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ABSTRACT 

 

Endothelial dysfunction is a fundamental component of cardiovascular disease.  

Exercise training is known to prevent/improve endothelial dysfunction.  However, the 

genetic basis for endothelial function is yet to be fully elucidated and the genetic 

contribution to endothelial responses to exercise training is largely unknown.  The 

purposes of this research were 1) to identify quantitative trait loci (QTL)/candidate genes 

residing in the QTL responsible for intrinsic endothelial function and 2) to determine the 

interaction between genetic background and training intensity on the endothelial 

adaptations to exercise training.  In the first study, vasoreactivity was assessed in aortic 

rings of male mice from 27 inbred strains.  Strain-dependent differences were found for 

vasoreactivity including responses to ACh.  Genome-wide association study for 

responses to ACh revealed four significant and several suggestive QTL, most of which 

are regions of shared synteny for cardiovascular traits in rats and/or humans.  In the 

second study, a strain survey for the effect of traditional exercise training on 

vasoreactivity was performed in aortic rings of male mice from 20 inbred strains.  

Traditional exercise training had subtle effects on vasoreactivity including responses to 

ACh.  Based on the strain survey, four inbred mouse strains (129S1, B6, SJL, and NON) 

were chosen to examine endothelial responses to two different training intensities [high 

(HIT) vs. moderate intensity (MOD)]. There was a significant interaction between mouse 

strain and training intensity on responses to ACh after exercise training.  The 

transcriptional activation of endothelial genes was also influenced by the interaction.  
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There was little overlap between genes altered by HIT and MOD.  HIT was associated 

with pathways for inflammatory responses, while NON MOD genes showed enrichment 

for vessel growth pathways.  In conclusion, the present findings provide strong evidence 

that genetic background influences endothelial function and its responses to exercise 

training.  Several QTL/candidate genes are suggested as new targets for elucidating the 

genetic basis of intrinsic endothelial function.  Exercise training has non-uniform effects 

on endothelial function and transcriptional activation of endothelial genes depending on 

the interaction between genetic background and training intensity.  
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1. INTRODUCTION

1.1. Clinical relevance 

Almost one-fourth of Americans have some form of cardiovascular disease 

(CVD), which is responsible for more than six million hospitalizations and accounts for 

up to 40 % of deaths (196). Moreover, prevalence of CVD is increasing at younger ages 

(227). Epidemiological studies demonstrated that endothelial function can be a predictor 

of future cardiovascular health problems (131, 223, 288). Impaired endothelial function 

has been considered one of the fundamental components of hypertension and 

atherosclerosis (38, 54, 105, 108, 242, 269). The endothelium plays an important role in 

the regulation of vasomotor tone and the maintenance of vascular integrity (2, 55, 70, 

158, 270). 

Among several environmental factors known to influence endothelial function, 

exercise has been particularly highlighted for the last decade because regular exercise 

can prevent, as well as correct and/or improve impaired endothelial function (97, 146, 

158, 239, 277). However, accumulating data indicate that there is considerable inter-

individual variation in responses of the cardiovascular system to exercise, including 

changes in endothelial function (25, 96, 212, 245). Although environmental factors 

contribute to some of this variation, understanding the contribution of genetic 

background to endothelial function and its responses to exercise is an important research 

agenda. Outcomes from this study can help clarify the pathological mechanism/pathway 
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of endothelial dysfunction, thus provide the potential to enhance prediction of disease 

risk and the therapeutic targets for treatment of CVD related to endothelial dysfunction.  

1.2. Endothelial function 

The term endothelium was first used by Wilhelm His, a Swiss anatomist, in 1865 

to define cells lining blood vessels and the mesothelial-lined body cavities (2). Since 

then, advancements in electron microscopy in the 1960s and cell biology in the 1980s 

enabled researchers to characterize the endothelium more precisely (82, 135). Currently, 

the endothelium is defined as the innermost cellular layer of blood vessels. Since the 

1980s when endothelium-derived relaxing factors were discovered (90), the endothelium 

has been widely studied as an important modulator of vascular function. Its location in 

the internal lumen of blood vessel allows the endothelium to sense changes in 

hemodynamic forces and blood-borne signals and then respond by releasing vasoactive 

molecules (2, 153, 269, 270). The molecules released from endothelium have many 

physiological functions in maintaining vascular integrity: vasomotor tone control, 

cellular adhesion, thromboresistance, smooth muscle cell proliferation, permeability, and 

vessel wall inflammation (2, 105, 158, 218, 269, 270, 278). For example, vasomotor tone 

is controlled by vasodilators and vasoconstrictors produced from the endothelium (2, 

158, 270, 278). Cytokines and adhesion molecules released from the endothelium 

regulate cell adhesion, permeability and proliferation (105, 218). The endothelium also 

releases molecules that regulate platelet activity, clotting cascade and the fibrinolytic 

system in response to inflammatory signals (258, 269, 278). Endothelial dysfunction 
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refers to deleterious alteration in production and bioavailability of those molecules, 

exhibiting features such as a decrease in endothelium-dependent vasodilation, an 

increase in adhesion and inflammatory molecules and an increase in oxidative stress (35, 

70, 105). Given the important roles of endothelium in maintaining vascular health, the 

assessment of endothelial function has served as a useful biomarker of CVD. 

1.2.1. Endothelium-derived vasoactive factors 

Endothelial function is often represented by the ability of blood vessels to dilate 

via endothelium-dependent processes (55, 152, 269). Three molecules, nitric oxide (NO), 

prostacyclin (PGI2) and endothelium-derived hyperpolarizing factors (EDHFs), have 

been considered among the most important dilator molecules. These molecules are 

released from endothelial cells as a common result of increased intracellular calcium 

(Ca
++

) in response to mechanical signals, e.g. shear stress, caused by blood flow against

the vessel wall or increased hormones/molecules that act through receptors (55, 65, 158, 

269). Most importantly, a primary role of NO in vasodilation, as well as atheroprotective 

and thromboresistant influences, has been widely recognized in the literature (2, 158, 

269, 270, 278). NO is synthesized in endothelial cells from L-arginine in a reaction 

catalyzed by endothelial nitric oxide synthase (eNOS), whose activity is regulated by 

intracellular Ca
++

 concentration (157, 158, 192). NO diffuses freely into vascular smooth

muscle cells and binds to soluble guanylate cyclase (sGC), subsequently elevating cyclic 

guanosine monophosphate (cGMP). In turn, cGMP-dependent kinase is activated and 

intracellular proteins, such as myosin light chain kinase (MLCK) and Ca
++

-activated
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potassium channels, are phosphorylated. Consequently, smooth muscle relaxes via 

lowering intracellular Ca
++

 or desensitizing the muscle to Ca
++

 (77, 86). Previous studies

have clearly shown that CVD is associated with reduced NO generation or 

bioavailability (54, 105). 

PGI2, which acts independently of NO (55, 65, 188), is synthesized via more 

complicated steps compared with NO. Phospholipase A2, cyclooxygenase (COX) and 

prostacyclin synthase are serially involved in PGI2 synthesis in endothelial cells (65, 

158, 188). Increased PGI2 results in G-protein-mediated activation of adenylate cyclase 

leading to the formation of cyclic adenosine monophosphate (cAMP) from adenosine 

triphosphate. cAMP ultimately reduces Ca
++

 in vascular smooth muscle cells, resulting

in vascular smooth muscle relaxation (55, 65, 158, 188). Previous studies reported that a 

decrease in PGI2 abolishes endothelium-dependent dilation (281) and accelerates CVD 

(7). As such, PGI2 appears to have a role in endothelial function regulation, however 

fewer studies have examined the role of PGI2 in the regulation of vasodilator tone in 

humans compared with NO (55, 65). 

Endothelium-dependent dilation cannot be fully accounted for by NO and PGI2, 

suggesting the existence of undefined endothelium-dependent vasodilating pathways. 

For example, after double gene-disruption of eNOS and COX-1, endothelium-dependent 

vasodilation persisted in mesenteric arteries from female mice (238). This finding 

supports the notion that NO- and PGI2-independent vasorelaxation mediators exist. 

These independent mediators inducing smooth muscle hyperpolarization via NO- and 

PGI2-independent pathways are called EDHFs. This role of EDHFs in mediating 
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endothelium-dependent relaxation appears particularly important as a compensatory 

mechanism when NO bioavalilabiltiy is reduced (47, 55, 77, 107, 112, 125, 126). 

Several substances have been proposed as putative EDHFs, e.g. epoxyeicosatrienoic 

acids derived from cytochrome P450 (CYP), lipoxygenase (12-(s)-

hydroxyeicosatetraenoic acid (12-S-HETE), potassium ions (K
+
) and vasoactive peptides 

(47, 76, 77, 99). One recently proposed EDHF candidate is hydrogen sulfide (H2S), 

which induces vasodilation via stimulating ATP-sensitive K
+
 channels in vascular 

smooth muscle (166, 291). In mice lacking cystathionie γ –lyase (CSE), an enzyme 

synthesizing H2S, endothelium-dependent vasodilation was impaired (286). By contrast, 

the inhibition of CYP 2C9 contradictorily enhanced endothelium-dependent vasodilation 

in coronary disease patients (78). The authors noted that CYP 2C also generated O2
- 
, 

thus blocking of CYP 2C might increase NO bioavailability. As described above, the 

identity and role of EDHFs are still controversial (76, 77, 188), and remain to be 

elucidated.  

The endothelium produces not only vasodilators, but also vasoconstrictors, such 

as endothelin-1 (ET-1) and prostanoids (2, 55, 158, 269). An imbalance between 

vasodilators and vasoconstrictors could be a characteristic of endothelial dysfunction. In 

healthy endothelium, NO is preserved and suppresses ET-1 production. Verhaar et al. 

reported that increased forearm vasodilation induced by ET-1 receptor antagonist 

(BQ123) was reversed by NO inhibitor (L-NMMA) in healthy subjects (268). However, 

under the condition of impaired endothelial function, ET-1 expression is increased and 

ET-1 may decrease eNOS expression, thereby vasoconstriction becomes exaggerated 
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(26, 165). This is further supported by other findings that administration of ET-1 impairs 

endothelium-dependent dilation in healthy individuals, while ET-1 receptor antagonists 

increased vessel diameters and blood flow in CVD patients (29). Increased ET-1-

mediated vasoconstriction has been linked to a number of cardiovascular pathologies, 

such as hypertension, vasospasm and coronary artery disease (190, 263). Angiotensin-

converting enzyme (ACE) inhibition also improved endothelium-dependent vasodilation 

via increases in NO, PGI and EDHFs in responses to bradykinin (191, 221). Therefore, 

the balance between the vasodilators and vasoconstrictors released from endothelium is 

critical for vascular health. 

 

1.2.2. Assessment of endothelium-dependent dilation  

Endothelium-dependent dilation has been assessed both in vivo and in vitro in 

response to mechanical signals or vasodilating agents (97, 115, 158, 184, 269). There are 

several noninvasive measurements in human subjects, e.g. doppler echocardiography, 

positron emission tomography and phase-contrast magnetic resonance imaging, to assess 

in vivo endothelial function during increased blood flow (80, 105). The most commonly 

used noninvasive assessment is flow-mediated dilation (FMD) in the brachial artery. 

FMD measures vasodilation induced by reactive hyperemia after release of acute 

occlusion of the brachial artery. This acute increase in blood flow exerts shear forces to 

the vessel which stimulate endothelial cells to release NO, PGI2 and EDHF and, in turn, 

relaxes vascular smooth muscle (55, 65, 115, 153, 282). Several invasive assessments 

have been also utilized to measure endothelial function in response to intra-arterial or 
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intravenous infusion of endothelium-dependent vasodilators, such as acetylcholine 

(ACh), bradykinin and substance P (80).  

In animal models, endothelial function is primarily assessed by measuring 

responses of isolated vessels to vasoactive molecules or flow-induced shear forces in 

vitro (58, 111, 119, 136, 152, 184). A wire myograph system is generally used to assess 

vasomotor function in large and small conduit vessels. This system allows investigators 

to examine vasomotor function (change in isometric tension) of isolated vessels under 

various physiological conditions (184). Alternatively, vascular function of small arteries 

and resistance vessels can be measured using perfusion with micropipettes linked to 

pressure reservoirs. This experimental setup enables investigators to measure flow-

induced dilation with adjustments of pressure gradient under certain physiological 

conditions (136, 152). In isolated vessels prepared by these experimental setups, the 

application of endothelium-dependent vasodilators with presence or absence of 

pharmacological agonists/antagonists enables the measurement of endothelium-

dependent, as well as pathway-specific vasomotor regulation. For example, comparing 

ACh-induced vasorelaxation in vessels treated with eNOS inhibitor (e.g. L-NMMA or L-

NAME) or vehicle provided evidence that ACh-induced vasorelaxation is NO-dependent 

(111, 119, 281). In contrast, the application of sodium nitroprusside (SNP), a NO-donor 

that elicits endothelium-independent vasodilation, has been commonly utilized to assess 

smooth muscle relaxation function (58, 142, 281).  

The changes in diameter or in isometric tension induced by vasoactive agents or 

shear force can be compared with baseline diameter or tension. Vasomotor function is 
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generally expressed as a percentage for the comparison, such as % FMD or % 

vasorelaxation. There is an abundance of evidence showing reduced % FMD in patients 

suffering CVD, e.g. hypertension, atherosclerosis, diabetes, coronary artery diseases and 

heart failure (35, 70, 105, 242, 278) compared to healthy individuals and decreased % 

vasorelaxation in response to endothelium-dependent agonists in vessels isolated from 

animal models of CVD (42, 163, 195). 

 

1.3. Effect of exercise training on endothelial function 

 Regular exercise has long been considered necessary for maintaining 

cardiovascular health. Improvement in physical fitness via regular exercise is inversely 

related to all-cause and cardiovascular mortality (21, 161). A vast majority of previous 

studies have provided overt evidence that exercise yields many beneficial effects on 

CVD risk factors, such as weight loss, lowering blood pressure, higher insulin sensitivity 

and lowering lipids (147, 241). It has been also well established that regular exercise 

exerts beneficial effects on endothelial function. In particular, clinical studies have 

demonstrated that regular exercise reverses endothelial dysfunction in CVD patients, e.g. 

heart failure (111), hypertension (119) and diabetes (88). Chronic exercise has also been 

shown to improve endothelial function in young healthy subjects (46, 59, 119). In 

animals, exercise training improved endothelial function in both healthy animals and 

disease models as well (58, 137, 145, 158). 

 Two possible mechanisms exist for the beneficial effects of chronic exercise on 

endothelial function: hemodynamics effects (shear stress) and risk factor modification 
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(153, 261). Select studies have supported the hypothesis that changes in circulating 

molecules, e.g. hormones, cytokines, adipokines, contribute to the systemic benefits of 

exercise training on endothelial function (40, 163, 204). For example, Lee et al. reported 

that exercise training improved endothelial function in diabetic mice through both 

adiponectin-dependent and independent pathways (163). However, in many cases, 

exercise training improved endothelium-dependent dilation without major changes in 

CVD risk factors (46, 97, 98), implying that regular exposure to increased shear stress 

might be the primary signal for exercise training induced-adaptations of endothelial 

function. Alterations in circulating molecules would, therefore, be systemically 

secondary effects (153, 261). Shear stress, particularly laminar shear stress, during 

exercise is known to increase anti-atherogenic and decrease pro-atherogenic endothelial 

cell phenotypes, e.g. increases in eNOS and superoxide dismutase (SOD) vs. decreases 

in cell adhesion molecules (153, 218, 285). Chronic exposures to such effects of shear 

stress via regular exercise would promote beneficial adaptations in endothelial function. 

1.3.1. Effect of exercise training on nitric oxide pathway 

Results from both human and animal studies have demonstrated that exercise 

training enhances endothelial function (57, 58, 110, 119, 194, 240). Following a 

standardized 12-week exercise program, forearm blood flow in response to ACh infusion 

was increased significantly in both normotensive and hypertensive adults (119). Infusion 

of an eNOS inhibitor (L-NMMA) blunted the training-induced increases in forearm 

blood flow in response to ACh, indicating that training-induced increases were mediated 
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by NO. Hambrecht and colleagues also observed that regular exercise for 4 weeks 

increased vessel diameter and peak blood flow velocity in response to ACh in coronary 

artery disease patients (110). Exercise trained-patients had higher level of eNOS 

gene/protein expression and phosphorylation of eNOS protein compared with non-

trained patients. These findings are in agreement with data from animal studies. Graham 

and Rush found that exercise training enhanced vasorelaxation responses to ACh in 

aortic rings from spontaneously hypertensive rats (94). The training-induced 

enhancement in vasorelaxation to ACh was abolished in the presence of nitric oxide 

synthase inhibitor (L-NAME), indicating that training-induced enhancements were 

dependent on NO pathway. Sessa et al. reported that the underlying mechanism for 

improved endothelium-dependent dilation by exercise training is an increase in eNOS 

gene expression and subsequent NO production (240). In another study, eNOS protein 

levels were also increased by exercise training with enhanced vasodilator responses to 

ACh (57). Combined, those findings indicate that exercise training enhances endothelial 

function via increasing eNOS expression and NO production. In contrast, physical 

inactivity induced by hindlimb unloading (2 weeks) impaired endothelium-dependent 

dilation in addition to lowering eNOS gene and protein expression in rat soleus arterioles 

(236).  

The amount and bioavailability of NO are determined by not only the activity of 

eNOS, but also NO-scavenging mechanisms, such as the reaction with superoxide (O2
-
). 

In presence of O2
-
, NO readily reacts with O2

-
 to form peroxynitrite (ONOO-) with high 

affinity. Accordingly, an increase in O2
-
 via disrupted endogenous antioxidant system 
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results in NO degradation and consequently a net reduction in NO bioavailability (35, 

146, 201). Moreover, ONOO- produced by the reaction of NO with O2
-
 is known to 

damage a wide array of molecules in cells and contribute to the pathogenic mechanisms 

of CVD, including endothelial dysfunction (201). It has been shown that increased O2
- 

production accounts for decreased NO bioavailability in CVD patients and animal 

models of CVD (35, 146, 183). The administration of superoxide dismutase (SOD) 

mimetics, e.g. tempol and apocynin, reversed impaired endothelium-dependent 

vasodilation in animal models of CVD (215, 289). In contrast, cumulative bouts of 

exercise can upregulate antioxidant enzymes, such as SOD, catalase and glutathione 

peroxidase (GPx), which scavenge free radicals. Exercise training can also downregulate 

nicotinamide adenine dinucleotide phosphate (NADPH) oxidase and uncoupled eNOS, 

which are sources of O2
-
 (72, 89, 146, 232, 239). Previous data indicate the beneficial 

effects of exercise training on NO bioavailability via both increasing free radical 

scavengers and decreasing oxidative stress molecule production.  

 

1.3.2. Effect of exercise training on other vasodilators, vasoconstrictors and vascular 

smooth muscle 

PGI2 and EDHFs are also important mediators for exercise training-induced 

improvements in endothelial function (91, 137, 148, 158, 277). Koller et al. examined 

the effect of 3-week exercise training on endothelium-dependent vasodilation in isolated 

gracilis muscle arterioles of young rats (148). They found that exercise training 

enhanced endothelium-dependent vasodilation and this enhanced vasodilation was 
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reduced by both eNOS inhibitor (L-NMMA) and COX inhibitor (indomethacin) by 

similar amounts (40 to 50 %). Muller and colleagues reported a similar finding that 

training-induced improvements in endothelium-dependent vasodilation to bradykinin 

were abolished by either indomethacin or L-NMMA (194), demonstrating that training-

induced augmentation of endothelial function is due to increases in both NO and PGI2. 

In young healthy individuals, Zoladz and colleagues found that an acute bout of exercise 

increased PGI2, as assessed by plasma 6-keto PGF1α concentration (294). In a follow-up 

study, the authors found that 5-week endurance training augmented the release of PGI2 in 

responses to exercise (295). These data are in accord with results observed from 

hypertensive subjects (112), demonstrating that exercise training enhances endothelial 

function partially via enhancing PGI2 production. 

 Woodman and colleagues reported that enhanced endothelium-dependent dilation 

in brachial arteries from hypercholesterolemic pigs after 16-week endurance exercise 

training persisted in the presence of both eNOS and COX inhibitors (L-NAME and 

indomethacin. respectively (283). Their finding indicated that enhancements in 

endothelium-dependent dilation after exercise training were due to, in part, enhanced 

production of EDHF. In hypertensive rat models, neither eNOS inhibitor nor COX 

inhibitor blocked training-induced improvements in endothelium-dependent dilation in 

muscle feed arteries (104). In contrast, a potassium (K
+
) channel blocker 

(tetraethylamonium) abolished the training-induced improvements in endothelium-

dependent dilation, indicating that exercise training improves endothelial function partly 

via EDHF pathway, particularly in CVD animal models. Increased plasma and aorta H2S 
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levels accompanied by improved endothelium-dependent relaxation were observed after 

exercise training in young hypertensive rats (102). By contrast, Hansen et al. observed 

no changes in expression levels of CYP2C9, CYP4A and CSE after exercise training in 

muscle samples of hypertensive subjects (112). To date, the role of EDHFs in mediating 

endothelial responses to exercise training is still a controversial field of study.  

Exercise training also alters responses to vasoconstrictor agents (42, 58, 138, 

176, 209, 210, 248). For example, decreased vasocontractile responses to ET-1, 

Angiotensin II (ANG II), norepinephrine (NE) have been reported after exercise training 

(58, 138, 176, 209). For ET-1, 8-week exercise training substantially decreased plasma 

level of ET-1 which remained depressed for 4 weeks after the cessation of exercise 

training in healthy humans (176). [
32

P]phosphatidic acid, an indicator of phospholipase 

activity induced by ET-1, was also reduced in pig coronary artery after exercise training 

for 16 to 20 weeks (138). In general, attenuated vasoconstriction is associated with 

improved endothelial function. For instance, Park and colleagues found that exercise 

training (10 to 12 weeks) attenuated the ANG II-induced vasoconstriction in old rats 

(209). However, this attenuated vasoconstriction after exercise training was abolished by 

endothelium removal or eNOS inhibition, demonstrating that training-induced 

attenuation of vasoconstriction is mediated by NO pathway. This is also supported by 

Maeda and colleagues who found that decreased plasma levels of ET-1 after exercise 

training was accompanied by increased plasma NOx levels (176).  

