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ABSTRACT

Transient growth is a linear disturbance growth mechanism that plays a key role

in roughness-induced boundary-layer transition. It occurs when superposed stable,

non-orthogonal continuous spectrum modes experience algebraic disturbance growth

followed by exponential decay. Algebraic disturbance growth can modify the basic

state making it susceptible to secondary instabilities rapidly leading to transition.

Optimal disturbance theory was developed to model the most-dangerous disturbances.

However, evidence suggests roughness-induced transient growth is sub-optimal yet

leads to transition earlier than optimal theory suggests. This research computes

initial disturbances most unstable to secondary instabilities to further develop the

applicability of transient growth theory to surface roughness.

The main approach is using nonlinear adjoint optimization with solutions of the

parabolized Navier–Stokes and BiGlobal stability equations. Three objective functions

were considered: disturbance kinetic energy growth, sinuous instability growth rate,

and Tollmien–Schlichting (TS) wave growth rate. The first objective function was

used as validation of the optimization method. Counter-rotating streamwise vortices

located low in the boundary layer maximize the sinuous instability growth rate.

Sinuous instabilities were observed at disturbance amplitudes as low as 2.5% spanwise

root-mean-square. The near wake of the initial disturbance is potentially much less

stable than the far field. TS wave stabilization was achieved for all parameters

considered and becomes more effective at higher frequencies.

ii



DEDICATION

To those hardworking electrons, without whose sacrifice of energy this work would

have been impossible.

iii



ACKNOWLEDGEMENTS

First and foremost, I would like to acknowledge NASA and the Air Force

Office of Scientific Research (AFOSR) for funding this work through AFOSR Grant

FA9550-09-1-0341.

This research would not have been possible without the help of many other people.

First, thanks is given to Drs. Nicholas Denissen & Pedro Paredes for numerous helpful

conversations. I would like to thank Drs. Matthew Kuester & Nicole Sharp for access

to their experimental data. Thanks is given to all past and present students at the

Klebanoff–Saric Wind Tunnel (KSWT). Specifically I would like to acknowledge Alex

Berger, Dr. Nicholas Denissen, Dr. Robert Downs III, Dr. Robert Ehrmann, Justin

Freels, Dr. Matthew Kuester, Doug Kutz, Jeffrey Leistico, Robert Long, Dr. Jason

Schmucker, Dr. Nicole Sharp, Jamie Weber, and Ben Wilcox.

The members of the National Aerothermochemistry Laboratory (NAL), Flight

Research Laboratory (FRL), and Low-Speed Wind Tunnel (LSWT) have been very

helpful. Specifically I am grateful to Robbie Allen, Lisa Brown, Dr. Alex Craig,

Dr. Brian Crawford, Dr. Tom Duncan, John Kochan, Heather Kostak, Rebecca

Marianno, Ian Neel, and David West.

I would like to acknowledge my committee members (Drs. Prabir Daripa, Helen

Reed, William Saric, and especially my advisor Edward White) for their guidance

and support throughout this process. Finally I would like to thank my family and

friends for their love and encouragement along the way. There are too many to name

them all but I appreciate the help of my parents Harold & Debbie Monschke, my

grandparents Dorothy & Jan Farris, brother and sister-in-law Jeff & Kayla Monschke,

and niece Lily Monschke.

iv



NOMENCLATURE

Page

β0 Spanwise wavenumber nondimensionalized by δ0 . . . . . . . . . 84

maxx,y(u
′
rms) Maximum spanwise u′ root-mean-square value . . . . . . . . . . 8

AFOSR Air Force Office of Scientific Research . . . . . . . . . . . . . . . iv

ALSE Adjoint linear stability equation . . . . . . . . . . . . . . . . . . 14

BiGlobal Stability of basic states with two inhomogeneous directions . . . 7

CFD Computational fluid dynamics . . . . . . . . . . . . . . . . . . . 7

DNS Direct numerical simulation . . . . . . . . . . . . . . . . . . . . 1

F Nondimensional frequency . . . . . . . . . . . . . . . . . . . . . 79

FRL Flight Research Laboratory . . . . . . . . . . . . . . . . . . . . iv

g Optimization objective function . . . . . . . . . . . . . . . . . . 18

k Roughness height . . . . . . . . . . . . . . . . . . . . . . . . . . 3

KSWT Klebanoff–Saric Wind Tunnel . . . . . . . . . . . . . . . . . . . iv

LSE Linear stability equation . . . . . . . . . . . . . . . . . . . . . . 10

LSWT Low-Speed Wind Tunnel . . . . . . . . . . . . . . . . . . . . . . iv

NAL National Aerothermochemistry Laboratory . . . . . . . . . . . . iv

PNS Parabolized Navier–Stokes . . . . . . . . . . . . . . . . . . . . . 26

Reδ Reynolds number based on reference boundary layer thickness . 12

Rekk Roughness Reynolds number . . . . . . . . . . . . . . . . . . . . 3

Rekk,crit Critical roughness Reynolds number . . . . . . . . . . . . . . . 3

Rex0 Reynolds number based on initial disturbance location . . . . . 72

Rexf
Reynolds number based on final optimization location . . . . . 72

TS Tollmien–Schlichting . . . . . . . . . . . . . . . . . . . . . . . . 4

v



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

NOMENCLATURE . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

1. INTRODUCTION AND LITERATURE REVIEW . . . . . . . . . . . . . 1

1.1 Background . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 Roughness-Induced Transition . . . . . . . . . . . . . . . . . . . . . . 6
1.3 Research Objectives . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2. TRANSIENT GROWTH . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10

2.1 Continuous Spectrum . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2 Receptivity . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
2.3 Summary & Research Objective . . . . . . . . . . . . . . . . . . . . . 22

3. PROPAGATORS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26

3.1 Linear Stability Theory . . . . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Parabolized Navier–Stokes (PNS) Equations . . . . . . . . . . . . . . 29

4. BIGLOBAL SECONDARY INSTABILITIES . . . . . . . . . . . . . . . . 37

4.1 Derivation of Stability Equations . . . . . . . . . . . . . . . . . . . . 37
4.2 Numerical Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
4.3 Low-Speed Secondary Instabilities . . . . . . . . . . . . . . . . . . . . 45
4.4 High-Speed Secondary Instabilities . . . . . . . . . . . . . . . . . . . 50
4.5 Summary & Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . 59

5. SECONDARY INSTABILITY BASED OPTIMAL DISTURBANCES . . . 63

vi



5.1 Theory and Motivation . . . . . . . . . . . . . . . . . . . . . . . . . . 63
5.1.1 Most-Unstable Disturbances . . . . . . . . . . . . . . . . . . . 72
5.1.2 Tollmien–Schlichting Wave Stabilization . . . . . . . . . . . . 79

6. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 87

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90

APPENDIX A. NUMERICAL METHODS . . . . . . . . . . . . . . . . . . . 100

A.1 Finite Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 100
A.2 FD-q Method . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 103
A.3 Curvilinear Coordinates . . . . . . . . . . . . . . . . . . . . . . . . . 104
A.4 Newton Iterations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 106
A.5 Arnoldi Iteration Method . . . . . . . . . . . . . . . . . . . . . . . . . 108

APPENDIX B. NUMERICAL TOOLS . . . . . . . . . . . . . . . . . . . . . . 113

APPENDIX C. MATRIX OPERATORS . . . . . . . . . . . . . . . . . . . . . 115

C.1 Linear Stability Equation (LSE) Operators for 1D Boundary Layers . 115

vii



LIST OF FIGURES

FIGURE Page

1.1 Notional example of a) sinuous and b) varicose modes. Flow is from
left to right and lines represent streamlines in the streamwise-spanwise
plane. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

2.1 The path from laminar to turbulent flow summarized in the transition
roadmap by Morkovin [39]. . . . . . . . . . . . . . . . . . . . . . . . . 11

2.2 Continuous spectrum receptivity curves for an optimal disturbance
computed using the methods of Tumin & Reshotko [48]. . . . . . . . 22

2.3 Continuous spectrum receptivity curves for λk spanwise wavelength of
the DNS results of Rizzetta & Visbal [50]. . . . . . . . . . . . . . . . 23

2.4 Continuous spectrum receptivity curves for λk/2 spanwise wavelength
of the DNS results of Rizzetta & Visbal [50]. . . . . . . . . . . . . . . 23

2.5 Continuous spectrum receptivity curves for λk/3 spanwise wavelength
of the DNS results of Rizzetta & Visbal [50]. . . . . . . . . . . . . . . 24

2.6 Continuous spectrum receptivity curves for λk/4 spanwise wavelength
of the DNS results of Rizzetta & Visbal [50]. . . . . . . . . . . . . . . 24

3.1 Comparison of disturbance energy evolution between the DNS of
Rizzetta & Visbal [50] and linear theory. Initial condition for the linear
theory was obtained using biorthogonal decomposition at x− xk = 25
mm downstream of roughness. Lines are from DNS, crosses are from
linear theory. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28

3.2 Initial condition was Blasius boundary layer solution at x = 300 for
a unit Reynolds number of 769 mm−1. PNS results are indicated by
crosses and the Blasius theory is indicated by solid lines. . . . . . . . 31

3.3 Velocity contours at x−xk = 120 mm downstream of roughness. Color
contours are from the DNS of Rizzetta & Visbal [50], lines are from
PNS. Initial condition for the PNS is at x− xk = 12 mm downstream
of roughness. a) Streamwise velocity, U ; b) spanwise velocity, V ; c)
wall-normal velocity, W . . . . . . . . . . . . . . . . . . . . . . . . . . 33

viii



3.4 Comparison of disturbance energy evolution between the DNS of
Rizzetta & Visbal [50] and PNS solutions. Initial condition for the
PNS is at x− xk = 12 mm downstream of roughness. Lines are from
DNS, crosses are from PNS. . . . . . . . . . . . . . . . . . . . . . . . 34

