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ABSTRACT

As the CDMS (Cryogenic Dark Matter Search) experiment is scaled up to tackle

new dark matter parameter spaces (lower masses and cross-sections), detector pro-

duction efficiency and repeatability becomes ever more important. A dedicated facil-

ity has been commissioned for SuperCDMS detector fabrication at Texas A&M Uni-

versity (TAMU). The fabrication process has been carefully tuned using this facility

and its equipment. Production of successfully tested detectors has been demon-

strated. Significant improvements in detector performance have been made using

new fabrication methods, equipment, and tuning of process parameters. This work

has demonstrated the capability for production of next generation CDMS SNOLAB

detectors.

Additionally, as the dark matter parameter space is probed further, careful cal-

ibrations of detector response to nuclear recoil interactions must be performed in

order to extract useful information (in relation to dark matter particle characteri-

zations) from experimental results. A neutron beam of tunable energy is used in

conjunction with a commercial radiation detector to characterize ionization energy

losses in germanium during nuclear recoil events. Data indicates agreement with

values predicted by the Lindhard equation, providing a best-fit k-value of 0.146.
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NOMENCLATURE

TAMU Texas A&M University

CDMS Cryogenic Dark Matter Search

WIMP Weakly Interacting Massive Particle

(i)ZIP (Interleaved) Z-Sensitive Ionization and Phonon Detector

TES Transition Edge Sensor

aSi Amorphous Silicon

Tc Superconducting Transition Temperature

SUL Soudan Underground Labs

keVnr keV Deposited via Nuclear Recoil

MCA Multi Channel Analyzer

SCA Single Channel Analyzer

LLD Lower Level Discriminator

ULD Upper Level Discriminator

SD Scatter Detector

ICR Incoming Count Rate

DSP Digital Signal Processor

FWHM Full-Width at Half-Maximum

TOF Time of Flight
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1. INTRODUCTION

For centuries, mankind has searched simultaneously at the largest and smallest

scales of its surroundings. From telescope to microscope, we attempt to observe the

extremes, always pushing the ‘limits’, constantly proving how temporary they truly

are. In this pursuit, the unexplainable always stands out as the most interesting

and exciting. Rather than answers documented on paper, in files, etc., questions are

raised, quests begun, truths sought out. This situation is no more evident than in

the search for dark matter.

Perhaps the most exciting aspect of this search is the evidence that it not only

appears to be incredibly abundant (roughly 5 times the abundance of baryonic mat-

ter), but the fact that it is expected to exist in our own backyard. These two

components immediately raise questions in a scientist’s mind: what is it and how

can it be detected?

1.1 Observational Evidence of Dark Matter

Arguably the biggest breakthrough spawning these questions was that made by

Fritz Zwicky in 1933. In his famous paper “The redshift of extragalactic nebulae”

[1], he noticed that the disparities in red-shifts of ‘nebulae’ 1 (corresponding to their

orbital velocities) in the Coma Cluster were too large to be explained by the visible

matter present. The measurements also showed that the amount of ‘missing’ matter

was actually larger than the detectable matter. Since then, many galaxies have

been observed for this effect, showing the mass:light ratio found by Zwicky was not

anomalous, but actually typical.

The scientific community received another ‘prodding’ in 1974 in the form of a

1We now know that these were actually galaxies that he was observing.
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Figure 1.1: Composition of the universe showing recent adjustments due to recent
measurements by the PLANCK mission [2].

Nature paper by Einasto et al. [3]. In this paper, a much more robust measurement

of the graviational mass:luminous mass ratio was made. Such measurements as this,

and those subsequent (arguably pioneered by this work) have been critical in the

dark matter field.

While the relative abundance of this dark matter component is still shifting as

new measurements and observations are made (see Figure 1.1), these measurements

generally agree and emphasize that it is indeed much more abundant than ordinary

matter.

Perhaps the most visually compelling evidence for dark matter comes from ob-

servations made of the merging cluster 1E 0657-558 (often referred to as the “bullet

cluster”) by Clowe et. al [4] (see Figure 1.2). In this merging event, two separate

galaxy concentrations have passed through each other, providing a chance to observe
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Figure 1.2: Images of the “bullet cluster” [4]. In both images, the green lines indicate 
κ contours resulting from weak lensing measurements (an indication of the presence 
of mass). Left) Color image from Magellan observations showing the region in which 
lensing observations were made. Right) X-ray images from Chandra showing the 
interaction of the x-ray emitting component of the cluster. Reprinted with 
permission.

their interaction. The dominant visible matter component of each concentration,

the X-ray plasma, appears to have been dragged through the other, as expected in

this interaction. However, when mapping the location of the mass in the cluster, the

majority of it appears to have passed through unimpeded. Without an additional,

‘dark’ source of matter, the mass concentration would instead tend to closely follow

the X-ray plasma.

While there is an abundance of other observational evidence in the argument for

dark matter, this is well documented in other sources and will not be covered further

here.

1.2 The WIMP Candidate

To execute a search for this dark matter component, one must first decide where

to look. In a simplest form, one can assume that dark matter consists of one type

of particle with a scientifically motivated set of assumed attributes, then devise a

way to either detect it or rule out its existence. In this case, the target particle is

3



defined as the WIMP (weakly interacting massive particle). Based on cosmological,

observational, and theoretical evidence, a particle with a cross-section of somewhere

near the weak-interaction scale and of course, mass, fits the profile. The mass, and

thus its constituent particles should be distributed throughout our galaxy, meaning

the sun, and therefore the Earth, should be continuously flying through it. From a

detector’s point of view, the dark matter is continuously flying through us with a

velocity near that of the sun with a rare chance of colliding with ordinary matter

(such as a germanium nucleus in a dark matter detector). The energy deposited in

such a detector (with nucleus of mass MT ) by a WIMP with kinetic energy E and

mass MD, scattering at an angle θ is given by the following[5]:

ER =
Er(1− cos θ)

2
(1.1)

where

r =
4MDMT

(MD +MT )2
(1.2)

With an expected dark matter density in our local region and an energy spectrum

from candidate dark matter particles, one can determine a range of masses and

interaction cross-sections to attribute to a dark matter candidate that would explain

the data. The expected recoil spectrum measured from such an experiment should

roughly take the exponential form (from [5]) :

dR

dER

=
R0

E0r
e−ER/E0r (1.3)

where r is given in equation 1.2, ER is the recoil energy, E0 is the most probable

incident dark matter particle kinetec energy, R is the event rate per unit mass, and
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R0 is the incident rate.

A Maxwellian dark matter distribution throughout the galaxy is assumed, pro-

viding the follwing relation:

f(v, vE) = e−(v+vE)2/v20 (1.4)

where v is the incident velocity, vE is Earth’s velocity relative to the dark matter

cloud, and v0 is the galactic rotation velocity. For a dark matter particle mass

MD = 10 − 1000GeV c−2 range, typical recoil energies are expected to be in the

1-100 keV range.

However, more commonly, experiments do not see evidence of such a particle.

In this case, an exclusion limit is placed on the dark matter parameters, which

incrementally push to lower masses and cross-sections (see Section 2.5). it should be

noted that these limits rely heavily on measurements such as those made in Section 4 

of this work.
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2. CRYOGENIC DARK MATTER SEARCH

2.1 Introduction

The CDMS (Cryogenic Dark Matter Search) experiment uses semiconductor (sil-

icon and germanium) detectors for the direct detection of WIMPs. These detectors

directly measure the energy deposited by particle interaction events in the form of

ionization and phonon energy. The sensitivities achieved by these detectors com-

bined with the low background environment in which they are operated allows for

one of the most competitive dark matter searches in the field.

2.2 Location and Shielding

The Super CDMS experiment (the most recent incarnation) is currently installed

in the Soudan Underground Laboratory (SUL) located in Soudan, Minnesota. SUL

is located 2340 ft below the surface (with an iron-rich overburden). This results in a

∼2000 meter water equivalent overburden (see Figure 2.1). Significant overburdens

are required in dark matter experiments such as these to reduce the background

event rate due to cosmic sources. In the case of SUL, a reduction of ∼ 5 orders

of magnitude is achieved purely from the location. Even with this reduction, the

experiment would not be successful without further shielding. This is meant to

block the few muons (and their by-products) that still make their way into the lab,

as well as radiogenic backgrounds from surrounding materials.

This shielding is implemented in the form of lead and polyethylene layers (see

Figure 2.2). This consists of four main layers, from outer- to inner-most:

1. Outer polyethylene layer to block and/or moderate incident neutrons

2. Low activity lead to block gammas

6



3. Ancient lead to block gammas and radiation from the less pure outer lead

4. Inner polyethylene to block penetrating neutrons and additional neutrons that

may be produced in the lead

This shielding reduces the background rate to that which is acceptable for a

WIMP search , leaving the WIMP rate insignificantly affected.

Figure 2.1: Comparison of various underground labs based on their effective over-
burden, reprinted with permission from [6].
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Figure 2.2: Diagram of shielding used in SCDMS Soudan.

2.3 Detectors

2.3.1 Detector Fundamentals

The detectors used in this experiment are instrumented crystals of germanium 

and silicon (see Section 3 for information on the fabrication process and sensor 

design/physics). At the most fundamental level, they monitor energy depositions 

incident on Si or Ge nuclei in the case of nuclear recoils (in the case of neutrons 

and WIMPs), or depositions in the electron system (in the case of gammas and 

betas). The later obviously being the background, needs to be discriminated against 

to appropriately monitor the former (the signal region). To do this, two types of 

energy are recorded for each event: phonon and ionization.

The phonon energy is a measurement of the semiconductor system’s physical
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recoil to the event, regardless of incident particle type, and is thus termed the ‘true

energy’. This recoil energy immediately produces optical phonons, which propagate

through the crystal, reflecting on the surfaces, until they have down-converted to an

energy at which they can be absorbed by the phonon sensors.

The ionization energy is a measurement of the electron-hole pairs produced in

the event. These free charge carriers are drifted to their respective electrodes by

an applied electric field (see Figure 2.3). As they are drifted, the charge carriers

inherently produce phonons as well, and this must be accounted for in the phonon

energy measurement. Under certain conditions, these secondary phonons can also

be utilized to make more sensitive ionization measurements (see Section 2.4.2).

There is a discrepancy between nuclear and electronic recoils in the amount of 

ionization energy measured for a given event energy deposition (see Figure 2.4). 

This discrepancy allows the discrimination of nuclear vs. electronic recoils, essen-

tially eliminating the otherwise dominant background in this experiment. For low 

energy nuclear recoils, the ionization measured is around 20-30% of that measured 

for a similar energy electronic recoil. This ratio is the so-called ‘Lindhard Factor’, 

and is not precisely known in the low energy range. The ionization energy scale for 

these detectors is calibrated using gamma sources, while the Lindhard Factor is de-

termined using a combination of neutron calibration sources (252Cf), Lindhard model 

extrapolations, and other experimental data (such as that measured in Section 4 of 

this work). However, the calibration with 252Cf proves difficult at low energies as the 

uncertainty of the ionization:phonon energy ratio becomes quite large at low ener-

gies. Evidence of this can be seen in Figure 2.4: apparent as the nuclear recoil ‘band’ 

broadens drastically as Erecoil approaches zero. Lindhard model extrapolation has 

its downsides as well: extrapolation is only as effective as the model itself. While no 

strong evidence for deviations from the Lindhard model in germanium exists, further
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measurements need to be made to make confident claims based on it and to nail down

parameters within which at present, are not precisely known. Other measurements

of this ‘Lindhard Factor’ are useful to the extent of the energies at which they are

made, and the error in said measurements. This is the driving principle behind the

measurements made in Section 4 of this work.

Figure 2.3: Cartoon depiction of the evolution of an event within a CDMS detector.
Plot on bottom right shows disparate phonon signal amplitudes in each of the four
phonon sensors, an effect which can be used to determine the position of the event.

2.4 Detector Limitations

2.4.1 WIMP Interaction Rate vs. Background Rate

Due to the very low cross-section expected of the WIMP, large detector masses

must be used in its detection. The detection rate scales with the detector mass,

so gains can be made very quickly with scalable technologies. Due to the modular
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Figure 2.4: Left) Plot showing the discrepancy in ionization:phonon energy ratio for
nuclear recoils vs. electronic recoils in simulated data. Right) Plot of ‘yield’ (ioniza-
tion energy divided by phonon energy) vs. phonon energy events from calibration
sources, demonstrating the ability to discriminate against electronic recoils.

design of the CDMS experiment, this is a simple, yet costly, issue of scaling up the 

number of detectors. However, this is not an optimal solution, as it inherently scales 

up corresponding electronics and other detector specific components ($$$) as well 

as scaling up the detector surface area. The rate of many of the dominant back-

ground event types scales with surface area (but not volume), so a better solution 

(scientifically and economically) is to scale up the size of each detector. The detector 

fabrication process is a complex and delicate one, so scaling up in size is no trivial 

task. Advances in handling and processing during the fabrication process (described 

in Section 3) have allowed the successful scaling up of detector mass while main-

taining (or even improving) throughput to make a large detector payload production 

possible in both time and cost.

