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ABSTRACT 

 

The pursuit of polymers with natural and renewable precursors is driven by two 

specific aims:  (i) to develop sustainable and biodegradable plastics which decrease 

dependence on petroleum feedstocks and address problems associated with plastic waste 

and pollution, and (ii) to design novel biomaterials with built-in biocompatibility and the 

ability to degrade under physiological conditions to produce resorbable natural 

byproducts.  Herein, a new family of nontoxic bio-based polycarbonate networks that 

exhibit a wide range of achievable thermomechanical properties and have the potential 

to breakdown hydrolytically into biologically-beneficial and environmentally-benign 

degradation products is described. 

The natural product quinic acid, known for its antioxidant and growth-promoting 

properties, was selected as the monomeric building block, and hydrolytically labile 

carbonates were selected as the linkages.  Solvent-free thiol-ene chemistry was utilized 

in the copolymerization of tris(alloc) quinic acid and a variety of multifunctional thiol 

monomers to obtain poly(thioether-co-carbonate) networks.  Natural multifunctional 

thiols derived from lipoic acid, a metabolic antioxidant, were explored to further 

increase the overall natural content of the material.  A wide range of tunable 

thermomechanical properties including glass transition temperatures from −18 to 65 °C 

and mechanical characteristics from a rubbery elastomer to a rigid plastic was achieved 

by careful selection of thiol monomers.  Special attention was paid to the 

characterization of structure-thermomechanical property relationships and how these 
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relationships change under physiological conditions.  The short-term mechanical 

changes triggered by solvent plasticization in a physiologically-relevant environment 

(PBS, pH 7.4, 37 °C) were observed by submersion dynamic mechanical analysis.  The 

long-term degradation kinetics, including swelling and mass loss, were monitored, and 

the results showed a range of degradation times from 5 to ~35 weeks based on the 

crosslink density and hydrophilicity of the polymer network.  In vitro cytotoxicity and 

cell attachment studies were performed, and X-ray imaging contrast properties were 

observed to investigate the feasibility of the poly(thioether-co-carbonate) networks to 

serve as platform materials in biomedical applications, specifically as orthopedic implant 

devices.  Overall, by using simple fabrication techniques and reliable chemistry, the 

poly(thioether-co-carbonate) networks developed in this work represent a versatile and 

nontoxic family of materials which may be used for to a wide variety of applications. 
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NOMENCLATURE 

1,2-EDT 1,2-ethanedithiol 

1,6-HDT 1,6-hexanedithiol 

2,3-BDT 2,3-butanedithiol 

AFM Atomic force microscopy 

DCM Dichloromethane 

DHLAc Dihydrolipoic acid 

DHLAm Dihydrolipoamide 

DI Deionized 

DMA Dynamic mechanical analysis 

DMF N,N-dimethylformamide 

DMPA 2,2-dimethoxy-2-phenylacetophenone 

DSC Differential scanning calorimetry 

ESI-MS Electrospray ionization mass spectrometry 

FTIR Fourier transform infrared spectroscopy 

LAc Lipoic acid 

LAm Lipoamide 

NMR Nuclear magnetic resonance 

QA Quinic acid 

PBS Phosphate buffered saline 

PETMP Pentaerythritol tetrakis(3-mercaptopropionate) 
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PGA Poly(glycolic acid) 

PLA Poly(lactic acid) 

TAQA Tris(alloc) quinic acid 

TATATO Triallyl-1,3,5-triazine-2,4,6-trione 

TEGBMP Tetraethylene glycol bis(3-mercaptopropionate) 

TGA Thermogravimetric analysis 

THF Tetrahydrofuran 

TMEDA N,N,N',N'-tetramethylethylenediamine 

TMPTMP Trimethylolpropane tris(3-mercaptopropionate) 
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CHAPTER I  

INTRODUCTION 

 

Commodity plastics, many of which are intended to be disposable (e.g. 

packaging, food containers, and plastic bottles), take up more space in landfills than any 

other non-degradable material and cover an estimated 35% of the world’s ocean 

surfaces, causing devastating effects to global seabird populations.1-3  The main problem 

is the polymers that make up these plastics take thousands of years to fully degrade, but 

plastic objects are broken down by solar radiation overtime into smaller and smaller 

pieces, which are easily ingested by seabirds, fish, and other marine animals.4  Plastic 

microparticles have been found in marine algae and plankton, which means they are 

entering the marine food chain even at the lowest levels.5  Additionally, plastics are 

manufactured from petroleum-derived starting materials using energy from fossil fuels 

and may contain phthalates and bisphenol A, implicated as endocrine disruptors with 

harmful health effects.6-7  The pursuit of sustainable commodity plastics with more 

“after-life” options, including degradability or more cost-effective and efficient 

recycling options, has led to the development of polymers derived from non-petroleum-

based natural products.8-9  Polymers derived from compounds naturally found in plants 

and animals and that are capable of reverting back into those biological products upon 

degradation are not only more environmentally-friendly, but also safer for wildlife and 

humans. 
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In addition to forming more sustainable and eco-friendly plastics, bio-based 

polymers may have the ability to form biocompatible plastics with resorbable 

degradation products.  By building polymers from precursors which are naturally 

produced or broken down in the human body and hydrolytically labile linkages, it may 

be possible to develop degradable biomaterials with biologically-beneficial by-products.  

Degradable polymers are used as platform materials in tissue engineering, regenerative 

medicine, gene therapy, controlled drug delivery, bionanotechnology, and other 

advanced fields, where, in general, they serve as temporary support during tissue repair 

and/or transport vessel for the delivery of therapeutic or biologic agents.10  For example, 

in bone tissue engineering degradable polymers have been developed as an alternative to 

conventional metal biomaterials for fracture repair.11  Because metals and alloys used in 

orthopedic applications have modulus values (E = 100 GPa) that are five (or more) times 

greater than the modulus values of bone (cortical bone, E = 17-24 GPa, cancellous bone, 

E = 0.1-4.5 GPa), metal implants shield the conditioning stresses required for healthy 

bone growth, may cause damage to surrounding tissue, and loosen over time.12  They are 

also permanent unless a secondary surgery is performed.  Ideally, the design criteria for 

bioresorbable polymers for orthopedic devices include, but are not limited to, moduli 

and ultimate strength values similar to those of bone and a high degree of compatibility 

with surrounding tissue form initial implantation and throughout degradation.13  

Furthermore, besides providing the physical and biological cues mimicking those found 

in the native tissue environment, all these features must be combined into a device 
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design that degrades at rates matching those of tissue formation, until the injured tissue 

is completely restored with healthy functional tissue. 

Synthetic strategies for the development of degradable polymers for biomedical 

applications have focused largely on the use of naturally-occurring acids or 

carbohydrates as monomers, polymerized to form hydrolytically labile linkages, i.e. 

ester, anhydride, or carbonate bonds.  Numerous degradable polymer systems, which use 

hydrolytically-labile ester linkages as sites for polymer degradation have been developed 

from natural products, including polyesters from citric acid,14 poly(ester-co-urethane)s 

from sugar-derivatives,15 poly(ester-co-amide)s from succinic acid,16 and poly(ester-co-

urea)s from amino acids.17  To this day the most widely accepted degradable polymers 

are polyesters of lactic acid, glycolic acid, and caprolactone, and devices composed of 

these polymers, including fracture fixation devices, spinal fixation devices, and 

abdominal wall repair devices, are FDA-approved and commercially available.18-19  

Poly(lactic acid) (PLA), poly(glycolic acid) (PGA), and their copolymers can be 

produced with high molecular weights by ring-opening polymerization of lactide and 

glycolide.  However, these semicrystalline thermoplastic linear polymers and polyesters, 

in general, have received considerable scrutiny due to their acidic degradation products 

which can decrease the pH of the surrounding medium.  In the case of PLA and PGA, 

there is a very high weight fraction of ester linkages within each polymer, which results 

in a high acidic concentration after degradation.  Additionally, degradation proceeds by 

bulk erosion, as opposed to surface erosion, where hydrolysis is slow, allowing for water 

uptake to occur.  Swelling increases the breakdown of ester groups within the material 
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causing a decrease in the pH within the bulk of the material auto-catalyzing degradation 

and eventually may result in failure of the material at the surface and the burst-release of 

concentrated acidic byproducts.  In small implant devices this may not be a big concern, 

but as the physical size of the bulk material increases it becomes more difficult to predict 

degradation kinetics and there is a higher chance for adverse side effects including 

inflammation and pain as a result of acidic degradation products.  Polyesters degrade on 

the order of months to years depending on the degree of crystallinity (semicrystalline 

polymers degrade slower) and physical size of the implant (larger/thicker implants 

degrade faster).  The size-dependent degradation rate of amorphous poly(DL-lactic acid) 

was demonstrated by comparing the degradation of a thin film (0.3 mm thick) to the 

degradation of a disc (2 mm thick), and it was observed that the disc degraded 

heterogeneously (by bulk erosion) much faster than the thin film.20  Polyanhydrides, the 

second most-recognized degradable polymers after polyesters, degrade via surface 

erosion, where hydrolysis occurs quickly and thus, the outer layers of the material are 

the first to exhibit mass loss.21  By comparison, polyanhydrides are less stable toward 

hydrolytic degradation relative to polyesters and degradation rates are limited to hours to 

days, which for mechanically-strenuous implant device applications, such as some 

orthopedic applications, is much too fast. 

Polycarbonates, on the other hand, found in engineering materials where high 

toughness, optical clarity, and solvent resistance are desired, are more stable toward 

hydrolytic degradation than amorphous polyesters.22  When aliphatic carbonates undergo 

hydrolytic degradation, they are converted to alcohols and carbon dioxide, which may 
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decrease the risk of undesirable side effects and slow the rate of erosion, compared to the 

degradation products of polyesters.23-25  Their low toxicity and versatility (ease of 

incorporating different functionalities) make them ideal biomaterial candidates, yet 

efforts to develop degradable polycarbonates for biomedical applications have been 

limited until very recently.26  Hendrick and Yang et al. have developed antimicrobial 

aliphatic polycarbonate hydrogels with broad-spectrum antimicrobial activity and fast 

degradation rates (4 to 6 days).27-28  Recently, hydrophilic polycarbonates have also 

received attention as degradable alternatives to poly(ethylene glycol) hydrogels.29-30   

By utilizing the mechanical and degradation properties of polycarbonates, 

improvements in the limitations of conventional polyester and polyanhydride systems 

may be possible.  In the Wooley research group, degradable polycarbonates are being 

developed from sugars (i.e. glucose and mannose),31-32 polyphenolic compounds (i.e. 

quercetin), neolignins (i.e. honokiol), and other polyhydroxyl natural products (i.e. 

ferulic acid and quinic acid)33-34.  In the case of polycarbonates built from natural 

products, it is possible to design materials that produce bioactive products upon 

degradation.  One specific natural building block is quinic acid (QA), a polyhydroxyl 

compound found freely and in the form of esters with cinnamic acids, known as 

chlorogenic acids, in many agricultural products such as tree barks, tobacco, teas, coffee, 

and many fruits and vegetables.35  Free QA occurs naturally in green coffee beans, and 

upon roasting, hydrolysis of chlorogenic acids produces additional QA, making QA one 

of the dominant acids present in roasted coffee.36  Quinic acid can be isolated from 

natural sources or produced from glucose through environmentally-friendly and cost-



 

6 

effective methods.37  Quinic acid is metabolized by intestinal microflora to afford 

tryptophan and nicotinamide and promotes antioxidant activity and growth.38-40  The 

combination of polyhydroxyl compounds and carbonate linkages is special because if the 

carbonate linkages are placed intermolecularly between two hydrolxyl groups, then upon 

hydrolysis the two hydroxyl groups would be reproduced and carbon dioxide released 

leaving the pure polyhydroxyl starting material.  Thus, a polycarbonate built from QA 

has the potential to degrade and regenerate QA (with its beneficial bioactivity intact) 

under physiological conditions.  Previously, the synthesis of linear poly(QA carbonate)s 

was investigated by copolymerization of tert-butyldimethylsilyloxy-protected 1,4- and 

1,5-diol monomers of quinic acid and phosgene.33  Although the polymers exhibited 

high glass transition temperatures (209 °C for poly(1,4-QA carbonate) and 229 °C for 

poly(1,5-QA carbonate)), they possessed only poor mechanical strengths, which likely 

resulted from limited molecular weights (7.5 kDa for poly(1,4-QA carbonate) and 7.7 

kDa for poly(1,5-QA carbonate)) and incomplete deprotection (59 % removal for 

poly(1,4-QA carbonate) and 73% removal for poly(1,5-QA carbonate)) being achieved.  

Additionally, although widely employed in industrial settings due to its efficiency, the 

use of phosgene, a highly toxic chemical synthesized from CO and Cl2 using an energy 

intensive process, is not ideal for the development of “green” plastics. 

To design mechanically-robust polycarbonates, three-dimensional thermosets, 

crosslinked by energy efficient photo-initiated thiol-ene chemistry and derived from QA, 

are described here.  Thermosets, as opposed to thermoplastics, are covalently crosslinked 

networks formed by curing under heat or irradiation.  The crosslinking limits mobility 
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and flexibility of polymer chains and gives thermosets increased thermal and mechanical 

properties and solvent resistance compared to equivalent thermoplastics.  The structure 

can be considered a giant macromolecule made up of repeat units or monomers which 

are covalently crosslinked by heat and/or light.  The simplest form that the monomers 

take is A2+B3 (or just A3), where A and B are monomers, oligomers, or polymers, and 

the subscripts describe the functionality of each.  There must exist a molecule with 

functionality greater than or equal to three in order to form crosslinks.  If at least three of 

the functional groups react, then it is called a branching point.  If the length of each 

chain beginning at the branching point extends to the boundaries of the system, (i.e. 

reaches infinity), then it is called a crosslink or crosslink point.  Upon curing 

copolymerization occurs and chains grow by branching to form a network.  As the 

network grows, the viscosity of the material increases as does the molecular weight, and 

the total number of molecules decreases.  Theoretically, when network formation is 

complete one molecule of infinite molecular weight is left.  The point at which the 

weight average molecular weight begins to diverge to infinity is called the gel point.41  

At the gel point the viscosity diverges to infinity and the thermoset loses its ability to 

flow.  Mathematically the gel point can be described as the limit of the functional group 

conversion, p, as the degree of polymerization, 𝑋n, diverges to infinity: 

𝑝𝑔𝑒𝑙 = lim
𝑋𝑛→∞

𝑝 

The Carothers equation (shown below) relates the extent of reaction (functional group 

conversion) and the degree of polymerization to the average functionality of the system, 

favg. 
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𝑝 =
2

𝑓𝑎𝑣𝑔
−

2

𝑋𝑛𝑓𝑎𝑣𝑔
 

Combining the two equations, the critical extent of reaction, pc, at the gel point is  

𝑝 =
2

𝑓𝑎𝑣𝑔
 

given that there is a stoichiometric balance of functional groups.  Therefore in an A2+B3 

system (where there are 3 equivalents of A2 and 2 equivalents of B3 to achieve a 

stoichiometric balance) the average functionality is 2.4 and the extent of conversion 

needed to reach the gel point is 0.83, meaning that at the gel point 83% of functional 

groups have reacted.  Beyond the gel point and as reactions proceed, the crosslink 

density continues to grow along with the material’s glass transition temperature and 

mechanical properties, but it becomes impossible to process and is no longer workable.   

Thermosets are generally amorphous because the presence of crosslinks makes it 

difficult to form any ordered regions in the material.  An important thermal property of 

crosslinked networks is the glass transition temperature, Tg.  Below the Tg the material 

performs as a glassy solid, and above the Tg it becomes rubbery.  Depending on the 

desired temperature at which the material will be used and whether it will be used in its 

rubbery or glassy state, the Tg of the material should coincide accordingly.  Thermosets 

that have a Tg below room temperature or in other words, are rubbery at room 

temperature are called elastomers. 