3.5 Velocity contours at x−xk = 120 mm downstream of roughness. Color
contours are from the DNS of Rizzetta & Visbal [50], lines are from
PNS. Initial condition for the PNS is at x− xk = 25 mm downstream
of roughness. a) Streamwise velocity, U ; b) spanwise velocity, V ; c)
wall-normal velocity, W . . . . . . . . . . . . . . . . . . . . . . . . . . 35

3.6 Comparison of disturbance energy evolution between the DNS of
Rizzetta & Visbal [50] and PNS solutions. Initial condition for the
PNS is at x− xk = 25 mm downstream of roughness. Lines are from
DNS, crosses are from PNS. . . . . . . . . . . . . . . . . . . . . . . . 36

4.1 Experimental incompressible phase-lock averaged basic states and
streamwise fluctuations from Kuester & White [70]. Lines are steady
contours of U , colors are contours of u′rms. a) Discrete roughness
basic state at x̃ = 950 mm. b) Combined roughness basic state at
x̃ = 950 mm. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

4.2 BiGlobal mode shapes computed for the low-speed, discrete roughness
case at f̃ = 450 Hz and x̃ = 950 mm using the incompressible, viscous,
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perimental data. Top plots are |û| for f̃ = 450 Hz from stability
calculations for all solvers, bottom plot is u′rms digitally band-pass
filtered over 430 - 470 Hz and phase-lock averaged in span from the
incompressible experiment of Kuester & White [70]. . . . . . . . . . . 51

ix



4.5 Comparison of BiGlobal modes shapes to the combined roughness
experimental data. Top plots are |û| for f̃ = 450 Hz from stability
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1. INTRODUCTION AND LITERATURE REVIEW

The manner in which a fluid flows around solid surfaces has many important

implications. For instance, the design of aircraft relies on understanding the relation

between the shape of a wing and the lift and drag that it produces. Accurate lift and

drag estimation allows less conservative sizing of engines and structures. This in turn

leads to a reduction in aircraft weight and fuel consumption.

In 1775, Leonhard Euler first derived the equations that describe inviscid fluid flow.

These inviscid equations admit potential-function solutions. Flow around arbitrarily

shaped objects can be approximated by superposing several basic potential flow

solutions, such as sources, sinks, doublets, and vortices, that enforce the no-penetration

boundary condition at surfaces. After Euler, nearly a century passed until viscous

terms were added to the governing equations by Sir George Stokes in 1845, resulting

in the renowned Navier–Stokes equations:

∇ · v = 0, (1.1)

∂v

∂t
+ (v · ∇)v = −∇p+ 1

Re
∇2v, (1.2)

which govern viscous incompressible fluid flow. v is the vector of fluid velocities, p is

the pressure, t is time, and Re is the Reynolds number.

Although the governing equations are known, a complete understanding of fluid

flow has remained elusive. Only a few exact solutions for simple geometries of the

Navier–Stokes equations have been found. With the explosion in computing power

over the last half-century, much progress in the numerical solution of Eqs. (1.1) &

(1.2) has been made. However, direct numerical simulation (DNS) of flow over a

1



full-size aircraft at cruising conditions remains infeasible to this day.

d’Alembert noticed that Euler’s inviscid theory predicts zero drag on a body

submerged in fluid. For years these inviscid potential flow solutions were criticized

by experimentalists who found the theory clearly at odds with numerous observa-

tions. This created a deep divide between theorists who studied hydrodynamics and

experimentalists who worked in the field of hydraulics.

It was not until Prandtl’s revolutionary 1904 discovery of the boundary layer that

finally resolved this paradox. A boundary layer is a thin layer of decelerated fluid near

a surface. The boundary layer is a result of the viscous interaction of the molecules of

a fluid with the microscopically rough surface of all solids. On a macroscopic length

scale this interaction is represented as the no-slip boundary condition. Boundary

layers were the missing piece that finally resolved d’Alembert’s paradox. Superposing

inviscid outer flow solutions with the near-wall boundary layer yields more accurate

results.

Boundary layers can be either laminar or turbulent. Laminar boundary layers have

very small unsteady fluctuations and the skin friction is low. In contrast, turbulent

boundary layers are highly unsteady with a much higher skin friction. Osborne

Reynolds was the first to observe this distinction between laminar and turbulent flow

and discovered that it is related to what we now call the Reynolds number in his

famous pipe flow experiment [1]. Dye that is injected at the inlet begins to oscillate

instead of flowing smoothly as the velocity increases. As the fluid velocity, and thus

Reynolds number, increased further the oscillations grew until the dye exhibited fully

turbulent flow.

The formulation of the Navier–Stokes equation, the discovery of boundary layers,

and the observation that oscillations in the flow can grow leading to turbulence have

formed the backbone of fluid dynamics understanding for the last 100 years. Now
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that some of the fundamentals of fluid flow have been described, a more detailed

summary of the literature pertaining to roughness-induced boundary layer transition

will be described in the next section.

1.1 Background

Transition from laminar to turbulent flow over practical aerodynamic surfaces is

associated with significant increases in skin friction and surface heating. Delaying

transition would reduce drag and fuel consumption and increase range on commercial

airliners. It would also reduce aerodynamic heating and increase usable payload on

reentry vehicles. Despite its importance, a fundamental understanding of the physical

mechanisms responsible is incomplete.

The instabilities in laminar boundary layers over smooth surfaces have been

researched extensively [2, 3, 4], leading to improved understanding and transition

prediction using methods such as eN [5, 6]. However, bug strikes and manufacturing

defects inevitably roughen these aerodynamic surfaces leading to transition in other-

wise stable regions. In the case of scramjets, roughness is intentionally applied to

promote turbulent mixing and combustion and to prevent unstarting [7].

At low speeds, the effects of roughness are accounted for using roughness Reynolds

number correlations [8]. The roughness Reynolds number is defined as Rekk = U(k)k
ν

where k is the roughness height, U(k) is the undisturbed streamwise velocity at the

roughness height, and ν is the kinematic viscosity. Transition is predicted when

Rekk > Rekk,crit. These correlations give an estimate for the roughness height that

could cause transition but do not give insight into the mechanisms responsible.

Similar correlation methods have been used in hypersonic flow, for which Reda [9] and

Schneider [10] provide extensive reviews. The quality of these empirical correlations

is dependent on the quality of the experiments that they are calibrated against and

3



the degree to which the correlations capture the underlying physics. There have been

several low-speed experiments on the effects of roughness but relatively little has been

done in hypersonic flow to understand the mechanism of transition. Additionally, a

critical roughness amplitude in a noisy wind tunnel may not be critical in the quiet

flow found in flight [7]. Quiet-flow wind tunnel experiments are crucial to obtain

meaningful transition predictions using these correlations.

The emergence of transient-growth theory provides a means of understanding how

3D surface roughness can be accommodated by linear stability theory [11]. Transient

growth can occur in linearly stable regions due to the superposition of non-orthogonal

continuous and discrete modes. At small amplitudes, transient growth is characterized

by algebraic disturbance growth followed by exponential decay. If these disturbances

reach a large enough amplitude, they can distort the basic state leading to “secondary”

instabilities, breakdown, and transition. (Secondary is used in quotes since there is

no primary instability.)

Transient-growth theory began with Ellingsen & Palm [12] who first showed

that a vertical velocity disturbance within a shear layer leads to linear disturbance

growth in time. Landahl [13, 14] later labeled the process of streamwise vorticity

redistributing mean flow momentum the “lift-up” effect. Unlike primary instabilities

such as the Tollmien–Schlichting (TS) wave, transient growth has no instability to

amplify components of the broadband forcing and is highly coupled to the receptivity

process.

To eliminate the ambiguity of receptivity, optimal disturbances were computed

with the hope that they would represent the “most-dangerous” transient growth in

regards to transition. Optimal disturbances are the initial conditions that lead to the

largest disturbance growth over a specified domain [15, 16, 17]. While optimal theory

provides a straightforward means of computing disturbances, experiments by White
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& co-workers [18, 19, 8] show that physically realized roughness-induced transient

growth is not well represented by optimal models.

Optimal disturbances are characterized by steady counter-rotating streamwise

vorticies located high in the boundary layer. These vorticies generate high- and low-

speed streaks by redistributing base flow momentum. In contrast, roughness-induced

transient growth generates steady counter-rotating streamwise vorticies at multiple

spanwise wavelengths low in the boundary layer. This difference in height causes

the experimentally measured disturbance energy to peak far upstream and at much

smaller values than optimal predictions.

Denissen & White [20] used biorthogonal decomposition to show that roughness

receptivity is a nonlinear process confined to the immediate vicinity of the roughness.

Although the receptivity is nonlinear, the subsequent transient growth is linear.

They also clearly showed the significant differences in receptivity between optimal

theory, roughness-induced transient growth, and linearized receptivity by comparing

the continuous spectra receptivity curves. Optimal disturbances excite very slowly

decaying continuous modes whereas roughness excites modes that decay much faster.

Past theoretical and computational studies on transient growth have focused on

optimal theory [21, 22, 23]. Recently however, Denissen & White [24] showed that

roughness-induced disturbances can lead to “secondary” instabilities at significantly

lower amplitudes than optimal disturbances. The implication is that optimal distur-

bances are not the class of disturbance most likely to cause transition. Thus, there is

a critical need to better understand roughness-induced transient growth and under

what conditions it can lead to turbulence.

Compared to optimal theory, roughness-induced transient growth is less stable

to secondary instabilities because of strengthened spanwise and wall-normal velocity

gradients. However as the gradients increase, viscous decay causes disturbances to
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quickly vanish before secondary instabilities can set in. This implies that there is

a “most-critical” disturbance that may have features similar to roughness-induced

transient growth. Developing a theory for these most-critical disturbances and

connecting this theory to surface roughness is a key objective of this thesis. In

particular, “most-critical” disturbances will be computed that maximize secondary

instabilities for a fixed primary disturbance amplitude.

