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ABSTRACT 

 

Turbulent mixing of parallel jet flows has broad engineering applications. For 

example, in Gen IV conceptual nuclear reactors, high-temperature flows mix in the 

lower plenum before entering the secondary cooling system. The mixing condition needs 

to be accurately estimated and fully understood. In addition, massive computational 

works involved in the design process necessitate high-fidelity experimental data sets for 

benchmarking simulation results.  

The purpose of this study is to use laser Doppler anemometry (LDA) and particle 

image velocimetry (PIV), both non-intrusive measuring techniques, to evaluate the 

mixing characteristics of two submerged parallel jets issuing from two rectangular 

channels. Flow characteristics including distributions of mean velocities, turbulence 

intensities, and Reynolds stresses were studied for the cases with equal and non-equal 

discharge velocities. The locations of the merging point (MP) and combining point (CP) 

were found. Spectral analyses including fast Fourier transform, power spectral density 

estimation and continuous wavelet transform of a segment of the LDA results revealed 

the scale and the evolution in time of varied-size eddies in the mixing region of the flow. 

At last, the results obtained from LDV and PIV with two different magnification factors 

were compared, and the discrepancies were quantified.  

The experimental data obtained from the LDA and PIV measurements of the 

averaged quantities and transient  are not only valid for benchmarking steady-state 
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numerical simulations using turbulence models to solve RANS equations but they also 

enlarge the database of the experimental data for twin jets. 
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NOMENCLATURE 

 

U Streamwise Velocity 

V Lateral Velocity 

a Jet Width 

S Jet Spacing, the Distance between the Centers of Two Jets 

l Jet Length 

x X Axis which is Perpendicular to the Direction of Main Stream 

y Y Axis which is Parallel to the Direction of Main Stream 

z Z Axis which is Perpendicular to the x-y Plane 

Umax Local Maximum Value of U 

U0 Average Discharge Velocity of the Jet 

Urms Root Mean Square Value of U 

Vrms Root Mean Square Value of V 

ω Z-component Vorticity 

MP Merging Point 

CP Combing Point 

N Number of Samples 

R Velocity Ratio between the Left and Right Jet 
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1. INTRODUCTION

High temperature gas-cooled and sodium-cooled reactors have been designated 

as two of the six candidate reactors for next generation, also Generation IV, (Gen. IV) 

nuclear power plants. The design process needs large amounts of numerical simulations 

such as computational fluid dynamics (CFD) computations and, as any large-scale 

experiments requires significant amount of money and time. However, the inherent 

uncertainties existing in the turbulence models and wall functions of any CFD codes 

solving Reynolds-averaged Navier-Stokes (RANS) equations negatively influence the 

credibility of the CFD simulation results. This necessitates high-fidelity experimental 

data sets for benchmarking these results. 

In Gen. IV reactors, mixing of high-temperature flows appears in the lower 

plenum. The spacing ratio of the jets is relatively small, for instance in the sodium-

cooled reactor, compared to those in the external aerodynamics applications. The mixing 

condition and the mixing length are of great importance to the reactor safety because of 

the existence of thermal stresses and possible temperature oscillations induced by the 

turbulent mixing. These temperature oscillations will further result in output power 

instabilities. In this work, two submerged parallel waters jets issuing from two 

 Part of the content in this section is reprinted with permission from “Laser-Doppler Measurements of the 
Turbulent Mixing of Two Rectangular Water Jets Impinging on a Stationary Pool” by Wang, H., et al., 

2016. International Journal of Heat and Mass Transfer, Vol. 92, 206-227, Copyright [2016] by Elsevier. 

_________________
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rectangular channels, also known as twin-jet flow, were selected to study the turbulent 

mixing phenomenon. 

Different from a single jet flow, twin jets issuing from two adjacent rectangular 

slots are characterized by the formation of a subatmospheric pressure region due to the 

mutual entrainment of the two jets. This negative-pressure region deflects the jets, 

causing them to move toward each other and form a converging region. Inside this 

region, strong recirculation near the slot area create a flow reversed with respect to the 

direction of the main flow. The converging region ends at the merging point (MP) which 

is defined as the point at which the mean velocity is zero along the symmetry axis [1]. 

Beyond this point the jets start to combine until they form a single jet at the combining 

point (CP). The region between the MP and the CP is called the merging region. The 

combined jet then behaves as a single jet and analytical solutions derived for a single jet 

hold in this combined region. The mixing does not only happen between the jets 

themselves but also between the jets and the static surrounding fluid that was entrained 

as a result of the shear force created. In engineering applications, knowing the length of 

the mixing region and the locations of the CP and MP are often important to ensure a 

good mixing. The schematic structure of a typical twin jet is shown in Fig. 1. 
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Fig. 1. Diagram of a typical twin jet system. a is the channel width, S is the distance 

between centers of the two jets, Umax is the local maximum velocity in the streamwise 

direction, x is the coordinate perpendicular to the direction of the jets, y is the coordinate 

along the streamwise direction, CP stands for the combining point, and MP is the 

merging point [30].  

In 1959 Miller and Comings [2] made the first measurements of the 2-D twin jets 

using a constant temperature hot-wire anemometer (HWA). The non-dimensional jet 

spacing ratio, the ratio between the jet spacing S and the jet diameter a, was 6. By 

measuring the mean and fluctuating velocity as well as the static pressure and comparing 

them to a single jet, they found that the flow of the 2-D twin jets had a high degree of 
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symmetry about the centerline of jets. The two jets merged at certain location behaving 

as a single jet. This location was defined as the separating point of the converging region 

and the combined region. Before the MP, there was a stagnation point, also called the 

combining point, at which point the static pressure gradient and the turbulent shear stress 

force were equal but with different signs. 

Tanaka [3] conducted a similar measurement using a dual jet of air issuing from 

parallel slot nozzles but focused on the effect of the spacing ratio ranging from 8.5 to 25. 

The static pressure was determined to be negative near the nozzle region but suddenly 

increased to atmospheric pressure or even higher after the free stagnation point [3]. The 

author also concluded that the streamwise velocity distribution was independent of the 

Reynolds number within the limits of velocity studied. An empirical equation relating 

the curvature of the central stream-line of the jet and the nozzle distance was proposed. 

In another report [4], the combined flow of the twin jets was found to have a velocity 

distribution similar to a single jet with its width spread linearly downstream. The decay 

of the center velocity was stronger than that of a single jet. 

A crude integral model of two parallel jets was proposed, and the results 

predicted the mixing behavior surprisingly well, despite the fact that the model 

overpredicted the entrainment rates. The experiments revealed that the velocity 

distributions were self-preserved upstream and downstream of the merging region [5]. 

Elbanna and Gahin [6] evaluated the turbulent characteristics of the twin jets and 

compared with the behavior of a single jet. The spacing between the two nozzles applied 

was 12.5 slot widths. The results indicated that the half-width of the combined flow 
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grew linearly in the direction of the stream but the spread angle was slightly smaller than 

that of a single jet.  

Research on non-equal parallel jets studied shows that the slower jet was more 

attracted to the faster jet when the velocity ratio decreased [7]. However, the total 

momentum, including the velocity and pressure momentum, was still conserved. Using a 

similar measuring technique, the distributions of the overall Reynolds stress and the 

velocity fluctuations of two parallel jets with a spacing ratio of about 2.5 was evaluated, 

and the presence of inner and outer mixing regions in each jet was found [8]. The 

directions of rotation of the inner and outer vortices were opposite. The jets did not 

converge because side plates were not installed in the experiment. Later, Lin and Sheu 

[9] reported that for 2-D plane jets with spacing ratios of 30 and 40 and a nozzle width 

of 2 mm, the mean velocity was self-preserving in the converging region and the 

combined region. The fluctuating velocities and the Reynolds stress presented a self-

preserving behavior in the combined region only. Their experiments confirmed that the 

jet widths increased linearly in the converging region and combined region [9]. 

Although used for numerous other purposes prior to this, in 1977 the non-intrusive 

measuring technique laser Doppler anemometry (LDA), also called laser Doppler 

velocimetry, was first used to study a twin jet flow field [10]. The spacing ratio was 4.25 

and the nozzle exit Reynolds number was 11,000. The spectral analysis showed that the 

vortex roll-up frequency in the outer shear layer was the same as that of a single jet. The 

experimental results also indicated that the dynamics of the twin jets was strongly related 

to the development of the coherent structures generated from the shear layer instability 
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[10]. LDA was also used to explore the impinging flow of two water jets, evaluating the 

effect of the jet imbalance [11]. This work showed that several flow features captured by 

the LDA were likely to be important to CFD model validation studies. 

A study that investigated 2-D parallel jets with spacing ratios between 9 and 

18.25 evaluated the standard k-e model and Reynolds stress transport model by 

comparing the numerical results with the experimental data [12]. The results indicated 

that the CFD technique was capable of estimating the location of the merging and 

combining points.  HWA measurements showed that a convex surface deflects the jets 

stronger than a flat surface in the case of two parallel rectangular jets with a small 

spacing ratio [1]. The researchers provide detailed experimental conditions such as the 

turbulence intensity at the nozzle exit section and the initial boundary conditions. The 

initial condition is very valuable especially for comparisons with numerical results and 

experimental data from other researchers. However, the majority of publications 

mentioned above fail to provide detailed initial and boundary conditions. 