During exercise, vascular smooth muscle cells not only receive molecular signals 

from endothelium, but are also exposed to transmural pressure and cyclic strain 
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generated by increased blood flow. These flow-induced mechanical forces might induce 

changes in mechanotransduction in smooth muscle cells per se. Notwithstanding, there 

are only a handful of studies that investigated vascular smooth muscle adaptations to 

exercise training (27, 28, 116, 271). For example, 12 weeks of exercise training 

decreased Ca
++

 release from sarcoplasmic reticulum (SR) in response to ET-1 in porcine

coronary arteries (28, 271). The authors noted that this training-induced decline in Ca
++

release might account for the observations that exercise training reduces contractile 

responses to vasoconstrictors. Jones et al. reported that training-induced reduction in 

contractile responses to ET-1 in male swine coronary arteries was reversed by blocking 

K
+
 channels (138). These findings support the hypothesis that exercise training might

alter smooth muscle function via, in part, by reducing intracellular Ca
++

 regulation and

increasing K
+ 

channel activity. In contrast, vascular smooth muscle relaxation response

to SNP is not generally changed by exercise training (58, 114, 144, 283). 

1.4. Intensity-dependent effect of exercise training on endothelial function 

Although regular exercise usually yields favorable effects on cardiovascular 

health, the exercise components, such as intensity, duration and frequency, required to 

establish the optimal training strategies are still debated. In studies of direct comparisons 

of exercise intensity and duration (162, 259), the exercise intensity was associated with 

reduced CHD risk independent of the total volume/duration of exercise. Even in subjects 

who did not perform vigorous exercise regularly, walking pace was also associated with 

reduced CHD risk independent of the amount of walking hours (259). Previous findings 
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suggest that exercise intensity might have a more prominent effect on CHD prevention 

than duration or volume of exercise. 

 

1.4.1. Training intensity and cardiovascular traits  

High intensity interval training (HIT), characterized by intermittent bursts of 

vigorous activity interspersed by periods of rest or active rest, has been proposed as an 

effective alternative to traditional endurance training on a matched-work basis or 

equivalent estimated energy expenditure. For a wide range of physiological and health-

related markers in both patient and healthy populations, HIT exerted similar or even 

superior effects compared with moderate intensity continuous training (MOD) (175, 181, 

262, 265). Swain et al. noted in their cross-sectional study that vigorous intensity 

(typically ≥ 60% VO2max) exercise training generally exerts greater cardioprotective 

benefits compared with moderate intensity exercise training when total work is equated 

(257). Animal studies also reported greater effects on cardiovascular traits, such as 

VO2max and blood pressure, after HIT (typically 75 to 90 % of VO2max) compared with 

MOD (typically < ~70% of VO2max) (129, 144). However, several studies have 

provided conflicting data, e.g. similar effects between HIT and MOD (106, 228), no 

effect of HIT (45), and even potential adverse effects of HIT (12, 121, 273) on 

cardiovascular traits in various populations. Indeed, HIT would not be safe, tolerable and 

applicable for some populations, e.g. elderly and patients. Therefore, the optimal training 

intensity for maintaining/improving cardiovascular health has yet to be determined. 
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1.4.2. Effect of training intensity on endothelial adaptation to exercise training  

Over the last decade, the effect of training intensity on endothelial function has 

been examined in both humans and animals. The majority of previous studies in CVD 

patients have exhibited greater improvements in endothelial function in response to HIT 

compared with MOD (189, 262, 280). These superior effects of HIT on endothelial 

function were accompanied by greater improvements in VO2max, antioxidant status and 

blood metabolites. Greater effects of HIT on endothelial function in CVD patients could 

be due to higher blood flow in HIT leading to greater shear stress-induced NO 

production and an increase in NO bioavailability induced by an increase in antioxidant 

status. On the contrary, the effect of training intensity on endothelial function is more 

complicated in young healthy individuals. In a study conducted by Rakobowchuk and 

colleagues, both HIT and MOD improved endothelial function to a similar extent in 

young individuals (222). In contrast, Goto et al. reported that endothelial function was 

improved by MOD, but not by HIT, in young subjects (93). An increase in oxidative 

stress was found in the HIT-trained subjects. The authors speculated that the absence of 

endothelial function change in HIT might be due to HIT-induced increases in oxidative 

stress which reduced the bioavailability of NO increased by HIT. This is further 

supported by a study conducted by Bergholm and colleagues who found declines in 

endothelial function and circulating antioxidants after 3 months of intense exercise 

training (70 to 80 % VO2max) (16). Those findings raise the possibility that vigorous 

exercise could yield negative effects on endothelial function via increasing oxidative 

stress in young healthy individuals.  



 

 

 

17 

Endothelial responses to different training intensities are also inconsistent in 

animal studies. Haram et al. reported that HIT enhanced endothelium-dependent dilation 

more than MOD in rat abdominal aortas (114), while Kemi et al. found that both HIT 

and MOD improved endothelium-dependent dilation to the same magnitude in rat 

carotid arteries (144). Both studies showed greater improvements in VO2max after HIT 

compared with MOD. Such discrepant results in both humans and animals might be 

ascribed to heterogeneity in baseline health, age, sex, training duration, timing of 

measurement, and vascular bed. Those factors have been known to influence the effect 

of exercise training on endothelial function (96, 97, 137, 146, 158, 277). Additional 

studies that minimize those environmental factors are needed to compare the effect of 

training intensity solely on endothelial function.  

 

1.5. Genetic regulation of endothelial function 

 Cardiovascular traits are regulated by not only environmental factors, but also 

genetic factors and/or the interaction between environmental and genetic factors (19, 83, 

187). For instance, Mitchell and colleagues reported that environmental covariates and 

genetic factors accounted for <15 % and 30 to 40 % of variation in plasma lipid profiles 

in Mexican Americans, respectively (187). In an epidemiological survey, genetic factors 

accounted for about 30% of blood pressure variation observed in a large cohort of 

participants (19). These findings demonstrate that the cardiovascular traits are partly 

regulated by genetic factors. For endothelial function, several studies in both humans 

and animals have provided evidence for genetic regulation of this trait. Candidate gene 
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studies have revealed that polymorphisms in a few endothelial genes are associated with 

endothelial function in humans (36, 71, 85, 132, 139, 208, 230). The estimated 

heritability (0.14 to 0.44) of endothelial function has been reported in various 

populations (13, 122, 255, 267, 290) and a racial-dependent difference was observed for 

endothelial function (179, 200). A human genome-wide association study (GWAS) also 

provided limited data regarding single nucleotide polymorphisms associated with FMD 

(267). Previous studies demonstrate that endothelial function is a polygenic, heritable 

trait.  

 

1.5.1. Evidences from human studies 

 Experimental and clinical studies suggest that genetic variation in eNOS can 

influence endothelial function. To date, more than 100 polymorphisms have been 

identified in the NOS3 (eNOS) gene. Among many, two polymorphisms (T
-786

→C and 

G
894

→T) are the most studied NOS3 gene polymorphisms (36, 64, 132, 139, 208, 230). 

T
-786

→C resides in the promoter region where it regulates transcriptional initiation of 

NOS3 (139). Endothelial cells from coronary heart patients carrying CC genotype at T
-

786
→C exhibited a reduction in NOS3 mRNA and protein expression in response to 

laminar shear stress compared to those from patients carrying the ‘T’ allele (36). 

Similarly, hypertensive subjects carrying CC genotype showed lower vasodilatory 

responses to ACh compared with subjects carrying TT genotype (230). G
894

→T 

polymorphism maps to exon 7, resulting in replacement of glutamate to aspartate at 

codon 298 (also denoted as Glu298Asp) (139). Ingelsson and colleagues found that 
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G
894

→T was significantly associated with FMD, showing that TT genotype carriers had 

higher FMD compared with GG or GT genotype carriers (132). Similarly, plasma NOx 

concentration in subjects having GG genotype was relatively lower than subjects 

carrying the ‘T’ allele (64). However, these results are not consistent. Ingelsson and 

colleagues did not find the polymorphic effect of T
-786

→C on endothelial function (132). 

Paradossi et al. also reported that the polymorphism of T
-786

→C was not associated with 

endothelium-dependent vasodilation. Furthermore, subjects carrying TT genotype at 

G
894

→T showed lower endothelium-dependent vasodilation (208). Thus, the effects of 

these polymorphisms on endothelial function are variable and might depend on the study 

population or other genetic factors.  

 Polymorphisms of genes associated with NO bioavailability have also been 

tested for associations with endothelial function. Genetic variation in p22phox subunit of 

NADPH oxidase (CYBA) gene, which produces O2
-
, has been studied as a factor 

influencing NO bioavailability (71, 85, 139, 235). Among several polymorphisms of this 

gene, C
242

→T has been the primary focus (71). For the C
242

→T polymorphism located 

in exon 4, substituting histidine to tyrosine, Fan and colleagues found that ‘T’ allele 

carriers showed relatively higher brachial FMD (%) than ‘C’ allele carriers in young 

individuals (71). Fricker et al. also provided similar observations that TT carriers had 

greater vasodilatory responses to bradykinin compared with other genotypes in healthy 

men (85). However, the polymorphic effect of  C
242

→T on endothelial function is not 

always significant (235). For other endothelial genes, e.g. 6R-tetrahydrobiopterin (BH4), 

asymmetric dimethylarginine (ADMA), and ACE, the associations between their 
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polymorphisms and endothelial function are discordant in the literature as well (139). 

Indeed, there is still lack of a reliable molecular marker, such as NO or O2
- 
concentration, 

possibly due to technical complexity. Although previous data have emphasized a few 

genes as important genetic determinants of endothelial function, the reliable association 

of each polymorphism with endothelial function has not been firmly drawn so far.  

Vasan and colleagues assessed various cardiovascular traits, including FMD (%), 

in 1,345 subjects from the community-based Framingham Heart Study 

(https://www.framinghamheartstudy.org/) (267). The authors conducted GWAS for 

those traits using a 100k single nucleotide polymorphism set, and as a result, identified 

several single nucleotide polymorphisms associated with each cardiovascular trait. In the 

case of FMD (%), the peak single nucleotide polymorphism (p = 1.13e-05) was found on 

human chromosome 7. This study was the first to conduct a GWAS approach directly for 

endothelial function in a large size sample population, offering a fundamental 

framework for GWAS of endothelial function. However, data provided in this study had 

limited impact on the identification of causal candidate genes responsible for FMD 

because none of associations was reached at the significant level suggested for human 

GWAS (5×10
-8

 to 10
-7

) (207). Furthermore, their findings have not been replicated.  

The population structure and sample size have been major considerations 

regarding statistical power of GWAS in human studies (48, 141). Together with the 

possibilities of phenotyping errors and environmental influences, those obstacles have 

hindered segregation of the genetic influence per se and replication of findings in human 

studies. Accordingly, animal models have been alternatively utilized for genetic 
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association studies due to the advantages provided by a minimal environmental influence, 

genetic homozygosity, and accessibility of disease-relevant tissues (33, 81). 

1.5.2. Evidence from animal studies 

Candidate gene studies have been often conducted with genetically modified 

animals. In particular, gene knockout mouse models have been commonly utilized, 

allowing investigators to test a direct functional role of a gene in phenotypes or diseases 

and offer a biological context facilitating investigation of associated-signaling pathways 

(5, 10, 109). Many efforts have utilized knockout mouse models of endothelial genes to 

elucidate the genetic basis for endothelial function. For example, eNOS knockout mice 

showed impaired endothelium-dependent vasodilation compared with wild-type mice 

(127). eNOS knockout mice have also manifested pro-atherogenic phenotypes, e.g. 

increased platelet aggregation, leukocyte adhesion, and propensity to thrombosis (8). In 

contrast, mice overexpressing eNOS had elevated eNOS activity and net NO levels, thus 

NO bioavailability, in aortas compared with wild-type mice (11). Significant 

impairments in endothelium-dependent vasodilation observed in CSE gene knockout 

mice and CuZnSOD-deficient mice also confirmed their important roles in endothelial 

function as an EDHF and a superoxide scavenger, respectively (61, 286). However, 

limitations exist in generating knockout mice, for instance, developmental lethality, 

difficulties in knocking out certain genes/loci, and changes in unrelated phenotypes 

(109). Accordingly, gene-specific knockout mouse studies have not yielded as many 

valid genes and their targets as anticipated. 
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An alternative genetic approach to the usage of genetically modified mice is an 

inter-strain comparison of a phenotype of interest across different inbred mouse strains. 

The phenotypic diversities across inbred mouse strains make it possible to identify novel 

gene(s) responsible for the phenotype via the association analysis between phenotype 

and genotype over the entire mouse genome (5, 79, 81). Previously, vasoreactivity in 

isolated aortas was assessed and compared among several inbred mouse strains (41, 233). 

In both studies, there were strain-dependent differences in endothelium-dependent 

vasorealxation among inbred mice. Ryan and colleagues found that 129-substrains of 

mice had markedly reduced aortic responses to ACh compared with 5 other inbred 

strains of mice (233). In the study conducted by Chen et al., aortas from SJL/J mice had 

lower vasorelaxation responses to ACh (~40%) than aortas from C3H/HeJ and FVB/NJ 

inbred mice (41). Parallel to lower responses to ACh, SJL had decreased eNOS and 

SOD-2 protein expression, implying that decreases in SOD-2 and eNOS level may 

contribute to impaired vasorelaxation responses to ACh in inbred SJL. Those findings 

provide evidence that genetic background influences endothelial function in mice. 

Supportive corroborations have been further offered by investigations in 

genetically manipulated rats. Selectively bred rats up to 11 generations for low aerobic 

capacity exhibited relatively lower ACh-induced vasorelaxation in carotid arteries 

compared with rats selectively bred for high aerobic capacity (279). A consomic rat 

panel was created based on normotensive Brown Norway (BN) and Dahl salt sensitive 

(SS) inbred rat strains by substituting BN chromosomes onto SS inbred rat 

(http://pga.mcw.edu/) (51). Comparison of a phenotype in consomic rat strains with 
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parental SS inbred strain affords the opportunity to discover chromosomes that may 

contain genes contributing to the phenotype. Using the consomic rat panel, Kunert and 

colleagues assessed vasoreactivity in isolated aortas (150). The authors found that aortic 

rings from consomic rat strains of chromosomes 16 and Y had greater sensitivity to ACh, 

while aortic rings from consomic rat strains of chromosomes 9, 13 and 20 had reduced 

sensitivity to ACh, compared with parental SS inbred strain. These results indicate that 

chromosomes 9, 13, 16, 20, and Y contain genetic factor(s) responsible for sensitivity to 

ACh. In a separate study, the same group of investigators conducted similar experiments, 

but in a different consomic rat panel constructed from BN and Fawn Hooded 

Hypertensive (FHH) rat strains (151). Consomic rat strains of chromosomes 3, 4, 5, 10, 

11, 12, 14, and Y had different sensitivity to ACh compared to parental FHH inbred rats. 

However, only one chromosome (Y) overlapped between two studies, implying that 

chromosomes responsible for endothelial sensitivity to ACh are strain-specific in rats 

(150, 151). Collectively, previous findings in animal studies clearly indicate that 

endothelial function has genetic regulation, eliciting the necessity of comprehensive 

genomic scans via objective and unbiased hypothesis-free tests to specify the genomic 

loci responsible for regulating endothelial function. 

1.5.3. Genetic regulation of vascular smooth muscle function 

Limited evidence indicates that vascular smooth muscle function is influenced by 

genetic factors. In the aforementioned studies regarding mouse strain comparison for 

vasoreactivity (41, 233), endothelium-independent responses to SNP (NO donor) were 
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different at low doses (10
-9

 to 10
-7 

M) among inbred mouse strains. These differences 

were not observed at higher doses (> 10
-7 

M) of SNP, suggesting that sensitivity, rather 

than maximal relaxing ability, of smooth muscle to NO is modified by genetic 

background. This was in line with studies that utilized a consomic rat panel. Kunert et al. 

found that aortic sensitivity to SNP in aortas from chromosome 16 consomic strain and 

BN inbred strains differed from SS parental inbred strain (150). In smooth muscle, NO 

acts mainly on NO-sensitive GC, which synthesizes cGMP inducing smooth muscle 

relaxation via activation of cGMP-dependent protein kinase, phosphodiesterases and ion 

channel gates. Friebe and colleagues found that aortic relaxation responses to NO donors 

were absent in GC-deleted mice (87). Wooldridge et al. generated knockout mice of 

smoothelin-like protein 1 (SMTNL1), a downstream effector of GC-mediated cGMP-

dependent protein kinase (PKG), which is known to suppress myosin phosphatase 

activity in vascular smooth muscle (284). SMTNL1 knockout mice exhibited enhanced 

vasorelaxation responses to ACh without differences in eNOS protein expression and 

phosphorylation. Therefore, it can be speculated that genetic factors related to GC or its 

downstream effectors could contribute, in part, to vascular smooth muscle relaxation. 

This is further supported by Buys et al. who showed that GCα1-deficient mice generated 

on a 129S6 background had significantly greater impairments in aortic vasorelaxation 

responses to ACh than GC α1-deficient mice generated on a B6 background (34). Their 

findings further suggest that genetic background modulates the role of GC signaling in 

smooth muscle relaxation.  
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Smooth muscle contractile function may be affected by genetic background as 

well. A wide range of variation in dorsal hand vein responses to phenylephrine (PE; α1-

adrenergic agonist) was observed in a healthy adult population (217). In 44 individuals 

from 12 families, Gupta et al. reported the estimated heritability of 0.88 for α1-

adrenergic receptor responsiveness in superficial veins (103). These previous data 

support the notion that smooth muscle contractile function is a heritable trait. A 

candidate gene linking to smooth muscle contractile function has been proposed by 

Bergaya and colleagues (15). In that study, WNK lysine deficient protein kinase 1 

(WNK1) gene haploinsufficient mice had markedly reduced vascular contractile 

responses to PE compared with wild-type mice without differences in relaxation 

response to ACh and contractile responses to potassium chloride (KCl). Their results 

suggest that WNK1 gene might be one of genes that play a role in smooth muscle 

contractile responses specific to α1-adrenergic receptor activation. However, in the 

consomic rat panel, the sensitivity to PE was different in several consomic strains 

compared with parental SS inbred strain (150), indicating that smooth muscle contractile 

function, at least sensitivity to α1-adrenergic agonist, might be influenced by multiple 

chromosomes. Nevertheless, only a few specific genes of interest have been examined, 

and thus the genetic basis for smooth muscle function is largely unknown.  

1.6. Genetic contribution to endothelial responses to exercise training 

It has become evident that the effect of exercise training differs substantially 

among individuals. The most distinguished data for individual variation in responses to 
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exercise training come from the HERITAGE Family Study (HEalth, RIsk factors, 

exercise Training And GEnetics) (http://www.pbrc.edu/heritage/) (23). This study has 

yielded identification of several gene polymorphisms associated with variation in 

responses of cardiovascular traits to exercise training via both candidate gene approach 

and genome-wide exploration (24, 25, 247, 260). However, endothelial function or FMD 

was not included in that study. 

 Recently, Green and colleagues published data showing a wide range of inter-

individual variation in FMD (%) changes after exercise training (96). Among 182 

subjects, 76 % exhibited improved FMD by exercise training, while 24 % showed no 

changes or even decreased FMD after exercise training. These findings illustrate that 

exercise training exerts non-uniform effects on endothelial function among individuals. 

An additional interesting result from this study was that changes in FMD after exercise 

training were not correlated with changes in traditional cardiovascular risk factors, such 

as VO2max and mean arterial pressure, suggesting that the endothelial responses to 

exercise training are independent of changes in other cardiovascular traits.  

 Hopkins et al. examined the effect of exercise training on endothelial function in 

mono- and di-zygotic twins (6 pairs each) (123). Changes in FMD (%) after 8 weeks of 

aerobic exercise training were highly correlated in monozygotic twins (r=0.63), whereas 

changes in FMD (%) after exercise training were not significantly correlated in dizygotic 

twins. The estimated heritability of training-induced changes in FMD was 0.74 in this 

study. Feairheller and colleagues also found the racial difference in endothelial cell 

responses to exercise-mimicking shear stress (73). Human umbilical vein endothelial 
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cells (HUVECs) from African Americans had higher level NADPH oxidase subunit 

protein expression at baseline compared to Caucasians, while laminar shear stress 

modulated those protein expression to similar levels between race. The authors 

concluded that endothelial cells from African Americans might be more responsive to 

shear stress stimulus than those from Caucasians. Collectively, previous studies indicate 

that endothelial responses to exercise training are influenced by genetic background. 

 A handful of candidate gene studies examined the impact of genetic 

polymorphisms on endothelial responses to exercise training (6, 69, 198). In male 

coronary artery disease patients, supervised exercise training for 4 weeks at target heart 

rate (80% of maximal heart rate) improved ACh-induced average peak velocity (APV) 

in coronary arteries (69). This improvement varied by eNOS polymorphism. After 

exercise training, patients carrying ‘C’ allele at T
-786

→C had a smaller improvement in 

APV (~ 36 %), compared with patients carrying ‘T’ allele (~ 81 %). A polymorphic 

effect of G
894

→T was not observed in that study. Similarly, 18-week exercise training by 

young healthy males significantly increased forearm vascular conductance during 

handgrip exercise in TT carriers, but not in CT and CC carriers at T
-786

→C of eNOS 

gene (198). Comparable endothelial responses to exercise training in healthy males were 

reported for polymorphism in type B2 bradykinin receptors (B2KR) gene (6). After 

exercise training, only -9/-9 carriers had increased forearm blood flow and vascular 

conductance during handgrip exercise. These training-induced increases were 

accompanied by a decrease in serum ACE enzyme levels.  Like other cardiovascular 

traits, candidate gene studies, however, have employed only a few common genes for 
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their polymorphic effects on endothelial responses to exercise training. Furthermore, as 

discussed above, effects of exercise training on endothelial function are dependent on 

training intensity. It implies that there is a complicated interaction of genetic factors and 

training intensity on endothelial adaptation to exercise training.  

