for LEFM and surface-mechanics model

is shown in Figure 4.11. As in Figure 4.10 the LFEM numerical results are very

close to the classical 1√
1−x singularity. But the surface-mechanics model, as proved

theoretically in [47], predicts bounded crack-tip strains. The computations for both

Figures 4.10 and 4.11 are done with the surface-tension parameter γ1 = 1.0, but one

can recover the classical singular stress-strain singularity with γ1 = 0.0.
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Figure 4.12: Near-tip stress component τ23 for various values surface-tension parameter
and fixed σ∞23 = 0.001

Stress component τ23 obtained, for increasing surface-tension parameter γ1, along

line directly ahead of the crack-tip is depicted in Figure 4.12. It is clear from the

graph that the near-tip stress decreases with increasing value of γ1. Higher values

of γ1 decreases the crack-face displacement as depicted in Figure 4.9 and also overall

displacement in the body. Hence the near-tip stresses are small even very near the

crack-tip.

Effect of top-face shear-load on the crack-surface displacement u3 is shown in Fig-

ure 4.13. The crack-face displacement increases with the increasing load. Also another

important result of the present investigation is that the surface-mechanics model pre-

dicts the crack-faces closed with a sharp crack-tip. In addition, Figure 4.14 depicts

the effect of top-face shear-load on the near-tip stress component τ23 and graph also

indicates that increase in top-face load increases the near-tip stresses.
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Figure 4.13: Effect of shear-load on the crack-surface displacement u3 and γ1 = 1

Figure 4.14: Effect of shear-load on the near-tip stress component τ3 and γ1 = 1
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Figure 4.15: Convergence of the stress component τ23 for parameter value γ1 = 1

Figure 4.15 shows the convergence of the numerical-value of stress component τ23

for the various refinement levels. The adaptive refinements of the computational do-

main increases the mesh density in the neighborhood of the crack-tip and there by

approximating the crack-tip singularity very well.

4.9 Conclusions

In this contribution, we have demonstrated an approach for the numerical imple-

mentation of the surface-mechanics model using FEM. Modeling crack-surface excess

property leads to higher order tangential derivatives [47,48,53] and the implementation

using stable numerical method such as finite elements was not addressed previously.

In this chapter, we have developed an approach to reformulate the JMB condition us-

ing boundary Green’s function and the Dirichlet to Neumann map. The reformulated

boundary condition for the Neumann data reduces to Fredholm second kind integral

equation. The actual FEM implementation was conducted using two slightly different
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methods. In the first, the reformulated JMB condition was solved separately to ob-

tain a numerical approximation to the Neumann condition on the crack surface, which

was then included using a standard FEM procedure. In the second, a nonlocal FEM

computation was employed to include the Neumann condition directly.

In Section 4.8 we have shown that both the FEM implementations agree well with

each other. A nonzero curvature-dependent surface tension produces bounded crack-

tip stress and a cusp-like crack opening profile. Another important result of the present

investigation that the crack-faces closes with a sharp crack-tip. All of which are in

marked distinction with the classical linearized elasticity model.
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5. CONCLUSIONS AND FUTURE WORK

In this chapter, we summarize the main contents along with the contributions of

this dissertation and briefly discuss possible future work.

5.1 Summary

This dissertation has presented the asymptotic and numerical study of two brittle

fracture theories. The class of response relations used for formulating the strain-

limiting elasticity theory utilizes a nonlinear relation between linearized strain tensor

and Cauchy stress tensor. The general class of implicit elasticity models were intro-

duced by Rajagopal in [34]. The linearization of implicit nonlinear models always leads

to linearized strain as a nonlinear function of Cauchy stress. But the same procedure

for the traditional Cauchy or Green elastic models give rise to the classical linearized

elasticity relations in the infinitesimal strain limit. Also the classical elastic model

predicts that the strains, in the neighborhood of the crack-tip, varies like 1√
r

(where

r is the radial distance from the crack-tip). Therefore crack-tip strain singularity vi-

olates the basic assumption through which the classical model has been derived. But

the new class of response relations introduced by Rajagopal [34–37,39,40] restrict the

strains uniformly to a physically realistic level. In a recent paper [41] Rajagopal and

Walton initiated a study of brittle fracture for a single anti-plane shear crack, using

a class of strain-limiting nonlinear constitutive models. They showed that the new

theory not only removes the classical square-root order singularity in strains but also

predicts bounded stresses in the vicinity of the crack-tip.

