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ABSTRACT

In this thesis, two problems in computational mechanics, namely aircraft water

entry and wind energy, have been studied together with description of related theory

and methodology. Fluid calculations are carried out with proper schemes and com-

putational techniques, including the use of dynamic mesh with OpenFOAM as the

platform. Subsequent analysis of the data provides valuable information for these

real world problems.

First, algorithms and numerical methods to solve the equations related to the

problems are proposed. Model problems are solved to test these methods. Then, in

the aircraft water entry problem, the complex and dynamic process of aircraft water

entry problem is simulated under several cases. External loading data has been

analyzed to estimate the severity of structural damage. The main finding is that the

vertical diving case is actually a reasonable theory regarding the final moments of

flight MH370 given the currently available information. In the wind energy problem,

blade resolved simulations of wind turbines are carried out. The proper orthogonal

decomposition analysis is shown to be capable of extracting dominant features of

the turbulent flow. Interaction between wind generators are studied to find out that

contra-rotating turbines can better capture energy in the wind.

It has been demonstrated that the computational approach is advantageous in

saving long and expensive processes of laboratory setup and measurements, while

providing valuable information to the subject problem.
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1. INTRODUCTION

Modeling and computation of fluid motion is a major field in mathematics, science

and engineering. There are numerous examples: large scale weather events like

hurricanes, fluid interactions with bridges and aircrafts, blood flows, micro scale

medical devices. As a first step, mathematical models described by partial differential

equations, such as Navier-Stokes equation, are developed. Despite huge efforts being

devoted to the mathematical analysis of these equations, fundamental theory for

these equations are still not complete. On the other hand, numerical approximations

to these systems are needed and must be developed for practical purposes in order

to help prediction and decision making. The goal of this thesis is to do modeling

and computation for concrete problems using the OpenFOAM1 framework.

The plan of the dissertation is laid out as follows. In order to provide the ability

to carry out such practical computational studies, the basic mathematical model,

Navier-Stokes equations, along with its numerical approximations will be given in

Section 2. A general projection method framework to numerically solve pressure

coupled systems in the Navier-Stokes system will be given. Volume-of-fluid method

is added to enable us to simulate two phase flows. And dynamic mesh techniques with

moving boundaries will be used to simulate interaction between fluids and immersed

solid objects.

The first problem considered is the water entry of an aircraft. Water entry con-

siders the dynamic motion of an object upon its entry into the water. It is a classical

problem in applied mathematics and fluid dynamics and is motivated by several

applications such as water landing of aircrafts, ship slamming and return of space

1OPENFOAM® is a registered trade mark of OpenCFD Limited, the producer of the Open-
FOAM software.
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capsules. With the help of large scale computation, three dimensional Navier-Stokes

equations will be solved numerically with the complexity of two fluid phases, and

turbulence modeling. In addition to the scientific interest of understanding the pro-

cess, it will be shown that practical damage assessment can be carried out using

these computation data. This will be discussed in Section 3. Part of this section was

first published in [8] by American Mathematical Society.

The second application is wind energy generation. Wind energy is one of the

major forms of renewable energy. High fidelity, blade resolving simulation of the

wind turbine flows hopefully will provide a more accurate approach for estimating

the performance of wind generators. The fully transient numerical simulations also

give us the opportunity to study the dynamic interaction between turbine blades

and tower, interaction between between generator within a wind farm, and dynamic

control strategies of the generators. This will be discussed in Section 4.

A summary will be given in Section 5.

2



2. NUMERICAL SIMULATION OF FLUID FLOWS

In this section, we offer a review of computational methods for the Navier-Stokes

equations and finite volume method. We then introduce the physical and numerical

method to be computed.

2.1 Solution Algorithms for Pressure-Coupled Systems

The time dependent Navier-Stokes system is the common model to describe fluids.

Let Ω be an open, bounded spatial domain, and T0 > 0 be the fixed terminal time.

Consider the incompressible Navier-Stokes system for the velocity u ∶ Ω×[0, T0]→ Rd

and pressure p ∶ Ω × [0, T0]→ R by

∂(ρu)
∂t

+∇ ⋅ (ρuu) −∇ ⋅ τττ +∇p = f in Ω × [0, T0], (2.1)

∇ ⋅ u = 0 in Ω × [0, T0], (2.2)

where τττ is the deviatoric stress tensor, ρ is the density and f is the external body

force. For incompressible Newtonian fluid, τττ = µ(∇u+∇u⊺), where µ is the viscosity.

The system is supplemented by initial condition

u(⋅, t) = u0 in Ω, (2.3)

and appropriate boundary conditions. For instance, constant inflow and wall can be

modeled by the Dirichlet boundary condition for velocity as

u = ub on ∂Ω × [0, T0]. (2.4)

Note that the divergence-free condition (2.2) (also called continuity condition)

3



needs to be coupled with the convection-diffusion problem. Various algorithms have

been proposed such as the projection method [6], SIMPLE algorithm [34] and PISO

algorithm [25]. These methods are basically composed of a prediction step and

a subsequent correction step to ensure continuity. The process is then iterated if

necessary. To simplify the discussion in the current section, we focus on the linear

system

∂(ρu)
∂t

− µ∇2u +∇p = f in Ω × [0, T0], (2.5)

∇ ⋅ u = 0 in Ω × [0, T0], (2.6)

which is called the Stokes problem. When the full Navier-Stokes system (2.1)-(2.2) is

considered, the nonlinearity can be treated with iteration over the linearized system.

Given a temporal discretization, for example, the backward Euler

ρ
un − un−1

δt
− µ∇2un +∇pn = fn, (2.7)

where δt = tn − tn−1, the system can be expressed formally as

⎛⎜⎜⎝
A δt

ρ
G

D 0

⎞⎟⎟⎠
⎛⎜⎜⎝
un

pn

⎞⎟⎟⎠
= ⎛⎜⎜⎝

r

0

⎞⎟⎟⎠
, (2.8)

where

A = I − δtµ
ρ

L, (2.9)

r = un−1 + δt
ρ
fn. (2.10)

Here L, G and D are the Laplacian, gradient and divergence operators, respectively.

They can be either regarded as differential operators with appropriate boundary con-

4



ditions or algebraic matrices after spatial discretization of the equations. The above

equation can be split and factorized into various forms. This idea is explored as the

inexact factorization formulation [35]. In general, consider the following decomposi-

tion ⎛⎜⎜⎝
A δt

ρ
G

D 0

⎞⎟⎟⎠ = AC +R, (2.11)

with the definition of the block operators

A =⎛⎜⎜⎝
A0 0

D − δt
ρ
DP−1G

⎞⎟⎟⎠ ,

C =⎛⎜⎜⎝
I δt

ρ
P−1G

0 I

⎞⎟⎟⎠ ,

R =⎛⎜⎜⎝
A −A0

δt
ρ
(I −A0P−1)G

0 0

⎞⎟⎟⎠ .

(2.12)

Here A0 and P are introduced to approximate A, in order to reduce or eliminate the

number of direct inversions of operator A, at the cost of a residual term R to the

whole system. An iterative procedure for the system (2.8), rewritten as

ACψ +Rψ = b, (2.13)

with

ψ = ⎛⎜⎜⎝
un

pn

⎞⎟⎟⎠ , b = ⎛⎜⎜⎝
r

0

⎞⎟⎟⎠ ,

can then be constructed by

ACψl = b −Rψl−1, l = 1,2, . . . ,m (2.14)

5



for m sub-step iterations. After the final step, the approximate solution is obtained

as ψm.

Equations (2.12) and (2.14) are a general representation of a large category of

solution algorithms for the pressure coupled systems (2.8). They can differ by the

choice of A0, P, m, ψ0. Also note that temporal discretizations can be easily ad-

justed, namely by A and r. Several specific cases of the proposed general method

will be discussed below.

Example 2.1 (Original projection method [10]). Let

m = 1, A0 =A, P = I, ψ0 = 0.

Equation (2.14) become

⎛⎜⎜⎝
A 0

D − δt
ρ
DG

⎞⎟⎟⎠
⎛⎜⎜⎝
I δt

ρ
G

0 I

⎞⎟⎟⎠
⎛⎜⎜⎝
un

pn

⎞⎟⎟⎠ =
⎛⎜⎜⎝
r

0

⎞⎟⎟⎠ , (2.15)

which is essentially the following series of operations

Aũ = r, (2.16)

δt

ρ
DGpn =Dũ, (2.17)

un = ũ − δt
ρ
Gpn. (2.18)

Equation (2.16) is called the prediction step, it deals everything except the pressure

gradient. Then the pressure Poisson equation (2.17) and a correction step (2.18)

make sure that the continuity condition (2.2) is satisfied. By subtracting the original

6



equation (2.13) it can be seen that the splitting error involved in this method is

E =R[ψ0 −ψ]
= − δt

ρ
(I −A)Gpn = −(δt)2µ

ρ2
Gpn = O(δt2).

This means the method has order one. Therefore, any temporal discretization higher

than order one will likely have no benefit over the backward Euler method. Rigorous

error analysis for the Navier-Stokes system solved with this scheme can be found in

[38].

Example 2.2 (Incremental correction method [19]). Let

m = 1, A0 =A, P = I, ψ0 =
⎛⎜⎜⎝

0

pn−1

⎞⎟⎟⎠
.

The difference with the original projection method is that (2.16) is replaced by

Aũ = r − δt
ρ
(I −A)Gpn−1. (2.19)

By making an substitution

˜̃u = ũ − δt
ρ
Gpn−1, (2.20)

we arrive at the following series of operations:

A˜̃u = r − δt
ρ
Gpn−1, (2.21)

δt

ρ
DG(pn − pn−1) =D˜̃u, (2.22)

un = ˜̃u − δt
ρ
G(pn − pn−1). (2.23)

7



This method uses incremental corrections, which means that the Poission equation

is for the pressure increment rather than pressure itself. The error involved is

E =R[ψ0 −ψ]
= − δt

ρ
(I −A)G(pn − pn−1) = −(δt)2µ

ρ2
G(pn − pn−1) = −(δt)3µ

ρ2
G
pn − pn−1

δt

=O(δt3).
Therefore, this method is formally second order.

Example 2.3 (SIMPLEmethod [34]). Semi-Implicit Method for Pressure-Linked Equa-

tions (SIMPLE) type methods deals with the algebraic formulation of the operator

A. The diagonal elements of A therefore can be selected by P = diag(A) for quick
inversion. More specifically, at a given control volume K ∈ T , suppose that the

discretized Laplacian is

(−Lu)K = aKKuK + ∑
L∈T /K

aKLuL,

then by (2.9),

(Au)K = uK + δtµ
ρ

⎛
⎝aKKuK + ∑

L∈T /K

aKLuL

⎞
⎠ ,

and hence the diagonal of A can be explicitly written as

(diag(A)u)K = (1 + δtµρ aKK)uk.

SIMPLE-type methods can be used with incremental or non-incremental correc-

tion similar to the above two examples. For simplicity, let us consider the non-

8



incremental version

m = 1, A0 =A, P = diag(A), ψ0 = 0.

The following series of operations are obtained

Aũ = r, (2.24)

δt

ρ
DP−1Gpn =Dũ, (2.25)

un = ũ − δt
ρ
P−1Gpn. (2.26)

It may be viewed as an original projection method with Jacobi preconditioning for

the pressure correction. It have the same formal order, namely, first order for non-

incremental correction and second order for incremental correction when we take

ψ0 =
⎛⎜⎜⎝

0

pn−1

⎞⎟⎟⎠
Example 2.4 (PISO method [25]). Pressure implicit with splitting of operator (PISO)

algorithm is similar to SIMPLE in that it also deals with algebraic formulation.

However, it has at least two corrections, namely m ≥ 2. Let

m = 2, A0 = P = diag(A), ψ0 =
⎛⎜⎜⎝
un−1

0

⎞⎟⎟⎠ .
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The following series of operations are obtained for the first iteration:

A0ũ
(1) = r − (A −A0)u(1), (2.27)

δt

ρ
DP−1Gpn,1 =Dũ(1), (2.28)

u(1) = ũ(1) − δt
ρ
P−1Gp(1), (2.29)

and for the second iteration

A0ũ
(2) = r − (A −A0)u(1), (2.30)

δt

ρ
DP−1Gpn =Dũ(2), (2.31)

un = ũ(2) − δt
ρ
P−1Gpn. (2.32)

By comparing to the exact equation (2.13), the splitting error involved in the

algorithm can be expressed by

E =R[ψ1 −ψ]
=R[(AC)−1(b −Rψ0) −ψ]
=R[(AC)−1(b −ACψ −Rψ0)]
=R[(AC)−1R(ψ −ψ0)]
=(A −A0)A−10 (A −A0)δtun − un−1

δt

=O(δt)O(1)O(δt)δtO(1)
=O(δt3),

10



realizing the fact that

R ⎛⎜⎜⎝
u

p

⎞⎟⎟⎠ =
⎛⎜⎜⎝
(A −A0)u

0

⎞⎟⎟⎠ ,

(AC)−1 ⎛⎜⎜⎝
u

0

⎞⎟⎟⎠ =
⎛⎜⎜⎝
A−10 u

0

⎞⎟⎟⎠ .