 

1.7. Summary 

 The endothelium has a critical role in maintaining vascular integrity via synthesis 

of several vasoactive molecules. Accumulated data indicate that endothelial function is a 

heritable trait and is regulated by polygenic factors; however, these genetic factors have 

not been fully elucidated. Given the notion that single genetic variant generally has only 

small to modest functional effects, a large genomic scale analysis is necessary to 

comprehensively unravel the complex genetic basis of endothelial function.  

Exercise training is well known to improve endothelial function. The effect of 

exercise training appears to be dependent on the training intensity; nevertheless, little is 

known about the effect of training intensity on endothelial responses to exercise training. 

Indeed, genetic contribution to endothelial responses to exercise training and its 

interaction with training intensity has not been formerly considered.  

 

1.8. Purpose and hypotheses 

 Hence, the main purposes of this dissertation are 1) to identify quantitative trait 

loci (QTL)/candidate genes residing in the QTL responsible for intrinsic endothelial 

function and 2) to determine the interaction between genetic background and training 
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intensity on the endothelial adaptations to exercise training. To accomplish the purposes, 

two hypotheses were proposed: 

1) Intrinsic endothelium-dependent vasorelaxation is largely variable across 

inbred mouse strains, and the variation is influenced by one or more 

quantitative trait loci.  

2) Endothelial adaptations to exercise training are variable among inbred mouse 

strains and these variable adaptations are dependent on training intensity.
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2. ASSOCIATION MAPPING OF GENETIC CONTRIBUTION TO

ENDOTHELIAL FUNCTION IN MOUSE AORTA 

2.1. Introduction 

Almost one-fourth of Americans have some form of cardiovascular disease 

(CVD), which is responsible for more than six million hospitalizations and accounts for 

up to 40 % of deaths (196). There is strong evidence that susceptibility to CVD and 

related risk factors are highly heritable (67, 216, 266). Accordingly, numerous clinical 

and laboratory studies have strived to elucidate the genetic basis of CVDs, e.g. 

hypertension (52, 128, 133), atherosclerosis (120, 174, 252, 274), myocardial infarction 

(49, 197), and coronary artery disease (167, 226, 237). 

The endothelium plays an important role in maintaining vascular integrity via 

release of various vasoactive mediators which control vasomotor tone, hemostatic 

balance, permeability, proliferation and survival (2, 270). Impaired endothelial function 

is a fundamental component of hypertension and atherosclerosis and hence, a predictive 

precursor for CVD (108, 131, 223). Many environmental factors, e.g. diet and physical 

activity level, are known to influence endothelial function (31, 137). Several lines of 

evidence from human studies demonstrated that endothelial function also has genetic 

regulation. Candidate gene studies have revealed that single nucleotide polymorphisms 

of some endothelial genes, e.g. endothelial nitric oxide synthase (eNOS) and p22phox 

subunit of NADPH oxidase (CYBA), are associated with flow-mediated dilation (FMD) 
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(71, 139, 143, 208), a non-invasive method for measuring endothelial function in 

humans. The estimated heritability of FMD has been reported in various human 

populations, ranging from 0.14 to 0.44 (13, 122, 255, 267, 290). Vasan and colleagues 

also conducted a GWAS to identify single nucleotide polymorphisms associated with 

brachial artery endothelial function traits in subjects from the Framingham Heart study 

(267). This GWAS identified one single nucleotide polymorphism (rs3814219, on 

chromosome 10) associated with baseline brachial artery flow velocity (P < 1.00 × 10
-5

). 

Previous studies indicate that endothelial function is a polygenic, heritable trait. 

However, the polymorphic effects of those genes on FMD were inconsistent (139, 143) 

and the previous GWAS provided only limited evidence with low statistical power.  

  Inconsistent results have often been observed in human genetic studies partially 

due to heterogeneity in population structure and inadequate sample size (48). Combined 

with phenotypic complexity and environmental influence, those potential limitations 

make the identification of actual genetic associations difficult and hinder the replication 

of findings in human studies. Alternatively, mice are being utilized in genetic studies. 

Mouse models have several advantages for genetic studies, e.g. a minimal environmental 

influence, the genetic homozygosity, and accessibility of disease-relevant tissues (81, 

213). Therefore, a number of mouse linkage and association studies has identified 

quantitative trait loci (QTL) and/or candidate genes associated with CVD-related traits, 

e.g. atherosclerosis susceptibility (134, 250), blood lipids (160, 253), blood pressure (62, 

74), heart rate (22, 246), and cardiorespiratory fitness (50, 180). A handful of rodent 

studies have reported the differences in endothelium-dependent vasorelaxation among 
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several inbred mouse strains (41, 233) and the effects of chromosome substitution on 

endothelium-dependent vasorelaxation in rat (150, 151), supporting the notion that 

endothelial function is regulated by genetic background. In spite of such successes from 

mouse models used in genetic studies and the manifestation of genetic contribution to 

endothelial function, the mouse genetic linkage/association study for endothelial 

function has not been formally considered.  

  Statistical concerns have been raised about traditional mouse linkage and initial 

GWAS, including low detection power and inflated false positive associations due to 

population structure, genetic relatedness and limited mapping resolution (81, 141, 211). 

However, recent advancements in genomic sequence capabilities and mapping 

algorithms provide denser single nucleotide polymorphisms and reduced false positive 

associations which minimize the statistical concerns raised with earlier studies (92, 141, 

177). In particular, GWAS using a large number of inbred mouse strains has advantages 

for QTL identification, including a wider range of phenotypic variation and higher 

reproducibility, detection power and mapping resolution, compared to a traditional cross 

between two parental strains (81). Utilizing a recently developed mapping algorithm, 

called the efficient mixed model algorithm (EMMA), can also further correct statistical 

concerns and optimize computational speed and reliability of the results (141).  

  Therefore, given the limited evidence regarding the genetic regulation of 

endothelial function and the improvement in in silico mapping methods, we aimed to 

characterize the genetic contribution to intrinsic endothelial function and to identify 

quantitative trait loci (QTL)/candidate genes residing in the QTL responsible for 
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intrinsic endothelial function in mice. Specifically, we examined in vitro vasoreactivity 

in isolated thoracic aortas from 27 different inbred mouse strains, and then conducted 

GWAS for strain differences in vasoreactivity using EMMA. We hypothesized that 

intrinsic endothelium-dependent vasorelaxation is largely variable across inbred mouse 

strains, and the variation is influenced by one or more QTL.   

 

2.2. Methods 

2.2.1. Animals 

  Male mice (n=6-10/strain) from 27 inbred strains were purchased from Jackson 

Laboratories (Bar Harbor, ME) (Table 2.1). These strains were chosen based on 

phylogenetically distinct background (214), available sequence data in the efficient 

mixed model algorithm correction server (141) and the recommendations of the Mouse 

Phenome Database (101) to cover as much genetic diversity as possible. The list of 

inbred mouse strains in this study was mostly common (up to 93%) with previous strain-

screening studies for cardiovascular phenotypes (18, 50, 250). Upon arrival, mice were 

familiarized with a new environment at least for one week under a 12h light:dark cycle 

(7:00AM - 7:00PM) in a controlled temperature (21.0 - 22.0°C). Mice were allowed ad 

libitum access to food and water during the time. All procedures adhered to the 

established National Institutes of Health guidelines for the care and use of laboratory 

animals and were approved by the Institutional Animal Care and Use Committee 

(IACUC) at Texas A&M University. 
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Table 2.1. List of inbred mouse strains grouped by phylogenetical background 

Group 1 Group 2 Group 3 Group 4 Group 5 Group 6 Group 7 

A/J 

AKR/J 

BALB/cByJ 

C3H/HeJ 

CBA/J 

CE/J 

LG/J 

PL/J 

FVB/NJ 

MA/MyJ 

NOD/LtJ 

SJL/J 

SWR/J 

 

 

 

KK/HlJ 

NON/LtJ 

NZW/LacJ 

NZO/HlLtJ 

 

 

 

 

C57BL/6J 

C57BR/cdJ 

C58/J 

 

 

 

 

 

129S1/SvImJ 

129X1/SvJ 

LP/J 

 

 

 

 

 

DBA/2J 

I/LnJ 

SM/J 

 

 

 

 

 

PWD/PhJ 

 

 

 

 

 

 

 

Total 27 inbred mouse strains were separated into seven groups according to their 

genetic relatedness proposed by Petkov et al. (214). Group 1, Bagg albino derivatives; 

Group 2, Swiss mice; Group 3, Japanese and New Zealand’s inbred strains; Group 4, 

C57/58 strains; Group 5, Castle’s mice; Group 6, C.C. Little’s DBA and related strains; 

Group 7, wild-derived strains.
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2.2.2. Aortic ring experiments 

 At 13 weeks of age, mice from 27 inbred strains were weighed and anesthetized by 

intraperitoneal injection of the cocktail of Ketamine (80 mg/kg) and Xylazine (5 mg/kg). 

Thoracic aortas were dissected and connective tissue was carefully removed in ice-cold 

physiological saline solution pH 7.4 (in mmol/l: 118.3 NaCl, 4.7 KCl, 2.5 CaCl2 , 1.2 

MgSO4 , 1.2 KH2PO4 , 25 NaHCO3 and 5.5 glucose) under a microscope. Aortas were 

cut into 2 mm ring segments of equal length. Each ring segment was suspended in organ 

chamber of 610M Multi Chamber Myograph System (Danish Myo Technology, 

Denmark) filled with 8 ml of oxygenated (95% O2, 5% CO2) physiological saline 

solution and allowed to equilibrate at 37˚C for at least 30 minutes.  Aortic rings were 

stretched to the resting tension (9 to 12 mN) determined by the tension-force assessment 

in response to 25 mM of potassium chloride (KCl). Then cumulative concentration-

response curves to phenylephrine (PE: a selective α1-adrenergic receptor agonist, 10
-9

 to 

10
-5

 M) and KCl (a membrane depolarizing agent, 5 to 100 mM) were generated to 

assess contractile function of aortic rings, while cumulative concentration-response 

curves to acetylcholine (ACh, muscarinic receptor agonist) and sodium nitroprusside 

(SNP, nitric oxide donor) (10
-9

 to 10
-5

 M) were generated to assess endothelium-

dependent and -independent vasorelaxation, respectively. Proposed mechanisms of 

vasoconstriction and vasorelaxation induced by these four different vasoactive agents are 

illustrated in Fig. 2.1. Cumulative concentration-response curves to ACh and SNP were 

generated after the ring was pre-constricted to 70% of maximal contraction with PE. 

Doses were added after the response curve reached a plateau from the previous dose. 
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Figure 2.1. Proposed mechanisms of vasorelaxation and vasoconstriction induced by 

acetylcholine (ACh), sodium nitroprusside (SNP), phenylephrine (PE), and potassium 

chloride (KCl).  
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Rigorous experimental standards were applied in order to minimize the impact of non-

inherited factors on vasoreactivity. Unused segments of thoracic aorta were snap-frozen 

in liquid nitrogen and stored at -80. Percent contraction responses were calculated as 

[(DP – DB)/DB] X 100, where ‘DP’ is the maximal force generated by PE or KCl and ‘DB’ 

is the baseline force. Percent relaxation responses were calculated as [(DP – DD)/(DP – 

DB)] X 100, where ‘DP’ is the maximal force pre-generated by PE, ‘DD’ is the lowest 

force generated at a given dose of ACh or SNP and ‘DB’ is the baseline force. The half 

maximal effective and inhibitory concentration (EC50 or IC50, respectively) were 

calculated with absolute values from cumulative concentration-response curves to each 

vasoactive agent by Prism 6 (GraphPad Software, La Jolla, CA). 

 

2.2.3. Genome-wide association mapping  

  Genome-wide association mapping (GWAS) for maximal responses and EC50 / 

IC50 to four different vasoactive agents were performed with Efficient Mixed Model 

Algorithm (EMMA) via the web-based server (http://mouse.cs.ucla.edu/emmaserver/). 

Classical inbred mouse association has been proposed to have potential for spurious 

(false positive) associations to be generated by unequal relatedness among inbred strains 

(81, 141, 211). However, EMMA uses a linear mixed-model association with a variance 

component using a kinship matrix that is based on the genetic relatedness between 

inbred strains to control for population structure effects, thereby reducing the rate of 

false positive associations for GWAS (141). EMMA also enables to increase the 

computational speed and reliability of the results. The association scans were performed 
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with a 4 million single nucleotide polymorphism panel on the EMMA server. Because 

wild-derived strains are very dissimilar to classical inbred strains (287) and thus could be 

a potential source of spurious association (169), PWD/PhJ mice were excluded for 

EMMA analysis. Each single nucleotide polymorphism was evaluated individually and p 

values were recorded as the strength of the association between phenotype and genotype. 

Significance threshold p value was set using the Bonferroni correction for multiple 

comparisons (44). For vasoreactivity phenotypes that EMMA results did not contain any 

p values less than Bonferroni correction threshold p value, a nominal p value of 1.00 × 

10
-5

 was utilized as a suggestive threshold.  

  If a QTL contained a peak single nucleotide polymorphism, the QTL interval was 

defined as a region of ± 200 kilobase (kb) from the peak single nucleotide polymorphism. 

If the two QTL were within 1 megabase (Mb), they were considered one QTL (Berndt 

11, Sean 12). Based on the Hybrid Mouse Diversity Panel (HMDP), the majority of peak 

single nucleotide polymorphisms were found within 1 Mb of either end of a gene and the 

linkage disequilibrium blocks (r
2
 > 0.7) had an average distance of 500 kb (14). All 

significant and suggestive QTL were mapped to NCBI-build-37 mouse assembly using 

the UCSC Genome Browser (https://genome.ucsc.edu) to identify gene(s) residing in the 

QTL (229). Rat Genome Database (http://rgd.mcw.edu/) was queried with all 

significant/suggestive QTL to identify regions of shared synteny with rats or humans 

(243) and the NHGRI GWAS catalog (https://www.genome.gov/26525384) was 

searched with genes residing in the QTL to identify conjunction with human GWAS for 

cardiovascular traits (275). 
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2.2.4. Statistical analysis 

  Maximal vasoreactivity and EC50/IC50 are presented as mean ± SE and were 

compared with One-way ANOVA followed by Tukey’s post-hoc test. Based on the 

results from the One-way ANOVA, we calculated two estimates of broad sense 

heritability, intra-class correlation (rI) and coefficient of genetic determination (g2) 

which provide an estimate of the contribution of genotype to phenotype (164). The intra-

class correlation is an estimated proportion of the total variation that can be explained by 

differences between strains. The coefficient of genetic determination accounts for the 

doubling of the additive genetic variance that occurs with inbreeding. Each estimate was 

calculated using the following equations: rI = (MSB - MSW)/[MSB + (n - 1)×MSW] and 

g2 = (MSB - MSW)/[MSB + (2n -1)×MSW], where MSB and MSW are the between- and 

within-mean square, respectively, and n is the number of animals per strain. Because the 

number of animals per strain was not the same, n was calculated as n = [1/(a - 1)]×(n -∑ 

ni
2
), where a is the number of strains and ni is the number of animals in the ith strain.  

  For phenotypic correlation, all possible pairs between individual vasoreactivity 

responses and/or body weight (BW) were analyzed by Pearson correlation. For genetic 

correlation (53), all possible pairs between strain means of vasoreactivity responses 

and/or BW were analyzed by Pearson correlation. Statistical significance was set at p < 

0.05. EC50 or IC50 for ACh, SNP and PE transformed with -log10 and EC50 for KCl 

transformed with log10 were used for GWAS. p values from GWAS were transformed 

with –log10 for graphical visualization. All statistics were performed using SPSS 22 

(IBM, Armonk, NY). 
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2.3. Results 

  Body weight (BW) in 13-wk old male mice varied significantly across 27 inbred 

mouse strains (F = 33.36, p = 0.00). The strain distribution pattern for BW is shown in 

Fig. 2.2. There was approximately three-fold difference between PWD/PhJ having the 

lowest (16.83 ± 0.27 g) and NZO/HILtJ having the highest (48.38 ± 2.58 g) BW.  

  To characterize the genetic contribution to endothelial function, we conducted 

cumulative concentration-response curves to ACh in isolated thoracic aortas from 27 

different inbred mouse strains. We found significant differences in maximal responses 

(%) to ACh (ACh Max) (F = 7.67, p = 0.00) and ACh IC50 (-log10) (F = 4.81, p = 0.00) 

among 27 inbred strains (Table 2.2). The strain distribution patterns for ACh Max and 

ACh IC50 are shown in Fig. 2.3. In a panel of 27 genetically diverse inbred mouse strains, 

there was a nearly two-fold difference between NON/LtJ mice having the lowest (47.91 

± 2.32) and CE/J mice having the highest (94.26 ± 1.23) ACh Max (%) (Fig. 2.3A). ACh 

IC50 was also variable across inbred strains, showing 18.2-fold difference in ACh 

concentration (M) between the lowest (NZW/LacJ: 6.67 ± 0.14) and the highest (LP/J: 

7.93 ± 0.08) inbred strains (-log10) (Fig. 2.3B). In contrast, maximal responses to SNP 

were not different among 27 inbred strains. All aortic rings were 100% relaxed at SNP 

concentrations between 10
-6

 and 3× 10
-6

 M (data not shown). Analysis of variance 

showed a strain difference for SNP IC50 (-log10) (F = 10.30, p = 0.00) (Fig. 2.4 and Table 

2.2). I/LnJ had the lowest (7.49 ± 0.22) and FVB/NJ had the highest (8.99 ± 0.07) SNP 

IC50. There was 31.6-fold difference in SNP concentration (M) between those two 

strains.  
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Figure 2.2. Strain distribution pattern for body weight (g) of young male mice from 27 

inbred strains. All mice were weighed at 13 weeks of age. rI, intra-class correlation; g2, 

coefficient of genetic determination. Values are expressed as mean  SE. n = 6-10 mice 

per strain.
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Table 2.2. Statistical differences in vasorelaxation responses to ACh and SNP 

across 27 inbred mouse strains  

Strain 

ACh Max  

(%) 

ACh IC50 

  (log10) 

SNP IC50  

  (log10) 

129S1/SvImJ BCD ABCD ABCDE 

129X1/SvJ ABCD ABCD BCDEF 

A/J BCD ABCD ABC 

AKR/J ABC BCD HI 

BALB/cByJ CD ABCD BCDEF 

C3H/HeJ CD ABC ABCD 

C57BL/6J CD ABCD BCDEF 

C57BR/cdJ CD ABCD BCDEF 

C58/J BCD CD DEFGHI 

CBA/J CD ABC BCDEF 

CE/J D ABCD BCDEF 

DBA/2J ABCD ABCD FGHI 

FVB/NJ CD AB A 

I/LnJ ABCD ABCD I 

KK/HlJ ABCD ABCD BCDEFGHI 

LG/J AB ABCD GHI 

LP/J CD A BCDEFG 

MA/MyJ CD ABC BCDEFGH 

NOD/LtJ ABCD ABCD CDEFGHI 

NON/LtJ A ABCD DEFGHI 

NZO/HlLtJ A ABCD EFGHI 

NZW/LacJ AB D BCDEFGH 

PL/J CD AB DEFGHI 

PWD/PhJ CD AB AB 

SJL/J ABCD ABCD DEFGHI 

SM/J A ABCD GHI 

SWR/J CD ABCD BCDEF 

Statistical difference was determined by an One-way ANOVA followed by Tukey’s post 

hoc test. Strains not connected by the same letter were significantly different (p < 0.05). 

ACh, acetylcholine; ACh Max, maximal response (%) to ACh; SNP, sodium 

nitroprusside; IC50, half maximal inhibitory concentration. All aortic rings were 100 % 

relaxed at SNP concentrations between 10
-6

 and 3× 10
-6

 M, thus SNP max (%) were 

excluded.
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Fig. 2.3. Strain distribution pattern for (A) maximal relaxation responses (%) to 

acetylcholine (ACh Max) and (B) the half maximal inhibitory concentration in responses 

to ACh (ACh IC50) in young male mice from 27 inbred strains. rI, intra-class correlation; 

g2, coefficient of genetic determination. Values are expressed as mean  SE. n = 6-10 

mice per strain.
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Fig. 2.4. Strain distribution pattern for the half maximal inhibitory concentration in 

responses to sodium nitroprusside (SNP IC50) in young male mice from 27 inbred strains. 

rI, intra-class correlation; g2, coefficient of genetic determination. Values are expressed 

as mean  SE. n = 6-10 mice per strain. All aortic rings were 100 % relaxed at SNP 

concentrations between 10
-6

 and 3× 10
-6

 M, thus maximal relaxation responses (%) to 

SNP were not shown.
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  Strain differences in contractile responses to PE and KCL among 27 inbred mice 

were also observed (Table 2.3). Analysis of variance showed significant differences for 

PE Max (%) (F = 12.57, p = 0.00), PE EC50 (-log10) (F = 5.29, p = 0.00), KCl Max (%) 

(F = 8.04, p = 0.00), and KCl EC50 (log10) (F = 6.10, p = 0.00). Figs. 2.5 and 2.6 

illustrate the strain distribution patterns for vasocontractile responses to PE and KCl, 

respectively. SM/J had both the lowest PE Max (31.46 ± 0.83 %) and the lowest KCl 

Max (83.92 ± 4.83 %). In contrast, C58BR/cdJ had the highest PE Max (146.51 ± 

2.02 %) and 129S1/SvImJ had the highest KCl Max (183. 21 ± 5.55 %) (Figs. 2.5A and 

2.6A). There was 4.7- and 2.2-fold difference between the lowest and the highest strain 

for PE Max and KCl Max, respectively. Whereas, there was 5.5 -fold difference in PE 

concentration (M) between the lowest (NZO/HiLtJ: 6.28 ± 0.05) and the highest strain 

(BALB/cByJ: 7.02 ± 0.07) for PE EC50 (-log10) (Fig. 2.5B) and 1.3-fold difference in 

KCl concentration (M) between the lowest (AKR/J: 1.60 ± 0.00) and the highest strain 

(FVB/NJ: 1.71 ± 0.04) for KCl EC50 (-log10) (Fig. 2.6B).  