2.4.2 Nuclear Recoil Sensitivity

Due to reduced ionization energy in nuclear recoil events, a successful detector

must not only be incredibly sensitive to low ionization energies, it must be well

11



calibrated at those energies.

As mentioned in Section 2.3.1, the drifting of charge carriers through the detector

produces additional phonons along the way. The quantity of these phonons, termed

‘Neganov-Luke’ phonons, scales with the electric field through which the carriers

are drifted and is proportional to the quantity of liberated charge carriers (i.e. the

ionization energy). In this way, an external electric field can be used to amplify the

ionization signal in the form of phonons without increasing the noise in the system,

a technique called voltage assisted calorimetric ionization detection. This equates

to a handle at which signal:noise can be tuned at will (until detector limitations

are reached by the applied voltage). This effect has been utilized by this group to

produce detectors with a baseline noise of ∼ 7eV [7], with the theoretical capability

of further improvement by incorporating minimal design changes.

While these incredibly sensitive detectors allow the detection of much smaller

depositions of energy, they are only as good as their calibration (when used in WIMP

searches). This is due to the factors mentioned in the beginning of this section. While

the measurements carried out in this work (Section 4) are very important for current 

and future WIMP searches using germanium, they are not sufficient for calibrating the

ultra low threshold detectors described above. However, this work has served to set up

a facility and procedure in which to carry out these measurements at lower energies

allowing these new detectors to be properly calibrated in the future.

This sensitivity and careful calibration opens up not only the ability to probe

lower WIMP masses, but also allows for the possibility for detection of coherent

neutrino scattering, a process never before measured directly.
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Figure 2.5: Limit plot showing results of previous experiments and project limits of
future experiments.

2.5 Results

Historically, the CDMS experiment has been a leading technology in the direct

dark matter search field. This remains true today as new evolutions in detector

technology continue to push the limits (see Figure 2.5). As one of two approved

direct search experiments (LZ being the other) for the next generation, the scientific

community has again put its faith in this technology. The ability to operate at

incredibly low energy thresholds keeps the CDMS experiment competitive in the

low-mass dark matter search regime. LZ, having a much larger active mass, is able

to lead the field in the push for lower interaction cross-sections. However, if either

experiment claims a detection of dark matter, the scientific community will likely
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look to the other to confirm. In the case of an LZ discovery, CDMS would need to

rapidly scale up mass to compete. This prospect is always under consideration in

detector development, and may not be far out of reach in the near future. However, if

CDMS finds evidence of a dark matter signature in the low mass region, it is unclear

how or if LZ could accommodate such a search.

2.6 Future

The next generation of CDMS, SuperCDMS SNOLAB, is in the R&D and design

stage currently. It will incorporate Ge detectors ∼ 2.25x as massive as SuperCDMS

Soudan (see Figure 2.6) as well as incorporating silicon detectors into the payload

to better target low mass WIMP recoils. Additionally, high voltage detectors will

be implemented to utilize the voltage assisted calorimetric ionization detection mea-

surement mentioned in section 2.4.2.

14



Figure 2.6: Evolution of CDMS experiments’ detector size, payload, and sensor
layout.
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3. DETECTOR FABRICATION PROCESS AND IMPROVEMENTS∗

3.1 Fabrication

CDMS detectors are produced using techniques and equipment similar to those

in typical semiconductor fabrication processes. The process begins with high quality

semiconductor substrates (germanium or silicon) and uses photolithography to etch

deposited films into circuit structures (see Figure 3.1). One significant difference,

however, is that the substrates used for CDMS detectors are much thicker, ranging

from 10mm in original designs to 33.3mm in current production. For this reason,

semiconductor equipment and processing typically used for ∼1mm thick substrates

have been modified and tuned for these larger detector geometries.

3.1.1 Substrate Materials

Detectors are fabricated on high purity germanium and silicon substrates. For

detector quality germanium substrates, “high purity” equates to impurity levels typi-

cally on the order of 1010cm−3 . These are grown using the Czochralski Process. Sub-

strates used for this experiment typically have dislocation densities of 1000-7000cm−2.

For silicon detectors, quality is specified and determined by room temperature resis-

tivity. While >8 kΩ-cm is the specification for acceptable material, typical detector

quality substrates have a resistivity of >20 kΩ-cm and are grown using the Float Zone

Process. All detectors currently operating in the SuperCDMS Soudan experiment

are 76mm diameter x 25mm thick germanium substrates. The next generation will

utilize both silicon and germanium detectors, 100mm diameter by 33.3mm thick[8].

∗Reprinted with permission from ”Cryogenic Dark Matter Search detector fabrication process
and recent improvements” by Jastram et. al, 2015. Nuclear Instruments and Methods in Physics
Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment, 772:14-25,
Copyright 2015 by Elsevier
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Figure 3.1: Process flow chart from raw substrate to completion (see Section 3.1).

The majority of this R&D, including establishment and tuning of the fabrication

process (specifically film characterization and photolithography steps), is performed

using low resistivity commercial “Prime Grade” silicon wafers (75mm and 100mm

diameter with SEMI Standard1 thickness and flats). Being much lower in cost, easier

to obtain, and easier to clean and prepare than thick substrates, they are a natu-

ral choice for practice and R&D. Once established, fabrication procedures are then

tested and confirmed on thick substrates. Low purity (and price) thick substrates

are used for this before fabricating detector quality substrates.

1Standards and specifications available from www.semi.org
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3.1.2 Alignment and Shaping

To improve uniformity and charge collection performance among the detectors,

the substrates are shaped and aligned to a specific crystal axis and orientation. Upon

delivery from the vendor, the cylindrical substrates are guaranteed to be aligned

within ±2 ◦ of the target crystal axis, typically [100]. For improved ionization drift

and collection, they are subsequently re-shaped with the alignment refined to ±0.1 ◦.

For this reason, the substrates, as purchased, are slightly over-sized in all dimensions

to account for material loss in re-shaping. Re-shaping consists of aligning and grind-

ing the substrates’ faces, followed by grinding the cylindrical sidewall. A custom

fixture has been made to allow the surface plane of the substrate to be manipulated

with micrometers to precisely dial in the crystallographic axis to the coordinates of

the x-ray diffractometer (XRD) used in this alignment process. For more information

on the XRD process, see [9]. In this setup, a modified Rigaku DMAX-1BX is used

with the x-ray source operated at 30kV and 20mA. First, the face of the substrate

is positioned and aligned to the point of initial interference with the x-ray beam

(which is set to 2θ=0 ◦) with the face parallel to the beam and perpendicular to the

goniometer’s θ plane. The goniometer is then set to the Bragg angle of the target

crystal axis and a local 2θ sweep is performed (the width of which is dictated by the

alignment tolerance from the vendor). This produces a peak near the Bragg angle

which will shift according to aforementioned micrometer adjustments. These adjust-

ments and measurements are made iteratively (gross adjustments at first, followed by

fine tuning) until the peak is within the required tolerance of the appropriate Bragg

angle. The crystal is then locked into that orientation in the alignment fixture, which

is designed such that it can be unmounted from the XRD system and attached to a

grinding fixture. This assembly is then placed on a Lapmaster 24C lapping machine
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(equipped with a 220 grit diamond magnetic plate) such that the substrate feeds into

the grinding surface along the crystal axis. After grinding, this surface is measured

again using XRD to confirm successful alignment. The second face is then ground

parallel to the first using this same fixture. Parallelism of the faces is confirmed using

a granite indicator stand. The cylindrical sidewall must then be shaped parallel to

the crystal axis. To reduce the chance of chipping during this process, circular plates

of glass (1/8” thick with a diameter 0.25” larger than the final substrate diameter)

are bonded to each face with a wax bonder using 69 ◦C quartz wax. The sidewall

shape is then defined using a diamond coring fixture. The coring diameter is that of

the final substrate specification. The glass plates and quartz wax are then removed.

To provide room for interface boards in the detector housings (see Section 3.1.8) and

ensure all crystals are fabricated in a uniform rotational orientation, flats are ground

on the sidewall of the substrate. These are located normal to a specific crystallo-

graphic direction ([011] in the case of [100] crystals). To perform this alignment,

the crystal is loaded into a custom XRD mount with the previously aligned crystal

axis normal to the 2θ plane and the x-ray beam incident upon the sidewall (with the

sidewall now positioned to just slightly interfere with the beam while 2θ=0 ◦). The

goniometer is then set to the Bragg angle of the desired flat orientation, and the crys-

tal is rotated about its axis (in the 2θ plane) using a precision rotary table indexer

until the diffracted intensity is maximized (locating the orientation to ±1 ◦). Using

a custom jig, the two diametrically opposed flats are ground using the Lapmaster

24C. The crystal is then lapped (on the same machine) to its desired thickness.

3.1.3 Heavy Etch

In order to remove substrate surfaces that may have been contaminated by pre-

vious processing and/or exposure to radon-containing atmosphere, the substrates
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are then chemically etched2. This process removes the outer layer (up to ∼250µm)

of material, which is assumed to be contaminated. Silicon substrate etching has

not been used by CDMS in the past, but is currently under development for future

detectors. Germanium etching is performed in the following solution:

1. 3200mL 69% HNO3

2. 640mL 50% HF

3. 150mL CH3CO2H (glacial)

The substrate is dipped in the etchant using a modified PTFE wafer cassette (used

in all subsequent acid processing) and agitated lightly by hand, followed by a dip in

de-ionized (DI) water. This is repeated 10 times. It is then placed in a Verteq 1600-

55M spin rinse/dryer for a standard rinse/dry process (to be referred to as SRD).

The SRD process consists of the following steps:

1. 35 seconds @600rpm with N2 purge and DI spray

2. 230 seconds @1600rpm with heated N2 purge

3. 90 seconds @1600rpm with N2 purge

Following this step, substrates are stored in nitrogen purged cabinets when not being

actively processed, reducing subsequent exposure to ambient radon.

3.1.4 Lapping and Polishing

Photolithographic processing of micron scale features requires a smooth, feature-

less substrate surface. For this reason, the coarsely lapped, heavy-etched detector

faces must be polished. This is accomplished via four sequential steps:

1. Fine-grit manual lapping

2This etch recipe is based on a process described in [10] modified by Paul Brink and Larry
Novak.
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2. Surface shaping polish

3. Scratch-removing polish

4. Final surface treatment polish

Substrates are hand-lapped on a slotted glass lapping plate using 9µm alumina pol-

ishing powder mixed with DI water to form a paste consistency. This is to remove

large features from the surface. The surfaces must then be polished to a specified

flatness with a mirror finish, free of visible features (such as scratches or pits) to

facilitate uniform film depositions and prevent circuit defects (see Section 3.1.8) in

subsequent processing. Polishing is performed on a dual spindle polishing machine.

Control of surface curvature (concavity vs. convexity) is maintained with polisher

settings and various sizes of polishing pads surfaced with polyester material in a 1:1

mixture of colloidal alumina polishing compound:DI water. This process is carefully

controlled such that the final surface has <2µm of total height deviation across the

substrate if convex, <1µm if concave (curvature is measured with a desktop laser

interferometer). This is to ensure uniform contact with the photo mask (which can

conform slightly to convexity but not concavity) during the photolithography pro-

cess. Small surface scratches resulting from this step are then removed on the same

machine using “regular nap” polyurethane pads and a fresh mixture of the same

polishing slurry. Final surface polishing is performed with “high nap” polyurethane

pads in a colloidal silica polishing compound. Final surface inspection is performed

using a stereo zoom binocular microscope, manually confirming a defect free mirror

finish.

3.1.5 Cleaning

Before the polished substrates can be processed into detectors, they must be

cleaned carefully. This removes surface contaminants as well as any particulates that
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may cause defects in subsequent processing (see Section 3.1.8). For this reason, the

cleaning is performed in a class 100 clean room. Germanium and silicon substrates

require different cleaning processes, germanium’s being much more time and labor

intensive (another benefit of using silicon wafers for R&D).

3.1.5.1 Germanium

Initial germanium cleaning involves a 5 minute soak in acetone followed by a 5

minute soak in isopropyl alcohol (NOTE: all chemicals used in cleaning and sub-

sequent processing are semiconductor grade). Following a thorough rinse with DI

water, the surfaces are manually inspected using a microscope equipped with an LED

ring light (especially effective for identifying particles on the surface as it exposes dif-

fuse features). If particulate count is unacceptable (≥10cm−2), the previous chemical

process is repeated, and the crystal is dried using a filtered nitrogen gun. If particu-

late count is still unacceptable, the substrate is rinsed with methanol and manually

wiped with a PVA cleaning brush. If the surface condition is still unacceptable, the

methanol and brush wipe is repeated as necessary. Otherwise, the substrate proceeds

to the oxide removal step. For this, a mixture of 3:1 DI water:50%HF is prepared in

which the substrate is submersed for 5 minutes followed by a 3 minute soak in DI

water. This is repeated three times and followed by surface inspection. If particulate

count has become unacceptable, a methanol rinse and brush wipe are repeated as

necessary. Upon completion, the substrate is placed in the oven at 120 ◦C for 10

minutes to bake out remaining moisture.