In biomedical applications, thermosets are attractive because the three-

dimensional, crosslinked structure more closely matches that of natural tissue, 

specifically extracellular materials, which provide direction for cell organization, 
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structural integrity, and mechanical support to complex tissues, compared to the 

structure of thermoplastics.42  Polymer networks exhibit more favorable material kinetics 

(swelling, degradation, breakdown of properties) upon tissue integration, and overcome 

many of the processing limitations possessed by degradable polyesters, including the use 

of harsh solvents and conditions and the dependence of properties on the physical size of 

the implant device.20, 43  Photo-polymerizable networks are especially attractive for their 

ability to form in situ and fill complex geometries.   

One reliable and powerful tool for photo-crosslinking is thiol-ene chemistry, 

which is widely accepted academically and industrially in many different fields due, 

mainly to the pioneering work of Hoyle et al. and carried on by Bowman and 

coworkers.44-47  Thiol-ene chemistry is highly efficient, easily accessible, tolerant of 

many functional groups, and has been employed in various tissue engineering 

applications.48-50  The thiol-ene polymerization mechanism consists of the addition of a 

thiyl radical across an alkene, followed by chain transfer to a thiol, thus regenerating the 

thiyl radical.  This step-growth, free radical polymerization proceeds under mild 

conditions to high conversions even in the presence of water or oxygen and produces 

crosslinked networks, which are significantly more uniform and contain less residual 

stresses post cure compared to acrylate networks.51-52  The homogeneity of the networks 

produced by thiol-ene crosslinking has made it an attractive technique in applications 

where highly uniform network structures are criterial such as soft lithography, gas 

barriers, and transport materials.52-53 
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In this dissertation, the relatively low energy requirements and rapid speed of 

photo-initiated thiol-ene crosslinking was utilized to synthesize polymers containing 

carbonate linkages without the use of harsh reagents or conditions.  A QA lactone was 

modified to produce the tris(alloc) quinic acid (TAQA) alkenyl monomer, and three-

dimensional poly(thioether-co-carbonate) networks were achieved by copolymerization 

with multifunctional thiols upon UV exposure.  The bicyclic monomer, TAQA, is of 

interest because of its rigidity and the potential for two-stage degradation, where 

hydrolysis of the lactone may trigger carbonate backbone degradation. 

Initial demonstration of crosslinked network formation is extended to fully 

investigate structure-property relationships by varying the multifunctional thiol 

composition and stoichiometry, including mixtures of thiol monomers.  Each variation in 

chemical composition and architecture is designed to exploit the range of achievable 

thermomechanical properties and potential target applications.  Aside from the 

significant benefits of synthesizing and characterizing UV-curable poly(thioether-co-

carbonate)s, the work herein also investigates several critical areas that need to be 

understood before these materials can be seriously considered for biomedical 

applications.  For example, a full life-time analysis of polymer degradation kinetics in 

physiologically-relevant conditions, changes in the thermomechanical properties from 

initial introduction into an aqueous environment and throughout degradation, and 

degradation product identification and cytotoxicity are important factors that influence 

the usability of these materials.  Key efforts were directed toward in situ changes in 

mechanical properties due to solvent plasticization and temperature effects.  This 
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dissertation is divided into four chapters based on desired properties and how the 

materials are meant to function in the target applications.  The goal of the first project, 

described in Chapter II, was to develop rigid polycarbonate networks for mechanically-

strenuous biomedical implant applications.  The second project, described in Chapter III, 

focuses on the feasibility of the materials introduced in Chapter II for biomedical 

applications.  Studies were performed to understand how the material would be affected 

by a physiological environment and how the tissue environment would be affected by 

the materials.  The third project, described in Chapter IV, focused on materials designed 

to be rigid at room temperature and soften under physiological conditions, and special 

attention will be paid to evaluating their mechanically-adaptive nature and designing 

materials with one-dimensional mechanical gradients.  Appendix A describes an ongoing 

project in which natural multifunctional thiols derived from lipoic acid are utilized to 

increase the overall natural content of the material.   
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CHAPTER II  

PHOTO-CROSSLINKED POLY(THIOETHER-CO-CARBONATE) NETWORKS 

DERIVED FROM THE NATURAL PRODUCT QUINIC ACID* 

 

2.1   Introduction 

Polymers derived from natural resources have attracted increased attention not 

only for their ability to form commodity plastics, which decrease dependence on 

petroleum processes, but also for their ability to form biocompatible materials with 

resorbable degradation products.54-56  Recently, polymers derived from naturally-

occurring precursors, such as nucleotides,57 carbohydrates,32 ferulic acid,34 and D-

limonene58-59 have been reported as prospective degradable biomaterials.  Common 

polyesters, including poly(lactic acid) and poly(glycolic acid), have shown to be useful 

in various tissue engineering applications including some orthopedic applications.19, 60  

They possess modulus values similar to cancellous bone (0.1 – 4.5 GPa) but still low 

compared to cortical bone (17 – 24 GPa), and orthopedic devices made from these 

materials may require challenging and costly fabrication and sterilization techniques.11, 61  

Materials for implant device applications demand polymer functionality both at the 

macromolecular and molecular levels to satisfy material design requirements and enable 

a desired physiological response.  In the case of bioresorbable polymers for orthopedic 

devices, the design criteria include moduli and ultimate strength values similar to those  

____________ 
*Reprinted with permission from Lauren A. Link, Alexander T. Lonnecker, Keith Hearon, Cameron A. 

Maher, Jeffery E. Raymond, and Karen L. Wooley, ACS Appl. Mater. Interfaces 2014, 6, 17370-17375, 

Copyright 2014 American Chemical Society.  
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of bone and a high degree of compatibility with surrounding tissue from initial 

implantation and throughout degradation.13  In the case of polyesters, inflammation and 

pain may arise if acidic degradation products are not cleared quickly.62 

By utilizing the mechanical and degradation properties of polycarbonates, 

improvements in the limitations of conventional systems may be possible.  When 

aliphatic carbonates undergo hydrolytic degradation, they are converted to alcohols and 

carbon dioxide, which may decrease the risk of undesirable side effects and slow the rate 

of erosion, compared to the degradation products of polyesters.23-25  Furthermore, in the 

case of polycarbonates built from natural products, it is possible to design materials that 

produce bioactive products upon degradation.  One such natural building block is quinic 

acid (QA), a polyhydroxyl compound found freely and in the form of esters with 

cinnamic acids, known as chlorogenic acids, in many agricultural products such as tree 

barks, tobacco, teas, coffee, and many fruits and vegetables.35  Free QA occurs naturally 

in green coffee beans, and upon roasting, hydrolysis of chlorogenic acids produces 

additional QA, making QA one of the dominant acids present in roasted coffee.36  Quinic 

acid can be isolated from natural sources or produced from glucose through 

environmentally-friendly and cost effective methods.37  Quinic acid is metabolized by 

intestinal microflora to afford tryptophan and nicotinamide and  promotes antioxidant 

activity and growth.38-40  Previously, the synthesis of poly(QA carbonate)s was 

investigated by copolymerization of tert-butyldimethylsilyloxy-protected 1,4- and 1,5-

diol monomers of quinic acid and phosgene.33  Although the polymers exhibited high 

glass transition temperatures (209 °C for poly(1,4-QA carbonate) and 229 °C for 
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poly(1,5-QA carbonate)), they possessed only poor mechanical strengths, which likely 

resulted from limited molecular weights and incomplete deprotection being achieved. 

To introduce mechanically-robust bio-based polycarbonates, the synthesis and 

thermomechanical characterization of covalently crosslinked networks derived from QA 

are reported in this study.  A QA lactone was modified to produce the tris(alloc) quinic 

acid (TAQA) alkenyl monomer shown in Figure 2.1.  Three-dimensional networks were 

achieved by photo-catalyzed thiol-ene chemistry upon polymerization with the 

multifunctional thiols also illustrated in Figure 2.1.  Thermomechanical properties of the 

poly(thioether-co-carbonate) networks were compared to networks containing the 

commercially-available monomer, triallyl-1,3,5-triazine-2,4,6-trione (TATATO).  Thiol-

ene chemistry44, 52, 63 is highly efficient, easily accessible, proceeds under mild 

conditions, tolerant of many functional groups, and has been employed in various tissue 

engineering applications.48-50  Several material design criteria drove the monomer 

selection.  Because one end goal is synthesizing amorphous polymers for use in 

orthopedic applications, it is important that the materials perform as a glassy solid at 

physiological temperature with modulus close to that of bone.  Thus, the optimal glass 

transition temperature (Tg) would be significantly above body temperature (37 °C).  

Many thiol-ene polymers undergo glass transitions below 37 °C because of the high 

flexibility of the thioether linkage, and increasing the Tg has traditionally been a 

significant synthetic challenge.64  One method of increasing the Tg in network polymers 

is to increase crosslink density by increasing monomer functionality; however, 

increasing crosslink density to the extent necessary to raise the Tg above 37 °C in thiol-
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ene polymers has often resulted in significantly decreased toughness, which is 

undesirable.65-66  Therefore, an ideal material would have a Tg well above 37 °C and a 

low, but sufficient, crosslink density.  In this study, the bicyclic structure of TAQA is 

predicted to increase the Tg by increasing network rigidity in comparison with the 

commercially-available triallyl monomer, TATATO.  Concerning thiol monomer 

selection, the 1,2-ethanedithiol (1,2-EDT) monomer is predicted to form networks with 

high rigidity and toughness compared to other commercially-available polythiols 

because the 1,2-EDT-co-TAQA polymer has the greatest TAQA weight fraction while 

also having a moderate crosslink density because of the difunctionality of 1,2-EDT. 

 The two-step synthesis of the TAQA monomer (Figure 2.1, bottom) coupled with 

the solvent-free, binary copolymerization enabled the facile production of highly-

uniform crosslinked networks.  The first step of the monomer synthesis was well-

established lactonization of QA under acidic conditions.67  Quinic acid and acidic 

Amberlyst resin were suspended in benzene and N,N-dimethylformamide and heated to 

reflux with azeotropic removal of water to afford the bicyclic triol, QA lactone in 96% 

yield.  To install the three alloc functional groups, allyl chloroformate was added drop-

wise to QA lactone suspended in N,N,N’,N’-tetramethylethylenediamine and 

dichloromethane, to give 74% yield of TAQA as a clear, viscous oil.  The structure of 

TAQA was confirmed by FTIR and ESI-MS, as well as 1H, 13C, COSY, and HSQC 

NMR spectroscopies.  Solvent-free crosslinking copolymerization by thiol-ene radical 

addition in the presence of 1 wt% 2,2-dimethoxy-2-phenylacetophenone (DMPA) 

photoinitiator was performed by mixing TAQA and multifunctional thiol monomers,  
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Figure 2.1.  General scheme for photo-crosslinking of poly(thioether-co-carbonate) networks and 

photograph of cured films (top), monomer structures with abbreviations (middle), two-step synthesis of 

TAQA from quinic acid (bottom). 
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based on equal molar functional groups, mold casting, and exposing to UV light (λ = 365 

nm) to produce films with uniform thickness (0.4 mm).  This was followed by post-

curing at 120 °C for at least 4 h to vulcanize residual thiol groups.  The samples were 

characterized by FTIR spectroscopy to verify consumption of alkene (1650 cm-1) and 

thiol (2570 cm-1) groups upon network formation.  A variety of multifunctional thiols 

was investigated including 1,2-EDT, 2,3-butanedithiol (2,3-BDT), 1,6-hexanedithiol 

(1,6-HDT), trimethylolpropane tris(3-mercaptopropionate) (TMPTMP), and 

tetraethylene glycol bis(3-mercaptopropionate) (TEGBMP). 

2.2   Results and Discussion 

 The dynamic mechanical analysis (DMA) results in Figure 2.2 show the relative 

thermomechanical behavior in tension of cured samples synthesized from TAQA or 

TATATO and various thiol compounds.  This behavior is characteristic of amorphous, 

covalently crosslinked polymers, which includes a glassy modulus plateau at 

temperatures below the glass transition, a transition region in which modulus decreases 

with increasing temperature, and a rubbery plateau region in which the modulus remains 

constant or slightly increases with increasing temperature.  The crosslink density of a 

thermosetting polymer is proportional to its rubbery modulus plateau in accordance with 

the relationship for an ideal rubber.  Materials incorporating TMPTMP had the highest 

crosslink density, due to its increased functionality as compared to the other thiol 

monomers investigated.  The relatively low crosslink density of the 2,3-BDT-co-TAQA 

networks, compared to the other materials, can be explained by ineffective crosslinking 

reactions due to steric hindrance by the bulky secondary thiols of 2,3-BDT.  Table 2.1 
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lists the thermomechanical properties of the poly(thioether-co-carbonate) networks 

containing the various multifunctional thiols investigated.  The Tg values, determined by 

differential scanning calorimetry (DSC), are consistent with the onset of the glass 

transition region in the storage modulus behavior shown in Figure 2.2.  The 1,2-EDT-co-

TAQA sample contained the greatest weight fraction of the rigid, bicyclic TAQA 

monomer and the lowest weight fraction of flexible aliphatic spacer atoms and, thus, 

exhibited the highest Tg value (65 °C), comparable to that of poly(L-lactide) (Tg = 60 - 

65 °C).  In contrast, the TEGBMP-co-TAQA system’s longer and more flexible 

TEGBMP-based spacer resulted in an elastomeric material with a Tg well below room 

temperature.  The 1,2-EDT-co-TATATO network expressed a Tg which was 27 degrees 

lower than that of the 1,2-EDT-co-TAQA material.  As predicted, the bicyclic TAQA 

monomer provided the 1,2-EDT-co-TAQA network with increased rigidity that could 

not be achieved with the commercially-available triallyl monomer, TATATO, in the 1,2-

EDT-co-TATATO network.  DMA experiments at multiple frequencies were used to 

determine the activation energy of the glass transition, Ea, of 1,2-EDT-co-TAQA which 

was 374 ± 14 kJ/mol in accordance with the Arrhenius relationship.68  In comparison 

with poly(lactic acid) (Ea = 255 kJ/mol),69 1,2-EDT-co-TAQA networks require more 

energy to impart segmental motion.  Poly(bisphenol-A carbonate), however, has a 

considerably higher Ea of 766 kJ/mol, due to its rigidity and ability to dissipate energy 

effectively.70 
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Figure 2.2.  Storage modulus measurements by DMA in tension mode of films (post-cured for 24 h) as a 

function of temperature. 

 

 

 

Sample Tg [°C]a Td [°C]b E' [MPa]c Er [MPa]d 

TEGBMP-co-TAQA -18 264 357 7.3 

TMPTMP-co-TAQA 43 275 1290 14 

1,6-HDT-co-TAQA 48 261 1110 12 

2,3-BDT-co-TAQA 51 261 1440 3.1 

1,2-EDT-co-TAQA 65 262 1400 10 

1,2-EDT-co-TATATO 38 332 1170 7.2 

 
Table 2.1.  Thermal transitions and moduli exhibited by the poly(thioether-co-carbonate) networks 

derived from TAQA in comparison to networks derived from a commercially-available triallyl monomer.  
aDetermined by DSC; bOnset of thermal decomposition determined by TGA; cStorage modulus at 25 °C 

determined by DMA; dRubbery modulus determined by DMA 

 

 

 

The temperature at which the onset of thermal decomposition began, Td, was 

determined by thermogravimetric analysis.  All of the poly(thioether-co-carbonate)s 

characterized had thermal decomposition temperatures greater than 260 °C (Table 2.2).  