From the above analysis, we observe that by increasing the number of iteration

to 2, we are able to make explicit prediction steps such as (2.27) while staying second

order. By explicit, we mean that the equation only involves the inversion of a diagonal

matrix. Furthermore, by induction, the order of accuracy grows the same way as

the number of iteration m, at least formally. However, as m increases, the above

analysis requires bounds for higher order spatial derivatives of ∂u/∂t. Therefore, in
practice, larger m won’t have a significant benefit on the result, which is tested in

[4] for example.

In conclusion, a general framework (2.12) and (2.14) for solving pressure coupled

systems (2.8), such as the Stokes system, is proposed. Popular methods such as

projection method and SIMPLE-type methods can be easily represented within this

framework. Order of accuracy can be formally derived. However, more rigorous

mathematical analysis is required in future research to gain insights into the nature of

this general method, and provide key information to optimal choices to the adjustable

parts. For an overview of analysis on the projection method, see [20].

2.2 Finite Volume Discretization

When comparing the spatial discretization methods, the main advantage of finite

volume method (FVM) is its conservativity, which is an desired properties in many

applications. Mathematical analysis of the cell centered finite volume method can

be found in [12,13].
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Consider the spatial domain which satisfy the following assumption

Ω ⊂ Rd(d = 2,3) is open, polygonal, bounded, connected,
∂Ω = Ω/Ω is Lipschitz-continuous.

(2.1)

In the above definition, polygonal means ∂Ω is a finite union of polygons in hyper-

planes of Rd. Admissible polygonal finite volume space discretization of Ω can be

defined as the following.

Definition 2.5 (Admissible finite volume space discretization of Ω). Let Ω be a

domain satisfying (2.1). An admissible finite volume space discretization of Ω is

defined by (T ,E ,P) satisfying the following properties:

• T is a family of control volumes, which are open polygonal convex subsets of

Ω such that

Ω = ⋃
K∈T

K.

For any K ∈ T , ∣K ∣ > 0 is the measure of K.

• E is a family of edges, which are subsets of Ω contained in hyperplanes of Rd.

For any σ ∈ E , ∣σ∣ > 0 is the (d − 1)-dimensional (surface) measure. For any

K ∈ T , there exists a subset EK of E such that

∂K =K/K = ⋃
σ∈EK

σ.

Let Tσ = {K ∈ T ∶ σ ∈ EK}. For any σ ∈ E , if σ ∈ ∂Ω, then Tσ has exactly one

element, and σ ∈ Eext, otherwise, Tσ have exactly two elements, and σ ∈ Eint.
• P is a family of points {xK}K∈T , such that xK ∈ K. For all σ ∈ Eint with

Tσ = {K,L}, the line that is through xK and xL is orthogonal to σ and intersects

12



σ at xσ. For all σ ∈ Eext with Tσ =K, the line that is through xK and orthogonal

to σ intersects σ at xσ.

Note that some requirement in Definition 2.5 can be relaxed, such as the convexity

of control volumes and orthogonality. In such cases, additional regularity conditions

on the mesh and modification on the numerical schemes are usually needed to prove

convergence.

We further list some notations to be used in the following. Let dK,σ be the

distance from xK to edge σ, and

dK,σ =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
dL,σ + dK,σ Tσ = {K,L},
dK,σ Tσ = {K},

DK,σu =
⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
uL − uK Tσ = {K,L},
−uK Tσ = {K}.

Let nK,σ be the normal vector to σ outward from K. Let HT be the family of

piecewise constant function

{u ∈ L2(Ω) ∶ u = ∑
K∈T

uKχK}

where χK are the characteristic function of K.

Finite volume schemes are usually defined through local integration over control

volume K. For u ∈HT ,

∫
K
∇ ⋅F(u)dV = ∑

σ∈EK

∫
σ
F(u) ⋅ nK,σ dS = ∑

σ∈EK

FK,σ(u),

where FK,σ(u) is the approximation of the integral ∫σ F(u) ⋅nK,σ dS. Conservativity
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is guaranteed if

FK,σ(u) + FL,σ(u) = 0 for Tσ = {K,L}.
For convection-diffusion equation with Dirichlet boundary condition

−∇2u +∇ ⋅ (vu) = f in Ω,

u = 0 on ∂Ω,

(2.2)

namely F(u) = ∇u + vu, the numerical approximation FK,σ(u) can be proposed as

FK,σ(u) = ∣σ∣ DK,σu

dσ
+ vK,σΠσu,

where vK,σ = ∫σ v ⋅nK,σ dS, and Πσu is the interpolation of u ∈HT to σ. The upwind

scheme, namely

Πσu =
⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

uK if vK,σ ≥ 0,
uL if vK,σ < 0,Tσ = {K,L},
0 if vK,σ < 0,Tσ = {K},

provides first order accuracy. Proof of existence, stability, and error analysis for

equation (2.2) with upwind scheme on general admissible finite volume mesh defined

by Definition 2.5 can be found in [17]. For higher order schemes in one dimension,

we have the so called total variation diminishing (TVD) criteria, proposed in [22],

to obtain stable second order approximation to hyperbolic conservation laws. For

general mesh in higher dimensions, the extension is not straightforward, though

one can apply the one dimensional theory anyway on the line (xK ,xL) in many

computational codes. Mathematical analysis on this topic can be found in [11, 13].
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2.3 Simulation of Compressible Two Phase Flows

In flows with two immiscible fluids, the phases are separated by a deformable

interface, which could go through topological changes such as breakup or coalescence.

Volume-of-fluid (VOF) method [23] is used here. A volume fraction field is cou-

pled into the system to differentiate the phases in a single fluid domain. The advan-

tage of VOF is that it can easily deal with topological changes of the interface. Mass

conservation of each phase is in line with the advantage of the finite volume method.

Description and comparison with various other interface tracking methods can be

found in a review [47]. The flavor of VOF method used do not a have an interface

reconstruction step. Instead, the volume fraction field is advected by a discretization

scheme of the differential equation.

To simulate compressible flow, a pressure based solver is used. A pressure based

solver works similar to the methods described in Section 2.1. The pressure-based

solver traditionally has been used for incompressible and mildly compressible flows,

for example, water. The method used here is similar to the one described in [32].

Suppose there are two phases in the domain Ω satisfying (2.1). The density of

them are, respectively, ρi ∶ Ω×[0, T0]→ R+, i = 1,2. Let αi ∶ Ω×[0, T0]→ [0,1], i = 1,2
be the volume fraction of the phases. We use α and α1 interchangeably. Note that

α1 + α2 = 1. Ideally, α would be a step function across the interface for immiscible

fluids. However, it is assumed that it smears a little so that we can actually consider

its gradient, etc. We will consider temperature T ∶ Ω× [0, T0]→ R+. Also, recall that

the velocity is u ∶ Ω × [0, T0]→ Rd and pressure is p ∶ Ω × [0, T0]→ R.

Mass balance for each phase is given by

∂(αiρi)
∂t

+∇ ⋅ (αiρiu) = 0, i = 1,2, (2.1)
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Conservation of momentum is

∂(ρu)
∂t

+∇ ⋅ (ρuu) −∇ ⋅ τττ +∇p = ρg + f surf, (2.2)

where g is the gravitational acceleration. The deviatoric stress tensor is

τττ = µ(∇u +∇u⊺ − 2

3
(∇ ⋅ u)III) ,

where µ is the effective mixture viscosity, ρ = α1ρ1 + α2ρ2 is the mixture density.

We apply the continuum surface force model to describe the force caused by surface

tension as

f surf = γκ∇α,
where γ is the given surface tension, κ is the curvature approximated by

κ = −∇ ⋅ ( ∇α∣∇α∣ + ε) ,

with a small number ε > 0 to avoid division by zero.

For general compressible fluid, pressure, density and temperature are linked

through an equation of state. Since we are using a pressure based solution algo-

rithm. Density is expressed in terms of pressure and temperature

ρi = ρi(p, T ), (2.3)

which is locally linearized at given p and T ,

dρi

dt
= ψi(p, T )dp

dt
,
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in order to facilitate implicit pressure treatment caused by compressible effects. The

time derivative d/dt here is understood as material derivative. In particular, for

water, a linear equation of state used by us here is

ρ1 = ρ0 +ψ1p,

where ρ0 and ψ1 are constants, while for air, ideal gas law is used as

ρ2 = M

RT
p, ψ2 = M

RT
,

where M is the molar mass, and R is the gas constant.

The energy balance for each phase is

∂(αiρi(ei + k))
∂t

+∇ ⋅ (αiρiu(ei + k))
−∇ ⋅ (κi∇T )αiρi

ρ
+∇ ⋅ (pu − τττ ⋅ u)αiρi

ρ
− αiρig ⋅ u = 0,

(2.4)

where ei = CV iT is the internal energy per unit mass for phase i, k = 1
2
∣u∣2 is the

kinetic energy per unit mass, and κi is the thermal conductivity for phase i.

The above governing equations are reformulated to suit the needs of a pressure-

based solver. First, equation (2.1) is expanded by product rule to get

∂αi

∂t
+∇ ⋅ (αiu) = − αi

ρi
(∂ρi
∂t
+ u ⋅ ∇ρi)

= − αi

ρi

dρi

dt
= −αiψi

ρi

dp

dt
.

(2.5)

Summing the above equations for i = 1,2, we get

∇ ⋅ u = −(α1ψ1

ρ1
+ α2ψ2

ρ2
) dp
dt
. (2.6)
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By reformulation right hand side of equation (2.5) with i = 1, we get

∂α

∂t
+∇ ⋅ (αu) = α∇ ⋅ u + α(1 − α)G, (2.7)

where

G = (ψ2

ρ2
− ψ1

ρ1
) dp
dt
= (ψ2

ρ2
− ψ1

ρ1
)(∂p

∂t
+ u ⋅ ∇p) .

Then, equation (2.4) is expanded by product rule, then use (2.1) to obtain

αiρiCV i

∂T

∂t
+ αiρiCV iu ⋅ ∇T + αiρi

∂k

∂t
+ αiρiu ⋅ ∇k

−∇ ⋅ (κi∇T )αiρi

ρ
+∇ ⋅ (pu − τττ ⋅ u)αiρi

ρ
− αiρig ⋅ u = 0,

Divide the above equation by ρiCV i, sum for i = 1,2, then multiply by ρ, we get

ρ
∂T

∂t
+ ρu ⋅ ∇T − a∇2T

+( α1

CV 1

+ α2

CV 2

)(ρ∂k
∂t
+ ρu ⋅ ∇k +∇ ⋅ (pu − τττ ⋅ u) − ρg ⋅ u) = 0,

where

a = α1κ1

CV 1

+ α2κ2

CV 2

.

Finally, use ∂ρ/∂t +∇ ⋅ (ρu) = 0, we get

∂(ρT )
∂t

+∇ ⋅ (ρuT ) − a∇2T

+( α1

CV 1

+ α2

CV 2

)(∂(ρk)
∂t

+∇ ⋅ (ρuk) +∇ ⋅ (pu − τττ ⋅ u) − ρg ⋅ u) = 0. (2.8)

In summary, we have unknowns α, u, p, ρ1 ρ2, and T . On the other hand, we have

equation (2.7) to solve α, equations (2.2) and (2.6) as one pressure-coupled system

to solve u and p, equation (2.8) to solve T , and equations of state (2.3) to solve ρi.
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The equation for pressure is a little different from the incompressible case described

in Section 2.1. But since ∇ ⋅ u is implicitly related to p in (2.6), we can modify the

equation as

δt

ρ
DP−1Gpn =Dũ + (α1ψ1

ρ1
+ α2ψ2

ρ2
)(pn − pn−1

δt
+D(ũpn) − pnDũ)

The equations mentioned above are solved in sequence in each time step , and iterated

if necessary.

2.4 Numerical Test Problems

The first test case is the Taylor-Green vortex solution to the time-dependent

incompressible Navier-Stokes equations. The domain is (x, y) ∈ [0,2π]2, and pick

ρ = 1, µ = 1 the exact solution is

u = e− 2µt

ρ

⎛⎜⎜⎝
sin(x) cos(y)
− cos(x) sin(y)

⎞⎟⎟⎠
,

p = e− 4µt

ρ (cos 2x + cos 2y)ρ
4
.