3.1.5.2 Silicon

Silicon substrates also receive chemical cleaning, but have not shown the need

for manual particulate removal. In the cleaning process, the substrates are initially

doused with methanol then isopropyl alcohol, followed by SRD. To remove metals
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and organic contaminants, a Piranha clean process is used. This consists of a 20

minute dunk in the following solution (heated to 55◦C):

1. 600mL 30% H2O2

2. 700mL 98% H2SO4

3. 1050mL 0.250N H2SO4

Substrates are then soaked in 55◦C DI for 1 minute, manually agitated once every

15 seconds. To remove the native oxide from the substrates’ surfaces, they are then

placed in the following solution for 20 seconds:

1. 2700mL DI

2. 50mL 50% HF

The substrates are then dipped again in 55◦C DI for 1 minute, manually agitated once

every 15 seconds. To remove ionic and heavy metal atomic contaminants from the

substrates’ surfaces, the substrates are submersed in the following solution, heated

to 70◦C, for 15 minutes:

1. 1750mL DI

2. 325mL 30% H2O2

3. 300mL 37% HCl

This is followed by SRD and a 5 minute dehydrate in the oven at 120◦C. The cleaning

process seals the substrate with a thin oxide layer which is removed in the sputtering

system prior to film deposition (see Section 3.1.6).

3.1.6 Thin Film Deposition and Tuning

The films that form the final circuit and sensors of the detector are deposited

using a customized plasma sputtering deposition system. Precise and repeatable
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Figure 3.2: Example RGA spectra of partial pressures in the SEGI process chamber
at various atomic masses before (top) and after (bottom) aluminum getter deposition
(see Section 3.1.6), demonstrating the efficacy of this process in reducing oxygen and
water vapor levels.
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process control is vital in the deposition of these films as they dictate the quality of

the final circuit features (see Sections 3.2.1, 3.2.2, and 3.2.3). The deposition system

used in this process is a Perkin Elmer 4400 Delta with PLC/PC interface automated

by Semiconductor Engineering Group, Inc. (SEGI), which has been modified for this

fabrication process. It can simultaneously sputter 8 substrates, 100mm in diameter

(or 6, 150mm diameter) and is composed of two main vacuum chambers: the load

lock and the process chamber, separated by a gate valve. The load lock is the

location in which substrates are initially loaded, which is then pumped to 4.0x10−6

Torr using a turbo-molecular pump (added for this process). This allows the process

chamber to stay isolated from atmospheric contaminants at all times (specifically

when the substrate is transferred through the gate valve into this chamber). To

further reduce contaminants, a pre-coat of Aluminum is sputtered in the process

chamber as a getter. This process removes traces of O2 and H2O (see Figure 3.2)

as well as other contaminants which can alter film characteristics, further improving

process stability. The substrates are then transferred into the process chamber,

which is subsequently pumped back to a base pressure of 9.0x10−7 Torr. The process

chamber is cylindrical (∼1m in diameter) and can simultaneously accommodate three

different targets of sputtering materials. The chamber is equipped with aluminum,

tungsten, and silicon targets, all of which are 99.999% pure. After substrates are

loaded in the load lock, the rest of the deposition process is entirely automated,

including everything from rotation and height settings of the table on which the

substrates sit to setting and maintaining the chamber and plasma conditions. Table

height settings are customized for each substrate thicknesses to maintain a constant

target-substrate distance. Other settings of particular note are the voltage and power

supplied to the target (DC or RF), DC bias applied to substrates during deposition,

flow of Argon into the chamber, and optional RF pre-etch.
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Figure 3.3: Image of a single phonon sensor and magnified inset of TES line and “wa-
terfall” region (arrow indicates waterfall boundary, see Section 3.2.3 for description).
Each color corresponds to the exposed film on the final structure: Blue=Aluminum
(mask #1, trilayer mask), Pink=Tungsten (mask #2, TES mask), Green=a-Si (mask
#3, “trench” mask) (see Section 3.1.7). The central vertical line is the ∼2µm wide
TES, and the large aluminum “fins” are the phonon absorbing structures (see Section
3.2.1). Note: a-Si underlies all metal features.

The process chamber is equipped with an RGA (Residual Gas Analyzer) which

measures the contents of the gas in the process chamber. The RGA can be used in

two modes: plotting the entire spectrum at once, showing peaks at various masses

corresponding to contaminants in the chamber (see Figure 3.2), or plotting the levels

of a chosen contaminant over time. A high capacitance valve is implemented to allow

the RGA to operate at high vacuum levels as well as in-process levels (∼10mTorr).

This allows in-situ analysis of any possible gas contaminants during the deposition

process.

All of the above devices and processes allow the minimization of contaminants

and maximization of control and repeatability in the deposition process. Using this

system, three thin film layers (designated as the trilayer) are sputtered sequentially on

both faces of each substrate: 40nm amorphous silicon (a-Si), 300nm aluminum, and

30nm tungsten. The a-Si layer underlies all final metal circuit structures and is used

to protect the substrate surface from aluminum and tungsten etchant chemicals, as
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well as improving the ionization collection boundary. The aluminum layer forms the

phonon collection structures (see Figure 3.3 and Section 3.2.1) as well as the circuit

lines (electrodes) connecting the sensors on the detector. The tungsten layer serves

as a cap layer, preventing the aluminum surface from oxidizing (see Section 3.2.3)

and preventing back-sputtering of the aluminum during the subsequent deposition.

Before each deposition begins, the target to be used is pre-sputtered for 25 seconds to

clean its surface with its shutter closed (to prevent sputtered material from depositing

on substrates). Before all depositions, an aluminum shadow mask is manually placed

on the substrate face which covers the outer∼1mm of the exposed surface, preventing

deposition on this region (see Section 3.2.5) and the substrate’s sidewall surface. The

steps and parameters used for the trilayer deposition are the following:

1. 10 minute RF etch, 350 W RF, 50 sccm Ar, 10 mTorr

2. 16 minute a-Si deposition, 500 W RF, 50 sccm Ar, 8 mTorr

3. 7m18s aluminum deposition, 2.5 kW DC, 40 sccm Ar, 10 mTorr

4. 36 second tungsten deposition, 2.5 kW DC, 40 sccm Ar, 8 mTorr

The films are then patterned photolithographically and chemically etched, form-

ing the majority of the detector circuit (described in Section 3.1.7). After chemical

etching, a 40nm layer of tungsten is sputtered on each face of the substrate. This

layer forms the transition edge sensors (TES’s) of the detector (see Sections 3.2.2

and 3.2.3). The steps and parameters used for this deposition are as follows:

1. 10 minute RF etch, 350 W RF, 50 sccm Ar, 10 mTorr

2. 51 second tungsten deposition, 2.5 kW DC, 40 sccm Ar, 8 mTorr, 100V DC

bias delivered to substrate

This layer requires the most precise tuning and consistency, described in Sections

3.2.2 and 3.2.3.
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3.1.7 Photolithography

A three step photolithographic process (see Figure 3.4) is used to define the

circuit features on the substrates. The original process from which this was adapted

is described in [11] and [12]. The first step defines the aluminum structures (circuit

lines and phonon collecting fins [see Section 3.2.1]). The second step defines the

tungsten TES features (see Section 3.2.2), and the third defines the a-Si structure

and substrate trenching regions (see Section 3.2.4). The aluminum and tungsten are

etched with chemicals, while the a-Si is plasma etched via an RIE (Reactive Ion Etch)

process. In all three steps, an etch resistive mask of photoresist is used to protect the

features while the exposed films are etched. The photoresist mask pattern is formed

via UV transfer (exposure) using a master template mask. Chemical processing of

the substrates is performed in a class 100 UV-free clean room.

3.1.7.1 Trilayer Patterning

After the trilayer deposition (see Section 3.1.6), a Solitec 5110-SJ spin coater is

used to spin coat Shipley Microposit S1811 photoresist on both faces of the substrate.

To create and maintain a vacuum seal between the substrate and spin coater’s chuck,

0.032” thick elastomer skirts are stretched around the substrate sidewall. These

are removed and discarded after the spin coat process (see Section 3.2.5 for more

information on the photoresist layer and process). The substrate is then placed

in the oven (in a PTFE cassette, covered with aluminum foil to protect the fresh

photoresist from particulates) at 120 ◦C to soft bake the photoresist (see Table 3.1

for bake times).

After baking, the crystal is allowed to cool to room temperature. The cooling

process is accelerated with a gentle stream of filtered nitrogen gas on each face. The

substrate is then ready for the photolithographic mask transfer (exposure) process.
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Figure 3.4: Detector patterning process (not to scale). Individual film layers
are shown throughout the deposition and photolithography process (see Section
3.1.7). Gray=Substrate, Green=a-Si, Blue=Aluminum, Pink=Tungsten, and Red-
brown=Photoresist.
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Figure 3.5: Diagram depicting the tungsten overhang issue caused by the isotropic 
aluminum etch process (not to scale). Figure reprinted with permission from [13].

Size (Dia. x Thickness) Soft Bake Hard Bake
76mm x 10mm 20m 1h30m
76mm x 25mm 25m 2h

100mm x 33.3mm 28m 2h20m

Table 3.1: Bake times for various substrate sizes. Thin (practice) wafers soft bake
for 1m50s on a 115 ◦C hot plate, and hard bake for 15 minutes in the oven at 120 ◦C.
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An OAI 206-094735 contact aligner with a 350W Hg g-line UV lamp is used to ex-

pose each face for 5.3s at 8.15mW/cm2 using mask #1, the trilayer mask (see Figure

3.3). Special care must be taken not to scratch the backside photoresist layer when

placing the substrate on the stage (and when flipping the substrate for exposure

of the second face). The UV intensity is confirmed before each exposure using an

OAI 0308 UV meter tuned to 436nm (g-line). The pattern is then developed using

Shipley Microposit MF-319 developer, mildly agitated by hand, until completion.

This is judged by eye, typically taking 70-90 seconds. The substrate is gently rinsed

in DI water after development, then proceeds to SRD. The photoresist is then in-

spected to confirm successful development (robust replication of mask structure).

The substrates are then returned to the oven at 120 ◦C to hard bake the photoresist

(see Table 3.1 for bake times). They are then cooled to room temperature with the

assistance of gentle nitrogen gas flow. The tungsten layer is etched for 6m30s using

30% H2O2 with 2 gentle manual agitations at 1 minute intervals, followed by SRD.

The aluminum layer is etched using Cyantek Al-11. This typically consists of 5-6 it-

erations of the following: 45s Al-11 dunk with constant gentle agitation, followed by

a 15s DI rinse. The aluminum etch leaves a slight overhang of the tungsten cap layer,

due to the isotropic nature of the reaction (see Figure 3.5). Intermittent DI rinses

are used to control the temperature of the exothermic etch reaction[14], improving

etch uniformity and reducing the undercut (overhang) issue. When all exposed alu-

minum appears to have vanished, the substrate receives an additional 15s of Al-11

etch to ensure no aluminum remains, then proceeds to SRD. To remove the overhang

feature, another tungsten etch is performed (see Section 3.2.3). This consists of a 10

minute submersion in 30% H2O2, with 2 gentle agitations every 2 minutes, followed

by SRD. At this point, the circuit pattern is carefully inspected to confirm successful

etching and preserved photoresist integrity. The photoresist layer is removed using

31



a 20 minute dip in Shipley PRX-127 at 45 ◦C, with 2 gentle agitations every 5 min-

utes, followed by SRD. As a final cleaning precaution, the substrate is submerged in

Baker PRS-1000 for 10 minutes at 45 ◦C, followed by SRD. Etched features are then

inspected (and again after each subsequent photolithography cycle), monitoring for

defects and critical circuit feature dimensions. The substrate is then placed in the

SEGI under vacuum overnight to boil off any moisture before the following tungsten

(TES layer) deposition.

3.1.7.2 TES Patterning

The second deposition, that which forms the TES tungsten layer, is then per-

formed (see Section 3.1.6). After this deposition, the substrate receives the same

spin coat, soft bake, alignment, exposure, develop and hard bake process as previ-

ously mentioned. The mask used for this layer (mask #2, see Figure 3.3) defines the

TES structures on the circuit. After hard bake and cooling, the tungsten is etched

in 30% H2O2 for 12 minutes, with 2 gentle agitations every 2 minutes, followed by

SRD. It should be noted that this step etches all tungsten not covered by the mask,

including the tungsten cap layer from the mask #1 structures. Therefore, anywhere

that masks #1 and 2 coincide, all four film layers remain. Otherwise, mask #2 de-

fines structures with only TES tungsten on top of a-Si (see Figure 3.4 and Section

3.2.3). The photoresist is then inspected for integrity and removed with the same

PRX-127 and PRS-1000 process as before (aside from PRX-127 time reduction to 15

minutes). The substrate is then placed under vacuum overnight to remove moisture

(improving adhesion of subsequent photoresist coat).