To determine post-cure time necessary to drive the polymerization to completion, enable 

vaporization of residual small molecules, and allow for network relaxation, DSC 
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experiments were run on samples subjected to varying post-cure times at 120 °C.  As 

post-cure time increased from 0 to 4 h, the Tg increased for each sample, and after 4 h, 

negligible changes in Tg were observed (shown in supporting information).  Thermal 

analysis of the network materials synthesized in this study demonstrates that a 

significant variation in thermomechanical properties is achievable by varying the thiol 

monomer chemistry.  The diverse array of physiological environments within the body 

has given rise to the need for biomaterials that conform to a wide range of design 

criteria. 

Each of the poly(thioether-co-carbonate) networks that met the requirement of 

being glassy at 37 °C, 1,2-EDT-co-TAQA, TMPTMP-co-TAQA, 2,3-BDT-co-TAQA, 

and 1,6-HDT-co-TAQA, was subjected to tensile strain-to-failure measurements.  The 

stress/strain behavior of each system at 25 °C is depicted in Figure 2.3 (a).  Although all 

four of the samples performed similarly, the networks with lower Tg values, 1,6-HDT-

co-TAQA and TMPTMP-co-TAQA, failed in a slightly more ductile manner, reaching a 

yield point at which the material exhibits an increase in strain at a constant or slightly 

decreasing stress, compared to the networks with higher Tg values, 1,2-EDT-co-TAQA 

and 2,3-BDT-co-TAQA.  While 1,2-EDT-co-TAQA exhibited brittle behavior at 25 °C 

and fails at 8% strain, it becomes more ductile at elevated temperatures, shown in Figure 

2.3 (b).  At 63 °C, just below its Tg (65 °C), 1,2-EDT-co-TAQA undergoes weak 

elastomeric failure at a stress of 6 MPa, but at 37 °C, 1,2-EDT-co-TAQA exhibits a 

more ductile behavior and fails at 100% strain while also exhibiting a failure stress 

greater than 23 MPa.  While the average toughness of 1,2-EDT-co-TAQA at 25 °C and 
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63 °C was 1.08 MJ/m3 and 2.35 MJ/m3, respectively, the average toughness at 37 °C was 

15.56 MJ/m3.  This increase in toughness at physiological temperature is more than an 

order or magnitude difference from the toughness at room temperature.  Along with 

increased toughness, it is also desirable that a material for orthopedic applications 

maintains rigidity and is resistant to plasticization upon implantation. 

In order to measure solvent plasticization effects, 1,2-EDT-co-TAQA films were 

subjected to in situ matrix relaxation DMA experiments in physiologically-relevant 

conditions, specifically, in phosphate buffered saline (PBS) solution (pH 7.4, 137 mM 

NaCl, 2.7 mM KCl, 10 mM phosphate buffer) at 37 °C.  Figure 2.3 (c) shows the results 

of the first 17 h of submersion.  There was an initial thermal response upon submersion 

followed by a solvent plasticization response, after which the modulus begins to increase 

slightly over 15 h.  The solvent response, after temperature effects, was a solvent-

plasticized material with ∆Eˈ = −230 MPa (−15%) and a saturation lifetime of 31 min 

(Figure 2.3 (c) inset).  Following the solvent plasticization response, a change ∆Eˈ = 80 

MPa was observed in which the material stiffens.  This may be an indication that, even 

when fully saturated, the system still requires time, to reach its lowest energy 

configuration.  Therefore, the net response to submersion in a physiologically-relevant 

environment over 17 h is ΔEˈ = −150 MPa (−10%).  The sample was allowed to recover 

for 24 h, and was then subjected to the same experimental regimen (shown in supporting 

information).  The storage modulus behaved similarly in response to initial solvent 

plasticization, but did not increase over the following 15 h.  This behavior indicates that  
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Figure 2.3.  (a) Stress/strain behavior of poly(thioether-co-carbonate) networks that exhibit Tg values 

which are greater than physiological temperature,  (b) strain-to-failure of 1,2-EDT-co-TAQA at various 

temperatures,  and (c) storage modulus as a function of time over 17 h obtained by submersion DMA in 

PBS at 37 °C.  Inset shows in situ stress relaxation in response to solvent (first 30 min) fit to a dual 

exponential decay (R2 = 0.993). 
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the lower energy configuration of the matrix was retained for at least 24 h after drying.  

Beyond 24 h, 1,2-EDT-co-TAQA may begin to undergo hydrolytic degradation, at 

which point there would be a reduction in modulus.  No significant differences in surface 

roughness were observed by atomic force microscopy (AFM), indicating no significant 

film degradation during 15 h of submersion (shown in supporting information). 

2.3   Conclusions 

We present a series of photo-crosslinked polymer networks derived from the 

natural product quinic acid with controlled Tg values from −18 to 65 °C and rubbery 

modulus values from 3.8 to 20 MPa.  The network containing the highest weight percent 

of rigid bicyclic monomer, 1,2-EDT-co-TAQA, exhibited a Tg of 65 °C and a storage 

modulus of 1.4 GPa, properties comparable to those of common degradable polyesters 

used in orthopedic applications.  At 37 °C 1,2-EDT-co-TAQA exhibited an average 

toughness which was an order of magintude higher than at room temperature and was 

resistant to plasticization upon submersion in PBS for 17 h.  The material maintained its 

modulus upon submersion in PBS at 37 °C, exhibiting only slight solvent plasticization 

within the first 30 min.  Given the stability of the poly(thioether-co-carbonate) networks 

at 120 °C, for biomedical device applications, it may be possible to sterilize final devices 

by autoclaving or dry heat, rather than by ethylene oxide or γ-radiation, which each have 

significant disadvantages.11  These poly(thioether-co-carbonate)s have a wide range of 

achievable material properties, and potential applications include biomedical 

applications and expand to non-petroleum-based “green” engineering polymers for 

commodity plastics applications.  We demonstrate the ability to form a polymer with 
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carbonate linkages without using any harsh conditions or solvents, giving the resulting 

material a high degree of industrial and environmental relevance.  In total, this system 

represents a thermosetting polycarbonate material that is expected to produce 

environmentally-friendly and bioresorbable degradation products.  Future investigation 

will focus on the degradation kinetics in vitro and in vivo of these materials, as well as 

on strategies for incorporating other chemistries and functional components. 

2.4 Materials and Methods 

Quinic acid, Amberlyst 15 ion-exchange resin, N,N,N’,N’-

tetramethylethylenediamine, allyl chloroformate, 2,2-dimethoxy-2-phenylacetophenone, 

1,2-ethanedithiol, 2,3-butanedithiol, 1,6-hexanedithiol, trimethylolpropane tris(3-

mercaptopropionate), and triallyl-1,3,5-triazine-2,4,6-trione were all used as received 

from Sigma Aldrich.  Tetraethylene glycol bis(3-mercaptopropionate) (Wako Chemical) 

was also used as received. 

1H and 13C NMR spectra were obtained on either a Mercury 300 or an Inova 300 

at 300 MHz or 75 MHz, respectively, using the solvent signal as internal reference.  

Glass transition temperatures (Tg) were measured using differential scanning calorimetry 

(DSC) by a Mettler-Toledo DSC822 (Mettler-Toledo, Columbus, OH) with a heating 

rate of 10 °C/min.  The Tg was taken as the midpoint of the inflection tangent upon the 

third heating cycle and averaged over three samples.  Thermogravimetric analysis 

(TGA) was done under an Ar atmosphere using a Mettler-Toledo TGA/DMA1 with a 

heating rate of 10 °C/min.  IR spectra were obtained from a Shimadzu IR Prestige 

Attenuated Total Reflectance Fourier-transform Infrared Spectrometer (ATR-FTIR).  
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Dynamic mechanical analysis (DMA) experiments were run in tension to determine 

thermomechanical profiles for the thermoset poly(thioether-co-carbonate) samples.  

Rectangular DMA specimens (4 mm x 25 mm x 0.4 mm) were machined using a 

Gravograph LS100 40 W CO2 laser machining device.  All laser machined samples were 

sanded around the edges using 400, then 600 grit sandpaper.  DMA was performed using 

a TA Instruments Q800 Dynamic Mechanical Analyzer in the DMA 

Multifrequency/Strain mode in tension using a deformation of 0.1% strain, a frequency 

of 1 Hz, a force track of 150%, and a preload force of 0.01 N.  Each experiment was run 

from −20 to 180°C using a heating rate of 2°C/min (presented in Figure 1).  All other 

DMA and submersion DMA were performed on a Mettler-Toledo TT-DMA system.  

DMA data were obtained from Triton Laboratory software and exported to Origin Pro 

9.0 for analysis.  Kinetic fits were obtained by single or exponential fitting as 

appropriate, using chi-squared analysis to assign fitting component number.  Average 

lifetimes for multi-exponential kinetics are reported as intensity average lifetimes where 

t(avg) = Σ(ai • ti
2) / Σ(ai • ti).  Activation energy data were extracted from frequency 

tan(δ) maxima as fitted with a single Gaussian distribution in the temperature regime.  

Variable frequency DMA measurements were done from 0.1 to 100 Hz, and the 

activation energy was averaged over three samples.  To determine toughness values, 

ultimate tensile strengths, and failure strains, tensile testing experiments were conducted 

to failure on ASTM type V dog bone samples (n = 5) using a dual-column Instron model 

5965 tensile tester with a 500 N load cell, 1000 N high temperature pneumatic grips, and 

a temerature chamber thermally controlled by forced convection heating.  The dog bone 
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samples were cut with a 40 W Gravograph LS100 CO2 laser and edges were smoothed 

with 180 grit sandpaper.  Atomic force microscopy was performed using an Asylum 3D-

SA instrument operated in tapping mode with a silicon probe (Vista probes T190, k = 48 

N/m, f = 190 kHz - nominal).  Surface analysis was performed with IGOR 6.0 software. 

2.4.1 Functionalization of QA lactone with allyl carbonate groups 

QA lactone (4.081 g, 23.43 mmol) was synthesized as previously described67 and 

added to a flame-dried 250-mL schlenk flask back-filled with nitrogen.  DCM (30 mL) 

was added and the solution was cooled to −5 °C.  TMEDA (14.5 mL, 96.8 mmol) was 

added and allowed to stir at −5 °C for 20 min.  To an addition funnel equipped with a 

pressure equalizing side arm, allyl choroformate (17.8 mL, 168 mmol) was added and 

diluted with DCM (10 mL).  Dropwise addition (~1 drop/5 s) of the allyl chloroformate 

and DCM mixture to the flask proceeded for about 4 h.  The reaction was maintained 

between -5 °C and -10 °C, stirring rapidly for 2 h after the addition was complete.  The 

reaction was allowed to warm to room temperature and stirred overnight.  The thick 

white solid that remained was dissolved in DCM and filtered.  The filtrate was washed 

twice with deionized water, once with a 10 wt% CuSO4 solution, dried with MgSO4, 

filtered and concentrated.  The crude product was purified by column chromatography 

(hexane-ethyl acetate, 3:2) to afford tris(alloc) quinic acid (TAQA) (7.406 g, 74%).  Tm = 

−21 °C.  1H NMR (CDCl3, 300 MHz):  δ 5.97-5.88 (m, 3 H, H-10), 5.41 (t, 1 H, J = 5.1, 

4.6 Hz, H-4) 5.41-5.27 (m, 6 H, H-11), 5.04 (ddd, 1 H, J = 11.7, 6.9, 4.5 Hz, H-5), 4.96-

4.94 (dd, 1 H, J = 6.0, 4.9 Hz, H-3), 4.65-4.62 (m, 6 H, H-9)  3.22-3.18 (ddd, 1 H, J = 

11.6, 6.1, 2.8 Hz, H-2), 2.57-2.55 (d, 1 H, J = 11.4 Hz, H-2), 2.46-2.41 (ddd, 1 H, J = 
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12.1, 6.9, 2.8, H-6), 2.35 (t, 1 H, J = 11.9, H-6);  13C NMR (CDCl3, 125 MHz):  δ 170.6 

(C7), 153.8 (C8), 153.3 (C8), 152.3 (8), 131.2 (C10), 131.0 (C10), 130.8 (C10), 119.9 

(C11), 119.8 (C11), 119.46 (C11), 77.5 (C1), 73.4 (C3), 69.6 (C9), 69.5 (C9), 69.4 (C5), 

69.3 (C9), 67.9 (C4), 33.5 (C2), 33.4 (C6); FT-IR (neat, cm-1): 2985, 2956, 1809 (C=O), 

1747 (C=O), 1651, 1448, 1425, 1417, 1367, 1274, 1228, 1211, 1161, 1145, 1103, 1083, 

1039, 989, 937, 781, 750; HRMS (+ESI) m/z calc’d for C19H22O11  [M+K]+: 465.08, 

found 465.0794. 

2.4.2 General procedure for fabricating thiol/TAQA films 

Mixtures of multifunctional thiol and TAQA were prepared based on equal molar 

functional groups.  The amount of photoinitiator, DMPA, was 1 wt% for each mixture.  

Table 2.1 shows the composition for each film.  DMPA was first dissolved in the 

multifunctional thiol and then TAQA was added and blended thoroughly.  Each mixture 

was cast between two glass slides separated by a 0.5 mm spacer, and exposed to UV 

light (365 nm) on a Fusion curing line system (1 m/min, 15 min).  The glass slide molds 

were removed, and the free-standing films were post-cured at 120 °C for 4 h or as 

otherwise noted. 
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Formulation Triallyl Monomer (g)a Thiol (g) DMPA (g) 

TEGBMP-co-TAQA 0.3060 0.3986 0.0070 

TMPTMP-co-TAQA 0.3140 0.2946 0.0059 

1,6-HDT-co-TAQA 0.3904 0.2056 0.0064 

2,3-BDT-co-TAQA 0.4174 0.1791 0.0060 

1,2-EDT-co-TAQA 0.4540 0.1484 0.0058 

1,2-EDT-co-TATATO 0.7683 0.4313 0.0121 

 
Table 2.2.  Thiol-ene network formulations.  aTriallyl monomer was either TAQA or TATATO. 

 

 

 

 

 

2.5 Supporting Information 

 Additional characterization data, including 1H, 13C, COSY, and HSQC NMR 

spectroscopies of TAQA are depicted below in Figure 2.4, 2.5, 2.6, and 2.7, respectively.   
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Figure 2.4.  1H NMR spectrum of TAQA. 

 

Figure 2.5.  13C NMR spectrum of TAQA. 
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Figure 2.6.  COSY NMR spectrum of TAQA. 

 

Figure 2.7.  HSQC NMR spectrum of TAQA. 
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 The effects of post-cure time on the Tg of the poly(thioether-co-carbonate) films 

was monitored by DSC measurements and shown in Figure 2.8.  The repeat of the in situ 

DMA relaxation measurement and the AFM images of the 1,2-EDT-co-TAQA film 

before and after solvent immersion are shown in Figures 2.9 and 2.10. 

 

 

 

Figure 2.8.  Glass transition temperatures of poly(thioether-co-carbonate) films as a function of post-cure 

time at 120 °C, determined by DSC.  For each formulation and post-cure time the Tg was averaged from 

three samples, and the error bars represent the standard deviation. 
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Figure 2.9.  Repeat of in situ relaxation measurement after 24 h.  Storage modulus was measured as a 

function of time over 15 h obtained by DMA while submerged in PBS at 37 °C. 
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Figure 2.10.  Tapping AFM of 1,2-EDT-co-TAQA dry and wet after 15 h submersion in PBS.  Top:  

Height profile (A) dry 5 µm2 (RMS roughness = 12 nm), (B) wet 5 µm2 (RMS roughness = 16 nm), (C) 

dry 500 nm2 (RMS roughness = 2.4 nm), (D) wet 500 nm2 (RMS roughness = 1.2 nm).  Bottom:  Phase 

contrast and height profile overlay (A) dry 5 µm2 (phase range = ± 15 °) (B) wet 5 µm2 (phase range = ± 

65 °) (C) dry 500 nm2 (phase range = ± 6.0 °) (D) wet 500 nm2 (phase range = ± 11 °).  The height profiles 

show an increase in the height of small features at 5 µm2 and smoothing of features at 500 nm2 after 15 h 

of solvent immersion.  The drastic increase in phase range indicates a less homogeneous matrix in terms of 

surface energy at the nanoscale, e.g. a greater difference in tip-surface interaction energies. 
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CHAPTER III  

BIOMATERIAL FEASIBILITY STUDIES OF BIO-BASED DEGRADABLE 

POLYCARBONATE NETWORKS 

 

3.1   Introduction 

Bone and cartilage injuries and diseases, including fractures, arthritis, 

osteoporosis, and osteosarcoma, are among the most physically disabling, chronic, and 

costly conditions suffered by patients in developed countries.71  The prevalence of these 

conditions continues to grow with the aging population and emphasizes the demand for 

new platform materials that can support and promote the growth of orthopedic tissue.  