1.2 Roughness-Induced Transition

Currently the best methods for predicting the roughness height causing transition is

based on Rekk,crit correlations. Past experimental research on roughness-induced tran-

sition focused on two-dimensional and three-dimensional roughness. Two-dimensional

roughness has a height that is invariant in the spanwise direction. As the height

of two-dimensional roughness increases, the transition location gradually advances

forward [8]. This behavior is likely related to the role of two-dimensional roughness

in TS wave receptivity to freestream acoustic disturbances [25]. Three-dimensional

roughness exhibits a very different transition behavior. As the three-dimensional

roughness height increases transition remains unaffected until Rekk is greater than

some critical value [2, 26, 27, 28, 29, 30]. At this point, transition occurs in the near

vicinity of the roughness element.

Early flow visualization work by Gregory & Walker [31] established that three-

dimensional roughness produces a horse-shoe vortex wrapped around the element.

The orientation of the vortex is such that it induces a downward velocity downstream

in the centerline of the roughness.

Klebanoff et al. [32] observed that Rekk,crit = 450 for isolated cylindrical roughness

elements with a unity height-to-diameter ratio. They also found that Rekk,crit = 325

for hemispherical elements whose height-to-diameter ratio is 0.5. Von Doenhoff &
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Braslow [29] noticed that Rekk,crit scales with (k/d)2/5, where k is the roughness height

and d is the diameter. Therefore as the roughness diameter is increased, the critical

roughness height causing transition decreases. Combining the results of Klebanoff

et al. [32] and Von Doenhoff & Braslow [29] the current best prediction of critical

roughness Reynolds number for incompressible flat-plate flows is:

Rkk,crit = 450

(
k

d

) 2
5

. (1.3)

Klebanoff et al. [32] also noticed that transition always occurs a finite distance

downstream of the roughness element. This implies that transition occurs as the

result of an instability that must grow to a large amplitude first.

Several researchers have studied these instabilities in the wakes of roughness

elements [21, 33, 34, 24, 35]. They have noticed that there are two primary types of

instabilities, varicose and sinuous, named for the appearance of undulations in the

resulting streaks. Figure 1.1 shows a notional example of each. Recently, Kegerise et

al. [36] and Choudhari et al. [37] have studied supersonic boundary-layer instabilities

induced by roughness elements with various planform shapes through experiment,

computational fluid dynamics (CFD) computations, and stability analysis. These

studies reveal the BiGlobal instability mechanisms that can lead to transition but

they do not aid in understanding the transient growth process that generated the

basic state.

While the Rekk,crit correlations are effective for incompressible flows, their usage

for compressible flows is much more uncertain[9, 10]. If transient growth theory could

be extended to explain why these correlations work at low speeds, it could then be

used for better transition prediction at high speeds.
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a)

b)

Figure 1.1: Notional example of a) sinuous and b) varicose modes. Flow is from left
to right and lines represent streamlines in the streamwise-spanwise plane.

1.3 Research Objectives

The research challenge from Denissen [38] is:

“There is a great deal of work still needed to develop transient growth

‘theory.’ […] Formulating the optimization problem to find the maximum

integrated growth rate of the resulting secondary disturbances would

provide a way to make transient growth more physically meaningful as a

design tool.”

The work presented in this dissertation develops a framework for exactly this cal-

culation. To make optimal disturbances more relevant to surface roughness, using

objective functions other than the disturbance kinetic energy is required. Objective

functions that provide a measure of secondary instability growth rate are particularly

interesting. Optimizing over spatial growth rates will allow the following questions to

be answered:

• What is the most destabilizing disturbance that has a maximum spanwise

steady disturbance amplitude, maxx,y(u
′
rms)?
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• What is the most stabilizing disturbance that has a maximum spanwise steady

disturbance amplitude, maxx,y(u
′
rms)?

The answer to the first question will be the “most-dangerous” transient disturbance.

The answer to the second will shed light on potential transition control possibilities.

This research makes several important contributions to the literature. First,

the “most-critical” disturbances will be an additional benchmark for comparison of

future transient growth studies. Past work on optimal disturbances has focused on

disturbance kinetic energy. This is not a useful metric. Optimal disturbances will

become a more relevant design tool if they are linked to instabilities through basic

state distortion. Second, the most destabilizing initial disturbance is likely more

similar to roughness-induced transient growth than previous optimal models. And,

finally, this optimal formulation facilitates finding a control disturbance that could

delay transition. A potential control disturbance will reduce the TS wave N -factor

but may breakdown at lower amplitudes from increased three-dimensionality. If a

potential control disturbance is found it will require further verification through DNS

and experiment.
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2. TRANSIENT GROWTH

Although much progress has been made in the last century in understanding

the processes by which a laminar boundary layer becomes turbulent, we still cannot

reliably predict the transition location in even the simplest case — a flat plate.

Morkovin’s [39] transition roadmap, shown in Fig. 2.1, summarizes these transition

processes as they are currently understood. First, environmental disturbances

generate small fluctuations in laminar boundary layers. These small fluctuations

can grow exponentially in the case of primary growth mechanisms. Once a sufficient

disturbance amplitude is reached the laminar boundary layer with finite fluctuations

is unstable to secondary instabilities. This scenario is labeled path A in Fig. 2.1 and

is the path associated with transition due to Tollmien–Schlichting (TS) waves and

other primary modal instabilities such as the crossflow instability.

However, even for flows in which there are no exponentially growing instabilities,

transition has been observed [11]. Two common examples of this ‘sub-critical’ tran-

sition are elevated freestream turbulence [40] and surface roughness [8]. Transient

growth plays a role in both transition scenarios [17, 11] but a full understanding of

the process remains elusive due to uncertainty in receptivity.

The growth of transient disturbances, unlike primary instabilities such as the TS

wave, is completely dependent on the receptivity process. Receptivity is the process

by which environmental disturbances enter the boundary layer. Optimal disturbances

answered the receptivity question by finding the initial disturbances that lead to

the largest disturbance kinetic energy growth downstream. One way to quantify

receptivity is to decompose a disturbance into the continuous spectrum modes of the

linear stability equation (LSE).
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Figure 2.1: The path from laminar to turbulent flow summarized in the transition
roadmap by Morkovin [39].
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2.1 Continuous Spectrum

Following Denissen & White [20], the LSEs can be written as:

∂φ

∂y
= Aφ, (2.1)

where φ = [û, Dû, v̂, p̂, ŵ, Dŵ]T . The boundary conditions for the LSEs are zero

velocity fluctuations (û = v̂ = ŵ = 0) at the wall and the freestream for a total of six

boundary conditions. To admit continuous spectra solutions of the equations, instead

of û = 0, v̂ = 0, and ŵ = 0, the freestream boundary conditions are relaxed and only

boundedness is required: |û| <∞, |v̂| <∞, and |ŵ| <∞ as y → ∞. Any particular

disturbance includes a superposition of all the continuous spectrum modes and their

sum must go to zero as y → ∞.

In the freestream, the operator A reduces to a matrix of constant coefficients

and solutions take the form φ ∝ eλy. Since the LSEs are sixth order, there are six

asymptotic freestream eigenvalues:

λ1,2 = ±
√
α2 + β2)

λ3,5 = −
√
i (α− ReδF )Reδ + α2 + β2

λ4,6 = +
√
i (α− ReδF )Reδ + α2 + β2,

(2.2)

where α is the streamwise wavenumber, β is the spanwise wavenumber, Reδ is the

Reynolds number based on δ, and F is the nondimensional frequency.

There are two classes of solutions to the linear stability equations: discrete and

continuous spectrum modes. Discrete modes, such as TS waves, asymptotically

approach zero as y → ∞ and are a linear combination of the eigenvectors associated

with λ2, λ3, and λ5, the eigenvalues with negative real part. There are a finite number
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of discrete spatial eigenvalues, α, such that the boundary conditions at y = 0 are

satisfied [41].

Continuous spectrum modes only require boundedness as y → ∞. This requires

Re(λ) ≤ 0 in the freestream. Solving for the spatial eigenvalues, α, such that

λ = ik where k ∈ R and k > 0, defines the continuous spectrum. Since freestream

continuous spectrum solutions have the form eiky, k can be interpreted as a wall-normal

wavenumber. There are two types of continuous spectrum modes that occur on

separate branches in the complex α plane, pressure and vorticity modes, named

for their primary disturbance component. Pressure modes are obtained by setting

λ1−2 = ik whereas vorticity modes result from setting λ3−6 = ik. Since the spatial

decay rates of pressure modes are orders of magnitude higher than vorticity modes

they are typically ignored [20]. Setting λ3−6 = ik to obtain the vorticity modes yields

four solutions, that occur as two complex-conjugate pairs that represent upstream and

downstream vorticity branches. The downstream vorticity branches are arbitrarily

named the A and B branches [42].

For a given nondimensional frequency, Reynolds number, and basic state, the

LSEs are solved by integrating from the freestream to the wall using a Gram–Schmidt

orthonormalization procedure [43].

If the amplitudes of discrete modes and amplitude curves of continuous spectrum

modes are known, the complete disturbance profile can be reconstructed:

φ(y) =
∑
d

Cdφαd
(y) +

∑
j

∫ ∞

0

Cj(k)φαj
(y)dk (2.3)

where indices d and j are for the discrete modes and branches of the continuous

spectrum, respectively. Outside the boundary layer continuous spectrum modes have

asymptotic solutions which oscillate in y, φαj
∝ fm(k)e

iky. Experiments show that
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boundary layer disturbances decay far from the wall, φ(y) → 0 as y → ∞. Therefore

from Eq. (2.3), integrals of this type must vanish:

lim
y→∞

∫ ∞

0

Cj(k)fm(k)e
ikydk = 0,

where fm(k) is from the linear combination of eigenvectors associated with λm. This is

the Riemann–Lebesgue lemma and is satisfied as long as Cj(k)fm(k) is L1 integrable.