3.1.7.3 a-Si Patterning and “Trenching”

The last photolithography step defines the a-Si structure with mask #3, using

the same spin coat, soft bake, alignment, exposure, develop, hard bake, and cooling
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process as previous steps. After hard bake and cooling, the a-Si is etched in a

modified Tegal 903C reactive ion etcher using 8 iterations of the following etch and

cool down steps:

1. 18 second etch, 400 W RF @ 13.56 MHz, 18 sccm SF6, 50 sccm He, 1100 mTorr

2. 7 minute purge (cool down), 50 sccm He, 900 mTorr (limited by Helium MFC)

See Section 3.2.4 for more information on this etch. The photoresist is then removed

with the same PRX-127 and PRS-1000 process as before (with original PRX-127

time of 20 minutes).

3.1.8 Inspection, Surgery, and Mounting

It is possible for defects to arise in the photolithography process which can pre-

vent a detector from operating as desired. For this reason, every element of every

detector circuit is manually inspected using a microscope. This step is crucial to

successful detector fabrication as micron scale defects can knock out an entire sensor

channel. Defects of concern include areas of missing metal, causing breaks in the

circuit continuity as well as metal films that did not etch properly, causing shorts

(see Figure 3.6). In the case of open circuits due to breaks in metal continuity, a

Kulicke & Soffa 4523AD wire bonder (with a DewyL Tool MCSOE-1/16-750-45-C-

2025-M wedge and 0.00125” diameter 99% Al 1% Si wire) is used to connect the

isolated metal regions with wire bonds. The circuit is designed with extra metal

pads (bonding locations) to make this task easier. In the case of a defect causing a

short circuit, repairs can be made using one of two options:

1. Manually abrading the film with the wedge of the wire bonder to eliminate

the unwanted electrical connection (an auxiliary wedge should be used for this,

preventing damage to the bonding wedge)
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2. Using a localized droplet of the proper chemical etchant to remove the metal.

This can also be used during the photolithography process (depending on the

nature and location of the defect), utilizing the protective photoresist mask,

thus minimizing chemical damage to nearby structures.

The detectors are then mounted in hexagonal OFHC copper housings which in-

clude Detector Interface Boards (DIBs). The detector electrodes have large bond

pads near the DIBs, used to wire bond the detector channels to copper traces on the

DIBs. This provides a feed-through to the outside of the grounded housing as well

as a rigid connection to external hardware.

Figure 3.6: Left) Example of an un-etched section of Aluminum, causing a possible
short. Right) Example of photoresist failure allowing unwanted aluminum etching,
breaking circuit continuity, and requiring a “surgery” wire bond. Both examples
were likely caused by particulates on the detector surface during early processing.

3.2 Process Tuning, Results, and Improvements

3.2.1 Aluminum Film

To efficiently read out phonon energy, the phonons are first absorbed in the super-

conducting aluminum “fins” (see Figure 3.3) where the energy is used to dissociate
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Cooper pairs which split into pairs of quasi-particles. These quasi-particles must

diffuse through the aluminum to reach the tungsten TES where they are essentially

trapped due to the tungsten’s lower superconducting bandgap value (see Section

3.2.3). A crucial property of the aluminum is a high quasi-particle diffusion length.

This length is inhibited by impurities found in the aluminum.

Quasi-particle diffusion length is important to monitor and control. To quantify

the quality of the aluminum film, a measurement of the residual resistivity ratio

(RRR) is performed. This is the ratio of the film’s resistivity at room temperature

to its resistivity at 4K. A higher RRR value corresponds to a higher quality film (i.e.

one with fewer impurities) [15]. A RRR value of 10 has been deemed sufficient for a

well functioning device in these detectors, but films have been tuned using the SEGI

to routinely achieve a value of ∼16.

3.2.2 Tc Tuning

Optimal detector readout relies on the TES sensors being held at specific tem-

peratures in their superconducting-transition resistance curves. The second tungsten

deposition forms the TES layer. Consequently, this deposition must be carefully

tuned to produce tungsten of a uniform, consistent, and precisely-controlled critical

temperature (Tc). Critical temperatures of thin tungsten films are largely dictated

by the ratio of α to β phase in the material. This is due to the fact that the α-W

exhibits a Tc of 15 mK [16] while β-W can have Tc’s ranging from 1 to 4 K [17]. Uti-

lizing this and the fact that the two phases have different crystallographic structures

(and therefore, different Bragg angles), provides a technique of roughly estimating

the Tc of a given sample at room temperature using XRD[17] (see Figure 3.7). This

technique is useful for tuning film samples to have high α:β ratios (Tc’s closer to

the desired range), but in this range, the ratio becomes so heavily α-dominated
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Figure 3.7: Left) XRD spectra showing discrimination between samples of differing
α:β concentrations and their resulting Tc’s. Also marked are the locations of the
peaks of pure α and β phase films. An algorithm fitting two Gaussian functions
(centered at these values) provides an estimate of phase ratios, and therefore Tc’s, of
the films. Right) Plot showing correlation of critical temperature vs. sheet resistance
of similar thickness films (40±4nm) [13]. These room temperature characterization
methods allow film deposition parameters to be tuned without the time or monetary

expense of dilution refrigerators (see Section 3.2.2). Reprinted with permission.

that differences in β concentrations become indistinguishable, making Tc predictions

difficult. To finely tune deposition parameters to the ∼80mK target, a dilution refrig-

erator is used to physically measure the resistance transition as the sample is cooled

past its Tc and again as it warms up. With this feedback, depositions with different

sputtering power, substrate bias, and argon pressure were produced and tested, cre-

ating films of varying Tc’s. In this process, a correlation was established connecting

room temperature resistivity of the films to their Tc (see Figure 3.7, right), allowing

recipes to be roughly tuned and chosen with simple room temperature measurements

(sheet resistance measured with a 4-point probe, corrected for film thickness to cal-

culate resistivity)[17]. Using these processes, a recipe was chosen to produce films

possessing the desired Tc. Current experimentation with devices of varying Tc’s rely
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heavily on the resistivity-Tc correlation, saving significant time and money required

for dilution refrigerator tests.

In addition to depositing films with carefully tuned, repeatable Tc’s, the SEGI

has demonstrated the ability to produce films with much higher Tc uniformity across

the substrate surface. Previous systems have had large Tc gradients across the face

of detectors, beyond an acceptable limit (see Figure 3.8). To correct this issue, Tc

distributions must first be mapped (requiring detector testing in a dilution refriger-

ator), followed by ion implantation of 56Fe (specifically into the TES’s) to correct

for the measured Tc gradient, a process described in [18]. Films deposited in the

SEGI, however, have demonstrated uniformities as good or better than typical post-

implant samples from other systems. This “as-delivered” uniformity circumvents

a full round of millikelvin testing (Tc mapping) and ion implantation, increasing

throughput rates. The consistency and uniformity of films produced by the SEGI

may allow the test process to largely avoid Tc testing, aside from periodic verifi-

cation. Circuit continuity tests can be accomplished at higher temperatures (up to

∼1K), meaning these detectors may be able to avoid dilution refrigerator testing as a

whole during high throughput periods. With improved production throughput rates,

the bottleneck is shifted from fabrication to testing, exaggerating the importance of

these consistency and uniformity improvements.

3.2.3 Conformal Film Deposition

Controlling the fabrication quality of the aluminum-tungsten interface (to max-

imize quasi-particle diffusion into the TES) is important because phonons absorbed

in the aluminum only contribute to the measured phonon signal if they are able to

drift into the tungsten. When quasi-particles drift from the aluminum “fins” to the

overlapping TES structure (see Figure 3.3), they must first drift into the intermediate
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Figure 3.8: Left) Example of W Tc variation (in mK) across a sample substrate
face from the previous CDMS deposition system. Middle) Tc variation of same film
after ion implant compensation (see Section 3.2.2). Right) Tc measurements (see
Table 3.2) from the 8 phonon channels of G9F, a detector fabricated at TAMU,
demonstrating Tc uniformity without ion implantation. All Tc’s are in mK.

tungsten cap layer. Since this intermediate tungsten layer is deposited immediately

after the aluminum layer without breaking vacuum, no oxide is able to form between

the two. Without this cap layer, an oxide forms on the aluminum surface before the

TES layer deposition and inhibits the diffusion of quasi-particles from one film to

the other. While the cap layer does oxidize slightly, the oxidation is easily removed

with the RF etch which precedes the TES film deposition, forming a more favorable

interface between the two tungsten layers.

The quasi-particle propagation from the “fins” to the TES’s is aided by the

bandgap disparity arising from the aluminum and tungsten films’ contrasting Tc’s

(aluminum’s Tc of ∼1.2K equates to a gap energy of 0.18meV compared to the tung-

sten’s gap energy of ∼ 25µeV)[13]. Due to the magnitude of disparity in band gap en-

ergies, a process of quasi-particle multiplication can even occur at this boundary[19].

Because it is deposited over an already etched structure, the TES film must

maintain continuity while stepping down ∼330nm (the initial aluminum + tungsten

layer) from the initial tungsten cap layer to the a-Si layer. Discontinuity in this
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Channel Tc (mK) Rn (Ω)
A1 75 0.64
B1 75 0.59
C1 77 0.59
D1 76 0.59
A2 75 0.69
B2 74 0.56
C2 73 0.54
D2 76 0.56

Table 3.2: Critical temperatures and “normal” resistance values (Rn) for the 8
phonon channels of detector G9F (see Section 3.2.2). Rn is the resistance of the
channel while the aluminum is superconducting, but the tungsten is normal (held
at a temperature significantly above its Tc). Note: Channels A1 and A2 are outer
channels (see Figure 3.8) and have higher Rn values due to their sensor layout.

Figure 3.9: Close-up and SEM image of “waterfall” boundary (see Section 3.2.3).
Location on phonon sensor and perspective are indicated by the arrow, referencing
Figure 3.3.

region severs the phonon collection structure from the TES line (see Figures 3.3

and 3.9), preventing signal readout. To avoid this issue, the TES film must be a

conformal layer closely following the topology, particularly the sidewall, of the trilayer

structures. This region is designated as the “waterfall” region (see Figure 3.10 for

examples of this feature exhibiting both poor and good continuity). To prevent this
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Figure 3.10: Left) SEM images of overhang discontinuity issue. Middle) Conformal
sidewall deposition utilizing overhang etch, resulting in robust film continuity (see
Section 3.2.3). Right) SEM image of FIB-prepared cross-section of waterfall feature,
showing conformal tungsten deposition. FIB image courtesy of Evans Analytical
Group.

problem, the “overhang etch” has been implemented into the process. This etch was

tuned by performing many iterations of circuit fabrication on practice wafers with

various overhang etch times using SEM imaging for feedback. Once established, the

process was confirmed with thick substrates, again using SEM imaging.

3.2.4 a-Si Etch and “Trenching” of iZIP Detectors

Discrimination between background and signal events using these detectors relies

on a calibrated ratio of energy measured in the ionization channels versus that mea-

sured in the phonon channels. Charge carriers produced by events near the faces of

a detector often fail to drift through the entire crystal to the appropriate electrode.

This results in a reduced ionization collection signal, causing the event to be improp-

erly identified in subsequent analyses. A new circuit design has been implemented

to combat this. The design is called the iZIP (interleaved Z-sensitive Ionization and

Phonon detector)[22][23][24], and as the name suggests, it utilizes interleaved elec-

trodes on each surface. The interleaved electrodes alternate from ground to +2V on

one face and from ground to -2V on the other (see Figure 3.11). This is in contrast to
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Figure 3.11: Left) Diagram of iZIP detector geometry and design used in SuperCDMS
Soudan showing alternating biased charge collecting rails and 0V phonon rails (see
Section 3.2.4). Figure from [20]. Right) Simulation of iZIP internal field lines, show-
ing strong tangential electric fields at the surface and a uniform drift field in the
detector bulk, a method proven to discriminate against the previously problematic
surface events. Figure from [21].

previous designs[25] where one face is held at ground potential while the other is volt-

age biased. The interleaved design produces a very uniform field in the bulk but local

regions of high field intensity near the surface. This causes the carriers (electrons

and holes) produced near the surface to both be collected by the adjacent surface,

with relatively little charge drifting to the opposite face. Therefore, any events with

significant disparities in charge collection from one face to the other (i.e. failing the

charge-symmetry requirement) are considered to be surface events. This procedure

has been demonstrated to be very successful and is the design currently operating in

SuperCDMS Soudan[20]. To fully realize the potential of this technique, detectors

should be able to hold higher biases (producing stronger local surface fields) without

breakdown. Limitations arise, however, as the electrode spacing is ∼1mm, and cur-

rent begins to leak across the surface as voltage is increased, eventually resulting in
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breakdown. To reduce this problem and allow higher bias voltage, a trench is etched

into the surface of the substrate, between the electrodes. For this purpose, the a-Si

etch step is extended by ∼700%. Because the gas used to etch the a-Si also etches

the substrate material, this extra time allows etching of the substrate itself. The

process has been tuned such that a trench of ∼1µm in depth is created between the

electrodes and has been shown[26] to produce detectors that can hold much higher

bias voltages without the problems mentioned previously (see Section 4.4).