For a small spacing ratio of 1.89, the normalized streamwise mean velocity was found to 

remain independent of the Reynolds number [13]. The authors suggest that the mixing 

length could be increased by reducing the spacing ratio or increasing the Reynolds 

number. A superposition technique based on Reichardt’s hypothesis can predict the flow 

pattern well given the condition that the jet deflection was not significant [14]. 

Obviously, this method does not work if the spacing ratio is too small as the jet 

deflection under this condition is significant. 
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Most of the previous studies in this field have used a relatively large spacing 

ratio [e.g., 2, 3, 4, 6, 7, 9, and 12].  However, in many engineering applications, such as 

coolant mixing in the lower plenum in a VHTR, the spacing ratio is relatively small. 

This necessitates more work focused on the jets from nozzles with a small spacing ratio. 

In addition, the majority of studies to date have used HWA to measure the air flow in a 

wind tunnel [e.g., 1-9, 12, 13]. The main issue with HWA measurements is the lack of 

ability to measure reversed flows accurately, such as the flow in the converging region 

of a twin-jet flow. Nasr and Lai [10] applied LDA to the study of the mixing 

phenomenon but the seeding particles used, like fog fluid, may introduce significant 

errors. These fog particles amalgamate to form larger particles, which are too heavy to 

follow the flow. 

 Table 1 summarizes the previous studies of the parallel jets under varied 

experimental conditions.  It was reported that the velocity field and the turbulence 

characteristics were functions of the spacing ratio S/a and the aspect ratio l/a [2].  

Previous works have mainly focused on large spacing ratios and aspect ratios. However, 

these ratios are relatively small in nuclear reactors. Moreover, the working fluid reported 

was mainly air, and the measuring technique used was a hot-wire anemometer (HWA). 

Although the governing equations are the same for water and air, the type of working 

fluids will introduce different measurement uncertainties and challenges into the specific 

experiments. Compared to HWA, PIV is superior in handling the reversed flows, which 

exist in the recirculating zone of the parallel jets. 
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There has not been a valid empirical correlation proposed so far to accurately 

predict the flow field of the twin jets flow according the previous literature survey. One 

of the main reasons is the lack of high-fidelity experimental data. Thus, the purpose of 

this work is to investigate the turbulent mixing phenomenon of parallel jets with a small 

spacing ratio by performing 2-D LDA and PIV measurements. The results can enlarge 

the experimental database of the twin jets and help better understand its mixing 

characteristics. Furthermore, the LDA and PIV data can be utilized to validate the 

numerical models, e.g., the turbulence models in the CFD simulations which are heavily 

used in the design process. Spectral analysis of a fluctuation velocity signal obtained by 

LDA can provide an insight into the flow structures which cannot be revealed by the 

investigation of averaged quantities. However, the applications of spectral analysis on 

the study of twin water jets with small spacing ratios have rarely been reported in the 

literature. Thus, spectral analysis by employing methods such as fast Fourier transform, 

power spectrum density estimation, and continuous wavelet transform will be carried out 

to explore the flow behaviors in the mixing region. 
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Table 1. Summary of the literature review [31] 

Year Authors
Working 

fluid
Spacing ratio 

(S/a)
Aspect ratio 

(l/a)
Re Measuring tools Contributions

1959 [1]
Miller and 
Comings 

Air 6 very large 17,800
Hot-wire 

anemometer
Symmetry, Merging into single jet, MP = 7

1970 [2] E. Tanaka Air 8.5 - 26.3 very large
4,290 - 
8,750

Hot-wire 
anemometer

Negative pressure region, Independence 
of Re

1974 [3] E. Tanaka Air 8.5 - 26.3 very large
4,290 - 
8,751

Hot-wire 
anemometer

For S/a =20, MP = 13~15a, CP=30a

1977 [4] G.F. Marsters Air 17.25 40 12,000
Hot-wire 

anemometer
Proposed a crude integral model

1983 [5]
H. Elbanna and S. 

Gahin
Air 12.5 40.8 20,000

Hot-wire 
anemometer

Half-width of the combined flow grew 
linearly

1987 [6]
H. Elbanna and S. 

Gahin
Air 27.64 89 n/a

Hot-wire 
anemometer

CP = 60 for equal velocity, studied uneven 
jets

1989 [7]
N.W.M. Ko and 

K.K. Lau
Air 2.5 5.6 10,000

Hot-wire 
anemometer

MP = 2.5a, CP = 10.5a

1990 [8]
Y.F. Lin and M.J. 

Sheu
Air 30 & 40 90 9,000

Hot-wire 
anemometer

For S/a=30a, MP = 40, CP = 60a

1997 [9]
A. Nasr and J.C.S. 

Lai
Air 4.25 24 11,000

LDA (using frog 
fluids)

MP = 4a, CP = 8a

1998 
[10]

P. Behrouzi and J. 
J. Mcguirk

Water 13 n/a 37,500 LDA  Flow Impingement

2001 
[11]

E. A. Anderson and 
R. E. Spall 

Air 9 - 18.25 32
5,900 - 
6,100

Hot-wire 
anemometer

For S/a = 9, MP = 12a, CP = 19a

2007 
[12]

Z. Q. Yin et. al Air 1.5, 1.75, 1.89 6.8
33,300 - 
83,300

Hot-wire 
anemometer

U  was  independent of Reynolds number

2011 
[13]

A. Nasr and J. Lai Air 2.5 n/a LDA & Numerical
MP = 1.75a, CP = 4.4a, the  proposed 

model didn't work for small S/a
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2. EXPERIMENTAL METHODS*

2.1 Laser Doppler anemometry (LDA) method 

2.1.1 Principle of LDA 

The principle of the LDV (Fringe model) is based on the Doppler frequency shift 

caused by particles passing through the intersection (measuring volume) of two coherent 

laser beams as shown in Fig. 2, producing a burst signal. Then the velocity of this 

moving particle can be calculated based on this shift frequency. The direction of the flow 

is determined with the help a Bragg cell generating a positive and a negative frequency 

shift. The accuracy of the LDA results highly rely upon the laser power, laser 

wavelength, optic alignments, and the seeding particles. 

 Fig. 2. Principle of LDV (Fringe Model) [30] 

Parts of this section are reprinted with permission from “Laser-Doppler Measurements of the Turbulent 
Mixing of Two Rectangular Water Jets Impinging on a Stationary Pool" by Wang, H., et al., 2016.
International Journal of Heat and Mass Transfer, Vol. 92, 206-227, Copyright [2016] by Elsevier.
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2.1.2 Experimental setup 

The experiment was performed in a water tunnel. The experimental rig, not 

including the measuring instrumentations, was the one used in Crosskey and Ruggles’s 

work [15]. Fig. 3 presents a snapshot of the setup. The flow was driven by two identical 

0.5 horsepower pumps. The control of the two jets was independent. The flow meter 

used was GPI TM100 with an accuracy of 97% and repeatability of 95%. The 1-inch 

thick water tank with dimensions of 1016 mm by 762 mm was made of acrylic to 

provide an optical access to the flow inside. The experiment setup was a closed loop 

with water recycled to the tank. Two identical rectangular channels were located at the 

center of the tank. The length of each channel was 87.6 mm and the width 5.8 mm 

making the aspect ratio 15.1. The centers of each channel were 17.8 mm apart, giving a 

spacing ratio of 3.07. Each channel is 279.4 mm high to ensure that the exit flow is a 

fully developed turbulent flow. The detailed dimensions and the corresponding 

coordinates used in this work are shown in Fig. 4. The LDA system was from Dantec 

and included a 2-D flow explorer with a laser head and photomultiplier tube, a 3-D 

transverse system with accuracy of 0.01mm, and a data acquisition system. 
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Fig. 3. Experimental setup [30] 

Fig. 4. Detailed dimensions of the twin rectangular channels [30] 
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 The 2-D flow measurements were performed using the fringe-mode based 

Dantec LDV optics which has a back-scattering arrangement. The focal length of the 

two laser beams was 500 mm with wavelengths of 660 nm and 785nm. The laser beam 

had a diameter of 2.5 mm and a nominal power of 35 mW. Each beam was split into two 

beams after passing an 80 MHz Bragg cell and intersected with the other at a half-

crossing angle of 3.43°. The seeding particle used was hollow glass spheres from TSI 

with a centered diameter of 10μm. The seeding concentration was about 1.9 g/m3 which 

was optimized to increase the signal-to-noise ratio (SNR). The tradeoff was that higher 

concentration of particles reduced the light intensity in water significantly. On average, 

3000 samples were taken at each location, except at those located near the outer mixing 

region where the data rate was extremely low. The LDA measurements were operated in 

coincidence mode meaning that the u and v components were acquired simultaneously.  

This mode could reduce the data rate significantly especially for the jet flow. It is 

because under this mode the bursts from both u and v components must be recognizable 

in order for them to be counted as valid signals. If the magnitude of one of them, for 

example v component, is too small and then a low data rate will be generated no matter 

how large the u component is. That is the exact case for jet flows in which the lateral v 

component is very small in most regions at the most of time. In this study, the data rate 

ranged from 10 Hz in the almost static region to 150 Hz in the core flow region, which 

was the maximum frequency that could be reached in the experiment with respect to the 

high SNRs. The low frequency may also be attributed to many factors, such as low 

power laser beams, attenuations by thick wall of the tank and relatively low particle 
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concentrations in the outer mixing region.  A higher data rate of about 200 Hz was 

obtained by operating the LDA in the 1-componennt mode to perform the spectral 

analysis. 