In order to find the amplitudes of discrete and continuous spectrum modes, a set

of functions that are orthogonal to φ must be found. This requires finding an adjoint

equation. The adjoint linear stability equations (ALSEs) and boundary conditions

are found by multiplying Eq. (2.1) by ψT and integrating by parts:

∂ψ

∂y
= −ATψ

y = 0 : ψ2 = ψ4 = ψ6 = 0

y → ∞ : |ψ2|, |ψ4|, |ψ6| <∞.

(2.4)

For the derivation of a biorthogonality condition, the matrix operator in Eqs. (2.1)

& (2.4) needs to be factored into quantities independent of α. First, the state vector

is augmented to remove non-linearities in α:

φ̃ =

[
û,

∂û

∂y
, v̂, p̂û, Dû, v̂, p̂, ŵ, Dŵ, iαû, iαv̂, iαŵ

]T
.

Then the augmented direct and adjoint equations are:

∂φ̃

∂y
= Ãφ̃ (2.5)
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∂ψ̃

∂y
= −ÃT ψ̃ (2.6)

where the boundary conditions are unchanged and the associated augmented matrix

operators are given in Appendix C. This allows the augmented operator to be factored:

Ã = Ã1 + iαÃ2.

By taking the integral of ψ̃α′ , the augmented adjoint solution with spatial eigen-

value α′, multiplied by Eq. (2.5), a biorthogonality condition is derived [42]. Using

the factorization above, the integral becomes: (D ≡ ∂/∂y)

∞∫
0

ψ̃T
α′Dφ̃αdy =

∞∫
0

ψ̃T
α′

(
Ã1 + iαÃ2

)
φ̃αdy.

Integrating by parts, using the adjoint equation, Eq. (2.6), and using the direct and

adjoint boundary conditions, the above equation becomes a biorthogonality inner

product: 〈
φ̃α, ψ̃α′

〉 ∣∣∣∞
0

=

∞∫
0

ψ̃T
α′Ã2φ̃αdy = Qαδ(α− α′). (2.7)

In Eq. (2.7), δ is a Dirac delta if φ̃α and ψ̃α′ are continuous spectrum modes and

δ is a Kronecker delta if either is a discrete mode.

In the case of discrete modes, the normalization constant, Qα, is found by nu-

merically calculating the biorthogonal inner product since the integrand decays as

y → ∞. In the case of continuous spectrum modes, more care is needed. Following

Tumin [42], the biorthogonal inner product over a narrow wave packet is expanded
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into integrals in the boundary layer and freestream:

lim
ε→0

∫ k+ε

k−ε

〈
φ̃α, ψ̃α′

〉 ∣∣∣∞
0
dk = lim

ε→0

∫ k+ε

k−ε

〈
φ̃α, ψ̃α′

〉 ∣∣∣L
0
dk

− lim
ε→0

∫ k+ε

k−ε

〈
φ̃∞

α , ψ̃
∞
α′

〉 ∣∣∣L
0
dk

+ lim
ε→0

∫ k+ε

k−ε

〈
φ̃∞

α , ψ̃
∞
α′

〉 ∣∣∣∞
0
dk

(2.8)

where φ̃α and ψ̃α′ are continuous spectrum solutions of the direct and adjoint

equations for eigenvalues α(k) and α′(k′), respectively. The superscript ∞ indicates

asymptotic solutions in the freestream and L is the edge of the boundary layer. The

first two integrals on the right side vanish as ε→ 0 because the integrands are finite.

The asymptotic solutions can be written in terms of the freestream eigenvectors of

Eq. (2.5):

φ̃∞
α,A(y) = ζ3φ̃

∞
3 e

λ3y + ζ5φ̃
∞
5 e

λ5y + ζ6φ̃
∞
6 e

λ6y

φ̃∞
α,B(y) = ζ3φ̃

∞
3 e

λ3y + ζ4φ̃
∞
4 e

λ4y + ζ6φ̃
∞
6 e

λ6y

ψ̃∞
α′,A(y) = ξ3ψ̃

∞
3 e

λ′
3y + ξ5ψ̃

∞
5 e

λ′
5y + ξ4ψ̃

∞
4 e

λ′
4y

ψ̃∞
α′,B(y) = ξ3ψ̃

∞
3 e

λ′
3y + ξ4ψ̃

∞
4 e

λ′
4y + ξ4ψ̃

∞
4 e

λ′
4y

(2.9)

where ζj and ξj are the coefficients of the freestream eigenvectors (φ̃∞
j and ψ̃∞

j ) so

that the boundary conditions are satisfied. The last term on the right of Eq. (2.8)

does not vanish and consists of integrals of the type [42]:

lim
ε→0

∫ k+ε

k−ε

∫ ∞

0

ei(k−k′)ydydk = πδ(k − k′) (2.10)
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where δ is the Dirac delta. Qα for continuous spectrum modes is then known explicitly:

Qα = πA
(ij)
2

(
ζ3φ̃

∞
j,3ξ6ψ̃

∞
i,6 + ζ5φ̃

∞
j,5ξ6ψ̃

∞
i,6 + ζ6φ̃

∞
j,6ξ3ψ̃

∞
i,3 + ζ6φ̃

∞
j,6ξ5ψ̃

∞
i,5

)
(2.11)

where subscript i and j denote the component of the freestream eigenvectors, and

summation is implied. There is a unique normalization constant for both the A and

B modes which is obtained by using the A and B values of ζi, φ̃∞
j,i, ξj, and ψ̃∞

i,j in

the equation above.

2.2 Receptivity

Provided that the boundary-layer disturbance created by an environmental distur-

bance is linear, its receptivity is quantified by the set of mode amplitude coefficients

and functions, Cd and Cj(k), that constitute the resulting boundary layer disturbance.

Tumin & Reshotko [44] examined approximating the effects of surface roughness

using slip boundary conditions. The slip velocity at the surface, y = 0, was determined

such that no-slip is enforced at the local roughness height, y = hf(x, z), where h is

the height of the roughness and f(x, z) describes the shape. Assuming the receptivity

is linear, the slip velocity boundary condition at y = 0 is:

u = −hf(x, z)∂U
∂y

.

This requires h/L � R
−5/8
L [45]. By taking the Fourier transform of the boundary

condition, using Eq. (2.7), and the Residue theorem [38], the continuous spectrum

receptivity coefficients can be found for the A and B vorticity branches:

CA(k) = − 2π

QA
α

ûkψ̂
(A)
k,1 |0 (2.12)
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CB(k) = − 2π

QB
α

ûkψ̂
(B)
k,1 |0, (2.13)

where ûk is the Fourier transformed boundary condition:

ûk = − h

2π

∂U

∂y

∞∫
−∞

∞∫
−∞

f(x, z)ei(α(k)x+βz)dxdz. (2.14)

While the possibility of obtaining the receptivity coefficients, and therefore the

full velocity field, directly from the roughness shape is appealing, for the cylindrical

roughness case no transient growth is observed [44]. This is clearly at odds with several

experiments that will be described in the next few sections. Tumin & Reshotko [44]

attribute this discrepancy to violation of the very restrictive triple-deck assumptions

on the roughness height.

Optimal theory was developed to eliminate the receptivity problem by finding the

initial upstream disturbance which maximizes the relative disturbance kinetic energy

growth downstream. Previous researchers [15, 17, 16] formulated the optimization

problem as:
maximize g(β, ω, Reδ, xopt) = E(q′|xopt)

subject to f(β, ω, Reδ) = E(q′|0)− 1 = 0

where q′ = [u′, v′, w′]T , E is the disturbance kinetic energy operator defined as:

E(q′) =
∫
z

∫
y

(
|u′|2 + |v′|2 + |w′|2

)
dydz,

and g(β, ω, Reδ, xopt) is the relative growth from x = 0 to x = xopt. With the

exception of Zuccher et al. [46], only linear optimal disturbances have been considered

in the literature. Multiple researchers have performed nonlinear calculations but

those are initiated by the optimal disturbance computed using linear theory. For
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linear disturbances, the value in the constraint function is arbitrary. There have been

three main techniques used to solve this linear optimization problem. A description

of each is provided as a foundation for the main results of this dissertation.

First, Butler & Farrell [15] used variational calculus to solve the optimization

problem. Using a Lagrange multiplier and writing the energy operator in matrix

form, the optimization can be reduced to a single functional in terms of receptivity

coefficients for the discretized spectra:

J = CH
α R

HERCα − λ
(
CH

α ECα − 1
)

where R = diag{exp(iαx)}. The stationary points are determined by differentiating

the functional:
∂J
∂Cα

= RHERCα − λECα = 0

∂J
∂λ

= CH
α ECα − 1 = 0.

This results in a generalized eigenvalue problem where sup{λi} is the optimal growth

factor.

Schmid & Henningson [47] used a somewhat different method to obtain the optimal

solution. Since the energy matrix E is symmetric and positive definite, an alternative

formulation is to use singular value decomposition. First E = FHF is factored using

Cholesky decomposition. The optimization problem is then rewritten as:

max
‖FCα‖2=1

‖FRCα‖2.

Since the induced norm of a matrix A is equal to the largest singular value of A for
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the case of the Euclidean norm:

‖A‖2 = max
‖x‖2=1

‖Ax‖2 = Σmax(A)

where Σmax(A) is the largest singular value of A. Then using the manipulation

FCα = x, the maximization problem can be written as

max
‖FCα‖2=1

‖FRCα‖2 = ‖FRF−1‖2.

This last expression can be factored using singular value decomposition as:

FRF−1 = UΣV H

where U and V are unitary matrices and Σ is diagonal. The optimal growth rate is

given by the largest singular value Σi and the receptivity coefficients are given by

Cα = F−1Vi.