3.2.5 Photoresist Studies

The tuning of the photoresist layer is of utmost importance as it dictates not

only the geometries of the final detector circuit structure, but whether or not the

deposited films survive the fabrication process at all. For this reason, much time was

spent investigating the photoresist layer and photolithographic processing of this

layer. The cross-section of the developed photoresist pattern is controlled with the

UV exposure, which can result in angled sidewalls (inward or outward), changing

the width of the film etched below (see Figure 3.12). A dedicated study of the

UV exposure (varying UV power and time, with SEM feedback) was performed to

prevent these problems from affecting our circuit features.

In previous CDMS detector designs, Shipley Microposit S1813 photoresist[27]

has been used for the photolithographic processing. This chemical was chosen for

multiple reasons:

1. Resistance to etchant chemicals used in this process

2. Ability to reproduce sub-micron line-widths

3. Viscosity to match our desired layer thickness (∼1.4µm) with rotational speeds

that produce optimum uniformity (3500-5500rpm [27])

4. Compatibility with metal ion-free developers [27]
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Figure 3.12: SEM image of a photoresist feature’s cross-section. Due to improper
UV exposure, this feature’s sidewalls angle outwards, protecting a wider area of
film from etching underneath, resulting in widening of circuit features. Note: This
layer’s thickness of 1.66µm corresponds to a previous spin coat recipe, using S1813
photoresist (see Section 3.2.5).

However, as substrates of larger mass joined the production line, it became desirable

to decrease spin coating speeds (causing less strain on the spin coater and less risk

to the substrates). For this reason, Shipley Microposit S1811[27] is now used for

its lower viscosity while still possessing the other characteristics mentioned above.

Using S1811, the spin coat process is performed at 2300 rpm (as opposed to 4000

rpm required for S1813) for 60 seconds, producing a 1.4µm layer on each face. These

43



parameters (along with those of the UV exposure mentioned previously) were tuned

using feedback from SEM images confirming faithful reproduction of mask feature

line-widths and robust cross-sections after exposure and development.

Another photoresist issue that was studied and successfully remedied is that of a

so-called “edge bead”. After the spin coat process, a thick bead of photoresist can be

seen around the edge of the substrate surface. Thicker than the nominal layer, this

bead does not receive enough UV exposure and developing to be properly patterned

and removed prior to etching. While there are no vital circuit features in this region,

it prevents any films underneath from being etched away, leaving a metal band (which

could potentially cause shorts) around the edge of the detector after the photoresist

is removed. It is for this reason that the previously mentioned shadow mask is

implemented, preventing deposition in this region (see Section 3.1.6). This procedure

has proven to be a low cost yet highly effective method of combating the edge bead

problem, with negligible impact on detector patterning at radial extremities.

3.3 Results to Date

Using this process at the dedicated TAMU fabrication facility, detectors have

been produced of the size and design of those in SuperCDMS Soudan. Test data

from detector G9F, one of the first of these produced at TAMU, can be seen in Figure

3.13, demonstrating pulses from operational phonon sensor channels as well as the 356

keV photopeak from a Ba-133 calibration source. In addition, this detector showed

unparalleled TES Tc uniformity without ion implant compensation (see Figure 3.8

and Table 3.2). However, it showed an inability to hold adequate bias voltage, leading

to further tuning of the trenching process (see Section 3.2.4). The following detector,

G10F (using the improved trenching process), demonstrated more than adequate

ability to hold bias, showing no signs of leakage up to ±5V (the limit of the test
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stand). Specification standards used to rate SuperCDMS detectors categorize this

detector as “very good”. Subsequent testing showed functional charge performance

up to 9V [26], much higher than required for the experiment.

Detectors produced at this facility have demonstrated performance that meets or

exceeds the requirements for this experiment, certifying this location as an integral

fabrication facility for SuperCDMS SNOLAB detectors. 100 mm x 33.3 mm thick

science quality detectors were successfully produced at this facility in early 2013 (see

Figure 3.14).

Figure 3.13: Left) Phonon pulses from detector G9F, fabricated at TAMU. Right)
Calibration spectrum from detector G9F, clearly showing the 356 keV Ba133 peak
(see Section 4.4).
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Figure 3.14: 100mm x 33.3mm detectors fabricated at TAMU.
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4. LOW ENERGY NUCLEAR RECOIL MEASUREMENTS IN GERMANIUM

4.1 Introduction

Understanding low energy nuclear recoils in various elements has become an in-

creasingly important topic recently, due to the latest results from direct detection

dark matter experiments. The nuclear recoil signal is that which is expected from a

WIMP interaction, and recent results from these experiments (CDMSII silicon[28],

for instance) have shown possible hints of WIMP signals in the light mass (low energy

deposition) parameter space. Current analyses of these experiments rely on predic-

tions of expected detector response to low energy nuclear recoils based on theoretical

treatments of energy dissipation and stopping powers explored and published by

Lindhard et al. in 1961 and 1963 ([29], [30], [31]). The relationship in question is the

ratio (termed the ‘Lindhard factor’, see Figure 4.1, and Section 2.3.1) of ionization

energy produced by a nuclear recoil vs that of an electronic recoil (the typical calibra-

tion scale for these detectors). Since then, experiments have measured and largely

verified the predicted Lindhard factor in various elements, but the uncertainties in

the low energy measurements still need to be improved to make confident claims of

WIMP signals in this region. In this work, an infrastructure is designed and used

to support such measurements in germanium. This is accomplished by scattering

neutrons of known energies off of a germanium detector at specific angles, producing

nuclear recoils of specific energies.

4.2 Experimental Setup

Low energy nuclear recoils of known energies are typically difficult to produce

for calibration purposes due to the energy spectra of common radioactive neutron

sources. While these spectra produce features that can be used for calibration, they
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FIG. 3: A compilation of all quenching factor (QF) mea-
surements on germanium, with calculations from the TRIM
software [6] as well as by the Lindhard model [7] under two
parametrizations (k=0.20 and 0.15) overlaid.

of 10−39 cm2 throughout in this Section) at mχ = 5 GeV
would increase (become less constraining) from 0.81 to
0.88.

B. Quenching Factor

A compilation of all quenching factor (QF) measure-
ments on germanium is given in Figure 3. Overlaid are
calculations from the TRIM software [6] as well as by the
Lindhard model [7] under two parametrizations (k=0.20
and 0.157). Both schemes have been adopted in various
CDM experiments. It can be seen that the TRIM re-
sults explain well the QF measurements at both low and
high energy. Accordingly, we chose to use this scheme in
our analysis. The QF values are less than those evaluated
with the Lindhard (k=0.20) model, and hence would give
rise to more conservative results.
If Lindhard (k=0.20) would be used, the QF at 1 keV

recoil energy will be increased from 0.20 to 0.21. The
QF uncertainty estimations of 0.006 in Ref. [2] can ac-
count for this deviation. This alternative choice will
only have minor effects on the exclusion limits, decreas-
ing it (becoming more constraining) from 0.81 to 0.80 at

mχ = 5 GeV

C. Constructing Exclusion Plots

The unbinned “optimal interval method” as formu-
lated in Ref. [8] was adopted to derive the exclusion lim-
its. The unbinned formalism allows the use of all avail-
able information in the background spectra and was used
in other CDM experiments like CDMS and XENON. NO
background profile was assumed or subtracted, which is
also a conservative approach. The sensitivities at low mχ

under this scheme are driven by the absence of counts be-
tween 198 eV and 241 eV.

An alternative method would be to place the back-
ground events in different energy bins and follow the for-
malism of Ref. [9]. For instance, choosing 50-eV bins
for E>100 eV (thereby deliberately filling the hole at
200−250 eV), the σSI

χN limit at mχ = 5 GeV would in-
crease (become less constraining) from 0.81 to 1.20. This
reduction in sensitivities is expected since data binning
involves loss of information.

We conclude that our choices in these three aspects
of the experiment are justified. The sensitivities of the
physics results (exclusion upper limits) are dominated by
the statistical uncertainties of the background spectra.
The potential effects on them are minor if alternative
schemes would have be chosen instead.
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Figure 4.1: Current measurements of the Lindhard factor in germanium [32].
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are typically at much higher energies than those of interest here. It is possible to

produce lower energy neutrons using radioactive sources to excite beryllium. Two

elements commonly used for this purpose are yttrium and antimony (specifically, 88Y

and 124Sb). These sources produce neutron energies of 166 and 26 keV, respectively

[33]. This method is currently being used by other members of the CDMS collabo-

ration to make similar measurements, with results and publication expected in the

near future.

Ideally, one would use a mono-energetic neutron beam of tunable energy and

intensity. This experiment uses tools to replicate those parameters to the best of

current abilities in the field. This is accomplished using a proton beam (see Appendix

B) of stable, tunable energy incident upon a LiF target, producing a subsequently

stable, tunable pseudo-mono-energetic neutron beam (see Section 4.2.1).

Figure 4.2: Neutron rate (measured with a BF3 counter enclosed in polyethylene case)
vs. bending magnetic field (a measure of incident proton energy). The threshold in
this case is measured within 21 µT.
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Figure 4.3: Neutron energy (solid line) and neutron detection rate (dashed line) vs.
bending magnetic field. Neutron rate is measured with a BF3 counter enclosed in
polyethylene.

4.2.1 Proton Beam and Neutron Production

The collision of protons above a certain threshold energy upon lithium atoms

induces a 7Li(p,n)7Be reaction. This threshold energy (1.88MeV [34], producing 29.7

keV neutrons) is used to calibrate the proton beam energy before each run. Starting

below threshold, the proton beam energy is increased while observing the neutron

detection rate in a BF3 counter (see Figures 4.2 & 4.3) placed at the beam end

allows one to precisely calibrate the beam energy. In order to increase the proton
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Figure 4.4: Diagram of the proton beam setup, neglecting steering, focusing, and
measurement components (see Section 4.2.1). Not to scale.

beam energy, the bending magnet (see Figure 4.4) is adjusted and measured precisely,

while the accelerating potential compensates accordingly using feedback from sensors

downstream. In this way, the bending magnet is the only adjustment used to tune

the proton beam energy. This magnet is incredibly stable, and its field is precisely

measured to ± 1µT using a high-quality temperature-compensated Hall probe read

out by a Gauss/Teslameter (F.W. Bell Model 8010). Using the known threshold

proton energy and its corresponding bending magnet field, one can find the bending

field required for any other proton energy desired using the following equation:

Ep =
q2B2(a2 + d2)2

8mpd2
(4.1)

In this equation, the proton energy (EP ) and bending field (B) are the only vari-

ables. The constants q (proton charge), a & d (magnet dimensions), and mp (proton

mass) can thus be combined into a single constant, k, simplifying the equation to
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the following:

Ep = kB2 (4.2)

The constant k is found using the proton energy at the neutron production thresh-

old with a known B-field. This allows calculation of the proton beam energy from

the bending field value alone. With a given incident proton energy, one can calculate

the outgoing neutron spectrum, using the following equation from [33]:

(4.3)

En = E
mGmn

(mn +mr)2

{
2 cos2 θ +

mr(mr +mn)

mGmn

[
Q

E
+

(
1− mG

mr

)]

± 2 cos θ

√
cos2 θ +

mr(mr +mn)

mGmn

[
Q

E
+

(
1− mG

mr

)]}

In this equation, En is the outgoing neutron energy, E is the incoming proton

energy, mG, mn, and mr are the masses of the projectile nucleus (proton), neutron,

and residual nucleus (Be), respectively, θ is the neutron emission angle, and Q is the

Q value for the 7Li(p,n)7Be reaction. Note that the angular dependence prevents

this from being a truly mono-energetic neutron beam. However, given a small solid

angle subtended by a target (at which neutrons are projected), the spread in neutron

energies can be made quite small (see Figures 4.5 & 4.6).

It should also be noted that, below a certain proton energy (∼1.92 MeV), the

neutron energy is double valued. This is due to the fact that in the center of mass

frame, there is a forward traveling population and a backward traveling population.