2.1.3 Calibration procedure  

 For LDA measurements, the influence of the light refraction from the surface of 

the water tank and from the water itself needs to be addressed. That is, the system must 

be calibrated in order to know the exact position of the measuring volume in the water. 

This system was calibrated by taking photos of the measuring volume where the beams 

cross as presented in Fig. 5. Then by calculating the relative position in pixels of the 

measuring volume to the center of the edge the channels, the calibration factor was 

obtained. Due to the crossing angle of the two beams, the lowest accessible position 

along the Y-axis was located at 10 mm above the channel surface. The measurements 

were carried out at the middle plane, P2 as shown in Fig. 5. 
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   Fig. 5. Calibration of the measuring volume position in water [30] 

 

2.1.4 Measurement uncertainties  

For all LDA measurements, many uncertainties are involved. Unfortunately, a 

few important factors are sometimes beyond the researchers’ control [J. F. Meyers, 

personal communication, March 2014], such as the particle tacking fidelity, seeding bias, 

influence of the scattered light on the signal quality, and photo resolved signal bursts 

owing to insufficient  scattered light. The particle size distribution is another source of 

uncertainty which is difficult to quantify. However, a study from F. Durst and B. Ruck 

[16] suggested that the maximum diameter of the particle should be less than 2 to 2.5 

times the average diameter to achieve the optimum size distribution for LDA 
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measurements. The particles used in this work have a nominal mean diameter of 8 μm to 

12 μm. 90% of the particles have a diameter of 14 μm to 17 μm. Therefore, the ratio 

between the maximum diameter and the average diameter meets the requirement. 

In this study, the LDA measurements cannot be finished within a short period of 

time due to the low data rates in some regions. So, a single measurement task may last a 

few days and require the experimental facility to be turned on and off multiple times. 

The flow rate is controlled by two plastic ball valves and sometimes flow rates shift. The 

stability of the pumps and the velocity shift are monitored by recording the readings of 

the flow meters. The maximum velocity shift within each measurement period was about 

0.66%.  Moreover, readings from the flow rate fluctuate continuously due to the nature 

of turbulence. Thus, considering all these effects, a certain degree of error must have 

been introduced to results reported in this work.      

To quantify these uncertainties, the same measurement of the flow parameters 

including the mean and the fluctuating velocities at the center of the right channel along 

the y-direction was repeated five times within five days. Only u-component of the LDA 

was activated. Figs. 6 and 7 show the results. In order to demonstrate the absolute values 

of the errors associated with results reported previously, the flow parameters were not 

normalized. The error bars in the figures represent the standard deviations, which are 

small, of five measurements performed each day for five days for a total of 25 

measurements.  

For the mean velocity, the main discrepancies were from the locations in the 

combining region. This is not surprising because it is the most complicated region for 
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this type of flow, and small perturbations from the initial and boundary conditions result 

in significant changes to the results. The largest error was approximately 9% for days 1 

and 4 at y/a = 5.17, where y is the distance from coordinate along Y-axis. For the 

fluctuating velocity, the largest error came from y/a = 3.45, again for days 1 and 4. The 

error was about 12%. However, the average standard deviations of the U and Urms 

measurements at all locations over the five days were 1.5% for U and 1.6% for Urms. 

Thus, the overall error resulting from the long measuring window were insignificant.

 Another possible source of error is the sampling size. For the majority of the 

regions, 3000 samples were taken at each measuring point. To evaluate the uncertainty 

in the sampling process, the standard error of the mean (SEM) of the Reynolds stress 

component 𝑈′𝑉′̅̅ ̅̅ ̅̅  at point x/a = -0.86, y/a = 5.17 were studied. The SEM is the ratio of 

the standard deviation, σ, of the whole population and the square root of the sample size 

N, with the results shown in Fig. 8. The smallest SEM is equal to 0.00038 m2/s2 when N 

is equivalent to 3000, 4.3% of the mean of the Reynolds stress. Consequently, 4.3% is 

the maximum uncertainty in the sampling process. 
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Fig. 6. Streamwise mean velocity U at the center of the right channel along the Y 

direction [30] 
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 Fig. 7. Streamwise fluctuating velocity at the center of the right channel along the Y 

direction [30] 
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Fig. 8. An evaluation of the sampling uncertainty in the measurement of the Reynolds 

stress component 𝑈′𝑉′̅̅ ̅̅ ̅̅  at point (x/a = -0.86, y/a = 5.17) [30]

2.2 Particle image velocimetry (PIV) 

2.2.1 Principle of PIV 

The working principle of PIV is to utilize a laser sheet to illuminate the seeding 

particles twice within a short time period of Δt to obtain an image pair. The displacement 

of the particle traveled within Δt can be calculated by analyzing the image pair. The 
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instantaneous velocity is determined by averaging the displacements of all particles 

within a small interrogation window. PIV is a non-intrusive and whole-field measuring 

technique, which enables one to obtain the instantaneous flow field spontaneously. 

Compared to the point-to-point methods, such as LDA, PIV is good for studying the 

coherent turbulence structures. The accuracy of PIV measurement depends on the laser 

power, frame rate, laser sheet thickness, post-treatment methods of the image, seeding 

particles and so on. 

2.2.2 Experimental setup 

The setup of the PIV system is shown in Fig. 9. The water flow was driven by 

two 0.5 horsepower pumps. The rectangular nozzle had a width of 5.8mm and length of 

87.6mm. The spacing ratio S was 17.8mm. The height of the slots was 279.4 mm, which 

was long enough to ensure that the turbulent flow was fully developed. The flow passed 

a stagnation box before entering the channels to dampen the undesired fluctuations in the 

flow. The exit Reynolds number was 9,100 based on the average discharge velocity, 

which was 0.75 m/s. The acrylic tank had a capacity of 0.76 m3.  The flow rate was 

controlled by two values and monitored using two GPI TM100 flow meters with an 

accuracy of 97% and repeatability of 95%. The channels were located at the center of the 

tank as illustrated in Fig. 10 with detailed dimensions presented. The jets could develop 

freely without being disturbed by the walls. The two jets had the same discharge velocity 

and were at room temperature. 
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Fig. 9. PIV setup [31] 
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                  Fig. 10. Illustration of the parallel jets system [31] 

 

 

The PIV system used to measure the velocity field consisted of a high-power 

Nd:YAG dual- head laser (Beamtech PIV200) with a wavelength of 527 nm and a high 

speed camera (GX3 V-190-B/W) equipped with a 1.3 Mega pixel sensor. The maximum 

laser energy was 100 mJ per head, and the maximum shooting frequency was 15 Hz, 

which was employed in this study.  The maximum frame rate of the camera was 198,000 
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fps. 4G memories enabled a longer period of measurements with respect to a fast 

transport speed of the data. The maximum resolution was 1280 x 1014, which was used 

in this work. The high speed camera and the laser were synchronized by a high accuracy 

pulse generator. The time period between each pair of images in this experiment was 500 

μs.   

The high speed camera was sitting on a 3-D traversing system from Dantec with 

an accuracy of 0.01 mm so that the camera could be able to move accurately to 

investigate different regions of the jets.  The seeding particles used in this experiment 

were hollow glass spheres from TSI centered at 10 μm with a refractive index of 1.5. 

The density ranged from 1.05 g/cc to 1.15 g/cc. The Stokes number, an indication of the 

tracer fidelity,  calculated using Eq. (1) was 0.0009 implying that the particles could 

follow the fluid very well [17].  

𝑆𝑘 =
𝜏𝑈

𝐿
= 

𝐷𝑝
2𝜌𝑝𝐶𝑐𝑢𝑜

18𝜇𝐿
                                       (1) 

where τ is the relaxation time of the particle, uo is fluid velocity, L is the characteristic 

length of the fluid, Dp is particle diameter, ρp is particle density, and Cc is the slip 

correction factor which is equal to 1.017 for the particle with a diameter of 10 um.  

The particles were injected into the system from two water reservoirs under the 

water tank, and the system ran long enough before the measurements were taken to 

minimize any unstable effects.  The laser was operated at the pulse mode with a 

frequency of 15 Hz. The full 4 Gb memory was used for each measurement generating 

about 812 pairs of images. Two measuring scales were employed to study the mixing 
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condition in and above the converging region. The camera was moved closer to the 

target area after completing the measurements of the two regions together. These two 

cross-validated data sets helped reveal the uncertainties introduced by the enlargement 

factor, which was a common uncertainty that existed in any PIV measurements [18]. The 

images were then analyzed using an open-source code PIVlab V. 1.2.  Pre-processing 

techniques of contrast limited adaptive histogram equalization (CLAHE) and a high-pass 

filter were employed to enhance the quality of the raw images [19]. A comparison of 

original raw image and the enhanced one is shown in Fig. 11.  

 

 

Fig. 11. A comparison of original raw image and the one enhanced by pre-processing 

techniques of CLAHE and a high-pass filter [31] 
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3. POST ANALYSIS METHODS

3.1 Fast Fourier transform (FFT) 

FFT is a faster way to calculate the discrete Fourier transform (DFT) of a 

sequence or signal. It transforms a discrete signal X in the time or space domain into the 

frequency domain representation. The mathematic expression is defined as: 

𝑋 (𝑛) =  
1

𝑁
 ∑ 𝑥(𝑘)𝑒−𝑗𝑘2𝜋𝑛/𝑁𝑁−1

𝑘=0  𝑓𝑜𝑟 𝑛 = 0,1,2…𝑁 − 1       (2) 

FFT is useful for exploring the dominant phenomenon or frequencies of any eddies in 

the flow by decomposing a complex velocity signal into simpler segments. 