Luchini [16] and Andersson et al. [17] used an optimization method based on the

use of adjoint equations. If A is the operator that solves the initial value problem

of propagating a disturbance downstream, A+ is the adjoint of this operator. The

optimization problem can then be written using operator theory as:

g =
q′+A+QoutAq′

q′+Qinq′

where Qout and Qin are matrix representations of the energy norm at the output and

input locations respectively. Careful observation reveals that this is a generalized

eigenvalue problem:

A+QoutAq′ = gQinq
′.
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Since only the largest value of g is needed, rapid convergence is achieved using power

iterations:

q′n+1 = Q
−1
in A+QoutAq′n.

This method is similar to the variational calculus method. However, by marching for-

wards and backwards of the direct and adjoint equations, the non-parallel assumption

is not required.

The general finding is that counter-rotating streamwise vortices located high in

the boundary layer generate the most disturbance kinetic energy growth. Andersson

et al. [17] and Tumin & Reshotko [48] found that a spanwise wavenumber of β = 0.45

is optimal. Using the biorthogonal decomposition method explained above, a typical

optimal disturbance is decomposed into its constituent continuous spectrum modes

in Fig. 2.2.

White [18] first showed that transient growth produced by a periodic array of

roughness elements is not well described by optimal theory. Fransson et al. [49]

performed a similar experiment and showed that if optimal disturbances are rescaled

so that the streamwise vortices occur lower in the boundary layer, the agreement

with experimental measurements is much better. Later experiments by White &

coworkers [19, 8] obtained higher quality measurements of roughness-induced transient

growth.

Denissen & White [20] developed a method to decompose experimental measure-

ments of the streamwise velocity within a transiently growing boundary layer into

its constituent continuous spectrum modes. This provides a unique and complete

characterization of the receptivity to surface roughness.

Rizzetta & Visbal [50] performed a DNS corresponding to the Ergin & White [8]

experiment. The advantage of DNS is that all velocity information is known. This
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Figure 2.2: Continuous spectrum receptivity curves for an optimal disturbance
computed using the methods of Tumin & Reshotko [48].

allows the complete data biorthogonal decomposition method of Tumin [42] to be used.

Figures 2.3-2.6 show the receptivity curves for the first four spanwise wavelengths.

The peak of |Cα| for all receptivity curves for the DNS data occurs at k > 1.2 whereas

the maximum in Fig. 2.2 is at k ≈ 0.7.

2.3 Summary & Research Objective

Understanding of transition has progressed steadily over the past century through

studying the instabilities of laminar boundary layers. Paradoxically though, transition

has been observed in flows which are linearly stable. One possible explanation of this

sub-critical transition is transient growth. Transient growth has been observed in

multiple experiments as the result of a laminar boundary layer encountering surface

roughness. The main difficulty in studying transient growth is its intimate dependence
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Figure 2.3: Continuous spectrum receptivity curves for λk spanwise wavelength of
the DNS results of Rizzetta & Visbal [50].
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Figure 2.4: Continuous spectrum receptivity curves for λk/2 spanwise wavelength of
the DNS results of Rizzetta & Visbal [50].
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Figure 2.5: Continuous spectrum receptivity curves for λk/3 spanwise wavelength of
the DNS results of Rizzetta & Visbal [50].
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Figure 2.6: Continuous spectrum receptivity curves for λk/4 spanwise wavelength of
the DNS results of Rizzetta & Visbal [50].
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on the receptivity process.

To eliminate the receptivity question, optimal disturbances were developed to

maximize the disturbance kinetic energy growth. Another method of solving the

receptivity problem is to use linearized boundary conditions to decompose a rough-

ness geometry into continuous spectrum modes of the LSEs. Unfortunately both

approaches to receptivity do not well represent the experimental results.

Optimal disturbances excite slowly decaying continuous spectrum modes. These

disturbances are located high in the boundary layer and must reach large amplitudes

before secondary instabilities set in. On the other hand, linearized receptivity

excites rapidly decaying continuous spectrum modes. These disturbances decay very

quickly and do not grow enough to become unstable to secondary disturbances.

Denissen & White [20] showed that realistic roughness-induced transient growth

excites continuous spectrum modes with an intermediate decay rate. As a result,

these realistic disturbances are much more unstable to secondary instabilities [24].

This suggests that the initial disturbance which maximizes the secondary instability

growth rate may have commonality with observed roughness-induced transient growth.

Finding these disturbances is the topic of this dissertation.
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3. PROPAGATORS

A means of propagating an initial disturbance downstream is necessary to observe

transient growth. There are several ways this can be accomplished. Two methods

will be considered here: linear stability theory and marching of the parabolized

Navier–Stokes (PNS) equations. Since the BiGlobal stability solver is only formulated

for steady basic states, only steady disturbances will be considered. Additionally, the

previous optimal disturbance work of Tumin & Reshotko [48] show that the disturbance

kinetic energy growth is larger for steady than unsteady disturbances. This does

not necessarily suggest that unsteady disturbances are more stable to secondary

instabilities though. Although freestream turbulence induces unsteady disturbances

in the boundary layer [40], subcritical roughness generates steady disturbances. [18,

19, 8] The accommodation of unsteady base flows in the BiGlobal secondary instability

solver is not straight forward and therefore as a first step only steady transient growth

is considered.

3.1 Linear Stability Theory

In the previous section transient growth was shown capable of being represented

using solutions of the LSEs. The evolution of discrete and continuous spectrum

modes of the LSEs can be used to propagate transiently growing steady disturbances

downstream.

Using the parallel flow assumption, i.e. V = [U(y, z), 0, 0]T , initial velocity

disturbances can be propagated downstream provided that the receptivity coefficients
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and curves are known:

q′ =

∫
β

[∑
v

Cvq̂ve
i(αvx+βz) +

∑
j

∫
k

Cj(k)q̂j(k)e
i[αj(k)x+βz]dk

]
dβ.

Since the base flow is decoupled from the disturbance quantities, the linear assumptions

loses accuracy at large disturbance amplitudes. When using linear modes for the initial

value problem, only small disturbance amplitudes can be examined. Non-parallel

flows could be accommodated with linear stability theory [51, 52] but the treatment

of non-parallel flows will instead be handled in a more straightforward manner by

integrating the PNS equations.

Rizzetta & Visbal [50] performed a DNS of the experiment by Ergin & White [8].

These DNS results have been used by Denissen & White [20, 24] to study roughness

receptivity and transient growth breakdown. Following Denissen & White [20], the

DNS results have been decomposed into its continuous spectrum modes. The velocity

field can then be reconstructed from these continuous spectra modes. Figure 3.1

compares the disturbance energy evolution for the first four spanwise wavelengths

from the DNS and linearly reconstructed velocity fields. The decomposition was

performed at x− xk = 25 mm downstream of the roughness which enables accurate

reconstruction of the disturbance energy evolution. Upstream of this location the flow

is nonlinear due to the proximity of the roughness element and is not well-captured

by linear theory. Far downstream in Fig. 3.1 the DNS and reconstructed disturbance

energy evolution begins to show some slight deviation due to nonparallel growth not

captured by the parallel flow linear theory.
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Figure 3.1: Comparison of disturbance energy evolution between the DNS of Rizzetta
& Visbal [50] and linear theory. Initial condition for the linear theory was obtained
using biorthogonal decomposition at x−xk = 25 mm downstream of roughness. Lines
are from DNS, crosses are from linear theory.
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3.2 Parabolized Navier–Stokes (PNS) Equations

Since this research involves finding the optimal initial velocity disturbances

that maximize secondary instabilities downstream, a method of propagating these

steady velocity disturbances is needed. The steady Navier–Stokes equations for large

Reynolds numbers with the flow primarily along one streamwise direction can be made

parabolic [53]. Specifically, the viscous derivatives with respect to the streamwise

direction are assumed to be much smaller than derivatives in the other two directions:

∂

∂x
� ∂

∂y
,
∂

∂z

∂2

∂x2
� ∂2

∂y2
,
∂2

∂z2
.

Since the flow is incompressible, upstream influence due to the streamwise pressure

gradient must be eliminated to ensure parabolic behavior of the equations in the

streamwise direction. These assumptions result in the following governing equations

for incompressible flat-plate flow:

∂u

∂x
+
∂v

∂y
+
∂w

∂z
= 0

u
∂u

∂x
+ v

∂u

∂y
+ w

∂u

∂z
= −∂p∞

∂x
+

1

Re

(
∂2u

∂y2
+
∂2u

∂z2

)

u
∂v

∂x
+ v

∂v

∂y
+ w

∂v

∂z
= −∂p

∂y
+

1

Re

(
∂2v

∂y2
+
∂2v

∂z2

)

u
∂w

∂x
+ v

∂w

∂y
+ w

∂w

∂z
= −∂p

∂z
+

1

Re

(
∂2w

∂y2
+
∂2w

∂z2

)
The PNS equations are written as general nonlinear equations and discretized

using 4th-order finite differences in the y − z plane and 1st-order backwards finite
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differences in the x direction:

Fi(Q0, Q1, . . . , Qi) = 0,

where Qi = [ui, vi, wi, pi]
T and the subscript i indicates the streamwise position. The

PNS equations are nonlinear functions of Qi and Newton sub-iterations must be used

to solve for Qi:
∂Fi

∂Qi

∆q = −Fi,

Q
(n+1)
i = Q

(n)
i +∆q.

The solution is considered converged when:

‖∆q‖ < εPNS,

where εPNS ∈ [10−6, 10−3] is chosen small enough to ensure converged results but large

enough to avoid numerical round-off effects. For this numerical scheme to be stable,

ui must be strictly positive so that the parabolic nature of the equations is ensured.

Methods for solving the PNS equations in reversed or separated flow conditions have

been developed [54] but will not be considered here.