Although the area of orthopedic biomaterials research is vast and extensive, there is still 

a need for economically tolerable and clinically appropriate devices with material 

properties that can be customized on a patient-to-patient basis.72-73  Among the cutting-

edge devices developed recently are complex bioresponsive and multifunctional 

hydrogels, porous 3D-printed scaffolds, and bioceramic composite implants, which 

utilize degradable polymer crosslinked networks as the base material/matrix of the 

device.74-76 

Degradable polymer networks represent versatile materials with attractive 

properties for biomedical applications.  The three-dimensional, crosslinked structure of 

polymer networks, inspired by the structure of extracellular materials, which provide 

direction for cell organization, structural integrity, and mechanical support to complex 

tissues,42 has the ability to encapsulate biological molecules and cells and helps to 
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control undesirable swelling.  Compared to conventional thermoplastic poly(α-

hydroxyacid)s, such as poly(lactic acid), crosslinked polymer networks have a 

microstructure which more closely matches that of natural tissue, exhibit more favorable 

material kinetics (swelling, degradation, breakdown of properties) upon tissue 

integration, and overcome many of the processing limitations possessed by degradable 

polyesters, including the use of harsh solvents and conditions and the dependence of 

properties on the physical size of the implant device.20, 43  Photo-polymerizable networks 

are especially attractive for their ability to form in situ and fill complex geometries.  

 Hydrolytically labile linkages, such as anhydride, ester, or carbonate moieties, 

generally make up the degradation sites within the polymer network.  While polyester 

and polyanhydride devices, which primarily degrade by bulk erosion on the order of 

months (amorphous polyesters) to years (semi-crystalline polyesters) and surface erosion 

on the order of hours to days, respectively, are the most well known in terms of 

degradable polymeric biomaterials, aliphatic polycarbonates have very recently started 

to attract research interest as degradable alternatives to PEG29-30 and as antimicrobial 

materials for wound healing applications.28, 77  Polycarbonates, generally considered 

tough materials used in engineering applications, have the advantage of forming 

materials with high modulus, ductility, and toughness, necessary for orthopedic 

applications, and degrade to produce carbon dioxide and hydroxyl-containing 

compounds, reducing the risk of adverse side effects as compared to the acidic 

degradation products of polyesters.26  By building polycarbonate networks from natural 

hydroxyl-containing compounds, it’s possible to design a polymer that reverts back to its 
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natural building blocks upon hydrolytic degradation.  One such polyhydroxyl-containing 

natural product is quinic acid.  Known for its antioxidant activity, QA is found in many 

plant-based resources and is one of the dominant acids in roasted coffee.  In addition to 

its interesting biological activity, the structure of QA is attractive for the synthesis of 

polymeric biomaterials because the multiple hydroxyl groups provide versatile sites for 

functionalization and the easily-accessible rigid bicyclic structure of QA lactone adds 

strength and toughness.  Previously, the synthesis of poly(thioether-co-carbonate)s 

derived from QA was introduced78, and herein, an investigation into the feasibility of 

several poly(thioether-co-carbonate) networks for biomedical applications is described.  

The networks are formed from tris(alloc) quinic acid (TAQA) and commercially-

available multifunctional thiols by photo-initiated thiol-ene reactions.  Three networks, 

1,2-EDT-co-TAQA, PETMP-co-TAQA, and TEGBMP-co-TAQA, were chosen based 

on the wide range of achievable thermal and mechanical properties they possess, 

including Tg values from −18 to 65 °C, with the intention of designing a family of 

biocompatible materials with tunable thermomechanical and degradation properties.  

The short- and long-term effects of a physiologically-relevant environment on the 

properties of the networks were studied.  To satisfy design requirements of orthopedic 

biomaterials at molecular level and enable the desired physiological response, chemical 

properties of the degradation products and interactions at the cellular level with the 

networks and their degradation products were evaluated. 
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3.2 Results and Discussion 

 Three degradable polycarbonate networks, shown in the following figures, were 

synthesized via solvent-free thiol-ene crosslinking of TAQA and multifunctional thiol 

monomers, 1,2-ethanedithiol (1,2-EDT), petraerythritol tetrakis(3-mercaptopropionate) 

(PETMP), and tetraethylene glycol bis(3-mercaptopropionate) (TEGBMP) in the 

presence of a photo-initiator DMPA (1 wt%).  Photo-initiated thiol-ene chemistry is fast 

and efficient, and results in highly uniform three-dimensional crosslinked networks.  

Although the networks were chemically similar, they possessed a wide range of 

properties based on the structure of the multifunctional thiol monomer.  Due to the 

length and flexibility of the TEGBMP-based spacer, the TEGBMP-co-TAQA network, 

shown in Figure 3.1, exhibited elastomeric properties with Tg = −18 °C and is expected 

to have the lowest crosslink density compared to the other networks (ideally, 33 atoms 

between crosslinks).  In contrast, PETMP-co-TAQA, shown in Figure 3.2, is expected to 

have the highest crosslink density (ideally, 12 atoms between crosslinks) because of the 

increased functionality of PETMP compared to the other thiol monomers which resulted 

in a rigid network with Tg = 65 °C.  Containing the greatest weight fraction of bicyclic 

TAQA monomer and the lowest weight fraction of flexible aliphatic spacer atoms, 1,2-

EDT-co-TAQA, shown in Figure 3.3, also exhibited a Tg of 65 °C and is expected to 

have a relatively high crosslink density (ideally, 16 atoms between crosslinks).  

Therefore, at body temperature, 37 °C, both 1,2-EDT-co-TAQA and PETMP-co-TAQA 

remain rigid, and TEGBMP-co-TAQA behaves as a rubbery solid.  
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Figure 3.1.  Structure representing TEGBMP-co-TAQA. 
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Figure 3.2.  Structure representing PETMP-co-TAQA 
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Figure 3.3.  Structure representing 1,2-EDT-co-TAQA 
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Because the main goal is to implement these materials in orthopedic applications, 

for example, as fixation devices where they will act as supportive substrates for tissue 

(i.e. bone, cartilage, tendon, etc.) regeneration/growth, it is essential that the polymers 

are nontoxic and facilitate cell attachment.  Cell adhesion plays an important role in the 

integration of an implant with the surrounding tissue environment.  Cytotoxicity and cell 

attachment studies were performed with MC3T3 preosteoblasts.  Cells were seeded into 

wells containing polymer samples (films, 2 × 2 × 0.6 mm), and viability was determined 

via MTS assay and normalized relative to a PBS control containing no polymer.  After 

48 h, > 100% cell viability was observed for bone cells exposed to each of the three 

different networks (see supporting information section for details).  Cell were also 

seeded onto polymer-coated culture dishes, and cell morphology and attachment to the 

polymer surface was observed by confocal microscopy (Figure 3.4) after staining of 

actin fibers present in the cytoskeleton (green) and vinculin concentrated in the focal 

adhesion sites and present in the cytoskeleton (red).  The results were compared to a 

glass-bottom culture dish and a culture dish coated with poly(D,L-lactide) (PDLLA, 10 

kDa, Tg = 60 °C).  In all cases, cells had some attachment to the substrate as seen by the 

focal adhesions, represented by bright red spots on the cytoskeleton in which vinculin is 

very concentrated.  Noticeably, there were more focal adhesion sites observed on the 

1,2-EDT-co-TAQA substrate than any other, including the glass and PDLLA controls, 

and the sites of attachment were larger, represented by bigger and brighter red spots in 

the image.  On both the 1,2-EDT-co-TAQA and PETMP-co-TAQA substrates, there are 

more sites of attachment throughout the entire cell-substrate interface rather than only at 
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the perimeter of the cell, compared to the glass substrate and the cells appear more 

spread out (more contact with the substrate) compared to the PDLLA substrate.  Cells on 

the PDLLA substrate had narrower cell width, and during the immunofluorescence 

process, actin fibers along the perimeter of the cells appeared rounded up.  On the 

TEGBMP-co-TAQA substrate, cells also express many attachment sites throughout the 

cytoskeleton; however, the cells appear more elongated and narrow, resembling cells of 

softer tissue (the extreme being nerve cells).  The difference in cytoskeleton structure 

between the cells on the rigid substrates, 1,2-EDT-co-TAQA and PETMP-co-TAQA, 

and cells on the softer substrate, TEGBMP-co-TAQA, may be evidence of 

mechanosensitive cellular behavior.79-80  In particular, studies have shown that the 

stiffness of the matrix is a key regulator in cellular behavior and can ultimately direct 

stem cell fate; on a matrix with the stiffness of brain, stem cells differentiated into neural 

cells, and on the matrix with the stiffness of bone, stem cells differentiated into 

osteoblast-like cells.81  Therefore, it may be possible to influence the fate of orthopedic 

tissue (between bone and cartilage, for instance) by tailoring the modulus of the implant 

material.  The material kinetics – how the material properties change as an effect of the 

tissue environment may also have an effect on the health and function of surrounding 

tissue. 
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Figure 3.4.  Preosteoblast attachment on poly(thioether-co-carbonate) substrates.  Confocal microscopy 

images of MC3T3 cells with stained actin fibers (green) present in the cytoskeleton and vinculin (red) 

present in the focal adhesions to the substrate were taken 24 h after plating.  For comparison, cell 

attachment to a glass substrate and to a PDLLA substrate were observed as well.  Scale bar represents 100 

µm. 
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 To determine the short-term mechanical response to physiological conditions 

polymer discs were subjected to in situ dynamic mechanical analysis under compression.  

A constant dynamic compressive stress was applied to the discs while submerged in 

phosphate buffered saline solution (pH 7.4) heated to body temperature (37 °C).  Prior to 

submersion the compressive modulus was measured for 5 min at ambient conditions (25 

°C).  The rigid networks, PETMP-co-TAQA and 1,2-EDT-co-TAQA, exhibited modulus 

values of 320 and 230 MPa, respectively, prior to submersion.  The elastomeric network, 

TEGBMP-co-TAQA expressed a compressive modulus of 1.7 MPa at room temperature.  

Although all three networks performed similarly overall, the initial thermal response of 

the materials in their glassy state, PETMP-co-TAQA and 1,2-EDT-co-TAQA, resulted 

in a slight decrease in modulus, while the initial thermal response of TEGBMP-co-

TAQA, in its rubbery state, resulted in a rapid increase in modulus.  This change in 

modulus with increasing temperature is consistent with storage modulus behavior for 

amorphous crosslinked networks, where in their glassy state (T < Tg) the modulus may 

decrease slightly with increasing temperature, and in their rubbery state (T > Tg) the 

modulus may increase slightly with increasing temperature.  Following the initial 

response, all three networks expressed a gradual increase in compressive modulus over 

16 h of submersion.  The net response to submersion in a physiologically-relevant 

environment for over 16 h was an increase in modulus, ΔE' = 85 MPa (37%), 13 MPa 

(4%), and 0.29 MPa (17%) for 1,2-EDT-co-TAQA, PETMP-co-TAQA, and TEGBMP-

co-TAQA, respectfully.  This increase in modulus may be result of decreased free 

volume within the network caused by the prolonged application of constant dynamic 
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compressive stress and enhanced by solvent plasticization.  Under compressive stress 

and physiological conditions, the networks experienced an increase in modulus which is 

expected to plateau until hydrolytic degradation ensues at which point the modulus is 

expected to decrease. 

 To measure the long-term effects of physiological conditions and monitor 

hydrolytic degradation, polymer discs were placed in PBS and kept in an incubator (60 

rpm) at 37 °C.  Over 25 weeks, the swelling and remaining mass of the discs were 

measured, shown in Figure 3.4 (A and B).  Due to the flexibility and hydrophilicity of 

the tetra(ethylene glycol) units, the TEGBMP-co-TAQA discs swelled and degraded the 

fastest.  After 5 weeks, the discs swelled to double their weight and began a rapid loss of 

mass over the following 5 weeks by bulk erosion; the discs swelled to a point until they 

broke open at the surface, exposing a jelly-like interior.  The rigid networks, 

 

 

 
 

Figure 3.5.  Storage modulus response to constant dynamic compression during submersion in a 

physiologically-relevant environment.  
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1,2-EDT-co-TAQA and PETMP-co-TAQA, degraded by surface erosion and took over 

20 weeks.  The PETMP-co-TAQA discs took the longest to degrade and did not swell to 

the extent of the other networks, most likely due to the increased crosslink density of the 

network hindering solvent intercalation and contact with hydrolysable moieties.  Dry 

discs that retained their shape and did not contain any noticeable cracks were subjected 

to compressive DMA to monitor the storage modulus behavior as a function of 

degradation time, shown in Figure 3.4 (C, D, and E).  Prior to degradation the discs 

performed as amorphous crosslinked networks where at low temperatures the storage 

modulus is constant or slightly decreasing with increasing temperature until reaching the 

glass transition temperature at which there is a rapid drop in modulus.  Above the glass 

transition the modulus remained constant or slightly increased with increasing 

temperature, representing the rubbery modulus plateau distinctive to amorphous 

crosslinked networks.  In all three cases, the storage modulus behavior began to deviate 

as degradation proceeded, and as expected, the modulus at 37 °C (temperature at which 

the materials are intended to be used) decreased with increasing degradation time.  

Interestingly, the 1,2-EDT-co-TAQA and PETMP-co-TAQA discs tested that had been 

degrading beyond 4 weeks and 6 weeks, respectively, no longer performed as 

crosslinked networks even though little to no mass loss occurred in those samples.  For 

biomedical applications, understanding the material kinetics is important for realizing 

how the tissue environment affects the material, and understanding the chemical 

properties of the by-products is important for realizing how the material affects the tissue 

environment. 
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Figure 3.6.  Long-term response to physiological conditions.  Swelling (A) and remaining mass (B) of 

polymer discs subjected to hydrolytic degradation in PBS at 37 °C measured for 25 weeks.  Changes in 

viscoelastic behavior as an effect of polymer degradation were determined by compressive DMA for 

TEGBMP-co-TAQA (C), 1,2-EDT-co-TAQA (D), and PETMP-co-TAQA (E). 
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 The degradation compounds, which remained after full degradation and 

dissolution of each network, were collected and analyzed.  Degradation products were 

nontoxic to preosteoblasts at concentrations less than 500 µg/mL for all networks 

determined by cell viability assay (Figure 3.7).  Normal cell proliferation was observed 

in the presence of the degradation compounds for 72 h, and confluency and cell shape 

were similar to that of the control cells treated with PBS (see supporting information).  