  Phenotypic and genetic correlation analyses for all possible pairs of 

vasoreactivity responses and/or BW were performed and are indicated in Tables 2.4 and 

2.5, respectively. For phenotypic correlations, all vasorelaxion responses were positively 

correlated each other, while vasocontractile responses were correlated each other with 

two exceptions: PE EC50 vs. KCl Max and KCl Max vs. KCl EC50. Between 

vasorelaxion and vasocontractile phenotypes, responses to ACh were not correlated with 

contractile responses. Only a negative correlation between ACh Max and PE EC50 was 

observed (r = -0.214). By comparison, SNP IC50 was correlated with contractile 
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Table 2.3. Statistical differences in vasoconstriction responses to PE and KCl 

across 27 inbred mouse strains 

Strain 

PE Max  

(%) 

PE EC50 

(log10) 

KCl Max  

(%) 

KCl EC50 

(log10) 

129S1/SvImJ HI AB H AB 

129X1/SvJ HI AB FGH ABCDE 

A/J FGHI AB BCDEFG BCDEF 

AKR/J ABCDE AB ABCDEF F 

BALB/cByJ I A EFGH ABCD 

C3H/HeJ EFGHI B BCDEFG ABCDE 

C57BL/6J BCDEFGHI AB BCDEFG AB 

C57BR/cdJ HI B CDEFGH ABC 

C58/J ABCDEFGHI AB BCDEFGH ABCDE 

CBA/J BCDEFGHI AB BCDEFG ABCDE 

CE/J GHI AB BCDEFG ABCDE 

DBA/2J ABCDEFG AB ABCDE BCDEF 

FVB/NJ EFGHI AB BCDEFG A 

I/LnJ ABCD AB ABCD BCDEF 

KK/HlJ CDEFGHI AB ABCD ABC 

LG/J HI AB GH EF 

LP/J GHI AB ABCDE A 

MA/MyJ A AB ABC BCDEF 

NOD/LtJ FGHI AB BCDEFGH ABCDE 

NON/LtJ DEFGHI AB AB A 

NZO/HlLtJ ABC B ABCD BCDEF 

NZW/LacJ GHI AB ABCDEF BCDEF 

PL/J BCDEFGHI AB AB BCDEF 

PWD/PhJ AB AB ABCDEF BCDEF 

SJL/J ABCDEF AB AB DEF 

SM/J A B A BCDEF 

SWR/J BCDEFGHI AB DEFGH CDEF 

Statistical difference was determined by an One-way ANOVA followed by Tukey’s post 

hoc test. Strains not connected by the same letter were significantly different (p < 0.05). 

PE, phenylephrine; KCl, potassium chloride; PE Max, maximal response (%) to PE; KCl 

Max, maximal response (%) to KCl; EC50, half maximal effective concentration.  
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Fig. 2.5. Strain distribution pattern for (A) maximal contractile responses (%) to 

phenylephrine (PE Max) and (B) the half maximal effective concentration in responses 

to PE (PE EC50) in young male mice from 27 inbred strains. rI, intra-class correlation; g2, 

coefficient of genetic determination. Values are expressed as mean  SE. n = 6-10 mice 

per strain.
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Fig. 2.6. Strain distribution pattern for (A) maximal contractile responses (%) to 

potassium chloride (KCl Max) and (B) the half maximal effective concentration in 

responses to KCl (KCl EC50) in young male mice from 27 inbred strains. rI, intra-class 

correlation; g2, coefficient of genetic determination. Values are expressed as mean  SE. 

n = 6-10 mice per strain.
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Table 2.4. Phenotypic correlations between vasoreactivity responses and/or body 

weight (BW) 

Vasoreactivity 
ACh  

Max 
(%) 

ACh 

IC50 

(-log10) 

SNP  

IC50 

(-log10) 

PE 

Max 
(%) 

PE 

EC50 

(-log10) 

KCl 

Max 
(%) 

KCl  

EC50 

(-log10) 

ACh Max 
(%) 

r 

p 
 

.386
*
 

.000 
.433

*
 

.000 

.039 

.596 
-.214

*
 

.004 

.144 

.067 

.134 

.087 

ACh IC50 

(-log10) 

r 

p 
  

.342
*
 

.000 

-.144 

.051 

-.075 

.316 

-.106 

.177 

.032 

.681 

SNP IC50 

(-log10) 

r 

p 
   

.313
*
 

.000 

.002 

.984 
.210

*
 

.009 
.322

*
 

.000 

PE Max 
(%) 

r 

p 
    

.440
*
 

.000 
.473

*
 

.000 
.403

*
 

.000 

PE EC50 

(-log10) 

r 

p 
     

-.016 

.840 
.233

*
 

.003 

KCl Max 
(%) 

r 

p 
      

.065 

.409 

BW (g) 
r 

p 
-.385

*
 

.000 

-.147 

.059 
-.231

*
 

.003 
.201

*
 

.009 
.181

*
 

.019 

.072 

.362 

.011 

.887 

Bivariate pearson correlations were conducted for all possible pairs between individual 

vasoreactivity responses and/or BW. PE, phenylephrine; KCl, potassium chloride; ACh, 

acetylcholine; SNP, sodium nitroprusside; Max, Maximal response (%); EC50, half 

maximal effective concentration; IC50, half maximal inhibitory concentration; all aortic 

rings were 100 % relaxed at SNP concentrations between 10
-6

 and 3× 10
-6

 M, thus SNP 

max (%) were excluded. Statistically significant correlations are bold. *, p < 0.05. 
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Table 2.5. Genetic correlations between vasoreactivity responses and/or body 

weight (BW) 

Vasoreactivity 
ACh 

Max 
(%) 

ACh 

IC50

(-log10) 

SNP 

IC50

(-log10) 

PE 

Max 
(%) 

PE 

EC50 

(-log10) 

KCl 

Max 
(%) 

KCl 

EC50 

(-log10) 

ACh Max 
(%) 

r 

p 
.403

*

.037 
.586

*

.001 

.235 

.237 

.034 

.868 

.234 

.239 

.227 

.254 

ACh IC50

(-log10) 

r 

p 

.414
*
 

.032 

-.029 

.886 

.094 

.640 

-.199 

.320 

.069 

.732 

SNP IC50 

(-log10) 

r 

p 
.401

*

.038 

.041 

.838 

.360 

.065 

.356 

.069 

PE Max 
(%) 

r 

p 

.364 

.062 
.699

*

.000 
.474

*

.012 

PE EC50 

(-log10) 

r 

p 

.031 

.877 

.287 

.146 

KCl Max 
(%) 

r 

p 
.520

*

.005 

BW (g) 
r 

p 
-.568

*

.002 

-.193 

.335 

-.315 

.110 

.170 

.395 

.097 

.631 

.104 

.607 

.058 

.775 

Bivariate pearson correlations were conducted for all possible pairs between strain 

means of vasoreactivity responses and/or BW. PE, phenylephrine; KCl, potassium 

chloride; ACh, acetylcholine; SNP, sodium nitroprusside; Max, Maximal response (%); 

EC50, half maximal effective concentration; IC50, half maximal inhibitory concentration; 

all aortic rings were 100 % relaxed at SNP concentrations between 10
-6

 and 3× 10
-6

 M,

thus SNP max (%) were excluded. Statistically significant correlations are bold. *, p < 

0.05.
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responses except of PE EC50. BW was negatively correlated with vasorelaxation 

responses with an exception for ACh IC50. On the contrary, BW was positively 

correlated with contractile responses to PE, but not to KCl. For genetic correlations, 

ACh and SNP variables also showed significantly positive correlations. Whereas, 

contractile responses were correlated each other with three exceptions: PE Max vs. PE 

EC50, PE EC50 vs. KCl Max and KCl Max vs. KCl EC50. There were not significant 

correlations between ACh variables and either PE or KCl variables. Notably, only a 

negative genetic correlation was identified between BW and ACh Max.  

To identify single nucleotide polymorphisms associated with vasoreactivity responses, 

GWAS for maximal responses and EC50 / IC50 were performed using EMMA with a 4 

million single nucleotide polymorphism panel. Single nucleotide polymorphisms having 

< 5% of minor allele frequency were automatically excluded from the results by the 

EMMA server, hence the final results contained approximately 1.27 million single 

nucleotide polymorphisms. Bonferroni correction for multiple comparisons (44) was 

used to determine a significant threshold of p = 3.95 × 10
-8

. Using this threshold, 

significant associations were only identified for ACh Max and KCl EC50; therefore, a 

nominal p value of 1.00 × 10
-5

 was used a suggestive threshold. 

  Fig. 2.7, Tables 2.6 and 2.7 show GWAS results for endothelium-dependent 

vasorelaxation. Four significant QTL were identified for ACh Max on 3 different 

chromosomes; Chrs. 1 (145.37-145.77 and 148.45-148.85 Mb), 2 (149.58-149.98 Mb) 

and 19 (22.20-22.79 Mb). At the suggestive level, 18 QTL were found for ACh Max on 

12 different chromosomes. In contrast, no significant QTL was identified for ACh IC50. 
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Figure 2.7. Genome-wide association mapping (GWAS) for (A) maximal relaxation 

responses (%) to acetylcholine (ACh Max) and (B) the half maximal inhibitory 

concentration in response to ACh (ACh IC50) in young male mice from 26 inbred 

strains. GWAS was conducted using efficient mixed model algorithm with 4 million 

single nucleotide polymorphisms. The x-axis indicates chromosomes and y-axis 

indicates p-values transformed by –log10. The solid horizontal line indicates Bonferroni-

corrected significant cut-off threshold (p value <3.95×10
-8

), while the dashed line 
indicates suggestive cut-off threshold (p value <1.00× 10

-5
).

ACh Max (%) 

ACh IC50

A 

B 
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Table 2.6. Significant and suggestive QTL found by GWAS for vasorelaxation 

responses to ACh 

Trait Significance Chr. 

QTL Interval 

(Mb) 

Peak 

marker 

Location 

(Mb) p value Allele 

ACh 

Max 

(%) 

Significant 1 145.37-145.77 rs30978316 145.57 3.41e-09 A/G 

1 148.17-148.96 rs31892646 148.66 1.43e-09 A/T 

2 149.58-149.98 rs6343262 149.78 2.28e-08 G/T 

19 22.20-22.79 rs37653496 22.40 1.21e-08 C/T 

Suggestive 1 154.89-155.29 rs32589931 155.09 5.89e-06 A/G 

2 157.82-158.22 rs27320451 158.02 3.40e-06 C/T 

2 163.18-163.58 rs28281229 163.38 4.98e-06 A/G 

4 150.58-150.98 rs32323516 150.78 1.74e-06 C/T 

5 9.55-10.08 rs37664807 9.87 3.56e-06 G/T 

6 146.07-146.47 rs38688580 146.27 8.59e-08 C/T 

9 98.19-98.76 rs33165797 98.46 4.72e-06 C/T 

11 44.34-45.24 rs26915649 44.68 1.17e-07 G/T 

12 30.49-30.89 rs29151171 30.69 6.53e-06 A/G 

12 60.81-61.21 rs45948495 61.01 1.03e-07 C/G 

13 66.77-67.17 rs48005777 66.97 5.29e-06 C/T 

17 45.29-45.92 rs45985354 45.51 2.92e-06 A/G 

17 86.74-87.14 rs33082540 86.94 5.55e-06 G/T 

18 66.74-67.15 rs36401271 66.95 9.97e-06 A/T 

ACh 

IC50 

Suggestive 7 32.00-32.40 rs50008818 32.20 7.99e-06 C/T 

7 132.38-132.80 rs32985074 132.58 6.30e-06 C/T 

9 41.80-42.20 rs30322841 42.00 8.95e-06 C/T 

13 43.15-43.84 rs29735389 43.35 7.11e-07 A/C 

16 38.39-38.79 rs51898661 38.59 7.04e-06 G/T 

Quantitative trait loci (QTL) having p values ≤ 3.95×10
-8

and 1.00× 10
-5

 were considered

significant and suggestive, respectively. The QTL intervals were estimated to be 400 kb 

centered around the single peak SNP. If two QTL were separated < 1Mb, they were 

considered one QTL. The reference single nucleotide polymorphism (rs) numbers for 

peak markers were identified using the UCSC Genome Browser Chr., chromosome; 

ACh, acetylcholine; ACh Max, maximal response (%) to ACh; IC50, half maximal 

inhibitory concentration.
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Table 2.7. Protein-coding genes residing in significant and suggestive QTL 

associated with vasorelaxation responses to ACh 

Trait Chr. Significance 

QTL interval 

(Mb) Protein coding genes 

ACh 

Max 

(%) 

1 Significant 145.37-145.77 B3galt2, Glrx2, Uchl5 

1 Significant 148.17-148.96 Fam5c 

1 Suggestive 154.89-155.29 NMnat2, Lamc1, Lamc2 

2 Significant 149.58-149.98 Syndig1, Zfp120, Tmem90b 

2 Suggestive 157.82-158.22 Rprd1b, Tgm2, Tti1, Bpi, Lbp, Snhg11 

2 Suggestive 163.18-163.58 Fitm2, Gdap1l1, Hnf4a, Jph2, Ttpa1, Pkig, 

Serinc3, Ada 

4 Suggestive 150.58-150.98 Camta1 

5 Suggestive 9.55-10.08 Grm3 

6 Suggestive 146.07-146.47 Itpr2 

9 Suggestive 98.19-98.76 Copb2, Mrps22, Nmnat3, Rbp1, Rbp2, Prr23a 

11 Suggestive 44.34-45.24 Ebf1, Rnf145 

12 Suggestive 30.49-30.89 Myt1l, Pxdn, Tpo, Sntg2 

12 Suggestive 60.81-61.21 

13 Suggestive 66.77-67.17 Zfp640, Uqcrb, Mterfd1, Ptdss1, Zfb712 

17 Suggestive 45.29-45.92 Cdc5l. Spats1, Aars2, Tcte1, Nfkbie, Slc35b2, 

Tmem151b, Hsp90ab1, Ent1, Slc29a1, Capn11, 

Mrpl14 

17 Suggestive 86.74-87.14 Prkce 

18 Suggestive 66.74-67.15 MC4r 

19 Significant 22.20-22.79 Trpm3 

ACh 

IC50 

7 Suggestive 32.00-32.40 Apbh, Abpe 

7 Suggestive 132.38-132.80 Jmjd5, Nsmce1, Il4ra, Il21r, Gtf3c1 

9 Suggestive 41.80-42.20 Sorl1, Sc5d, Tecta 

13 Suggestive 43.15-43.84 Phactr1, Tbc1d7, Gfod1, Sirt5, Nol7, Ranbp9, 

Ccdc90a, Rnf182 

16 Suggestive 38.39-38.79 Pla1a, Cd80, Adprh, Poglut1, Tmem39a, Cdgap, 

B4galt4, Upk1b 

Quantitative trait loci (QTL) having p values ≤ 3.95×10
-8

and 1.00× 10
-5

 were queried

into the UCSC Genome Browser using NCBI-build-37 mouse assembly to search genes 

residing in the QTL intervals. ACh, acetylcholine; ACh Max, maximal response (%) to 

ACh; IC50, half maximal inhibitory concentration; Chr., chromosome; QTL, quantitative 

trait loci. Proposed candidate genes are bold and putative candidate genes are underlined.
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Five suggestive QTL were found for ACh IC50. These QTL were identified on 4 

different chromosomes; Chrs. 7 (32.00-32.40 Mb and 132.38-132.80 Mb), 9 (41.80-

42.20 Mb), 13 (43.15-43.84 Mb), and 16 (38.39-38.79 Mb).  

  GWAS also revealed significant and suggestive QTL for responses to SNP, PE 

and KCl (Figs. 2.8, 2.9 and 2.10 and Table 2.8). For KCl EC50, one significant QTL was 

found on X chromosome (101.61-102.40 Mb). In contrast, no significant QTL was 

detected for other vasoreactivity responses. Several QTL were identified at the 

suggestive level; 15 suggestive QTL on 10 different chromosomes for SNP IC50, 9 

suggestive QTL on 8 different chromosomes for PE Max, 7 suggestive QTL on 7 

different chromosomes for PE EC50, 11 suggestive QTL on 8 different chromosomes for 

KCl Max, and 8 suggestive QTL were identified on 6 different chromosomes. 

  Three suggestive QTL for ACh Max overlapped with QTL for SNP IC50 on 3 

different chromosomes; Chr. 2 (163.2‒163.6 Mb), 11 (44.3‒45.2 Mb) and 17 (86.7‒87.1 

Mb), whereas none of suggestive QTL for ACh IC50 overlapped with any other QTL. 

QTL for contractile responses did not overlap each other. One suggestive QTL (Chr. 2: 

163.4‒163.6 Mb) was common to three traits, ACh Max, SNP IC50 and PE Max. 
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Figure 2.8. Genome-wide association mapping (GWAS) for the half maximal inhibitory 

concentration in responses to sodium nitroprusside (SNP IC50) in young male mice from 

26 inbred strains. GWAS was conducted using efficient mixed model algorithm with 4 

million single nucleotide polymorphisms. The x-axis indicates chromosomes and y-axis 

indicates p-values transformed by –log10. The solid horizontal line indicates Bonferroni-

corrected significant cut-off threshold (p value <3.95×10
-8

), while the dashed line 

indicates suggestive cut-off threshold (p value <1.00× 10
-5

).

SNP IC50 
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Figure 2.9. Genome-wide association mapping (GWAS) for (A) maximal contractile 

responses (%) to phenylephrine (PE Max) and (B) the half maximal effective 

concentration in responses to PE (PE EC50) in in young male mice from 26 inbred strains. 

GWAS was conducted using efficient mixed model algorithm with 4 million single 

nucleotide polymorphisms. The x-axis indicates chromosomes and y-axis indicates p-

values transformed by –log10. The solid horizontal line indicates Bonferroni-corrected 

significant cut-off threshold (p value <3.95×10
-8

), while the dashed line indicates 

suggestive cut-off threshold (p value <1.00× 10
-5

).

PE Max (%) 

PE EC50 

A 

B 
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Figure 2.10. Genome-wide association mapping (GWAS) for (A) maximal contractile 

responses (%) to potassium chloride (KCl Max) and (B) the half maximal effective 

concentration in responses to KCl (KCl EC50) in in young male mice from 26 inbred 

strains. GWAS was conducted using efficient mixed model algorithm with 4 million 

single nucleotide polymorphisms. The x-axis indicates chromosomes and y-axis 

indicates p-values transformed by –log10. The solid horizontal line indicates Bonferroni-

corrected significant cut-off threshold (p value < 3.95×10
-8

), while the dashed line

indicates suggestive cut-off threshold (p value < 1.00× 10
-5

).

KCl Max (%) 

KCl EC50

A 
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Table 2.8. Significant and suggestive QTL found by GWAS associated with 

vasoreactivity responses to SNP, PE and KCl 

Trait Significance Chr. 

QTL Interval 

(Mb) 

Peak 

marker p value 

overlapping 

QTL (Mb) 

with ACh Max  

SNP 

IC50 
Suggestive 2 107.51-107.91 rs27490041 5.27e-07  

 2 159.24-160.04 rs28281159 3.53e-06  

 2 163.18-163.58 rs28281229 5.53e-06 163.18-163.58 

 3 33.54-35.63 rs29894681 4.91e-07  

 4 94.28-94.68 rs28085124 1.44e-06  

 6 4.28-4.68 rs30170734 7.48e-06  

 11 43.99-45.24 rs26897621 1.95e-07 44.34-45.24 

 12 36.02-36.42 rs47949668 3.37e-06  

 12 66.34-66.74 rs29128270 6.87e-06  

 12 78.01-78.56 rs29174383 1.25e-06  

 13 43.99-44.39 rs30144354 6.69e-07  

 14 93.44-94.30 rs31281733 9.34e-07  

 15 63.80-64.12 rs31584477 1.76e-06  

 17 86.74-88.20 rs29766620 5.44e-07 86.74-87.14 

 17 90.58-91.36 rs33679213 1.19e-06  

PE 

Max 

(%) 

Suggestive 1 35.46-35.86 rs32051270 5.03e-06  

 2 163.41-143.81 rs27331097 9.30e-06 163.41-163.58 

 2 165.69-166.09 rs27295338 7.85e-06  

 3 3.03-3.43 rs29618455 2.36e-06  

 9 45.77-46.22 rs32676184 9.80e-06  

 10 129.68-130.11 rs46235569 2.36e-06  

 11 42.87-43.56 rs28205221 1.47e-06  

 13 6.21-7.09 rs50398136 4.14e-06  

 18 42.06-42.46 rs63933869 3.83e-06  

PE 

EC50 
Suggestive 1 73.82-74.68 rs36403436 2.14e-06  

 3 37.10-37.50 rs30063078 2.95e-06  

 6 135.78-136.18 rs36997108 7.75e-06  

 8 59.85-60.25 rs31384283 9.89e-06  

 11 89.72-90.15 rs27107288 5.43e-07  

 13 119.05-119.96 rs29834625 7.47e-06  

 16 30.32-30.72 rs4168249 9.36e-06  
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Table 2.8 Continued 

Trait Significance Chr. 
QTL Interval 

(Mb) Peak marker p value 

overlapping 

QTL (Mb) 

with ACh Max  

KCl 

Max 

(%) 

Suggestive 4 152.98-153.38 rs32999511 5.05e-06  

 5 3.16-3.56 rs31228881 1.01e-07  

 7 33.01-33.41 rs36239097 9.68e-06  

 8 4.52-5.08 rs47036401 6.03e-06  

 8 100.37-100.77 rs33356432 4.79e-06  

 10 18.38-18.82 rs29358047 2.95e-06  

 12 116.63-117.03 rs47495711 4.20e-07  

 13 27.25-27.65 rs30054551 9.68e-06  

 13 63.35-63.84 rs29249644 4.36e-06  

 13 70.63-71.04 rs50665869 7.25e-06  

 18 58.57-58.98 rs49997899 4.86e-06  

KCl 

EC50 
Significant X 101.61-102.40 rs29078805 3.24e-08  

Suggestive 1 134.91-135.65 rs32757676 5.55e-06  

 1 136.94-137.34 rs37503025 3.41e-06  

 3 36.53-36.93 rs3151465 7.44e-06  

 6 145.30-146.07 rs38919844 3.81e-06  

 7 49.90-50.38 rs37494318 1.19e-06  

 9 92.56-92.96 rs29597520 2.55e-06  

 9 102.08-102.56 rs29840346 1.42e-06  

 X 138.49-139.12 rs29287900 9.16e-06  

Quantitative trait loci (QTL) having p values ≤ 3.95e-08 and 1.00e-05 were considered 

significant and suggestive, respectively. The QTL intervals were estimated to be 400 kb 

centered around the single peak marker. If two QTL were separated < 1Mb, they were 

considered one QTL. The reference single nucleotide polymorphism (rs) numbers for 

peak markers were identified using the UCSC Genome Browser. Chr., chromosome; 

SNP, sodium nitroprusside; PE, phenylephrine; KCl, potassium chloride; PE and KCl 

Max, maximal response (%) to PE and KCl, respectively; IC50, half maximal inhibitory 

concentration; EC50, half maximal effective concentration.
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2.4. Discussion 

  Despite accumulating evidence indicating that endothelial function is genetically 

regulated, the genetic basis for endothelial function still remains to be unclear. Here, we 

assessed vasoreactivity responses to vasoactive agents in isolated thoracic aortas from 27 

strains of genetically diverse inbred mice at 13 weeks of age under controlled 

environmental conditions. The strain-dependent variation in vasoreactivity observed in 

the present study enabled us to conduct genome-wide association mapping to identify 

quantitative trait loci responsible for the variation. The main findings of the present 

study were: 1) vasoreactivity responses in isolated aortas varied across 27 inbred mouse 

strains; 2) there were some correlations between vasoreactivity responses; 3) several 

significant and suggestive QTL were identified for the variation in endothelium-

dependent relaxation and prospective candidate genes were found in those QTL. Our 

findings provide essential genetic information underlying individual susceptibility to 

endothelial dysfunction, thus insights into identifying potential therapeutic targets to 

prevent or treat endothelial dysfunction. 