3.2 Power spectral density (PSD) 

Power spectral density (PSD) is a tool widely used to investigate the turbulent 

kinetic energy distribution as a function of frequency or wavenumber depending on the 

type of the signal. By mapping the energy distribution of a given signal into a Fourier-

space domain, the energy cascade process can be better examined and understood. By 

definition, PSD is the Fourier integral transform of the autocorrelation R(τ) of a given 

signal. For a real and stationary signal s(t), the PSD function P(f) can be described as 

follows: 

 Reprinted with permission from “Laser-Doppler Measurements of the Turbulent Mixing of Two 

Rectangular Water Jets Impinging on a Stationary Pool” by Wang, H., et al., 2016. International Journal of 

Heat and Mass Transfer, Vol. 92, 206-227, Copyright [2016] by Elsevier. 
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𝑃(𝑓) =  ∫ 𝑅(𝜏)𝑒−2𝜋𝑖𝑓𝜏∞

−∞
𝑑𝜏  (3) 

where f is the frequency, τ is the time shift, 𝑖 =  √−1 , 𝑅(𝜏) = 𝐸[𝑠(𝑡 + 𝜏)𝑠(𝑡)],  and E 

is the expected value. 

 3.3 Continuous wavelet transform 

In 1981, Morlet introduced wavelet transform to study seismic signals [20]. 

Farge [21] reviewed its application to turbulence in 1992. Compared to Fourier analysis 

in which the local information is lost after the signal is transformed into Fourier domain, 

wavelet analysis is able to analyze the signal in the scale or frequency and time domain 

while providing a history of the signal’s evolution. Turbulence happens at different 

scales, so decomposing the turbulent flows into local scales is beneficial to further 

understand the turbulence process. Although short-time Fourier transform provides some 

time information, the size of the time window to examine the signal is fixed which is not 

always useful. In contrast, wavelet analysis is capable of analyzing the signal with a 

flexibly sized time window. By definition, continuous wavelet transform (CWT) is the 

convolution of a given signal s(t) with a family of wavelet functions as represented 

mathematically by Eq. (4): 

𝑊(𝑏, 𝑎) =  
1

√𝑎
∫ 𝑠(𝑡)ψ∗∞

−∞
(
𝑡−𝑏

𝑎
)𝑑𝑡           (4) 

where W is the wavelet coefficient; a is the wavelet scale; b is the position (time or 

space); the asterisk stands for the conjugated value; ψ is the mother wavelet function. 
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 The wavelet function can be elongated and shifted by altering the scale a and the 

analyzing position t, respectively. For a better understanding of wavelet transform, an 

interpretation of its physical meaning is necessary. In mathematics, convolution is an 

evaluation of how close two functions are. Thus, the physical meaning of the wavelet 

coefficient W is the degree of similarity between signal s(t) and the wavelet function. By 

changing the parameters of a and b, the whole signal can be inspected at varied scales 

and positions in time or space. That is why many researchers describe the wavelet 

transform as a mathematical microscope. The resulting wavelet coefficients W(b, a) 

indicate the average differences between two neighboring segments of the signal, which 

is another important interpretation of the physical meaning of the wavelet coefficients. 

CWT means the transforms are continuous in the scale and time domain.  

Farge [21] reviewed some basic requirements for the selection of a proper 

wavelet function, such as the admissibility condition. Two widely used wavelets, the 

Mexican hat wavelet and the Morlet wavelet, were compared by Christopher and Compo 

[22]. They found that the real-valued Mexican hat is broader in the scale domain but 

narrower in the time domain compared to the complex-valued Morlet wavelet. The 

authors [22] also stated that a complex wavelet such as the Morlet was suitable for 

identifying the oscillations in the signal; whereas, real wavelet such as Mexican hat was 

better for detecting discontinuities. A signal S with random noises was chosen to 

demonstrate the differences between these two wavelets. This signal S is described in 

Eq. (5): 

𝑆 =  𝑠𝑖𝑛 (2𝜋 ∗ 10𝑡)  +  𝑠𝑖𝑛 (2𝜋 ∗ 20𝑡)  +  𝑠𝑖𝑛 (2𝜋 ∗ 50𝑡)  +  𝑟𝑎𝑛𝑑𝑜𝑚 𝑛𝑜𝑖𝑠𝑒𝑠        (5) 
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This signal clearly contains the frequencies of 10 Hz, 20 Hz, and 50 Hz. Fig. 12 presents 

the wavelet transform results using these two wavelet. The colors in the figure indicate 

the magnitude of the wavelet coefficients: The magnitude decreases from red to blue. 

The Morlet wavelet clearly identifies 10 Hz, 20 Hz, and 50 Hz as the three dominant 

frequencies, while the peaks obtained from Mexican hat overlap in the scale space and 

are not distinguishable. Thus, the Morlet wavelet was selected for this study. 

 

 

 

Fig. 12. Comparison of wavelet transform results of signal S shown in (a) using Mexican 

hat wavelet (b) and Morlet wavelet (c) [30] 
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4. RESULTS AND DISCUSSION*

4.1 LDA results 

All results presented in this work are based on the point by point measurements. 

Thus, one should not assume that the distributions of any parameters presented were 

obtained at the same time. This factor must be considered when comparing results from 

this work with any CFD simulations or particle image velocimetry (PIV) data. Except 

for the case of imbalanced flow, the flow rate was set at 0.385 kg/s for each jet, 

corresponding to an exit velocity of 0.75 m/s on average. The Reynolds number at the 

exit based on the dimensions of the channel was about 9100. The temperature of the 

water (tap water) was about 23 °C. The temperature rise during the normal operation was 

less than 2°C, depending on the length of the experiment. All the flow parameters shown 

on the Y axis were normalized by the local maximum velocity Umax, which was different 

for each case while the position values on the X-axis were normalized by the channel 

width which was 5.8 mm. The jets were approximately issued from -2 < x/a < -1 and 1 < 

x/a < 2. 

4.1.1 Outlet condition 

To verify if the flow at the outlet has reached the fully turbulent flow and the 

symmetry condition near the exit, measurements were performed along the Z-axis for 

Parts of this section are reprinted with permission from “Laser-Doppler Measurements of the Turbulent 
Mixing of two Rectangular Water Jets Impinging on a Stationary Pool" by Wang, H., et al., 2016.
International Journal of Heat and Mass Transfer, Vol. 92, 206-227, Copyright [2016] by Elsevier.
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both channels. The measuring plane was 10mm above the channel surface, which, as 

explained in section 2.3, was the lowest position the laser could reach. Fig. 13 shows the 

mean streamwise velocity distribution of the two channels. The denominator U0 is the 

nominal mean discharge velocity with a value of 0.75 m/s. The error bars are the 

standard deviations of five independent sets of data. The deviations are less than 1%, 

which indicates a good repeatability of LDA measurements in this work. Obviously, the 

flows are not symmetrical along the Z-axis in the two channels. This may be attributable 

to the influence from the small mixing boxes located at the bottoms of the channels. The 

inlets to the mixing boxes are not at the center, which creates uneven flows.  However, 

the velocity profiles clearly show that the flows, which are 10 mm above the exits, are 

fully turbulent for both channels. Another important parameter of the initial outlet 

conditions is the turbulence intensity which plays an important role in determining the 

mixing characteristics of the twin jets. The average streamwise turbulence intensity at 10 

mm above the outlet was 11.5%. The distribution of the Reynolds stress component is 

plotted in Fig. 14. The error bars represent the standard deviation of five independent 

measurements. The Y-axis is normalized by the nominal mean discharge velocity U0. 

The shape of the Reynolds stress component is relatively flat except in the regions near 

the walls of the channels. 
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Fig. 13. Mean streamwise velocity distributions near the exits of the two channels along 

the Z direction. The measuring locations were 10 mm above the exits. U0 is the nominal 

mean discharge velocity with a value of 0.75 m/s. [30] 
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Fig. 14. Reynolds stress component distribution at 10 mm above the outlets. The error 

bars represent the standard deviations of five independent measurements. [30] 

 

 

4.1.2 Twin jets with equal discharge velocity 

4.1.2.1 Mean velocity distributions 

 The spatial flow field was scanned by LDA from y/a = 1.72 to 48.28 in the 

streamwise direction. Fig. 15a presents the distribution s of the mean streamwise 

velocity U. The triangles represent the measured points, while the remaining parts of the 

contour were obtained by extrapolations from the experimental data. A recirculating 

zone clearly exists in the combining region in which some of the velocities are negative. 

In order to compare these results with the ones from other works, specific numbers of U 
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at each locations and a zoom-in view of the combining region are plotted in Fig. 15b. 

The streamwise velocity U is normalized by Umax which has a value of 0.882 m/s. 