The PNS code developed for this research has been validated against two known

solutions of the full Navier–Stokes equations — Blasius boundary layer flow and the

DNS results of Rizzetta & Visbal [50]. Figure 3.2 shows the results of a solution of

the PNS code which used the Blasius solution as an initial condition at x = 300 for a

unit Reynolds number of 769 mm−1. The displacement thickness (δ∗), momentum

thickness (θ), and shape factor (H = δ∗/θ) all show near-exact agreement with Blasius

theory.
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Figure 3.2: Initial condition was Blasius boundary layer solution at x = 300 for a
unit Reynolds number of 769 mm−1. PNS results are indicated by crosses and the
Blasius theory is indicated by solid lines.
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Figure 3.3 shows color contours of all three velocity components from the DNS

results, 120 mm downstream of the roughness location. Overlaid are black contour

lines from the PNS solution. The initial condition for the PNS equations was taken

from the DNS results 12 mm downstream of the roughness. This is the first location

where the DNS streamwise velocity is strictly positive, a necessary condition for the

convergence of the PNS solution. At 120 mm downstream, only slight deviations

between the two results are apparent. Figure 3.4 compares the DNS and PNS energy

evolution for the first four spanwise wavelengths. Again, the initial condition for the

PNS code was taken from the DNS results 12 mm downstream of the roughness.

Similar to Fig. 3.3, Fig. 3.5 shows color contours from the DNS results 120 mm

downstream of the roughness location with black contour lines from the PNS solution

overlaid. The initial condition for the PNS equations was taken from the DNS results

25 mm downstream of the roughness. Again only slight deviations between the two

results are apparent at the 120 mm downstream. Figure 3.6 compares the DNS and

PNS energy evolution for the first four spanwise wavelengths. In this plot, the initial

condition for the PNS code was taken from the DNS results 25 mm downstream of

the roughness. By moving the initial condition for the PNS code downstream the

results become more accurate. This is because the streamwise viscous derivatives are

likely more significant in the near wake of the roughness.

The PNS code is capable of accurately marching initial boundary layer solutions

downstream as evidenced by the above comparisons to Blasius boundary-layer theory

and the DNS results of Rizzetta & Visbal [50]. This provides confidence in the use of

this PNS code in the optimization results to follow.
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Figure 3.3: Velocity contours at x− xk = 120 mm downstream of roughness. Color
contours are from the DNS of Rizzetta & Visbal [50], lines are from PNS. Initial
condition for the PNS is at x−xk = 12 mm downstream of roughness. a) Streamwise
velocity, U ; b) spanwise velocity, V ; c) wall-normal velocity, W .
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Figure 3.4: Comparison of disturbance energy evolution between the DNS of Rizzetta
& Visbal [50] and PNS solutions. Initial condition for the PNS is at x− xk = 12 mm
downstream of roughness. Lines are from DNS, crosses are from PNS.
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Figure 3.5: Velocity contours at x− xk = 120 mm downstream of roughness. Color
contours are from the DNS of Rizzetta & Visbal [50], lines are from PNS. Initial
condition for the PNS is at x−xk = 25 mm downstream of roughness. a) Streamwise
velocity, U ; b) spanwise velocity, V ; c) wall-normal velocity, W .
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Figure 3.6: Comparison of disturbance energy evolution between the DNS of Rizzetta
& Visbal [50] and PNS solutions. Initial condition for the PNS is at x− xk = 25 mm
downstream of roughness. Lines are from DNS, crosses are from PNS.
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4. BIGLOBAL SECONDARY INSTABILITIES

Transient growth is characterized by algebraic disturbance growth followed by

exponential decay. The process of transient growth alone does not lead to transition.

However, if the algebraic disturbance growth is large enough, the distorted boundary

layer can be unstable to “secondary instabilities.” Secondary instabilities is in quotes

because transient growth itself is not a primary instability.

TS wave growth rates and mode shapes are eigenvalue solutions of the one-

dimensional LSEs. In an entirely similar process, “secondary instabilities” of transient

growth can be found as eigenvalue solutions of the two-dimensional, or BiGlobal,

LSEs. In this section, the detailed development of a BiGlobal secondary instability

code is outlined. The code is validated against both incompressible and hypersonic

experimental transient growth results.

4.1 Derivation of Stability Equations

To begin, the dimensional Navier–Stokes equations are reduced to non-dimensional

form through the following scalings (tildes indicate dimensional quantities): The

velocity vector is non-dimensionalized by the reference velocity, Ũref, lengths by the

reference length, L̃ref, the pressure by ρ̃refŨ
2
ref, time by L̃ref/Ũref, and λ̃ by µ̃ref. All

other quantities are non-dimensionalized by their corresponding reference values.

Ideal gases are assumed. The non-dimensional compressible Navier–Stokes equations

are: [55]
∂ρ

∂t
+∇ · (ρv) = 0, (4.1)

ρ

[
∂v

∂t
+ (v · ∇)v

]
= −∇p+ 1

ReL̃ref

∇ ·
[
µ
(
∇v +∇vT

)
+ λ (∇ · v) I

]
, (4.2)

37



ρ

[
∂T

∂t
+ (v · ∇)T

]
= (γ − 1)M2

ref

(
∂p

∂t
+ (v · ∇) p

)
+

1

ReL̃ref
Pr

∇ · (k∇T )

+
(γ − 1)M2

ref
ReL̃ref

(
µ

2
Tr

{[
∇v + (∇v)T

]2}
+ λ (∇ · v)2

)
, (4.3)

γM2
refp = ρT, (4.4)

where ReL̃ref
is the Reynolds number based on L̃ref, Pr = µ̃C̃p/k̃ is the Prandtl number,

γ is the ratio of specific heats, Mref is the Mach number based on reference velocity

and temperature, I is the identity matrix, and Tr indicates the matrix trace operation.

In general, the Prandtl number is non-constant. However, restricting calculations

to air, a constant value of Pr = 0.72 and γ = 1.4 is assumed. The non-dimensional

dynamic viscosity coefficient is given as a function of temperature using Sutherland’s

law:

µ = T
3
2

(
Tref + S

TrefT + S

)
,

where S = 110.4 K is the Sutherland temperature. The second coefficient of viscosity

is found using Stokes’ hypothesis, λ = −2
3
µ.

The velocity, density, pressure, temperature, thermal conductivity, and viscosity

coefficients are separated into mean and fluctuating components:

q = q(ξ, η, ζ) + εq′(ξ, η, ζ, t)

where ε is a small parameter, q represents the unknown variable, and ξ, η, and ζ are

the coordinates of a general curvilinear coordinate system. Substituting the perturbed

quantities into Eqs. (4.1)-(4.4) and extracting the O(ε) terms yields the linearized

Navier–Stokes equations:

∂ρ′

∂t
+∇ ·

(
ρ′V + ρv′

)
= 0, (4.5)
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ρ

[
∂v′

∂t
+ v′ · ∇V + V · ∇v′

]
+ ρ′V · ∇V = −∇p′

+
1

ReL̃ref

∇ ·
[
µ
(
∇v′ +∇v′T

)
+ µ′

(
∇V +∇V T

)
+
(
λ∇ · v′ + λ′∇ · V

)
I

]
, (4.6)

ρ

[
∂T ′

∂t
+ v′ · ∇T + V · ∇T ′

]
+ ρ′V · ∇T = (γ − 1)M2

ref

(
∂p′

∂t
+ V · ∇p′ + v′ · ∇p

)
+

1

ReL̃ref
Pr

∇ ·
[
k′∇T + k∇T ′]

+
(γ − 1)M2

ref
ReL̃ref

(
µTr

{[
∇V +

(
∇V

)T] [∇v′ + (∇v′)T
]}

+
µ′

2
Tr

{[
∇V +

(
∇V

)T]2}
+ 2λ

[
∇ · V

]
[∇ · v′] + λ′

[
∇ · V

]2)
,

(4.7)

Density fluctuations are eliminated through the use of the linearized ideal gas equation

of state, Eq. (4.8).

ρ′ =
γM2

ref

T
p′ − ρ

T ′

T
. (4.8)

By formulating the linearized Navier–Stokes equations in terms of general curvilinear

coordinates, Eqs. (4.5)-(4.8) apply to a variety of geometries by substituting the

correct tensor calculus operators. Appendix A.3 provides an overview of finding these

operators using covariant differentiation [56] which is used in this dissertation.

The linearized Navier–Stokes equations and associated stability eigenproblems, are

greatly simplified assuming incompressibility, specifically, the following assumptions

are made: ρ′ = 0, ρ = 1, µ′ = 0, µ = 1, and λ′ = 0. This results in the following

continuity and momentum equations:

∇ · v′ = 0, (4.9)

[
∂v′

∂t
+ v′ · ∇V + V · ∇v′

]
= −∇p′ + 1

ReL̃ref

[
∇2v′ +∇ · (∇v′)T

]
. (4.10)
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The momentum and continuity equations are no longer coupled to the equation of

state and energy equation and can be solved separately.

Boundary-layer flows are considered in the present work in which the parallel flow

assumption is made:

V =
[
U(η, ζ), 0, 0

]T
.

The reference values for non-dimensionalization are the boundary-layer edge values

and the reference length is L̃2
ref = δ̃2 = ν̃e (x̃− x̃vle) /Ũe, where subscript e indicates

edge conditions and x̃ is the streamwise distance downstream of the physical leading

edge and x̃vle is the virtual leading edge location. The static pressure is assumed

constant across the boundary layer, p = 1/γM2
e and ρ = 1/T [57, 55].

In the case of boundary-layer flow in a Cartesian coordinate system, (x, y, z),

the inviscid linearized Navier–Stokes equations for an ideal gas can be reduced to a

single equation for the pressure fluctuations:

(
∂

∂t
+ U

∂

∂x

)
∇ ·

(
T∇p′

)
=

2T
∂U

∂y

∂2p′

∂x∂y
+ 2T

∂U

∂z

∂2p′

∂x∂z
+M2

e

(
∂

∂t
+ U

∂

∂x

)3

p′. (4.11)

In the incompressible limit, Eq. (4.11) converges to the equation previously used

by Hall & Horseman [58] and Henningson [59]. Analytical continuation [21] is

necessary to obtain neutral and damped modes due to a logarithmic singularity in

Tollmien’s inviscid solutions [60]. Solving this single inviscid equation for pressure

fluctuations is preferable to solving Eqs. (4.5)–(4.8) in the inviscid limit since the

pressure gradients are much smaller than the velocity gradients and easier to resolve

numerically, especially in the vicinity of the critical layer.