  Control of vascular function is important for blood pressure regulation and 

regional distribution of blood flow. Impaired regulation of vascular function, especially 

endothelial dysfunction, is associated with various forms of cardiovascular disease. 

Limited data suggests that genetic factors contribute to the variation in vascular function 

in humans and animals. In the present study, significant differences in endothelium-

dependent vasorelaxation were found in aorta from 27 inbred strains of mice (Fig. 2.3 

and Table 2.2), with an approximately 2-fold difference between the highest and lowest 
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responding strains in maximal response to ACh. Our results provide an expanded 

phenotype dataset (≥ 3-fold) of endothelium-dependent vasorelaxation measurements 

over previous studies (41, 233). Ryan et al. reported differences in endothelium-

dependent vasorelaxation across 7 different inbred mouse strains (male, 16 to 22 weeks 

old) (233), of which four inbred strains were included in the present study. In general the 

strain distribution and magnitude of responses to ACh were similar to Ryan et al. with 

one exception. The authors found that two 129 sub-strains (129P3/J and 129X1/SvJ) had 

significantly attenuated endothelium-dependent vasorelaxation to ACh (< 20% maximal 

relaxation) compared with other 5 strains (A/J, Balb/cJ, C3HeB/FeJ, C57BL/6J, and 

SWR/J). In the present study, 129X1/SvJ had significantly lower ACh Max compared 

with A/J, SWR/J and C57BL/6J, but the maximum response for this strain was greater 

than 50%. (Fig. 2.3A). Chen et al. also measured vasorelaxation responses to ACh in 

SJL, FVB and C3H inbred strains (41). Although the magnitude of responses was 

somewhat different between studies, the strain distribution pattern in the present study 

was similar to Chen et al..  In the present study, we also found strain-dependent variation 

in ACh IC50 among 27 inbred mouse strains (Fig. 2.3B and Table 2.2).  Chen et al. did 

not observe differences in ACh IC50 across three strains, despite differences in maximal 

responses. However, in two consomic panels of rats created from the introgression of a 

single chromosome from one inbred rat strain (Brown Norway) onto other two inbred rat 

strains (Dahl salt sensitive and Fawn Hooded Hypertensive), Kunert and colleagues 

found significant differences in ACh IC50 between several consomic lines and the 

parental strain (150, 151), demonstrating that sensitivity to ACh would be regulated by 
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genetic background. Together, our findings of variation in ACh max and ACh IC50 

across 27 inbred mouse strains support the notion that endothelial function is influenced 

by genetic background. 

  Maximal responses to SNP were not different among inbred mouse strains since 

all aortic rings were 100% relaxed at SNP concentrations between 10
-6

 and 3×10
-6

 M 

(data not shown). These results are consistent with previous findings that the ability of 

vascular smooth muscle to dilate in response to high doses (> 10
-7 

M) of nitric oxide (NO) 

donors is not variable in young animals (233). In contrast, the IC50 for SNP varied across 

inbred mouse strains (Fig. 2.4 and Table 2.2).  In their three-strain comparison, Chen et 

al. found that SNP IC50 was significantly different in SJL compared with FVB and C3H 

strains (41). Thus, our results further provide evidence that genetic background affects 

sensitivity of vascular smooth muscle to NO.  

  The evidence for genetic regulation of vasocontractile function is limited. Posti et 

al. reported inter-individual variation in contractile responses to PE (217) and Stein et al. 

found marked ethnic differences in sensitivity to PE (251). Using the consomic rat 

panels, Kunert and colleagues identified that sensitivity to PE varied among consomic 

strains (150, 151), suggesting that smooth muscle contractile responses to PE might be 

regulated by multiple chromosomes. In the present study, responses to PE varied by 

about five-fold, whereas the responses to KCl varied by two-fold. These ranges are 

larger than those previously reported for responses to contractile agents in mouse aorta 

(41, 233), but our study incorporates a much larger number of strains. Although data 

regarding the genetic regulation of contractile function are limited, our findings of 
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variation in contractile responses to both PE and KCl among 27 inbred strains (Figs. 2.5 

and 2.6) provide evidence that contractile functions are also regulated by genetic 

background.  

  ACh-induced endothelium-dependent vasorelaxation was moderately, but 

significantly, correlated with SNP-induced endothelium-independent relaxation (Table 

2.4). ACh is a muscarinic receptor agonist that stimulates the release of vasorelaxing 

molecules, e.g. NO, prostacyclin and hyperpolarizing factors from endothelial cells. 

Those relaxing molecules released from endothelial cells diffuse into vascular smooth 

muscles, eventually causing muscle relaxation (55, 158). Whereas, SNP is a NO donor 

that diffuses directly into vascular smooth muscle cells, thus inducing muscle 

endothelium-independent relaxation (142). Our finding of modest phenotypic 

correlations between responses to ACh and SNP (r = 0.342 to 0.433) would be expected 

because both agents increase the influx of NO into vascular smooth muscle. Significant 

genetic correlations between responses to ACh and SNP IC50 (Table 2.5) indicate that 

vasorelaxation responses to ACh and SNP would be influenced, in part, by common 

genetic factors. 

  Previous studies have demonstrated that exaggerated contractile responses to 

vasoconstrictors are associated with attenuated endothelium-derived NO because α-

adrenoreceptor agonists, e.g. PE and norepinephrine, stimulate not only α-

adrenoreceptor on smooth muscle, but also the release of NO from endothelium (58, 

124). In the present study, responses to ACh were not correlated with contractile 

responses (except for between ACh Max and PE EC50). This finding implies that strain 
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differences in endothelium-dependent vasorelaxation observed in the present study 

might not be mainly due to differences in NO pathways. In addition, the absence of 

genetic correlations between responses to ACh and contractile responses (Table 2.5) 

demonstrates that genetic regulation would be different between endothelium-dependent 

vasorelaxation and vasocontractile responses. On the contrary, SNP IC50 and contractile 

responses were partly correlated both phenotypically and genetically, raising the 

possibility that relaxation responses to NO and contractile responses in smooth muscle 

are influenced partly by common genetic factors.   

  BW was inversely correlated with ACh Max and SNP IC50, but positively 

correlated with contractile responses to PE (Table 2.4). These results would fit in with 

previous clinical and epidemiological studies demonstrating that BMI or body fatness is 

inversely associated with endothelial function (1, 254). However, we did not assess body 

composition and body length in the present study.  

  Phenotyping a large number of inbred mouse strains with a range of genetic 

diversity enabled us to perform GWAS to identify QTL responsible for endothelium-

dependent vasorelaxation, as well as endothelium-independent relaxation and contractile 

responses. In the present study, four single nucleotide polymorphisms were significantly 

associated with ACh Max (Table 2.6) and these are all located in non-coding regions: 1 

in intergenic and 3 intronic regions. Pauli et al. currently reported that approximately 46% 

of genetic variants curated from the NHGRI GWAS catalog (https://www.genome.gov/ 

26525384) were enriched within functional element-residing non-coding areas annotated 

by The Encyclopedia of DNA Elements (ENCODE) (https://www.encodeproject.org/) 
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(68). These data indicate that genetic variants residing in non-coding regions can 

function as transcriptional regulators for neighboring genes. Therefore, single nucleotide 

polymorphisms residing in non-coding regions might have underlying functional 

significance that regulates investigations.  

  GWAS have shown potentials to not only provide a chance to identify novel 

single nucleotide polymorphisms, but also confirm the results of previous candidate gene 

studies. In the present study, however, well-known endothelial genes, e.g. eNOS. CYBA 

or superoxide dismutase 1 (SOD-1), were not identified in any of significant/suggestive 

QTL associated with the variation in endothelium-dependent vasorelaxation (Table 2.7). 

This implies that strain differences in endothelium-dependent vasorelaxation observed in 

the present study might be attributed to previously unsuspected pathways. For example, 

family with sequence similarity 5, member c (Fam5c) gene, also known as bone 

morphogenetic protein/retinoic acid inducible neural specific 3, is located in a significant 

QTL on Chr. 1 (148.45-148.85 Mb). The peak single nucleotide polymorphism resides 

in intron 6 of this gene. The function of the Fam5c gene in vascular function has not 

been directly characterized, but Fam5c mRNA was shown to be upregulated in response 

to inflammatory stimuli in endothelial cells (234). Expression of Fam5c in endothelium 

of human coronary arteries was associated with expression of vascular adhesion 

molecules (ICAM, VCAM). In a human GWAS study conducted by Connelly et al., the 

human ortholog of Fam5c was strongly associated with myocardial infarction (49). The 

author confirmed that the peak single nucleotide polymorphism for this gene showed 

allele-specific expression in human aorta. Thus, Fam5c is a reasonable candidate gene to 
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be investigated further for its role in endothelial function regulation, particularly, in 

inflammatory response process.   

  A significant QTL for ACh Max on Chr. 19 (22.20-22.60 Mb) contains only one 

gene (Table 2.7), transient receptor potential cation channel, subfamily M, Member 3 

(Trpm3) and the peak single nucleotide polymorphism is located in intron 1. Trpm3 

belongs to the family of transient receptor potential channels which are currently 

considered as proteins mediating diverse non-voltage-gated calcium entry pathways in 

vascular and communicating endothelial cells (100, 292). Its activity is increased by 

calcium store depletion and muscarinic receptor activation (100). Accordingly, we 

would also consider Trpm3 as one of candidate genes regulating endothelial function. 

Physiological and molecular analyses, e.g. gene/protein expression and gene-targeting 

studies, are required to identify and prove the role of proposed candidate genes in 

endothelial function regulation.  

  The other two significant QTL for ACh Max (%) contain genes that have not 

been formerly characterized for their role in vascular function or their contribution to 

cardiovascular disease.  A significant QTL on Chr. 1 (145.37-145.77 Mb) contains 3 

protein coding genes; UDP-Gal:BetaGlcNAc Beta 1,3-Galactosyltransferase, 

Polypeptide 2 (B3galt2), Glutaredoxin 2 (Glrx2) and Ubiquitin Carboxyl-Terminal 

Hydrolase (Uchl5) (Table 2.7). The peak single nucleotide polymorphism was located in 

an intergenic region. Glrx2 is known to play a role in the maintenance of mitochondrial 

redox homeostasis via the involvement in response to hydrogen peroxide and regulation 

of apoptosis caused by oxidative stress (168). This genomic region shares synteny with 
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rat Chr. 13, where a blood pressure QTL was mapped (46.4 - 112.6 Mb) in a previous 

study. Glrx2 might have a role in regulating endothelial function presumably via 

mediating oxidative stress signaling. Similarly, the significant QTL on Chr. 2 (149.58-

149.98 Mb) contains three genes not directly linked to vascular function regulation. 

However, this QTL is orthologous to rat QTL for blood pressure (20) and vascular 

growth and elastic tissue integrity (149, 199). Given the regions of shared synteny for 

cardiovascular traits between species, these suggestive QTL on Chrs. 1 and 2 are strong 

candidates for further validation studies, gene expression of candidate genes, and 

mechanistic studies of candidate genes.   

  At the suggestive level, 18 QTL for ACh Max were identified (Table 2.6). These 

suggestive QTL also contain several putative candidate genes for endothelial function 

(Table 2.7). Protein kinase (cAMP-dependent, catalytic) inhibitor gamma (Pkig) in the 

suggestive QTL on Chr. 2 (163.18-163.58 Mb) is involved in endothelial barrier 

dysfunction. Overexpression of this gene in endothelial cells reversed the barrier-

enhancing effect of increased cAMP (172, 173). This suggestive QTL also overlaps with 

suggestive QTL for SNP IC50 and PE Max (Table 2.8), implying that this QTL contains 

gene(s), possibly Pkig, regulating vasomotor function of smooth muscle. Ubiquinol-

cytochrome c reductase binding protein (Uqcrb) (suggestive QTL on Chr. 13) is known 

to regulate vascular endothelial growth factor receptor signaling and play a role in 

angiogenesis (39). Suggestive QTL on Chr. 17 contains heat shock protein 90kDa alpha, 

class B (Hsp90ab1). The stability of vascular endothelial growth factor (VEGF) 

receptors depends on Hsp90ab1 function and inhibition of Hsp90ab1 blocks the 
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proliferation and differentiation of endothelial cells (159). Given the stated roles of 

Uqcrb and Hsp90ab1 in endothelial cell growth regulation, these genes might be 

attractive putative candidates for further studies.  

  Several genes residing in the suggestive QTL for ACh Max have been identified 

in human GWAS for cardiovascular traits. Mitochondrial ribosomal protein S22 

(Mrps22) and Early B-cell factor 1 (Ebf1) in the QTL on Chrs. 9 and 11, respectively, 

were identified for blood pressure in humans (133, 185). QTL on Chr. 11 overlaps with 

QTL for the IC50 for SNP. Cell division cycle 5-like (Cdc5l) and mitochondrial 

ribosomal protein L14 (Mrpl14) on Chr. 17 have been identified in human GWAS for 

large artery ischemic stroke and circulating vascular endothelial growth factor, 

respectively (56, 120). An allelic effect of melanocortin 4 receptor (Mc4r; on Chr. 18) on 

blood pressure was also reported (178). For ACh IC50, 5 QTL were found at the 

suggestive level. Though none of genes located in these QTL have known functions 

associated with sensitivity to ACh, some of them reportedly contribute to the vessel 

growth process, such as Sortilin-related receptor, L(DLR Class) A repeats containing 

(Sorl1) (293), Phosphatase and actin regulator 1 (Phactr1) (4) and Sirtuin 5 (Sirt5) (63). 

These genes have been identified in human GWAS for CVD-related traits (60, 63, 171). 

Based on conjunction with findings from human studies, some of our suggestive QTL 

would be confirmed with additional genomic analyses with more diverse populations.  

  While many QTL for vasoreactivity responses to SNP, PE and KCl were above 

the suggestive level, the majority of those QTL did not reach at the significant level 

(Table 2.8). One notable exception is a significant QTL for KCl IC50 on X chromosome. 
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This QTL contains several genes, all of which, however, have not been functionally 

linked to vascular regulation. None of those genes have been found in human GWAS or 

rat QTL related to cardiovascular traits. In a rat consomic panel, several chromosome 

consomic rat strains had different SNP IC50, PE Max, PE EC50 compared to their 

parental inbred rat strains (150, 151). For example, chromosome 16 consomic rat strain 

and Brown Norway inbred rat strain had different aortic SNP IC50 compared with Dahl 

salt sensitive parental inbred rat strain (150). Maximal contractile responses to PE also 

varied by about three-fold among several consomic and inbred parental strains of rats 

(151). A handful of candidate gene studies have proposed a few genes, e.g. guanylate 

cyclase α-1 (34), smoothelin-like protein 1 (284), WNK lysine deficient protein kinase 1 

(15), as regulators of smooth muscle vasomotor function. However, these genes were not 

found in our QTL, implying that there would be uncharacterized genetic factor(s) 

responsible for regulating smooth muscle responses to SNP, PE or KCl. Although strong 

candidate genes were not proposed by the present study, our result supports the 

hypothesis that smooth muscle vasomotor function is regulated by genetic factors and 

provides several suggestive QTL that would be valuable to explore further.  

  For the success of inbred strain GWAS studies, several factors were suggested to 

be considered; the number of inbred strains and genetic markers and the statistical 

algorithms. Wang et al. suggested that 30 strains or more would be recommended to 

have acceptable power for a trait having ~30 % genetic effect contributing to total 

variance (272). However, the intra-calss correlations (rI) in the present study are 

relatively high (Figs. 2.3 to 2.6); for example, 0.50 for ACh Max. Furthermore, 
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sequencing capability and single nucleotide polymorphism datasets have been 

dramatically increased (84, 287) and GWAS using larger single nucleotide 

polymorphism datasets with fewer than 30 strains have been successfully used in 

association studies for various complex traits (17, 118, 220). EMMA, which was utilized 

to perform GWAS in the present study, uses linear mixed models that provides increased 

statistical power as well (141). Thus, we believe that 26 inbred strains were sufficient to 

detect major single nucleotide polymorphism effect on endothelium-dependent 

vasorelaxation in the present study.  

  Numerous studies have established sex differences in vascular function (30, 186, 

250, 276). For example, sex steroid hormones, such as estrogens and their receptors, are 

known to control endothelium-dependent vasorelaxation (186). Srivastava et al. found 

different genomic loci responsible for atherosclerosis between male and female mice 

(250). These previous data raise the possibility that the genetic basis for regulating 

endothelial function would be different between sexes. Sex differences were not 

considered in the present study, inclusion of females in the future studies should be 

considered in the future.  

  In summary, we found a wide range of differences in intrinsic vasoreactivity, 

mainly endothelium-dependent vasorelaxation, in aortas from 27 inbred mouse strains. 

These strain-dependent differences enabled us to perform GWAS with a dense single 

nucleotide polymorphism panel to identify QTL associated with intrinsic vascular 

function. In particular, GWAS for endothelium-dependent vasorelaxation revealed 4 

significant and 18 suggestive QTL on several chromosomes and, these QTL contain a 
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few putative candidate genes which might play a role in regulating endothelial function. 

Even though further independent studies are necessary to replicate and refine our 

findings, the present study provides the first step toward comprehensive identification of 

genetic factors for complex endothelial function in a large genomic scale. Future studies 

may include linkage/association studies using more genetically diverse lines, such as 

Hybrid Mouse Diversity Panel (14) and Collaborative Cross (9), to increase both 

statistical and detection power with other comprehensive gene expression profiling 

approaches, e.g. RNA sequencing and expression QTL (3), to reproduce and refine our 

findings. 
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3. INTERACTION OF GENETIC BACKGROUND AND

EXERCISE TRAINING INTENSITY ON ENDOTHELIAL FUNCTION 

IN MOUSE AORTA 

3.1. Introduction 

Impaired endothelial function is a fundamental component of the pathogenesis of 

cardiovascular disease. The endothelium plays an important role in maintaining vascular 

health via synthesis of various vasoactive mediators such as nitric oxide (NO), 

prostacyclin and endothelium-derived hyperpolarizing factors (188). Exercise training is 

generally known to improve endothelial function (58, 119, 137, 144). This beneficial 

effect of exercise training has been associated with increased expression of endothelial 

nitric oxide synthase (eNOS) (240), enhanced production and bioavailability of NO 

(231) and improved endothelium-dependent vasorelaxation (194). However, these 

findings are inconsistent. For example, Green et al. demonstrated a wide range of 

changes in flow-mediated dilation (FMD), a surrogate for endothelial function, in 

response to exercise training, including individuals who had no or negative changes in 

endothelial function following exercise training (96). The authors noted that greater 

training-induced changes in endothelial function were associated with lower initial 

cardiopulmonary fitness level and baseline endothelial function. Limited evidence also 

suggests that endothelial function is genetically influenced. In humans, the estimated 

heritability of FMD ranges from 0.14 to 0.44 (13, 122, 255, 290). Mouse strain 



 

 

 

74 

differences in endothelium-dependent vasorelaxation also have been reported (41, 233). 

For endothelial responses to exercise training, changes in FMD are more highly 

correlated in monozygotic than dizygotic twins (123). These data support the idea that 

responses to exercise training are also partially regulated by genetic factors.  

  The benefits from exercise training on the cardiovascular system, including 

endothelial function, appear to be dependent on the training intensity. Clinical trials and 

animal studies reported greater cardioprotective effects on VO2max, blood pressure and 

glucose control after high intensity training (75 to 90 % of VO2max) compared to 

moderate intensity training (< 70% of VO2max) (117, 129, 144, 257). Conversely, 

several studies reported that high intensity training exerted similar effects as moderate 

intensity training, or no effects, on cardiovascular health (45, 106, 228). There is also 

some evidence linking high intensity exercise to negative outcomes (12, 130, 273). The 

effects of exercise training intensity on endothelial function are also inconsistent. While 

greater improvements in endothelial function in response to high intensity training 

compared to moderate intensity training have been observed in both humans and rats 

(114, 195, 262), others have reported no differences between moderate and high 

intensity training on endothelial function (144, 222). These inconsistent effects of 

training intensity might be due to the heterogeneity in age, sex and baseline health status 

(16, 93, 114, 144, 222, 262). However, the contribution of genetic background to these 

heterogeneous responses has not been formally considered.  

  Therefore, this study aimed to characterize the genetic contribution to endothelial 

adaptation to exercise training and to determine the interactive effect between genetic 
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background and training intensity on endothelial function. First, a strain survey for the 

effect of traditional exercise training on endothelium-dependent vasorelaxation was 

conducted in isolated thoracic aortas from 20 different inbred mouse strains. Then, four 

inbred mouse strains were chosen based on the strain survey and aortic endothelial 

responses to two different intensities (high vs. moderate) of exercise training were 

examined. It is hypothesized that endothelial adaptations to exercise training are variable 

among inbred mouse strains and these variable adaptations are dependent on training 

intensity.  

