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ABSTRACT

In this research, new methods to estimate vehicle miles traveled (VMT) for lower

functional classes of roadways are introduced. The methods are based on the in-

herent correlation between VMT and roadway densities in each roadway class. This

research found that the relationship between VMTs of different functional classes

of roadways has to do with roadway typological structures according to functional

classifications. To begin with, the analytical relationship between local VMT and

collector road VMT was derived by assuming a grid network. The purpose was to

find key relevant terms (basically roadway densities) in the relationship, which were

used to define the format of regression equations. Next, the author proposed two

types of regression models, one using density ratios as explanatory variables and the

other using logarithmic value of roadway densities. Several simulation networks were

set up to verify those proposed models using community road patterns categorized

according to three different measures. The author found that the proposed models

worked well for medium and high connectivity networks, but they were inadequate

for simulating low connectivity networks. Moreover, the equation using logarithmic

terms provided a better result in every numerical test. Next, the author verified

the proposed regression equations in real situations. The results showed that the

proposed regression models work very well in estimating urban local VMT of Min-

neapolis (grid networks). However, the relative error was much bigger in estimating

local VMT of Bryan/College Station (non-grid networks). Finally, the author in-

troduced a practical application procedure and also discussed the possible sources

of errors in this study. This research introduces a potentially more efficient method

(logarithm) for estimating VMT for lower functional classes of roadways.

ii



DEDICATION

I dedicate this thesis to my parents, Weiming Cao and Jingying Liu, for their

consistent love in my life.

iii



ACKNOWLEDGEMENTS

I would first like to thank my advisor, Dr. Bruce Wang for his guidance and

support of my research.

I would also like to thank Dr. Burris and Dr. Eisele for serving on my committee

and for their comments.

I am especially grateful for Jiayu’s help throughout this research project. I also

would like to thank my graduate fellows Wen Wang and Lisa Zhong for their valuable

advice during my master’s study, which benefited me greatly.

iv



NOMENCLATURE

d spacing between local roads

L spacing between collector roads

D spacing between minor arterial roads

S spacing between principal arterial roads

VMTL local road VMT

VMTC collector road VMT

VMTMA minor arterial road VMT

tlocal average local distance traveled

tarterial average principal arterial road distance traveled

ρ1 local road density

ρ2 collector road density

ρ3 minor arterial road density

ρ4 principal arterial road density
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1. INTRODUCTION

Vehicle miles traveled (VMT) refers to the total miles traveled by vehicles on

roadway. Every year, state departments of transportation (DOT) nationwide report

the VMT on all functional classes of roadways, both in urban and rural areas to the

United States Department of Transportation. VMT is often used for transportation

design, planning, decision making, federal fund allocation, air quality control, and

traffic accident analysis. The Internal Revenue Service (IRS) collects the federal

fuel excise tax (taxes paid when purchases are made on fuel or gasoline) to deposit

in the Highway Trust Fund (HTF) [1]. At least 91% of the federal fuel tax goes

back to states. Federal legislation requires generally that funds paid into the HTF

be returned to the states for various highway program areas in accordance with

legislatively established formulas [2]. These formulas use fuel and other excise taxes

attributed to each state as distribution factors, which are forecast mainly by VMT

as well as fuel efficiency of vehicles. Therefore, it is important for states to obtain

accurate VMT data on functional classes of roadways, and there are various ways to

estimate the VMT numbers.

Table 1.1 shows the specific classifications of federal-aid (upper functional classes)

and non-Federal-aid systems (lower functional classes).

According to Highway Performance Monitoring System (HPMS) Field Manual

[3], estimates of Daily Vehicle Miles of Travel (DVMT) are developed by direct

computation for all federal-aid Highway functional systems. This is generated by the

HPMS software which multiplies the section annual average daily traffic (AADT)

by the section length and sums the result to the HPMS aggregation level desired

(functional system, total rural, etc.). Such AADT data are developed based on the

1



Table 1.1: Highway Functional System Classifications. (Source: HPMS Field Man-
ual, 2014 [3])

RURAL
Federal-Aid Non-Federal-Aid

Interstate and Non-Interstate Minor Collector
Other Freeways, Expressways and Principal Arterials Local

Minor Arterial
Major Collector

URBAN
Federal-Aid Non-Federal-Aid

Interstate and Non-Interstate Local
Other Freeways, Expressways and Principal Arterials

Minor Arterial
Major Collector
Minor Arterial

traffic counts collected by a State Traffic Data Program for HPMS.

Automatic traffic recorders (ATRs) provide continuous monitoring of existing

traffic conditions around the state. Travel on freeways, expressways and other mul-

tilane facilities can be monitored by route. Travel can also be monitored by area

through statewide or MPO freeway management or travel surveillance programs,

such as Intelligent Transportation System (ITS) deployments. Other highway func-

tional systems, both State and off-State, can be monitored by geographic area, such

as by county or highway district. Traffic information in a comprehensive count pro-

gram should be compiled from all available sources – MPO, ITS, state, city, and

county.

For estimating VMT on non-Federal-aid highways (local or minor collector roads),

various methods are used by different states. Some examples of good state practices

are providing:

• Current traffic growth rate on collectors or higher systems;

2



• Limited samples of short term traffic counts;

• Combination of sample and estimated counts; and

• Area-wide average count daily traffic based on documented methods.

The monthly Traffic Volume Trends report is published by the Federal Highway

Administration (FHWA) based on a sample of traffic data from state ATRs. Annual

VMT growth rates by a functional system derived from these reports are used to

validate HPMS traffic data. The goal is that all traffic information published by the

FHWA and the States is valid and consistent.

However, it is very clear that there are still many possible sources of errors in the

VMT estimation process for lower functional systems developed by transportation

agencies, which result in biased VMT number production. About half of the states

indicated that they had no idea how to determine the accuracy of their estimates [4].

So, developing a more accurate and efficient method in estimating VMT for lower

functional classes of roadways is quite necessary and meaningful, which is the major

motivation of this study.

In order to achieve this goal, the author first introduces the function of different

roadway classes. Roadways are classified according to their primary functions. These

classes include principal arterial roads (interstate highways, other freeways, express-

ways, and others), minor arterial roads, collector roads (both major and minor), and

local roads [5]. Interstate highways are the highest class roads and connect major

cities of the 48 U.S. contiguous states. Arterial roads, either urban or rural, include

expressways without full control of access, U.S. numbered routes, and principal state

routes. Collector roads serve as links between arterial roads and local roads. Local

roads provide access to properties and have characteristics such as low capacity and

low speed. Arterial roads focus on mobility while local roads focus mostly on land

3



access. Collector roads strike a balance between the two. An access-mobility diagram

is shown in Figure 1.1.

Figure 1.1: Diagram of land access mobility for each functional system (Source:
FHWA Functional Classification Guidance, 2012 [6])

Interstates, freeways, and major arterial roads are completely monitored by HPMS.

HPMS is a national level highway information system that includes data on the ex-

tent, condition, performance, use and operating characteristics of the nation’s high-

ways. Major collector roads are also covered by various traffic monitoring programs

developed by state DOTs. However, traffic data collected on lower classes of road-

ways are limited, especially on local roads.

State DOTs and local transportation agencies traditionally use traffic volume

count programs to get the VMT data they need simply by multiplying traffic count

by road segment mileage. However, the focus of these traffic count programs is on

4



higher classes of roads, primarily on arterial roads. Traffic volumes on local roads are

much less frequently counted due to the difficulties in collecting such data. HPMS

does not require any specific method for the sampling of local road traffic volumes.

The method to be used for estimating local road VMT is selected by respective

state DOTs. For local roads, a variety of methods are employed. The most commonly

used methods include a multi-year cycle traffic sample, the application of traffic

growth rates as determined by automatic traffic recorders, or the application of

average traffic growth at a statewide level or on minor arterial and major collector

systems compared to the previous year’s estimate. However, currently no consistent

method has been identified and adopted by all states.

Moreover, most state DOTs are slow to develop comprehensive programs for

traffic data collection on local roads, because their role is not as important as the

major arterial roads–the interstates and freeways that make up the state highway

system. The main reason is that the traffic is very light (10% to 30% of the total

VMT is on local roads) and sporadic on local roads, and the total length of local

roads can be so expansive that it makes it very expensive and difficult to collect

traffic data on them.

So, even though local roads constitute a large portion (60% to 70%) [7] of the

total mileage of a state’s road network, much less effort has been made to estimate

VMT on local roads than for higher classes of roads. Thus, the primary reason for

the difficulty of estimating VMT on local roads is the lack of sufficient available

traffic data on them. Recently, however, more attention has been given to local

road VMT. Local road VMT has been recognized as an important component of air

quality emissions from vehicles, and it is also very important for traffic accident rate

analysis [8].

Local road traffic count is difficult to obtain practically, which raises the question:

5



Is it really necessary? Can one estimate the local road VMT through an analysis of

collector road VMT and roadway network structure? In this thesis, the author tries

to establish relationships between VMTs on different functional classes of roadways

as a function of easily measurable network characteristics.
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2. LITERATURE REVIEW

There are three different categories of VMT estimation methods: traffic-count

based methods, non-traffic-count based methods, and local road specific methods.

2.1 Traffic-count Based VMT Estimation Methods

The HPMS method provides a basic traffic-count based method and is the most

accepted method for estimating VMT in United States. However, since HPMS is

designed to concentrate on federal-aid roads only, this method is mainly used for

arterial and major collector roads for VMT estimation. The basic principle behind

this kind of method is that it first obtains an adjusted 24-hr traffic count on a

sample section and multiplies it by the centerline mileage of the sample section to

estimate the VMT for this section. Then, the value is annualized by multiplying by

the number of days in a year. Assuming that the actual mileage of roads is known,

the accuracy of traffic-count based VMT estimates is determined by the accuracy of

traffic data used for estimates [9]. So, if the sampling procedure is more efficient, the

estimates derived will be more accurate because most of the traffic data are obtained

from sampled roads in a network.

Fricker and Kumapley [9] reviewed a VMT estimation method for arterial roads

and major collector roads, which was proposed by INDOT (Indiana Department of

Transportation). Like the HPMS estimation method, the INDOT procedure is also

count-based and follows the HPMS Field Manual [3]. The difference is that INDOT

uses its own inventory database (620,000 records for Indiana), so that the INDOT

estimates are more accurate than HPMS results (4,000 records for Indiana). This

kind of method is preferred since it is based on actual traffic data and statistical

principles. However, it still has two major shortcomings: the unavailability of local
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road traffic data and its original designation for high functional classes of roads.

Also, the HPMS can serve as a reliable data source for other VMT estimating

methods. Rentziou et al. [10] developed simultaneous equation models for predicting

VMT on different road functional classes and examined how different technological

solutions and changes in fuel prices can affect passenger VMT. Plus, a random co-

efficient panel data model was developed by the author to estimate the influence of

various factors (such as demographics, socioeconomic variables, fuel tax, and capac-

ity) on the total amount of passenger VMT. The author used the natural logarithmic

pattern of VMT (log-VMT) as the dependent variable and other factors as indepen-

dent variables. The influence of each significant factor on VMT is assessed by the

elasticity of each factor in the proposed models. Larger elasticity indicates that a

certain factor is more influential on VMT. Using this method, the future VMT can

be forecasted if predicted changes of influencing factors are given. This method can

also assist policy markers in reducing future energy consumption and greenhouse gas

emissions. Although, the author did not consider VMT on local roads in rural or

urban areas in this study, the elasticities of various factors for VMT on local roads

can still be obtained in the same way once the data is available. Such data can help

us assess which factors are more significant for local VMT estimation.

Additionally, HPMS data also allows researchers to integrate with other data

sources. The report ”TxLED VMT Estimation Project” developed by Cambridge

Systematics Inc. [11] evaluated potential effectiveness of the Texas Low Emission

Diesel Fuel (TxLED) program based on truck VMT estimation. The truck VMT

consists of three parts: pass-through truck VMT, I-X/X-I truck VMT, and internal

truck VMT. I-X/X-I VMT denotes internal-to-external trips plus external-to-internal

trips and refers to truck trips with one trip ending inside a major metropolitan area

and one trip ending outside a major metropolitan area. The estimation method uses

8



four data sources, including the TxDOT Statewide Analysis Model (SAM), TxDOT

Highway Performance Monitoring System (HPMS) vehicle classification data, Reebie

TRANSEARCH freight flow data for the State of Texas, and metropolitan-level

travel models of Houston and Dallas. Based on the characteristics of different data

sources, the final estimate of VMT was developed by proportioning the trip type

VMT estimates from the SAM to the VMT totals developed through HPMS data.

Thus, the truck VMT estimates were obtained by multiplying the distance of a given

original-destination (OD) pair by the number of trucks.

Frawley [12] proposed a random selection process to collect traffic counts on local

streets in order to estimate VMT for TxDOT. Compared with the historical count

process used by TxDOT, the randomly selected sites were located on all types of local

streets, including cul-de-sacs, and better represent the variety of local streets on the

roadway networks. The author proved this procedure by conducting a statistical

analysis of traffic counts performed in various urban areas. The results showed that

the entire local street network was better represented through randomly selected

count locations than the historical station locations TxDOT had traditionally used.

Furthermore, in order to obtain a truly random sample of data each time, the author

suggested that new traffic count stations should be randomly selected each time the

counts were performed. This will ensure that streets not previously counted have an

opportunity to be included in the randomly selected sites.

Although the traffic-count based methods are mainly used to estimate VMT for

higher functional classes of roadways, about 18 states [4] still use a limited sample of

short-term traffic counts or a combination of sample counts and estimated average

daily traffic to estimate local and minor collector road VMT.
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2.2 Non-traffic-count Based Methods

Non-traffic-count-based VMT estimation methods use non-traffic data, such as

socioeconomic data (fuel sales, trip-making behavior, household size, household in-

come, population, number of licensed drivers, and employment) to estimate VMT.

Normally, traffic related data is not required. Moreover, most of these data are diffi-

cult and expensive to collect regularly, so rough updates of previously collected data

are often used for estimating VMT [9], which make the estimation results obtained

from this method questionable.

Stone et al. [13] tried to construct and test the relationships between land use, de-

mographics, and VMT. Once such relationships are established, the future VMT can

be estimated according to land use change. The data sources used in the report in-

clude residential VMT data developed from the Nationwide Personal Transportation

Survey (NPTS), commercial VMT data derived from the Freight Analysis Frame-

work (FAF), and demographic data obtained from 1990 and 2000 censuses. This

method obtains VMT rates for each cluster of census tract data based on demo-

graphical characteristics. It can obtain high-resolution graphics showing the VMT

distribution throughout the study region. It can also estimate current and future

VMT rates associated with land use conditions and demographics.

Fricker and Kumapley [9] developed a method using a short-term cross-classification

VMT forecasting model for Indiana DOT. This short-term VMT model developed

for INDOT predicts the total vehicle miles driven by all licensed drivers for all vehi-

cle types, using demographic predictions based on the population of licensed drivers,

age, and gender. The main shortcoming for this method is inaccurate information

reported by respondents.

Oak Ridge National Laboratory (ORNL) also proposed a method [14] called
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BESTMILE to estimate VMT driven by an NHTS (National Household Travel Sur-

vey) household vehicle based on using single odometer readings to compute estimated

annual mileage. The researchers from ORNL first performed an initial analysis of

2009 NHTS vehicle data. Three regressions (one for new vehicles, one for used, and

one for all vehicles) were run separately to determine the relationship between vehi-

cle age and annual miles driven. Once the regression equations were obtained, the

VMT for each year was determined.

2.3 Local Road Specific VMT Estimation Methods

Local road specific VMT estimation has mainly relied on mathematical models,

as well as some other tools including GIS tools and concepts from electronic engineer-

ing. Most local road specific VMT estimation methods focus on specific study areas

and under certain assumptions, so these methods are hard to transfer to different

situations. Moreover, the VMT estimates obtained from these methods need further

validation when traffic data on local roads become available.