The spatial discretization is 200 × 200. Exact solution is imposed at the boundary

of the domain. PISO algorithm is used for pressure coupling, with two outer iter-

ations because of the nonlinear convective term. The convective term uses the van

Leer limiter. Crank-Nicolson scheme is used for temporal discretization. Numerical

convergence test is shown in Figure 2.1. The exact solution and error distribution

can be seen in Figure 2.2.

The second test is the one dimensional shock tube solved by a pressure-based

solver for the time-dependent compressible system, or the Euler equations, on the

domain x ∈ [−0.5,0.5]. The solver also solves an energy equation. The initial condi-

19



10
-5

10
-4

10
-3

10
-2

10
-3

10
-2

10
-1

L
∞
 
e
r
r
o
r

δ t

order 2.3 

T=0.1

T=0.2

T=0.3

T=0.4

T=0.5

Figure 2.1: Error convergence test for Taylor-Green vortex solution of the time-
dependent incompressible Navier-Stokes system. The convergence order with re-
spective to time step size (δt) is approximately 2.3 before it slows down.

Figure 2.2: The figure on the left is the exact Taylor-Green solution at t = 0.2 sec.
The figure on the right is the error distribution of the solution with δt = 0.01 sec and
t = 0.2 sec.
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Figure 2.3: Numerical Solution for the pressure of a shock tube at t = 0.4 ms, with
different spatial resolution n, in comparison with the analytical solution.

tion for the high pressure side (x ∈ [−0.5,0]) is p = 5×105 Pa, and for the low pressure

side (x ∈ (0,0.5]) is p = 2 × 104 Pa. Both sides have an initial temperature T = 303
K, and zero initial velocity. The gas is modeled as ideal air, with 28.9 g/mol mass.

Upwind scheme is used for the convective term, and Crank-Nicolson scheme is used

for temporal discretization. The Numerical solutions for the pressure at t = 0.4 ms

are shown in Figure 2.3 with different spatial resolutions n in comparison with the

analytical solution.
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3. WATER ENTRY OF AN AIRLINER∗

On March 8, 2014 Malaysia Airlines Flight MH370 disappeared less than an hour

after take-off on a flight from Kuala Lumpur to Beijing. The Boeing 777-200ER

carried 12 crew members and 227 passengers. On March 24 the Malaysian Prime

Minister announced that “It is therefore with deep sadness and regret that I must

inform you that ... Flight MH370 ended in the Southern Indian Ocean.” Though the

exact fate of Flight MH370 remains undetermined, the available evidence indicates a

crash into the ocean. However, disturbing as this is, not all emergency water landings,

referred to as “ditching” when they are controlled, end in tragedy. In the “Miracle

on the Hudson”, on January 15, 2009, Capt. Chelsey B. “Sully” Sullenberger and

his crew successfully ditched US Airways Flight 1549, an Airbus A320-200, in the

Hudson River after a loss of power due a bird strike on take-off from La Guardia

Airport. There was no loss of life.

Figure 3.1 show our “representation” of a commercial airliner, a Boeing 777

model, plunging into the ocean. (See our commentary in Box 1 of Section 3.1).

Such simulations can help to understand the physical mechanisms at work and also

to improve passenger safety. But these are highly challenging simulations that require

the cooperation of engineers, mathematicians and computational scientists. Any sci-

entific investigation of the mishap, apart from human factors of foul play and conspir-

acy, appears mostly of an engineering nature, such as machine and instrumentation

breakdown, midair explosion, weather, navigation, etc. But this should not prevent

mathematicians’ curiosity—and our fascination with airplanes since childhood—from

entering the fray to also add and contribute something valuable, regarding this in-

∗Part of this section is first published in Notices of the American Mathematical Society 62 (April 
2015): 330-344; © by the 2015 American Mathematical Society (www.ams.org).
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vestigation and recovery effort. The fact is, mathematics is closely intertwined with

engineering, and is not detached from the “real world” as some people may think.

The statement made by the Malaysian Prime Minister that Flight MH370 “ended”

in the Southern Indian Ocean was based on the assessment by the British company

Inmarset. An article articulating how the radar signal backtracking made by In-

marsat works was published in SIAM News1, where John Zweck of the Math Dept

of the University of Texas - Dallas argued in support of Inmarsat by using the

Doppler frequency shift, time and locations of ping, trigonometry and other mathe-

matical methods and MATLAB R○ software. Nevertheless, Inmarsat’s radar tracking

methodology and data analysis have not yet convinced everybody that they are iron-

clad; see some counter arguments by David Finkleman in [16], for example. (Dr.

Finkleman is Director of Studies and Analysis, and Senior Scientist, North Ameri-

can Aerospace Defense Command and U.S. Space Command, at Peterson Air Force

Base, Colorado.)

We discuss this air incident from a mathematical as well as interdisciplinary

perspective. We show how computational mathematics and mechanics can help

us understand the physical nature of an aircraft emergency water landing, how to

model and compute it, and how this knowledge is helping safe civil aviation and

other aerospace related undertakings. This kind of problems has become more and

more typical for the work of a mathematician as part of an interdisciplinary team in

industry or government labs.

3.1 The Water Entry Problem Revisited

The water entry problem is a classical problem in applied mathematics and fluid

dynamics. It considers the dynamic motion of an object upon its entry into the water.

1https://sinews.siam.org/DetailsPage/tabid/607/ArticleID/146/

How-Did-Inmarsat-Deduce-Possible-Flight-Paths-for-MH370.aspx
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Figure 3.1: The aircraft is a Boeing 777 model flying into ocean at the speed of
70m/sec, with pitch angle = -20○, at time t=0.36 sec. A volume-of-fluid (VOF)
scheme in OpenFOAM is used to simulate the two-phase flow for the fluid-aircraft
body interaction.

The problem was motivated by several applications: the landing of a hydroplane,

the entry into water of a rocket or the Apollo module returning from space, and the

ditching or crashing of aircraft.

A major contribution to this field was made by the celebrated applied mathe-

matician and fluid dynamicist Theodore von Karman (1881-1963). He developed the

idea of “added mass” (a mass of the fluid that is co-moving with the body) to study

the problem [43]; see Figure 3.2. Von Karman inferred that the impact force on the

body is related to the instantaneous change of total momentum of the body with

its own mass but with an extra mass augmented by the “added mass” of the fluid

around the submerged portion of the body. That is,

d

dt
[(M +m(t))ζ̇(t)] =Mg − FB − FC − FD (cf. [1, eq. (2.3)]) (3.1)

where M =mass of the projectile, m(t) = “added mass”, FB = buoyancy force, FC =
capillary force, FD = steady-state drag force, and ζ(t) = depth of penetration into fluid.
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Figure 3.2: Von Karman’s idea of “added mass” for the water entry problem, which
is an idealization and simplification. Here the red region represent “added mass”.
This is the mass moving together with the mass of the wedge projectile. The portion
of the (red) added mass lying above the still water surface is called the “pile up”.

We note that the precise value of added massm(t) is not known. For small time or

submerged depth upon entry of the body into the water, von Karman estimated the

added mass to be half that of a flat plate with the same area as the instantaneous

still water-plane of the body. Wagner [44] further improved von Karman’s work

by including the effect of the pile up of the water and by associating the added

mass with the wetted water-plane. Further work such as [14] took account of the

submerged geometry for the estimation of the added mass. The analysis and results

from these simple approaches are found to compare favorably with experiments for

simple geometries such as a wedge or a cone. They also helped the designs of air-to-

subsea anti-submarine missiles, for example.

On the mathematical side, papers studying the water entry problem for a two-

dimensional (2D) wedge were written by Shiffman and Spencer [40] for a normal

incidence problem, and by Garabedian [18] for oblique incidence, for example. These

papers treated the case of 2D incompressible, irrotational, inviscid flow by complex

variables and potential theory and offered rigorous analysis.

A comprehensive survey of water entry problems (up to the year 2011) can be

found in [1], where 476 references are listed, and where a dozen more mathematical
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(-oriented) papers than [40] and [18] can also be found.

The contributions made by von Karman, Wagner, and others were truly remark-

able, and they continue to be used today. However, the physics of water-entry is far

more complex to model than the idea of “added mass” alone. In reality, there are

several phases of water entry that have been observed in experiments [30]: (1) cavity-

opening and jet splashing; (2) cavity-closing and formation of an air pocket; and (3)

cavity-detachment and cavitation; see Figure 3.3. A good way to capture the rich

physics is through state-of-the-art computational fluid dynamics (CFD). The CFD

approach will enable us to simulate water entry for complex, general geometries than

the simplified ones such as cones, cylinders and wedges treated in the early era by

encompassing (3.1) naturally into the two-phase fluid-structure interaction models.

3.2 Simulation of the Ditching/Crashing of an Aircraft into Water as a

Two-Phase Fluid-Structure Interaction Problem

Aircraft crashworthiness and human survivability are of utmost concerns in any

emergency landing situation. The earth is covered 71% by water and many major

airports are situated oceanside. Therefore, the Federal Aviation Administration

(FAA) requires all aircraft be furnished with life vests and the pilots be given water-

landing guidlines and manuals.

Assume that an aircraft such as MH370 did not have a mid-air explosion. Then

all available signs indicate that it crashed somewhere in the Indian Ocean. This is an

aircraft water-entry problem. Our objective in this section is to conduct numerical

simulations for several hypothetical scenarios using CFD.

For a representative Boeing 777 aircraft, we use the values of parameters as given

in Table 3.1.

The underpinning subject of this study is continuum mechanics, including the
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Jet

(a)

(b)

(c)

Figure 3.3: The several phases of a projectile entering water according to Mackey
[30]: a a cavity of air opens; b a cavity of air pocket encloses the projectile when
it is totally submerged; and c the cavity begins to be detached from the projectile,
leaving it totally surrounded by water. Some water vapor may exist in the cavity,
and cavitation usually happens. (Adapted from [1, p. 060803-2])
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Total weight 1.8 × 105 kg

Wing span 60.9 m

Fuselage cross section 29.6 m2

Length 63.7 m

Roll Moment of Inertia 1.06 × 107 kg m2

Pitch Moment of Inertia 2.37 × 107 kg m2

Yaw Moment of Inertia 3.34 × 107 kg m2

Table 3.1: Parameter values for Boeing 777 used in CFD calculations.

Atmospheric pressure 1 × 105 Pa

Lower bound for pressure 1 × 104 Pa

Kinematic viscosity of water 1 × 10−6 m2/sec
Kinematic viscosity of air 1.589 × 10−5 m2/sec
Water-air surface tension (γ) 0.07 N/m
Gravitational acceleration (g) 9.80665 m/sec2
Reference density of water (ρ0) 1000 kg/m3

Compressibility of water (ψ1) 1 × 10−5 sec2/m2

Constants in k − ǫ turbulence model
Cµ = 0.09, C1 = 1.44, C2 =
1.92, σǫ = 1.3

Initial values for k − ǫ turbulence model
k = 0.1 m2/sec2, ǫ =
0.1 m2/sec3

Initial aircraft speed relative to stationary water (V0) 58 m/sec (≈ 130 mph)

Table 3.2: Parameter values for fluid flow used in CFD calculations.

The splashing and piling up of water waves surrounding the submerged part of the
aircraft are close to realism, as the motion of the free (water) surface is modeled and
computed by the volume-of-fluid method. We have also used the level-set method
and obtained similar graphical results. However, several other physical factors and
phenomena have not been taken into account:

• The deceleration of the aircraft motion, as its speed is maintained at 70m/sec.
In addition, in general, the presence of water will cause deflection of the flight
path.

• At the speed of 70 m/sec, structural fracture and disintegration of aircraft are
likely to occur.

• Hydrodynamic force, fluid buoyancy, and drag force have not been incorporated
into the model.

Box 1: Commentary on the water-entering motion of aircraft as shown in Figure 3.1
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We are dealing with two fluids: air and water. Depending on the operating conditions
(speed and altitude), we can regard air either as compressible or incompressible.
For water, as a liquid, it is generally considered as incompressible. However, if we
choose incompressibility as model for water here, the CFD calculations have severe
difficulty of convergence. A likely cause is that in water landing situations, local
contact interface pressure can get very high, in the order of 106 Pascal, causing a
compressed state of water. Therefore, we choose compressibility for both air and
water as in [21].