The combination of the jets happened at around y/a = 15.52, where U on the symmetry 

plane reaches its maximum. The combination may happen earlier than this because no 

measurements were taken in the region between y/a = 13.79 and y/a = 15.52. This result 

is close to the PIV result in [23] which is y/a = 15. MP is the location where the 

streamwise mean velocity U is zero. Fig. 15b shows that MP falls into the region 

between y/a = 1.72 and y/a = 3.45, which is smaller than 5.8 found in [23]. The mixing 

of the twin jets happens in the merging region between the MP and CP. The length of the 

merging region depending on the relative location of MP and CP and is an important 

parameter in order to understand the mixing of the twin jets. Only few studies use small 

nozzle spacing ratios comparable to those in the present work, such as 2.5 [8] and 4.25 

[10]. For 2.5, the authors reported values of 1.5 for MP and 10.5 for CP with an aspect 

ratio of 5.6 [8]. Considering the fact that spacing ratio S/a is 3.1 and the aspect ratios 

15.1 in the present work, these results look similar in some sense because a smaller S/a 

will reduce the length of the merging region. As for the results reported in [10], the 

authors found that MP was at y/a = 4 and CP was at y/a = 8, which are also comparable 

to the results in this work. Based on these comparisons, we can confirm that the 

positions of MP and CP are greatly influenced by S/a and the aspect ratio l/a, where l is 

the length of the channel as shown in Fig. 4. 
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                 Fig. 15a. Mean streamwise velocity distributions (contour view) [30] 
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                                          Fig. 15b. Mean streamwise velocity distributions (line plots with zoom-in view) [30]
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4.1.2.2 Turbulence intensity distributions 

Streamwise and lateral turbulence intensities are presented in Figs.16a and b, 

respectively. The turbulence intensities were normalized by the local maximum 

streamwise velocity among all the data Umax which had a value of 0.882 m/s. High 

symmetry was observed along the center plane with stronger streamwise turbulence 

intensities found near the edges of the jet shear layers. The streamwise turbulence level 

was much lower in the recirculation zone than in the lateral component in that region. 

The flow presented self-preserving characteristics beyond CP for both components. The 

high turbulence levels mainly came from the interactions between the combined jets and 

the static surroundings. The turbulence intensities in the outer region were then 

proportional to the entrainment rate of the surrounding fluids due to the movements of 

the twin jets. A sudden jump in the turbulence intensity occurred in the center area, from 

1.72 to 3.45, indicating strong merging activity. 
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                              Fig. 16. Turbulence intensity distributions: (a) streamwise and (b) lateral [30]

(b) (a) 
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4.1.2.3 The Reynolds stress component distributions 

 Fig. 17 shows the distribution of the Reynolds stress component. Reynolds stress 

represents the momentum flux transfer in the flows. Momentum flux decreases rapidly 

from y/a = 3.45 to 12.07, indicating that most momentum transfers occur between the 

inner shear layers of the two jets in the merging region. The two peaks imply strong 

interactions between the jets. After the jets combine, momentum transfers mainly exist 

in the outer shear layers where the velocity gradients are large. The maximum value of 

the Reynolds stress component appear at the position of y/a = 5.17, where the two jets 

start to combine. The self-preserving behavior is only observed in the core region after 

y/a = 12.07. 
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Fig. 17. Reynolds stress distributions: (a) contour view and (b) line-plot view [30] 

 

4.1.2.4 Z-component vorticity 

Vorticity represents the local rotation speed of a fluid particle. It can be 

calculated mathematically by Eq. (6). For a two dimensional flow, vorticity is 

perpendicular to the X-Y plane, and the Z-component vorticity can be expressed by Eq. 

(7). To maintain the freedom of the jets and avoid influence from the wall of the water 

tank, the length of the rectangular channel used in this work is limited. With an aspect 

ratio of 15.1, studying the vorticity distribution in the X-Y plane of this twin jets flow is 

still useful to help understand the fluid particles’ behaviors. 
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𝜔⃗⃗ =  ∇⃗⃗  × 𝑢⃗ = |

𝑒 𝑥 𝑒 𝑦 𝑒 𝑧
𝜕

𝜕𝑥

𝜕

𝜕𝑦

𝜕

𝜕𝑧

𝑢𝑥 𝑢𝑦 𝑢𝑧

|                                                                               (6) 

𝜔⃗⃗ = (
𝜕𝑢𝑦

𝜕𝑥
− 

𝜕𝑢𝑥

𝜕𝑦
 )𝑒 𝑧                                                  (7) 

where 𝜔⃗⃗  is the Z-component vorticity, 𝑢𝑥, 𝑢𝑦 and 𝑢𝑧 are the three components of the 

velocity 𝑢⃗ . 

The Z-component vorticity distributions and the velocity vector field are 

presented in Fig. 18. Due to the attraction of the two jets and the entrainment of the 

surrounding fluid, fluid particles in the inner and outer region of the jets rotated in 

opposite directions. Fig. 18b indicates that the vorticity peaks around the jet outlet region 

are moving towards the center point of the two jets. No strong vorticities were observed 

after y/a = 12.07, and the self-preserving phenomenon is presented in those far field. As 

for the magnitude, rotation speed was faster in the inner region of the two jets as a result 

of the interactions between them. The vector field shown in Fig. 18a clearly reveals that 

significant entrainment of the surrounding fluid existed in the region between y/a = 1.72 

and y/a = 17.24. In the negative pressure region, the flow mainly moved downward. The 

flow did not move completely straight in the far region, although ideally it should. This 

may be attributable to the slight imbalance in the outlet flow. The flow rate is controlled 

by two ball valves and so the two discharge flow rates cannot be exactly the same due to 

mechanical constraints. However, as discussed in section 3, the maximum velocity shift 

is only 0.66%, which is negligible.  
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Fig. 18. Z-component vorticity distributions: (a) contour view and (b) line-plot view. 

The velocity vectors shown in (a) have uniform length to demonstrate the flow direction 

only; the positive Z direction is pointing out of the paper [30].  
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4.1.3 Effect of the flow imbalance on the middle plane 

 In practical engineering applications, the jet discharge velocities may not be the 

same, e.g., the coolant flows passing through the reactor core and mixing in the lower 

plenum in high temperature gas-cooled or liquid-cooled nuclear reactors. The flow 

imbalance or the velocity ratio has a significant impact on the mixing condition and 

changes the locations of the MP and CP. In order to focus on the core region or the 

mixing region, the measurements employed a 0.5 mm resolution instead of 1 mm. This 

doubled resolution ensured better measurements of the flow behaviors in the imbalanced 

condition. The locations of the jets were kept the same, -2 < x/a < -1 and 1 < x/a < 2. The 

measured plane was P2 as shown in Fig. 5. In the vertical direction (Y direction), the 

measurements were performed from y/a = 1.72 to 20.69. The right jet discharge velocity 

was kept the same while the left one was changed to generate velocity ratios of 1.3, 1.5, 

and 1.9. The velocity ratio R is defined as R = Uleft/Uright in which the Uleft and Uright are 

the average discharge velocities of the left jet and right jet, respectively. All the results 

presented in Fig. 19a and Fig. 19b were normalized by the maximum velocity at each 

velocity ratio. For all three velocity ratios, the velocities reached their maxima at y/a = 

1.72. The detailed experimental conditions are summarized in Table 2.   

 

Table 2. Summary of the experimental conditions for the imbalanced jets [30] 

R Uleft (m/s) Uright (m/s) Umax
* (m/s) 

1.3 0.988 0.760 1.144 

1.5 1.140 0.760 1.295 

1.9 1.444 0.760 1.632 
* The maximum velocities are all located at y/a = 1.72 for each velocity ratio. 
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Self-preserving phenomenon is observed for the mean streamwise velocities at 

positions higher than y/a = 10.34 in the three cases. The normalized mean streamwise 

velocities present a similar distribution in the imbalanced condition as shown in Fig. 

19b. The independence of the Reynolds number for the jet flows could be the main 

reason for this phenomenon. A significant difference in U among the three cases is the 

change in the relative position of the black (y/a = 1.72) and red lines (y/a = 3.45) shown 

in Fig. 19a (left).  The streamwise velocity at y/a =3.45 is more negative than that at y/a 

= 1.72, when R is larger. This can be explained by the fact that a larger velocity ratio will 

generate a larger shear force, which further increases the negativity of the pressure in the 

recirculation region. The negative pressure has its largest influence on the velocity 

profile in the mixing region (1.72 < y/a <3.45). As for the turbulent intensity 

distributions, no self-preserving behavior was found for any velocity ratio. This is in 

accordance with the results shown in Fig. 16 and is because the two jets have not 

combined into one single jet yet in that region and thus, merging activity still exists. In 

addition, by comparing the patterns for the different R shown in Fig. 19b, one can find 

that the area with high turbulent intensity is larger with an increased R. Similar to what 

is found in the velocity distribution, the relative values of the turbulence intensities at the 

locations of y/a = 1.72 and y/a = 3.45 change as a function of R. 
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Fig. 19a. Streamwise velocity (left) and turbulence intensity distribution (right) of imbalanced jets (plot view) [30] 

Streamwise velocity Streamwise turbulence intensity 

R = 1.3 R = 1.3 

R = 1.5 R = 1.5 

R = 1.9 R = 
1.9 
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           Fig. 19b. Streamwise velocity (left) and turbulence intensity distribution (right) of imbalanced jets (contour view) [30]

R = 1.3 

R = 1.5 

R = 1.9 

R = 1.3 

R = 1.5 

R = 1.9 
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4.1.4 Comparison of a single jet with the combined twin jets 

 Literature reviews indicate that the combined twin jets will behave as a single jet 

[e.g., 1, 2, 6], and theories derived based on the single jet system should apply to the 

twin jets in the combined region. To verify this statement and check if the results in this 

work are valid, a comparison between the experimental results of twin jets from this 

work and the analytical solutions for single jet is shown in Fig. 20. The parameter used 

for comparison was U, and two well-known analytical solutions from Goertler and 

Tollmiern [24] for single jets are chosen. The experimental data match the analytical 

solutions well. Goertler’s solution is slightly closer to the experimental data in the core 

flow region than in the outer shear layer region.  
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Fig. 20. Comparison of the analytical solutions of a single jet with our experimental 

results for the combined twin jets. b is the half width of the jet where U/Umax = 0.5 [30]. 