Zhong and Hanson [15] tried to use travel demand models (TDM) to estimate

traffic volumes on low-class roads. This method does not rely on a traditional sensor-

based traffic monitoring system. Two areas in the Province of New Brunswick were

selected in this study, York County and the Beresford area. Major steps included

building networks and traffic analysis zones (TAZs) using the TransCAD built-in

four-step model to generate traffic data. After calibration and validation, this method

proved to be useful and cost-effective to estimate traffic volumes on low-class roads.

Moreover, this method can address the volume variations within individual groups.

However, there are still some issues with this method. One issue is that the TDM

approach does not assign traffic to some roads and tends to overestimate traffic on the

rest. To deal with this issue, Zhong and Hanson [15] developed regression equations
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to calibrate the estimates based on traffic count data and the errors were reduced.

Seaver et al. [16] also proposed a mathematical model based on statistical anal-

ysis. Different from traditional methods, they tried to find the relationship between

VMT and socioeconomic and geographical variables at the county level. In order to

develop the model, 80 counties were selected at random from the state’s 159 counties.

The unselected counties were used for model validation. Seaver et al. tested 45 gen-

eral variables and used several statistical strategies to derive the optimal regression

models for estimating average daily traffic (ADT) on rural local roads. The results

show that the models developed in this study are statistically reliable using certain

stratification variables. However, there were still some shortcomings for this method.

For example, the traffic volume data and census data do not update frequently, which

leads to a lag between years.

Zhao and Chung [17] proposed a method using the Geographic Information Sys-

tem (GIS). A multiple linear regression model of average annual daily traffic (AADT)

on local roadways was presented in this study. The study area was all of Broward

County in South Florida. AADT data were obtained from average quarterly traf-

fic counts in 1998 from the Broward County Metropolitan Planning Organization.

The counts were adjusted by seasonal factors based on traffic data obtained from a

number of permanent count stations on state roads. Four groups of predictors were

examined for potential inclusion in the models: roadway characteristics, socioeco-

nomic characteristics, expressway accessibility, and accessibility to regional employ-

ment centers. All these variables can be obtained and tested using GIS technology.

Zhao and Chung [17] found that functional classification and number of lanes are

the most significant variables. As long as such information is available, the AADT

on local roads can be obtained with a relatively high accuracy. However, possible

sources of errors need to be examined carefully in the future.
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Blume et al.[18] implemented a methodology to estimate local road VMT in

Florida based on census data and sample counts. The major difference is that they

only used the GIS tool to build a local roads GIS database at the statewide level.

This method made use of available census data and an intuitive correlation between

travel and population density, job density, and roadway density. The density factors

were used to group similar zip code tabulation areas (ZCTAs) into subregions to allow

random samples taken in one subregion to represent similar ZCTAs statewide on the

basis of any or all the following: population, employment rate, and roadway density.

A minimum number of random samples was selected to retain statistical validity

while minimizing costs to conduct traffic counts. The study identified the required

number of sample counts to reach certain accuracy levels, ranging from 158 for 70-15

(15% error at the 70th percentile), to 881 for 95-10. However, this method requires

a high initial level of effort to develop the local road database. Also, more work

needs to be done in the future, including selection of better stratification variables

to develop a more reliable and accurate GIS roadway database.

Moreover, Wang et al. [19] introduced a new method that incorporated concepts

from electronics engineering, which develop a circuit network model and simulation

to estimate AADT on local roads. First, they found a significant linear relationship

between household number and the total entrance AADT of each community. Then

a circuit network was modeled among which resistors, current flow, and voltage

were represented by road length, AADT, and VMT, respectively. Simply put, each

entrance served as a current source, and each branch had a sink current source at its

mid-point. Then the circuit network model was developed, which made it possible to

derive the AADT and VMT on community local roads. The most significant feature

of this method is that it can estimate VMT without field data collection, which can

reduce the labor load and cost dramatically. However, the shortcomings are also
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very conspicuous. For example, the linear relationship between the AADT and the

number of households is not very convincing and needs further validation.

Qian [20] also proposed a new local road VMT estimation method in his master’s

degree thesis. The main idea behind his method is that one can approximately esti-

mate ADTs on 20% of links which have higher traffic on them in a local community

given the total trips generated from that local community and local road network

topological measures. The ADTs on the remaining 80% of local roads can also be

obtained from a linear regression model given the total number of roads in the local

network.

The method proposed in this thesis is different from previous research in several

aspects. First, previous research rarely considers the internal relationship between

VMT and roadway density. Second, this method takes advantage of the more ac-

curate VMT data (HPMS data on principal and minor arterial roads) to estimate

VMT on lower classes of roadways. Also, the roadway densities are much easier to

obtain than field traffic count data. State or city DOTs have easy access to roadway

geographic information.

2.4 State Practices to Estimate Local VMT

In this section, several noteworthy state-level practices used to estimate local

VMT are introduced and compared based on a survey report conducted by FHWA

[4]. Since this survey was conducted by FHWA several years ago, many states might

have already revised their estimating procedures. However, this report is still repre-

sentative of state practices.

2.4.1 Georgia

Georgia’s estimated VMT is computed based on a stratified random sample for

(1) the Atlanta area, (2) non-Atlanta urbanized areas, (3) small urban areas, (4)
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rural local, and (5) rural minor collectors. The average AADT within each stratum

times the applicable mileage yields the amount of VMT. Over 4,000 annual traffic

counts area are taken for this program statewide.

2.4.2 Kansas

In Kansas, traffic count data is collected on a six-year cycle on rural minor collec-

tor roads. About 500 24-hour counts are taken each year, and the data are adjusted

for season and axle and then matched to road section to estimate daily VMT by sec-

tion. Growth factors and ADT are generated by county and applied to the uncounted

sections.

Ten percent sample traffic count plans were applied to the rural and small com-

munities by population groups on a nine-year cycle. ADT value by strata is formed

and applied to all sections within the strata to compute daily VMT. ADT is updated

every three years.

There is a 10 percent sample of local streets in 40 urban areas that are counted

on a 9-year cycle. About 400 counts are taken annually. The counts are averaged

and then multiplied by the local mileage reported.

2.4.3 Kentucky

The Kentucky DOT takes coverage counts by county on a three-year cycle, and

VMT is based on link ADT times rural minor arterial road mileage.

The relationship of average local ADT to average rural major collector (RMC)

ADT by selected county (and average urban local to urban collector roads) was

determined from normal coverage counts for the collectors and a one-time count on

a random sample of local road sites. One curve of local sample ADT plotted versus

collector ADT was drawn based on the 28 counties selected out of 120 counties [21].

The averages for the non-sample county areas would be developed based on the
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relationship established and the average collector ADT for rural, small urban, and

urbanized areas. Local VMT by county and area type is the average ADT times the

applicable mileage.

2.4.4 Texas

The Texas DOT uses the same process for all area types. Roads are divided

into groups within each county by city and pavement type, and total mileage for

each type are developed. ADT is established for each stratum. The strata ADT

are multiplied by the total mileage for each corresponding county (stratified by city

and pavement type). For example, the urban local VMT of Brazos County, TX is

calculated by multiplying total urban local ADT of all the cities (College Station,

Bryan, etc.) by total urban local road mileage. All of the resulting products are

then summed and averaged to yield a statewide total. In the past the default value

of the ADT became the default value of the strata for the entire state. Currently

the Texas DOT is transitioning to a process that randomly selects traffic counts in

each county. Through this process, the median ADT values for each stratum within

a county become the default values by strata within that county.
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3. ANALYTICAL ESTIMATION MODELS

The main idea is to use the more accurate VMT data on higher functional classes

of roads, (e.g., principal and minor arterial roads) to estimate VMT on lower func-

tional classes of roadways, e.g., collector and local roads. In particular, if VMT on

collector roads are reliable, can people use it to estimate local road VMT by taking

road spacing characteristics into consideration?

The author believes there is a clear relationship between local and collector roads

based on vehicle miles traveled. This can be derived by analyzing an example as

illustrated in Figure 3.1, which shows the layout of a squared local community sur-

rounded by collector roads (circumference of the square). Local roads are distributed

in a grid format within this square.

Figure 3.1: Layout of a Local Community
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3.1 Average Local Distance Traveled

By using the integration method, the average local distance traveled by each

traveler in the shaded area can be derived. The average distance in the rest of the

area is the same as the shaded area because the residents are assumed to be equally

distributed among the community.

Then, the average local distance traveled per traveler tlocal is calculated using the

total distance divided by the shaded area as follows:

tlocal =
2
∫ L

2

0
x(L

2
− x)dx

1
2
× L

2
× L

=
L

6
. (3.1)

The author further considers a more realistic situation in which the traveler travels

on grid local roads, that is, the traveler does not go along a Euclidean distance, but

follows a grid distance.

Figure 3.2 shows the small cell which is within the shaded area in Figure 3.1.

Figure 3.2: Layout of the Small Cell
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Assume the local roads are distance d apart from each other. A traveler has a

choice to go either through the left or right street up to the collector road. Travelers

in the left half are assumed to go through the left street up and those in the right half

go through the right street up, regardless of whether their destination is west or east.

This assumes that the collector roads are much faster than the local roads so that

travelers attempt to get to the collector roads as soon as possible. The violations of

this assumption are reflected by calibrated coefficients in the final models. In this

case, the average local distance is L
6

+ d
4
.

3.2 Average Collector Road Distance Traveled

Using the same procedure, the average collector road distance traveled per traveler

is D
6

+ L
4
. Here D represents the spacing of minor arterial roads.

3.3 Average Minor Arterial Road Distance Traveled

First, the spacing of principal arterial roads is defined as S. Principal arterial

is the highest roadway classification. It consists of interstate, other freeways and

expressways, and other principal arterial roads according to Highway Functional

Classification Concepts, Criteria and Procedures [5] developed by US FHWA. Minor

and principal arterial roads are assumed to be in a grid network. Moreover, the

author also assumes that principal arterial roads are much faster than minor arterial

roads, so that travelers will still get to the principal arterial roads as soon as possible

if they need to travel a long way. Therefore, the average minor arterial road distance

is still derived using the previous procedure, which is S
6

+ D
4

.

3.4 Average Principal Arterial Road Distance Traveled

For principal arterial roads, VMT data can be obtained from HPMS. HPMS is a

nationwide inventory system of all public road mileage. HPMS estimates are based
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on actual data of vehicle movement on a road segment and the centerline miles of

the segment, which provide us with high accuracy VMT data. So, HPMS VMT

estimation data on principal arterial roads can be used in practice.

3.5 VMT Ratio Analysis

In this section, the author explores the major factors that determine the ratio of

VMT on different functional classes of roadways.

3.5.1 Squared Local Community

The ratio between average local road distance and average collector road distance

is:

ratio =
L/6 + d/4

D/6 + L/4
. (3.2)

Then, it is necessary to find the road density in relation to the parameters S and

D. Take a collector road as an example. A grid network of collector roads has a

number n of horizontal and vertical lines, respectively, and each small square has a

side size of L. The total collector road mileage is 2n2L while the total area for this

road mileage is n2L2. Therefore, the collector road density, denoted by ρ2 can be

expressed as ρ2 = 2/L.

Similarly, the principal arterial road, minor arterial road and local road densities

can be expressed as ρ4 = 2/S, ρ3 = 2/D, and ρ1 = 2/d. In the subsequent deriva-

tions, the author also assumes that S � D,D � L, andL � d, where � means

sufficiently large compared with the second term. This assumption is based on an

extreme situation, which is used to simplify the following derivation procedure and

get clean terms. Similarly, the volitions of this assumption are reflected by calibrated

coefficients in derived models.

Additionally, the author ignores the within community trips and assumes each
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trip leaves the collector roads by getting onto a minor principal road. Therefore, the

ratio of distances on collector and local roads of a trip (average trip) is equal to the

ratio of local road VMT and collector road VMT.

So, the ratio between local road VMT and collector road VMT can be expressed

as follows.

VMTL
VMTC

=
L/6 + d/4

D/6 + L/4

≈ L/6 + d/4

D/6

≈ ρ3
ρ2

+
3

2
· ρ3
ρ1
. (3.3)

When ρ2 → ∞, the density of collector roads is much larger than the density of

minor arterial roads. So the first term is equal to 0 and the ratio=3
2
· ρ3
ρ1

; when ρ2 → 0,

it indicates that the spacing of collector roads is very large and almost equal to the

spacing of minor arterial roads. So ρ2 = ρ3, and the ratio=1 + 3
2
· ρ3
ρ1

. Therefore, the

reasonable ratio range is (3
2
· ρ3
ρ1
, 1 + 3

2
· ρ3
ρ1

).

Based on the assumption that D � L � d, ρ3
ρ1

is much smaller than ρ3
ρ2

, the

author takes the logarithmic value of Equation 3.3, which leads to ln(VMTL) =

ln(VMTC) + lnρ3 − lnρ2. In a general sense, for the purpose of establishing a

regression equation and allowing noise effects due to uneven distribution of roadways

and trips, a regression equation is proposed as follows:

ln(VMTL) = α1ln(VMTC) + α2lnρ3 + α3lnρ2 + α0 (3.4)

with the coefficients α0, α1, α2, α3 are calibrated using field data.

Similar to Equation 3.3, the ratio between the collector road VMT and the minor
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arterial road VMT is calculated as follows.

VMTC
VMTMA

=
D/6 + L/4

S/6 +D/4

≈ D/6 + L/4

S/6

≈ ρ4
ρ3

+
3

2
· ρ4
ρ2
. (3.5)

It is also possible to develop a regression equation as

ln(VMTC) = α1ln(VMTMA) + α2lnρ4 + α3lnρ3 + α0. (3.6)

To develop a relationship between local road VMT and minor arterial road VMT,

the following calculation will work:

VMTL
VMTMA

=
VMTL
VMTC

× VMTC
VMTMA

≈ (
ρ3
ρ2

+
3

2
· ρ3
ρ1

)× (
ρ4
ρ3

+
3

2
· ρ4
ρ2

)

=
ρ4
ρ2

+
3

2
· ρ4
ρ1

+
3

2
· ρ4ρ3
ρ22

+
9

4
· ρ4ρ3
ρ1ρ2

≈ ρ4
ρ2

+
3

2
· ρ4
ρ1
.

(3.7)

Similarly, two formats of a liner regression model can be used to represent the

correlation between local road VMT and minor arterial road VMT as follows:

VMTL
VMTMA

= α1
ρ4
ρ2

+ α2
ρ4
ρ1

+ α0 (3.8)

ln(VMTL) = α1ln(VMTMA) + α2lnρ4 + α3lnρ3 + α4lnρ2 + α5lnρ1 + α0.(3.9)
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Figure 3.3 illustrates layout of a large network with road spacings used for the

above derivation, and it also gives an example of a trip going from the local commu-

nity to its destination (arrow paths in red and yellow).

Figure 3.3: Structural Layout of Roadways Used in Derivation (the lengths of d, L,
D and S do not reflect the assumed lengths in derivation)

3.5.2 Rectangular Local Community

The author further assumes that the local community layout to have rectangular

shape as shown in Figure 3.4.

The community is surrounded by collector roads with a length of L and width

of W (L ≥ W ). The author further supposes that W = βL and β ∈ (0, 1] . In

a special case where β = 1, the length and width of the rectangle are equal, and

the community becomes a squared shape, which is the most common shape and the
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Figure 3.4: A Rectangular Local Community Surrounded by Collector Roads

standard set at the beginning of this chapter’s study.

As shown in the earlier the squared community, the author still assumes that

the rectangular shaped layout will allow travelers to get to the collector roads as

soon as possible, and that travel demand is uniformly distributed within the area.