Shown in Figure 3.8, hydrolysis of the carbonate linkages within the networks is 

expected to regenerate QA lactone and produce CO2 and multi-alcohol thioether 

equivalents of the thiol monomers, and upon hydrolysis of the lactone, QA is expected to 

be present.  In addition to hydrolysis of the carbonates, the ester linkages within the 

PETMP-co-TAQA and TEGBMP-co-TAQA are also expected to break down to produce  

 

 

 

Figure 3.7.  Cytotoxicity of degradation products at various concentrations determined by cell viability 

assay. 
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carboxylic acids and alcohols.  Model degradation products, 1,2-EDT(OH)2, 

PETMP(OH)4, and TEGBMP(OH)2, were synthesized using similar methods as the 

polymer networks, photo-initiated thiol-ene reactions with allyl alcohol (see supporting 

information for more details).  The degradation products were analyzed by ESI-MS and 

1H NMR and compared to the model degradation products.  Figure 3.9 shows the 1H 

NMR spectra of the degradation products of each network.  Under the spectrum of each 

degradation product is the spectrum of the respective model degradation product, and the  

spectra of QA and QAL are shown at the bottom of the figure.  The presence of the 

major degradation product expected from network degradation, or compounds very 

similar, was apparent for all three materials.  The spectra of PETMP-co-TAQA and 

TEGBMP-co-TAQA contained additional peaks and/or variances in peak intensities and 

splitting patterns compared to that of the expected degradation product, most likely 

because degradation of the ester linkages produced additional small molecules.  In all 

cases, the presence of QA or QA lactone was not apparent by NMR, but QA and/or QA 

lactone were identified via ESI-MS analysis (see supporting information for ESI-MS 

data). 

 For practical clinical translation, it is important to consider imaging contrast 

properties of a material, in addition to understanding the material kinetics and 

biocompatibility.  Ideally, an orthopedic implant device should have the imaging 

contrast properties to enable locating the device, detecting any changes in shape or size, 

and monitoring the overall degradation in situ using non-invasive imaging techniques.  

The X-ray contrast of the poly(thioether-co-carbonate) networks was observed in air and 
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Figure 3.8. Schematic representation of the hydrolysis of the poly(thioether-co-carbonate) networks and 

the expected degradation products 

 

 

 

 

Figure 3.9.  1H NMR spectra of degradation products.  The spectrum of the appropriate model degradation 

product is shown below each measured spectrum, and the spectrum of QA lactone and QA are shown at 

the bottom.  
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through two types of tissue, chicken liver and chicken breast.  Polymer discs were placed 

under sliced tissue sections, and differences in imaging intensities were quantified and 

compared to discs of PDLLA.  Intensities were measured for three different discs of each 

formulation and normalized relative to the background or tissue and an X-ray opaque 

metal (see supporting information for more details).  Shown in Figure 3.10, in air the 

poly(thioether-co-carbonate) discs exhibited slightly higher imaging intensity than 

PDLLA; quantitatively, the average opacity of the polymer networks was 25%, and the 

average opacity of the PDLLA discs was 23% relative to the background (0%) and an X-

ray opaque metal (100%).  Under 6 mm of chicken liver and 2.3 cm of chicken breast the 

poly(thioether-co-carbonate) discs were visibly more opaque than the PDLLA discs, 

exhibiting an X-ray opacity which was 7% and 9% higher than PDLLA through the liver 

and breast, respectively.  Additional X-ray images can be found in the supporting 

information. 

3.3 Conclusions 

 This work investigates the biomaterial feasibility of poly(thioether-co-carbonate) 

networks.  The three polymers have a wide range of thermomechanical properties which 

are shown to invoke mechanosensitive cellular behavior in preosteoblasts.  Studies were 

performed to roughly correspond to how the material affects the tissue and how the 

tissue affects the material and to analyze the ability of these materials to act as 

supportive substrates for tissue regeneration and growth.  In the presence of a 

physiologically relevant environment, all three networks stiffened over the first 16 h.  

The elastomeric polymer, TEGBMP-co-TAQA began lose mass due to hydrolytic  
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Figure 3.10.  X-ray images of the poly(thioether-co-carbonate) networks through tissue at various depths.  

Discs were ~6 mm in diameter and ~2mm thick.  In all three images the disc on the far left was PDLLA 

and the discs on the right (from left to right) were PETMP-co-TAQA, 1,2-EDT-co-TAQA, and TEGBMP-

co-TAQA. 
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degradation at 3 weeks under physiological conditions and fully degraded over 10 

weeks.  The rigid materials, 1,2-EDT-co-TAQA and PETMP-co-TAQA, exhibited mass 

loss beginning at 8 and 13 weeks, respectively and took over 25 weeks to degrade fully.  

The degradation products were as expected based on the hydrolysis of the carbonate and 

ester linkages within the networks and in concentrations less than 500 µg/mL showed no 

cytotoxicity.  Ultimately this family of nontoxic polymers may provide solutions to the 

limitations of conventional poly(α-hydroxyacid)-based devices, in terms of better 

biocompatibility, controlled degradation kinetics, and X-ray imaging properties.  

Furthermore, the facile synthesis and rapid curing by UV irradiation is attractive for 

three-dimensional processing/patterning of devices via stereolithography and other 3D 

printing methods, and future work will focus on the ability of these polymers to serve as 

customizable platform materials for advanced biomedical applications. 

3.4 Materials and Methods 

Pentaerythritol tetrakis(3-mercaptopropionate) (PETMP), 1,2-ethanedithiol (1,2-

EDT), and 2,2-dimethoxy-2-phenylacetophenone (DMPA) were purchased from Sigma-

Aldrich.  Tetraethylene glycol bis(3-mercaptopropionate) (TEGBMP) was purchased 

from Wako Chemicals.  Phosphate-buffered saline (PBS) solution (pH 7.4, 137 mM 

NaCl, 2.7 mM KCl, and 10 mM phosphate buffer) was purchased from Fisher Scientific.  

Allyl alcohol was purchased from Alfa Aesar.  All reagents were used as received.   

1H and 13C NMR spectra were obtained on a Varian Mercury 300 at 300 MHz 

using the solvent signal as internal reference.  Glass transition temperatures were 

measured using differential scanning calorimetry (DSC) by a Mettler-Toledo DSC822 



 

54 

(Mettler-Toledo, Columbus, OH) with a heating rate of 10 °C/min.  The Tg was taken as 

the midpoint of the inflection tangent upon the third heating cycle.  Thermogravimetric 

analysis (TGA) was done under an Ar atmosphere using a Mettler-Toledo TGA/DMA1 

with a heating rate of 10 °C/min.  Dynamic mechanical analysis experiments were 

performed on a Mettler-Toledo TT-DMA system, and data were obtained from Triton 

Laboratory software.  Temperature scans in compression mode were performed from 

−80 to 180 °C at a ramp rate of 3 °/min, a frequency of 1 Hz, and a sampling interval of 

10 s.  Isothermal submersion experiments were performed at 37 °C in PBS for 999 min 

(1 Hz, 30 s sample interval).  In all DMA experiments the compressive dynamic strain 

was 0.02 mm, and the ratio of static to dynamic force was 1.5.  X-ray imaging was 

performed using a Bruker Xtreme In Vivo MP4 with 30 kVp, 343 µA, and a 5 s 

exposure time. 

MC3T3 cells were purchased from the American Type Culture Collection 

(ATCC) and subcultured based on ATCC protocol.  Briefly cells were cultured in with 

MEM-alpha media supplemented with 10% FBS and 1% antibiotic.  To plate cells in 

glass-bottom cell culture dishes, cells were treated with Trypsin:EDTA and the number 

of cells was counted with a hemocytometer.  Each dish was plated with 25 × 103 cells 

incubated at 37 C with 5 % CO2.  Polymer-coated dishes were sterilized under UV in 

the biosafety cabinet for 1 h and washed with sterile DPBS before plating cells on them.  

For attachment studies, cells were fixed after 24 h from cell plating with 2% 

paraformaldehyde and stained with Phalloidin-Alexa488 & anti-vinculin with secondary 

antibody conjugated with Alexa 647. For viability and proliferation test under incubation 
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with degradation compounds, cells were plated on glass-bottom dishes and after 24 h 

degradation compounds were mixed into media.  Cells were fixed after 48 h and 72 h 

from exposure.  Laser scanning confocal was used to acquire fluorescence images of the 

stained cells.  Excitation and emission filter settings were adjusted according to 

fluorophore spectra provided by the manufacturer.  Autofluorescence from each polymer 

was checked by a lambda scan.  Overall cell population was identified from large filter 

view with 10X objective.  Details of cell morphology were investigated from 

fluorescence images acquired with 20X objective with 2X zoom (40X magnification). 

3.4.1 Polymer network synthesis 

The alkenyl monomer, TAQA was synthesized as previously described.78  

Briefly, the two-step synthesis of TAQA starts with the well-known lactonization of QA 

under acidic conditions.  QA and Amberlyst resin are suspended in benzene and DMF 

and heated to reflux with azeotropic removal of water to afford the bicyclic triol QA 

lactone.  To install the three alloc functionalities, allyl chloroformate (44.7 mL diluted 

with 20 mL DCM) was added dropwise to QA lactone (10.3 g) suspended in cold (0°C) 

N,N,N',N'-tetramethylethylenediamine (36.4 mL) and DCM (200 mL) to give TAQA as 

a clear viscous oil.  Each formulation of TAQA and a multifunctional thiol was mixed 

based on equal molar ratio of alkene to thiol and contained no solvent.  The photo-

initiator was 1 wt% DMPA and was dissolved in the thiol before TAQA was added.  All 

formulations were vortexed and sonicated until a visually homogeneous mixture without 

any air bubbles was reached.  The resins were drop cast into silicone molds containing 

circular discs approximately 3 mm thick and 6 mm in diameter (or injected into glass 
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molds to obtain 0.6 mm-thick films (for accelerated degradation and cytotoxicity 

studies) or onto a glass bottom cell culture dish (for cell attachment studies)).  

Crosslinking polymerizations were performed by exposing the molds to UV irradiation 

(365 nm) in a UVP crosslinking chamber for 15 min.  Samples were removed from the 

mold and exposed to UV for an additional 15 min.  Following UV exposure samples 

were post-cured at 120 °C under reduced pressure for 24 h.  All samples were stored in 

the freezer at −80 °C when not in use. 

3.4.2 Hydrolytic degradation in physiological conditions 

Fifteen discs form each formulation were selected, their initial mass recorded, 

submerged in 4 mL of PBS (pH 7.4), and placed in the incubator shaker at 37 °C and 60 

rpm to mimic physiological conditions.  The PBS was changed once a week.  At 

designated time points all of the samples were removed and rinsed with deionized water.  

The PBS solution containing any degradation products was kept and saved at −80 °C for 

further analysis.  The swollen masses (ww) of the pucks were measured before the 

samples were dried under vacuum until they reached a stable dry mass (wd).  The 

swelling ratio (q) was calculated according to the following equation: 

w
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The normalized mass (m) at each time point was calculated using the equation below, 

where wi is the initial mass of the sample before degradation. 
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One sample was permanently removed from degradation for further characterization.  To 

the others, fresh PBS was added, and they were returned to the degradation environment.  

The average normalized mass and swelling ratio were determined at various time points 

until no visible solids remained.  Degradation products were collected by freeze-drying 

degradation solutions containing PBS then extracting with methanol.  However, the 

degradation products collected each week were difficult to characterize due to very low 

concentrations and interference of PBS. 

3.4.3 Analysis of degradation products 

Small samples (2 mm × 2 mm × 0.6 mm, cut from films) of each network 

formulation were added to 4 mL of Nano-pure water and heated at 60 °C until pieces 

fully degraded (1 week for network containing TEGBMP, 3 weeks for the other two).  

Aqueous solutions containing degradation products were analyzed by ESI-MS.  

Degradation products were concentrated and analyzed by 1H NMR in deuterated 

methanol.  The cytotoxicity and effects on cell attachment of the degradation products 

was also evaluated.  Model degradation compounds were synthesized by thiol-ene 

reactions between the multifunctional thiols and allyl alcohol using similar methods as 

the network synthesis (see supporting information). 

3.5 Supporting Information 

 The information below contains details on the synthesis of the model degradation 

compounds, the confocal microscopy images of preosteoblast cells treated with the 

polymer degradation products (Figure 3.14), and the ESI-MS data for the degradation 

products (Figure 3.15-3.20).  Additional X-ray images and details are also provided. 
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3.5.1 Synthesis of model degradation products 

 To a 50 mL round bottom flask equipped with a stir bar multifunctional thiol, 

allyl alcohol, and DMPA (~5 wt%) were added in the amounts listed in Table 3.1.  In all 

cases allyl alcohol was added in excess, and in the case of PETMP and TEGBMP, allyl 

alcohol acted as the solvent to reduce the overall viscosity of the mixture.  Once the 

DMPA was fully dissolved, the flask was placed in a UVP crosslinking chamber (λ = 

365 nm) for 4 h with constant stirring.  The product was purified by flash column 

chromatography (5% MeOH:DCM) and condensed to afford PETMP(OH)4 and 

TEGBMP(OH)2 as viscous oils and 1,2-EDT(OH)2 as a white solid.  Products were 

characterized by 1H and 13C NMR shown in Figure 3.11-3.13.  PETMP(OH)4:  
1H NMR 

(300 MHz, Methonal-d4, ppm):  δ 4.21 (s, 8 H, H-2), 3.62 (t, 8 H, J = 6.2, H-8), 2.83 – 

2.72 (m, 8 H, H-5), 2.68 – 2.58 (m, 16 H, H-4 and H-6), 1.82 - 1.73 (m, 8 H, H-7);  13C 

NMR (75 MHz, Methanol-d4, ppm):  δ 171.65 (C-3), 62.10 (C-2), 60.08 (C-8), 42.18 (c-

1), 34.24 (C-4), 32.05 (C-6), 27.78 (C-5), 26.45 (C-7); HRMS (+ESI) m/z calc’d for 

C29H52O12S4  [M+Na]+:  743.2241, found 743.2147.  1,2-EDT(OH)2:  1H NMR (300 

MHz, Methonal-d4, ppm):  δ 3.62 (t, 4 H, J = 6.2, H-4), 2.71 (s, 4 H, H-1), 2.65 - 2.60 

(m, 4 H, H-2), 1.82 - 1.73 (m, 4 H, H-3);  13C NMR (75 MHz, Methanol-d4, ppm):  δ 

60.03 (C-4), 32.19 (C-1), 31.64 (C-2), 27.79 (C-3); HRMS (+ESI) m/z calc’d for 

C8H18O2S2  [M+Na]+: 233.0646, found 233.0645.  TEGBMP(OH)2:  1H NMR (300 

MHz, Methonal-d4, ppm):  δ 4.23 – 4.20 (m, 4 H, H-4), 3.71 – 3.67 (m, 4 H, H-3), 3.62 – 

3.56 (m, 12 H, H-1 and H-2 and H-10), 2.79 – 2.74 (m, 4 H, H-7), 2.65 – 2.58 (m, 8 H, 

H-6 and H-8), 1.81 – 1.72 (m, 4 H, H-9);  13C NMR (75 MHz, Methanol-d4, ppm):  δ 
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172.22 (C-5), 70.15 (C-1 and C-2), 68.67 (C-3), 63.49 (C-4), 60.06 (C-10), 34.37 (C-6), 

32.07 (C-8), 27.77 (C-7), 26.41 (C-9); HRMS (+ESI) m/z calc’d for C20H38O9S2  

[M+Na]+:  509.1855, found 509.1834. 

 

 

 
Thiol (g) Allyl Alcohol (g) DMPA (g) Yield (%) 

PETMP(OH)4 1.280 0.852 0.124 53 

TEGBMP(OH)2 1.091 1.244 0.072 55 

1,2-EDT(OH)2 1.123 3.462 0.238 75 

 

Table 3.1.  Model degradation product reaction compositions. 

 

 

 

Figure 3.11.  1H NMR (top) and 13C NMR (bottom) spectrum of 1,2-EDT(OH)2. 
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Figure 3.12.  1H NMR (top) and 13C NMR (bottom) spectrum of PETMP(OH)4. 