 

 

4.1.5 Results of the spectral analysis 

LDA is an ideal tool to measure the fluctuation velocities in turbulent flows 

because it is a non-intrusive measuring technique with the ability to generate high 

spatiotemporal resolution data. LDA measurements rely on light reflection from random-

arrival particles passing through the measuring volume. Many widely used spectral 

analysis methods such as fast Fourier transform (FFT) require the data to be equally 
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spaced in time.  Thus, the individual realization LDA data with velocity data irregularly 

spaced in time need to be reconstructed to meet the requirement. However, many other 

techniques for estimating the turbulent velocity spectra exist, such as the slotting 

technique [25] in which the data are not necessarily equidistant in time.  Three well-

known and simple reconstruction algorithms to evenly resample the data in the time 

domain are linear interpolation, the hold and shoot algorithm and nearest-neighbor 

interpolation. Eq. (8) defines the linear interpolation as follows [26]: 

 𝑈𝑟 = 
(𝑡− 𝑡𝑛)𝑈(𝑡𝑛+1)+(𝑡𝑛+1− 𝑡)𝑈(𝑡𝑛)

𝑡𝑛+1−𝑡𝑛
, 𝑡𝑛 < 𝑡 ≤  𝑡𝑛+1                        (8) 

where U is the velocity, and t is the time index. The hold and shoot or zero-order hold 

algorithm generates the signal with equal time step by holding the most recent sample 

value for one unit time interval until the next sample arrives. Nearest-neighbor 

interpolation is the simplest: It just assigns the value of the nearest sampling point to the 

current position and the errors are obvious. Thus, the first two methods are more widely 

employed in the post treatment of LDA data. Hertwig et al. [27] processed discontinuous    

LDA data using the hold and shoot algorithm and successfully applied proper orthogonal 

decomposition and continuous wavelet transform to the study of turbulent flow. Ramond 

and Millan [26] compared the power spectral density estimations computed from the 

linear interpolation and the hold and shoot techniques. It was found that results from 

linear interpolation were closer to the results measured by HWA. 

 In order to verify if the reconstructed data computed from linear interpolation 

can represent the original velocity signal, a portion of the instantaneous streamwise 
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velocity U sampled at an average frequency of 30 Hz was selected as the sample. Fig. 21 

presents the original velocity signal and the reconstructed signals resampled at 100 Hz 

(Δt = 10 ms) and 1000 Hz (Δt = 1 ms). Nearest-neighbor interpolation results were 

displayed for comparison purpose. Clearly the resampling rate of 100 Hz in both 

Nearest-neighbor interpolation and linear interpolation failed to represent the true signal 

where a large gradient existed as shown in the red boxes in Fig. 21 (a).  With linear 

interpolation, the higher resampling rate of 1000 Hz produced results almost identical to 

the original signal.  

Linear interpolation seems perfect but may only work well for a signal sampled 

at a low data rate, such as at 30 Hz in the example. As mentioned previously, a data rate 

of 200 Hz was obtained by only measuring the u component at position R illustrated in 

Fig. 5. By applying linear interpolation to the signal sampled at 200 Hz, discrepancies 

were found for the RMS velocities as shown in Fig. 22. The resampling frequency was 

still 1000 Hz. The reconstructed signal dampens or underestimates the fluctuations of the 

original signal. There was no obvious reduction in the discrepancies observed when the 

resampling frequency was increased to 10,000 Hz. However, for the mean velocity, the 

two signals are almost identical as shown in Fig. 23, except in the near-wall region 

where Z/a is larger than 6.  
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Fig. 21. Comparison of the original velocity signal sampled at 30 Hz and the 

reconstructed signal computed from Nearest-neighbor interpolation and linear 

interpolation with sampling rate of (a) 100 Hz (Δt = 10 ms) and (b) 1000 Hz (Δt = 1 ms) 

[30].  
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Fig. 22. Comparison of the RMS velocities of the original data with a data rate of 200 

Hz and the reconstructed data computed using the linear interpolation method [30]  

 

 

 

 Fig. 23. Comparison of the mean velocities of the original data with a data rate of 200 

Hz and the reconstructed data computed from linear interpolation method [30] 
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4.1.5.1 FFT results 

An FFT study was first performed using the 30 Hz data of the fluctuation 

velocity at R, and the results are presented in Fig. 24.  It shows that the dominant 

frequencies of the flow at point R fall within the range of 1 Hz to 10 Hz. According to 

the Nyquist-Shannon sampling theorem, the maximum frequency that can be detected 

from a given signal is no larger than half of the sampling frequency. This minimum 

sampling rate is called the Nyquist rate. Thus, for a signal sampled at 30 Hz, the 

maximum frequency that can be determined is 15 Hz. That is, measuring any changes in 

the flow that happen faster than 15 Hz will not be feasible. 

 

 

Fig. 24. Single-side FFT output of fluctuation velocity at location R with a sampling 

frequency of 30 Hz [30] 
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To resolve this issue and verify if the flow at R is dominated by frequencies of 1 

Hz to 10 Hz, only one pair of the laser beams were turned on, and the resulting 

frequency was about 200 Hz. The FFT output shown in Fig. 25 (a) revealed significantly 

larger peaks — not only one, although they are too close together to be distinguished in 

the plot) — around 58.8 Hz. These peaks are considered noise induced by the pump 

vibration at a frequency of 57.67 Hz. A band-pass filter was employed to remove this 

noisy frequency. Fig. 25 (b) shows the filtered frequency spectrum indicating that the 

phenomena that happened in the flow were dominated by frequencies from about 2 Hz to 

15 Hz. To quantify the influence of this filtering process on the magnitude fluctuation 

velocity, a comparison of the unfiltered signal s1 and the filtered one, s2, was carried 

out. For illustrative purposes, only a short period of the signal was studied. As shown in 

Fig. 26 (a), s2 matches s1 most of time except where the filtered signal creates a few 

wiggles at certain locations in time. By subtracting s2 from s1, the magnitude of the 

difference can be obtained (Fig. 26 (b)). The maximum difference occurred at around t = 

5 s and was smaller than 0.03 m/s. A zoom-in view shown in Fig. 26 (c) reveals that the 

difference is actually a sinusoidal wave. Fig. 26 (d) is the FFT output of this sinusoidal 

wave showing that the peak frequencies — again, more than one very close to each other 

— were about 58.8 Hz, which was the frequency set for the filter. Thus, the FFT study 

here serves as a cross-check of the filter because, in theory, the difference between 

signals s1 and s2 is the part that the filter removed. Although the magnitude of 

difference of s1 and s2 was evaluated, the vibration of the pump does not only influence 
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the magnitude of the velocity but also the turbulence structure and the onset point of the 

turbulence, which is extremely hard to quantify.  

 

 

Fig. 25. Removal of the noises induced by the pump vibration using a band-pass filter 
[30] 
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   Fig. 26. Evaluation of the difference between the unfiltered and filtered signal [30] 
 

 

 4.1.5.2 PSD results 

PSD study could serve as a benchmark for the current experimental data. Fig. 27 

shows the PSD distribution in the time (frequency) domain for s1 and s2 computed using 

Welch’s method [28]. The blue line indicates the famous -5/3 slope was found by 

Kolmogorov. The peaks caused by the pump vibration can be seen clearly in Fig. 27 (a) 

and disappear once the signal is filtered. The downward peak in Fig. 27 (b) was 

generated by the filtering process in which the power is set close to zero. The 

comparison indicates that the energy spectrum is not influenced by the filtering 

operation except for the removal of the peak. For the flow at location R, the energy-
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containing range is from about 0.1 Hz to 30 Hz, and the inertial region ranges from 30 

Hz to 500 Hz, the maximum frequency that can be measured for the resampled data 

according to the Nyquist theorem. Obviously, a higher sampling rate is required to 

resolve the dissipation range.  

 

Fig. 27. PSD spectrum of u′ at location R in the time domain of signal s1 (a) and s2 (b) 

[30] 
 

 

4.1.5.3 Wavelet results 

Three time segments of the signal with an interval of 500 ms were studied. Fig. 

28 presents the results of the wavelet transform and the FFT output of the signal between 

6500 ms and 7000 ms. Two ordinates, scale and pseudo-frequency, are presented in Fig. 

28 (b). Li and Nozaki [29] interpreted the position of the maximum value of the wavelet 
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coefficient W as the scale of an eddy. Thus, four different scales of eddies can be 

observed in this time period. The largest one has a scale of 134 ms corresponding to a 

pseudo-frequency of about 6 Hz. At certain times, the flow may contain large and small 

eddies simultaneously. For example, eddies with scales of 134 ms and 40 ms occur 

simultaneously at t = 6620 ms. The breaking down of large eddies into small eddies was 

also observable by comparing the flow at t = 6780 ms and t = 6850 ms. As a validation, 

the FFT output of this segment of signal is shown in Fig. 28 (c). The peak frequencies 

from FFT match the pseudo-frequencies calculated from the wavelet transform, as 

indicated by the red lines. The evolution of eddies with different scales can be better 

observed from the 3-D view of the wavelet coefficients as presented in Fig. 29.  