 

3.2. Methods 

3.2.1. Animals 

  All procedures adhered to the established National Institutes of Health guidelines 

for the care and use of laboratory animals and were approved by the Institutional Animal 

Care and Use Committee at Texas A&M University. First, seven-week old male mice 

from the following 20 inbred strains were utilized for the strain survey for vascular 

responses to traditional moderate intensity exercise training (n=4-8/strain): 129S1/SvImJ, 

129X1/SvJ, A/J, BALB/cByJ, C57BL/6J, C57BR/cdJ, C58/J, CBA/J, CE/J, FVB/NJ, 

I/LnJ, LG/J, LP/J, MA/MyJ, NON/LtJ, NZO/HiLtJ, PL/J, PWD/PhJ, SJL/J, and SM/J. 

These inbred strains are a subset of 27 inbred mouse strains studied in the previous 

section. Then, four inbred strains, C57BL/6J (B6), 129S1/SvImJ (129S1), SJL/J (SJL), 

and NON/ShiLtJ (NON), were chosen based on the strain survey. Seven-week old male 

mice from each strain were randomly assigned to one of two exercise groups: exercise 
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training with continuous running at moderate intensity for 4 weeks (MOD, n = 6) or 

exercise training with interval running at high intensity for 4 weeks (HIT, n = 6). All 

mice were purchased from Jackson Laboratories. Upon arrival, all mice were given one 

week to acclimatize to their new environment. All mice were allowed food and water ad 

libitum and maintained on a 12:12-h light-dark cycle that initiated at 6:00 AM in the 

animal housing facility at Texas A&M University. Body weights were collected once a 

week throughout the study. Mice from the previous section were utilized as sedentary 

control mice (SED) to be compared with trained mice within the same strain in the 

present section. 

 3.2.2. Exercise performance test and exercise training 

All mice (8-week old) were familiarized to treadmill running (10 min/d) for two 

days on a six-lane motorized rodent treadmill (Columbus Instruments, Columbus, OH).  

Each mouse then completed two exercise performance tests separated by 48 hours on the 

treadmill as described previously (50, 180). Briefly, the treadmill was started at 9 m/min 

at 0 grade for 9 minutes as a warm-up.  The grade was then increased 5 every 9 

minutes up to a final grade of 15 and speed was increased 2.5 m/min from a starting 

speed of 10 m/min every three minutes until exhaustion. Exhaustion was defined as an 

inability to maintain running in spite of repeated contact with the electric grid and 

manual stimulation.  At exhaustion, each mouse was immediately removed from the 

treadmill and returned to its home cage. The average for two tests was used to calculate 

running speed for their training. 
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Traditional moderate intensity exercise training consisted of continuous running 

at 65% of maximal speed for 60 minutes a day as previously described (180). In 4 

selected inbred strains, MOD mice performed continuous running at a 65% of maximal 

speed for ~70 minutes a day. HIT mice performed 6 sets of 8 minute-running at 85% of 

maximal speed followed by 2 minute-active rest at ~50% of maximal speed each session. 

All mice were trained 5 days/wk at a 10° incline on the treadmill for 4 weeks at ambient 

temperature (~24° C). 

3.2.3. Tissue harvest and aortic ring experiments  

Approximately 48 h after the final exercise bout, mice were weighed and 

anesthetized by intraperitoneal injection of a cocktail of ketamine (80 mg/kg) and 

xylazine (5 mg/kg). Subsequently, thoracic aortas were dissected and connective tissue 

was carefully removed in ice-cold physiological saline solution (in mmol/l: 118.3 NaCl, 

4.7 KCl, 2.5 CaCl2, 1.2 MgSO4, 1.2 KH2PO4, 25 NaHCO3, and 5.5 glucose, pH 7.4) 

under a microscope. Then aortas were cut into 2 mm ring segments of equal length. Each 

ring segment was suspended in organ chamber of 610M Multi Chamber Myograph 

System (Danish Myo Technology, Denmark) filled with 8 ml of oxygenated (95% O2, 5% 

CO2) physiological saline solution and allowed to equilibrate at 37˚C for at least 30 

minutes. Aortic rings were stretched to the resting tension (9 to 12 mN), which was 

determined by the tension-force assessment in response to 25 mM of potassium chloride 

(KCl). Then cumulative concentration-response curves to phenylephrine (PE: a 

selective α1-adrenergic receptor agonist, 10
-9

 to 10
-5

 M) and KCl (a membrane
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depolarizing agent, 5 to 100 mM) were generated to assess contractile function of aortic 

rings, while cumulative concentration-response curves to acetylcholine (ACh, 

muscarinic receptor agonist) and sodium nitroprusside (SNP, nitric oxide donor) (10
-9

 to 

10
-5

 M) were generated to assess endothelium-dependent and -independent 

vasorelaxation, respectively. Concentration-response curves to ACh and SNP were 

generated after the ring was pre-constricted to 70% of maximum with PE. Doses were 

added after the response curve reached a plateau from the previous dose. Unused 

segments of thoracic aorta were snap-frozen in liquid nitrogen and stored for gene 

expression profiling analysis. Gastrocnemius muscles were collected, cut in half and 

stored for molecular analyses. All collected tissues were stored at -80°C. 

  

3.2.4. Oxidative enzyme activity 

  Citrate synthase (CS) and succinate dehydrogenase (SDH) enzyme activity were 

measured in gastrocnemius muscles from SED, MOD and HIT mice as exercise training 

markers. A half of gastrocnemius muscle was placed in 20 volumes of ice-cold sucrose 

muscle homogenization buffer (20 mM Tris, 40 mM KCl, 2 mM EGTA, 250 mM 

Sucrose, pH was adjusted to 7.4) and homogenized using the FastPrep® -24 (MP 

Biomedicals, Santa Ana, CA). Homogenates were centrifuged at 600g for 10 min at 4° C. 

The supernatants were collected and total protein concentration was measured with BCA 

protein assay reagent and pre-diluted BSA standards (Thermo scientific, Waltham, MA) 

on Nanodrop 2000 (Thermo Scientific, Waltham, MA). Then citrate synthase and 

succinate dehydrogenase activity in the protein samples were assessed on the Genesys 
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10 UV spectrophotometer (Thermo scientific, USA) following a previously published 

protocol (249). Briefly, for CS enzyme activity, 300 µl of distilled water, 500 µl of Tris 

(200mM, pH 8.0) with Triton X-100 [0.2%(vol/vol)], 100 µl of 5,5'-dithiobis-(2-

nitrobenzoic acid) (1 mM), 30 µl of Acetyl CoA (10 mM) and 20 µl of muscle 

homogenates were added to a 1-ml cuvette and the baseline activity at 412 nm was 

measured for 3 mins. Then, 50 µl of oxaloacetate (10 mM) was added and the 

absorbance change at 412 nm was measured for 3 mins. For SDH enzyme activity, 661 

µl of distilled water, 50 µl potassium phosphate buffer (500 mM, pH 7.5), 20 µl of fatty 

acid-free bovine serum albumin (50 mg/ml), 30 µl of potassium cyanide (10 mM), 50 µl 

of succinate (400 mM), 145 µl of 2,6-dichlorophenol indophenol, and 40 µl of muscle 

homogenates were collected in a 1-ml cuvette and incubated at 37° C for 8 minutes. The 

baseline activity was measured at 600 nm for 3 mins. After starting the reaction by 

adding 4 µl of decylubiquinone (12.5 mM), the absorbance change at 600 nm was 

recorded for 3 mins. The molar extinction coefficients of 13.6 and 19.1 mM
-1

 cm
-1 

were 

used for CS and SDH enzyme activity calculation, respectively. All assays were carried 

out at room temperature unless specified. CS from porcine heart (Sigma-Aldrich, St. 

Louis, MO) was used as a standard for CS assay calibration. 

 

3.2.5. RNA isolation, cDNA synthesis and PCR array 

  Frozen aortas from SED, MOD and HIT of three inbred strains (B6, SJL and 

NON) were homogenized and total RNA was isolated utilizing RNeasy fibrous tissue 

mini kit (Qiagen, Valencia, CA) according to the manufacturer’s instruction. Aortas of 
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129S1 mice were excluded due to the similar vasomotor responses to exercise training as 

B6 mice. The quantity and quality of total RNA were determined by Nanodrop 2000 

(Thermo Scientific, Waltham, MA) and BioAnalyzer 2100 (Agilent Technologies, Santa 

Clara, CA), respectively. RNA (500 ng) having an integrity number ≥ 7.5 were 

transcribed into cDNA using RT
2
 First Strand cDNA Synthesis kit (Qiagen, Valencia,

CA) following the manufacturer’s manual. Synthesized cDNA were stored overnight at -

20°C. 

 Gene expression profiling specific for mouse endothelial cell biology (Cat. No. 

PAMM-015Z) was conducted using RT
2
 profiler PCR array (Qiagen, Valencia, CA) on a

96-well format.  Each plate consists of 84 key genes associated with endothelial cell 

biology, 5 housekeeping genes, 1 mouse genomic DNA control, 3 reverse transcriptase 

control and 3 positive PCR controls. The complete list of genes can be found at the 

manufacturer’s homepage (http://www.sabiosciences.com/rt_pcr_product/HTML 

/PAMM-015Z.html). The Real-Time PCR Array was performed as indicated in the user 

manual with RT
2
 SYBR Green ROX qPCR Mastermix (Qiagen, Valencia, CA) using the

StepOne Plus (Applied Biosystem, Waltham, CA). Expression levels for all genes were 

normalized with the geometric mean of five housekeeping genes, and the relative gene 

expression level was determined using the web-based data analysis software provided by 

Qiagen (http://pcrdataanalysis.sabiosciences.com/pcr/arrayanalysis.php). This web-based 

software is designed to facilitate 2
-∆∆C

T calculation for PCR array data (170).

With results from PCR array, overrepresentation analysis was conducted in the 

Ingenuity Pathway Analysis (IPA; Ingenuity Systems, Redwood City, CA, 
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www.Ingenuity.com). Genes differentially expressed by exercise training (P <0.05 

compared to SED within the same strain) were queried against the pathway gene sets 

available in the IPA Knowledge Base to identify canonical pathways and molecular 

functions in which genes differentially expressed in each group/strain are involved. The 

core analysis was performed with a specific choice of ‘mouse’ for species and 

‘endothelial cell’ for tissues/cells.  

 

3.2.6. Nitrotyrosine Enzyme-Linked Immunoabsorbent Assay (ELISA)  

  Because nitrotyrosine is a product of protein tyrosine nitration resulting from 

oxidative damage to proteins by peroxynitrite, we measured abundance of nitrotyrosine 

in skeletal muscle from SED, MOD and HIT mice as an oxidative stress marker. 

Another half of the gastrocnemius muscle was homogenized and total protein was 

extracted using Cell Extraction Buffer (Invitrogen, Waltham, MA). Total protein 

concentration was measured as described above. The abundance of nitrotyrosine in the 

protein samples were measured using a 3-Nitrotyrosine ELISA kit (Abcam, Cambridge, 

MA) on the DTX800 Multi-mode microplate reader (Beckman Coulter, Brea, CA) 

according to the manufacturer’s instruction.  

 

3.2.7. Statistical analysis   

  Values are presented as mean ± SE. Percent vasocontractile responses (%) were 

calculated for PE and KCl as [(DP – DB)/DB] X 100, where ‘DP’ is the maximal force 

generated by a given specific dose and ‘DB’ is the baseline force. Percent vasorelaxation 
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responses for ACh and SNP were calculated as [(DP – DD)/(DP – DB)] X 100, where ‘DP’ 

is the maximal force pre-generated by PE, ‘DD’ is the lowest force generated at a given 

dose of ACh or SNP and ‘DB’ is the baseline force. The log10 of half maximal effective 

concentration (EC50) for vasoconstriction responses and half maximal inhibitory 

concentration (IC50) for vasorelaxation responses were calculated using absolute values 

(mN) from cumulative concentration-response curves using Prism 6 (GraphPad Software, 

La Jolla, CA) as the indicator for the sensitivity to a vasoactive agent. 

  Differences in maximal responses to vasoactive agents and EC50/IC50 between 

traditional exercise trained mice and sedentary mice within each strain were analyzed 

using a Student’s t test. For data from the second phase of study, differences in 

cumulative concentration-response curves across groups within a strain were compared 

using One-way ANOVA with repeated measures. Differences in body weight, 

mitochondrial enzyme activities, EC50 or IC50, relative gene expression, and 

nitrotyrosine abundance across SED groups of each strain or groups within a strain were 

analyzed using One-way ANOVA followed by Tukey post-hoc test. Two-way ANOVA 

was conducted with strain-by-training mode to examine the interaction between strain 

and exercise training mode. Intrinsic differences at sedentary state between inbred 

strains were compared to SED of B6. All statistics were performed using SPSS 22 (IBM, 

Armonk, NY).  Statistical significance was set at P < 0.05. 
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3.3. Results 

  To investigate genetic contribution to vascular (mainly endothelial) responses to 

exercise training in mice, a strain survey for vasoreactivity was performed in isolated 

thoracic aortas from 20 inbred mouse strains after 4 weeks of traditional moderate 

intensity exercise training. Figs. 3.1 to 3.4 illustrate the results of the strain survey of 

vascular responses to traditional exercise training in isolated thoracic aortas from 20 

inbred strains. Overall, traditional exercise training had no effect on aortic endothelium-

dependent vasorelaxation to ACh in most of inbred mouse strains (Fig. 3.1). Only aortic 

rings from NON/LtJ, A/J and CE/J showed greater maximal relaxation responses (%) to 

ACh (ACh Max) or IC50 for ACh (ACh IC50) after traditional exercise training compared 

with sedentary mice within the same strain. The IC50 for SNP (SNP IC50) in aortic rings 

was not affected by traditional exercise training in any strains, compared to sedentary 

mice of the same strain (Fig. 3.2). All aortic rings were 100% relaxed at SNP 

concentrations of 10
-6

 to 3×10
-6

 M, hence maximal responses to SNP were the same 

(data not shown). For vasoconstrictor agents, the majority of aortic rings from 20 inbred 

mouse strains, with only few exceptions, had similar contractile responses to PE and KCl 

between traditional exercise trained mice and sedentary mice within a strain (Figs. 3.3 

and 3.4). Based on the result of endothelium-dependent vasorelaxation to ACh (Fig. 3.1), 

four inbred mouse strains (129S1, B6, SJL, and NON) were chosen to examine 

endothelial responses to two different training intensities.  
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Figure 3.1. Strain survey for the effect of traditional exercise training on (A) maximal 

relaxation responses (%) to acetylcholine (ACh Max) and (B) the half maximal 

inhibitory concentration in responses to ACh (ACh IC50) in young male mice from 20 

inbred strains. After traditional moderate intensity exercise training for 4 weeks, 

cumulative  concentration-response curves to ACh (10
-9

 to 10
-5

 M) were assessed in 

isolated thoracic aortas. *, P <0.05 significantly different from SED within the same 

strain.  
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Figure 3.2. Strain survey for the effect of traditional exercise training on the half 

maximal inhibitory concentration in responses to sodium nitroprusside (SNP IC50) in 

young male mice from 20 inbred strains. After traditional moderate intensity exercise 

training for 4 weeks, cumulative concentration-response curves to SNP (10
-9

 to 10
-5

 M) 

were assessed in isolated thoracic aortas. There was no difference in SNP IC50 between 

trained and sedentary mice within the same strain. Since all aortic rings were 100% 

relaxed at an SNP concentration of 10
-6

 to 3×10
-6

 M, maximal responses to SNP were 

not shown.  
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Figure 3.3. Strain survey for the effect of traditional exercise training on (A) maximal 

contractile responses (%) to phenylephrine (PE Max) and (B) the half maximal effective 

concentration in responses to PE (PE EC50) in young male mice from 20 inbred strains. 

After traditional moderate intensity exercise training for 4 weeks, cumulative 

concentration-response curves to PE (10
-9

 to 10
-5

 M) were assessed in isolated thoracic 

aortas. *, P <0.05 significantly different from SED within the same strain. 
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Figure 3.4. Strain survey for the effect of traditional exercise training on (A) maximal 

contractile responses (%) to potassium chloride (KCl Max) and (B) the half maximal 

effective concentration in responses to KCl (KCl EC50) in young male mice from 20 

inbred strains. After traditional moderate intensity exercise training for 4 weeks, 

cumulative concentration-response curves to KCl (5 to 100 mM) were assessed in 

isolated thoracic aortas. *, P <0.05 significantly different from SED within the same 

strain. 
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  For four selected inbred strains, differences in pre-training body weight (pre-BW) 

and the change in BW (post minus pre-training) among groups or inbred strains are 

illustrated in Table 3.1. For pre-BW (g), NON had higher (30.6 ± 0.6) and SJL had lower 

(21.4 ± 0.4) pre-BW than B6 (23.5 ± 0.2). However, NON SED, as well as 129S1 SED, 

gained less BW than B6 SED after 4 weeks. In exercise trained mice, B6 HIT, SJL HIT 

and NON MOD showed smaller increases in BW compared with SED of the same strain. 

A significant interaction (F = 8.36, P < 0.01) between strain and training intensity was 

identified for the change in BW. 

  In order to assess exercise training efficacy, we measured citrate synthase (CS) 

and succinate dehydrogenase (SDH) enzyme activity in gastrocnemius muscles. Among 

SED mice, SJL had higher level of CS activity than B6 (Fig. 3.5A). In contrast, SDH 

activity was similar across SED groups of 4 inbred strains (Fig. 3.5B). In trained mice, 

MOD had higher CS and SDH activity in B6 and 129S1 compared to SED in the same 

strain. However, all HIT groups had similar CS and SDH activities compared with SED 

in the same strain. The interaction between strain and training intensity for SDH activity 

was significant (F = 2.19, P = 0.03), but not for CS activity (F = 1.43, P = 0.19). These 

results indicate that the effect of exercise training on oxidative enzyme activity in 

skeletal muscle is influenced by the interaction between inbred strain and training 

intensity. 

  Vasorelaxation responses to exercise training in isolated thoracic aortas from 4 

inbred strains are summarized in Figs. 3.6 and 3.7. Both MOD and HIT groups of NON 

had greater endothelium-dependent vasorelaxation compared with NON SED.
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Table 3.1. Pre-training body weight (BW) and the change in BW after exercise training in 4 inbred mouse strains 

C57BL/6J 129S1/SvImJ SJL/J NON/LtJ 

SED MOD HIT SED MOD HIT SED MOD HIT SED MOD HIT 

Pre-training BW, g
24.1 

± 0.4 

23.3 

± 0.5 

23.3 

± 0.4 

21.5 

± 0.7 

21.7 

± 0.8 

23.2 

± 0.6 

21.6 

± 1.1 

20.9 

± 0.7 

21.6 

± 0.5 

30.6 

± 1.2 

32.1 

± 0.7 

29.0 

± 0.7 

Change in BW, g 
4.2 

± 0.3 

3.4 

± 0.4 

2.4 

± 0.7* 

3.1 

± 0.1† 

2.5 

± 0.3 

2.9 

± 0.3 

4.7 

± 0.4 

3.6 

± 0.4 

3.2 

± 0.3* 

3.0 

± 0.2† 

0.1 

± 0.6* 

2.0 

± 0.4 

Values are mean ± SE. n = 6 mice per group per strain. Pre-training BW, body weight before training at 8 wk-old; change in 

BW, body weight after training minus before training. *, P < 0.05 significantly different from SED within the same strain. †, 

P < 0.05 significantly different from SED of C57BL/6J. 
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Figure 3.5. Effect of moderate-intensity continuous (MOD) and high-intensity interval 

training (HIT) on oxidative enzyme activity in gastrocnemius muscle from 4 inbred 

mouse strains. Eight-week old male mice (B6, 129S1, SJL, and NON) were trained with 

MOD or HIT for 4 weeks. (A) Responses of citrate synthase (CS) activity (nmol • min
-1

 

• mg
-1

) to two training intensities. (B) Responses of succinate dehydrogenase (SDH) 

activity (nmol • min
-1

 • mg
-1

) to two exercise training intensities. Values are expressed as 

mean  SE.  n = 6 mice per group per strain. *, P <0.05 significantly different from SED 

within the same strain. †, P <0.05 significantly different from SED of B6.
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Figure 3.6. Effect of moderate-intensity continuous (MOD) and high-intensity interval 

training (HIT) on acetylcholine-induced endothelium-dependent relaxation in young 

male mice from 4 inbred strains. After exercise training with moderate intensity 

continuous running training (MOD) or high intensity interval training (HIT) for 4 weeks, 

cumulative concentration-response curves to acetylcholine (ACh, 10
-9

 to 10
-5

 M) were 

assessed in isolated thoracic aortas from 4 inbred strains, (A) B6, (B) 129S1, (C) SJL, 

and (D) NON. Cumulative concentration-response curves are expressed by percent 

relaxation (%). Values are expressed as mean  SE.  n = 6 mice per group per strain. *, P 

<0.05 significantly different from SED within the same strain.  
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Figure 3.7. Effect of moderate-intensity continuous (MOD) and high-intensity interval 

training (HIT) on sodium nitroprusside-induced endothelium-independent vasorelaxation 

in young male mice from 4 inbred strains. After exercise training with moderate 

intensity continuous running training (MOD) or high intensity interval training (HIT) for 

4 weeks, cumulative concentration-response curves to sodium nitroprusside (SNP, 10
-9

 

to 10
-5

 M) were assessed in isolated thoracic aortas from 4 inbred strains, (A) B6, (B) 

129S1, (C) SJL, and (D) NON. Cumulative concentration-response curves are expressed 

by percent relaxation (%). Values are expressed as mean  SE. n = 6 mice per group per 

strain. SNP-induced endothelium-independent vasorelaxation was not different among 

groups within any of strains. 
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Table 3.2. IC50 and EC50 in cumulative concentration-response curves to vasoactive agents after exercise training in 4 

inbred mouse strains 

 C57BL/6J 129S1/SvImJ SJL/J NON/LtJ 

 SED MOD HIT SED MOD HIT SED MOD HIT SED MOD HIT 

ACh IC50 

(log10) 

- 7.26  

± 0.12 

- 7.27  

± 0.10 

- 7.04  

± 0.26 

- 7.22  

± 0.12 

- 7.05  

± 0.16 

- 7.16  

± 0.09 

- 7.51  

± 0.12 

- 7.75  

± 0.07 

- 7.88  

± 0.20 

- 7.43  

± 0.07 

- 7.14  

± 0.13 

- 7.37  

± 0.08 

SNP IC50 

(log10) 

- 8.29  

± 0.11 

- 8.18  

± 0.19 

- 8.09  

± 0.11 

- 8.46  

± 0.16 

- 8.30  

± 0.23 

- 8.46  

± 0.08 

- 7.96  

± 0.11 

- 8.00  

± 0.11 

- 7.96  

± 0.08 

- 7.96  

± 0.06 

- 8.06  

± 0.09 

- 8.10  

± 0.03 

PE EC50 

(log10) 

- 6.64 

± 0.05 

- 6.60 

± 0.10 

- 6.27  

± 0.13* 

- 6.51 

± 0.13 

- 6.44 

± 0.12 

- 6.48 

± 0.14 

- 6.57 

± 0.06 

- 6.64 

± 0.07 

- 6.70 

± 0.11 

- 6.73  

± 0.04 

- 6.26  

± 0.11* 

- 5.97  

± 0.11* 

KCl EC50 

(mM) 

16.79  

± 1.63 

16.86 

 ± 1.63 

21.75  

± 2.05 

15.07  

± 0.05 

12.51  

± 2.45 

16.57  

± 1.57 

24.97  

± 0.03† 

24.80 

± 0.05* 

24.91 

± 0.05 

15.02 ± 

0.07 

18.39  

± 1.98 

19.99  

± 2.02 

Values are mean ± SE. n = 6 mice per group per strain. ACh, acetylcholine; SNP, sodium nitroprusside; PE, phenylephrine; 

KCl, potassium chloride; IC50, half maximal inhibitory concentration in cumulative centration-response curve to ACh or 

SNP; EC50, half maximal effective concentration in cumulative concentration-response curve to PE or KCl. *, P < 0.05 

significantly different from SED within the same strain. †, P < 0.05 significantly different from SED of C57BL/6J. 
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In contrast, endothelium-dependent vasorelaxation in both exercise-trained groups 

(MOD, HIT) of B6 and 129S1 were not different from their respective SED mice. 