The author divides the area into four sections as in Figure 3.4, all of which are

equivalent in terms of VMT ratio between local and collector roads. Therefore, only

the upper right quarter of the rectangle is examined for calculating average local

distance traveled by each traveler, and that is divided into three sections:

• Section I

A rectangle the size of (L
2
− W

2
)× W

2
, in which travelers use local roads to get to

the collector road.

• Section II

A right triangle of W
2
× W

2
, in which travelers go up to the collector road first.

• Section III

A right triangle of W
2
× W

2
in which travelers arrive at the collector road on the
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right first.

In section I, the average local distance traveled is W
4

.

In sections II and III, the average local distance traveled is calculated as follows:

t′local =

∫ W
2

0
x
2
· x · dx

1
2
× W

2
× W

2

=
W

6
. (3.10)

Therefore, the average local distance for all three sections is:

tlocal =
W
4
× L−W

2
× W

2
+ W

6
× W 2

4
LW
4

+
1

4
d

=
W

4
(1− W

3L
) +

1

4
d

=
(3− β)β

12
L+

1

4
d (3.11)

where d is the spacing between local roads.

When β = 1, Equation 3.11 becomes L
6
, exactly the same as for the community

with a square layout as derived earlier. Then the collector and minor arterial road

density need to be determined. Take a collector road as an example. A grid network

of collector roads has m horizontal lines with a spacing of W and m vertical lines with

a spacing of L. The total collector road mileage is m2(L + W ) while the total area

for this road mileage is m2LW . Therefore, the collector road density, denoted by ρ2

can be expressed as ρ2 = L+W
LW

=
β + 1

βL
. Similarly, the minor arterial road density

can be expressed as ρ3 = γ+1
γD

, where D is the length of the rectangle surrounded by

minor arterial roads and γD is the width (γ ∈ (0, 1]). Note that, the density of local

road ρ1 is still equal to 2
d

as discussed in square-shaped community situation.

Subsequently, the average distance traveled on collector roads donated by dcollector
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can be calculated as expressed in the following equation:

tcollector =
(3− γ)γ

12
D +

W
4
× W 2

4
+ L+W

4
× L−W

2
× W

2
LW
4

=
(3− γ)γ

12
D +

1

4
L. (3.12)

Thus, based on the assumption that demand is uniformly distributed in the com-

munity, the ratio between local road VMT and collector road VMT can be derived

as follows:

VMTL
VMTC

=
(3−β)β

12
L+ 1

4
d

(3−γ)γ
12

D + 1
4
L

≈
(3−β)β

12
L+ 1

4
d

(3−γ)γ
12

D

≈ (3− β)(β + 1)

(3− γ)(γ + 1)
· ρ3
ρ2

+
6

(3− γ)(γ + 1)
· ρ3
ρ1
. (3.13)

So, the relationship between local road and collector road VMT can be expressed

in a general format as follows:

VMTL
VMTC

= β1
ρ3
ρ2

+ β2
ρ3
ρ1

+ β0. (3.14)

where βi are the parameters. The result shows that even as the shape of the local

community becomes rectangular, the major factors in the relationship derived under

the square shaped situation remain unchanged, which indicates our major result is

robust.

3.5.3 Circular Local Community

The author envisions the major terms, ρ3
ρ2

and ρ3
ρ1

, remain as the explanatory vari-

ables regardless of network density and neighborhood shape. The network density,

26



shape, and uneven distribution of travelers are reflected by the coefficients β0, β1, β2,

respectively, that are to be calibrated with data. To further prove the robustness, the

author investigated the distribution and variables of a local community surrounded

by a collector road which had the shape of a circle, as illustrated in Figure 3.5.

Figure 3.5: Circular Local Community Surrounded by Collector Roads

Consider a continuous case in which trip demands are generated uniformly within

the circular shaped community. A trip generated at any location within the circle

has an equal probability to go any one of the four directions. The trip leaves the

community at one of the four ’outlets’ (represented by the four smaller circles at the

four corners). Each trip follows the radius line (shortest possible local road) to the

nearest collector road, after which it takes the shortest outlet before continuing on

the collector road until the traveler gets to the minor arterial roads. Figure 3.6 shows

the process.
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The total local distance traveled can be represented as follows:

∫ 2π

0

∫ R

0

(R− r)crdrdθ =
cπR3

3
. (3.15)

where c is a probability density constant for traveler presence, and R − r is the

shortest local distance traveled to the nearest collector road on the ring, regardless

of the final direction chosen.

The total number of trips is

∫ 2π

0

∫ R

0

crdrdθ = cπR2. (3.16)

Therefore, the average local distance traveled is cπR2

2πRc
= R

2
.

Then, the average collector VMT per trip on the ring only is calculated as follows.

The additional collector road VMT before hitting a minor arterial road depends on

the density of the minor arterial road.

=

∫ π
2

0

∫ R

0

(π − θ)R + (π
2
− θ)R + θR + (π

2
+ θ)R

4
crdrdθ

=

∫ π
2

0

∫ R

0

c
π

2
Rrdrdθ

=
cπ2R3

12
. (3.17)

The four terms in the numerator of the first line represent collector road distance

to the west, north, east, and south direction, respectively. This equation is for

θ ⊂ [0, π
2
].

If the trips are uniformly generated in the circle, all four quadrants are symmetric

in terms of VMT, given that the four directions have an equal share of the final
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destination. Therefore, the total collector road distance is 1
3
cπ2R3. So, the average

collector road distance on the ring is calculated as follows:

cπ2R3

3cπR2
=
π

3
R. (3.18)

As a result, the local and collector VMT ratio for the average trip becomes

VMTL
VMTC

=
R
3
πR
3

=
1

π
= constant. (3.19)

Next, in the same spirit, if a minor arterial road has a radius of D, also assuming

minor arterial roads as circles, the total collector road miles can be approximated to

πR
3

+ D
3

, assuming D�R (meaning R is very small compared with D).

Therefore, the ratio of local VMT and collector road VMT is equal to

VMTL
VMTC

=
R
3

πR
3

+ D
3

≈R
D
. (3.20)

In this case, the collector road density ρ2 is calculated using half the circumference

divided by the total area of the local community. The result is as follows:

ρ2 =
πR

πR2
=

1

R
. (3.21)

The density for minor arterial roads can also be obtained as: ρ3 = 1
D

.

So, the ratio of local road VMT and collector road VMT becomes

VMTL
VMTC

=
ρ3
ρ2
. (3.22)

The reason for using circular shapes to form a larger circular shape is that a larger
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polygon can be formed by many smaller polygons, and each smaller polygon has an

inscribed circle. So, all the polygons can be substituted by circles. Even if there

are some errors, the errors are not significant for their small magnitude. Figure 3.6

illustrates that a large hexagon can encompass a large number of smaller hexagons,

and each circle can be used to approximate the hexagon. The circles in dashed lines

are the approximations of hexagons. The red line shows the real path of a trip, which

is approximated by the yellow line according to our analysis.

Figure 3.6: Large hexagon (circle) contains small hexagons (circles)

The results obtained confirm the accuracy of similar results from the assumptions

of square-shaped (or grid network) neighborhoods.
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4. VMT ESTIMATION PROCEDURE AND VALIDATION

4.1 Introduction

As a means to examine the analytical results proposed earlier, the author used

30 different types of local community networks for simulation. These configurations

were first designed based on examples from Southworth and Ben-hoseph [22]. For

simplicity and comparison, only networks with the same area in a square shape were

chosen. The length of each side is 8 units long in TransCAD, so the total area of

each community is 64. The speed for local and collector roads was set at 15 and 40,

respectively. Figure 4.1 shows the layouts of the 30 simulated local networks. The

four side collector roads are represented by red lines, and the local roads are shown

as green lines.

TransCAD was used in the simulation to get the VMT data on each functional

road. For each neighborhood, the author set 64 trip generator zones (each zone

contains 3 households) that represent the traffic demand origins, and all travelers

originate from the center of the trip generator zone. The traffic demand in each trip

generator zone is set to be 10 units. So the total traffic demand is 640 units for a

community. Although the number is not very big, such a setting is for simplifying

the simulation process and will not affect the final results (VMT ratios). Four trip

generator zones at the corners of each community were constructed to let travelers

go along collector roads through these corners, so as to get to higher class roads and

reach their destinations. The volumes that correspond to these four zones are equal,

which is 160 demand units each. As mentioned above, traffic demand is assumed

to be uniformly distributed in each community. Also, the traffic demand set up in

simulation is for one weekday. Here the author only considers trips going outside the
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Figure 4.1: Layouts of 30 Simulation Networks (with each network’s ID)

community or trips within the community. Return trips are not included.

Figure 4.2 shows the roadway network structures used in the simulation process.

The speed for minor arterial roads is set to be 60 and 75 for principal arterial roads.

The 30 local networks mentioned at the very beginning of this introduction (the figure

only shows local network with ID=1) are analyzed under different combinations

of principal-minor arterial road networks (left two networks) and minor arterial-

collector road networks (middle three networks), which helps enforce the real-world

comparison of the simulation process to actual network patterns.

Figure 4.3 is an example of the simulation result for the local community network
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Figure 4.2: Network with Layered Classes of Roadways Functional As Envisioned in
the Analysis

where ID=1. There are 64 small green squares uniformly scattered within the com-

munity, which are the trip generator zones. Four small green squares are set at the

corners and represent the trip generator zones that allow travelers to get to higher

class roads. The resulting volumes are shown on each link and each trip generation

zone.

The simulation results of the 30 local networks are shown in Table 4.1. Column 2

is the VMT on local roads. The author first calculated the VMT on each local road

segment (traffic on the road segment × length of the road segment), and then added

up all local road segments’ VMT to generate the total numbers. Columns 3 and 4

represent VMT on collector roads. Column 3 represents the first part of VMT on

four collector side roads, and Column 4 covers the VMT for travelers going to minor

arterial roads. It is the same situation for minor arterial road VMT as well column
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Figure 4.3: Example (ID=1) Community Output for Simulation

5 and 6. All the VMT data have the same unit, which does not affect the results of

VMT ratios. Columns 7 to 10 are roadway densities of principal arterial roads, minor

arterial roads, collector roads, and local roads, respectively. For the density of each

roadway class, for example, the density of collector roads (ρ2) is calculated using

the total length of collector roads divided by the area surrounded by minor arterial

roads. Other densities are calculated in a similar way. This adjustment ensures that

the densities used are consistent with convention.

In addition, when roadway networks are not in a grid, it is impossible to just use

roadway spacing. In that case, density is practically a more convenient measure for

application.

In Equations 3.3 and 3.4, the author proposes two general formats for regression

analysis, which are the density ratio format and logarithmic format. These formats

are powerful in that they allow calibration of coefficients to allow for various network
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Table 4.1: Simulation Results for the 30 Networks

ID VMTL VMTC1 VMTC2 VMTMA1 VMTMA2 ρ4 ρ3 ρ2 ρ1
1 1596.90 3879.37 12175 39312 187022 0.0031 0.0188 0.2250 0.7498
2 1468.07 4032.25 12175 39312 187022 0.0031 0.0188 0.2250 0.9996
3 1252.86 4292.82 12175 39312 187022 0.0031 0.0188 0.2250 1.2497
4 1044.92 4459.63 12175 39312 187022 0.0031 0.0188 0.2250 1.7495
5 1537.15 4359.36 12175 39312 187022 0.0031 0.0188 0.2250 1.1839
6 1705.91 4246.34 12175 39312 220800 0.0031 0.0141 0.2250 0.9759
7 1875.50 4143.17 12175 39312 220800 0.0031 0.0141 0.2250 0.9916
8 2006.39 4101.55 12175 39312 220800 0.0031 0.0141 0.2250 0.9988
9 1933.45 3947.55 12175 39312 220800 0.0031 0.0141 0.2250 0.8251
10 2256.31 5118.64 12175 39312 220800 0.0031 0.0141 0.2250 0.7947
11 2295.96 4453.15 8560 22800 112213 0.0052 0.0313 0.1528 0.9366
12 4740.84 3750.20 8560 22800 112213 0.0052 0.0313 0.1528 0.7206
13 14608.41 5118.66 8560 22800 112213 0.0052 0.0313 0.1528 0.7472
14 2613.75 4265.87 8560 22800 112213 0.0052 0.0313 0.1528 0.9250
15 1596.70 3930.54 8560 22800 112213 0.0052 0.0313 0.1528 1.1433
16 1908.87 4118.84 8560 22800 132480 0.0052 0.0234 0.1528 1.3768
17 1388.79 4284.47 8560 22800 132480 0.0052 0.0234 0.1528 1.5007
18 1199.35 4394.54 8560 22800 132480 0.0052 0.0234 0.1528 1.6251
19 1313.84 4152.41 8560 22800 132480 0.0052 0.0234 0.1528 1.6408
20 1832.15 4350.06 8560 22800 132480 0.0052 0.0234 0.1528 1.5303
21 2462.78 5118.63 12160 25344 130916 0.0045 0.0268 0.1301 1.4244
22 2778.49 5118.63 12160 25344 130916 0.0045 0.0268 0.1301 1.3931
23 1559.06 3918.23 12160 25344 130916 0.0045 0.0268 0.1301 1.5330
24 3100.33 5118.63 12160 25344 130916 0.0045 0.0268 0.1301 1.3619
25 3661.29 5118.63 12160 25344 130916 0.0045 0.0268 0.1301 1.3306
26 1876.07 3918.23 12160 25344 154560 0.0045 0.0201 0.1301 1.4707
27 2196.07 3918.23 12160 25344 154560 0.0045 0.0201 0.1301 1.4082
28 2756.47 3918.23 12160 25344 154560 0.0045 0.0201 0.1301 1.3460
29 1142.77 4491.91 12160 25344 154560 0.0045 0.0201 0.1301 1.4377
30 1350.51 4283.75 12160 25344 154560 0.0045 0.0201 0.1301 1.2027

structures (e.g., noises). Next, mathematical methods are used to derive the specific

regression models for these two formats.

4.2 Connectivity Measures

First, the concept of connectivity is introduced to categorize all the local networks

set up. The reason for categorizing the local networks is that the author wants to

find the regression equations according to neighborhood categories.

The 30 local networks set up in the simulation process can be divided into sev-
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eral categories based on the connectivity of a certain network. According to the

Victoria Transport Policy Institute [23], connectivity refers to the directness of links

and the density of connections in path or road networks. A well-connected road or

path network has many short links, numerous intersections, and minimal dead-ends

(cul-de-sacs) [24]. Definitions from Tresidder’s paper [24], which are necessary for a

greater understanding of the connectivity measures, are provided in Table 4.2 and

Figure 4.4. Dill [25] evaluated various measures of network connectivity for the pur-

pose of increasing walking and biking based on a project in Portland. In this paper,

the author chose the Connected Node Ratio (CNR) as the criterion to categorize 30

local networks.

Table 4.2: Connectivity Definitions. (Source: Tresidder, 2004 [24])

Word/Phase Definition
Link A roadway or pathway

segment between two
nodes. A street between

two intersections or from a
dead end to an intersection.

Node The endpoint of a link,
either a real node or a

dangle node
Real Node The endpoint of a link that

connects to other links. An
intersection.

Dangle Node The endpoint of a link that
has no other connections.
A dead-end or cul-de-sac

The CNR is the number of street intersections divided by the total number of
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Figure 4.4: Connectivity Definitions

intersections and cul-de-sacs.

Connected Node Ratio =
# Real Nodes

# Total Nodes (real+dangle)
(4.1)

A higher CNR indicates that there are relatively few cul-de-sacs and better acces-

sibility between points, which leads to a higher level of connectivity. The calculated

CNR of local networks are shown in Table 4.3.