In Chapter 2, we extend the previous study of the brittle fracture in the context

of strain-limiting theory of elasticity to a more challenging plane-strain fracture set-

ting. The problem considered in Chapter 2 was that of a single, plane-strain crack in
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an infinite planar body governed by strain-limited infinitesimal fracture model. The

model incorporates the classical boundary conditions. Our main aim was to investi-

gate whether the fracture BVP admits singular crack-tip stress behavior. We presented

arguments based upon asymptotic and numerical techniques that the limiting strain

model considered does not admit crack-tip stress singularity within the specified class

of expansions. There remains open to develop a vector valued finite element based

solution algorithm because the asymptotic study only give some qualitative nature of

the solution near the crack-tip.

A finite element model for the plane-strain pure mode-I fracture is presented in

Chapter 3. The main purpose of the work presented in Chapter 3 was to study a

stable numerical implementation of the nonlinear strain-limiting anisotropic response

relations combined with the classical fracture boundary conditions. Using a inverted

nonlinear constitutive relation and equilibrium equation, we obtain a system of second

order quasilinear PDEs. The linearized version of the strong form was derived using

damped Newton’s method and a conforming finite element formulation was utilized to

get the numerical solution. The numerical results indicate that even very near the crack

tip, both stress and strain remain much smaller in magnitude than the corresponding

predictions from linearized elastic fracture mechanics (LEFM). Also of interest was

the behavior of the cleavage stress near the crack-tip and same has been studied for

the pure mode-I problem in [47]. The obtained results show that the cleavage stress

is σθθ as a monotonically decreasing function of θ (where θ is the polar angle), with

the maximum occurs at θ = 0.0.

In the second part of the dissertation (ie in Chapter 5), we study the numerical

implementation of the recently developed continuum-surface mechanics model. The

fracture-surface is modeled as a two dimensional dividing surface endowed with ex-

cess property (such as surface tension) and the material behavior in the bulk phase is
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modeled by the classical linearized elasticity. However, such approach leads to higher-

order tangential derivative on the crack-surface and a numerically stable finite element

implementation was not straight forward, because the shape functions needed higher

regularity on one part of the domain compared with the rest of the domain. We pro-

pose a reformulation of the crack-surface boundary condition as a Fredholm second

kind integral equation and for the actual FEM implementation we studied two dif-

ferent approaches. In the first, the Fredholm integral equation was solved separately

using product trapezoidal rule and then explicit Neumann data was utilized directly

in the FEM simulation. In the second approach, the nonlocal boundary condition was

utilized directly in the assembly of the global system during the standard FEM proce-

dure. Both FEM implementations agree each other well and more importantly both

approaches predict bounded crack-tip stress and strain. Also, a nonzero curvature-

dependent surface tension produces cusp-like crack opening surface and the crack-faces

closes with a sharp crack-tip.