Box 2: Modeling selections: compressible or incompressible?

water-entry problem first as fluid-structure interaction with a free fluid-gas interface

and the subsequent impact and structural failure analysis. Here, water and air are

modeled as compressible flows using the Navier-Stokes equations; cf. Box 2. Our

mathematical model is similar to that in Guo et al. [21].

The CFD software we have adopted here is OpenFOAM2, which is open-source

and now widely used by industry and research communities. See an introductory ar-

ticle by several of us in [9]. In particular, we will be using compressibleInterDyMFoam

for two-phase flow, and RANS k−ǫ for turbulence modeling. (See some mathematical

study on the k − ǫ turbulence modeling in [33,36], for example.) Computations were

performed on the EOS supercomputer at Texas A&M University and RAAD super-

computer at Texas A&M University at Qatar. For the computational work shown

in the examples of this section, each run took one to several days on the campus

supercomputers.

We assume that the aircraft is a rigid body. Except for the sample case shown

in Figure 3.1, we did not include the under-wing engines in the Boeing 777 aircraft,

with the understanding that the strut-mounted engine nacelles would likely be the

first things to be torn off in a water-entry situation. (But, computationally, it is

2OPENFOAM® is a registered trade mark of OpenCFD Limited, the producer of the Open-
FOAM software.
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straightforward to include the engines in our CFD work, such as shown in Figure

3.1.)

Method and algorithm of simulation is described in Section 2. Note that at time

t = 0, the velocity of the center of mass of the aircraft is V0 along various angles of

approach; cf. Table 3.2. Various physical and computational parameter values are

listed in Table 3.2.

Remark 3.1. Every CFD treatment needs to be validated. Why? CFD approaches

have their roots in theory, experiments and computation. Validation determines if

the computational results agree with physical reality – the experimental data. CFD

codes must produce numerical results of desired accuracy so that they can be used

with confidence. Here we use the experimental data available in [48] for a simplified

scenario, that is, a constrained free-falling “wedge” entering water. The wedge has

only the vertical translational degree of freedom. The acceleration(/deceleration) of

the wedge is measured throughout its impact with the water. The study in [48]

also employed a 2D potential flow model to study the problem numerically. In

order to validate our CFD method, the setup for the experiment is replicated as

a 3D mesh. Figure 3.4 shows the comparison of the acceleration time curves with

a variety of parameters. (One of the varying parameters, the “deadrise angle”, is

defined as the angle formed between the angled-side of the wedge with the horizon.)

Although some differences of values are observed, our CFD simulation shows a strong

qualitative match of the acceleration/deceleration curves. We also note that the

numerical model in [48] is a very simplified one without the incorporation of several

aero-hydrodynamic effects.

Aviation experts generally agree that how the airliner enters the water determines

its breakup, which then gives major clues and directions of the search operations.
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(a) deadrise angle is π/4, effective
gravity is 8.0062 m/sec2, mass of
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(b) deadrise angle is π/4, effective
gravity is 8.9716 m/sec2, mass of
wedge is 30.188 kg, speed at water
entry is 1.69673 m/sec.

a
c
c
e
le

ra
ti

o
n

 (
m

/s
e
c

2
)

t (sec)

experiment in [19]

numerical simulation in [19]

3D CFD

(c) deadrise angle is π/9, effective
gravity is 7.8144 m/sec2, mass of
wedge is 12.952 kg, speed at water
entry is 0.86165 m/sec.
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(d) deadrise angle is π/9, effective
gravity is 8.6103 m/sec2, mass of
wedge is 29.618 kg, speed at water
entry is 1.54405 m/sec.

Figure 3.4: Curves of acceleration versus time as benchmarks in comparisons with Wu
et al. [48, p. 28]. The curves obtained from experiment and numerical simulations
are compared under different settings. The blue curves represent the data obtained
by our computational methods in this paper.
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Figure 3.5: Angle θ here is the pitch angle signified in the computations of case 1-5
and β is the angle of approach. The speed of the aircraft denotes the speed of its
center of mass.

Therefore, in the following, we provide five scenarios of water entry. In each case,

we provide comments, schematics, snapshots and a CFD animation. Each animation

consists of two parts, with the first part showing visual effects and with the second

part showing pressure loading.

Case 1: pitch angle = 8○, angle of approach = 1○
This is what one might call glided ditching similar to the US Airways Flight

1549 mentioned in Section 3.4.2; see Figure 3.6 and the accompanying

animation. The vertical component of velocity of the airliner is found from

(3.3) in the next section to be 1–2 m/sec. This is much smaller than the

critical speed Vcr = 15–20 m/sec for structural failure in the next section

and, thus, is good. See also Figure 3.7 for the interpretations of motion.

Case 2: pitch angle = −3○, angle of approach = 3○
See Figure 3.8 and its animation. Here we see an interesting phenomenon,

namely, even though the original pitch angle is negative, the aircraft will
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(a) gliding water entry

(b) pressure distribution and mesh

Figure 3.6: Pitch angle = 8○, angle of approach = 1○. This corresponds to Case 1.
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G Suction

Impact
some pitch motion

Figure 3.7: Schematics for the process of glided ditching. Major forces are illustrated.
This corresponds to Case 1.

“bounce” on the water and make the pitch angle positive. See Figure 3.9.

At the moment this happens, the bottom of the midsection (fuselage-water

contact surface) of the aircraft undergoes high bending moment and surface

pressure. This may cause the aircraft to break up in the middle section, a

global failure to be described in the following section.

Case 3: pitch angle = −30○, angle of approach = 30○
See Figure 3.10 and its animation. Here we see that the aircraft nose

is subject to high pressure throughout the time sequence. See also the

schematics in Figure 3.11 in contrast to Figure 3.9. Once the wings enter

the water, the leading edge of the wing also is subject to high pressure

loading up to 106 Pa.

Case 4: pitch angle = −90○, angle of approach = 93○
See Figure 3.12 and its animation. This is a nose-dive situation. Here we

further assume that the ocean current flows from left to right at a velocity

of 3 m/sec. Then once the aircraft enters the water, the current gradually

drives the aircraft toward the 5 o’clock direction. Eventually this could

cause it to fall on the ocean floor belly-up. See Figure 3.13. Cf. more

discussions in Box 3.
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(a) gliding water entry (with a negative initial pitch)

(b) pressure distribution and mesh

Figure 3.8: Pitch angle = −3○, angle of approach = 3○. This corresponds to Case 2.
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GSuction

Impact

strong pitch up

Figure 3.9: Schematics for the process of ditching with negative initial pitch. The
plane is able to recover to the glided ditching attitude similar to Figure 3.7. This
corresponds to Case 2.

If an aircraft stalls in a climb, or if any control surfaces – ailerons, rudder and
stabilizers – malfunction, or if it runs out of fuel and the autopilot stops working
(while the pilots are incapcitated or are deliberate), it can fall into a steep nose-dive
or even vertical drop (our Case 4 here).
What happens upon water-entry? Here, we directly quote the article “4

possible ways Malaysia Flight 370 hit the water and how each would affect
the search” (http://www.syracuse.com/news/index.ssf/2014/04/4_possible_
ways_malaysia_fligh.html)
“ ... The wings and tail would be torn away and the fuselage could reach a depth of

30 meters or 40 meters within seconds, then sink without resurfacing. Wing pieces
and other heavy debris would descend soon afterward.
Whether buoyant debris from the passenger cabin – things like foam seat cushions,

seatback tables and plastic drinking water bottles – would bob up to the surface would
depend on whether the fuselage ruptured on impact, and how bad the damage was.
“It may have gone in almost complete somehow, and not left much on the surface,”

said Jason Middleton, an aviation professor at Australia’s University of New South
Wales. ...”
This may well offer a powerful clue as to why so frustratingly none of the debris of

MH370 has been found so far.

Box 3: Does nose-dive have anything to do with the lack of debris?
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(a) diving water entry

(b) pressure distribution and mesh

Figure 3.10: Pitch angle = −30○, angle of approach = 30○. This corresponds to Case
3.
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Figure 3.11: The pitch angle is too negative to recover to the glided ditching attitude.
The plane’s nose dives into the water with little bouncing motion. This corresponds
to Case 3.

There is an incredible complete video recording of this air disaster. The hijacked
wide-body Boeing 767-260ER jetliner flew and rolled into the ocean with the left
wing clipping water and getting torn off first. Immediately afterwards, the same
happened to the right wing. The fuselage went into cartwheeling and broke up.
Only 50 of the 175 crew and passengers survived.
Debris were spreading over a wide area and the light ones could have floated for a

long time.

Box 4: A rolling water-entry case: hijacked Ethiopia Airlines flight 961 ditching by
Comoros Island, Africa in 1996

Case 5: pitch angle = −3○ with roll angle = 20○, angle of approach = 3○
See Figure 3.14 and its animation. Here, with a 20 degree roll, the left

wing of the plane enters the water first. Almost inevitably, this would

cause structural failure of the left wing. Read more in Box 4 about an air

disaster on the seaside of Comoros Island, Africa.
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(a) nose-dive water entry

(b) pressure distribution and mesh

Figure 3.12: Pitch angle = −90○, angle of approach = 93○. This corresponds to Case
4.
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Figure 3.13: Schematics for nose-diving. The ocean current pushes the aircraft to
the right, causing it possibly to finish belly up on the ocean floor. This corresponds
to Case 4.
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(a) rolling water entry

(b) pressure distribution and mesh

Figure 3.14: Pitch angle = −3○, angle of approach = 3○, but with a left-roll angle of
20○. This corresponds to Case 5.
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3.3 General Discussion on Damage and Breakup

As described in the Introduction, not all emergency water landings end in disaster.

The dramatic successful landing in the “Miracle on the Hudson” is such a case. The

fact that no lives were lost is a testament to the experience and fast thinking under

pressure of the captain and crew. The aircraft had a hole ripped open but was

otherwise structurally virtually intact. The speed of the aircraft at ditching was

estimated to be 150 mph (240 km/hr or 67 m/sec). It was deemed by NTSB as “the

most successful ditching in aviation history.”

In addition to the Comoros Island air disaster in Box 4, we further mention

another ditching effort, whose outcome was not so fortunate as the US Airways flight

1549. On August 6, 2005, a Tuninter Airlines Flight 1153 ATR-72 aircraft, flying from

Bari International Airprt, Bari, Italy, to Djerba-Zarzis Airport, in Djerba, Tunisia,

ran out of fuel and ditched into the Mediterranean 43 km northeast of Palermo,

Italy. Upon impact, the aircraft broke up into three pieces. Sixteen persons out of

the thirty nine passengers and crew died. Eight of the deaths were actually attributed

to drowning after the bodily injuries from impact.

In the numerical simulations provided in the preceding section, we have not in-

cluded the effects of rupture and structural disintegration. But they are almost certain

to happen upon the entry of the aircraft into water when the speed is sufficiently

high. This happened even in the miracle on the Hudson case with smooth gliding.

The study of impact damage and breakup belongs to a field called impact engineer-

ing, which is based on the plasticity and fracture properties of solids that are totally

different from fluid dynamics we have been talking about up to this point.

The airframe of the Space Shuttle Challenger, an assemblage of ring and stringer-

stiffened panels, was constructed essentially like a wide-body Boeing 747 airliner.
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This in turn is similar to a wide-body aircraft such as the example Boeing 777 under

discussion here. Thus, we expect that much of the material and structural failure

analysis performed in [45,46] for Challenger continues to hold.

There is a distinction between the following:

(i) global failure mode of fuselage, caused by large contact forces between water

and structure;

(ii) local failure mode due to excessive pressure.

Both such contact forces and pressure vary spatially and temporally. They are

obtained from the CFD part of the solution in the preceding Section and used to

assess the damage. In the analysis of global failure, simple structural models of beams

and rods are used for the fuselage. In what follows, we give a quick review of how

to study structural breakup upon impact, but defer the more technical study to a

sequel.

A flying aircraft was modeled in [46] as a free-free beam and with known spatial

and temporal variation of external loading, where the distribution of bending mo-

ments can be uniquely found from the equations of dynamic equilibrium. Thence,

the maximum cross-sectional bending moment can be compared with the fully plastic

bending capacity of the fuselage. This will indicate the onset of structural collapse

and break up.

The local failure mode is composed of tearing of fuselage skin, tensile and shear

rupture of the system of stringers and ring frames; cf. Figure 3.15. Depending on

the impact velocity, the local failure can involve progressive buckling and folding of

the fuselage or fragmentation. Such failure modes occur at low impact velocities, as

has been demonstrated with a real model of a retired aircraft in DYCAST (Dynamic
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(a)

(b) (c)

Figure 3.15: Three modes of structural failure for a wide-body airliner: a flexural
failure of rings; b tearing fracture; and c shear of the longitudinally stiffened shell.
(Adapted from [46, p. 651])

Crash Analysis of Structures) by NASA [15]. These findings were published nearly

three decades ago but remain valid today.