The author divided the 30 local networks into three categories based on the CNR

measure. The three categories are low connectivity (LC) where CNR ∈ [0, 0.5],

medium connectivity (MC) where CNR ∈ (0.5, 0.9], and high connectivity (HC)

where CNR ∈ (0.9, 1.0]. The threshold points were chosen subjectively. CNR = 1
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Table 4.3: Measure of Connected Node Ratio for the 30 Networks

ID Real Node Dangle Node Connected Node Ratio (CNR)
1 9 0 1.00
2 16 0 1.00
3 25 0 1.00
4 49 0 1.00
5 23 0 1.00
6 19 3 0.86
7 21 5 0.81
8 27 24 0.53
9 18 3 0.86
10 8 4 0.67
11 12 0 1.00
12 9 4 0.69
13 0 1 0.00
14 20 6 0.77
15 25 0 1.00
16 45 0 1.00
17 45 0 1.00
18 45 0 1.00
19 49 0 1.00
20 48 0 1.00
21 47 0 1.00
22 45 0 1.00
23 49 0 1.00
24 45 0 1.00
25 45 0 1.00
26 45 0 1.00
27 45 0 1.00
28 45 0 1.00
29 43 0 1.00
30 32 1 0.97

means that there is no cul-de-sac in a network (like a grid-network). Since there

is only one network (ID=13), it falls the first category where CNR ≤ 0.5 and five

additional networks, with CNR in the same category, are set up for regression analysis

using Equations 3.3, 3.4, 3.5, and 3.6 . Figure 4.5 shows the layouts of the five
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additional local networks as well as the initial Network No.13.

Figure 4.5: Layout of Six Networks (0 ≤ CNR ≤ 0.5)

The summary of the classification is given in Table 4.4. In the next section,

regression models are calibrated under each of the three categories.

4.3 Density Ratio Model

4.3.1 Local Road VMT vs. Collector Road VMT

In a previous analysis, the author proposed the following regression model for the

relationship between the VMT ratio and road densities,

VMTL
VMTC

= α1
ρ3
ρ2

+ α2
ρ3
ρ1

+ α0, (4.2)

where α1 and α2 are coefficients and α0 is noise error coefficient. The coefficients are

calibrated using the simulation data obtained in the last step. The specific regression
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Table 4.4: Network Classifications: CNR

Low Medium High
ID CNR ID CNR ID CNR
13 0.00 6 0.86 1 1.00
31 0.38 7 0.81 2 1.00
32 0.00 8 0.53 3 1.00
33 0.50 9 0.86 4 1.00
34 0.43 10 0.67 5 1.00
35 0.33 12 0.69 11 1.00

14 0.77 15 1.00
16 1.00
17 1.00
18 1.00
19 1.00
20 1.00
21 1.00
22 1.00
23 1.00
24 1.00
25 1.00
26 1.00
27 1.00
28 1.00
29 1.00
30 0.97

models are obtained using the network data within each category from low to high

connectivity, as described below.

4.3.1.1 Neighborhoods of Low Connectivity

The final format of the regression model of networks with low connectivity based

on the six local networks (ID=13, 31, 32, 33, 34, 35) is as follows.

VMTL
VMTC

= −9.52
ρ3
ρ2

+ 63.47
ρ3
ρ1
− 0.12. (4.3)
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The R2 value is only 0.18, which shows that this regression equation is very weak

in representing the correlation between the VMT ratio and densities of networks

with low connectivity. The reason is very clear that networks with small CNR have

many cul-de-sacs and very few intersections, which result in a lack of short links for

travelers to choose from. So, the VMT on local roads in these networks does not

follow the theoretical derivation the author first proposed.

Actually, VMT changes dramatically based on the specific pattern according to

Figure 4.6. If there is only one exit to the collector roads, the local VMT will be very

large since there is only one link allowing travelers to access collector roads. However,

when there are two or more exits, the VMT drops to a much smaller value, which

indicates too much deviation from the assumptions for the analytical derivation.

Figure 4.6: Local VMT of Low Connectivity Networks

For the case of low CNR, the average errors using Equation 4.4 are summarized
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in Table 4.5.

Error(%) =
|Model Result− Ratio|

Ratio
× 100% (4.4)

Table 4.5: Local VMT Estimates for Low CNR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
13 1.0679 0.5827 45.44%
31 0.2124 0.4457 109.85%
32 0.7823 0.4467 42.90%
33 0.1869 0.1167 37.54%
34 0.1685 0.5692 237.73%
35 0.1663 0.4234 154.57%

Average Error= 104.67%

Table 4.5 shows an average relative error of 104.67%, which is too large to accept.

So the roadway density model is not applicable for local networks with very low

connectivity (0 ≤ CNR ≤ 0.5).

4.3.1.2 Neighborhoods of Medium Connectivity

The regression model calibrated by local networks with medium connectivity

(0.5 < CNR ≤ 0.9) using the seven example networks (ID=6, 7, 8, 9, 10, 12, 14) as

shown in Table 4.4 is as follows.

VMTL
VMTC

= −1.31
ρ3
ρ2

+ 15.69
ρ3
ρ1
− 0.04. (4.5)

The R2 is 0.96, which shows a very strong correlation. This means that such a

regression model is very accurate in estimating local road VMT for networks with

medium connectivity (0.5 < CNR ≤ 0.9). The relative error under this condition is

also given in Table 4.6 with an average value of 12.04%, which is quite good.
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Table 4.6: Local VMT Estimates for Medium CNR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
6 0.1039 0.1017 2.13%
7 0.1149 0.0981 14.65%
8 0.1233 0.0965 21.72%
9 0.1199 0.1430 19.26%
10 0.1305 0.1532 17.44%
12 0.3851 0.3697 4.02%
14 0.2038 0.2193 7.59%

Average Error= 12.40%

4.3.1.3 Neighborhoods of High Connectivity

For networks with high connectivity (0.9 < CNR ≤ 1.0), the format of the

regression model will use the 22 (ID=1 → 5, 11, 15 → 30) example networks as

shown in Table 4.4.

VMTL
VMTC

= 0.52
ρ3
ρ2

+ 1.74
ρ3
ρ1
− 0.01. (4.6)

R2 of this regression equation is 0.48. The real VMT ratio and the ratio calculated

based on the regression model are compared in Table 4.7. The errors in the table

are calculated based on Equation 4.4. Figure 4.7 is the residual plot. The points in

the plot are dispersed quite evenly around the horizontal axis, which indicates that

the proposed linear regression model is appropriate for the data.

The average relative error is 19.23%, which is quite good. Although most high

connectivity networks are in a grid network (CNP = 1), others can have different

patterns (e.g., Network 15, 29, 30). So, there is still some error when applying such a

linear regression model to local networks with high connectivity. However, the error

is within the acceptable range. Figure 4.8 shows the relative error between actual

and estimated VMT ratio of both local VMT and collector VMT.
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Figure 4.7: Residual Plot Between Real Ratio and Model Result

4.3.2 Collector Road VMT vs. Minor Arterial Road VMT

In Figure 4.2, there are 2×3 = 6 different combinations of collector-minor arterial

networks and minor arterial-principal arterial networks; furthermore, the initial 30

local networks were analyzed under each combination (five local networks under each

combination), which generates the VMT and density data in Table 4.1. Moreover, the

five additional local networks are analyzed under five of the six combinations. Figure

4.9 shows the detailed classifications of local networks under these six combinations.

In this section, the connectivity level still refers to the 35 local networks, so the

classifications are still the same. The only difference is that the author added the

minor arterial VMT, which are still traveled (640 demand units) from the same local

network.

Following the same procedure, the author first assumes the ratio of collector road

VMT and minor arterial road VMT can be represented by the following regression
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Table 4.7: Local VMT Estimates for High CNR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
1 0.0995 0.0981 1.36%
2 0.0906 0.0872 3.70%
3 0.0761 0.0807 6.07%
4 0.0628 0.0732 16.59%
5 0.0930 0.0822 11.63%
11 0.1764 0.1754 0.61%
15 0.1278 0.1649 28.97%
16 0.1506 0.1205 19.99%
17 0.1081 0.1180 9.15%
18 0.0926 0.1159 25.23%
19 0.1034 0.1157 11.95%
20 0.1419 0.1175 17.21%
21 0.1425 0.1507 5.74%
22 0.1608 0.1514 5.82%
23 0.0970 0.1484 53.03%
24 0.1794 0.1522 15.17%
25 0.2119 0.1530 27.79%
26 0.1167 0.1151 1.33%
27 0.1366 0.1162 14.94%
28 0.1714 0.1173 31.56%
29 0.0686 0.1157 68.56%
30 0.0821 0.1204 46.63%

Average Error= 19.23%

model

VMTC
VMTMA

= α1
ρ4
ρ3

+ α2
ρ4
ρ2

+ α0. (4.7)

4.3.2.1 Neighborhoods of Low Connectivity

The regression model for the six networks (ID=13, 31, 32, 33, 34, 35) with low

connectivity was obtained as follows.

VMTC
VMTMA

= −0.07
ρ4
ρ3

+ 1.54
ρ4
ρ2

+ 0.06. (4.8)
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Figure 4.8: VMT Ratio Estimates by Density Ratio Method for High CNR Networks

The R2 value is 0.96 and average relative error is only 2.99% (shown in Table

4.8), which indicates a strong correlation between the VMT ratio and the key terms.

Table 4.8: Collector VMT Estimates for Low CNR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
13 0.1013 0.0998 1.49%
31 0.0961 0.0961 0.05%
32 0.0665 0.0645 2.93%
33 0.0939 0.0998 6.27%
34 0.1045 0.1002 4.20%
35 0.0626 0.0645 3.03%

Average Error= 2.99%
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Figure 4.9: Local Network Classifications under Higher Layered Classes of Roadways

4.3.2.2 Neighborhoods of Medium Connectivity

Using the seven example local networks (ID=6, 7, 8, 9, 10, 12, 14), the format of

the regression model is as follows.

VMTC
VMTMA

= −0.53
ρ4
ρ3

+ 0.18. (4.9)

The R2 for this regression model is 0.98 with an average relative error of 1.96%

(shown in Table 4.9). Since the value of the term ρ4
ρ2

is much smaller compared with

ρ4
ρ3

, the missing value of this term has very little impact on the accuracy of the linear

regression model.
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Table 4.9: Collector VMT Estimates for Medium CNR Networks: Density Ratio
Model

ID Ratio Model Result Error (%)
6 0.0631 0.0634 0.40%
7 0.0627 0.0634 1.03%
8 0.0626 0.0634 1.29%
9 0.0620 0.0634 2.26%
10 0.0665 0.0634 4.67%
12 0.0912 0.0931 2.09%
14 0.0950 0.0931 2.01%

1.96%

4.3.2.3 Neighborhoods of High Connectivity

Using the 22 (ID=1 → 5, 11, 15 → 30) example networks, the linear regression

model for high connectivity networks is as follows.

VMTC
VMTMA

= −0.33
ρ4
ρ3

+ 1.6
ρ4
ρ2

+ 0.15. (4.10)

The R2 is 0.87 for this regression model, which also shows that the regression

model is able to estimate the VMT ratio data accurately. The average error is only

4.25% as shown in Table 4.10.

In conclusion, the relationship between the VMT ratio and densities is robust for

collector and minor arterial roads for all cases of low, medium, or high connectivity

networks.

4.4 Logarithmic Model

An alternative way to characterize the VT ratio is through the use of logarithmic

terms of road densities.
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Table 4.10: Collector VMT Estimates for High CNR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
1 0.0709 0.0723 1.90%
2 0.0716 0.0723 0.94%
3 0.0728 0.0723 0.65%
4 0.0735 0.0723 1.65%
5 0.0731 0.0723 1.05%
11 0.0964 0.1047 8.60%
15 0.0925 0.1047 13.15%
16 0.0817 0.0863 5.70%
17 0.0827 0.0863 4.34%
18 0.0834 0.0863 3.45%
19 0.0819 0.0863 5.42%
20 0.0831 0.0863 3.81%
21 0.1106 0.1050 5.01%
22 0.1106 0.1050 5.01%
23 0.1029 0.1050 2.08%
24 0.1106 0.1050 5.01%
25 0.1106 0.1050 5.01%
26 0.0894 0.0867 3.03%
27 0.0894 0.0867 3.03%
28 0.0894 0.0867 3.03%
29 0.0926 0.0867 6.37%
30 0.0914 0.0867 5.18%

Average Error= 4.25%

4.4.1 Local Road VMT vs. Collector Road VMT

The general format of the logarithmic regression model is proposed in Equation

3.4 and shown as follows.

ln(VMTL) = α1ln(VMTC) + α2lnρ3 + α3lnρ2 + α4lnρ1 + α0

where αn (n = 0, 1, 2, 3, 4) is the coefficient Here the author still considers the impact

of ρ1.

49



4.4.1.1 Neighborhoods of Low Connectivity

By using the five local network examples (ID=13, 31,32, 33, 34, 35), the regression

model for local low connectivity networks is obtained as follows.

ln(VMTL) = 1.96ln(VMTC) + 4.06lnρ3 + 6.93lnρ2 − 5.95lnρ1 + 15.86. (4.11)

R2 is 0.26 for this equation. Note that this R2 is calculated based on the actual

and estimated VMT rather than the logarithmic values for the purpose of consistency,

which makes the logarithmic regression models comparable with density ratio regres-

sion models. All the following R2 for logarithmic regression models are calculated in

this way.

Table 4.11 shows the comparison between the actual VMT and estimated VMT.

The error is calculated using a method similar to the density ratio method. The

difference is that in this case, the error is calculated based on the VMT data. The

equation is as follows:

Error(%) =
|VMTL(Model Result)− VMTL|

VMTL
× 100%. (4.12)

According to the results shown in Table 4.11, the average error is 57.72%, which

indicates that the regression model is not able to estimate local VMT for low con-

nectivity networks accurately. However, it still generates more accurate results than

the density ratio method.
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Table 4.11: Local VMT Estimates for Low CNR Networks: Logarithmic Model

ID ln(VMTL) ln(VMTL)(Model) VMTL VMTL(Model) Error (%)
13 9.5894 9.1342 14608.41 9266.53 36.57%
32 9.5127 8.8839 13530.00 7215.01 46.67%
33 7.7706 7.8379 2370.00 2534.83 6.95%
34 7.9204 8.6574 2753.00 5752.33 108.95%
35 7.9047 8.6472 2710.00 5694.40 110.13%
31 8.2079 7.7452 3670.00 2310.46 37.04%

Average Error= 57.72%

4.4.1.2 Neighborhoods of Medium Connectivity

The specific regression model was conducted on seven local networks (ID=6, 7,

8, 9, 10, 12, 14) and is presented as follows.

ln(VMTL) = −1.66ln(VMTC)− 0.01lnρ3 − 1.32lnρ1 + 23.53. (4.13)

The R2 is 0.76 for this regression model, and the average relative error is 9.43 %

according to Table 4.12. This indicates that the regression model is quite accurate

within medium connectivity networks.

Table 4.12: Local VMT Estimates for Medium CNR Networks: Logarithmic Model

ID ln(VMTL) ln(VMTL)(Model) VMTL VMTL(Model) Error (%)
6 7.4419 7.4919 1705.91 1793.49 5.13%
7 7.5366 7.4813 1875.50 1774.60 5.38%
8 7.6041 7.4760 2006.39 1765.19 12.02%
9 7.5671 7.7445 1933.45 2308.72 19.41%
10 7.7215 7.6776 2256.31 2159.54 4.29%
12 8.4640 8.3655 4740.84 4296.08 9.38%
14 7.8685 7.9671 2613.75 2884.61 10.36%

Average Error= 9.43%
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4.4.1.3 Neighborhoods of High Connectivity

The format of the regression model is as follows using the 22 (ID=1→ 5, 11, 15→

30) example networks as shown in Table 4.4.

ln(VMTL) = 1.12ln(VMTC) + 0.89lnρ3 − 0.63lnρ2 − 0.48lnρ1 − 1.00. (4.14)

The R2 for this model is 0.47 and the specific comparison is shown in Table

4.13. Figure 4.10 is the residual plot. Based on the plot, the points are still quite

evenly distributed around the horizontal axis. So, even when the R2 seems poor, the

proposed liner regression model is appropriate for the data.