The neutron energies used in this work are much higher, and thus, single valued

(see Figure 4.6 for example). This equation (4.3) also tells us the spread in neutron

energy due to the spread in incoming proton energy.
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Figure 4.5: Plot of neutron energies at various angles for given proton energies (from
Equation 4.3).
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Figure 4.6: Left) Example neutron spectra of the approximate energy used in this
work. Note, the angular dependence is minimal at 0◦ (used in this experiment), and
180◦. Right) Demonstration of sources of uncertainty in incident neutron energy.
The x-axis spread in energy is due to the solid angle of the detector and the angular
dependence of neutron production, resulting in a 0.4% uncertainty based on the
target detector and configuration used in this work. The vertical shift is due to
uncertainties in the proton energy at the point of the 7Li(p,n)7Be reaction (see Section
4.3).
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Figure 4.7: Example calibration spectrum obtained with the Ge detector. This
spectrum is the result of an 55Fe source on a sheet of aluminum foil on the detector
window. Three peaks are used for calibration: A) Al Kα (from the foil) = 1.48
keV, B) Mn Kα (from the 55Fe) = 5.89 keV, and C) Pile-up of two simultaneous Mn
Kα events = 11.78 keV. These three peaks provide a good measure of linearity and
resolution across the full scale of the MCA.
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4.2.2 Detector Setup

The detector being characterized in this experiment is an Ultra-LEGe (Ultra-Low

Energy germanium) commercially available from Canberra Industries. The three

scatter-tagging detectors are PMT instrumented scintillators; two are NaI and the

other is NE213. The liquid scintillator NE213 is a natural choice (high hydrogen

content yields higher energy deposition from incoming neutrons, and NE213 has

the capability of n/γ pulse-shape discrimination. While not as efficient at neutron

tagging, the NaI detectors were also included as they proved sufficiently effective

early on, given appropriate external event discrimination (see Section 4.2.3).

The Ultra-LEGe detector (or more precisely, it’s pre-amp) is directly read out by

a LYNX R© DSP/MCA module. This unit provides precise energy measurements as

well as various I/O options to control the data acquisition process (see Section 4.2.4).

The Ge detector is calibrated before every run using an 55Fe source in conjunction

with Al foil (see Figure 4.7). These calibrations have shown excellent linearity and

stability in this detector.

The scintillators were roughly calibrated at the start of the experiment using

241Am (60 keV γ) and 22Na (511 keV annihilation γ and 1275 keV γ) to give an idea

of what pulse heights to expect from incident neutrons. This was later verified in

situ (see Section 4.2.3). Precise calibration is not necessary however, as the energy

measured by these detectors does not need to be well defined to provide effective

neutron tagging.

Careful shielding, however, is required for successful tagging of neutron scatters.

In this work, Pb is used both on the beam-end (to block gammas produced in the pro-

ton collisions) and around the scatter detectors (to prevent false coincidence events

due to ambient and beam gammas (see Figure 4.8). In addition, wedges of polyethy-

56



Proton Beam

LiF coated 
Ta strip

¼” thick Pb
shielding

Neutron 
emission

ULTRALEGe
detector

Beam axis

θLAB

Side View Cross-Section Front View

ScintillatorPMT

3/16” thick Pb
outer cylinder

Polyethylene “wedge” collimator1/8” Pb

Figure 4.8: Diagram showing the end-beam setup. Inset) Diagram of scatter detector
shielding and collimation.

lene are used to narrow the acceptance window of neutrons, defining a smaller solid

angle in energy (θ) space while maintaining the full detector diameter solid angle

in the perpendicular direction. In this way, the peak produced in the Ge spectrum

is better defined without loss of statistics at the peak (see Figure 4.9 and Section

4.2.6).

4.2.3 Signal vs. Background Event Discrimination

For a successful measurement, careful discrimination must be implemented to

reject background events and retain the events from the desired scattering process.

Two handles are used in this process: the energy measured in the scatter detector,

and the timing between the Ge event and the subsequent scatter detector event.

Using Monte Carlo simulations as well as experimental data, an energy window

(using a lower- and upper-level discriminator, LLD and ULD) is chosen such that

57



Figure 4.9: Effect of scatter detector collimator, as simulated in GEANT, showing
the peak narrowing due to the polyethylene without loss of peak statistics.
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Figure 4.10: Left) Scatter detector data showing which pulse heights correspond
to the ROI in ionization energy measured in the Ge detector. This population de-
termines hardware settings for upper- and lower-level discriminators for accepting
scatter detector pulses. Right) Histograms showing the ROI in each detector under
these discriminator settings. Neutron scatter peak is clearly visible in all three. See
Section 4.2.3

a sufficient neutron event acceptance is ensured while excluding background events.

Experimental data is logged using a 4 channel oscilloscope triggered on accepted

events (SCA output). Upon triggering, pulse heights of each scatter detector are

measured as well as the MCA’s auxiliary ’analog out’ signal. This signal is pro-

portional to the Ge ionization energy. Plotting these shows a population of scatter

detector pulse heights corresponding to desired neutron scatter events (see Figure

4.10). To maintain effective discrimination at various neutron beam energies, the

LLD and ULD are scaled accordingly for each run.

Without precise timing information, the scatter events in the final Ge spectrum

would be entirely buried by background events (false coincidences). Therefore, this
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Figure 4.11: Display of 2 channel scope used to monitor and analyze timing infor-
mation. The red channel is the ‘analog’ Ge ionization energy channel (an auxiliary
output of the MCA) which has an amplitude proportional to the ionization energy.
The blue channel measures the two combined timing pulses: the ICR pulse from the
MCA (signaling the detection of a Ge ionization event) and the scatter detectors’
combined discriminator output, signaling a scatter detector ionization event. Inset)
Zoomed image of a scatter detector pulse followed by an ICR pulse. This gap is used
to define the timing settings in the timing and logic hardware (see Section 4.2.3).

aspect is carefully examined and tuned to maintain appropriate discrimination. Due

to the time for charge readout and electronics processing, the ICR signal (incoming

count rate, a signal which is triggered in the DSP’s fast channel to signal the ini-

tial detection of a possible Ge event) actually triggers after the subsequent scatter

detector discriminator trigger (even though the Ge event occurs first in real time).

For reliable discrimination, this delay needs to be well defined and tuned in the logic

and timing hardware. A PC oscilloscope is used as a DAQ to analyze the delays for
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proper neutron scatter events, recording the timing pulses as well as associated Ge

ionization energy (see Figure 4.11). The timing pulse delays and corresponding Ge

energy measurements are then plotted to find and confirm the appropriate timing for

scatter events (see Figure 4.12). For the neutron energies and distances used in this

experiment, time of flight variations are not large enough to require tuning timing

parameters on a run-by-run basis. However, due to other reasons, it turns out that

the timing parameter does need tuning corrections for lower energy depositions in

the Ge detector (see Section 4.2.5).

With these two windows (timing and energy) tuned, the scatter detectors reliably

tag neutron events with acceptable background event rates.

4.2.4 Logic and Timing Setup

Figure 4.12: Trigger timing data. Left) ∼30 keVnr events before fine tuning, showing
the ROI population is being excluded at higher (>∼550nS) trigger spacings. Middle)
Data from remainder of run after timing adjustments were implemented. ROI is
clearly well defined inside of this parameter space. C) ∼16keVnr events (after further
tuning) showing shifted ionization energy measured.
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Information from the scatter detectors and Ge detector must be carefully routed

throughout the hardware in order to appropriately tag and record proper neutron

scatter events. While the scatter detectors merely send PMT signal outputs to the

logic and timing circuit, the Ge detector’s DSP/MCA sends and receives multiple

signals to allow neutron tagging and subsequent ionization yield analysis. There are

two main paths of signal through the DSP/MCA: the slow channel (cleaner, filtered

signal: deals with pulse shaping and energy measurement) and the fast channel (nois-

ier unfiltered signal: deals with timing issues such as count rate, pile-up prevention,

etc). The signals utilized in this experiment are the following:

• Analog out - Slow channel signal, trapezoidal shaped pulse for energy measure-

ment (see Figure 4.11).

• ICR - Incoming count rate. Triggers when fast channel energy threshold is

exceeded, signaling the start of an event. This is a positive pulse, so it is fed

into a TTL→NIM converter before entering the timing circuit.

• SCA - Single Channel Analyzer. Triggers when an event is accepted within the

energy range of the MCA spectrum.

• Gate - Input on the MCA that alerts it to accept any events being processed

while active.

For an event to be accepted by the MCA, one of the scatter detectors must

produce a pulse of proper amplitude and timing (relative to the Ge event time, see

Section 4.2.3). To determine that these conditions are met, the scatter detector pulse

goes through the following processing steps, consisting of NIM electronics (see Figure

4.13 for block diagram). First, each scatter detector’s output is fed into its own fan-

out unit. This allows the signal to be monitored and processed in non-interfering

parallel paths. The NaI signals are each then fed into x10 amplifiers (the NE213
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pulses are naturally ∼10x larger, so they do not need amplification). The amplified

NaI signals and the raw NE213 signal are then all fed into two different units, a

4 channel oscilloscope with data logging capabilities, and a fan-in/out unit. The 4

channel scope is used to monitor the pulse heights and is triggered upon acceptance

of a pulse (at which time it also captures the associated Ge pulse height). The fan-

in/out combines the 3 detector signals such that they are are handled as one signal

down the line. This signal then passes to an LLD and, in parallel, a ULD. The LLD

is set high enough to exclude much of the ambient gamma pulses, but not so high

to exclude too many neutron hits. The ULD is used as a veto for pulses known

to be too high to be relevant. In order for the ULD to veto pulses (which would

necessarily have already triggered the LLD during the pulse’s initial rise, the ULD

logic pulse must be stretched in time, and the LLD logic pulse must be delayed to

occur entirely within the ULD veto pulse. As it turns out, this delay is also necessary

for scatter event timing, as the ICR pulse arrival is inherently delayed. The amount

the ULD is stretched determines the length of the veto and is tuned to block the

majority of after-pulsing which often occurs after large pulses. These smaller after-

pulses are results of the large pulse event decays and are therefore unwanted in the

‘accepted trigger’ logic. The un-vetoed, delayed LLD pulses are then stretched to

define a window in which they can register coincidence with the ICR pulse from the

Ge event. The ICR is also stretched to ensure pulses are long enough to be registered

by downstream electronics. The stretched ICR pulses AND delayed, stretched, un-

vetoed LLD pulses are then fed into a coincidence unit. When any overlap of the two

occurs, the unit supplies a short NIM pulse signaling coincidence. This pulse is not

long enough to efficiently trigger the gate logic in the MCA, so it is stretched, then

fed into the gate input. This signals the MCA to measure and plot the associated

Ge pulse. In parallel, the un-altered LLD and ICR pulses are fed into a fan-in,
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combining them into one signal. This signal, as well as the ’analog out’ Ge energy

signal, is sent into a 2 channel PC oscilloscope (triggered on accepted pulses by the

SCA). This is used to monitor the scatter timing parameter alongside the resulting

Ge energy. This measurement allows tuning of the pulse stretching and delays as

needed (see Section 4.2.3).

Figure 4.14: Inherent delay of Ge trigger after scatter detector trigger vs. Ge ion-
ization energy. Different colors represent different targeted nuclear recoil energies.
Rapid increase of delays with decreasing energy (below ∼3keV) is unexpected and
needs to be accounted for in the timing and logic settings.
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4.2.5 Timing Deviations

While the TOFs do not deviate enough (<10nS within a >300nS acceptance

window) to warrant timing compensation, there are other effects in the detector read

out process that do require timing compensation. These effects were unknown prior

to this analysis and initially caused a great deal of difficulty in the data acquisition

process.

Initially, the disparity in detector timing response between the germanium de-

tector and the scatter detectors was analyzed using a 22Na calibration source. The

simultaneous 180◦ separated gamma events produced from positron-electron anni-

hilation were perfect for characterizing this issue. Based on the delay measured in

these events, the signal delays for coincidence condition were then adjusted for the

expected neutrons’ time of flight. This worked for the higher energy depositions in

the Ge, but failed at lower energies, inexplicably requiring the timing parameters

to be loosened. Throughout this work, this effect was monitored and can be seen

plotted in Figure 4.14. Without this information, precise timing measurements at

low Ge energies would not be possible. The cause is likely in the DSP triggering

system, with lower energy pulses taking longer to reach the initial trigger threshold,

but the effect is larger than one would expect from such an issue.

The effect was studied further using a 22Na source. The simultaneous gamma

emissions allowed a ‘true’ start time to be established using a nearby NaI detector.

With this reference time, the timing response of the Ge detector was characterized.

Figure 4.15 shows the effect to be largely caused by the low energy shaping filter in

the DSP system. However, the study was extended to higher energies (see Figure

4.16) using the ‘normal’ fast discriminator shaping, showing that the timing disparity

is prevalent throughout, regardless of settings. This is a very important effect to
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Figure 4.15: Plots showing timing and energy correlation in Ge detector using a
22Na source. Left) Fast discriminator shaping mode set to ‘low energy’. Right) Fast
discriminator shaping mode set to ‘normal’. While trigger efficiency and detector
resolution is degraded, timing becomes more uniform.

Figure 4.16: Plot showing the timing disparity using higher energy gamma events,
including the 511 keV 22Na photo-peak.
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characterize, as any measurements relying on strict timing parameters with such a

setup are vulnerable and will suffer unintentional biasing if left uncorrected.