Fracture failure mode is estimated to happen when the vertical component of

velocity exceeds certain critical value Vcr. Rupture of fuselage and wings as shear

and tensile cracks will be initiated and then propagate through the stiffened shell,

leading to global structural failure. This is a dynamic process whose analysis is very

challenging. Nevertheless, a simple estimate on the onset of local failure can be given

using the condition of dynamic continuity in uniaxial wave propagation along a rod

based on the equation

[σ] = ρc[u], (3.1)

where [σ] and [u] denote jump discontinuities across the water-structure interface,

ρ = 2.8 g/cm3 is the mass density of the aluminum fuselage and c =√E/ρ is the speed
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of the uniaxial wave propagation in an elastic rod with elastic modulus E = 85 GPa

(i.e., 109 Pascal). The critical impact velocity Vcr (vertical component only) is reached

where the stress equals to the yield stress of the material σy. Thus, from (3.1) one

gets the following estimate on Vcr:

Vcr = σy
E
c. (3.2)

Depending on the material, the critical descending speed of aircraft is normally in

the range of Vcr = 15–20 m/sec. A common fuselage material is 2024 T351 aluminum

alloy with the yield stress of σy = 324 MPa (106 Pascal). The critical impact velocity

is thus Vcr = 22 m/sec, which is close to the value 18.8 m/sec predicted for the water

ditching of the Space Shuttle Challenger, but using a different approach in [46].

The vertical component Vcr of V0, the aircraft speed at ditching, is related through

the angle of approach β by

sinβ = Vcr
V0
. (3.3)

Therefore, it is essential to keep the angle of approach small, especially when ditching

with a high speed.

In addition to structural rupture and disintegration, the acceleration due to free

fall and the deceleration due to the impact of the structure are important for human

survival in a crash. In [46], it was analyzed that if the vertical component of the

terminal impact velocity lies in the range of 62.5 m/sec and 80.5 m/sec, maximum

decelerations could reach in the order of 100g to 150g (g is the gravitational acceler-

ation constant) over a short period of time, within a regime labeled “severe injuries”

[31, 46] by NASA.

As a consequence of this, it now becomes clear that the vertical component of the
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terminal water-entry velocity should be reduced as much as possible, such as the glided

water-landing approach taken by Captain Sullenberger for US Airways Flight 1549 on

the Hudson River. That is, some “pitching attitudes” of the aircraft will have a much

higher probability of survival by averting structural damage and decelerations of the

occupants [45, p. 34]. Indeed, according to Guo, et al. [21], it is recommended that

for a transport aircraft with a low horizontal tail, the pitch angle be chosen between

10○ and 12○ for safer ditching, which is consistant with the prediction of (3.3). Such

knowledge enhances air travel safety, and, as shown here, can be obtained by CFD

simulations.

3.4 Beam Analysis of Fuselage

In the previous sections, the water entry process of an aircraft is simulated using

CFD techniques. The aircraft is assumed to be a rigid body with free motion in a

mixture of air and water. Some general discussions regarding damage and breakup

are also given. The current section aims at answering the question whether the

aircraft can structurally survive the water entry process described in the simulation.

Ideally, a coupled fluid-structural interaction simulation is required to fully un-

derstand the process. However, such a simulation, especially involving rapid fracture

and disintegration can be quite challenging. The strategy employed here is an un-

coupled structural analysis. Data are obtained from CFD simulations to serve as

external load in the structural analysis.

Some tradeoffs are made here. A full-blown 3D analysis is avoided in this study,

since such an analysis would require a more detailed description of the aircraft struc-

ture to be useful. Analysis based on rigid beam theory is used here instead as a

simplified model. To this end, beam theory will be described and applied to the

fuselage of the aircraft in the following.
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3.4.1 Free-Free Rigid Beam

Dynamic failure of free-free beam was studied in [28, 49]. Plastic failure is pre-

dicted when the bending moment developed in the beam exceeds a critical threshold.

Here, as we just mentioned, the fuselage of the aircraft is modeled as a rigid beam.

It takes into account the bending moment, lateral displacement and rotary inertia,

but no deformation of any kind. The governing equations are, for x ∈ [0, L],
∂V

∂x
+ qz = λaz,

∂N

∂x
+ qx = λax,

∂M

∂x
− V + τ = ηα,

where (x, y, z) are body-local axes for roll, pitch and yaw respectively (see Figure

3.16)

• qz and qx (N/m) are external force in z and x direction per unit length,

• τ (N⋅m/m) is external pure torque in y direction per unit length measured at

the center of cross section,

• V (N) is internal shear force,

• M (N⋅m) is internal bending moment,

• N (N) is internal axial (x) force,

• η (kg⋅m) is sectional moment of inertia in y direction measured at the neutral

position,

• λ (kg/m) is linear mass density,
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Figure 3.16: Direction of axes.
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Figure 3.17: Beam element subject to forces and moments.

• az and ax (m/sec2) are the acceleration in z and x direction respectively,

• α (1/sec2) is the angular acceleration in y direction.

See Figure 3.17 for an illustration of a beam element. All other motion are

ignored.

Free-free boundary conditions, namely zero forcing at both ends, are used as

M(0) =M(L) = 0, N(0) = N(L) = 0, V (0) = V (L) = 0.

Since CFD data is available only at certain snapshots in time, acceleration terms
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in the equation need to be evaluated using information from the current time instance

only. This is also essential for the satisfaction of boundary conditions at both ends

simultaneously, which will be shown in Section 3.4.2.

In general, neutral positions of cross sections should be given. But for estimation

purposes, they are aligned to a line parallel to x-axis. The instantaneous global

motion is described by the following rigid body dynamics,

m = L

∫
0

λ(x1)dx1, Fx =
L

∫
0

qx(x1)dx1, Fz =
L

∫
0

qz(x1)dx1,

T = L

∫
0

[τ(x1) − qz(x1)(x1 − x0)]dx1, J = L

∫
0

[λ(x1)(x1 − x0)2 + η(x1)]dx1,
α = T /J, ax(x) = −ω2(x − x0) + Fx/m, az(x) = −α(x − x0) + Fz/m,

where ω is the angular velocity (1/sec) in the y direction.

3.4.2 Data Accumulation and Processing

Values needed for the above calculation are qz, qx, τ , λ, η and ω. Angular velocity

ω is directly read from the simulation, since it won’t interfere with the boundary

conditions. Other data input from CFD are the aircraft geometry and the external

stress σσσ on the aircraft surface at each snapshot in time. Figure 3.18 shows an

example of instant pressure distribution on the geometry.

To perform a computational beam analysis along the x-axis, the aircraft surface

is partitioned, equally in x-axis, into n segments Sj, j = 1,2, ..., n. Figure 3.19 shows

an example of partitioning into 100 segments. Piecewise constant values are assumed

for numerical calculations. In the current implementation, the partition is performed

for the whole aircraft surface, including the wings and empennages. We can see from

the figure that such a treatment is not ideal, but assumed to be acceptable whenever
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Figure 3.18: Pressure distribution on aircraft surface. Black line is the three-phase
contact line.

there isn’t a strong load on the wings and empennages.

First, the center in the z direction is calculated by

zj = 1∣Sj ∣ ∫
Sj

z dS.

This zj serves as the neutral position. Values of zj are shown in Figure 3.20.

The distribution of mass and rotary inertia are calculated also using the available

geometry. Since detailed interior model of the aircraft is not available, for simplicity,

we assume mass is distributed to each segment proportional to the surface area ∣Sj ∣.

λj = c
l
∣Sj ∣ ,

where l = L/n, and coefficient c (kg/m2) is determined by matching a given total

mass of the aircraft. As for the sectional moment of inertia, we assume half of the

mass is uniformly distributed on the surface, and the other half is located near the
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Figure 3.19: Partition of the aircraft surface along the x-axis. Number of segments
here is n = 100.

neutral position, thus does not have much contribution, yielding

ηj = c

2l ∫
Sj

(z − zj)2 dS.

Values of λ and η are shown in Figure 3.21 and 3.22

It is assumed that there is a pressure of p0 in the cabin, therefore, the external

load on the beam is calculated as

qj = 1

l
∫
Sj

(σσσ − p0III)n̂dS, τj = 1

l
∫
Sj

(z − zj)k̂ × (σσσ − p0III)n̂dS.

qj is then projected to x and z directions as qx,j and qz,j respectively. Figures 3.23–

3.25 show the distributions of external force load qx, qz and torque τ for the example

given in Figure 3.18. Data is smoothed out a little and peak values are reduced if

there is a smaller number of segments n. Relative magnitude and direction of the

load along aircraft body is illustrated in Figure 3.26, to be compared with Figure
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Figure 3.20: Center in z direction along the aircraft body.
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Figure 3.21: Distribution of mass λ along the aircraft body.
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Figure 3.22: Distribution of rotary inertia η along the aircraft body.

3.18.

Note that the vertical center zj is only considered in this subsection. As mentioned

in Section 3.4.1, neutral positions are artificially aligned to a line parallel to x-axis

in order to simplify calculation.

Integration of the beam equations with boundary condition at x = 0 gives

V (x) = x

∫
0

[ − qz(x1) + λ(x1)az(x1)]dx1,
N(x) = x

∫
0

[ − qx(x1) + λ(x1)ax(x1)]dx1,
M(x) = x

∫
0

[V (x1) − τ(x1) + αη(x1)]dx1.

We need to make sure the boundary condition is also satisfied at the other end
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Figure 3.23: Distribution of external load qx along the aircraft body
for the example given in Figure 3.18.
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Figure 3.24: Distribution of external load qz along the aircraft body
for the example given in Figure 3.18.
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Figure 3.25: Distribution of external pure torque τ along the aircraft
body for the example given in Figure 3.18.

Figure 3.26: Relative magnitude and direction of the external load obtained in data
processing is added as vector arrows to Figure 3.18.
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x = L. In fact, given all the assumptions made above, it is straight-forward to check

V (L) = 0 and N(L) = 0. And for M(L),

M(L)
= L

∫
0

V (x2)dx2 −
L

∫
0

τ(x1)dx1 + α
L

∫
0

η(x1)dx1

= L

∫
0

x2

∫
0

[ − qz(x1) + λ(x1)az(x1)]dx1 dx2 −
L

∫
0

τ(x1)dx1 + α
L

∫
0

η(x1)dx1

= L

∫
0

[(L − x0) − (x1 − x0)][ − qz(x1) + λ(x1)az(x1)]dx1 −
L

∫
0

τ(x1)dx1 + α
L

∫
0

η(x1)dx1

=(L − x0)
L

∫
0

[ − qz(x1) + λ(x1)( − α(x1 − x0) + Fz/m)]dx1

− L

∫
0

(x1 − x0)[ − qz(x1) + λ(x1)( − α(x1 − x0) + Fz/m)]dx1

− L

∫
0

τ(x1)dx1 + α
L

∫
0

η(x1)dx1

=(L − x0)
⎡⎢⎢⎢⎢⎣
− L

∫
0

qz(x1)dx1 − α
L

∫
0

λ(x1)(x1 − x0)dx1 + (Fz/m)
L

∫
0

λ(x1)dx1
⎤⎥⎥⎥⎥⎦

− L

∫
0

[τ(x1) − qz(x1)(x1 − x0)]dx1 + α
L

∫
0

[λ(x1)(x1 − x0)2 + η(x1)]dx1

− (Fz/m) ⋅
L

∫
0

λ(x1)(x1 − x0)dx1
=(L − x0)[ − Fz − 0 + (Fz/m) ⋅m] − T + αJ − 0
=0.

Figures 3.27-3.29 show the strength of internal forces and bending moment for

the example given in Figure 3.18. The comparison between n = 100 and n = 250

reveals that results do not depend much on the choice of n if n is as large as 100.
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Figure 3.27: Internal shear force V along the aircraft body.

-3e+06

-2e+06

-1e+06

0

1e+06

2e+06

3e+06

0 10 20 30 40 50 60

N
 
(
N
)

x (m)

n=100 

n=250 

Figure 3.28: Internal axial force N along the aircraft body.
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Figure 3.29: Internal bending moment M along the aircraft body

3.4.3 Prediction of Failure: Bending of Cylindrical Shell

Prediction of failure can be done by comparing values calculated with M , V and

N from Section 3.4.2 with critical values.