Figure 4.10: Residual Plot Between Actual and Modeled Local VMT Data

According to the results shown in the table, the average relative error of this model

is 17.24%, which indicates that the regression model is still quite robust for estimating
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Table 4.13: Local VMT Estimates for High CNR Networks: Logarithmic Model

ID ln(VMTL) ln(VMTL)(Model) VMTL VMTL(Model) Error (%)
1 7.3758 7.4000 1596.90 1636.01 2.39%
2 7.2917 7.2740 1468.07 1442.32 1.79%
3 7.1332 7.1858 1252.86 1320.60 5.13%
4 6.9517 7.0373 1044.92 1138.32 8.21%
5 7.3377 7.2161 1537.15 1361.12 12.93%
11 7.7389 7.7538 2295.96 2330.36 1.48%
15 7.3757 7.6131 1596.70 2024.50 21.13%
16 7.5543 7.2868 1908.87 1460.94 30.66%
17 7.2362 7.2605 1388.79 1422.90 2.40%
18 7.0895 7.2322 1199.35 1383.24 13.29%
19 7.1807 7.2064 1313.84 1348.10 2.54%
20 7.5132 7.2569 1832.15 1417.81 29.22%
21 7.8090 7.8365 2462.78 2531.32 2.71%
22 7.9297 7.8470 2778.49 2558.10 8.62%
23 7.3518 7.7209 1559.06 2254.90 30.86%
24 8.0393 7.8578 3100.33 2585.79 19.90%
25 8.2056 7.8688 3661.29 2614.48 40.04%
26 7.5369 7.4858 1876.07 1782.60 5.24%
27 7.6944 7.5065 2196.07 1819.77 20.68%
28 7.9217 7.5279 2756.47 1859.25 48.26%
29 7.0412 7.5359 1142.77 1874.12 39.02%
30 7.2082 7.6066 1350.51 2011.41 32.86%

Average Error= 17.24%

local VMT with high connectivity networks. Figure 4.11 shows the relative error

between actual VMT and estimated VMT.

4.4.2 Collector Road VMT vs. Minor Arterial Road VMT

The general format of the logarithmic regression model between collector road

VMT and minor arterial road VMT is introduced in Equation 3.6 and shown as

follows.

ln(VMTC) = α1ln(VMTMA) + α2lnρ4 + α3lnρ3 + α4lnρ2 + α0
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Figure 4.11: VMT Estimation by Logarithmic Method for High CNR Networks

where αn (n = 0, 1, 2, 3, 4) is the coefficient. Here the author still considers the

impact of ρ2.

As clarified before, the connectivity level still refers to the 35 local networks, so

the classifications are still the same. The only difference is that the author adds the

minor arterial VMT which are still traveled (640 demand units) from the same local

network.

4.4.2.1 Neighborhoods of Low Connectivity

Using the six low connectivity local networks (ID=13, 31, 32, 33, 34, 35) as

examples, the regression model was obtained from a previous analysis and shown as

follows.

ln(VMTC) = −17.27ln(VMTMA)− 9.11lnρ4 − 8.65lnρ3 + 135.54. (4.15)
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This regression model has an R2 of 0.95 with an average relative error of 2.26%

(shown in Table 4.14), which shows that the logarithmic regression model to be a very

reasonable method for estimating collector road VMT for low connectivity networks.

Table 4.14: Collector VMT Estimates for Low CNR Networks: Logarithmic Model

ID ln(VMTC) ln(VMTC)(Model) VMTC VMTC(Model) Error (%)
13 9.5236 9.4857 13678.66 13169.87 3.72%
32 9.7582 9.7284 17294.65 16787.21 2.93%
33 9.4478 9.4857 12680.00 13169.87 3.86%
34 9.7011 9.7011 16335.00 16335.00 0.00%
35 9.6986 9.7284 16294.65 16787.21 3.02%
31 9.7573 9.7573 17280.00 17280.00 0.00%

Average Error= 2.26%

4.4.2.2 Neighborhoods of Medium Connectivity

Using the seven medium connectivity local networks (ID=6, 7, 8, 9, 10, 12, 14) as

examples, the final format of the logarithmic regression model is shown in Equation

4.16.

ln(VMTC) = ln(VMTMA) + 0.48lnρ3 − 0.71. (4.16)

The R2 for this regression model is 0.96 and the relative error is 1.95% as shown

in Table 4.15. The term lnρ4 is not included, because this variable is not significant

according to statistical test result. So it is removed from the proposed regression

equation. This might indicate that for medium connectivity networks, the density

of minor arterial roads is the most important factor in estimating the collector road

VMT if the minor arterial road VMT is given.
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Table 4.15: Collector VMT Estimates for Medium CNR Networks: Logarithmic
Model

ID ln(VMTC) ln(VMTC)(Model) VMTC VMTC(Model) Error (%)
6 9.7063 9.7100 16420.99 16480.92 0.36%
7 9.7000 9.7100 16317.83 16480.92 1.00%
8 9.6975 9.7100 16276.20 16480.92 1.26%
9 9.6880 9.7100 16122.20 16480.92 2.22%
10 9.7581 9.7100 17293.29 16480.92 4.70%
12 9.4182 9.4387 12310.20 12565.34 2.07%
14 9.4592 9.4387 12825.87 12565.34 2.03%

Average Error= 1.95%

4.4.2.3 Neighborhoods of High Connectivity

Using the 22 (ID=1 → 5, 11, 15 → 30) example networks, the regression model

for high connectivity networks is as follows.

ln(VMTC) = −49.22ln(VMTMA)− 25.59lnρ4 − 23.95lnρ3 + +0.96lnρ2 + 375.11.

(4.17)

The R2 is 0.97 with an average relative error of 1.48% as shown in Table 4.16.

It shows that the regression model is accurate in estimating the collector road VMT

for high connectivity roads as well.

4.5 Comparison of the Two Estimation Methods

Figure 4.12 shows the average errors of the two proposed methods (density ratio

method and logarithmic method) estimating VMT under different situations. Ac-

coridng to this figure, the average errors are less than 20% for both methods under

most situations (except in the case of a local VMT estimation for low CNR networks).

Moreover, the logarithmic method shows better performance estimating both
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Table 4.16: Collector VMT Estimates for High CNR Networks: Logarithmic Model

ID ln(VMTC) ln(VMTC)(Model) VMTC VMTC(Model) Error (%)
1 9.6837 9.7040 16054.02 16383.67 2.05%
2 9.6932 9.7040 16206.90 16383.67 1.09%
3 9.7091 9.7040 16467.47 16383.67 0.51%
4 9.7192 9.7040 16634.29 16383.67 1.51%
5 9.7132 9.7040 16534.01 16383.67 0.91%
11 9.4737 9.4535 13013.15 12753.35 2.00%
15 9.4327 9.4535 12490.54 12753.35 2.10%
16 9.4477 9.4591 12678.84 12823.79 1.14%
17 9.4607 9.4591 12844.47 12823.79 0.16%
18 9.4692 9.4591 12954.54 12823.79 1.01%
19 9.4503 9.4591 12712.41 12823.79 0.88%
20 9.4658 9.4591 12910.06 12823.79 0.67%
21 9.7572 9.7432 17278.63 17037.29 1.40%
22 9.7572 9.7432 17278.63 17037.29 1.40%
23 9.6852 9.7432 16078.23 17037.29 5.96%
24 9.7572 9.7432 17278.63 17037.29 1.40%
25 9.7572 9.7432 17278.63 17037.29 1.40%
26 9.6852 9.6971 16078.23 16269.74 1.19%
27 9.6852 9.6971 16078.23 16269.74 1.19%
28 9.6852 9.6971 16078.23 16269.74 1.19%
29 9.7203 9.6971 16651.91 16269.74 2.30%
30 9.7077 9.6971 16443.75 16269.74 1.06%

Average Error= 1.48%

local and collector VMT with smaller average errors. The difference between average

errors of the two methods estimating low CNR for local VMT is very conspicuous.

However, for other situations, the average errors of the two methods are very close

to each other.

Overall, the two methods are both robust in estimating local and collector VMT

under most situations except for estimating local VMT on low CNR networks. This

indicates one of the possible weaknesses of the proposed methods.
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Figure 4.12: Average Errors of the Two Estimation Methods

4.6 Link-Node Ratio Measure

The second connectivity measure used to divide the local networks is called the

Link-Node Ratio (LNR). It is measured as the number of links divided by the number

of nodes with a study area. The nodes include all the real and dangle nodes. A higher

number of LNR shows that a certain network is more connected. The equation is

expressed as follows.

LNR =
# Links

# Total Nodes
. (4.18)

A reasonable Link-Node Ratio is considered to be at least 1.4, so the author

divides all 35 local networks into three intervals: low connectivity with LNR ∈

(0, 1.4], medium connectivity with LNR ∈ (1.4, 2.0], high connectivity with LNR ∈

(2.0,∞). Table 4.17 shows the results of the Link-Node Ratio for 35 local networks
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and specific classification results are given in Table 4.18.

Compared with the classification of the CNR method, some of the communities

have switched to a different categorization, including ID=5, 8, 10, 12, 14, 21, 22, and

24 → 30.

4.6.1 Density Ratio Model

4.6.1.1 Local Road VMT vs. Collector Road VMT

Following the same procedure, the regression equations for the three different

intervals are listed as follows. The low LNR interval includes 10 example networks

(ID=8, 10, 12 → 14, 31 → 35), the medium LNR interval includes 14 example net-

works (ID=5, 6, 7, 9, 16, 21, 22, 24 → 30), and the high LNR interval includes 11 ex-

ample networks (ID=1→ 4, 11, 15, 17→ 20, 23).

VMTL
VMTC

=


−5.93ρ3

ρ2
+ 42.58ρ3

ρ1
− 0.07, LNR ∈ (0, 1.4]

0.20ρ3
ρ2

+ 8.57ρ3
ρ1
− 0.04, LNR ∈ (1.4, 2.0]

0.28ρ3
ρ2

+ 2.50ρ3
ρ1

+ 0.02. LNR ∈ (2.0,∞)

The R2 for the three intervals are 0.20, 0.48, and 0.70, respectively. Specific

comparison results are shown in Table 4.19, Table 4.20, and Table 4.21. The average

relative error for the first interval is 71.92%, which indicates the density ratio model

is not very accurate estimating local VMT of networks with small LNR. However,

for the networks in the other two intervals, the density ratio model worked better.

4.6.1.2 Collector Road VMT vs. Minor Arterial Road VMT

The regression equations for estimating collector road VMT are obtained and

shown as follows.
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Table 4.17: Link-Node Ratio of 35 Networks: LNR

ID Link # Real Node # Dangle Node # LNR
1 24 9 0 2.67
2 40 16 0 2.50
3 60 25 0 2.40
4 112 49 0 2.29
5 45 23 0 1.96
6 37 19 3 1.68
7 41 21 5 1.58
8 59 27 24 1.16
9 35 18 3 1.67
10 16 8 4 1.33
11 24 12 0 2.00
12 18 9 4 1.38
13 1 0 1 1.00
14 35 20 6 1.35
15 52 25 0 2.08
16 84 45 0 1.87
17 92 45 0 2.04
18 100 45 0 2.22
19 105 49 0 2.14
20 97 48 0 2.02
21 89 47 0 1.89
22 85 45 0 1.89
23 98 49 0 2.00
24 83 45 0 1.84
25 81 45 0 1.80
26 89 45 0 1.98
27 86 45 0 1.91
28 82 45 0 1.82
29 85 43 0 1.98
30 61 32 1 1.85
31 27 10 16 1.04
32 1 0 1 1.00
33 58 28 28 1.04
34 30 12 16 1.07
35 22 7 14 1.05
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Table 4.18: Network Classifications: LNR

LNR ∈ (0, 1.4] LNR ∈ (1.4, 2.0] LNR ∈ (2.0,∞)
ID LNR ID LNR ID LNR
8 1.16 5 1.96 1 2.67
10 1.33 6 1.68 2 2.50
12 1.38 7 1.58 3 2.40
13 1.00 9 1.67 4 2.29
14 1.35 16 1.87 11 2.00
31 1.04 21 1.89 15 2.08
32 1.00 22 1.89 17 2.04
33 1.04 24 1.84 18 2.22
34 1.07 25 1.80 19 2.14
35 1.05 26 1.98 20 2.02

27 1.91 23 2.00
28 1.82
29 1.98
30 1.85

Table 4.19: Local VMT Estimates for Low LNR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
8 0.1233 0.1603 30.07%
10 0.1305 0.3143 140.86%
12 0.3851 0.5649 46.67%
13 1.0680 0.4992 53.26%
14 0.2038 0.1568 23.06%
31 0.2124 0.3843 80.94%
32 0.7823 0.3429 56.17%
33 0.1869 0.1865 0.19%
34 0.1685 0.4907 191.16%
35 0.1663 0.3273 96.77%

Average Error= 71.92%

VMTC
VMTMA

=


−0.02ρ4

ρ3
+ 1.55ρ4

ρ2
+ 0.05, LNR ∈ (0, 1.4]

−0.34ρ4
ρ3

+ 1.45ρ4
ρ2

+ 0.11, DR ∈ (1.4, 2.0]

−0.26ρ4
ρ3

+ 1.24ρ4
ρ2

+ 0.10. DR ∈ (2.0,∞)
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Table 4.20: Local VMT Estimates for Medium LNR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
5 0.0930 0.1149 23.59%
6 0.1039 0.0984 5.28%
7 0.1149 0.0964 16.08%
9 0.1199 0.1210 0.88%
16 0.1506 0.1394 7.43%
21 0.1425 0.1654 16.02%
22 0.1608 0.1690 5.08%
24 0.1794 0.1728 3.72%
25 0.2119 0.1767 16.60%
26 0.1167 0.1107 5.09%
27 0.1366 0.1159 15.12%
28 0.1714 0.1216 29.08%
29 0.0686 0.1134 65.28%
30 0.0821 0.1368 66.61%

Average Error= 19.70%

Table 4.21: Local VMT Estimates for High LNR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
1 0.0995 0.1061 6.70%
2 0.0906 0.0905 0.08%
3 0.0761 0.0811 6.65%
4 0.0628 0.0704 12.11%
11 0.1764 0.1605 9.05%
15 0.1278 0.1454 13.74%
17 0.1081 0.1020 5.65%
18 0.0926 0.0990 6.96%
19 0.1034 0.0987 4.52%
20 0.1419 0.1013 28.65%
23 0.0970 0.1211 24.91%

Average Error= 10.82%

The R2 for the above three regression equations are 0.95, 0.97, and 0.95, re-

spectively. The results show that the proposed regression model is very accurate in
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estimating the collector road VMT given the minor arterial road VMT. The average

relative errors for the three intervals are calculated and shown in Table 4.22, Table

4.23, and Table 4.24.