4.2.6 Scatter Parameter Choices and Future Considerations

To choose a certain nuclear recoil energy, the neutron energy and tagged scatter

angle need to be carefully tuned. Many factors go into this decision. Targeting recoils

of ∼10keV in germanium can be done with neutrons of anywhere from ∼180keV to

O(MeV ) scale. However, depending on the experimental setup and the physics

involved, not all energies are practical in making this measurement.

In choosing the neutron energy, the following factors should be considered:

1. A higher incoming neutron energy means that for a given scatter detector’s solid

angle, there will be a larger spread in the deposited energies, thus favoring a

lower incoming neutron energy.

2. A higher incoming neutron energy results in a higher outgoing neutron energy

for a given scatter angle. This leads to higher energy depositions in the scat-

ter detectors which also suffer from reduced sensitivity to nuclear recoils as

compared to electronic. This favors a higher incoming neutron energy.

3. The peak in neutron production rate occurs at high (by this experiment’s

standards) energies, ∼550keV (see Figure 4.17). This is a dominant factor

in energy choice since this measurement can easily become statistics limited

depending how long and at what intensity a beam run can be maintained.

In an ideal world, factor 1 would take precedence, leading to a smaller uncertainty

in the measurement. This could be accomplished by fixing the issue with factor 2.

Using more sensitive scatter detectors with good neutron:gamma discrimination (to

combat the high background rate of low energy gammas) would serve this purpose.
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Figure 4.17: Plot of neutron rate (solid line) and energy (dashed) vs. incident proton
energy[33]. Note the sharp turn-on at threshold, which is exploited in the energy
calibration process.

Improved sensitivity also allows a better neutron tagging rate by accepting lower

energy depositions in the scatter detectors. This would negate the use of the higher

energy neutrons required in factor 3. These factors are all being considered for future

runs using this setup.

In choosing the scatter detectors and placement, the following factors should be

considered:

1. Because the target detector area is a region that is quite active in gammas, the

scatter detector would benefit greatly from neutron:gamma event discrimina-

tion.

2. The scatter detector medium (or its constituent elements) should have a low

atomic mass, allowing higher energy transfer from neutron to detector. Al-
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Figure 4.18: Plot of GEANT simulated events scattered at various angles, demon-
strating the advantage of shallow angle scatters. Scatter angle in degrees, from left
to right: 22.5, 45, 67.5, 90, 112.5, 135, 157.5

ternatively (or complementarily), the medium could contain elements (such

as gadolinium or boron) which benefit from higher cross-sections to neutron

interaction.

3. Because the energy deposition scales as (1 − cos θ) (see Equation 4.4), the

effective solid angle (in deposited energy space) scales as sin θ. Therefore,

minimum effective solid angles occur at 0◦ and 180◦, peaking at 90◦. This

factor favors extreme angles (near 0◦ or 180◦) for energy resolution purposes,

and specifically shallow angles (near 0◦) for low energy recoils (see Figure 4.18).

4. The kinematics of the elastic scatter prefer forward scattering (see Figure 4.19).

Therefore, the data rate is improved at low scatter angles.

5. Perhaps the most obvious factor (other than angle) in the placement of the scat-

ter detectors is the distance at which they are placed from the target detector.
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Figure 4.19: Plot of tagged neutron scatters vs. scatter angle, showing shallow angle
preference (simulated in GEANT).
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Figure 4.20: Plot of simulated germanium energy deposition spectra from various
scatter detector distances, demonstrating the effect on rate and energy spread. Dis-
tances in cm, from smallest peak to largest: 34.3, 30.5, 26.7, 22.9, 19.1, 15.2

This effect is of course from the resulting solid angle the detector occupies

(scaling as 1/r2). Changing the solid angle occupied influences two important

(yet competing) conditions: 1) Reduced solid angle means reduced scatter rate

(see Figure 4.20), and 2) Reducing the solid angle reduces the energy spread

in the resulting data. A balance must be found between these conditions, and,

in the case of this work, that balance was found at a distance of 34cm.

4.2.6.1 Calculating Energy Deposition from Scatter Angle

For a given incident neutron, the energy it deposits in the medium off of which it

elastically scatters (Ultra-LEGe in this case) is represented in the angle at which it
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scatters. This relationship (equation 4.4) is derived kinematically and shown below.

In this equation, E0 is the incident neutron energy, m and M are the masses of

the neutron and Ge nucleus, respectively, and θ is the angle at which the neutron

scatters.

Edep = E0
2mM

(m+M)2
(1− cos θcm) (4.4)

It should be noted that equation 4.4 is in terms of θcm. This is the scatter angle in

the center of mass frame of the neutron-germanium collision. The relation between

the center of mass frame angle θcm and the lab angle is shown in equation 4.5.

tan θlab =
sin θcm

m/M + cos θcm
(4.5)

It is clear from equation 4.5 that when m << M, θlab ≈ θcm. This is the case

for a target mass of germanium. However, the two angles are not equal, and the

correction, although minor (see Table 4.1), has been implemented in this work. The

correction peaks at θ = 90◦ and increases with decreasing target nucleus mass. These

factors should be considered in future experiments.

Lab Frame Angle (degrees) 45 51 58 66 87 145
Center of Mass Frame Angle (degrees) 45.6 51.6 58.7 66.7 87.8 145.5

Table 4.1: Lab frame angles used in this work and their corresponding center of mass
frame angles.

4.3 Uncertainties

There are many sources of uncertainty in this experiment, those deemed signifi-

cant enough to deserve analysis are the following:
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• Incident neutron energy

• Angular placement and solid angle of detectors

• Resolution of germanium detector

These have been carefully considered in the analysis of this data, and described in

detail in the following sections. While there are many sources of uncertainty, it should

be noted that only two of these factors have the possible effect of shifting the data:

1) Proton beam uncertainty (bending magnet stability), and 2) Detector placement.

It will be shown, that these two factors have negligible errors in this work. The

remaining uncertainties instead result in a spread of the measured energy, leaving

the accuracy of the peak value intact.

4.3.1 Uncertainty in Neutron Energy

One of the claims in this work is that the beam stability and experiment design

allow it to probe very specific neutron energies for nuclear recoil calibrations. The

reasons for this being the following:

• Proton beam stability

• Small energy loss in LiF target

• Small spread in energy throughout germanium detector solid angle

• Precise threshold calculation

The proton beam stability results from two main factors, the bending magnet

stability, and the ability of the terminal potential to be automatically compensated

in real-time. The bending magnet stability can be seen in Figure 4.21. This figure

shows the bending field, left alone at ∼275.41mT for 20 minutes. In this period it

exhibited a maximum deviation of 10µT. At the energies used in this experiment, this

would equate to a 0.027% change in neutron energy. Over the period of longer runs
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Figure 4.21: Bending magnet field over time. 0.00363% (10 µT) maximum deviation
in 20 Minutes.

(∼8-10hrs), the effect is increased, but by no more than a factor of 3 (0.081% change

in neutron energy, worst case). The ability of the terminal potential stabilizer to lock

in on the appropriate voltage to maintain a centered beam downstream allows full

appreciation of the magnet stability, allowing negligible spread in the proton beam

energy.

When the protons encounter the LiF target, some interact immediately, producing

neutrons (corresponding to the incident proton beam energy). However, some will

interact with the LiF film, losing energy before undergoing the 7Li(p,n)7Be reaction.

In this case, the outgoing neutron energy corresponds to the reduced proton energy.

For this experiment, the LiF used is chosen to be thin (75nm) to reduce this effect

(see Figure 4.22). This thickness equates to a spread in the proton energy of ∼2.5keV

for the neutron threshold calibration and even less for the data runs (at higher proton

energies). This spread in proton energy at the energies used here equates to a 0.26%
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Figure 4.22: Stopping power of LiF for incident protons. This plot shows all proton
energies used in this work (see Section 4.3.1). Stopping power values provided by
NIST pstar database [35].

spread in neutron energy. Again, this is a negligible amount for this measurement.

Since the neutron energies emitted are angle dependent, the solid angle of the

germanium detector equates to a spread in neutron energy (see Figure 4.6). In this

setup, the germanium detector occupies ∼ 6◦ of the neutron ‘cone’. This results in

a ∼2.3keV spread (0.4%) in neutron energy. While it is the most significant of these

factors, it is still negligible in this experiment.

The neutron production threshold calibration precision is essential for this exper-

iment. However, due to the stability of the proton beam, sufficient precision is easily

achievable. As seen in Figure 4.2, which was not a particularly rigorous calibration

(almost a worst-case in fact), the threshold was found to within 21µT. This equates
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to 0.064% uncertainty in the resulting neutron energy.

4.3.2 Scatter Angle Uncertainties

There are three main sources of uncertainty in defining the neutrons’ scatter

angles for a given run.

1. Physical placement of the detectors relative to the beam

2. Scatter detector solid angle

3. Germanium detector solid angle

An angle is chosen for each run, which then must be physically replicated in the

lab setup. This is performed using two metal meter-sticks bolted together at the end

to allow free choice of angle which can then be locked in place. This fixture is then

suspended with one of the arms on a string which is itself suspended above (and

parallel to) the beam line. The other arm is then suspended from the ceiling directly

above, ensuring it is not tugged in any horizontal direction. This fixture allows for

a sufficiently precise alignment of the scatter detectors to the germanium detector

and beam axis. From visual estimation, ≤1cm of error is expected in this alignment,

resulting in an error of ∼ 1.6◦ in scatter angle. At 90◦ (worst case), this equates to

a 1.4% shift in energy.

The scatter detectors occupy ∼ 5cm perpendicular to θ. This equates to an 8.4◦

spread in θ. This has the largest effect in the measurement at θ = 90◦, due to the

Edep = α(1− cos θ) relationship (see Section 4.2.6). Therefore, even though the solid

angle stays the same, the effective solid angle (in energy deposition space) varies for

each choice of angle. In this work, the worst spread occurs for the two data points

taken at 87◦. In those instances, the full detector diameter equates to a 15.5% spread

in energy values. At the least affected angle used, 145◦, the spread is 5.1%. This

effect is mitigated by the use of polyethylene collimating wedges (see Figure 4.8).
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These serve the purpose of narrowing the resulting germanium spectra peaks by

reducing neutron hits at the extreme angles of the detector face, cutting the angular

occupation in half while maintaining statistics at the central region. While it does

not completely shield those areas, the effect is still present, as seen in Figure 4.9.

The fact that the germanium occupies a significant solid angle of the beam causes

additional spreading in the energy spectra. In the setup used here, the detector

occupies ∼ 6.1◦. At 87◦ (worst case), this equates to a 5.3% spread in energy values

(3.1% at 145◦).

4.3.3 Germanium Detector Resolution

The resolution of the germanium detector is approximately linear in this range,

with the full-width half-max approximately matching the following equation (deter-

mined from calibration):

FWHM = 0.113eV + 0.005E(keV ) (4.6)

For the worst case in this work, this results in a FWHM of 154eV (σ ≈ 67eV ) for

the highest energy data point. This peak is at 8.1 keV, meaning the sigma is 0.83%

of the peak energy. At the lowest energy data point, the detector’s FWHM is 133eV

(σ ≈ 58eV ). This peak is at 0.7 keV, so the sigma is 8.3% of the peak energy.

4.3.4 Uncertainties Condensed

• Uncertainty in neutron energy

– Proton beam stability*, <0.081%

– Energy loss in LiF*, ≤0.26%

– Germanium detector solid angle, 0.4%

– Threshold calibration*, ≤0.064%
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Figure 4.23: Full spectrum of measured event energies. This is the spectrum obtained
by recording all events (no scatter detector requirement. The neutron shelf can easily
be seen, marked by the endpoint at which 180◦ scatters have occurred. This is the
expected shape of the background due to random coincidence events.

• Detector positioning and solid angles

– Physical placement*, ≤1.4%

– Scatter detector solid angle, worst=15.5%, best=5.1%

– Germanium detector solid angle, worst=5.3%, best=3.1%

• Germanium detector resolution, worst=8.3%, best=0.83%

*Indicates factors that are not accounted for in simulations.

4.4 Analysis and Results

The data obtained in this experiment comes in the form of a spectral peak on

top of a background, a common situation in this field. Background events can be

registered due to random coincidence with scatter detector events. The background

shape is dominantly composed of the full spread of neutron energy depositions in the

germanium detector. This spectrum is in the form of a shelf with an upper limit,
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the so-called ‘kinematic edge’ at which 180◦ scatters deposit the maximum energy

(see Figure 4.23). Events above this energy (further than detector resolution would

explain) can be explained by multiple scatters or photons, but are rare in comparison.