Interestingly, endothelium-dependent vasorelaxation was significantly impaired in SJL 

HIT compared with SJL SED (Fig. 3.6C). Sensitivity (IC50) to ACh was not different 

across training groups for any of strains (Table 3.2). The interaction between strain and 

training intensity on endothelium-dependent vasorelaxation was significant (F = 1.01, P 

<0.01). On the contrary, SNP-induced endothelium-independent vasorelaxation and SNP 

IC50 were not different among groups within each strain (Fig. 3.7 and Table 3.2). These 

results indicate that effect of exercise training on endothelium-dependent vasorelaxation, 

but not endothelium-independent relaxation, is influenced by the interaction between 

genetic background and training intensity. 

  For contractile responses to PE (Fig. 3.8), there were no differences between 

SED and exercise groups of B6, 129S1 and SJL. In contrast, both MOD and HIT of 

NON had decreased contractile responses to PE compared with NON SED. These 

decreased responses were accompanied by increased sensitivities (EC50) to PE compared 

with SED (Table 3.2). Contractile responses to KCl were similar between SED and 

exercise groups in all strain (Fig. 3.9). Only SJL MOD had increased sensitivity (EC50) 

to KCl compared with SJL SED (Table 3.2). 

  Because of the decreased endothelium-dependent vasorelaxation in SJL HIT, we 

measured the abundance of nitrotyrosine via ELISA in proteins extracted from 

gastrocnemius muscle to assess the effect of exercise training on oxidative stress (Fig. 

3.10). NON had higher intrinsic (in the sedentary state) level of nitrotyrosine than B6.  
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Figure 3.8. Effect of moderate-intensity continuous (MOD) and high-intensity interval 

training (HIT) on phenylephrine-induced contraction in young male mice from 4 inbred 

strains. After exercise training with moderate intensity continuous running training 

(MOD) or high intensity interval training (HIT) for 4 weeks, cumulative concentration-

response curves to phenylephrine (PE, 10
-9

 to 10
-5

 M) were assessed in isolated thoracic 

aortas from 4 inbred strains, (A) B6, (B) 129S1, (C) SJL, and (D) NON. Cumulative 

concentration-response curves are expressed by change in tension (%). Values are 

expressed as mean  SE.  n = 6 mice per group per strain. *, P <0.05 significantly 

different from SED within the same strain.
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Figure 3.9. Effect of moderate-intensity continuous (MOD) and high-intensity interval 

training (HIT) on potassium chloride-induced contraction in young male mice from 4 

inbred strains. After exercise training with moderate intensity continuous running 

training (MOD) or high intensity interval training (HIT) for 4 weeks, cumulative 

concentration-response curves to potassium chloride (KCl, 5 to 100 mM) were assessed 

in isolated thoracic aortas from 4 inbred strains, (A) B6, (B) 129S1, (C) SJL, and (D) 

NON. Cumulative concentration-response curves are expressed by change in tension (%). 

Values are expressed as mean  SE.  n = 6 mice per group per strain. KCl-induced 

contraction was not different among groups within any of strains. 
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Figure 3.10. Effect of moderate-intensity continuous (MOD) and high-intensity interval 

training (HIT) on nitrotyrosine level in gastrocnemius muscle from 4 inbred mouse 

strains. 8-week old male mice were trained with moderate intensity continuous running 

training (MOD) or high intensity interval training (HIT) for 4 weeks. Values are 

expressed as mean  SE.  n = 6 mice per group per strain. *, P <0.05 significantly 

different from SED within the same strain. †, P <0.05 significantly different from SED 

of B6. 
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In exercise-trained mice, nitrotyrosine abundance was lower in 129S1 MOD compared 

with SED in the same strain. In SJL, nitrotyrosine abundance was higher in HIT than 

SED. A significant interaction (F = 7.00, P <0.01) between strain and training intensity 

was found. 

  To determine which genes are differentially expressed by exercise training, we 

conducted expression profiling of endothelial cell biology-related genes by RT-qPCR. 

The pattern of gene expression changes in trained groups compared with SED in the 

same strain is visualized in Fig. 3.11 and the lists of genes differentially expressed by 

exercise training compared to SED within each strain (p < 0.05) are shown in Tables 3.3 

and 3.4. For B6, only a few genes were differentially expressed (1 up- and 4 down-

regulated) between MOD or HIT and SED. For SJL mice, 1 gene was up-regulated and 4 

genes were down-regulated in MOD, while 9 genes were up-regulated and 2 genes were 

down-regulated in HIT (Table 3.3). NON MOD had 3 and 6 genes up- and down-

regulated by exercise training, respectively. There were 28 genes (21 up-regulated and 7 

down-regulated) differentially expressed in NON HIT (Table 3.4). There was very little 

overlap between genes differentially expressed in MOD and HIT within each strain or 

among strains. These data suggest that the influence of exercise training on 

transcriptional activation is both strain- and training intensity-dependent. 

  Gene expression profiling data derived from PCR array were imported into the 

IPA to identify biological pathways and molecular/cellular functions overrepresented 

with genes differentially expressed in exercise-trained groups. Only data for SJL HIT, 

NON MOD and NON HIT were analyzed because of limited changes in the other groups. 
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Figure 3.11. Heat-map of relative expression levels of 84 key genes associated with 

endothelial cell biology in trained mice compared with sedentary mice within the same 

strain. 129S1 strain was excluded for gene expression profiling due to similar results as 

B6. 8-week old male mice were trained with moderate intensity continuous running 

training (MOD) or high intensity interval training (HIT) for 4 weeks. Red indicates 

down-regulation, black indicates no change and green indicates up-regulation. n = 4 

mice per group per strain.
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Table 3.3. Genes differentially expressed by exercise training in thoracic aortas from B6 and SJL mice 

Strain Training Symbol Name Fold regulation p value 

B6 

MOD 
Down-regulated 

Vegfa Vascular Endothelial Growth Factor A -1.2235 0.006971 

HIT 

Up-regulated 

Sod1 Superoxide dismutase 1, soluble 1.8638 0.008099 

Down-regulated 

Bax BCL2-associated X protein -1.2333 0.01693 

Ccl2 Chemokine (C-C motif) ligand 2 -2.8841 0.005821 

Pecam1 Platelet/endothelial cell adhesion molecule 1 -1.1998 0.021993 

Tnfsf10 Tumor necrosis factor (ligand) superfamily, member 10 -2.5176 0.003915 

SJL 

MOD 

Up-regulated 

Cxcl1 Chemokine (C-X-C motif) ligand 1 3.2444 0.002115 

Down-regulated 

Adam17 A disintegrin and metallopeptidase domain 17 -1.3187 0.019273 

Cdh5 Cadherin 5 -2.8288 0.040645 

Kdr Kinase insert domain protein receptor -1.4956 0.036468 

Thbd Thrombomodulin -2.3078 0.04334 

HIT 

Up-regulated 

Adam17 A disintegrin and metallopeptidase domain 17 1.3688 0.008579 

Agt Angiotensinogen 2.0555 0.022339 

Apoe Apolipoprotein E 1.7175 0.000182 

Cradd CASP2 and RIPK1 domain containing adaptor with death domain  1.9187 0.002729 

Cx3cl1 Chemokine (C-X3-C motif) ligand 1 1.68 0.01296 

Itga5 Integrin alpha 5 2.4118 0.000414 

Mmp2 Matrix metallopeptidase 2 1.5643 0.016875 

Npr1 Natriuretic peptide receptor 1 1.5639 0.008387 

Tnf Tumor necrosis factor 2.6159 0.012139 

Down-regulated 

Ccl2 Chemokine (C-C motif) ligand 2 -2.0397 0.04728 

Cflar CASP8 and FADD-like apoptosis regulator -1.3652 0.002045 

Among 84 key genes associated with endothelial cell biology, genes significantly up- and down-regulated by exercise training (P<0.05, compared 

to SED within a strain) are listed. 
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Table 3.4. Genes differentially expressed by exercise training in thoracic aortas from NON mice 

Strain Training Gene Description Fold regulation p value 

NON 

MOD 

Up-regulated 

Ccl2 Chemokine (C-C motif) ligand 2 2.5446 0.042696 

Pf4 Platelet factor 4 1.9346 0.027056 

Ptgis Prostaglandin I2 (prostacyclin) synthase 2.8793 0.039385 

Down-regulated 

Agtr1a Angiotensin II receptor, type 1a -1.3952 0.018257 

Cdh5 Cadherin 5 -1.1755 0.040467 

Flt1 FMS-like tyrosine kinase 1 -1.3173 0.045257 

Kdr Kinase insert domain protein receptor -1.4242 0.013216 

Mmp1a Matrix metallopeptidase 1a (interstitial collagenase) -1.47 0.007821 

Tnfsf10 Tumor necrosis factor (ligand) superfamily, member 10 -1.4434 0.005505 

HIT 

Up-regulated 

Ace Angiotensin I converting enzyme 2.3746 0.010898 

Adam17 A disintegrin and metallopeptidase domain 17 1.5966 0.008599 

Apoe Apolipoprotein E 2.019 0.000432 

Casp3 Caspase 3 1.5061 0.0478 

Cdh5 Cadherin 5 1.2575 0.008199 

Col18a1 Collagen, type XVIII, alpha 1 3.0057 0.035492 

Cradd CASP2 and RIPK1 domain containing adaptor with death domain  1.5422 0.001839 

Cx3cl1 Chemokine (C-X3-C motif) ligand 1 2.656 0.010743 

Ednra Endothelin receptor type A 1.7285 0.014541 

Eng Endoglin 1.4588 0.040187 

Fn1 Fibronectin 1 2.5669 0.004596 

Icam1 Intercellular adhesion molecule 1 2.2695 0.01039 

Itga5 Integrin alpha 5 2.9982 0.001567 

Kit Kit oncogene 1.7288 0.043853 

Mmp2 Matrix metallopeptidase 2 1.9703 0.010397 

Npr1 Natriuretic peptide receptor 1 3.2579 0.004695 

Pdgfra Platelet derived growth factor receptor, alpha 2.0388 0.011554 

Procr Protein C receptor, endothelial 1.5567 0.037544 

Tgfb1 Transforming growth factor, beta 1 1.3271 0.03762 

Thbd Thrombomodulin 2.6407 0.000892 

Vwf Von Willebrand factor homolog 1.8964 0.018501 
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Table 3.4 Continued 

Strain Training Gene Description Fold regulation p value 

  

Down-regulated 

Agtr1a Angiotensin II receptor, type 1a -1.5457 0.002137 

Cxcl1 Chemokine (C-X-C motif) ligand 1 -3.4433 0.022196 

Cxcl2 Chemokine (C-X-C motif) ligand 2 -1.9636 0.019817 

Edn2 Endothelin 2 -2.2056 0.039311 

Fgf1 Fibroblast growth factor 1 -2.0569 0.001005 

Sele Selectin, endothelial cell -2.3573 0.024778 

Tnfsf10 Tumor necrosis factor (ligand) superfamily, member 10 -1.3849 0.007946 

Among 84 key genes associated with endothelial cell biology, genes significantly up- and down-regulated by exercise training (P<0.05, 

compared to SED within a strain) are listed. 
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Table 3.5. Top 3 canonical pathways for genes significantly altered by exercise 

training 

Strain Training Description p value Genes 

SJL 
HIT 

Agranulocyte Adhesion and Diapedesis 4.89E-04 Cx3cl1, Itga5, Mmp2, Tnf 

Granulocyte Adhesion and Diapedesis 6.12E-04 Cx3cl1, Itga5, Mmp2, Tnf 

FXR/RXR Activation 8.95E-04 Agt, Apoe, Tnf 

NON 

MOD 

Hepatic Fibrosis / Hepatic Stellate Cell 

Activation 
6.18E-04 Flt1, Kdr, Mmp1a, Tnfsf10 

VEGF Family Ligand-Receptor 

Interactions 
3.08E-03 Flt1, Kdr 

Nitric Oxide Signaling in the 

Cardiovascular System 
5.71E-03 Flt1, Kdr 

HIT 

Agranulocyte Adhesion and Diapedesis 3.73E-06 
Cdh5, Cx3cl1, Fn1, Icam1, 

Itga5, Mmp2, Cxcl2, Sele 

Granulocyte Adhesion and Diapedesis 6.73E-05 
Cdh5, Cx3cl1, Fn1, Icam1, 

Itga5, Mmp2, Cxcl2, Sele 

Hepatic Fibrosis / Hepatic Stellate Cell 

Activation 
9.86E-05 

Col18a1, Ednra, Fn1, 

Icam1, Mmp2, Tgfb1, 

Cxcl2, Tnfsf10 

Canonical pathways to which genes significantly altered by exercise training belong were identified by 

Ingenuity Pathway Analysis (IPA). Selection of top 3 canonical pathways was based on P-value which 

is a measure of the likelihood that the association between a set of genes and a given pathway is due to 

random chance. The p value is calculated by the right-tailed Fisher Exact Test in IPA. Data from the 

other groups/strains were excluded due to limited changes in both gene expression (Tables 3.3) and 

endothelial function after exercise training (Fig. 3.6).  
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Table 3.6. Top 3 molecular and cellular functions for genes significantly altered 

by exercise training 

Strai

n 
Training Description p value Predicted 

SJL HIT 

Production of reactive oxygen species 9.66E-04 Up 

Synthesis of nitric oxide 1.79E-03 Up 

Synthesis of phosphatidylinositol-3,4,5-triphosphate 1.72E-02 Up 

NON 

MOD 

Differentiation of endothelial cells 5.39E-05 Down 

Endothelial cell development 2.98E-03 Up 

Proliferation of endothelial cells 3.06E-02 Up 

HIT 

Adhesion of endothelial cells 9.09E-05 Down 

Adhesion of immune cells 1.01E-04 Down 

Migration of endothelial cells 1.27E-03 Down 

Diseases or molecular functions with which genes significantly altered by exercise training are 

associate were identified by Ingenuity Pathway Analysis (IPA). Selection of top 3 functions was based 

on P-value calculated by the right-tailed Fisher Exact Test in IPA. Data from the other groups/strains 

were excluded due to limited changes in both gene expression (Tables 3.3) and endothelial function 

after exercise training (Fig. 3.6). 
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  IPA identified several canonical pathways and molecular/cellular functions with 

which genes differentially expressed in exercise-trained groups are associated (Tables 

3.5 and 3.6). Gene sets differentially expressed in HIT groups of SJL and NON were 

overrepresented in pathways related to inflammatory molecule adhesion and migration, 

while a gene cluster differentially expressed in NON MOD was enriched in pathways 

associated with vessel growth and NO signaling. For the overrepresented molecular and 

cellular functions, the greatest effects of HIT in SJL appeared to be related to molecular 

functions of reactive oxygen species (ROS) production, whereas the effects of HIT in 

NON involved molecular functions linked to cell adhesion and migration. The genes 

differentially expressed in NON MOD were associated with cell differentiation and 

proliferation. 

 

3.4. Discussion 

  First, the effect of traditional exercise training on vasoreactivity was globally 

evaluated in thoracic aortas from 20 inbred mouse strains to characterize the effect of 

genetic background on endothelial responses to a commonly used exercise training 

program in mice. Then, in 4 selected inbred strains, vascular responses to two different 

intensities of exercise training in thoracic aortas were further assessed to determine the 

interactive effect between genetic background and training intensity on endothelial 

function. The main findings were: 1) traditional exercise training exerted subtle effects 

on endothelial function in the majority of inbred mouse strains; 2) intrinsic physiological 

markers of skeletal muscle in the sedentary state were variable across four selected 
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inbred strains; 3) there was a significant interaction between genetic background and 

training intensity on endothelial responses to exercise training; 4) endothelial gene 

expression profiles were different depending on both genetic background and training 

intensity. 

  It is generally known that exercise training can improve endothelial function (58, 

119, 137, 145). However, in the present study, the strain survey revealed that 

endothelium-dependent vasorelaxation in aortic rings from 20 inbred mouse strains were 

similar between trained and sedentary groups after 4 weeks of traditional moderate 

intensity exercise training (Fig. 3.1). Although results are mixed, several previous 

studies have reported that exercise training had no impact on endothelium-dependent 

vasorelaxation in young normal populations (97, 203, 264). Green et al. proposed a 

possible explanation that the lack of benefit from exercise training might be due to 

training-induced vessel remodeling which may structurally normalize the responses to 

increased shear stress stimuli (97). This exercise-induced vascular remodeling, however, 

tends to occur after a long-term exercise training (typically ≥ 12 to16 weeks) (32, 137, 

277), implying that this might not be the cause of the lack of responses to 4 weeks of 

traditional moderate intensity exercise training in the present study. Rather, given the 

feasibility that all mice were young (13 week-old) and thus were presumed to have 

normal baseline endothelial function, the intensity of traditional exercise training might 

not be sufficient to stimulate functional changes in endothelium. This possibility 

prompted us to investigate the effect of high intensity exercise training (HIT) on 

endothelial function in selected inbred mouse strains. 
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  Among 4 selected inbred strains in the sedentary state, NON had impaired 

baseline endothelial function, whereas 129S1 and SJL had similar baseline endothelial 

function, compared to B6 (Fig. 2.3). NON had a significantly higher skeletal muscle 

nitrotyrosine, a marker of oxidative stress, in the sedentary state compared with B6 (Fig. 

3.10). Increased oxidative stress can lead to reduction in nitric oxide (NO) 

bioavailability and subsequently reduced response to endothelium-dependent 

vasorelaxing agents (35). Additionally, results from gene expression profiling indicated 

that NON SED had moderately decreased expression in eNOS gene (Fold regulation = -

1.48, P = 0.07) compared with B6 SED (data not shown). Although our data, as well as 

previous studies (219, 256), indicate that NON exhibits phenotypes associated with 

endothelial dysfunction, the underlying mechanism of their impaired endothelial 

function is not clear and further studies are required. 

  CS and SDH activity in skeletal muscle have been widely employed as markers 

for mitochondrial oxidative potential. In the present study, intrinsic CS activity varied 

across strains (Fig. 3.5A), suggesting a genetic contribution to intrinsic CS activity in 

mouse skeletal muscle. This finding is in agreement with Ratkevicius et al. in that there 

is a difference in intrinsic CS activity among inbred mouse strains (224). These authors 

identified a putative single nucleotide polymorphism (rs29358506) that contributed to 

the difference in intrinsic CS activity across 6 inbred mouse strains. We could not 

support their finding because all 4 strains we utilized in the present study have the same 

genotype for this polymorphism. For SDH activity, we found no difference among the 4 
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inbred strains (Fig. 3.5B) and thus do not have evidence of a genetic contribution to 

intrinsic SDH activity in this study.  

  It is well established that exercise training improves endothelial function (58, 

119, 137, 145). We hypothesized that 4 week-exercise training would improve 

endothelial function and mice completing HIT would have augmented endothelial 

responses (57, 114). As expected, endothelium-dependent vasorelaxation was greater in 

aortas from MOD and HIT of NON compared with their SED (Fig. 3.6D). This 

enhanced endothelial function was accompanied by lower PE-induced vasoconstriction 

in those groups (Fig. 3.8D). NON SED had the lowest endothelial function among 

inbred strains (Fig. 2.3). Therefore, exercise training would be expected to improve 

endothelial function. Previous studies reported that exercise training increased 

expression of eNOS and SOD-1 gene, bioavailability of NO and the release of NO (231, 

240). However, in the present study, eNOS or SOD-1 gene expression was not altered in 

the exercise groups (Table 3.4), nor was nitrotyrosine level in skeletal muscle (Fig. 3.10). 

Thus, exercise training-induced improvements in endothelial function in NON might be 

due to an increase in other vasorelaxation mechanisms rather than an increase in eNOS 

expression or NO bioavailability, for an example, increased prostacyclin synthase gene 

expression observed in NON MOD (Table 3.4). In contrast, markers of oxidative 

capacity in skeletal muscle were not different among exercise training and SED in NON 

(Fig. 3.5). Green et al. reported that exercise training-induced change in endothelial 

function did not correlate with the change in VO2max (96). In the same sense, our results 
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provide evidence that endothelial function responses in exercise-trained mice are 

independent of the change in skeletal muscle oxidative capacity.  