Table 4.22: Collector VMT Estimates for Low LNR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
8 0.0626 0.0645 3.12%
10 0.0665 0.0645 2.94%
12 0.0912 0.0971 6.52%
13 0.1013 0.0971 4.14%
14 0.0950 0.0971 2.23%
31 0.0961 0.0961 0.08%
32 0.0665 0.0645 2.95%
33 0.0939 0.0971 3.41%
34 0.1045 0.0975 6.77%
35 0.0626 0.0645 3.01%

Average Error= 3.52%

4.6.2 Logarithmic Model

4.6.2.1 Local Road VMT vs. Collector Road VMT

Then, the logarithmic model was used to develop the regression equations for the

three intervals which are shown as follows. As with the density ratio method, the

low LNR interval includes 10 example networks (ID=8, 10, 12 → 14, 31 → 35); the

medium LNR interval includes 14 example networks (ID=5, 6, 7, 9, 16, 21, 22, 24 →

30), and the high LNR interval includes 11 example networks (ID=1→ 4, 11, 15, 17→

20, 23).
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Table 4.23: Collector VMT Estimates for Medium LNR Networks: Density Ratio
Model

ID Ratio Model Result Error (%)
5 0.0731 0.0794 8.67%
6 0.0631 0.0605 4.21%
7 0.0627 0.0605 3.60%
9 0.0620 0.0605 2.43%
16 0.0817 0.0898 9.93%
21 0.1106 0.1090 1.43%
22 0.1106 0.1090 1.43%
24 0.1106 0.1090 1.43%
25 0.1106 0.1090 1.43%
26 0.0894 0.0901 0.79%
27 0.0894 0.0901 0.79%
28 0.0894 0.0901 0.79%
29 0.0926 0.0901 2.68%
30 0.0914 0.0901 1.45%

Average Error= 2.93%

Table 4.24: Collector VMT Estimates for High LNR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
1 0.0709 0.0722 1.76%
2 0.0716 0.0722 0.80%
3 0.0728 0.0722 0.79%
4 0.0735 0.0722 1.79%
11 0.0964 0.0972 0.84%
15 0.0925 0.0972 5.06%
17 0.0827 0.0828 0.08%
18 0.0834 0.0828 0.77%
19 0.0819 0.0828 1.12%
20 0.0831 0.0828 0.42%
23 0.1029 0.0975 5.27%

Average Error= 1.70%

ln(VMTL) =


3.64ln(VMTC) + 3.90lnρ3 + 5.35lnρ2 − 3.51lnρ1 − 3.28, LNR ∈ (0, 1.4]

0.43ln(VMTC) + 1.37lnρ3 − 0.14lnρ2 − 1.24lnρ1 + 8.81, LNR ∈ (1.4, 2.0]

−0.02ln(VMTC) + 0.19lnρ3 − 0.54lnρ2 − 0.60lnρ1 + 7.37. LNR ∈ (2.0,∞)
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The R2 of the regression equation for the first interval is 0.41 with an average

relative error of 45.92% (as shown in Table 4.25 ); hence, this logarithmic regression

model does not fit the networks very well with a small LNR. The R2 for the other

two intervals are 0.48 and 0.74. Specific results are shown in Table 4.26 and Table

4.27. The average relative errors of these two intervals are only 18.98% and 7.61%,

respectively.

Table 4.25: Local VMT Estimates for Low LNR Networks: Logarithmic Model

ID ln(VMTL) ln(VMTL)(Model) VMTL VMTL(Model) Error (%)
8 7.6041 7.4507 2006.39 1720.98 14.22%
10 7.7215 8.4746 2256.31 4791.66 112.37%
12 8.4640 8.6248 4740.84 5568.22 17.45%
13 9.5894 8.8818 14608.41 7200.08 50.71%
14 7.8685 7.8969 2613.75 2689.06 2.88%
31 8.2079 7.7764 3670.00 2383.74 35.05%
32 9.5127 8.6060 13530.00 5464.50 59.61%
33 7.7706 7.9272 2370.00 2771.66 16.95%
34 7.9204 8.6077 2753.00 5473.74 98.83%
35 7.9047 8.3179 2710.00 4096.52 51.16%

Average Error= 45.92%

4.6.2.2 Collector Road VMT vs. Minor Arterial Road VMT

Using the same example networks for each interval, the regression equations used

to estimate collector road VMT are listed below.

ln(VMTC) =


1.00ln(VMTMA)− 0.20lnρ4 + 0.29lnρ3 − 0.67lnρ2 − 3.64, LNR ∈ (0, 1.4]

−25.15ln(VMTMA)− 13.67lnρ4 − 12.11lnρ3 + 0.14lnρ2 + 193.02, LNR ∈ (1.4, 2.0]

1.00ln(VMTMA)− 0.39lnρ4 + 0.46lnρ3 − 0.60lnρ2 − 3.94. LNR ∈ (2.0,∞)
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Table 4.26: Local VMT Estimates for Medium LNR Networks: Logarithmic Model

ID ln(VMTL) ln(VMTL)(Model) VMTL VMTL(Model) Error (%)
5 7.3377 7.5407 1537.15 1883.06 22.50%
6 7.4419 7.3839 1705.91 1609.92 5.63%
7 7.5366 7.3615 1875.50 1574.21 16.06%
9 7.5671 7.5843 1933.45 1967.00 1.74%
16 7.5543 7.5980 1908.87 1994.20 4.47%
21 7.8090 7.8934 2462.78 2679.66 8.81%
22 7.9297 7.9209 2778.49 2754.29 0.87%
24 8.0393 7.9490 3100.33 2832.78 8.63%
25 8.2056 7.9778 3661.29 2915.57 20.37%
26 7.5369 7.4296 1876.07 1685.08 10.18%
27 7.6944 7.4834 2196.07 1778.34 19.02%
28 7.9217 7.5395 2756.47 1880.83 31.77%
29 7.0412 7.4727 1142.77 1759.42 53.96%
30 7.2082 7.6887 1350.51 2183.47 61.68%

Average Error= 18.98%

Table 4.27: Local VMT Estimates for High LNR Networks: Logarithmic Model

ID ln(VMTL) ln(VMTL)(Model) VMTL VMTL(Model) Error (%)
1 7.3758 7.4385 1596.90 1700.25 6.47%
2 7.2917 7.2651 1468.07 1429.49 2.63%
3 7.1332 7.1303 1252.86 1249.26 0.29%
4 6.9517 6.9274 1044.92 1019.84 2.40%
11 7.7389 7.6156 2295.96 2029.64 11.60%
15 7.3757 7.4961 1596.70 1800.95 12.79%
17 7.2362 7.2767 1388.79 1446.16 4.13%
18 7.0895 7.2285 1199.35 1378.21 14.91%
19 7.1807 7.2230 1313.84 1370.63 4.32%
20 7.5132 7.2648 1832.15 1429.10 22.00%
23 7.3518 7.3729 1559.06 1592.31 2.13%

Average Error= 7.61%

The R2 for these three intervals are 0.98, 0.98, and 0.99, respectively. It shows
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that the logarithmic regression model works well for all 35 networks when estimating

collector road VMT given minor arterial road VMT. The average relative errors of

all three intervals are also given (shown in Table 4.28, Table 4.29, and Table 4.30).

Table 4.28: Collector VMT Estimates for Low LNR Networks: Logarithmic Model

ID ln(VMTL) ln(VMTL)(Model) VMTL VMTL(Model) Error (%)
8 9.6975 9.7281 16276.20 16782.65 3.11%
10 9.7581 9.7281 17293.29 16782.65 2.95%
12 9.4182 9.4622 12310.20 12864.47 4.50%
13 9.5236 9.4622 13678.66 12864.47 5.95%
14 9.4592 9.4622 12825.87 12864.47 0.30%
31 9.7573 9.7573 17280.00 17280.55 0.00%
32 9.7582 9.7281 17294.65 16782.65 2.96%
33 9.4478 9.4622 12680.00 12864.47 1.45%
34 9.7011 9.7011 16335.00 16335.52 0.00%
35 9.6986 9.7281 16294.65 16782.65 2.99%

Average Error= 2.42%

4.7 Distance Ratio Measure

The author also defines another geographic measure called distance ratio as well.

Distance Ratio (DR) is calculated based on the following equation.

DR =
Avg Assumed Travel Distance

Avg Actual Travel Distance
. (4.19)

This measurement shows how well the model assumption performs when estimat-

ing the actual local distance traveled within a local network, so it is actually used to

test the proposed models– not for connectivity purpose.

From previous analysis, the average assumed local distance traveled is L
6

+ d
4
. For

all the 35 local networks, L is equal to 8 according to the simulation setting. d is
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Table 4.29: Collector VMT Estimates for Medium LNR Networks: Logarithmic
Model

ID ln(VMTL) ln(VMTL)(Model) VMTL VMTL(Model) Error (%)
5 9.7132 9.7137 16534.01 16542.18 0.05%
6 9.7063 9.6986 16420.99 16294.55 0.77%
7 9.7000 9.6986 16317.83 16294.55 0.14%
9 9.6880 9.6986 16122.20 16294.55 1.07%
16 9.4477 9.4482 12678.84 12684.87 0.05%
21 9.7572 9.7577 17278.63 17286.95 0.05%
22 9.7572 9.7577 17278.63 17286.95 0.05%
24 9.7572 9.7577 17278.63 17286.95 0.05%
25 9.7572 9.7577 17278.63 17286.95 0.05%
26 9.6852 9.6972 16078.23 16272.13 1.21%
27 9.6852 9.6972 16078.23 16272.13 1.21%
28 9.6852 9.6972 16078.23 16272.13 1.21%
29 9.7203 9.6972 16651.91 16272.13 2.28%
30 9.7077 9.6972 16443.75 16272.13 1.04%

Average Error= 0.66%

Table 4.30: Collector VMT Estimates for High LNR Networks: Logarithmic Model

ID ln(VMTL) ln(VMTL)(Model ) VMTL VMTL(Model) Error (%)
1 9.6837 9.7013 16054.02 16339.08 1.78%
2 9.6932 9.7013 16206.90 16339.08 0.82%
3 9.7091 9.7013 16467.47 16339.08 0.78%
4 9.7192 9.7013 16634.29 16339.08 1.77%
11 9.4737 9.4532 13013.15 12749.12 2.03%
15 9.4327 9.4532 12490.54 12749.12 2.07%
17 9.4607 9.4615 12844.47 12855.00 0.08%
18 9.4692 9.4615 12954.54 12855.00 0.77%
19 9.4503 9.4615 12712.41 12855.00 1.12%
20 9.4658 9.4615 12910.06 12855.00 0.43%
23 9.6852 9.6852 16078.23 16078.17 0.00%

Average Error= 1.06%

easy to obtain for grid networks (ID=1, 2, 3, 4) rather than for other networks. So,

according to the definition of local road density (ρ1), an equation can be found to
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represent d in non-grid networks. Equation 4.20 shows the result.

ρ1 =
2

d
=

Total Local Road Length

Area

=⇒2

d
=

Total Local Road Length

64

=⇒d =
128

Total Local Road Length
. (4.20)

Table 4.31 shows the Distance Ratio Results for all 35 local networks.

The average actual travel distance is calculated using the local VMT divided by

640, which is very straightforward. The Distance Ratio is within (0, 1], and higher

value means the assumption made in the derivation about the average local distance

traveled fits a certain local network better.

Based on the distribution of DR among 35 networks, the author divided them

into three intervals: (0, 0.5], (0.5, 0.7], and (0.7, 1.0]. If the DR is large, it means that

the estimated travel distance is very close to actual travel distance, which can prove

the accuracy of the proposed models in these certain patterns as well. However, if

the DR is very small, it indicates that travelers actually have to go a much longer

distance to leave the community than assumed. The specific classification results are

shown in Table 4.32.

4.7.1 Density Ratio Model

The low DR interval includes 13 example networks (ID=12 → 14, 21, 22, 24 →

28, 31 → 35), the medium DR interval includes 11 example networks (ID=6 →

9, 10, 11, 16, 20, 23, 26, 33), and the high DR interval includes 11 example networks

(ID=1→ 5, 15, 17→ 19, 29, 30).
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Table 4.31: Distance Ratio of 35 Networks

ID VMTL Actual Travel Distance Estimated Travel Distance Distance Ratio
1 1596.90 2.50 1.83 0.73
2 1468.07 2.29 1.73 0.76
3 1252.86 1.96 1.67 0.85
4 1044.92 1.63 1.58 0.97
5 1537.15 2.40 1.76 0.73
6 1705.91 2.67 1.85 0.69
7 1875.50 2.93 1.84 0.63
8 2006.39 3.13 1.83 0.58
9 1933.45 3.02 1.94 0.64
10 2256.31 3.53 1.96 0.56
11 2295.96 3.59 1.87 0.52
12 4740.84 7.41 2.03 0.27
13 14608.41 22.83 2.00 0.09
14 2613.75 4.08 1.87 0.46
15 1596.70 2.49 1.77 0.71
16 1908.87 2.98 1.70 0.57
17 1388.79 2.17 1.67 0.77
18 1199.35 1.87 1.64 0.88
19 1313.84 2.05 1.64 0.80
20 1832.15 2.86 1.66 0.58
21 2462.78 3.85 1.68 0.44
22 2778.49 4.34 1.69 0.39
23 1559.06 2.44 1.66 0.68
24 3100.33 4.84 1.70 0.35
25 3661.29 5.72 1.71 0.30
26 1876.07 2.93 1.67 0.57
27 2196.07 3.43 1.69 0.49
28 2756.47 4.31 1.70 0.40
29 1142.77 1.79 1.68 0.94
30 1350.51 2.11 1.75 0.83
31 3670.00 5.73 2.13 0.37
32 13530.00 21.14 1.99 0.09
33 2370.00 3.70 1.89 0.51
34 2753.00 4.30 2.11 0.49
35 2710.00 4.23 1.97 0.47

4.7.1.1 Local Road VMT vs. Collector Road VMT

Following the same procedure, the regression equations for the three different

intervals are listed as follows.
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Table 4.32: Network Classifications: DR

DR ∈ (0, 0.5] DR ∈ (0.5, 0.7] DR ∈ (0.7, 1.0]
ID DR ID DR ID DR
13 0.09 33 0.51 15 0.71
32 0.09 11 0.52 5 0.73
12 0.27 10 0.56 1 0.73
25 0.30 16 0.57 2 0.76
24 0.35 26 0.57 17 0.77
31 0.37 20 0.58 19 0.80
22 0.39 8 0.58 30 0.83
28 0.40 7 0.63 3 0.85
21 0.44 9 0.64 18 0.88
14 0.46 23 0.68 29 0.94
35 0.47 6 0.69 4 0.97
34 0.49
27 0.49

VMTL
VMTC

=


−2.09ρ3

ρ2
+ 14.16ρ3

ρ1
+ 0.30, DR ∈ (0, 0.5]

−0.01ρ3
ρ2

+ 3.25ρ3
ρ1

+ 0.07, DR ∈ (0.5, 0.7]

0.15ρ3
ρ2

+ 2.43ρ3
ρ1

+ 0.03. DR ∈ (0.7, 1.0]

The R2 for the regression model within the first interval is only 0.26, which shows

that the proposed model is not accurate in estimating the local VMT of networks

wherein the actual local distance traveled is far from the estimated value. This is

easy to understand since the initial assumption is not right for such networks. Also,

the R2 for the second interval is 0.72 and 0.65 for the third interval.

So, the relative error needs to be calculated again to determine whether the

regression model works well or not. The specific comparison results are shown in

Table 4.33, Table 4.34, and Table 4.35.

The average relative error for the first interval is 56.46% and is not convincing.