 

 

Fig. 28. Wavelet coefficients contours (b) and single-side FFT output (c) of fluctuation 

velocity at location R from 6500 ms to 7000 ms (a) [30] 
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           Fig. 29. 3-D view of the wavelet coefficients from 6500 ms to 7000 ms [30] 
 

 

 Fig. 30 shows results for the signals between 20,000 ms and 20,500 ms. No 

significant break down of large eddies was observed. Large eddies in this time period 

had a scale of approximately 200 ms corresponding to a pseudo-frequency of 4 Hz. 

Eddies with a scale of 12ms at t = 20,100 ms disappear later because they break into 

smaller eddies and the current sampling rate is not high enough to capture them. At t = 

20,250 ms, large eddies of about 200 ms in scale are observed to contain at least two 

other smaller eddies with scales of 110 ms and 40 ms. The large eddy grows when it is 

close to the end of the signal as indicated in Fig. 31, which shows the wavelet 

coefficients distribution from 40,000 ms to 40,500 ms. The largest eddy is at a scale of 

270 ms and breaks down into a smaller one after t = 40,400 ms. The FFT output contains 
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fewer peaks compared to previous time periods, implying reduced activity in the flow. 

  

 

Fig. 30. Wavelet coefficients contours (b) and single-side FFT output (c) of fluctuation 

velocity at location R from 20,000 ms to 20,500 ms (a) [30] 
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Fig. 31. Wavelet coefficients contours (b) and single-side FFT output (c) of fluctuation 

velocity at location R from 40,000 ms to 40,500 ms (a) [30] 

 

 

By exploring the flow structures of different time segments, some flow patterns 

are found to repeat in the time domain. Fig. 32 (a) and (b) show that a medium-sized 

eddy at a scale of about 40 ms, which can also be observed in Fig. 32, occurred at both t 

= 6100 ms and t = 20,050 ms. Similarly, a large eddy at a scale of 270 ms displayed 

almost identical behavior in the time segments indicated in Fig. 32 (c) and (d). The 

repeated flow structures characterize the flow. The corresponding frequency of these 

repeated flow structures can be utilized to validate the transient CFD simulations, such 

as large eddy simulations (LES). 
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Fig. 32. Similar flow structures observed in different time periods  [30] 

4.2 PIV results 

4.2.1 PIV measurement of 15Hz frame rate with a zoom-out view 

As stated in section 2, the measurements were carried out using two scales, scale 

M1 and scale M2. Scale M1 corresponded to the area ranging from y/a = 0 to 12 while 

scale M2 was from y/a = 0 to 3.  The purpose of running an extra measurement with 
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scale B was to evaluate the enlargement effect of PIV. So the results reported in this 

work are based on scale A. Results from both scales will be comparted and discussed. 

Measurements using scale M1 were repeated three times to evaluate the uncertainties. 

These three measurements A, B and C were carried out at different times and 

independently. The system was cleaned and resampled before any new measurements 

started to ensure the independence of each measurements. The results from three 

measurements were then ensemble-averaged to evaluate the mean streamwise velocity 

U, mean lateral velocity V and other turbulence quantities, such as turbulence intensity, 

Reynolds stress and Z-vorticity.  

4.2.1.1 Mean velocity  

The mean velocities U and V were calculated by time-averaging over 800 frames 

or pairs of images. Then, as mentioned above, these three averaged mean velocities were 

ensemble-averaged again to obtain the final mean values. Fig. 33 presents distribution of 

U with streamlines. The two jets were symmetrical about the center axis.  Obviously, the 

jets had not combined at y/a = 12.3, the highest elevation in this measurement. 

Streamlines clearly indicate the entrainment of surrounding fluid. In the recirculating 

zone, reversed flows were observed. One interesting phenomenon captured in this zone 

is that the flow, let’s call it flow A, moved upward first from y/a = 0 then “met” another 

stream of flow B coming downward at about y = 1.4. Due to mutual forces from these 

two flows, flow B started to recirculate while flow A moved to the lateral direction. In 

addition, the flow, let’s call it flow C, at some distance above flow B had an opposite 

moving direction. The point separating flow C and B is MP, where U is zero. The 
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location of MP was found to be at about y/a = 3.45. In order for other researchers to 

compare with results in this work, U distribution at four different elevations are plotted 

in Fig. 34. The errors bars were the standard deviations from three independent 

measurements.  

 

 

 

 

        

 

 

 

 

 

 

 

 

                    Fig. 33. Streamwise average velocity U profile and streamlines [31] 
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                     Fig. 34.  Streamwise average velocity U at different elevations [31] 

 

 

The distribution of V is shown in Fig. 35, and Fig. 36 presents the plots of V at 

different locations. Strong lateral movements of the flow were observed in the region 

between y/a = 2 and y/a = 5. This is the region that two jets were converging on.  Lateral 

movements of the surrounding fluid were also significant near the outer edge of each jet. 

This implies that a low pressure region was formed due to the fast moving jets near the 

exit.  In order to find the exact location of MP, the mean vector field, as shown in Fig. 

37, was calculated using U and V. The mean vectors were highly symmetrical along the 
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center line. The zoomed-in view of the region circled in Fig. 37 clearly confirmed the 

location of the MP, which was at about y/a = 3.45. This value is close to what was found 

in previous LDA measurements performed by the authors, which was located between 

y/a = 1.72 and 3.45 as there were no measurement points available inside this range [30].  

                                               

        

                               

                                 Fig. 35. Lateral average velocity V distribution [31] 
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                      Fig. 36. Lateral average velocity V at different elevations [31] 
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                                Fig. 37. Mean vector field and identification of the MP location where U = 0 [31] 
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4.2.1.2 Mean z-vorticity 

 With known U and V, z-component vorticity, an indication of the rotation speed 

of fluid particles in the x-y plane, can be computed. The mean z-vorticity distribution is 

shown in Fig. 38. The positive direction is pointed out of the x-y plane. Strong vortices 

were located at the edges of the jets. These vortices died out along the positive y 

direction. No strong vorticities were found at locations above y/a = 10. The friction 

forces between the moving jets and static surrounding them generated these vortices. 

Vortices in the inner edge area started moving closer around the MP indicating a strong 

combination of activities.  

                                                Fig. 38. Z-vorticity distribution [31] 
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4.2.1.3 Turbulence intensity  

 The power of turbulence can be evaluated by computing turbulence intensity, or 

put more simply, root mean square (R.M.S.) velocities. It represents the degree of 

fluctuations of fluid particles. The turbulence intensity near the jet nozzles determines 

the position of MP and the mixing condition in the converging region. Fig. 39 shows the 

profile of streamwise turbulence intensity Urms, and Fig. 40 presents the values at four 

elevations. The two potential cores near the jet nozzles could be clearly observed, in 

which the turbulence intensities were close to zero. Due to the shear force, turbulence 

intensity was higher at the edges of the jets. A long and narrow low-fluctuation region 

was found in the space between the two jets. It was noticeable that the turbulence 

intensity was low in the recirculating zone although flow behaviors in that zone were 

complicated. Lateral turbulence intensity Vrms and the detailed values at different 

locations are presented in Fig. 41 and 42, respectively. Strong fluctuations existed in the 

merging region after the MP implying that the main momentum transfer happened in the 

merging region. The lateral fluctuations were not strong in the recirculating zone either. 

A relative low-intensity region was found around y/a = 11. This is because the major 

momentum transfer happened around y/a = 7, and energy exchange in the lateral 

direction was weak.  
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          Fig. 39. Urms profile [31] 

 

 

 

 

 

 

 

 

Potential cores 
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           Fig. 40. Streamwise average R.M.S. velocity Urms. at different elevations [31] 
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                                                      Fig. 41. Vrms profile [31] 
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                  Fig. 42. Lateral average R.M.S. velocity Vrms at different elevations [31] 

 

 

4.2.1.4 Reynolds stress 

 Reynolds stress is a measure of momentum flux in the flow. Fig. 43 shows the 

Reynolds stress component distribution. It shows that the strongest momentum transfer 

happened not in the converging region but in the merging region, specifically the region 

between y/a = 3.5 and y/a = 8.5. It is interesting to see that y/a = 3.5 is the exact location 

of MP. That is, the effective momentum transfer started right after the MP. Another 

region with significant momentum flux was the outer edge of the jet which ranged from 
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y/a = 1.5 to y/a =12, which is the maximum value that this measurement could reach 

with respect to the satisfying resolution. Again, the majority of the momentum transfer 

happened in the merging region.  

 

 

                                             Fig. 43. Reynolds stress distribution [31] 

 

 

 

 



 

76 

 

4.2.1.5 Instantaneous vector field 

 One of the benefits of using PIV compared to LDA is that the full field 

instantaneous velocity profile can be captured simultaneously. Different from averaged 

quantities, instantaneous velocities enable us to better understand the evolution of the 

flow in the time domain. Because of the nature of turbulence, the flow pattern changes 

with time. Thus, studying the instantaneous velocities measured at different frames can 

help us reconstruct some meaningful information that is lost in the mean quantities. For 

example, as shown in Fig. 44, the movement of vortex A could be clearly identified. 