5.2 Future work

In this dissertation, we successfully demonstrated an approach for implementing the

curvature-dependent surface tension excess property continuum-surface model. The

numerical results demonstrate that, for a single anti-plane strain crack, both the crack-

tip stress/strain are bounded and also predict a cusp-shaped crack-opening profile with

a sharp crack-tip. A similar reformulation and numerical approach can be applied for

more complicated geometries such as mode-I and mixed-mode fracture problems. For

a more challenging plane-strain mixed mode fracture, the curvature-dependent surface

tension model takes the form:

γ̃ := γ0 + γ1H(X1) (5.1)
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in which H(X1) denotes the mean-curvature of the deformed upper crack-surface. The

linearized form of H(X1) takes the form

H(X1) = u2,11(X1, 0
+) + h.o.t. (5.2)

Then the corresponding linearized JMB equations along with superposition of far-field

loading yields

σ22(X1, 0) = −γ̃ u2,11(X1, 0)− σ∞22 (5.3)

σ12(X1, 0) = −γ̃ ′(X1)− σ∞12 (5.4)

for |X1| < 1. Then in [53] a modified surface tension model was studied and takes the

form

γ = γ0 + γ1 u1,1(X1, 0) + γ2 u1,111(X1, 0) + γ3 u2,11(X1, 0). (5.5)

For the mixed-mode problem the only symmetry that exists is that the displacement

vector field is symmetric through the origin. That is

u(−X1,−X2) = −u(X1, X2). (5.6)

Hence the problem can be studied in upper-half plane. The differential momentum

balance yields a standard equilibrium equation, given by

Div T = 0, (5.7)

in which the Cauchy stress tensor is given by

T(u) = 2 ε(u) + ν tr (ε(u)) I. (5.8)
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The weak formulation can be obtained by multiplying (5.7) by a test function v and

integrate over domain

a(u,v)−
∫

Γc
v ·Tn = 0, (5.9)

where a(·, ·) is the standard elasticity bilinear form, Γc is the crack-face and n is the

normal vector. The boundary term vanishes everywhere except the crack surface, so

that the resulting weak form is given by

a(u,v) +

∫
Γc
γ0u2,1 v2,1 +

∫
Γc
σc12 v1 =

∫
Γc
σ∞22 v2, (5.10)

for the term σc12 we can use Hooke’s law and rewriting the above equation:

a(u,v) +

∫
Γc
γ0u2,1 v2,1 +

∫
Γc

(u1,2 + u2,1) v1 =

∫
Γc
σ∞22 v2 (5.11)

a(u,v) +

∫
Γc
γ0u2,1 v2,1 +

∫
Γc
u1,2 v1 +

∫
Γc
u2,1 v1 =

∫
Γc
σ∞22 v2, (5.12)

The main issue at hand is to reformulate the boundary condition (5.4) for u2,1. To

this end one make use of the approach developed in this dissertation and the resulting

weak form will not contain any higher order tangential derivatives. Another question

is to find the domain in which the parameters of the curvature-dependent surface

tension may vary, so that the model yields a physically reasonable solution for the

crack profile.

Another interesting problem within the context of surface-mechanics fracture mod-

els is to include body force correction term along with bulk material response relations.

In [46] it was conjectured that the incorporation of a mutual body force term leads

to a compact perturbation of the singular integro-differential operator after lineariza-

tion of the jump momentum balance boundary conditions under the assumption of

small strains. The question is to verify whether the compact operator yields bounded
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stresses and strains and a cusp-shaped crack opening profile. Another direction in

which the analysis and the computational approach developed in both [19, 46] can be

extended to the case of 3D cracks and interfacial fracture problems.

Further, there are several research opportunities motivated by the research on im-

plicit constitutive material models by Rajagopal and subsequent use of sub-class of

implicit models (such as strain-limiting elasticity models) in brittle fracture model-

ing ( [41], [23]). One can extend the finite element implementation proposed in this

disseration to the more general theory of fracture developed by Sendova and Walton

in [47] for the nonlinear elasticity and nonlinear surface-mechanics. Simultaneously one

can study, along with an appropriate fracture criterion, crack-growth and propagation

within the context of both fracture models studied in this dissertation. Also, another

interesting problem within the context of the two theories studied in this dissertation

is the penny-shaped crack. The 3D elasticity problems are ultimately interesting to

explore using the two modeling approaches studied in this dissertation.
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