However, the average relative errors of the two other intervals are 8.33% and 10.36%,
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Table 4.33: Local VMT Estimates for Low DR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
12 0.3851 0.4859 26.16%
13 1.0680 0.4640 56.55%
14 0.2038 0.3501 71.81%
21 0.1425 0.1352 5.15%
22 0.1608 0.1412 12.21%
24 0.1794 0.1474 17.85%
25 0.2119 0.1540 27.35%
27 0.1366 0.1785 30.69%
28 0.1714 0.1878 9.57%
31 0.2124 0.4317 103.27%
32 0.7823 0.4287 45.20%
34 0.1685 0.4610 173.56%
35 0.1663 0.4235 154.67%

Average Error= 56.46%

Table 4.34: Local VMT Estimates for Medium DR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
6 0.1039 0.1184 12.27%
7 0.1149 0.1177 2.32%
8 0.1233 0.1173 5.06%
9 0.1199 0.1270 5.55%
10 0.1305 0.1291 1.08%
11 0.1764 0.1792 1.57%
16 0.1506 0.1264 19.09%
20 0.1419 0.1209 17.41%
23 0.0970 0.1276 24.01%
26 0.1167 0.1155 1.04%
33 0.1869 0.1829 2.21%

Average Error= 8.33%

which are all quite small. So, the proposed model works well for networks where the

actual local distance traveled is very close to the estimated value.
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Table 4.35: Local Local VMT Estimates for High DR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
1 0.0995 0.1038 4.14%
2 0.0906 0.0886 2.27%
3 0.0761 0.0795 4.25%
4 0.0628 0.0690 9.01%
5 0.0930 0.0815 14.10%
15 0.1278 0.1278 0.06%
17 0.1081 0.0916 18.10%
19 0.1034 0.0883 17.03%
29 0.0686 0.0877 21.75%
30 0.0821 0.0943 12.95%

Average Error= 10.36%

4.7.1.2 Collector Road VMT vs. Minor Arterial Road VMT

To obtain regression equations for estimating collector road VMT, use the fol-

lowing equations:

VMTC
VMTMA

=


−0.23ρ4

ρ3
+ 1.33ρ4

ρ2
+ 0.10, DR ∈ (0, 0.5]

−0.23ρ4
ρ3

+ 1.06ρ4
ρ2

+ 0.10, DR ∈ (0.5, 0.7]

−0.10ρ4
ρ3

+ 1.00ρ4
ρ2

+ 0.08. DR ∈ (0.7, 1.0]

The R2 for the above three regression equations are 0.85, 0.96, and 0.87, re-

spectively. The results show that the proposed regression model is very accurate in

estimating the collector road VMT given the minor arterial road VMT.

4.7.2 Logarithmic Model

The low DR interval includes 13 example networks (ID=12 → 14, 21, 22, 24 →

28, 31 → 35); the medium DR interval includes 11 example networks (ID=6 →

9, 10, 11, 16, 20, 23, 26, 33), and the high DR interval includes 11 example networks

(ID=1→ 5, 15, 17→ 19, 29, 30).
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Table 4.36: Collector VMT Estimates for Low DR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
12 0.0912 0.1041 14.18%
13 0.1013 0.1041 2.76%
14 0.0950 0.1041 9.59%
21 0.1106 0.1044 5.58%
22 0.1106 0.1044 5.58%
24 0.1106 0.1044 5.58%
25 0.1106 0.1044 5.58%
27 0.0894 0.0917 2.59%
28 0.0894 0.0917 2.59%
31 0.0961 0.0917 4.54%
32 0.0665 0.0644 3.10%
34 0.1045 0.1044 0.13%
35 0.0626 0.0644 2.85%

Average Error= 4.97%

Table 4.37: Collector VMT Estimates for Medium DR Networks: Density Ratio
Model

ID Ratio Model Result Error (%)
6 0.0631 0.0634 0.36%
7 0.0627 0.0634 1.00%
8 0.0626 0.0634 1.26%
9 0.0620 0.0634 2.22%
10 0.0665 0.0634 4.70%
11 0.0964 0.0977 1.32%
16 0.0817 0.0847 3.71%
20 0.0831 0.0847 1.85%
23 0.1029 0.0979 4.87%
26 0.0894 0.0849 4.99%
33 0.0939 0.0977 3.98%

Average Error= 2.75%

4.7.2.1 Local Road VMT vs. Collector Road VMT

Then, the author uses the logarithmic method to develop the regression equations

for the three intervals, which are shown as follows.
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Table 4.38: Collector VMT Estimates for High DR Networks: Density Ratio Model

ID Ratio Model Result Error (%)
1 0.0709 0.0723 2.00%
2 0.0716 0.0723 1.04%
3 0.0728 0.0723 0.56%
4 0.0735 0.0723 1.56%
5 0.0731 0.0723 0.96%
15 0.0925 0.0926 0.11%
17 0.0827 0.0870 5.21%
19 0.0819 0.0870 6.30%
29 0.0926 0.0872 5.74%
30 0.0914 0.0872 4.54%

Average Error= 2.80%

ln(VMTL) =


1.30ln(VMTC) + 1.19lnρ3 + 2.19lnρ2 − 0.55lnρ1 + 4.34, DR ∈ (0, 0.5]

−0.74ln(VMTC)− 0.36lnρ3 − 0.72lnρ2 − 0.72lnρ1 + 12.12, DR ∈ (0.5, 0.7]

−0.60ln(VMTC) + 0.02lnρ3 + 0.03lnρ2 − 0.49lnρ1 + 13.25. DR ∈ (0.7, 1.0]

The R2 of the regression equation for the first interval is only 0.16 with an average

relative error of 36.20% (as shown in Table 4.39), so that this logarithmic regression

model does not fit the networks very well where actual local distance traveled is far

away from the estimated value. The R2 for the other two intervals are 0.80 and 0.91.

Specific results are shown in Table 4.40 and Table 4.41. The average relative errors

of these two intervals are only 4.37% and 3.79%, respectively.

From the results shown in the above tables, the average relative errors are very

small, so the logarithmic regression model best fits the networks where actual local

distance traveled is very close to the estimated value.
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Table 4.39: Local VMT Estimates for Low DR Networks: Logarithmic Model

ID ln(VMTL) ln(VMTL)(Model) VMTL VMTL(Model) Error (%)
12 8.4640 8.5043 4740.84 4935.89 4.11%
13 9.5894 8.6215 14608.41 5549.92 62.01%
14 7.8685 8.4209 2613.75 4541.14 73.74%
21 7.8090 8.0356 2462.78 3089.07 25.43%
22 7.9297 8.0478 2778.49 3126.77 12.53%
24 8.0393 8.0602 3100.33 3165.81 2.11%
25 8.2056 8.0729 3661.29 3206.34 12.43%
27 7.6944 7.6045 2196.07 2007.16 8.60%
28 7.9217 7.6292 2756.47 2057.45 25.36%
31 8.2079 8.1430 3670.00 3439.10 6.29%
32 9.5127 8.8080 13530.00 6687.21 50.57%
34 7.9204 8.4001 2753.00 4447.34 61.55%
35 7.9047 8.7194 2710.00 6120.72 125.86%

Average Error= 36.20%

Table 4.40: Local VMT Estimates for Medium DR Networks: Logarithmic Model

ID ln(VMTL) ln(VMTL)(Model) VMTL VMTL(Model) Error (%)
6 7.4419 7.5303 1705.91 1863.72 9.25%
7 7.5366 7.5236 1875.50 1851.17 1.30%
8 7.6041 7.5203 2006.39 1845.08 8.04%
9 7.5671 7.6648 1933.45 2131.90 10.26%
10 7.7215 7.6396 2256.31 2078.82 7.87%
11 7.7389 7.7271 2295.96 2268.92 1.18%
16 7.5543 7.5723 1908.87 1943.65 1.82%
20 7.5132 7.4828 1832.15 1777.28 3.00%
23 7.3518 7.3868 1559.06 1614.48 3.55%
26 7.5369 7.5196 1876.07 1843.90 1.71%
33 7.7706 7.7700 2370.00 2368.51 0.06%

Average Error= 4.37%

4.7.2.2 Collector Road VMT vs. Minor Arterial Road VMT

Following the same procedure, the regression equations estimating collector road

VMT are listed below.
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Table 4.41: Local VMT Estimates for High DR Networks: Logarithmic Model

ID ln(VMTL) ln(VMTL)(Model) VMTL VMTL(Model) Error (%)
1 7.3758 7.4351 1596.90 1694.43 6.11%
2 7.2917 7.2893 1468.07 1464.58 0.24%
3 7.1332 7.1710 1252.86 1301.16 3.86%
4 6.9517 7.0011 1044.92 1097.82 5.06%
5 7.3377 7.1949 1537.15 1332.67 13.30%
15 7.3757 7.3786 1596.70 1601.41 0.29%
17 7.2362 7.2232 1388.79 1370.82 1.29%
19 7.1807 7.1859 1313.84 1320.66 0.52%
29 7.0412 7.0792 1142.77 1187.00 3.87%
30 7.2082 7.1737 1350.51 1304.64 3.40%

Average Error= 3.79%

ln(VMTC) =


ln(VMTMA)− 0.73lnρ4 + 0.62lnρ3 − 0.71lnρ2 − 5.41, DR ∈ (0, 0.5]

3.84ln(VMTMA) + 0.10lnρ4 + 1.88lnρ3 − 0.66lnρ2 − 25.36, DR ∈ (0.5, 0.7]

ln(VMTMA)− 0.43lnρ4 + 0.41lnρ3 − 0.67lnρ2 − 4.50. DR ∈ (0.7, 1.0]

The R2 for these three intervals are 0.92, 0.97, and 0.99, respectively. It shows

that the logarithmic regression model works well for all 35 networks when estimating

collector road VMT given minor arterial road VMT. The average relative errors of

all three intervals are also given (shown in Table 4.42, Table 4.43, and Table 4.44).

4.8 Summary

In this chapter, the R2 and relative error of the specific regression model under

different classification measures are generated. Figure 4.13a, Figure 4.13b, Figure

4.13c, and Figure 4.13d show detailed comparisons between the different classification

measures. Here the Distance Ratio is still categorized under the connectivity level

just for the explanatory purpose and conveniences.
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Table 4.42: Collector VMT Estimates for Low DR Networks: Logarithmic Model

ID ln(VMTC) ln(VMTC)(Model) VMTC VMTC(Model) Error (%)
12 9.4182 9.4670 12310.20 12926.19 5.00%
13 9.5236 9.4670 13678.66 12926.19 5.50%
14 9.4592 9.4670 12825.87 12926.19 0.78%
21 9.7572 9.7460 17278.63 17085.86 1.12%
22 9.7572 9.7460 17278.63 17085.86 1.12%
24 9.7572 9.7460 17278.63 17085.86 1.12%
25 9.7572 9.7460 17278.63 17085.86 1.12%
27 9.6852 9.7093 16078.23 16469.45 2.43%
28 9.6852 9.7093 16078.23 16469.45 2.43%
31 9.7573 9.7093 17280.00 16469.45 4.69%
32 9.7582 9.7284 17294.65 16787.44 2.93%
34 9.7011 9.7460 16335.00 17085.86 4.60%
35 9.6986 9.7284 16294.65 16787.44 3.02%

Average Error= 2.76%

Table 4.43: Collector VMT Estimates for Medium DR Networks: Logarithmic Model

ID ln(VMTC) ln(VMTC)(Model) VMTC VMTC(Model) Error (%)
6 9.706316 9.7100 16420.99 16481.03 0.37%
7 9.700013 9.7100 16317.83 16481.03 1.00%
8 9.697459 9.7100 16276.20 16481.03 1.26%
9 9.687953 9.7100 16122.20 16481.03 2.23%
10 9.758074 9.7100 17293.29 16481.03 4.70%
11 9.473716 9.4608 13013.15 12845.53 1.29%
16 9.44769 9.4567 12678.84 12793.96 0.91%
20 9.465762 9.4567 12910.06 12793.96 0.90%
23 9.685222 9.6852 16078.23 16078.27 0.00%
26 9.685222 9.6852 16078.23 16078.26 0.00%
33 9.447781 9.4608 12680.00 12845.53 1.31%

Average Error= 1.27%

Based on the results from the regression analysis and the theoretical models (den-

sity ratio model and logarithmic model), all models performed well in estimating

collector road VMT based on accurate minor arterial road VMT data. For estimat-
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Table 4.44: Collector VMT Estimates for High DR Networks: Logarithmic Model

ID ln(VMTC) ln(VMTC)(Model) VMTC VMTC(Model) Error (%)
1 9.6837 9.7037 16054.02 16378.04 2.02%
2 9.6932 9.7037 16206.90 16378.04 1.06%
3 9.7091 9.7037 16467.47 16378.04 0.54%
4 9.7192 9.7037 16634.29 16378.04 1.54%
5 9.7132 9.7037 16534.01 16378.04 0.94%
15 9.4327 9.4327 12490.54 12490.64 0.00%
17 9.4607 9.4555 12844.47 12778.37 0.51%
19 9.4503 9.4555 12712.41 12778.37 0.52%
29 9.7203 9.7140 16651.91 16547.65 0.63%
30 9.7077 9.7140 16443.75 16547.65 0.63%

Average Error= 0.84%

(a) R2 of Density Ratio Model
(b) Relative Errors of Density Ratio Model

(c) R2 of Logarithmic Model (d) Relative Errors of Logarithmic Model

Figure 4.13: Comparison Graphs

ing local road VMT, the theoretical models are still robust for medium and high

connectivity networks, but not for low connectivity networks. The reason is that the
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local VMT of low connectivity networks (CNR ≤ 0.5) change dramatically related

to the specific patterns. The conclusions are almost the same in the cases of Distance

Ratio measurement and Link-Node Ratio measurement.

Overall, the logarithmic models perform better than the density ratio models in

estimating both local and collector road VMT.
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5. PRACTICAL APPLICATIONS OF THE METHOD

In this chapter, proposed models in this thesis will be tested under real situations

to assess their applicability. Then a framework is proposed for the models including

data needs and data use as well as a procedure of practical application.

5.1 Case Studies

5.1.1 Minneapolis-Hennepin County

In the first case, the author used the Hennepin County Urban VMT data [26]

(2007-2013) obtained from the Minnesota Department of Transportation (MnDOT)

to test the proposed models derived in the last chapter. Minneapolis is the largest

city in the state of Minnesota, which is also the county seat of Hennepin County.

Moreover, the roadway structure of Minneapolis is mainly in a grid network while

most of the simulation local networks are also in grid networks. It is assumed that

the overall roadway structure of Hennepin County can be represented by the roadway

patterns of Minneapolis.

The basic method used by the Minnesota DOT to calculate VMT is multiplying

average annual daily traffic (AADT) by the centerline mileages of each roadway

segment under consideration. So the VMT data is the average vehicle miles per day

for all vehicles. The Minnesota DOT obtained the AADT for unsampled roadway

networks (minor collector or local roads) from three different sources:

• Former county road: If the minor collector or local road used to be a county

road, it may have an AADT assigned to it, which came from an earlier time

when it was part of the traffic count program.

• A default value derived from limited sampling over 25 years ago for use with
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new roadways.

• Estimates or special counts based on one-time counts taken for various pur-

poses.

This thesis’s proposed regression models were tested based on actual VMT data

to see how well they work. Figure 5.1 shows the map of Hennepin County (red area)

captured from a Google Maps and Figure 5.2 is an example of roadway structures in

Minneapolis. The figure shows that the roadway structure in Minneapolis is a very

typical grid network.

After investigating all the three connectivity categories, the author found that

the medium connectivity category models are most accurate in estimating local and

collector road VMT. So, the author used the following equation to estimate local

road VMT, which was derived and originally placed in Chapter 4 based on LNR.

VMTL
VMTC

= 0.20
ρ3
ρ2

+ 8.57
ρ3
ρ1
− 0.04. (5.1)

The detailed comparison results are shown in Table 5.1. Columns 2 and 3 are

the roadway density ratios, and column 4 is the actual local VMT data of Hennepin

County.

Based on the results shown in the above table, the proposed model derived from

simulation data works quite well in real situations with an average error of only

5.77%.