Since vortex A emerged periodically, the time period between these two frames might be 

necessarily equal to the real length of time that vortex A needed to travel to the position 

of A’. Similarly, the growth of the vortex could be clearly revealed.  

 Another interesting phenomenon found by analyzing the instantaneous vector 

field was how the two jets interacted with each other. Two characteristic interacting 

patterns were observed repeatedly as presented in Fig. 45. In the left picture, the two jets 

diverged immediately after hitting each other. However, as shown in the right-side 

image, the two jets rejoined and separated a few times before they fully merged. These 

vector profiles are useful for better understanding the behaviors of twin jets. This 

information was totally lost in the averaged quantities.  
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Fig. 44. Instantaneous vector field obtained at t = 5.226 s (left) and t = 51.054 s (right) showing the growing and movement of 

vertexes A and B (not within one period) [31]. 
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Fig. 45. Two characteristic and repeated patterns observed [31]  
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4.2.2 PIV measurement of 15Hz frame rate with a zoom-in view 

In order to further investigate the flow behaviors in the recirculation zone, the 

camera was moved closer to the facility providing a zoom-in view of the recirculation 

zone. This magnification can generate clearer images of the particle movements in this 

region, which improves the accuracy of the turbulence statistics study. The setup of the 

parameters of the laser and the camera were the same as mentioned in section 4.2.1. 

Figs. 46 and 47 present the mean streamwise and lateral velocity distributions in the 

recirculation zone.  

 

         Fig. 46. Mean streamwise velocity U (m/s) 
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             Fig. 47. Mean lateral velocity V (m/s) 

 

 

 

It can be seen that the magnitudes of the velocities of the flow in the recirculating 

zone were much smaller compared to the main stream jet velocities in the streamwise 

direction. However, in the lateral direction, significant movements of the flow were 

observed in the region between y/a = 0.5 to 2.5 in the inner sides of the jets. In addition, 

the V velocity magnitudes of the two jets reached their maxima not at the middle of the 

recirculating zone as expected but the top of the recirculating region (y/a = 3). A vector 
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field shown in Fig. 48 provides a better representation of the flow behaviors in this 

region. Due to the frictions between the jets and the originally static fluids between the 

jets, swirls are created near the inner edges of the jets. This is only the average 

movements of the flow but does not represent the transient situations under which the 

flow conditions are more random.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

                     Fig. 48. Mean Vector field 
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Figs. 49 and 50 show the turbulence intensities in the streamwise and lateral 

directions. The potential cores can be clearly observed for both jets. The turbulence 

intensity values were low at the bottom of the recirculating region indicating an almost 

stagnant condition there. For the streamwise turbulence intensity, the values in the 

middle of the recirculating zone were higher than the top and the bottom. In the lateral 

direction, the fluctuations were mainly in the top region of the recirculating zone.  

 

 

 

  

                                   Fig. 49. Streamwise turbulence intensity 
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                                 Fig. 50. Lateral turbulence intensity 

 

 

 

The Reynolds stress component is presented in Fig. 51. Similar to previous 

results, significant momentum transfer happened at the edges of the jets as a result of the 

large shear forces. In the recirculating zone, the magnitude of the Reynolds stress was 

close to zero implying that the momentum transfer was weak. Although the flows in this 

region is recirculating, the momentum transfer was limited by the small magnitude of the 
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velocity. The majority of the momentum was transferred near the inner and outer edges 

of the jets.  

 

 

 

 

                                             Fig. 51. Reynolds Stress Tensor 

 

 

 

4.3 LDA vs. PIV_15Hz  

 

As a comparison, U profiles at y = 1.74 (1.72) measured by LDV [30] and PIV 

are presented at Fig. 52. Results based on both scales M1 (zoom-out view) and M2 
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(zoom-in view) are shown. Obviously, M2 had many more points than the other two 

scales due to its high resolution. These three data sets agree very well with the majority 

of the zones, with the exception of the recirculating zone in which the flow behaviours 

were complex. Uncertainties of PIV_M1 were calculated using standard deviations 

based on the three measurements. The errors of PIV_M1 were less than 3% except for 

those points of velocities close to zero.   

 

 

Fig. 52. U profile at y/a = 1.74 (1.72) measured by LDV [18] and PIV (scale of M1 and 

M2).  M1 and M2 refer to different measuring scales. Scale M2 had a higher resolution 

than that of M1. Error bars of PIV_M1 is the standard deviation of three independent 

measurements [31]. 
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The comparison of the lateral velocity V is shown in Fig. 53. In the core flow 

regions of the jets, LDA results were higher than the PIV data. These three agreed very 

well in the recirculating region. As for the comparison between M1 and M2, 

discrepancies were mainly in the region between x/a = 0.5 to x/a = 1, in which the shear 

forces were large. In the middle of the jets, these two results were very close to each 

other.  

 

 

                                                  Fig. 53. Lateral velocity V comparisons 
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Figs. 54 and 55 present the comparisons of the results obtained from different 

measuring techniques for the turbulence intensities in the streamwise and lateral 

directions. For Urms, the LDA results matched well with the PIV_M2 at the most of 

locations. In contrast, values from PIV_M1 were much lower than the other two in the 

inner edges of the jets, where the turbulence intensities reached their maxima. Similar 

observations were found for the lateral turbulence intensity. This can be attributed to the 

fact that the fluctuations of the particles cannot be captured accurately when the view is 

zoomed out.  

 

 

 

                                    Fig. 54. Streamwise turbulence intensity comparisons 
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                                    Fig. 55. Lateral turbulence intensity comparisons 

 

 

 

The Reynolds stress is the most difficult parameter to be measured accurately in 

this study due to its small magnitude. As shown in Fig. 56, the LDA results still gave 

higher values compared to the PIV data in the edges of the jets. PIV_M2 matched well 

with the LDA results except at certain locations, such as x/a = -1.  The comparisons 

between M1 and M2 indicated a good agreement between each other although 

discrepancies still existed at x/a = -1 and 1 at which the Reynolds stress reached the 

maxima.                             
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                          Fig. 56. The Reynolds stress component comparisons 
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5. CONCLUSIONS 

 

 

 Two-components LDA measurements were carried out to study the mixing 

condition of twin water jets issuing from two rectangular channels with a nozzle spacing 

ratio of 3.1 and an aspect ratio of 15.1. The wavelengths of the laser beams used in this 

work were 660 nm and 785 nm. The channel exit Reynolds number based on the 

dimensions of the channel was approximately 9100. The outlet condition showed that the 

flow out of the channel was fully developed turbulent flow. The average turbulence 

intensity at the measured plane (P2) 10 mm above the exit surface was 8%. The 

experimental results revealed that the merging point was located between y/a = 1.72 and 

y/a = 3.45 and that the combining point was at y/a = 15.52.  

The turbulence study showed that outer edges of the two jets and the outer 

boundary of the combined jet had higher levels of turbulence due to high velocity 

gradients in those regions. The maximum Reynolds shear stress appeared at y/a = 5.17, 

which implies that the flows mix stronger in some location after the merging point. 

Spectral analysis revealed the scale and the evolution in time of varied-size eddies in the 

flow at a point in the mixing region.  

The averaged quantities obtained by LDA are not only valid for benchmarking 

steady-state numerical simulations using turbulence models to solve RANS equations 

but they also enlarge the database of the experimental data for twin jets. This expansion 

will help propose possible empirical correlations to predict the flow field of parallel jets 
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with small spacing ratios. The spectral analysis of a transient fluctuation velocity signal 

could be employed to validate the LES results.  

Due to certain limitations in the experiment such as laser power, tank material 

and the fact that LDA is a point-by-point measuring technique, only a single point in the 

mixing region that had satisfying data rate was investigated. Future work will include the 

improvement of the data rate of LDA to resolve the dissipation region and PIV to 

capture the flow at multiple locations simultaneously. The auto-correlation of wavelet 

coefficients calculated from the PIV data can be utilized to investigate the coherent 

turbulent structures in the mixing and outer layer regions of the twin jets. 

PIV measurements of turbulence mixing in the converging region and partial 

merging region of two parallel rectangular jets were carried out. The jets were of equal 

discharge velocity, and were at room temperature. The frame rate of the PIV 

measurement was 15 Hz, and the time interval between each pair of images was 0.5 ms.  

The particle used was hollow glasses centered at 10 μm. The study of mean velocities 

revealed interesting flow behaviors in the circulating zone. Three parts of flow moved at 

totally opposite directions generating a significant amount of recirculations. The lateral 

movements of the jets were found to be significant at the inner edges of the jets located 

between y/a = 1.5 and 6. The MP was located at y/a = 3.5 at which U was equal to zero. 

Two scales of PIV measurements, scale M1 and M2, were employed. By comparing the 

mean U profiles measured from two scales of PIV measurements and previous LDA 

results, it was shown that they agreed very well. The standard deviation of the 

measurement PIV_M1 was less than 3%. Turbulence studies implied that strong 
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momentum transfer happened in the region ranging from y/a = 3.5 to 8.5. That is, the 

momentum started to be transferred significantly after the MP. Instantaneous vector 

fields were evaluated to identify the displacements and growth of vortices as well as 

their interaction patterns. Future work may include but not limited to the study of 

coherent turbulence structures using high-frequency PIV systems and evaluation of the 

uncertainties in the measurements of turbulence quantities resulted from the change of 

measurement resolutions.   
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