Buckling caused by excessive compressive stress is considered here. As proposed

in [42], critical compressive stress for a cylindrical shell before buckling failure is

given by

σcr = Eteq

R
√
3(1 − ν2) ,

where E is the Young’s modulus, teq is shell wall thickness, R is radius of the cylinder

and ν is Poisson’s ratio. The maximum compressive stress induced by M and N is
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given by

σmax = M

πR2teq
− N

2πRteq
.

Therefore, we compare the effective bending moment

M ′ =M −NR/2,

with the critical value

Mcr = πERt2eq√
3(1 − ν2) .

This is regarded as a good estimation for short cylinders. Using values from Table

3.3, we get Mcr = 4.35 × 107 N⋅m.

Stringers and rings are not explicitly considered. But it is possible to choose an

appropriate effective thickness teq that provides comparable strength.

Now we find the maximum of effective bending moment M ′ over the whole fuse-

lage for each time snapshot t, getting M ′
max(t). They are then plotted versus t in

Figures 3.30–3.33 in comparison with the critical bending moment Mcr. Here are

some interpretations for those four scenarios.

• Case 1 with 8○ pitch angle (Figure 3.30). Plane is generally safe from structural

failure. The process is also known as ditching. Large temporary bending

moment can be observed if ditching on a wavy sea and when the speed of the

aircraft is still high, for example, at around t = 0.7 s. See Figure 3.34.

• Case 2 with −3○ pitch angle (Figure 3.31). The plane might recover to the

ditching posture. However, it have to overcome a period of large bending
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Figure 3.30: Maximum effective bending moment M ′
max for Case 1

with 8○ pitch angle.

moment when the middle or tail parts of the fuselage hit water, for example,

at around t = 0.78 s. See Figure 3.35.

• Case 3 with −30○ pitch angle (Figure 3.32). The plane is subject to large axial

compression and asymmetric external load, for example, starting from t = 0.4
s. Therefore the aircraft is most likely to suffer global failure. See Figure 3.36.

• Case 4 with −90○ pitch angle (Figure 3.33). The plane is subject to axial

compression, but not much bending due to the symmetric external load. This

lasts until wings reach the water, which is not simulated. See Figure 3.37.

The color of Figures 3.34–3.37 is the estimation of axial compression reconstructed
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Figure 3.31: Maximum effective bending moment M ′
max for Case 2

with −3○ pitch angle.
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Figure 3.32: Maximum effective bending moment M ′
max for Case 3

with −30○ pitch angle.
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Figure 3.33: Maximum effective bending moment M ′
max for Case 4

with −90○ pitch angle.

Figure 3.34: External load and axial stress for Case 1 with 8○ pitch
angle at t = 0.7 s.
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Figure 3.35: External load and axial stress for Case 2 with −3○
pitch angle at t = 0.78 s.

Figure 3.36: External load and axial stress for Case 3 with −30○
pitch angle at t = 0.5 s.
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Figure 3.37: External load and axial stress for Case 4 with −90○
pitch angle at t = 0.2 s.

Geometry
Radius of cylinder R = 3.1 m
Equivalent thickness teq = 1 cm

Material (Aluminum 2024-T351)
Poisson’s ratio ν = 0.33
Young’s modulus E = 73.1 GPa

Table 3.3: Parameters for critical bending moment calculation.

with M , N and the aircraft geometry as

− N
2πr
− M(z − zj)

πr2

for every point on aircraft skin, where r is its distance to the center of cross section.
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3.5 Conclusion

After all the computation and analysis, it’s time matching the results to reality

and trying to answer the question what happened in the final moments of the flight

MH370. The current situation is that, despite search efforts going on for over a

year, people only found one flaperon. The fact that no floating debris field have ever

been found strongly suggest that the fuselage didn’t break up. This is because global

break-up of the fuselage will inevitably expose light materials inside, such as cushions

and luggages, which could float around for a extended period to be eventually found.

This fact really limits the possibilities to Case 1 and Case 4, namely, the following

two scenarios:

• The airliner successfully ditched as in Case 1. Although no global break-up

happened, there was inevitable local damages. With water flowing into the

cabins, the aircraft shortly sunk almost as a whole, while the passengers and

crew members were either unconscious or unable to get out in time.

• The pilot (or “auto pilot”) still tried to pull up when there wasn’t enough

fuel and speed. This lead to a nose-dive. In such low speed diving process,

some hanging metal parts, such as wings and engines, were broken off while

the structural integrity of the fuselage was maintained.

The fact that a flaperon of the aircraft has been found further suggests that the

second possibility is actually more likely, because a sccessful ditching might not

break the flaperon off the aircraft. Of course, we haven’t “proved” these are what

actually happened in the final moments of flight MH370. However, these possible

scenarios surely provide us with more insights into this matter.

The crash of an airliner into ocean is a profoundly tragic event. But on the
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mathematical and engineering side, there should be significant interest in its mod-

eling and computation so that one can understand the physical mechanisms better

in the hope of improving aircraft crashworthiness and survivability. The CFD ap-

proach is advantageous in saving long and expensive processes of laboratory setup

and measurements. However, many challenges remain. Regarding CFD for the study

of aircraft ditching in water, see an excellent review and outlook paper in Liu et al.

[29]. For an analysis-minded mathematician, it would be nice to formulate a list of

problems dealing with the rigor of generality of approach, robustness and stability

issues, which are being considered.

On any given day, there are now hundreds of thousands of people traveling by

air worldwide. Air travel has never been safer and continues to become even safer.

According to Barnett [3] in the 2000-2007 time period the death risk per flight on

a First-World airliner was 1 in every 2 million: and 2 million days is nearly 5,500

years! There are always bound to be unfortunate and tragic incidents. However, it

is to be expected that data generated by numerical simulations will further improve

passenger survival in emergency water landings.
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4. INTERACTING WIND TURBINE FLOWS

In this section, we treat a different computational mechanics problem, that of

wind energy and wind turbine flows.

Wind energy is a major form of renewable energy. It is being actively developed

by many nations in the world. It reduces carbon footprints and the potential harm

of anthropogenic warming of the atmosphere. According to the data reported by

The Global Wind Energy Council1 in 2013, 44.7 Gigawatts of new wind power was

added to worldwide capacity in 2012, representing a 19% increase over the preceding

year. In comparison with solar energy, the cost for wind energy per kilowatt is still

lower. The primary disadvantage of wind energy is due to its intermittency, which

is now being mitigated by the development of electric-power restoring devices and

other smart grid designs.

Wind power research and development (R&D) involves wide-ranging interdisci-

plinary topics and pragmatic tasks. In this section, our main interest will focus on the

computational fluid dynamics (CFD) intensive portions of the work involved. These

portions constitute key technological issues in regards to the flow patterns and inter-

actions, effects of airfoil (shape) design of turbine rotor blades, electro-mechanical

power-generating units, generalization and extension to other similar applications

such as ocean currents power generation, etc. These are challenging, fundamental

issues of high technological as well as of intellectual interest.

Even though there is already a large amount of literature on wind energy’s R&D,

one of the fundamental problems appears to be under-studied: high-fidelity blade

resolved CFD for wind turbine flow calculations. For example, highly valuable in-

1The Global Wind Energy Concil. http://www.gwec.net.
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sights regarding wind turbine flows have been derived by using an “actuator line”

method (cf., e.g., Shen et al. [39]). Such a method is widely regarded now as being

“standard”, however it is not what we regard as high-fidelity blade resolved CFD

calculation. There is a fundamental reason commonly understood for why such high-

fidelity blade resolved CFD calculations are avoided: the lack of computational power

and resources for such on even the most advanced supercomputers in the world as

the computations are very large scale. Nevertheless, we see this approach (of high-

fidelity blade resolved CFD) eventually as most natural and inevitable, and possibly

even advantageous especially in view of the rapid increase of computational power

in succeeding generations of supercomputers.

There are now numerous software applications available for CFD calculations.

The major toolkit we have adopted here is OpenFOAM2. OpenFOAM is free and

open-source software currently used by thousands of engineers and researchers world-

wide. It uses the finite volume method with object oriented C++ programming and

vector-tensor field operations with several key advantageous features; see a recent

introductory article on OpenFOAM by Chen et al. in [9].

Our section is organized as follows: Subsection 4.1 studies the preprocessing of

CFD by OpenFOAM, mainly mesh generation and choice of parameters; Section

4.2 describes problem solving and running of the codes, especially regarding the tur-

bulence modeling aspects and interacting turbine flows; Subsection 4.3 deals with

postprocessing of computed CFD data output, in the form of snapshots; Subsec-

tion 4.5 shows OpenFOAM calculations of turbines operating in a two-phase flow.

Subsection 4.4 uses the POD (proper orthogonal decomposition) to show the most

prominent modes; Subsection 4.6 provides brief concluding remarks.

2OPENFOAM® is a registered trade mark of OpenCFD Limited, the producer of the Open-
FOAM software.
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4.1 Problem Setup and Mesh Generation

4.1.1 Use of a Dynamic Mesh

The rotational, variable-speed motion of the turbine blades’ motion is a major

issue, requiring a dynamic mesh. During the past several years, free and open-

source computer programs, which can incorporate relative motions of solid bound-

aries present in fluid dynamics, were developed by individuals and groups. Libraries

with the capability of dynamic meshes [26] are available in OpenFOAM:

(i) dynamicRefineFvMesh: This can refine or coarsen the mesh on demand.

(ii) dynamicMotionSolverFvMesh: This solves for the motion of the mesh through

diffusivity equations.

(iii) (multi)SolidBodyMotionFvMesh: This can move the mesh or parts of the mesh

as a solid body.

(iv) topoChangerFvMesh: This contains mesh modifying models involving topological

changes such as attach, detach, automatic layer addition and removal.

Here, we summarize OpenFOAM’s capability in handling prescribed rigid body

boundary motion: in particular, the rotating motion inside the flow. Fixed motion

parameters, such as the center, axis and angular velocity, are defined in the file

named dynamicMeshDict. See Listing 4.1 for the codes.

The technique of sliding mesh interface is used to deal with rotating structures

inside the flow. In this way, part of the mesh is rotated, but not deformed in any

way. Computationally, the matching or interpolation between the rotating mesh and

the static mesh is done essentially seamlessly. In OpenFOAM, the current way of

implementation of a sliding interface is called arbitrary mesh interface (AMI). It was
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1 dynamicFvMesh multiSolidBodyMotionFvMesh;

2 motionSolverLibs ("libfvMotionSolvers.so");

3 multiSolidBodyMotionFvMeshCoeffs

4 {

5 cylinder1

6 {

7 solidBodyMotionFunction rotatingMotion;

8 rotatingMotionCoeffs

9 {

10 origin (0 0 0);

11 axis (0 1 0);

12 omega 1.58; // rad/s = 15 RPM

13 }

14 }

15 }

Listing 4.1: <case>/constant/dynamicMeshDict. This file shows the codes for spec-
ifying fixed-speed rotation in OpenFOAM computation. The rotating mesh region is
called cylinder1 and the type of motion is rotatingMotion. Required parameters
are origin, axis and angular velocity (omega). (Here, omega is chosen as 15 RPM,
for example.)

newly introduced in version 2.1, and works well in parallel computing. A comparable

implementation in foam-extend3 is called general grid interpolation (GGI) [5]. Figure

4.1 shows an example of a mesh with sliding interfaces (used by us in OpenFOAM

execution). However, the rotating motion (by direct application of OpenFOAM) is

prescribed with a fixed angular velocity instead of being driven by wind force in run

time, and is thus, inappropriate for wind-driven motion.

OpenFOAM also contains a library for coupling force and torque with motion of

structures inside the flow. A field named pointDisplacement in OpenFOAM is cre-

ated and reserved for solving and recording movement of each mesh point. The solid

boundary structure is regarded as a patch (a piece of boundary in the mesh). This

type of patch is designated to be a force-driven object. Displacement on the patch is

updated first as a result of the specified motion. Internal field of pointDisplacement

is subsequently solved, usually by a potential (Laplace) equation. The equation

3http://www.extend-project.de/.
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Figure 4.1: Mesh layout for a case of two wind generators. The thin disk surrounding
the turbine blades contain the rotating part of the mesh. The surfaces of the disks
form a sliding interface to the stationary part of the mesh.

takes the displacement of the structure as its boundary condition. The mesh is mod-

ified/updated according to the solved pointDisplacement field. (This serves as a

concrete example of how dynamicMotionSolverFvMesh works.) There are also provi-

sions for applied restraints, such as a spring attached to the objects, and/or other

constraints such as a fixed axis of rotation. However, the potential equation-based

pointDisplacement solver can only handle small mesh displacements. It would not be

long before the mesh deteriorates if we use it for continuing rotation, and numerical

errors begin to grow.