Next, the collector road VMT estimation model was tested. The specific format

of the equation was derived based on the distance ratio (DR) in Chapter 4.

VMTC
VMTMA

= −0.23
ρ4
ρ3

+ 1.06
ρ4
ρ2

+ 0.10. (5.2)
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Figure 5.1: Map of Hennepin County. (Source: Google Maps, 2015 [27])

The comparison results of collector road VMT estimations were obtained which

are shown in Table 5.2.

The average error is 43.40 %, which is not as good as local road VMT estimations.

If calibrating and adjusting the parameters according to the real situation, there is

a very high possibility that a much more accurate VMT estimation data can be

obtained on lower functional classes of roadways.

For example, if changing the noise parameter from 0.10 to (−0.03) without mod-

ifying the parameters of the two variables, the average error will drop dramatically
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Figure 5.2: Example Layout of Roadway Structure in Minneapolis. (Source: Google
Maps, 2015 [28])

to 8.94%. The detailed results are shown in Table 5.3.

Moreover, based on the results of Minneapolis, it is reasonable to suggest that

the proposed models will work well for some major cities like Minneapolis, which

also have very typical grid road network patterns. However, even though some

big cities have grid road networks, the proposed models may not work well. For

example, in New York, a very large percentage of traffic is transit traffic, so the

traffic characteristics on that city’s road network will be quite different from others

even though the road network is in the grid format.
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Table 5.1: Urban Local Road VMT Estimation of Hennepin County

Year ρ3
ρ2

ρ3
ρ1

VMTL VMTL(Model) Error (%)

2007 1.0828 0.1583 3231129.00 3682058.17 13.96%
2008 1.1085 0.1618 3366306.00 3537267.67 5.08%
2009 1.1325 0.1641 3367607.00 3549535.86 5.40%
2010 1.1562 0.1642 3382411.00 3705784.97 9.56%
2011 1.2250 0.1635 3498908.00 3483609.52 0.44%
2012 1.2304 0.1627 3505371.00 3419444.26 2.45%
2013 1.2278 0.1607 3505886.00 3382526.20 3.52%

Average 5.77%

Table 5.2: Urban Collector Road VMT Estimation of Hennepin County

Year ρ4
ρ3

ρ4
ρ2

VMTC VMTC(Model) Error (%)

2006 0.3793 0.4208 2386097.00 3071046.62 28.71%
2007 0.3850 0.4169 2401312.00 3074651.91 28.04%
2008 0.3742 0.4148 2255186.00 3192666.20 41.57%
2009 0.3723 0.4304 2318729.00 3232083.97 37.07%
2010 0.3723 0.4304 2318729.00 3178364.04 37.07%
2011 0.3786 0.4638 2169106.00 3391105.17 56.34%
2012 0.3767 0.4634 2136616.00 3368225.47 57.64%
2013 0.3781 0.4643 2136972.00 3435617.07 60.77%

Average 43.40%

5.1.2 Bryan/College Station-Brazos County

In the second case study, the VMT data of College Station and Bryan are used to

test the proposed models. Both cities are located in Brazos County, TX. Figure 5.3

is a geographical map of the Brazos County (red area) captured from Google Maps.

The 2013 VMT data shown in Table 5.4 was obtained from the Bryan-College

Station (BCS) metropolitan planning organization (MPO). Such VMT data is cal-

culated based on the RoadHighway Inventory Network (RHiNo) dataset owned by

TXDOT, which has the Average Daily Traffic (ADT) for the whole of Brazos County
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Table 5.3: Urban Collector Road VMT Estimation (modified) of Hennepin County

Year ρ4
ρ3

ρ4
ρ2

VMTC VMTC(Model) Error (%)

2006 0.3793 0.4208 2386097.00 2200952.85 7.76%
2007 0.3850 0.4169 2401312.00 2193059.64 8.67%
2008 0.3742 0.4148 2255186.00 2277751.16 1.00%
2009 0.3723 0.4304 2318729.00 2339297.79 0.79%
2010 0.3723 0.4304 2318729.00 2300416.71 0.79%
2011 0.3786 0.4638 2169106.00 2517359.44 16.06%
2012 0.3767 0.4634 2136616.00 2500497.57 17.03%
2013 0.3781 0.4643 2136972.00 2551491.75 19.40%

Average 8.94%

for 2013. The method to calculate VMT for different classes of roadways is multi-

plying ADT by each roadway segment and adding them together. But this dataset

is not open to the public. The total mileage of each roadway classification is also

included in the table as well as roadway length and VMT of the rest areas in Brazos

County except for Bryan and College Station. All the VMT data in the table is the

average VMT of each roadway classification per day.

After investigating all the three connectivity categories, medium connectivity

category models proved to be most accurate in estimating local and collector road

VMT in this case. For calculating urban local VMT estimates, the author used the

following Equation 5.3, which is derived in Chapter 4 based on DR. Also, Equation

5.2 is used to calculate urban collector road VMT estimates. Here, the author also

only considered the urban area, because the assumption of uniform traffic distribution

may not hold anymore in rural areas.

VMTL
VMTC

= −0.01
ρ3
ρ2

+ 3.25
ρ3
ρ1

+ 0.07. (5.3)
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Figure 5.3: Map of Brazos County. (Source: Google Maps, 2015 [29])

The detail comparison results are shown in Table 5.5. Based on the estimation

results shown in the table, it is very conspicuous that the average errors are much

larger compared with Minnesota’s recorded error rates. The reason is that the road

network patterns in the BCS area are not in grid network, so the proposed equations

are not robust in this case. However, this does not necessarily indicate that the

proposed models are inapplicable for non-grid road networks, since the author only

tested very limited data without recalibrating parameters. Figure 5.4 shows some

typical road network patterns in the BCS area. The local road networks in the BCS
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Table 5.4: Total Length and Average Daily VMT of Different Roadway Classifica-
tions

College Station Bryan Brazos County
Mileage VMT Mileage VMT Mileage VMT

Rural
Local

0.71 211.33 1.71 158.37 311.64 41177.45

Rural
Major

Collector

2.70 24851.89 0.40 586.92 98.98 158428.99

Rural
Minor

Arterial

4.51 16916.51 0.02 9.42 22.90 130233.19

Rural
Minor

Collector

94.89 64033.78

Rural
Principal
Arterial

1.33 34283.05 0.01 235.39 36.46 550519.79

Urban
Collector

54.01 338799.66 65.59 196072.19 5.73 13471.42

Urban
Local

126.50 45778.52 154.08 49200.13 26.09 5494.95

Urban
Minor

Arterial

27.58 207388.15 29.32 202045.34 8.27 15726.23

Urban
Principal
Arterial
(OF&E)

10.15 373195.83 11.19 334811.62 1.68 34787.24

Urban
Principal
Arterial
(Other)

30.69 717398.13 45.55 620404.44 6.28 107021.21

area are quite different from each other but identical patterns could not be shown

based on these examples.
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Table 5.5: Urban Local and Collector Road VMT Estimations of Different Area

VMTL VMTL(Model) Error
(%)

VMTC VMTC(Model) Error
(%)

College
Station:
Urban

45778.52 262057.31 472.45% 338799.66 116339.74 65.66%

Bryan:
Urban

49200.13 134093.62 172.55% 196072.19 115526.55 41.08%

Brazos
County:
Urban

5494.946 14623.43 166.13% 13471.42 21237.56 57.65%

Average 270.37% 54.80%

5.2 Practical Application Procedure

The basic assumption in the analysis is that trips are distributed uniformly in

the local neighborhood. This procedure is mainly intended for estimating the VMT

on lower functional classes of urban roadways at the city level. For cities with

similar grid road network patterns as used in this analysis, such as Minneapolis, the

equations derived can be applied directly. However, for other cities with irregular

road network patterns or unevenly distributed demand, all the parameters in the

proposed equations had to be recalibrated. Following is the application procedure

for cities with grid road network patterns, which were used to obtain local VMT

estimates. Four steps were used to establish the equations derived in this thesis

which are listed as follows.

1. Collect characteristic information about local communities, such as number of

links and nodes, to determine average connectivity level (e.g., low, medium,

or high) for all the local communities in this city (the specific classification

criteria are mentioned in Chapter 4). The boundaries of the local commu-

nity were determined by city administration, a DOT or Metropolitan Planning
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Figure 5.4: Local Road Network Pattern Examples in BCS Area. (Source: Google
Maps, 2015 [30])

Organization (MPO) based on actual situations.

2. For cities with grid road network patterns, test the three proposed equations

(density ratio or logarithmic equation) obtained by using different connectivity

measures from the connectivity category determined in step 1. The specific

formats of the proposed models that need to be tested can be found in Chapter

4. It is assumed that enough local and collector road VMT data are available

to calibrate the regression equation, as well as the total length of each roadway
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classification.

3. Choose the regression equation with the smallest relative error from step 2

and recalibrate the noise parameter by trial and error to obtain a regression

equation that can generate the most accurate local VMT estimates. The noise

parameter is used as a changeable variable to make the proposed regression

equation fit various real situations.

4. Apply the calibrated regression equation to estimate the future (such an equa-

tion can be used for next several years) local VMT by using explanatory vari-

ables of higher classification road VMT and corresponding density data.

For cities with irregular (non-grid) road network patterns, the author cannot

suggest any uniform procedure to estimate local VMT. This is because that unlike

grid road networks, there are too many different patterns for non-grid road networks,

and each pattern may need a specific model to estimate its VMT. So, the road

network of a certain city needs to be investigated to derive specific regression models

that can estimate its VMT accurately. The proposed regression equations from this

study did not work well for irregular road network patterns as mentioned before.

Estimating collector road VMT by using a higher class road VMT can be con-

ducted by following a similar procedure for grid network cities.
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6. CONCLUSION AND FURTHER DISCUSSION

This study proposed a new perspective and new models to estimate the VMT on

lower functional classes of roadways in grid networks by using higher class roadway

VMT, and by using roadway density characteristics. By using idealistic shapes of

communities, the author demonstrated that the VMT ratio between different classes

of roadways has an inherent correlation with roadway densities, which allows us to

use the actual VMT data for higher classes of roadways and use the roadway densities

of relevant functional classes to estimate the total VMT on lower classes of roadways

in grid networks. However, for non-grid networks, this method has not proven to be

reasonable so far, and needs further investigation.

Subsequently, the author presented two types of regression models, one using

density ratios as explanatory variables and the other using logarithmic values of

roadway densities. In the former case, the ratio of VMT was the dependent variable

while in the latter case, it was the VMT ratio of logarithmic value. The author set

up several simulation networks to verify the proposed models using community road

patterns categorized according to three different measures. The author also found

that the proposed models worked well for medium and high connectivity networks,

and worked poorly for low connectivity networks. Comparatively, the equation using

logarithmic terms provided a better result in every numerical test.

The author also verified proposed regression equations by real examples, and ap-

plied the proposed regression equations directly in both cases. However, the two

cases used different equations (Equation 5.1 for the Minneapolis case and Equation

5.3 for the Bryan/College Station case). The results show that the proposed regres-

sion models worked very well in estimating urban local VMT of grid networks (e.g.,
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Minneapolis) with a relative error of about 6%. However, the relative error was much

bigger in estimating local VMT of non-grid networks (e.g., Bryan/College Station)

with a relative error of more than 50%. The VMT and roadway length information

were provided by Minneapolis DOT and Bryan/College Station MPO.

Furthermore, the findings suggested a promising procedure to city or state (with

grid road networks) DOTs for VMT estimation on lower functional classes of road-

ways. Roadway densities as well as VMT for higher functional classes of roadways are

available and in general more accurate. Once the city or state DOT has calibrated

specific regression models, it is reasonable to suggest that such models will work over

a long time period without any significant further data collection requirement. The

reason is that the derived inherent relationship of the VMT ratio between different

classes of roadways will remain the same in the future. However, practical tests are

still necessary to help prove the proposed procedure.

In this study, several assumptions were made to help simplify the derivation

process. For example, the author assumed that households are uniformly distributed

in a local neighborhood and roadways are in grid networks. Additionally, during the

derivation process, the author often used the approximation method, especially when

calculating the average distance traveled on each roadway class. All of these factors

can be sources of errors or noises. There are three major categories for sources of

errors.

• Network characteristics can include uneven distribution of local roadways with

a local neighborhood and uneven distribution of collector roads and minor/principal

arterial roads. For example, some local communities are not surrounded by

closed collector roads nor are they surrounded by roads in the shape of a square

or circle. Some collector roads are not surrounded by minor arterial roads in

93



squares.

In this study, the proposed regression models were developed based on mainly

grid networks, and the author used those proposed regression equations derived

from simulation data directly in both of the two cases. The results turned out to

be much better in estimating local VMT in the Minneapolis case (grid network

with 10.13% error) than in the Bryan/College Station case (non-grid network

with 270% error).

• Households characteristics can include asymmetric or uneven distribution of

households or trip generating points in a local neighborhood and asymmetric

distribution of final destinations of trips (in terms of the four general directions:

NSEW). Travelers may not always attempt to get to higher class roads as

quickly as assumed. For example, some travelers have their own travel habits,

so they will choose their most familiar routes to get to their destinations, which

may not be the shortest paths.

In practice, uniform distribution assumption of both trip generating points and

destinations is not reasonable in some cases. For example, in rural area, the

trip generations will be sparsely scattered within a large area. In the case study

of the Bryan/College Station metropolitan area, which falls under the category

of small cities, travel destinations (working places) are concentrated in several

nonuniform (off the grid) areas. The results of the Bryan/College Station case

study showed that this possible source of errors can be quite significant.

• Approximation Errors are a possible source of errors occurs, which occur when

using the approximation method to define the format of regression equations.

This is because, in reality, the spacing of higher class roadways is not long

enough compared with that of lower class roadways.
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Simulation results show that the proposed models work well for medium and

high connectivity networks, but work poorly for low connectivity networks.

This indicates that the approximation error could be significant when applying

the proposed format of regression models to low connectivity networks.

Last but not least, such low connectivity networks mainly exist in rural area

and small cities.

• OD characteristics. These models assume that travelers traverse local, collec-

tor and arterial roads, ignoring trips within local communities or local trips

between local communities that are on local roads.

In the proposed practical procedure, the proposed estimation models were in-

tended to apply at the city level using accurate sampled or simulation local/collector

VMT data as well as using roadway density data. So, from the macroscopic view,

the first two possible sources of errors mentioned above had very little effect on the

final results. For the third source of errors, the case study of Minneapolis has already

verified that the set up of the proposed regression equations are quite accurate, since

the final relative error is quite small considering the total VMT for a large city. The

violations of these assumptions are reflected by calibrated coefficients in each regres-

sion model as well. Moreover, the practical implementation of the proposed models

to estimating the local/collector VMT in Minneapolis proved that the method and

regression models are promising in estimating VMT for lower functional classes of

roadways in grid networks. However, even though they show promise, future work

is still needed to see if they are robust or not.

Future work is still necessary to test more scenarios (rural area and small cities),

including non-uniformly distributed demand in local networks. VMT in rural area

is often needed. Moreover, it is still necessary to investigate if results (models) will
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change when the roadway network is not in grid format. As a special case, the

author analytically showed that a circular type of network also gives rise to similar

analytical equations. However, other common irregular networks still need to be

investigated. Finally, more real cases need to be tested in order to check the practical

application of the proposed models in various situations. Finally, the author hopes to

find the appropriate model format or set up for different kinds of roadway networks

accordingly.

To summarize, even though there are several sources of errors due to deviations

from the assumptions the author made during the analytical deviation, this new

method is reasonable and practical since most of the assumptions represent very

common situations. The regression equations proposed include explanatory variables

verified through analytical deviation, and the equations allow a calibration process

of coefficients to account for those errors. Ultimately, the author hopes the findings

will reveal a new direction for VMT estimation on local roads.
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