The preceding summary of linearized Navier–Stokes equations makes no refer-
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ence to stability. Eqs. (4.5)-(4.8) are inhomogeneous in two directions under the

boundary-layer approximations and accept a normal mode substitution:

q′(ξ, η, ζ, t) = q̂(η, ζ)ei(αξ−ωt) + c.c.,

where q′ = [u′, v′, w′, p′, T ′]T , α is the wavenumber associated with ξ, ω is the

temporal wavenumber, and c.c. is the complex-conjugate. In general both α and ω are

complex-valued. For temporal stability α ∈ R, ω ∈ C and for spatial stability α ∈ C,

ω ∈ R. Experiments have shown that spatial stability is a better approximation

for boundary layers [3]. Using the normal mode substitution yields a generalized

eigenvalue problem:

Aq̂ = λBq̂,

where λ is α in the case of spatial stability and ω or c in the case of temporal stability.

The eigenvalue appears nonlinearly in the spatial stability problem and in Eq. 4.11

and is handled through the use of companion matrices [61].

Oftentimes for spatial stability it is more convenient to work with the frequency,

f̃ or F , instead of ω. The non-dimensional frequency is defined as:

F =
2πf̃

Re′Ũe

=
ω

Reδ̃
,

where Re′ = Ũe/ν̃ is the unit Reynolds number. To facilitate comparison between

solvers, temporal growth rates are approximately converted to spatial growth rates

using Gaster’s transformation [60].

41



4.2 Numerical Methods

The incompressible version of Eq. 4.11 has been solved using Floquet theory

for periodic basic states in the spanwise direction and Chebyshev collocation in

the wall-normal-direction [21, 62]. This results in a generalized eigenvalue problem

with a block-diagonal matrix structure and poor sparsity. Significant computational

performance improvement can be achieved by using high-order finite differences [53]

instead of a Floquet approach. Finite-differences naturally result in sparse matrices

allowing for efficient algorithms that do not perform operations on zero-valued

elements. Very high-order finite difference methods can become unstable near the

boundaries of the domain. To resolve this, the FD-q method [63] is used in the

wall-normal direction to ensure uniform interpolation errors in the finite-difference

approximations. For the experiments analyzed in this section, the basic state is

periodic in the z-direction and standard high-order finite differences on a uniform

grid with periodic boundary conditions are used. Fourth-order finite differences were

used in all problems presented in this section.

A rational mapping [60] from ὴ ∈ [−1, 1] to η is used which clusters points within

the boundary layer for the wall-normal direction:

η = a
1 + ὴ

b− ὴ
a =

ηiηmax

ηmax − 2ηi
b = 1 +

2a

ηmax
.

The values of ηi and ηmax roughly correspond to the boundary layer thickness, δ99,

and three to four times δ99, respectively. Results presented in this section use between

150 and 250 discretization points in both the spanwise and wall-normal directions.

The sparse matrices are constructed using Tpetra, a templated distributed sparse

matrix package within the Trilinos project [64]. The generalized eigenvalue problem

is solved using the Arnoldi iteration method [65].
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To target specific internal eigenvalues near σ, a shift-invert transformation is used:

Ax = λBx −→ Cx = (A− σB)−1Bx =
1

λ− σ
x. (4.12)

This transformation maps eigenvalues near σ towards infinity and leads to rapid

convergence for the Arnoldi iterations. In practice, σ is chosen corresponding to

a phase speed cr ∈ [Umin, Umax]. At every iteration, the matrix A − σB must be

inverted. A one-time LU decomposition is computed using PARDISO [66, 67, 68], a

multi-threaded sparse LU decomposition library. Each Arnoldi iteration uses forward

and backward substitution of the LU decomposition to solve this equation:

bi+1 = (A− σB)−1Bbi,

which is then used to form a Krylov subspace [69]:

Kn (C, b0) = span
{
b0, Cb0, C

2b0, . . . , C
n−1b0

}
= span {b0, b1, b2, . . . , bn−1} .

From this subspace an orthonormal basis is extracted into the matrix Vn using

Gram–Schmidt orthonormalization. The problem is then projected onto the upper

Hessenberg matrix Hn:

V H
n CVn =Hn.

For sufficiently large n, the eigenvalues of Hn are approximately equal to the largest

eigenvalues of C. Since Hn is an n×n matrix, dense eigenvalue methods can be used

to quickly obtain these approximate eigenvalues and eigenvectors. If y(j) denotes

the jth eigenvector of the matrix Hn, the corresponding eigenvector to the original
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problem is found as:

x(j) = Vny
(j).

The Arnoldi iteration method produces an unordered set of eigenvalues and

corresponding eigenvectors. Many of the results below consider the behavior of

these modes as a parameter such as Reδ̃ or F is varied. Thus, a method of tracking

the instability modes is necessary. There are several potential tracking methods

including nearest neighbor searches using eigenvalue perturbation methods or linear

extrapolation. The current approach uses correlation of the û disturbance quantities.

The correlation of two mode shapes is computed using:

〈
û(1), û(2)

〉
=

∣∣∣∣∣ cov
(
û(1), û(2)

)√
cov (û(1), û(1)) cov (û(2), û(2))

∣∣∣∣∣ ,
where cov indicates covariance. Matching progresses in order of growth rate with the

most unstable modes matched first. If multiple modes from the second set have a

correlation greater than 0.65 with a mode from the first set, the matching mode is

selected using a nearest neighbor search of a linear extrapolation of this subset of

eigenvalues.

Later in this work, the BiGlobal code will be used to compute transient distur-

bances that maximize secondary instability growth rates. Since the optimization will

require many executions of the BiGlobal code, it must be efficient. Table 4.1 shows

typical solution times and peak memory usage for all solvers. The inviscid solvers are

nearly an order-of-magnitude faster than the viscous solvers. However, the inviscid

mode shapes do not compare as well with the experimental data. This comparison is

shown in the next section.

In this section, two coordinate systems are used: Cartesian coordinates, (x, y, z),
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Table 4.1: Typical single solution times of the BiGlobal stability solvers for all
combinations of inviscid/viscous, temporal/spatial, and incompressible/compressible
assumptions. Measurements are based on computations of the low-speed discrete
roughness wake using a 150× 150 grid, 4th-order finite differences, Krylov-subspace
length of 100, and 8 threads.

Viscous Spatial Compressible Time, [s] Peak Memory, [GB]
6 0.3

X 11 0.6
X 12 0.6

X X 13 0.7
X 46 2.0
X X 54 2.5
X X 106 3.5
X X X 115 4.3

for the flat-plate data and orthogonal coordinates, (x, y, φ), for the cone geometry.

For the flat-plate, the x coordinate is aligned with the freestream direction, y is the

coordinate normal to the wall, and z is the spanwise coordinate. The cone coordinate

system is defined by its transformation to Cartesian coordinates x̄j:

x̄1 = x cos θ − y sin θ

x̄2 = −(R + y cos θ + x sin θ) sinφ

x̄3 = (R + y cos θ + x sin θ) cosφ,

where x is the distance along the surface of the cone from the measurement plane, y is

the wall-normal distance from the surface of the cone, φ is the azimuthal coordinate,

θ is the cone half-angle, and R is the cone radius at the measurement plane.

4.3 Low-Speed Secondary Instabilities

In a recent low-speed experiment, Kuester & White [70] examined the “shielding”

effect of small distributed roughness around larger amplitude discrete roughness in
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the Texas A&M University Klebanoff–Saric Wind Tunnel [71]. The authors tested

three different spanwise-periodic roughness configurations, a deterministic distributed

roughness patch, a slanted rectangle, and the combination of the two by taking

detailed hot-wire measurements at multiple streamwise locations in the wake. For

each case, the periodic spanwise wavelength was 32 mm. The 1 mm tall discrete

roughness was located 918 mm downstream of the leading edge and the 0.85 mm tall

distributed roughness between 878 and 1006 mm downstream of the leading edge.

The roughness was manufactured using rapid prototyping and installed flush in a

flat-plate boundary layer. Only the discrete and combined roughness cases will be

considered.

Tests were performed at Re′ = 544.3 mm−1 and Re′ = 690.5 mm−1 resulting in

roughness Reynolds numbers of Rekk = 151 and Rekk = 220. At Rekk = 151, both

roughness configurations generated low- and high-speed streaks in the boundary layer

but did not cause transition. At Rekk = 220, both roughness configurations generated

a turbulent wedge downstream. For the discrete configuration, the wedge formed

15 boundary layer thicknesses downstream, whereas for the combined roughness,

transition was delayed by 2 boundary layer thicknesses due to a weak shielding

effect whereby the distributed roughness reduced the wake instability of the discrete

element [72]. The measured unsteady disturbance growth also suggests a smaller

instability growth rate in the wake of the combined compared to the discrete roughness.

Figure 4.1a shows lines of steady contours of U and color contours of u′rms at

x̃ = 950 mm for the discrete roughness configuration. Figure 4.1b shows the basic

state at x̃ = 950 mm for the combined roughness configuration. Weaker gradients

are visible in the “combined” roughness basic state which is caused by the shielding

effect. The wakes are asymmetric because of the asymmetry in the slanted rectangle

discrete roughness. Most of the results presented in the next section correspond to
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ỹ
,
[m

m
]

0

0.5

1

1.5

2

u
′ rm

s

Figure 4.1: Experimental incompressible phase-lock averaged basic states and stream-
wise fluctuations from Kuester & White [70]. Lines are steady contours of U , colors
are contours of u′rms. a) Discrete roughness basic state at x̃ = 950 mm. b) Combined
roughness basic state at x̃ = 950 mm.

the basic states at this streamwise location.