As the above existing OpenFOAM provisions cannot readily serve our purposes,

we need to write and develop our own codes. The coding of OpenFOAM is based on

the principle of object oriented programming, and has numerous modules selectable

as building blocks. Our adaptation and refinement can be relatively easily integrated
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into the C++ class hierarchy of OpenFOAM, general enough to meet our current

objectives and possible future extension, while not overly complex.

Since our main concern is rotational motion, we choose sliding interface for dy-

namic mesh. However, we replace the mesh type solidBodyMotionFvMesh, which can

only handle prescribed solid body motion, by a force-coupled one, named by us as

forceDrivenMotionFvMesh. Motion functions (types of motion) that can access force

and torque data at each time step are also implemented under the C++ based class

forceDrivenMotionFunction. (See the flow chart in Figure 4.2, where the shaded

blocks are new codes for rotating-motion sliding surface dynamic mesh.) For ex-

ample, FDRotatingMotion is the force driven version of the original rotatingMotion

in OpenFOAM. The codes in Figure 4.2 can now be used to model freely, variable

angular speed rotating wind turbines. Please compare the codes in Listing 4.2 with

its predecessor Listing 4.1. Also note that forceDrivenMotionFvMesh has the flexi-

bility to combine the case of force driven motion with that of prescribed motion into

a single, unified case.

A remark is in order here: the motion of a body not only depends on the current

state of force and torque, but also its current velocity and angular velocity. Their

data need to be saved for future reference when computation is continued. To this

end, we set up a file to keep track of such data, called motionState, that describes

whatever state of motion we need. See Listing 4.3 as an example.

In principle, the mesh of any force driven motion of a solid body can be im-

plemented as a C++ subclass of forceDrivenMotionFunction. However, the “code

stream” feature provides a way to quickly specify and test a motion response. For

example, codedFDRotatingMotion (within Listing 4.4) enables the user to directly

write C++ code to specify how states of motion should be updated. Listing 4.4

shows a typical case. States of motion are updated in exactly the same way as
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forceDrivenMotionFvMesh

dynamicFvMesh

oscillatingRotatingMotionrotatingMotionFDRotatingMotion codedFDRotatingMotion

Motion Function
type of motion0..*

⟪interface⟫

forceDrivenMotionFunction

⟪interface⟫

solidBodyMotionFunction

Figure 4.2: C++ class diagram for the implementation of force driven rotation. The
shaded blocks represent newly added features. Here forceDrivenMotionFvMesh is
a force/torque-couplable type of mesh. The mesh can move according to various
“motion functions”, either force driven or prescribed.

1 dynamicFvMesh forceDrivenMotionFvMesh;

2 motionSolverLibs ("libfvMotionSolvers.so"

3 "libforceDrivenMotion.so");

4 forceDrivenMotionFvMeshCoeffs

5 {

6 cylinder1

7 {

8 solidBodyMotionFunction FDRotatingMotion;

9 FDRotatingMotionCoeffs

10 {

11 origin (0 0 0);

12 axis (0 1 0);

13 momentOfInertia 1e6;

14 }

15 forces

16 {

17 type forces;

18 patches (cylinder1Turbine );

19 rhoName rhoInf;

20 rhoInf 1.205;

21 }

22 }

23 }

Listing 4.2: <case>/constant/dynamicMeshDict. This file shows the codes for
specifying wind driven free rotation for OpenFOAM computation, using our newly
adapted codes. Instead of the angular velocity, we specify the moment of inertia and
the name of the driven surface, in this case cylinder1Turbine.
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1 cylinder1

2 {

3 angle 0;

4 angularVelocity 0;

5 angularAcceleration 0;

6 }

Listing 4.3: <case>/0/uniform/motionState. This file saves data of dynamical
motion, such as the angular displacement, velocity and acceleration, in order to keep
proper track of the state of motion of a wind driven body.

FDRotatingMotion, which models a freely rotating structure driven by the flow, ex-

cept that the code also increments a counter defined therein along the way. Any

control mechanism actions can be incorporated, too. The numerical integration of

the rotational equation of motion IRα = τwind, α = ω̇ can be carried out, e.g., in the

following way known as the leap frog scheme

ωn = ωn− 1
2 + 1

2
∆tn−1αn−1, (4.1)

θn = θn +∆tnωn, (4.2)

αn = τwind

IR
, (4.3)

ωn+ 1
2 = ωn + 1

2
∆tnαn , (4.4)

where in addition to α and ω specified above, θ is the angular position, and ∆t is

the step size of time marching. The superscript is the index of time steps (including

half steps for ω).

4.1.2 Mesh Generation and Case Setup

In the previous subsections, considerable space has been devoted to address the

critical needs and coding of dynamic mesh generation in order to develop a capability

for handling the variable angular speed of rotational motion to incorporate the wind
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1 dynamicFvMesh forceDrivenMotionFvMesh;

2 motionSolverLibs ("libfvMotionSolvers.so"

3 "libforceDrivenMotion.so");

4 forceDrivenMotionFvMeshCoeffs

5 {

6 cylinder1

7 {

8 solidBodyMotionFunction codedFDRotatingMotion;

9 codedFDRotatingMotionCoeffs

10 {

11 redirectType withCounter;

12 origin (0 0 0);

13 axis (0 1 0);

14 momentOfInertia 1e6;

15 code

16 #{

17 // get time step length

18 scalar deltaT = time_.deltaTValue ();

19 scalar deltaT0 = time_.deltaT0Value ();

20

21 // update states of motion (leap -frog)

22 omega_ += 0.5 * deltaT0 * alpha_;

23 theta_ += deltaT * omega_;

24 alpha_ = (moment & axis_) / momentOfInertia_;

25 omega_ += 0.5 * deltaT * alpha_;

26

27 // increment the counter

28 scalar counter;

29 motionState_ ->lookup("counter") >> counter;

30 counter += 1;

31 motionState_ ->set("counter", counter );

32 #}

33 }

34 forces

35 {

36 type forces;

37 patches (cylinder1Turbine );

38 rhoName rhoInf;

39 rhoInf 1.205;

40 }

41 }

42 }

Listing 4.4: <case>/constant/dynamicMeshDict. This file shows the ability to
directly code the equations of motion (4.1)-(4.4) in C++ into an OpenFOAM case.
Inserted C++ code (lines 17 to 31) updates states of motion as free rotation. In
addition, a counter is incremented every time step to show the ability to couple
custom variables as new states of motion.
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driving force. Now we are ready to carry out the preprocessing of the OpenFOAM

computation.

Here, we use (standard) OpenFOAM tools, blockMesh, snappyHexMesh and mergeMeshes,

to perform mesh generation. These tools are fairly user-friendly. For an experienced

user or PhD student, it takes only several days to generate meshes for a domain with

certain sophisticated geometry.

The turbine blades are composed of NREL airfoils numbered S816, S817 and S818

[41]. The radius of the turbine (R) is 50 m. See Figure 4.3. A mesh layout is shown in

Figure 4.1. Also see Figure 4.4 for a cross section of mesh. There are approximately

0.65 million cells in the mesh to be used in the computational examples mentioned

below. This is not yet a satisfactorily fine resolution, as we are constrained by our

supercomputing resources, but we will be able to refine mesh to any degree of desired

resolution in the future when more supercomputing resources become available.

We consider two linearly aligned, coaxial wind turbines. They can rotate in the

same direction, called by us the iso-rotating case, or in the opposite direction, e.g.,

one is counterclockwise while the other is clockwise. We call the latter the contra-

rotating case. The distance (D) between the turbines is either 300 m (D/R = 6) or
200 m (D/R = 4). The wind speed at the inlet is chosen as 10.5 m/s, 13 m/s or 15.5

m/s. See Figure 4.5.

Differences in mesh may affect the computational aerodynamic properties of tur-

bines. In order to conduct meaningful comparisons, mesh around the blades, or the

rotating cylinder in particular, is not generated independently but exactly identical

for the iso-rotating case. The rotating cylinder is generated once and merged into

the stationary part of the mesh at both the front and rear turbines positions. Cor-

responding patches at cylinder surfaces are then matched to form a pair of sliding

interfaces. It is also beneficial in terms of time, since refinement near the blades
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(a)

(b)

Figure 4.3: (a) Shape of wind turbine and tower. The blades are composed of
NREL airfoils numbered S816, S817 and S818 [41]. (b) Close-up look of the actual
computational mesh near the hub of the wind turbine.
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Figure 4.4: Cross section of mesh. Regions of different resolution levels can be seen.

Figure 4.5: Configuration of flow domain. The dimensions are 280×280×680 m. The
direction of wind is aligned with the 680 m dimension. The front turbine is situated
80 m away from the domain inlet.
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is very time-consuming. For the contra-rotating case, the mesh on the rear turbine

blades are exactly the mirror image of that of the front turbine.

4.2 OpenFOAM CFD Coding and Turbulence Modeling

Computer codes for the Navier-Stokes equations are already available in Open-

FOAM. Here, we describe the implementation of PISO (pressure-implicit splitting of

operators) algorithm [25] in Listing 4.5 for illustrative purposes.

1 // define field vector fluid velocity u and f, face flux phi ,

2 // pressure p, and dynamical viscosity nu

3

4 volVectorField u, f;

5 volScalarField p;

6 surfaceScalarField phi;

7 scalarField nu;

8

9 // construct the fluid velocity equation

10

11 fvVectorMatrix UEqn

12 (

13 fvm::ddt(u) + fvm::div(phi , u) - fvm:: laplacian(nu , u) - f

14 );

15

16 // solve the momentum equation using explicit pressure

17

18 solve

19 (

20 UEqn == -fvc::grad(p)

21 );

22

23 // predict the intermediate fluid velocity to calculate face flux

24

25 volVectorField rUA (1.0 / UEqn.A());

26 u = rUA * UEqn.H();

27 phi = fvc:: interpolate(u) & mesh.Sf();

28

29 // construct the pressure equation using the constraint from
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30 // continuity equation

31

32 fvScalarMatrix pEqn

33 (

34 fvm:: laplacian(rUA ,p) == fvc::div(phi)

35 );

36 pEqn.solve ();

37

38 // correct the fluid velocity by the post -solve pressure and update

39 // face flux

40

41 u = u - rUA * fvc::grad(p);

42 phi = phi - pEqn.flux ();

Listing 4.5: The OpenFOAM code to solve the Navier-Stokes equation of incom-

pressible fluid [9]. It implements the PISO algorithm [25].

Turbulence modeling can be further added to the solver above. OpenFOAM

readily provides solvers, such as pimpleFoam, with run-time selectable turbulence

modeling, which makes testing different models easier than ever. In addition to run-

time selection of turbulence models, users also need to provide initial conditions for

whatever fields are required by the chosen turbulence model, such as k, ǫ and νt.

We have run as OpenFOAM CFD case with our sliding interface dynamic mesh

forceDrivenMotionFvMesh described above together with RANS and LES turbulence

modeling. The turbines are assumed to be freely rotating subject to the wind force

only, without any actions from the power generating unit. The case is computed

with the standard solver pimpleDyMFoam in OpenFOAM, which implements a PISO

pressure correction algorithm as well as a SIMPLE iteration.

Regarding the choice of constants in governing equations, please see Table 4.1
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kinematic viscosity ν 1.4833 × 10−5 m2/s
density ρ 1.205 kg/m3

The Reynolds number (based on the 8 meter chord length) ≈ 5 × 106
Initial and inlet values for k − ǫ turbulence model

k = 0.06 m2/s2, ǫ =
0.0495 m2/s3

Table 4.1: Physical and modeling parameters chosen in the CFD computation

4.3 Numerical Results and Visualization of Wind Turbine Flows and Interactions

We now illustrate numerical results. This is aimed at demonstrating our capabil-

ity to compute interacting wind turbine flows. All the calculations were performed

on the Texas A&M University Supercomputing Facility’s EOS, an IBM iDataPlex

Cluster 64-bit Linux with Intel Nehalem processors. Each computation took 30 hours

of wall clock time with the use of 8 parallel processors.

For postprocessing our OpenFOAM computation, we produce graphical output

using a free and open-source, multi-platform data analysis and visualization appli-

cation named ParaView [2].

Snapshots of iso- and contra-rotating wind turbine flows are shown in Figures 4.6

and 4.7, respectively.

Example 4.1 (Iso-rotating case). Here we consider two wind turbines co-axially

placed with a separation distance of 300 m, with wind impinging from the left with

velocity at 10.5 m/s. See a snapshot at t = 72 s in Figure 4.6.

Example 4.2 (Contra-rotating case). The two turbines are aligned in the same

way as in Example 4.1, but the rear turbine blades are mirror images of the front

turbine with the rear one contra-rotating. Under the same conditions as in Example

4.1, a snapshot at t = 72 s is shown in Figure 4.7.