 

 

 

 

Figure 3.13.  1H NMR (top) and 13C NMR (bottom) spectrum of TEGBMP(OH)2. 
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Figure 3.14.  Confocal microscopy images of preosteoblasts (MC3T3) 72 h after being treated with the 

poly(thioether-co-carbonate) degradation compounds.  The cells were treated with PBS containing 250, 

250, and 500 µg/mL of degradation products from 1,2-EDT-co-TAQA, PETMP-co-TAQA, and 

TEGBMP-co-TAQA, respectively.  The scale bar represents 100 µm. 
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Figure 3.15.  ESI-MS spectra of the degradation products of 1,2-EDT-co-TAQA. 
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Figure 3.16.  ESI-MS spectra of the degradation products of PETMP-co-TAQA. 
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Figure 3.17.  ESI-MS spectra of the degradation products of TEGBMP-co-TAQA.  

 

 

 

 

Figure 3.18.  Quantification of X-ray image intensities.  (A) Intensities corresponding to images depicted 

in Figure 3.19 (A-D), and the graph represents the average intensity of 3 discs for each sample.  The 

intensity of the tissue was measured in 3 different areas.  (B) Intensities are normalized where 0% 

represents the background and 100% represents the opaque control.  The intensities measured at 0 cm 

were measured in air without any tissue.  The 0.6 cm measurement was done through chicken liver, and 

the 1.1 and 2.3 cm measurements were done through chicken breast.  In all cases the poly(thioether-co-

carbonate) samples exhibited higher intensities than the PDLLA samples. 
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Figure 3.19.  Additional X-ray images of poly(thioether-co-carbonate) networks through various types 

and depths of tissue.  Discs were ~6 mm in diameter and ~2mm thick.  In all images discs were arranged 

so that the one(s) on the furthest left were PDLLA and the discs on the right (from left to right) were 

PETMP-co-TAQA, 1,2-EDT-co-TAQA, and TEGBMP-co-TAQA.  Images were taken (A) through air (B) 

through 0.6 cm of chicken liver (C) through 1.1 cm of chicken breast (D) through 2.3 cm of chicken breast 

(E and F) through a mouse. 
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CHAPTER IV 

MECHANICALLY-ADAPTIVE AND MECHANICAL GRADIENT 

POLYCARBONATE NETWORKS WITH CONTROLLED PHYSIOLOGICAL 

RESPONSE 

4.1  Introduction 

Because many polymers undergo solvent plasticization under aqueous conditions 

which results in a loss of mechanical integrity, developing tough biomaterials that 

maintain their properties in vivo has been challenging.65  However, for some biomedical 

applications, mechanically-dynamic polymeric materials whose mechanical behavior can 

be switched on demand by exposure to a physiological environment are desirable.  For 

example, implantable softening electronics are being developed that utilize materials that 

have sufficient stiffness to penetrate tissue and soften under physiological conditions to a 

stiffness that is similar to surrounding tissue which helps to prevent damage to that 

tissue.82  At ambient conditions the material is in its rigid state and upon exposure to 

physiological environment, a dramatic change in mechanical properties indicative of a 

glass transition from a glassy state to a rubbery state occurs.  The change can be caused 

by primarily temperature effects if the Tg of the polymer is near physiological 

temperature or solvent plasticization effects or a combination of both.  In polymer 

networks the solvent plasticization effect has been attributed largely to the disruption of 

secondary interactions within the network by water molecules in order to form their own 

secondary interactions (hydrogen bonds) with hydrophilic groups such as hydroxyl, 
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carbonyl, or amine groups.83  The water molecules within the network increase the 

intermolecular distance between polymer chains, increasing chain mobility, and 

subsequently decreasing polymer rigidity and causing the Tg of the material to 

decrease.84 

This work focuses on the design and characterization of poly(thioether-co-

carbonate) networks via thiol-ene crosslinking that are mechanically-adaptive under 

physiological conditions.  The starting materials were the same as previously described, 

shown in Figure 4.1; TAQA a tri-alkenyl monomer derived from the coffee extract 

quinic acid and the commercially-available multifunctional thiols, 1,2-ethanedithiol (1,2-

EDT), tetraethylene glycol bis(3-mercaptopropionate) (TEGBMP), and pentaerythritol 

tetrakis(3-mercaptopropionate) (PETMP) were used.  By incorporating mixtures of thiol 

monomers with different functionalities and hydrophilicities, it may be possible to create 

a group of materials that exhibit the same Tg in dry conditions, but have relatively 

different physiological responses and response rates.  Furthermore, materials with Tg 

values near 37 °C were synthesized and their mechanical dynamics were investigated.  

Temperature and solvent effects were characterized for samples submerged in aqueous 

solutions under physiologically-relevant conditions, specifically phosphate buffered 

saline solution at 37 °C, and special attention will was paid to the rate at which 

mechanical changes occur.  Immediate solvent plasticization effects on the modulus of 

the material will be analyzed by in situ DMA.  Additionally, several other important 

parameters will be studied, including the effect of water content on Tg. 

 



 

68 

 

Figure 4.1.  Chemical structures of starting materials used to form mechanically-adaptive poly(thioether-

co-carbonate) networks with Tg = 37 °C. 

 

 

4.2 Results and Discussion 

 The tensile dynamic mechanical analysis results shown in Figure 4.1 show the 

storage modulus behavior as a function of temperature (Figure 4.1A) of the formulations 

containing only one thiol and the solvent plasticization response of the rigid networks 

(Figure 4.1B).  In the storage modulus behavior, the rubbery modulus plateau (modulus 

at temperatures above the glass transition) is proportional to the crosslink density of the 

network.  Materials incorporating PETMP exhibited a Tg of 65 °C and had the highest 

crosslink density because of its increased functionality compared to the other two di-

functional thiols.  The 1,2-EDT-co-TAQA sample contained the greatest weight fraction 

of the rigid bicyclic TAQA monomer and the lowest weight fraction of flexible aliphatic 

spacer atoms and thus, also exhibited a Tg of 65 °C but a noticeably lower crosslink 

density than PETMP-co-TAQA.  The TEGBMP-co-TAQA system’s longer and more 
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flexible tetraethylene glycol-based spacer resulted in an elastomeric material with Tg of 

−18 °C.  Solvent plasticization of rigid networks under physiological conditions 

(phosphate buffered saline solution at 37 °C) was measured by in situ DMA.  Both 1,2-

EDT-co-TAQA and PETMP-co-TAQA exhibited a slight drop in modulus upon 

submersion from 1.65 and 1.50 GPa to 1.50 and 1.20 GPa, respectively, and saturation 

lifetimes of 31 and 390 min, respectfully.  After solvent plasticization effects, the 

modulus of the 1,2-EDT-co-TAQA network increases slightly, which may be an 

indication of matrix stiffening as the polymer network interacts with water molecules.  

Based on these initial results, poly(thioether-co-carbonate) networks were synthesized 

containing mixtures of 1,2-EDT and TEGBMP or PETMP and TEGBMP in order to 

tune the Tg of the resulting network to 37 °C.  Films were fabricated as previously 

described, where crosslinking of the multifunctional thiols and TAQA was based on  

 

 

 

Figure 4.2.  DMA results for formulations composed of TAQA and one thiol monomer.  (A) Storage 

modulus as a function of temperature.  (B) Solvent plasticization response over 16 h.  Modulus was 

measured for 5 min at 25 °C in air before submerging in PBS at 37 °C 
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equal molar functional groups.  After formulating and analyzing networks with varying 

ratios of 1,2-EDT to TEGBMP or PETMP to TEGBMP, the compositions which were 

found to produce films with Tg values of 37 °C were 75%EDT-co-TEGBMP-co-TAQA 

(i.e. where the total thiol mol fraction was made up of 75% 1,2-EDT and 25% 

TEGBMP) and 63%PETMP-co-TEGBMP-co-TAQA.  To determine how the films 

mechanically adapt to physiological conditions, they were subjected to in situ DMA in 

PBS at 37 °C.  The change in modulus was also observed for submersion in PBS at 25 

°C to isolate changes due solely to solvent effects, rather than temperature and solvent 

effects.  Figure 5.3 shows the results of the first 16 hours of submersion.  Prior to 

submersion the storage modulus at 25 °C of 75%EDT-co-TEGBMP-co-TAQA and 

63%PETMP-co-TEGBMP-co-TAQA was ~1.1 GPa and 1.5 GPa, respectively.  The 

solvent response at 25 °C was a plasticized material with ΔE' = −900 MPa (an order-of-

magnitude decrease) for both films, and the final storage modulus values were 200 and 

570 MPa for 75%EDT-co-TEGBMP-co-TAQA and 63%PETMP-co-TEGBMP-co-

TAQA, respectively.  The tanδ, or dampening factor, of both films steadily increased 

over the 16 h in PBS at 25 °C, showing no sign of any transition consistent with the 

glass transition.  However, at 37 °C the tanδ reached maximum peak values at 97 and 

157 min, for 75%EDT-co-TEGBMP-co-TAQA and 63%PETMP-co-TEGBMP-co-

TAQA, respectively, then decreases.  This is an indication of the time it takes for the 

films to transition from their glassy to rubbery state under physiological conditions.   
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Figure 4.3.  Solvent plasticization responses at 25 and 37 °C of films with Tg = 37 °C.  (A) Storage 

modulus and (B) tanδ response of 63% PETMP-co-TEGBMP-co-TAQA; (C) storage modulus and (D) 

tanδ response of 75%EDT-co-TEGBMP-co-TAQA.  Analysis was performed in air for 5 min before 

submersion. 

 

 

 

Sample Tg [°C]a Ttest [°C] Efinal [MPa] ΔE' [MPa] 

1,2-EDT-co-TAQA 65 37 1500 -150 

75%EDT-co-TEG-co-TAQA 37 
25 200 -900 

37 32 -1100 

PETMP-co-TAQA 65 37 1200 -300 

63%PET-co-TEG-co-TAQA 37 
25 570 -900 

37 22 -1500 
Table 4.1.  Storage modulus values as an effect of solvent plasticization at various test temperatures.  
aDetermined by DSC 
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 The longer time observed for the 63%PETMP-co-TEGBMP-co-TAQA may be 

due to the increased crosslink density compared to the other network.  Similar to 

submersion at 25 °C, the solvent plasticization response at 37 °C was a decrease in 

modulus, in this case, by two orders of magnitude.  The final storage modulus values 

were 32 and 22 MPa for 75%EDT-co-TEGBMP-co-TAQA and 63%PETMP-co-

TEGBMP-co-TAQA, respectively.  Following the solvent plasticization response, an 

increase in modulus was observed in the 75%EDT-co-TEGBMP-co-TAQA network.  

This matrix stiffening was also observed in the 1,2-EDT-co-TAQA network, and has 

been attributed to matrix interactions with water molecules causing an annealing effect, 

in which the polymer network takes time to reach its lowest-energy configuration. 

 In order to observe how the materials react to physiological conditions beyond 

the initial 16 h, films (n = 30, 4 × 4 × 0.6 mm) were submerged in PBS and placed in an 

incubator shaker at 37 °C and 60 rpm.  After 1, 2, and 3 weeks, films (n = 10) were 

removed, the degree of swelling was measured, and thermal properties of the swollen 

networks were determined by DSC and TGA.  The results are listed in Table 4.2.  The 

initial thermal properties of the networks were Tg = 37 °C, for both, and Td = 288 and 

262 °C for 63%PETMP-co-TEGBMP-co-TAQA and 75%EDT-co-TEGBMP-co-TAQA, 

respectively.  Within the 3 weeks of this study the samples did not express any mass loss 

due to hydrolytic degradation, consistent with what is expected based on previous 

studies.  After 3 weeks the Tg of the swollen networks had dropped to 19 and 11 °C and 

the Td had decreased to 257 and 179 °C, for the networks containing PETMP and 1,2-

EDT, respectively.  This change in properties indicated that even though the networks do  
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Tg [°C] Td [°C] Swelling Ratio 

63%PET-co-TEG-co-TAQA 

1 week 25 ± 3 281 ± 1 1.020 ± 0.002 

2 weeks 24 ± 2 267 ± 1 1.028 ± 0.003 

3 weeks 19 ± 4 257 ± 2 1.050 ± 0.006 

75%EDT-co-TEG-co-TAQA 

1 week 25 ± 1 255 ± 3 1.020 ± 0.001 

2 weeks 17 ± 2 234 ± 5 1.121 ± 0.016 

3 weeks 11 ± 1 179 ± 1 1.252 ± 0.028 
Table 4.2.  Thermal properties and swelling of networks after 1-3 weeks under physiological conditions. 

 

 

 

not physically lose any polymer mass, hydrolysis of carbonate and/or ester bonds may be 

decreasing the crosslink densities of the networks resulting in a decrease in thermal 

properties. 

 To explore whether network properties can be controlled spatially within a 

material sample, the fabrication of a film designed to have a one dimensional gradient in 

thermomechanical properties across the length of the film was performed.  Two resin 

mixtures were formed using the sample formulations for (100%)PETMP-co-TAQA and 

63%PETMP-co-TEGBMP-co-TAQA.  A small amount of solvent was added to the 

resins to decrease viscosity and allow for adequate diffusion upon mold casting.  The 

mixtures were injected each at opposite ends of an open-face mold made with a glass 

slide at the base and coverslips on each side.  After evaporation of the solvent, the film 

was cured by exposing to UV light, removed from the mold, and post-cured at 120 °C 

for 24 hours.  The resulting film is depicted in Figure 4.4, and to the touch had a 

noticeable difference in mechanical properties across the length of the film.  One end 

was a rigid plastic and the other end felt for malleable and elastomeric.  For analysis of 
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the mechanical gradient, the film was cut into six sections of approximately equal 

widths.  Each section was subjected to DMA to observe storage modulus behavior as a 

function of temperature (Figure 4.4A) and DSC to measure Tg. 

 The resulting Tg values of each section were 48, 44, 38, 34, 28, and 24 °C from 

left to right for sections 1 to 6, respectively.  Based on the rubbery modulus plateaus, the 

crosslink density of the film also decreases from left to right, as expected.  The modulus 

values at various temperatures were plotted as a function of section on the film to show 

how the span of the mechanical gradient is expected to change at different temperatures 

(Figure 4.4B).  At 25 °C the difference in modulus across the film is from 1.6 GPa to 

700 MPa, and as the temperature increases that gap widens.  At 63 °C the modulus 

across the film is from 1.0 GPa to 10 MPa.  Considering the mechanical adaptability of 

these networks, it can be expected that the span of the mechanical gradient would also 

change under physiological conditions.  At body temperature and dry condition the 

modulus of the film ranges from 1.6 GPa to 200 MPa.  Under physiological conditions 

the gradient in stiffness is expected be from 1.2 GPa to 32 MPa, spanning two orders of 

magnitude, based on the submersion DMA studies performed on PETMP-co-TAQA and 

63%PETMP-co-TEGBMP-co-TAQA. 
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Figure 4.4.  Picture and mechanical properties of a poly(thioether-co-carbonate) film with 1D mechanical 

gradient.  A photograph of the film is shown at the top; the arrows represent how the resins were injected 

into the mold and the dashed lines across the film represent how the film was cut into sections for analysis.  

(A) Storage modulus measurements by DMA of films as a function of temperature. (B) Modulus values 

determined by DMA plotted for each section at different temperatures; shows the span of the mechanical 

gradient at various temperatures. 
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4.3 Conclusions 

 We present a series of studies which investigate the mechanical-adaptability and 

spatial controllability of properties in poly(thioether-co-carbonate) networks.  