In order to define a proper fit for these spectra, an appropriate background shape

should be added to an appropriate peak shape. The background shape described

above is quite complex and difficult to form a fit around. Unfortunately, simulation

data is unable to be used as it relies on the data itself (Lindhard factor). This fit

will, however, be attempted in future analyses for publication. In addition to fitting

the background, an appropriate fit for the peak must be constructed. A rigorous fit

for this feature is complicated by the following:

• The geometry of the scatter detector

• The effect of the polyethylene collimator

• The asymmetrical ‘lossy’ Gaussian due to incomplete energy collection

• Detector resolution effects

• Detector efficiencies at low energy data points

The complexity of this fit precluded its use in this work, but will be attempted in

analyses for future publication. Instead, a simpler model was chosen, and it is argued

here that even with conservative estimates of the error introduced, the measurement

is robust and scientifically relevant. It should be noted that the two data points of

lowest energies are known to be skewed by detector threshold effects. These will be

modeled and accounted for in future publication, and are expected to lower the peak

energies of these data points.

It has been found that a double Gaussian was able to fit the date quite effectively,

so this approach was used for the data presented here. Mean and sigma values for the

peak measurements were quite robust to background subtraction as the dominant
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background shape is fairly flat. For this reason, the data extracted is not expected

to deviate significantly with a more rigorous, scientifically motivated fit. The values

obtained from these fits can be found in Table 4.2. The raw data along with the fits,

parameters, and errors can be found at the end of this section. The data is shown 

compared to the Lindhard model (best fit k-value) in Figures 4.24 and 4.25. The

Lindhard equation (ionization efficiency as function of recoil energy) for a given

atomic number Z, mass number A, and recoil energy Er is defined as the following:

ε =
k ∗ g(ε)

1 + k ∗ g(ε)
(4.7)

where

k = 0.133Z2/3A−1/2

g(ε) = 3ε0.15 + 0.7ε0.6 + ε

ε = 11.5ErZ
−7/3

Using this model, a best-fit k-value of k=0.146 was found. The raw data from

each run is shown along with its fit in Figures 4.26 through 4.35.
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Figure 4.24: Ionization measurements at 10 different recoil energies, using the sigma
values of the Gaussian fits for the errors, a conservative approach.

En (keV) θlab(
◦) Edep (keV) Emeas (keV) σE (keV) Ion. %

600 40 3.99 0.74 0.186 0.186
600 45 4.98 0.90 0.181 0.181
600 51 6.30 1.20 0.190 0.190
600 58 7.98 1.82 0.365 0.228
600 66 10.05 2.31 0.330 0.230
476 87 12.68 2.81 0.344 0.222
601 87 16.01 3.72 0.452 0.232
398 145 20.14 5.05 0.308 0.251
498 145 25.17 6.54 0.513 0.260
601 145 30.37 8.29 0.740 0.273

Table 4.2: Data from all runs used in this analysis. Variables (left to right): incident
neutron energy, scatter angle (lab-frame), energy deposited by nuclear recoil, energy
measured, sigma value of Gaussian peak-fit, and % ionization energy measured.
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Figure 4.25: Ionization measurements at 10 different recoil energies, using the sta-
tistical uncertainty in the mean for the errors. This method does not account for
systematic effects.
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Figure 4.26: Raw data and fit for 4.0 keV nuclear recoil depositions.

Figure 4.27: Raw data and fit for 5.0 keV nuclear recoil depositions.
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Figure 4.28: Raw data and fit for 6.3 keV nuclear recoil depositions.

Figure 4.29: Raw data and fit for 8.0 keV nuclear recoil depositions.
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Figure 4.30: Raw data and fit for 10.1 keV nuclear recoil depositions.

Figure 4.31: Raw data and fit for 12.7 keV nuclear recoil depositions.
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Figure 4.32: Raw data and fit for 16.0 keV nuclear recoil depositions.

Figure 4.33: Raw data and fit for 20.1 keV nuclear recoil depositions.
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Figure 4.34: Raw data and fit for 25.3 keV nuclear recoil depositions.

Figure 4.35: Raw data and fit for 30.4 keV nuclear recoil depositions.
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5. SUMMARY

5.1 Detector Fabrication

A robust, repeatable fabrication procedure has been established, demonstrated,

and improved at the TAMU fabrication facility. Increased throughput as well as

improvements made in the process itself are expected to contribute substantially to

the success of the next generation SuperCDMS SNOLAB experiment. In particu-

lar, increased fabrication efficiency, improved TES Tc consistency and uniformity,

increased bias voltage ability due to substrate trenching, and improved signal collec-

tion from overhang studies will improve detector success rates, reducing fabrication

and testing costs.

5.2 Low Energy Nuclear Recoil Measurements

This work has provided a confident measurement of ionization yields of nuclear

recoils in the relevant energy range of today’s direct detection experiments. A plat-

form and technique has been established allowing future measurements to be made

at lower energies, as these will be needed for the next generation of dark matter

search experiments. Using the Lindhard equation defined by Lindhard et. al [29], a

best-fit k-value of 0.146 was found (see Figures 4.24 and 4.25).

Implications for future work have been mentioned throughout this work , includ-

ing:

• Measurements using voltage assisted calorimetric ionization detectors (see Sec-

tion 2.4.2) to probe lower energies using the method outlined here

• Prioritization of scatter parameter choices (not only lower energy measure-

ments, but improved resolution). See section 4.2.6.
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• Implementation of neutron:gamma discrimination in scatter detectors

• Rigorous fitting model for data analysis
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APPENDIX A

DUOPLASMATRON ION SOURCE

A.1 Overview

The ion source used in this work is a helium-fed duoplasmatron, named as such

because it is a plasmatron source with two plasma regions [36]. It is used to produce a

22keV H− beam to inject into the a tandem accelerator, which converts the beam into

protons during acceleration. A tungsten filament is used to emit electrons allowing an

arc to strike and be maintained in a rarefied (∼100mTorr) H2 atmosphere (see Figure

A.1). In the plasma subsequently formed, some of the hydrogen is ionized into H− and

accelerated through the anode aperture (0.040” in this case). Within the Zwischen

(the chamber/electrode in which the filament is located), the charged particles are

initially focused with an electromagnet. Once through the anode aperture, the beam

encounters an electrostatic focusing assembly. This assembly has two permanent

magnets mounted at the entrance (in same directional polarity) to sweep away the

lighter electrons that would otherwise pollute the beam. This takes place within a 22

kV pre-acceleration column, which accelerates the beam for injection into the main

accelerator.

A.2 Anode

The anode aperture has been carefully chosen to be large enough to allow a

high beam current, but not so high that the hydrogen gas-load overpowers down-

stream pumps. In this case the aperture, initially 0.025” from the manufacturer,

was machined out to 0.040” to meet these requirements. It should be noted that

high electromagnet currents, while improving beam current, cause the initial beam
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Figure A.2: Example filament used in this ion source. It is 0.027” diameter tungsten
wire, cut to 2.75”, then manually bent using needle-nose pliers.

Figure A.3: Left) Comparison of damaged anode next to its replacement. Note the
damage near the aperture from extended abuse from the beam staying in a single
spot. Right) The rear (beam exiting) side of the damaged anode, showing that the
damage from the front, not only punched through, but caused an irregular shape
in the aperture. This extra hole resulted in extra errant beam, which subsequently
loaded down the lens elements (their power supplies), preventing successful beam
operation.
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Figure A.4: Ion source lens elements and accelerator column simulation jig. Left)
Yellow circles indicate focus electrode “fingers”, whereas red circles indicate the
equivalent component locations on the extractor electrode (missing “finger” on left
has since been replaced. Center) Jig created to simulate the inner ring contact points
of the accelerator column, allowing lens element “fingers” to be shaped appropriately
before blind assembly. Right) Jig mounted on ion source to test the configuration of
contact “fingers”.

to drill into the anode quite violently (see Figure A.3). To extract the appropriate H

ions (H− versus H+), the Zwischen aperture must be offset from the anode aperture.

This offset can be positioned in different directions around the anode to spread out

this damage and prolong the anode lifetime.

A.3 Lens Elements

The lens elements within the ion source are bolted to the anode flange, but receive

their voltage/power from external electrical connections on the resistor bridge (see

Figure A.1). Upon assembly, the lens elements make contact with those exterior

nodes via flexible metal fingers (see Figure A.4). These fingers must be properly

bent such that they provide firm enough contact but can’t protrude so much that

they catch on the other accelerator column contacts upon insertion. Unfortunately,
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these fingers are out of view during assembly, so they must be blindly shaped before

re-assembly. To ensure proper shape was formed, a custom jig was created to simulate

the interior of the accelerator column. Using this jig, the fingers can be bent and

tested while allowing visual inspection and allowing the user to physically feel and

adjust the contact pressure. This was required during a rebuild of the ion-source

during this work.
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APPENDIX B

PELLETRON TANDEM ACCELERATOR

The accelerator used in this work is a Pelletron 2UDH tandem accelerator built

by National Electrostatics Corporation (NEC), and initially commisioned in 1973.

It was designed to operate at a nominal 2 MV, making it suitable for accelerating

protons up to 4 MeV. This is accomplished by injecting a pre-accelerated beam of

H− into the accelerator tank, where it accelerates toward the ≤2MV terminal po-

tential. At this point (in the center of the tank), the beam encounters a very thin

(∼ 10µg/cm2) carbon foil. The carbon strips the electrons from the H− particles,

leaving a beam of protons, changing the charge polarity and causing them to accel-

erate back to ground potential as they exit the other end.

Figure B.1: Diagram of pelletron charging system [37]. Chain and pulleys rotate
clockwise (see reference for online animation).
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The terminal potential is maintained by the Pelletron charging system (see Fig-

ure B.1). This system uses a chain consisting of insulating links connecting metal

cylinders (aka pellets). Charge is driven on and off of these links by inductors lo-

cated at the ground and high voltage terminal pulleys. In this way, it acts as an

electron conveyor belt, robbing the terminal potential of electrons, creating a node

of high voltage. Nominally this system should be able to provide a 3:1 (µA charging

current:kV charging voltage) ratio. Throughout this work, a ratio of 1.5-2:1 was typ-

ically achieved, sufficient for the voltages used (≤ 1.9MV ). The chain stretches with

use, requiring links to be removed routinely (approximately annually depending on

use). The main symptom indicating this maintenance is required is the inability of

the charging system to maintain potential for long periods of time (hours of continual

use). Two links were removed in the process of this experiment.

The ability of the charging system to maintain high voltage is supported by the

pressurized SF6 atmosphere in which it resides. The system nominally operates with

80psig of this gas, however, for the voltages used in this experiment, a range from

60-77psig was used with success. This value is heavily driven by the cost of the gas.

To perform maintainence inside the SF6 tank (the accelerator tank), the gas

first must be evacuated and transferred to the dedicated storage tank (maintained

otherwise at 1atm SF6). This is done by a custom gas transfer system plumbed to

the two. First, the accelerator tank pressure is routed directly to the storage tank to

equalize the two. Second, a compressor is used in between to assist in pumping to

the storage tank. This is done until the accelerator tank reaches 1atm. At this point

a vacuum pump is used to extract the SF6 from the accelerator tank, sending the

gas into the compressor which then pumps it into the storage tank. In this way, the

expensive gas can be salvaged for re-use. The accelerator tank can then be vented to

atmosphere and opened. To refill the accelerator tank after closing, it is first connect
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to a vacuum pump which pumps its contents out to atmosphere. When sufficient

vacuum is achieved, the tanks are then equalized, then the compressor is used to

transfer the SF6 back until the storage tank is back down to 1atm. The storage tank

is stored at 1atm in case there are leaks (the SF6 will not escape and atmosphere gas

will not enter). Often after an SF6 transfer, additional SF6 is needed to make up for

losses in the process. This gas is routed into the storage tank while the compressor

pumps the storage contents into the accelerator tank.

Another issue that can arise after gas transfer is that moisture can become in-

corporated in the SF6. For this reason, there is a separate dryer circuit used to dry

the gas. It is composed of a filter, a blower, and a desiccant bed. After a number

of drying cycles, this desiccant must be revived. This is accomplished by running

compressed air through the bed while heating the desiccant with the built in heater.

This air is then vented to atmosphere carrying a good deal of moisture with it. This

process was performed once during this experiment.

While the SF6 is used to prevent arcing and charge loss, some amount of charge

loss (when carefully controlled) is actually desirable. This comes in the form of corona

discharge current from the high voltage terminal to the ’corona point’ mounted on

the outer tank. This needle is a regular sewing needle purchased locally used as a

lightning within the tank. It can be driven closer to or further from the terminal to

control the current extracted (typically ∼ 30µA).

With the main control of terminal potential being the charging voltage, the crit-

ical, real-time, fine-tuning corrections are made be another dedicated system, called

the TPS (terminal potential stabilizer). The system uses two current-collecting slits

at the end of the accelerated, bent beam-line to monitor whether the beam is being

bent to much or two little by the bending magnet. Since the magnetic field has been

set according to our desired beam energy, these errors are not seen as the beam being

103



’over- or under-bent’, but rather too energetic or not energetic enough. While the

most likely fluctuation would be an un-regulated terminal potential, as it needs to

be held constant to ∼0.1% , there are many focusing and steering elements which

could have mild fluctuations. Regardless, these are compensated for by the TPS in

real-time by making constant changes to the charging/discharging currents.
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