The flow streamlines before and after the wake of the front turbine reaches the
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Figure 4.6: A snapshot of the flow of an iso-rotating case of two co-axially placed
wind turbines at t = 72 s, where the separating distance is 300 m, and the wind is
impinging from the left with velocity 10.5 m/s.

rear one is shown in Figure 4.8 for a RANS turbulence model (k − ǫ) calculation

and Figure 4.9 for calculations with an LES turbulence model (k-equation eddy-

viscosity). When the two turbulence models are compared, an apparent difference is

that the LES model generates smoother streamlines for the vortices, while streamlines

obtained from RANS may show zigzags.

Remark 4.3. By comparing the flow patterns of iso-rotating and contra-rotating cases

in Figures 4.8(c) and 4.8(d) (respectively Figures 4.9(c) and 4.9(d)), one sees that

the flow goes straight-through the rear turbine in the contra-rotating case, in contrast

to the iso-rotating case where a vortex is generated after the rear turbine.

Typical transient curves for angular velocity are shown in Figure 4.10. Compar-

isons of thrust (axial force), omega (angular velocity), and kinetic energy (1
2
IRω2)
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Figure 4.7: A snapshot of the flow of a contra-rotating case under the same conditions
as those in Figure 4.6.

after they have almost reached a periodic state is shown in Table 4.2. The Contra-

rotating rear turbine has slightly faster rotation than that of the iso-rotating rear

one.

Example 4.4. Our calculations can be immediately adapted to compute a multi-

turbine (wind farm) configuration. Here we consider a four-turbine layout, see Figure

4.11.

In a turbulent flows, unsteady vortices appear on many scales. Therefore visual-

ization of vortices is essential in understanding turbulent flows. Vortices are usually

visualized as isosurfaces of values like Q or λ2, which are called Q-criterion [24] and

λ2-criterion [27]. Here, Q and λ2 are defined as

Q = 1

2
(∣Ω∣2 − ∣DDD∣2) , (4.1)
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(a) RANS contra-rotating case, t = 20 s

(b) RANS iso-rotating case, t = 20 s

Figure 4.8: OpenFOAM computational results by RANS turbulence model (k − ǫ).
(200 m spacing and 10.5 m/s wind speed). (a) (b) wake of the front turbine has not
reached the rear one. (c) (d) wake of the front turbine has already reached the rear
one.
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(c) RANS contra-rotating case, t = 80 s

(d) RANS iso-rotating case, t = 80 s

Figure 4.8: Continued.
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(a) LES contra-rotating case, t = 20 s

(b) LES iso-rotating case, t = 20 s

Figure 4.9: OpenFOAM computational results by LES turbulence model (oneE-
qEddy). (200 m spacing and 10.5 m/s wind speed). (a) (b) wake of the front turbine
has not reached the rear one. (c) (d) wake of the front turbine has already reached
the rear one.

86



(c) LES contra-rotating case, t = 80 s

(d) LES iso-rotating case, t = 80 s

Figure 4.9: Continued.
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Figure 4.10: Transient curves for omega (ω, angular velocity). (200/300 m spacing
and 10.5 m/s wind speed.) The speed of the front and rear turbines ramps up in
the same way before the wake reaches the rear one, forming a drop in its speed.
Contra-rotating rear turbine has slightly faster rotation than the iso-rotating rear
one.
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(a) 10.5 m/s wind speed

turbine iso-rotating rear
contra-rotating
rear

front

thrust (kN) 90.6 93.3 127.3
normalized thrust 1.000 1.030 1.405

omega (deg/s) 56.46 57.44 67.82
normalized omega 1.000 1.017 1.201

normalized kinetic energy 1.000 1.035 1.443

(b) 13 m/s wind speed

turbine iso-rotating rear
contra-rotating
rear

front

thrust (kN) 141.4 143.1 197.7
normalized thrust 1.000 1.012 1.398

omega (deg/s) 70.72 71.98 84.86
normalized omega 1.000 1.018 1.200

normalized kinetic energy 1.000 1.036 1.440

(c) 15.5 m/s wind speed

turbine iso-rotating rear
contra-rotating
rear

front

thrust (kN) 195.9 197.1 274.1
normalized thrust 1.000 1.006 1.399

omega (deg/s) 81.59 82.82 98.33
normalized omega 1.000 1.015 1.205

normalized kinetic energy 1.000 1.030 1.452

Table 4.2: Comparison of thrust (axial force), omega (angular velocity), and kinetic
energy (1

2
IRω2) after they are almost periodic with small fluctuation. (300 m spacing)
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Figure 4.11: A four-turbine layout for Example 4.4. The center coordinates are
displayed next to each turbine. The rotational direction of the upper-right turbine
is different from the other three.

λ2 = second largest eigenvalue of Ω2 +DDD2, (4.2)

where the strain rate tensor DDD and rotation rate tensor Ω are defined as

DDD = 1

2
(∇u +∇u⊺), Ω = 1

2
(∇u −∇u⊺). (4.3)

The criterion “Q > 0” or “−λ2 > 0” can be generally interpreted as “local rotation

rate being stronger than the strain rate”.

Snapshots of Q and λ2 isosurfaces are shown respectively in Figure 4.12 and

Figure 4.13, where we can clearly identify the relatively strong vortices generated

by blade tip, root and tower-blade interference. Note that these cases have uniform

inlet flow, while in reality, the background turbulence will considerably affect the

result.
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(a) LES contra-rotating case, t = 80 s

(b) LES iso-rotating case, t = 80 s

Figure 4.12: OpenFOAM computational results with Q-isosurface (Q > 0.01) is vi-
sualized for vortices. Blue and red color on the isosurface indicate different direction
of rotation in the flow. Turbulent flow appears to be mainly generated by tip and
root of the blades and by tower-blade interference.
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(a) LES contra-rotating case, t = 80 s

(b) LES iso-rotating case, t = 80 s

Figure 4.13: OpenFOAM computational results with λ2-isosurface (−λ2 > 0.01) is
visualized for vortices. Blue and red color on the isosurface indicate different direction
of rotation in the flow. Turbulent flow appears to be mainly generated by tip and
root of the blades and by tower-blade interference.
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4.4 Proper Orthogonal Decomposition

Proper orthogonal decomposition (POD) is a procedure to extract information

on coherent structures within a turbulent flow. It decomposes flow data into a basis

that maximize the turbulent kinetic energy in a finite sum approximation. The

procedure has been applied to turbulent data analysis [7], and more specifically, to

wake analysis for wind turbines in [37].

The flow is sampled as u(xi, tj), where {xi}ni=1 are cell centers of the mesh, and

{tj}mj=1 are equally spaced sampling times. The time averaging operation is denoted

as ⟨⋅⟩ = 1
m ∑m

j=1. The inner product of vector fields {v(xi)}ni=1 and {w(xi)}ni=1 is

defined as

(v,w) = n

∑
i=1

Viv(xi) ⋅w(xi),

where Vi is the volume of the cell at xi. The weighted summation resembles the

integral over the domain. The norm is subsequently defined as ∥v∥ = (v,v)1/2.
The data is decomposed into

u(xi, tj) = m

∑
k=1

skck(tj)φk(xi), (4.1)

The set of basis, or modes, φk is normalized such that ∥φk∥ = 1, and ck are normalized

such that ⟨c2k⟩ = 1 for all k. Then, the fluctuation energy on average is ∑m
k=1 s

2
k, and

the portion carried by mode φk is just s2k. We further order the modes φk such that

s1 > s2 > ⋯ > sm. Then the leading modes are the most energy-carrying modes in the

turbulent flow.

In this study, we took 100 samples from the flow during t = 60 s to t = 80 s.

The rotating part of the mesh (cf. Figure 4.1) is excluded from the analysis. Figure

4.14 shows the energy contribution of the leading modes to the total energy in the
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(b) iso-rotating case

Figure 4.14: Energy contribution of mode 2–40 to the total kinetic energy in the
fluctuation.

fluctuation. The first mode is omitted since it mainly represent the mean flow. Modes

often appear in pairs. For example, mode pair (3,4) share the same structure except

a phase shift, and they contain almost the same fluctuation energy. The spatial

structures of some of the leading modes, namely mode 3 and mode 5, can be seen in

Figure 4.15.

Frequency analysis of the coefficients ck is carried out and the power spectral

density (PSD) is shown in log scale in Figure 4.16. The frequency is normalized

as the Strouhal number St = fR/U∞. We can clearly identify the two dominant

frequencies at St ≈ 1 and St ≈ 3. For instance, the dominant frequency is at St ≈ 1
for mode pair (3,4), while it is St ≈ 3 for mode pair (5,6). From Figure 4.15, we can

see that mode 3 is closely related to blade-tower interaction, while mode 5 is mainly

related to the helical blade wake. This perfectly explains the frequency ratio of 3.

94



(a) mode 3 of contra-rotating case (b) mode 5 of contra-rotating case

(c) mode 3 of iso-rotating case (d) mode 5 of iso-rotating case

Figure 4.15: Structure of some selected modes
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Figure 4.16: Power spectral density (PSD) of the POD time coefficients ck in log
scale for mode 2–40.
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turbine radius 50 m

turbine center elevation 30 m under water

angular velocity
constant at 1 rad/s
(∼ 9.5 rpm)

inlet velocity (aligned with turbine axis) 4 m/s
water density ρwater 998.2 kg/m3

water kinematic viscosity νwater 1 × 10−6 m2/s
air density ρair 1 kg/m3

air kinematic viscosity νair 1.48 × 10−5 m2/s
Initial and inlet values for k − ǫ turbulence model

k = 0.06 m2/s2, ǫ =
0.0495 m2/s3

Table 4.3: Setting, physical and modeling parameters chosen in the two-phase CFD
computation

4.5 A Turbine Operating in a Two-Phase Flow

Our preceding code development and calculations can be immediately extended

and generalized to other similar applications such as ocean tidal or current power

generation. In the following, we include a hypothetical situation where a turbine

operates in a two-phase flow. The case setting is as shown in Table 4.3. The case is

computed with the standard solver interDyMFoam in OpenFOAM, which implements

the PISO/SIMPLE algorithm to solve the momentum equation, and volume of fluid

(VOF) method with interface compression to track the fluid-fluid interface. A snap-

shot of the water-air interface is shown in Figure 4.17. Although the mesh is not in

high resolution, one can clearly see the waves, ripples, and bubbles.

4.6 Concluding Remarks

Snapshots offered in this section provide useful insights for flow patterns near

the blade boundary layer, farfield turbulence, and dominant modes (through POD),

which will eventually help engineering of the best designs for wind turbines. The

calculations are quite time consuming – each run takes several days on the Texas
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Figure 4.17: Snapshot of a wind turbine operating partially under water. On the
left, the surface shown is the 0.4-isosurface of water volume fraction, viewed from
above water level. On the right, the surface shown is the 0.6-isosurface of water
volume fraction, viewed from below water level. The color indicates the elevation of
the surface relative to original water level.
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A&M supercomputer, even for a rather coarse mesh consisting of 0.6 million cells.

Our hope is to eventually run our codes with about 30 - 50 million cells.

We have only considered the case where each wind turbine is freely-rotating. How-

ever, power-generating mechanisms and operating power-curves need to be carefully

taken into account in the future. Nevertheless, this section have clearly demonstrated

our ability to study dynamic behaviour of the wind power generators.
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5. SUMMARY

In this thesis, two problems in computational mechanics, namely aircraft water

entry and wind energy, have been studied together with the description of related

theory and methodology. CFD calculations are carried out with proper schemes and

computational techniques.

In the aircraft water entry problem, CFD techniques are used to simulate this

complex and dynamic process under several cases. External loading data has been

analyzed to estimate the severity of structural damage under the given scenarios.

In the wind energy problem, blade resolved CFD calculations of wind turbines with

towers are carried out. Interaction between wind turbines are studied.

It has been demonstrated that the CFD approach is advantageous in saving long

and expensive processes of laboratory setup and measurements, while providing valu-

able information to the subject problem. Now, with the availability of more abundant

free and open-source computational tools and user-friendly software such as Open-

FOAM, it has become much easier for mathematicians to conduct interdisciplinary

collaboration with engineers and physicists for the modeling and computation of com-

plex, “real world” problems. However, challenges still remain in such interdisciplinary

research. Sometimes mathematically advantageous methods fail when situation is

not ideal, for example, on mesh with sub-optimal quality. On the other side, com-

putational research sometimes can become very empirical, which comes with a lot

of best practice guidelines and trial-and-error. In such cases, mathematical analysis

are needed to provide more insights.
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