Mechanical changes from on the order of 1 GPa to 10 MPa were exhibited by networks 

when exposed to physiological conditions.  Designed to be rigid at room temperature 

and soften upon implantation, these materials may find potential application in softening 

electrodes for neural interfaces and other dynamic biomedical devices.  The spatial 

control over mechanical properties was also investigated, and a film with a mechanical 

gradient with a range of moduli from 1.6 GPa to 700 MPa was produced.  Under 

physiological conditions the breadth of the gradient is expected to wide to a range of 

moduli from 1.2 GPa to 32 MPa, a two-orders-of-magnitude gradient.  This material 

may be used to mimic soft-to-hard transitions in nature and in interfacial tissue 

engineering applications.  For example, the mechanical gradient in the tendon-to-bone 

transition at the top of the tibia (between tibia and knee) has moduli which range from 

1.4 GPa at the surface of the bone to 100 MPa at the tibial cartilage.  Future studies will 

be performed to explore the degradation kinetics of the gradient films and determine 

how the mechanical gradient affects cell attachment in vitro.  Strategies for incorporating 

other functional components which may further enhance the mechanical adaptability of 

these networks will be explored. 
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4.4 Materials and Methods 

 Pentaerythritol tetrakis(3-mercaptopropionate) (PETMP), 1,2-

ethanedithiol (1,2-EDT), and 2,2-dimethoxy-2-phenylacetophenone (DMPA) were 

purchased from Sigma-Aldrich.  Tetraethylene glycol bis(3-mercaptopropionate) 

(TEGBMP) was purchased from Wako Chemicals.  Phosphate-buffered saline (PBS) 

solution (pH 7.4, 137 mM NaCl, 2.7 mM KCl, and 10 mM phosphate buffer) was 

purchased from Fisher Scientific. 

 Glass transition temperatures were measured using differential scanning 

calorimetry (DSC) by a Mettler-Toledo DSC822 (Mettler-Toledo, Columbus, OH) with 

a heating rate of 10 °C/min.  The Tg was taken as the midpoint of the inflection tangent 

upon the third heating cycle.  Thermogravimetric analysis (TGA) was done under an Ar 

atmosphere using a Mettler-Toledo TGA/DMA1 with a heating rate of 10 °C/min.  

Dynamic mechanical analysis experiments were performed on a Mettler-Toledo TT-

DMA system, and data were obtained from Triton Laboratory software.  Temperature 

scans in were performed in tension mode from −80 to 180 °C at a ramp rate of 3 °/min, a 

frequency of 1 Hz, and a sampling interval of 10 s.  Isothermal submersion experiments 

were performed in PBS for 999 min (1 Hz, 30 s sample interval).  In all DMA 

experiments the dynamic force was 1 N, and the ratio of static to dynamic force was held 

constant at 1.5. 

4.4.1 Polymer network synthesis 

The alkenyl monomer, TAQA was synthesized as previously described.78  

Briefly, the two-step synthesis of TAQA starts with the well-known lactonization of QA 
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under acidic conditions.  QA and Amberlyst resin are suspended in benzene and DMF 

and heated to reflux with azeotropic removal of water to afford the bicyclic triol QA 

lactone.  To install the three alloc functionalities, allyl chloroformate (44.7 mL diluted 

with 20 mL DCM) was added dropwise to QA lactone (10.3 g) suspended in cold (0°C) 

N,N,N',N'-tetramethylethylenediamine (36.4 mL) and DCM (200 mL) to give TAQA as 

a clear viscous oil. 

Each formulation of TAQA and multifunctional thiol(s) was mixed based on 

equal molar ratio of alkene to thiol and contained no solvent.  The compositions of the 

networks containing mixtures of different thiols are listed in Table 4.3.  The photo-

initiator was 1 wt% DMPA and was dissolved in the thiol before TAQA was added.  All 

formulations were vortexed and sonicated until a visually homogeneous mixture without 

any air bubbles was reached.  Each mixture was cast between two glass slides separated 

by a 0.6 mm spacer, and exposed to UV light (365 nm) on a Fusion curing line system (1 

m/min, 15 min).  The glass slide molds were removed, and the free-standing films were 

post-cured at 120 °C for 24 h. 

 

 

Formulation 

TAQA 

(g) 

TEGBMP 

(g) 

Other thiol 

(g) 

DMPA 

(g) 

63%PETMP-co-TEGBMP-co-

TAQA 
0.5102 0.1532 0.3450 0.0101 

75%EDT-co-TEGBMP-co-TAQA 1.2712 0.4107 0.3177 0.0200 

Table 4.3.  Compositions of formulations containing mixtures of two thiol monomers. 
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4.4.2 Fabrication of a film with a 1D mechanical gradient 

 Two resin formulations were mixed as listed in Table 5.4.  DCM (0.1 mL) was 

added to each mixture to decrease their viscosity.  The two mixtures were 

simultaneously injected into opposite ends of an open-faced mold (51 ×13 mm).  The 

filled mold was allowed to sit at room temperature for 12 h under a chemical hood and in 

the dark before curing.  The film was UV-cured (365 nm) on a Fusion curing line system 

(1m/min, 10 min) and post-cured for 24 h at 120 °C under vacuum.  The film was cut 

into 6 sections, and each section was analyzed to confirm the presence of a mechanical 

gradient across the length of the film. 

 

 

Formulation TAQA (g) TEGBMP (g) PETMP (g) DMPA (g) 

63%PETMP-co-TEGBMP-co-TAQA 0.5249 0.1583 0.3472 0.0103 

PETMP-co-TAQA 0.5832 0.0000 0.4626 0.0108 

Table 4.4.  PETMP-co-TEGBMP-co-TAQA formulations for gradient film 

 

 

4.5 Supporting Information 

 Figure 4.5 shows the changes in onset decomposition temperature of the 

networks after submersion in PBS for 1, 2, and 3 weeks. 
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Figure 4.5.  Analysis of thermal stability for poly(thioether-co-carbonate) networks after time (weeks) 

under physiological conditions. 
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CHAPTER V 

SUSTAINABLE PHOTO-CROSSLINKED THIOL-ENE NETWORKS FROM 

QUINIC ACID AND NATURAL DITHIOLANES:  TOWARD “ALL NATURAL” 

DEGRADABLE POLYCARBONATE NETWORKS 

 

5.1 Introduction 

 The quest for sustainable polymers that are biodegradable and do not require 

energy from fossil fuels to manufacture is driven by the need to decrease dependence on 

petroleum feedstocks and address the devastating effects of plastic waste and pollution.2, 

4, 8-9  The design criteria include, but are not limited to, (i) precursor materials which are 

natural and renewable, (ii) hydrolytically degradable, i.e. ester, carbonate, anhydride, 

etc., linkages, (iii) non-toxic degradation products, preferably the natural building-blocks 

from which the polymer was constructed, (iv) synthetic strategies which mild, 

minimizing the use of harsh conditions or reagents.  To address processing concerns, one 

polymerization technique that has been widely adapted to a multitude of different 

applications is photo-initiated thiol-ene chemistry.46, 53  The step-growth, free radical 

polymerization of thiols with alkenes is highly efficient, proceeds under mild conditions 

to high conversions, is tolerant of many functional groups, water, and oxygen, and 

produces crosslinked networks, which are significantly more uniform and contain less 

residual stresses post cure compared to acrylate networks.51-52  For these reasons, thiol-

ene chemistry has proven to be a powerful tool in biomedical applications, where in 

many cases it has been combined with hydrolytically labile moieties to achieve 
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degradable thiol-ene networks.  Recently, thiol-ene chemistry has been utilized in the 

development of degradable polyanhydride88 and poly(ethylene glycol)89 hydrogels, 

degradable poly(silyl ether) substrates for neural interfaces,90 and processable 

polyurethane shape memory devices.91  Additionally, to increase the inherent 

biocompatibility and the sustainability, naturally-derived alkenes have been exposed to 

thiol-ene chemistry to produce bio-based degradable polymers from plant-based 

resources, including phenolic acids,92 isosorbide,93 and D-limonene.58 

 Many of the naturally-derived thiol-ene networks use commercially-available 

non-natural multifunctional thiol monomers, such as trimethylolpropanyl tris(3-

mercaptopropionate) or pentaerythritol tetrakis(3-mercaptopropionate), resulting in a 

network which may actually only 50% or less directly derived from natural products.  

Additionally, although the polymer may degrade to regenerate its natural building blocks 

it may also generate other by-products with unknown biological and environmental 

properties.  Herein, we describe a system which not only uses a naturally-derived alkenyl 

monomer but also natural multifunctional thiol monomers derived from lipoic acid.  

Present in both plants and animals, α-lipoic acid (LAc) and its reduced form, 

dihydrolipoic acid (DHLAc) are metabolic antioxidants with the capability to quench 

free radicals without being destroyed in the process.94  The most abundant plant-based 

sources of LAc are spinach, broccoli, and tomatoes, and it is available as a nutritional 

supplement and as a drug to treat diabetic neuropathy.  An essential cofactor in α-

ketoacid dehydrogenase complexes and the glycine cleavage system, LAc is often 

covalently attached to a lysine residue by an amide linkage, in the form of lipoamide 
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(LAm).  Previously, DHLAc and the reduced form of LAm, dihydrolipoamide 

(DHLAm) were used in the surface functionalization of gold nanoparticles and nanorods 

with polymers as the ligand-to-metal binding sites.95-98  However, to our knowledge, 

they have never been used for the formation of thiol-ene networks.  By utilizing natural 

multifunctional thiols derived from LAc and therefore, increasing the overall bio-based 

content of the resulting polymer material, it may be possible to increase the 

sustainability and the inherent biocompatibility of the polymer and its degradation 

products.  The naturally-based alkenyl monomer, tris(alloc) quinic acid (TAQA), is 

derived from quinic acid, a polyhydroxyl compound abundant in roasted coffee and 

known for its beneficial biological properties, including promoting antioxidant activity 

and growth.  As described previously, the bicyclic structure of TAQA provides rigidity 

to the network which increases the modulus, and the carbonate linkages are purposefully 

placed in order to provide sites for degradation and the ultimate regeneration of quinic 

acid.78  The result of copolymerization of TAQA and DHLAm or DHLAc via photo-

initiated thiol-ene reaction is crosslinked degradable polycarbonate networks, DHLAm-

co-TAQA and DHLAc-co-TAQA, shown in Figure 5.1.  Polycarbonates, known for their 

toughness and solvent resistance in engineering plastics, were chosen as the 

hydrolysable linkages because they breakdown into alcohols and carbon dioxide, making 

it possible to reproduce quinic acid in its initial polyhydroxyl form upon degradation.  

The thermomechanical properties and degradation kinetics of the two networks were 

compared, and the cytotoxicity was analyzed.   
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Figure 5.1.  Chemical structures representing DHLAm-co-TAQA (bottom) and DHLAc-co-TAQA (top). 

 

 

5.2 Results and Discussion 

 The synthesis of the QA-based alkenyl monomer, TAQA, occurred in two steps, 

as previously described.78  First, QA lactone was formed by well-established methods.67  

A suspension of QA and Amberlyst H+ resin in benzene and DMF was heated to reflux 

with azeotropic removal of water to afford the bicyclic triol QA lactone in 96% yield.  

The second step was the installation of the three allyl carbonate (alloc) groups.  Allyl 

chloroformate was added dropwise to QA lactone in cold N,N,N',N'-

tetramethylethylenediamine and dichloromethane to produce TAQA in 74% yield as a 

clear viscous oil.  The thiol monomers were synthesized by reducing the disulfides of 

lipoic acid and lipoamide to thiols.  Aqueous sodium borohydride was added and mixed 
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at 0 °C with either lipoic acid in an aqueous 0.25 M sodium bicarbonate solution or 

lipoamide in tetrahydrofuran to afford DHLAc in 85% yield or DHLAm in 94% yield, 

respectively.  Interestingly, DHLAc was a clear oil and DHLAm was a white solid.  

Both were kept at −80 °C when not being used.  Conversion of the disulfides to thiols 

was confirmed by 1H and 13C NMR spectroscopies, FTIR and electrospray ionization 

mass spectrometry.  Solvent-free crosslinking copolymerization by thiol-ene radical 

addition in the presence of 1 wt% 2,2-dimethoxy-2-phenylacetophenone photoinitiator 

was performed by mixing TAQA and either DHLAc or DHLAm based on equal molar 

functional groups, mold casting, and exposing to UV light (λ = 365 nm).  The DHLAm 

and TAQA mixture was mixed at 60 °C to melt the DHLAm prior to mold-casting.  

Following UV-cure, the samples, either films (0.6 mm thick) or discs (6 mm in diameter 

and 3 mm thick), were post-cured at 120 °C for 24 h to help drive crosslinking to 

completion. 

 The dynamic mechanical analysis (DMA) results in Figure 5.2 (A and B) show 

the relative thermomechanical behavior of DHLAc-co-TAQA and DHLAm-co-TAQA.  

The storage modulus behavior depicted in Figure 5.2 (A) is characteristic of amorphous 

thermoset polymers, where a glassy modulus plateau is expressed at temperatures below 

the glass transition, the glass transition is represented by the drop in modulus by two 

orders of magnitude, and a rubbery modulus plateau is expressed at temperatures above 

the glass transition.  The rubbery modulus is proportional to the crosslink density of the 

network.  Because the only chemical difference between the two networks is the acid or 

amide functionalized side-chain-end, it makes sense that the crosslink densities of the 
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two networks were very similar.  However, the chemical variation did have a significant 

effect on the Tg of the network.  Table 5.1 lists the thermomechanical properties of the 

poly(thioether-co-carbonate) networks containing the two different thiols investigated.  

The Tg values determined by differential scanning calorimetry are consistent with the 

onset of the glass transition region in Figure 5.2 (A) and proportional to the peak of the 

tanδ behavior in Figure 5.2 (B).  The reason the DHLAm-co-TAQA network exhibited a 

much higher Tg (62 °C) compared to DHLAc-co-TAQA (Tg = 46 °C) is most likely due 

the increased ability for secondary interactions, specifically hydrogen bonding, involving 

the amide groups in DHLAm-co-TAQA compared to the acid groups in DHLAc-co-

TAQA.  The onset temperatures of thermal decomposition, Td, for the two networks 

were similar and comparable to values reported previously for poly(thioether-co-

carbonate) networks (ca. 260 °C).  The modulus values measured at 25 C were also 

similar (1.5 GPa for DHLAc-co-TAQA and 1.4 GPa for DHLAm-co-TAQA). 

 Along with the difference in Tg the networks also exhibited a significant variation 

in degradation kinetics, shown in Figure 5.2 (C and D).  Four discs of each formulation 

were placed in phosphate buffered saline solution (pH 7.4) and kept in an incubator 

shaker at 37 °C and 60 rpm for 5 days.  Then the discs were removed, swelling was 

measured, and after drying under vacuum for 24 h mass loss was calculated.  Discs were 

returned to PBS and this protocol was followed approximately every five days until 

polymers were visually fully degraded and dissolved in solution.  Within the first 15 

days the discs had taken up at least their weight in water and started to degrade via 

surface erosion.  The DHLAc-co-TAQA network took up more water and degraded at a 



 

87 

significantly higher rate than the equivalent amide system, fully degrading over 33 days 

while the DHLAm-co-TAQA samples took 44 days to fully degrade.  As the DHLAc-

co-TAQA samples swelled the acidic side chain moieties may have caused a decrease in 

the local pH catalyzing carbonate hydrolysis.  On the other hand the weakly basic amide 

groups of the DHLAm-co-TAQA network may counter act any decrease in local pH 

caused by the hydrolysis of the lactone rings of TAQA.  Overall, the thermomechanical 

properties of these two networks are similar to poly(thioether-co-carbonate)s formed 

from TAQA and commercially-available non-natural multifunctional thiols; however, 

they degrade at a much faster rate.  The 1,2-EDT-co-TAQA network synthesized from 

1,2-ethanedithiol and TAQA has a Tg and rubbery modulus of 65 °C and 7.2 MPa, 

respectively, values comparable to the DHLAm-co-TAQA network, but 1,2-EDT-co-

TAQA takes over 25 weeks to degrade. 