  ACh-induced endothelium-dependent vasorelaxation was similar between MOD 

and HIT groups in aorta from NON mice. In many studies, HIT has been proposed as an 

effective alternative to the traditional aerobic training (MOD), inducing similar or even 

superior cardiovascular adaptations (114, 117, 129, 144, 195, 257, 262). Furthermore, 

similar or greater effects of HIT than MOD have been described for endothelial function 

in young subjects (114, 144, 222).  

  In the present study, endothelium-dependent vasorelaxation was not altered by 

any exercise training intensity in either B6 or 129S1. There are many factors, such as age, 

sex, training duration, exercise intensity, and genetic regulation, which can influence the 

effect of exercise training on endothelial function (57, 66, 96, 144). We matched age (7 

wk-old at the beginning) and sex (male) of experimental groups to avoid some of these 

confounding effects. We also chose to train mice for 4 weeks because training duration 

of at least 4 weeks has been shown to induce an improvement in aortic endothelial 

function in healthy animals (57). However, other studies have reported that endothelial 

function is not improved by exercise training in young healthy humans and animals (95, 

203, 264). At least three possible factors might explain this lack of exercise-induced 

improvements in endothelium-dependent vasorelaxation in B6 and 129S1. First, the 

training protocol, even HIT, might exert insufficient stimuli to change endothelial 

function in aortas from these strains. However, our training volume was sufficient to 

increase oxidative enzyme activity in skeletal muscle in both strains (Fig. 3.5). Secondly, 
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structural adaptation had already occurred before post-training measures were applied in 

these mice, which can normalize the effect of the increased vasorelaxing stimuli on 

vascular smooth muscle relaxation (96, 137). Unfortunately, we did not assess vessel 

size in the present study. Thirdly, the endothelial phenotype in those two strains might 

be near optimal levels, thus endothelial function may not be augmentable above the 

levels observed in the respective SED groups for each strain (66, 203). This latter 

explanation is supported by the small number of genes differentially expressed between 

SED and exercise-training groups in aorta from B6 mice (Table 3.3). The one notable 

exception is the increased expression of SOD-1, an antioxidant pathway gene that is 

commonly reported to increase with exercise training. Overall, our results in B6 are 

similar to those reported by Padilla et al. who found no differences in endothelial 

function and gene expression in conduit arteries from healthy pigs after 16 to 20 weeks 

of exercise training (203).  

  Although many previous studies have recommended HIT as a time-efficient 

training method to improve cardiovascular health, there is currently accumulating 

evidence in the literature that intense training can induce adverse effects on 

cardiovascular function. In the present study, endothelial function was not different in 

MOD, but was impaired in HIT compared to SED of SJL (Fig. 3.6C). Previous studies 

reported that intense exercise caused a decrease in eNOS expression and NO level in 

hearts of young rats (130) and induced platelet aggregation in young healthy humans, 

which may augment the risk of vascular thrombosis (273). Bergholm et al. found that 

vigorous aerobic training impaired endothelium-dependent vasodilation and decreased 
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antioxidant concentrations in young individuals (16). Also, high intensity exercise 

training induced an increase in plasma concentration of 8-hydroxy-2'-deoxyguanosine, a 

marker of oxidative stress to DNA, with no beneficial effect on endothelial function (93). 

In the present study, skeletal muscle nitrotyrosine level was higher in SJL HIT compared 

with SED and MOD groups (Fig. 3.10). The higher nitrotyrosine levels in HIT could 

reflect an overall higher oxidative stress in this group, which contribute to the impaired 

endothelial function observed in the aorta of the SJL HIT.  Our finding supports the 

previously proposed concept that a threshold of training intensity exists beyond which 

ROS generation overrides the scavenging capabilities of antioxidant systems in the 

vasculature (66). Therefore, comparing the different effects of HIT on endothelial 

function between NON and SJL in the present study, the beneficial threshold of training 

intensity would be determined by genetic background. 

SNP-induced endothelium-independent vasorelaxation was not changed by any 

of exercise training intensity in all four inbred strains (Fig. 3.7). This result is consistent 

with previous studies (114, 144, 264), demonstrating that vascular smooth muscle 

responses to nitric oxide (NO) are not generally influenced by exercise training in young 

animals. 

We utilized expression profiling of a number of genes to study the influence of 

exercise training on endothelial cell-specific transcriptional activation and biological 

functions. Overall, the number of differentially expressed genes was proportional to the 

difference in endothelium-dependent vasorelaxation between SED and exercise-trained 

groups (Table 3.3 and 3.4). For example, only one gene was differentially expressed 
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between B6 SED and MOD groups, which had similar endothelium-dependent 

vasorelaxation. By comparison, NON HIT had significantly greater endothelium-

dependent vasorelaxation compared with NON SED and 28 genes were differentially 

expressed. Furthermore, the number of genes differentially expressed in HIT was greater 

than MOD in all 3 strains and only a few genes overlapped between MOD and HIT. This 

observation is opposite to a previous study that moderate intensity endurance training 

produced greater transcriptional effects on isolated aortic endothelial cells from rats than 

interval sprint training (203). However, these authors also reported that interval sprint 

training had a greater effect on gene expression in skeletal muscle feed arteries than 

endurance exercise training. Thus, transcriptional responses to exercise training might be 

dependent on species as well as vessel characteristics and training intensity.  

  Differences in training intensity can influence not only the number of genes 

differentially expressed, but also the signaling pathways in which those genes are 

involved. For example, gene sets differentially expressed in HIT groups of SJL and 

NON generally involved pathways related to inflammatory molecule adhesion and 

migration, whereas a gene set differentially expressed in NON MOD belonged to growth 

and NO signaling-related pathways (Table 3.5). A previous study suggested that 

different intensity training programs exert shear stress on the vessel walls differently 

during exercise and that this yields differences in molecular responses (262). Similarly, 

Padilla et al. reported no overlap for gene networks influenced by endurance and interval 

sprint training for skeletal muscle feed arteries or rat aortic endothelial cells (202). Thus, 

our findings that the overrepresented canonical pathways diverged between MOD and 
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HIT further provide evidence for the intensity-specific pattern of training-induced 

transcriptional activation in aortic endothelium.  

  As with vasomotor function, genetic background can influence the transcriptional 

responses to exercise training. Although the overrepresented pathways appeared similar 

between HIT groups of SJL and NON, the molecular/cellular functions of gene sets were 

different between two groups (Table 3.6). A gene set differentially expressed in SJL HIT 

was anticipated to increase ROS production. Additionally, the top disease identified by 

IPA analysis for the gene set was ‘aortic aneurysm’ (data not shown, p = 8.65E-03). 

Therefore, these findings are in line with increased nitrotyrosine level in skeletal muscle 

(Fig. 3.10) and ultimately, impaired endothelial function observed in SJL HIT. In 

contrast, a gene cluster differentially expressed in NON HIT was predicted to decrease 

adhesion and migration of endothelial cells (Table 3.6). The prediction fits with the 

concept that exercise training is associated with atheroprotective changes in the 

endothelium including decreased adhesiveness for inflammatory molecules (206). Thus, 

the predicted molecular/cellular functions for the gene cluster are also in agreement with 

the higher endothelium-dependent vasorealxation observed in NON HIT than SED.   

  In addition to the atheroprotective effects of exercise training on the endothelium, 

prolonged exercise training is associated with vascular remodeling, resulting in larger 

blood vessels (32, 137, 218, 277). In NON MOD, differentially expressed genes were 

connected to molecular/cellular functions of increased endothelial cell development and 

proliferation (Table 3.6). With the notion that outward vascular remodeling of blood 

vessels in response to exercise training can lead to decreased acute responses to 
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endothelium-dependent vasodilators and increased blood flow (32, 96, 97), 4-weeks of 

moderate intensity exercise training in NON might have elicited a transcriptional 

response leading to vessel remodeling after a more prolonged training protocol. 

In summary, a strain survey for endothelial responses to exercise training across 

20 different inbred mouse strains revealed that the traditional exercise training had 

minimal effects on aortic endothelium-dependent vasorelaxation. In four inbred mouse 

strains chosen based on the strain survey, baseline mitochondria oxidative enzyme 

activity and nitrotyrosine abundance in skeletal muscle were variable across inbred 

strains, suggesting an intrinsic influence of genetic background. Most importantly, it was 

found that exercise training has non-uniform effects on endothelial function and 

transcriptional activation of endothelial genes depending on the interaction between 

genetic background and training intensity. These findings indicate that the optimal 

intensity of exercise training to improve endothelial function is modified by genetic 

background. Results from skeletal muscle oxidative enzyme activity, abundance of 

oxidative stress and pathway analysis for gene expression profiles further support the 

intricate interaction between genetic background and training intensity on responses to 

exercise training. The present study provides evidence of an interactive effect between 

genetic background and training intensity on exercise-induced vascular adaptation. 

Further studies incorporating larger scale expression profiles, for example, RNAseq or 

microarray, on different genetic backgrounds might be helpful in expanding our 

knowledge of the mechanism in regulating endothelial responses to exercise training. 
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4. SUMMARY AND CONCLUSION

4.1. Summary 

The main purposes of the present studies were 1) to identify quantitative trait loci 

(QTL)/candidate genes residing in the QTL responsible for intrinsic endothelial function 

and 2) to determine the interaction between genetic background and training intensity on 

the endothelial adaptations to exercise training. 

The first series of experiments were conducted to test the hypothesis that intrinsic 

endothelium-dependent vasorelaxation is largely variable across inbred mouse strains, 

and the variation is influenced by one or more QTL. To do so, vasoreactivity was 

assessed in isolated thoracic aortas from young mice (n=6-10) of 27 inbred strains. The 

major findings of this study can be summarized as follow: 1) A wide range of 

differences was found for vasoreactivity, excluding SNP Max. In particular for 

endothelium-dependent vasorelaxation to ACh, there were ~2 and ~18 fold differences 

between inbred strains having the lowest and the highest ACh Max (%) and in molarity 

of ACh IC50, respectively. 2) There were moderate, but significant, correlations between 

ACh and SNP responses, while ACh responses were not correlated with contractile 

responses. In contrast, there were some significant correlations between SNP and 

vasocontractile responses. 3) GWAS revealed several significant and multiple suggestive 

QTL associated with strain-dependent variation in vasoreactivity. GWAS for responses 

to ACh identified 4 significant QTL on 3 different chromosomes, all of which were 
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regions of shared synteny for CVD-related traits in rats and/or humans. In addition, 18 

suggestive QTL on 14 different chromosomes were identified, containing several 

putative candidate genes associated with endothelial function and/or identified by human 

GWAS for CVD traits. Several suggestive QTL (including one significant QTL for KCl 

EC50) for responses to SNP, PE and KCl were also identified.  

  In accordance with the hypothesis, intrinsic endothelium-dependent 

vasorelaxation as well as other vasoreactivity in thoracic aortas were largely variable 

across inbred mouse strains. These results provided strong evidence that intrinsic 

endothelial function, and more generally vascular function, is genetically regulated. 

Moderate genetic correlations between ACh and SNP responses would be expected 

because both increase the influx of NO into vascular smooth muscle. This is further 

supported by the finding that three suggestive QTL overlap between ACh Max and SNP 

IC50. One of the QTL (Chr. 2) also overlaps with PE Max. Thus, these QTL likely 

contain genetic factors associated with NO-mediated vasomotor tone regulation in 

smooth muscle. Pkig found in the overlapping suggestive QTL (Chr. 2) might be 

possibly one candidate. Overall results of correlations between vasoreactivity lead me 

speculate that common genetic factors exist between smooth muscle relaxation and 

contraction, but not between endothelial function and smooth muscle contraction.  

  As expected, GWAS identified several significant and suggestive QTL 

associated with intrinsic endothelial function. These findings demonstrate that 

endothelial function is influenced by multiple genetic factors. Notably, none of well-

characterized genes, e.g. eNOS and SOD-1, were identified in the QTL. This suggests 
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that the variation in intrinsic endothelial function in young mice can be primarily 

attributed to undefined genetic factors. Instead, significant QTL contain a few candidate 

genes, e.g. Glrx2, Fam5c and Trpm3, which are likely to have roles in endothelial 

function regulation. The identities of these candidate genes as well as several putative 

candidate genes residing in suggestive QTL are reinforced by previous findings from rat 

and human QTL/GWAS studies for cardiovascular traits. Further physiological or 

molecular analyses are recommended to investigate the role of the proposed candidate 

genes in endothelial function.  

   Based on the variation in intrinsic endothelial function and known differences in 

responses to exercise training, the second series of experiments were conducted to test 

the hypothesis that endothelial adaptations to exercise training are variable across inbred 

strains of mice and the variable adaptations to exercise training are dependent on training 

intensity. First, the strain survey for the effect of traditional exercise training on 

vasoreactivity was conducted in thoracic aortas from 20 inbred mouse strains to 

characterize the effect of genetic background on endothelial responses to a commonly 

used training program in mice. Then, four inbred mouse strains were chosen and the 

effect of training intensity on vasoreactivity was assessed after 4 weeks of moderate 

intensity continuous exercise training (MOD) and high intensity interval training (HIT). 

The major findings from this study were as follow: 1) Aortic rings only from 3 inbred 

mouse strains (NON/LtJ, A/J, CE/J) among 20 inbred strains showed greater responses 

to ACh after traditional exercise training compared to sedentary mice within the same 

strain. The majority of aortic responses to SNP, PE and KCl were not markedly changed 
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in trained mice compared to sedentary mice as well. 2) In four selected inbred mouse 

strains (129S1, B6, NON, and SJL), aortic responses to ACh after exercise training 

varied by both inbred strain and training intensity. Neither MOD nor HIT had effects on 

responses to ACh in 129S1 and B6. In contrast, both NON MOD and HIT had greater 

responses to ACh than NON SED. Surprisingly, responses to ACh were impaired in SJL 

HIT compared to SED. 3) Training-induced changes in endothelial gene expression were 

also different depending on both inbred strain and training intensity. Overall, the number 

of differentially expressed genes was proportional to the change in endothelial function. 

The number of genes altered by HIT was greater than MOD and there was little overlap 

between genes altered by HIT and MOD. Genes differentially expressed in HIT were 

overrepresented in pathways related to inflammatory responses, while genes 

differentially expression in NON MOD were enriched for vessel growth-related 

pathways.  

  Contrary to the hypothesis, endothelial responses to traditional exercise training 

were not variable across inbred mouse strains. These were unexpected results. It can be 

speculated that traditional exercise training intensity was not high enough to stimulate 

functional changes in endothelium-dependent vasorelaxation, especially in such young 

mice. This possibility prompted me to investigate the effect of high intensity interval 

training on endothelial function in selected inbred mouse strains.  

  Endothelial responses to exercise training were variable across selected inbred 

mouse strains depending on training intensity. These data indicate that a significant 

interactive effect exists between mouse strain and training intensity on endothelial 
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responses to exercise training. Both training intensities improved endothelial function in 

NON. This would be expected since NON had relatively low intrinsic endothelial 

function (the lowest ACh Max), thus had much ‘room under the ceiling’ for 

improvement. B6 and 129S1 had no changes in endothelial function after exercise 

training with either training intensity even though these strains showed increased 

mitochondrial enzyme activity after exercise training. These two strains had relatively 

moderate to good intrinsic endothelial function, implying that the endothelium in these 

two strains might be optimal. Thus it is feasible to assume that exercise training cannot 

augment endothelial function above ‘the ceiling’ in these two strains. Unexpectedly, 

impaired endothelial function was observed in SJL HIT. SJL HIT had increased 

nitrotyrosine level in skeletal muscle, therefore impaired endothelial function in SJL HIT 

would be associated with systemic increase in oxidative stress. 

  Variation in training-induced transcriptional activation of endothelial genes 

among inbred strains and between training intensities indicates the interactive effect 

between genetic background and training intensity. Given the necessity of system-level 

understanding for complex traits, differentially expressed genes by exercise training 

were analyzed by Ingenuity IPA. Overrepresented canonical pathways diverged between 

MOD (vessel growth) and HIT (inflammation), providing further evidence that there is 

an intensity-specific pattern of training-induced transcriptional activation in endothelium. 

The molecular/cellular function for genes altered in SJL HIT is predicted to upregulate 

ROS production, which in accordance with elevated nitrotyrosine level in skeletal 

muscle. This further supports our conclusion that impaired endothelial function in SJL 
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HIT is due to increased oxidative stress. In contrast, molecular/cellular function for 

genes altered in NON HIT is predicted to downregulate cell adhesion, indicating 

decreased atherosclerotic lesion formation that would contribute to improved 

endothelium-dependent relaxation. These overrepresented molecular/cellular functions 

provide the rationale for the opposing effects of HIT on endothelial function between 

SJL and NON. 

  Taken together, although mechanistic structure cannot be firmly drawn, it is 

important to note that the present findings provide the initial advancement in the large 

genome scale for elucidating genetic basis for intrinsic endothelial function and its 

responses to exercise training. The findings from GWAS indicate that there are 

previously unsuspected genetic factors responsible for intrinsic regulation of endothelial 

function. Further investigation is required to validate the potential candidate genes 

identified in the present study. Two types of investigations are highly recommended to 

refine and validate findings from the present studies: 1) Expression QTL, which 

compares the single nucleotide polymorphism with the gene expression level (3). This 

approach would be able to refine the roles of single nucleotide polymorphisms located in 

non-coding regions as transcriptional regulators. 2) Haplotype analysis for sequence 

variants around a candidate gene (in linkage disequilibrium block).  This could confirm 

the causative variants of the candidate gene in endothelial function regulation (193). The 

findings from the exercise study indicate that exercise training has non-uniform effects 

on endothelial function and transcriptional activation of endothelial genes, depending on 

the interaction between genetic background and training intensity. These findings 
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emphasize the necessity to consider individual genetic predisposition and exercise 

intensity, particularly high intensity exercise, to design a training program for 

maintaining/improving endothelial health. If the present findings could be confirmed in 

independent datasets using expanded expression profiling to larger scale analyses and/or 

different sets of inbred strains, these might allow more comprehensive understanding of 

the mechanisms for endothelial adaptations to exercise training. The interactive effect of 

genetic background and exercise intensity on training-induced vascular remodeling 

might also be useful for finding the mechanism for the lack of training-induced 

endothelium-dependent relaxation in certain inbred strains. 

4.2. Limitations 

Some limitations should be considered to interpret findings in this dissertation. 

The isometric tension measurement in the myograph system used in the present studies 

allows investigators to examine mechanisms for vasomotor responses in isolated vessels 

to pharmacological stimuli under controlled conditions, however vasomotor responses to 

shear-induced forces cannot be assessed in this experimental setup. Thus, 

mechanosensory mechanisms in endothelial function were not considered in the present 

studies. In addition, this experimental setup was prepared in vitro, thus several in vivo 

factors possibly influencing vasomotor tone were excluded, for example, no innervation 

from nerve ending and no circulating vasomotor molecules (e.g. adenosine, lactate acid) 

(43, 113, 154). 
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Mouse thoracic aortas were utilized to assess vasoreactivity in the present studies. 

Numerous studies have provided evidence that both basal endothelial function and 

endothelial responses to exercise training are heterogeneous across the vessel size and 

location in humans and animals (75, 97, 137, 158, 182, 205, 225, 244). For example, 

Ferrari and colleagues found considerable differences in gene expression patterns and 

enriched pathways/biological processes between internal mammary arteries and aortas 

from coronary artery disease patients (75). Similarly, there were different gene 

expression profiles and enrichments between mesenteric arteries and aortas from young 

male rats (225). For the response to exercise training, the magnitude of improvement in 

endothelium-dependent dilation via exercise training was not correlated between 

resistance and conduit vessels in human subjects (97). Padilla et al. reported markedly 

different gene expression profiles activated by exercise training between brachial arteries 

and internal mammary arteries in young healthy animals (205). These previous data raise 

the possibility that genetic factors influencing intrinsic endothelial function and its 

responses to exercise training might be vessel-specific.  

Sex differences have been also suggested as a factor influencing vascular 

function (30, 37, 140, 155, 186, 276). In a large cohort of young subjects, men had 

markedly lower brachial artery FMD (%) compared to women (140). Femoral arteries 

from female adult pigs also exhibited greater endothelium-dependent vasorelaxation 

compared to femoral arteries from male adult pigs (155). This might be attributed to sex 

hormone effects, particularly estrogen which is known to play a protective role in 

endothelial function related to vasomotor tone, vascular inflammation and vessel repair 
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(186). This is further supported by a finding that a rapid decline in FMD occurs at the 

time of menopause in women (37). After exercise training, adult female animals also 

showed greater improvements in endothelium-dependent vasorelaxation than male adults 

(155). Females had higher levels of eNOS and SOD protein expression in the sedentary 

state and also greater increase in those protein expression after exercise training 

compared to male (156). These data indicate the potential difference in genetic 

regulation of intrinsic endothelial function and endothelial responses to exercise training 

between sexes. Accordingly, the findings from male mice in the present studies would be 

limited for their generality and applicability to both sexes. Proposed vessel- and sex-

specific differences in genetic contribution to endothelial function represent an 

intriguing area for future research. 

4.3. Clinical relevance 

Our GWAS revealed several single nucleotide polymorphisms which were 

significantly associated with variation in intrinsic endothelial function in mice. QTL 

encompassing these single nucleotide polymorphisms contain a few candidate/putative 

candidate genes potentially linked to functions related to baseline endothelial regulation. 

These results provide novel insights into previously unsuspected mechanisms for 

endothelial function. Elucidation of these mechanisms will have the potential to enhance 

prediction of endothelial dysfunction and develop into therapeutic targets for CVD 

associated with endothelial dysfunction. The results of the second study indicate that the 

effect of exercise training on endothelial function is influenced by the interaction 
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between genetic background and exercise intensity. These findings suggest new 

perspectives for the optimization of exercise training to exert beneficial effects on 

endothelial function and ultimately provide potential to aid the development of 

individualized exercise training program required to maintain or improve endothelial 

health. 

The present studies were the first to conduct genome-wide exploration for the 

variation in intrinsic endothelial function in a large cohort of inbred mouse strains and 

characterize the interaction of genetic regulation and training intensity on endothelial 

responses to exercise training. Therefore, the present studies represent the first step 

toward the comprehensive discovery of genetic determinants that regulate intrinsic 

endothelial function and its responses to exercise training. 
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