5.3 Conclusions 

 In conclusion, poly(thioether-co-carbonate) networks were designed and 

synthesized from plant-based derivatives of quinic acid and lipoic acid, and the overall 

plant-based content of the resulting networks is 80 wt%, which is much greater than any 

naturally-derived thiol-ene network involving the popular commercially-available tri-and 

tetra-functional mercaptopropionates.  Additionally, the networks presented here exhibit 

interesting properties compared to previous described poly(thioether-co-carbonate)s.  

The thermal and mechanical properties are very similar, but the degradation times are 

drastically different.  While the DHLAc-co-TAQA and DHLAm-co-TAQA networks 

take ~6 weeks to degrade, equivalent networks which use 1,2-ethanedithiol as the thiol  
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Figure 5.2.  Dynamic mechanical behavior and degradation kinetics of DHLAc-co-TAQA and DHLAm-

co-TAQA.  (A) Storage modulus and (B) tanδ as a function of temperature determined by DMA in tension 

mode.  (C) Swelling and (D) normalized remaining mass monitoring hydrolytic degradation in 

physiologically-relevant conditions. 

 

 

 

Polymer 
Tg 

[°C]a 

Td 

[°C]b 

E' 

[MPa]c 

Er 

[MPa]d 

Tan δmax 

[°C]e 

DHLAc-co-TAQA 46 263 1500 6.9 62 

DHLAm-co-TAQA 62 252 1400 8.1 84 

Table 5.1.  Thermal transitions and moduli exhibited by the poly(thioether-co-carbonate) networks 

derived from QA and LAc.  aDetermined by DSC; bOnset of thermal decomposition determined by TGA; 
cStorage modulus at 25 °C determined by DMA; dRubbery modulus determined by DMA; eTemperature at 

which the maximum tanδ value occurs. 
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monomer take over 25 weeks to degrade.  Together these networks add to the previously 

described poly(thioether-co-carbonate) networks and make up a family of degradable 

polymeric thermosets with a wide range of achievable thermomechanical and 

degradation properties.  Future studies will focus on determining the cytotoxicity in vitro 

and investigating the application of other natural thiols in thiol-ene networks. 

5.4 Materials and Methods 

Quinic acid, Amberlyst 15 ion-exchange resin, N,N,N’,N’-

tetramethylethylenediamine, allyl chloroformate, 2,2-dimethoxy-2-phenylacetophenone, 

lipoic acid, lipoamide, and sodium borohydride, were all used as received from Sigma 

Aldrich.  Phosphate-buffered saline (PBS) solution (pH 7.4, 137 mM NaCl, 2.7 mM 

KCl, and 10 mM phosphate buffer) was purchased from Fisher Scientific.   

1H and 13C NMR spectra were obtained on either a Varian Mercury 300 at 300 

MHz using the solvent signal as internal reference.  Glass transition temperatures were 

measured using differential scanning calorimetry (DSC) by a Mettler-Toledo DSC822 

(Mettler-Toledo, Columbus, OH) with a heating rate of 10 °C/min.  The Tg was taken as 

the midpoint of the inflection tangent upon the third heating cycle.  Thermogravimetric 

analysis (TGA) was done under an Ar atmosphere using a Mettler-Toledo TGA/DMA1 

with a heating rate of 10 °C/min.  Dynamic mechanical analysis (DMA) experiments 

were run in tension to determine thermomechanical profiles for the thermoset 

poly(thioether-co-carbonate) samples.  Dynamic mechanical analysis experiments were 

performed on a Mettler-Toledo TT-DMA system, and data were obtained from Triton 

Laboratory software.  Temperature scans were performed on rectangular DMA 
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specimens (5 mm x 12 mm x 0.6 mm) from −80 to 180 °C at a ramp rate of 3 °/min, a 

frequency of 1 Hz, and a sampling interval of 10 s.  MC3T3 cells were purchased from 

the American Type Culture Collection (ATCC) and subcultured based on ATCC 

protocol.  Briefly cells were cultured in with MEM-alpha media supplemented with 10% 

FBS and 1% antibiotic. 

5.4.1 Thiol monomer synthesis from lipoic acid and lipoamide 

To a 0.250 M solution of NaHCO3 (20 mL), lipoic acid (0.250 g, 1.21 mmol) was 

added and cooled to 0 °C.  Aqueous NaBH4 (0.092 g, 2.42 mmol in 5 mL H2O) was 

added and mixed for 24 h.  The reaction pH was adjusted to 2 using 6 M HCl before 

extraction with diethyl ether (3 × 20 mL).  The organic layers were combined and dried 

over Na2SO4 and under vacuum to recover dihydrolipoic acid (DHLAc) as a colorless, 

oil (0.215 g, 85% yield).  DHLAc was stored in the freezer at −80 °C when not being 

used.  1H NMR (300 MHz, CDCl3, ppm):  δ 2.97-2.85 (m, 1H), 2.79-2.59 (m, 2H), 2.36 

(t, J = 6.0 Hz, 2H), 1.95-1.79 (m, 1H), 1.79-1.40 (m, 8H), 1.37-1.28 (p, J = 9.0 Hz, 2H); 

13C NMR (300 MHz, CDCl3, ppm) δ 179.89, 42.64, 39.27, 38.68, 33.89, 26.44, 24.26, 

22.28; HRMS (+ESI) m/z calc’d. for C8H16O2S2 [M+Na]+:  231.0489, found 231.05; (-

ESI) [M-H]-:  207.0513, found 207.05. 

Lipoamide (0.745 g, 3.63 mmol) was added to 13 mL of THF and cooled to 0 °C.  

NaBH4 (0.282 g, 7.46 mmol) was dissolved in 6 mL of water and added to the LAm 

suspension.  After 1.5 h of mixing, 5 mL of 1 M HCl was added slowly.  The organic 

content was extracted with ethyl acetate (3 × 20 mL), dried over MgSO4, and condensed 
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under vacuum to afford DHLAm as a white solid (0.705 g, 94 % yield).  DHLAm was 

kept in the freezer when not being used. 

5.4.2 Polymer network synthesis 

The alkenyl monomer, TAQA was synthesized as previously described.78  

Briefly, the two-step synthesis of TAQA starts with the well-known lactonization of QA 

under acidic conditions.  QA and Amberlyst resin are suspended in benzene and DMF 

and heated to reflux with azeotropic removal of water to afford the bicyclic triol QA 

lactone.  To install the three alloc functionalities, allyl chloroformate (44.7 mL diluted 

with 20 mL DCM) was added dropwise to QA lactone (10.3 g) suspended in cold (0 °C) 

N,N,N',N'-tetramethylethylenediamine (36.4 mL) and DCM (200 mL) to give TAQA as 

a clear viscous oil. 

Mixtures of thiol and TAQA were prepared based on equal molar functional 

groups.  The amount of photoinitiator, DMPA, was 1 wt% for each mixture.  Table 4.1 

shows the compositions of each resin.  Because DHLAm is a solid at room temperature, 

TAQA and DHLAm were mixed at 60 °C before the DMPA was added.  DHLAc and 

TAQA, both liquids, were mixed at room temperature.  DMPA was added last and 

blended thoroughly.  The resin was cast between two glass slides separated by a 0.6 mm 

spacer and was used to fill four disc molds (discs, 6 mm in diameter and 3 mm thick).  

Crosslinking polymerizations were performed by exposing the molds to UV irradiation 

(365 nm) in a UVP crosslinking chamber for 15 min.  Samples were removed from the 

mold and exposed to UV for an additional 15 min.  Following UV exposure samples 
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were post-cured at 120 °C under reduced pressure for 24 h.  All samples were stored in 

the freezer at −80 °C when not in use. 

 

 

Formulation TAQA (g) Thiol (g) DMPA (g) 

DHLAc-co-TAQA 0.2900 0.2157 0.0050 

DHLAm-co-TAQA 0.0966 0.1340 0.0023 

Table 5.2.  Thiol-ene network formulations from QA and LAc derivatives. 

 

 

5.4.3 Hydrolytic degradation in physiological conditions 

The initial mass of four discs for each formulation was recorded, and the disc 

was submerged in 4 mL of PBS (pH 7.4) and placed in the incubator shaker at 37 °C and 

60 rpm to mimic physiological conditions.  The discs were removed approximately 

every 5 days rinsed with deionized water.  The PBS solution containing any degradation 

products was kept and saved at −80 °C for further analysis.  The swollen masses (ww) of 

the pucks were measured before the samples were dried under vacuum until they reached 

a stable dry mass (wd).  The swelling ratio (q) was calculated according to the following 

equation: 

w

d

q w
w



 

The normalized mass (m) at each time point was calculated using the equation below, 

where wi is the initial mass of the sample before degradation. 
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100%d

i

m w
w

 

 

Fresh PBS was added and the discs were returned to the degradation environment.  The 

average normalized mass and swelling ratio were determined at various time points until 

no visible solids remained. 
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CHAPTER VI  

CONCLUSIONS 

 

 In this dissertation synthetic strategies for the preparation of degradable 

polycarbonates that originate from renewable resources, exhibit novel combinations of 

properties, and have the ability to undergo hydrolytic breakdown into biologically-

beneficial by-products are developed.  The polyhydroxyl natural product quinic acid has 

been selected as the monomeric building block, and carbonates, found in tough 

engineering materials, have been selected as the degradable linkages.  This combination 

is special because when carbonates hydrolyze they are converted to hydroxyl-containing 

compounds and carbon dioxide.  Therefore, polycarbonates built from polyhydroxyl 

natural products have the ability to regenerate the natural product as a pure compound, 

rather than a similar derivative.  Additionally, the degradation products of 

polycarbonates are biocompatible and may reduce the risk of adverse side effects 

compared to the acidic degradation of FDA-approved polyesters. 

 In the first project, poly(thioether-co-carbonate) networks derived from QA and 

various multifunctional thiols were introduced and characterized.  The relationship 

between the structure of the thiol monomer and the resulting properties of the network, 

including crosslink density and Tg, was realized, and initial studies of solvent 

plasticization were performed.  The resulting family of polycarbonates exhibited a glass 

transition that could be controlled between −18 °C and 65 °C and modulus values similar 

to other plastics.  In Chapter III, those materials were tested in presence of a 
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physiologically relevant environment, to study their ability to serve as biomaterials.  

Biological and chemical properties of the polymers and their degradation products 

revealed that the polymers were nontoxic and degrade to reproduce QA and the 

hydroxyl-functionalized thioether equivalent of the original thiol monomer, which also 

exhibited low toxicity.  The degradation time ranged from 10 to 35 weeks, presenting 

another tunable material property.  In the third project the tunable thermomechanical 

properties of the system were exploited and fully utilized to create materials with 

interesting responsive properties.  By tuning the Tg of the material to be close to body 

temperature using carefully formulated resins with mixtures of thiol monomers, films 

that behave as rigid thermosets at room temperature and then soften under physiological 

conditions to their elastomeric state were produced.  The modulus values of the materials 

decrease by two orders-of-magnitude due to a combination of temperature and solvent 

effects.  This ability to mechanically-adapt to physiological conditions was combined 

with spatially controlling the composition of the material along a 1D gradient, to 

produce a film with a soft-to-hard transition which was enhanced by heat and water.  At 

physiological conditions the gradient difference along the length of the film was two 

orders-of magnitude, from 1 GPa to 10 MPa.   

 Although the goal of synthesizing polymer materials that have modulus values 

close to those of cortical bone (E' = 17-24 GPa) was not achieved, the materials have 

modulus values similar to those of cancellous bone (E' = 0.1-4.5 GPa) and may be good 

candidates for low load-bearing applications in orthopedics.  To further increase 

mechanical properties so that it may be possible to use these polymers in mechanically-
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strenuous orthopedic applications, the incorporation of ceramic or organic nanoparticles 

should be considered.  The incorporation of ceramic hydroxyapatite nanoparticles is 

expected to not only increase the modulus but also increase the structural likeness to 

bone, which is made up of hydroxyapatite nanoparticles in a collagen matrix.  Compared 

to the conventional degradable polyesters used in orthopedic applications (used in low 

load-bearing applications), the and PETMP-co-TAQA systems have similar mechanical 

and thermal properties.  The degradation kinetics of these materials are different 

depending on the thiol monomer.  For orthopedic applications the large amount of 

swelling and rapid degradation rate of TEGBMP-co-TAQA is concerning.  However the 

low amount of swelling and long degradation times of 1,2-EDT-co-TAQA and PETMP-

co-TAQA may be more suitable for orthopedic applications.  Therefore, although these 

materials are not yet able to serve as replacements to metals and alloys in mechanically-

strenuous applications, they may be superior to the conventional degradable orthopedic 

polymers.   

 The goal of synthesizing polymer materials from natural products is to not only 

make advancements toward sustainable, non-petroleum-based plastics, but also to design 

novel biocompatible materials that exhibit interesting combinations of properties.  

Overall, the poly(thioether-co-carbonate) networks developed in this work have the 

potential to lead to materials for a wide variety of applications.  By using simple 

fabrication techniques and reliable chemistry, developing degradable polycarbonates for 

consumer plastics applications that are environmentally and industrially attractive may 

be possible.  Mechanically-dynamic materials have received little attention as stimuli-



 

97 

responsive materials, but given the rise in the number of potential applications, such as 

dynamic biomedical devices, adaptive aerospace and automotive materials, adaptive 

clothing, switchable membranes, smart surface coatings, etc., mechanically-adaptive 

polymers and composites are sure to receive more attention.85  The design of materials 

that mimic the soft-to-hard gradient transitions found in nature can lead to materials for 

advanced biomedical applications including interfacial tissue engineering of 

osteochondral tissue86 and improved tissue-engineered heart valve function.87  

 Looking forward, these UV-curable polymer networks may function as ideal 

platform materials in advanced material applications including additive manufacturing 

(i.e. 3D printing, electrospinning, stereolithography), naturally-derived composites 

incorporating cellulose or other natural fillers, and (hydro- and organo-) gel applications, 

all of which are applications which interest many different industries from medical to 

sporting goods/toys to consumer plastics.  In stereolithographic (3D-printing with UV-

curing) applications the workability of the resin in terms of viscosity and quick curing 

conditions (limited ability to “lightly crosslink”) may provide challenges which can be 

addressed by altering the formulation, perhaps incorporating solvent to decrease 

viscosity and prevent premature crosslinking.  To further increase mechanical properties, 

as well as, increase the structural likeness to bone, the incorporation of ceramic or 

organic nanoparticles should be considered.  In the same regard, to expand into soft-

biomaterials applications the exploring possible hydrogels may be other interest.  

However the hydrophobicity of the resin may hinder adequate dispersion of 

nanoparticles and prevent any mixing with water.  One solution may be to introduce 
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more hydrophilic chemistries into the resin, perhaps incorporating plant-based or 

biomolecule-based thiol monomers which are naturally found in aqueous environments. 

 From a sustainability standpoint, the use of natural thiol monomers rather than 

the non-natural commercially-available ones used in the main body of this work, would 

substantially amplify the overall natural content of the polymers and lead to “all natural” 

degradable polycarbonates with nontoxic resorbable degradation products.  For example, 

in an ongoing project multifunctional thiols derived from the natural dithiolane, lipoic 

acid have been incorporated into poly(thioether-co-carbonate) networks, described in 

Appendix A.  The project represents the first steps in the quest to develop and study the 

structure-property relationships of poly(thioether-co-carbonate) networks derived from 

quinic acid and natural dithiolanes/disulfides.  Furthermore, as the described polymers 

are extensively studied and other chemical and materials capabilities are explored, 

advances in the fundamental understanding of structure-property relationships and how 

these relationships change as a result of different environments may be made. 
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