For the low-speed discrete roughness case, there are two unstable modes at x̃ = 950

mm. The most unstable is a varicose-type instability and the more stable mode is of

sinuous-type. The asymmetry of the basic state precludes any symmetry assumptions

in the computations and makes distinguishing varicose and sinuous instabilities

difficult. Nevertheless, examining the two modes shown in Fig. 4.2 both varicose and

sinuous characteristics can be seen. The varicose-type mode has a large center lobe

with two smaller amplitude and nearly 180◦ out-of-phase side lobes. The sinuous-type

mode has two large lobes that are nearly 180◦ out-of-phase with each other.

The color contours of u′rms in Fig. 4.1 include contributions from the entire

frequency range. For more meaningful comparisons to the BiGlobal calculations, the
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unsteady fluctuations for both roughness configurations have been digitally filtered

between 430− 470 Hz. The growth of the filtered unsteady disturbance energy for

the discrete roughness case is plotted along with the spatial growth rate of the

most unstable mode at x̃ = 950 mm and f̃ = 450 Hz from the BiGlobal stability

calculations for each solver in Fig. 4.3. Although the BiGlobal growth rates are slightly

lower than seen in the experiment, the agreement is quite good. The discrepancy

may result from the parallel flow assumption, nonlinear effects, and additional energy

content from the sinuous instability.

The filtered unsteady fluctuations are compared to the most unstable BiGlobal

mode shapes for all solvers at matching frequencies in Fig. 4.4 for the discrete

roughness configuration and in Fig. 4.5 for the combined roughness configuration.

All mode shapes are similar but there is a noticeable distinction between the two

inviscid modes and the two viscous modes. The calculated varicose-type viscous mode

shapes agree very well with the measured unsteady fluctuations for both roughness

configurations.

Additionally, spatial N -factors based on measurements at x̃ = 928, 935, 942.5,

and 950 mm were computed for several unstable modes and are compared to the

experimental temporal power spectrum measured in the vicinity of the largest unsteady

fluctuations in Figs. 4.6 and 4.7 for the discrete and combined roughness cases,

respectively. The agreement between the experimental power spectra and the BiGlobal

spatial N -factors is excellent.

Kuester & White [70] observed that the lower-amplitude distributed roughness

“shielded” the larger-amplitude discrete roughness in the combined case. In agreement

with this observation, the largest N -factor computed for the combined roughness

case is about 10% less than the largest for the discrete case. However, there are

two additional unstable modes (referred to as mode III and mode IV) present in the
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Figure 4.2: BiGlobal mode shapes computed for the low-speed, discrete roughness
case at f̃ = 450 Hz and x̃ = 950 mm using the incompressible, viscous, spatial solver.
Colors indicate |û| and the relative phase, φ, of û is indicated for the main lobes. a)
Varicose-type mode. b) Sinuous-type mode.
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Figure 4.3: Comparison of experimentally measured energy evolution and BiGlobal
growth rates for all solvers for the discrete roughness case. Stability calculations
were performed for f̃ = 450 Hz at x̃ = 950 mm, blue lines are experimental unsteady
disturbance energy over a narrow frequency band.

combined roughness case that were not present in the discrete case.

4.4 High-Speed Secondary Instabilities

Separately, Sharp [73] conducted a hypersonic roughness experiment in the Texas

A&M Mach 6 Quiet Tunnel [74]. The experiment measured the transiently growing

wake of an azimuthally spaced array of 18 cube-like discrete roughness elements on a

slightly blunted 5◦ half-angle straight cone. The roughness height is approximately

equal to the boundary-layer thickness at the roughness location. Detailed wake

measurements were obtained using a Pitot probe mounted on an azimuthal traverse.

Despite the limited (∼40 second) run time of the facility, detailed contour maps of both

the steady and unsteady total pressure at multiple streamwise locations were obtained

by matching run-to-run tunnel conditions. Three unit Reynolds numbers were tested

but only the largest, Re′ = 9.4 × 106 m−1, is considered here. Measurements were

obtained at three streamwise locations, x̃/L̃s = 0.86, 0.90, and 0.94, where x̃ is the
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Figure 4.4: Comparison of BiGlobal modes shapes to the discrete roughness experi-
mental data. Top plots are |û| for f̃ = 450 Hz from stability calculations for all solvers,
bottom plot is u′rms digitally band-pass filtered over 430 - 470 Hz and phase-lock
averaged in span from the incompressible experiment of Kuester & White [70].

51



d)

e)

−15 −10 −5 0 5 10 15
0

1

2

3

z̃, [mm]

ỹ
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Figure 4.5: Comparison of BiGlobal modes shapes to the combined roughness experi-
mental data. Top plots are |û| for f̃ = 450 Hz from stability calculations for all solvers,
bottom plot is u′rms digitally band-pass filtered over 430 - 470 Hz and phase-lock
averaged in span from the incompressible experiment of Kuester & White [70].
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Figure 4.6: Comparison of spatial and viscous BiGlobal N -factors to experimental
temporal power spectrum for the discrete roughness case. Blue line is the spectrum
at x̃ = 950 mm at a point in the wake near the largest u′rms fluctuations. Red and
green lines correspond to the spatial N -factors for the varicose- and sinuous-type
instabilities, respectively.
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Figure 4.7: Comparison of spatial and viscous BiGlobal N -factors to experimental
temporal power spectrum for the combined roughness case. Blue line is the spectrum
at x̃ = 950 mm at a point in the wake near the largest u′rms fluctuations. Red and
green lines correspond to the spatial N -factors for the varicose- and sinuous-type
instabilities, respectively. Two additional modes with small positive N -factors were
computed.
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Figure 4.8: Phase-lock averaged Mach number contours at three streamwise locations
from the hypersonic experiment of Sharp [73]. a) x̃/L̃s = 0.86. b) x̃/L̃s = 0.90. c)
x̃/L̃s = 0.94

.

axial distance from the equivalent sharp tip of the cone and L̃s is the axial length

of the equivalent sharp cone. Figure 4.8 shows contours of experimentally measured

Mach number at each streamwise location. For use in the stability calculations these

Mach number contours will be manipulated to extract basic state U and T values.

Steady high- and low-speed streaks are measured which monotonically grow in

the streamwise direction. Between the first and second streamwise locations the

total unsteady disturbance energy decreases. However, between the second and the
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last streamwise locations the total unsteady disturbance energy shows slight growth.

Total steady disturbance energy is defined as:

Erms =

∞∫
0

γpM ′2
rmsdy,

where M ′
rms is the azimuthal root-mean-square of the steady spanwise Mach number

disturbance and the total unsteady disturbance energy is defined as:

erms =

∞∫
0

λφ∫
0

p′0,rmsdφdy,

where p0,rms is the temporal root-mean-square of the unsteady total pressure [73].

The behavior, which was found in Sharp [73], is shown in Fig. 4.9. The evolution

of the steady and unsteady flow is consistent with the mid-wake region observed at

low speeds by Ergin & White [8]. Figure 4.10 shows the measured unsteady total

pressure fluctuations at x̃/L̃s = 0.94 measured by Sharp [73].

Since the primary measurements in the M∞ = 6 experiment by Sharp [73] were

obtained using a Pitot tube, only the Mach number is measured and only at a few x

locations. The BiGlobal stability methods developed in section 4.2 require both the

streamwise velocity, U(y, φ), and the temperature profile, T (y, φ). Since the Mach

number is a function of both U(y, φ) and T (y, φ) the problem is ill-posed and more

information is needed.

The simple assumption that streamwise vortices merely redistribute parcels of

fluid is used to provide closure. It is assumed that streamwise vortices redistribute

temperature and streamwise velocity equivalently. Thus the basic-state temperature
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Figure 4.10: Phase-lock averaged unsteady total pressure fluctuations at x̃/L̃s = 0.94
measured in the experiment by Sharp [73]. All measurements were above the sonic
line.
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is assumed to be a function of the basic-state streamwise velocity:

T (y, φ) = f(U(y, φ)).

The coupling between temperature and streamwise velocity is calibrated using a

compressible self-similar solution of the boundary-layer equations under the Mangler–

Levy–Lees transformation [55]. This allows the basic state information to be found

by solving this nonlinear equation for U(y, φ):

M(y, φ) =
ŨeU(y, φ)√

γR̃T̃ef(U(y, φ))
,

where R̃ is the gas constant for air, 287 J kg−1 K−1.

Due to numerous difficulties performing hypersonic experiments, the mean and

unsteady measurements are not as well resolved as for the low-speed experiment. The

two lowest points for the x̃/L̃s = 0.94 case and the lowest point for the x̃/L̃s = 0.90

case were omitted. The experimental basic state quantities are extrapolated to

the wall whose temperature was measured in the experiment. A Fourier transform

is taken in the azimuthal direction of the basic state quantities and only the DC

component and fundamental wavelength are retained. Symmetry is also enforced

since the roughness is symmetric. Figure 4.11 shows both the streamwise velocity

and temperature basic states extracted using the procedure above for the data at

x̃/L̃s = 0.86.

Because of the ambiguity in obtaining the basic state temperature and velocity, only

qualitative comparisons can be made between the BiGlobal stability results and the

experimental data. All calculations for the hypersonic experiment were obtained using

the compressible, viscous, and spatial BiGlobal solver. Figure 4.12 shows the spatial
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Figure 4.11: Hypersonic basic state at x̃/L̃s = 0.86. The sonic line is indicated by
the black line. a) Contour plot of streamwise velocity basic state. b) Temperature
basic state contours.

secondary growth rates as a function of frequency for x̃/L̃s = 0.86, x̃/L̃s = 0.90, and

x̃/L̃s = 0.94. Weak instabilities, shown in Fig. 4.12, are present at both x̃/L̃s = 0.86

and x̃/L̃s = 0.90. These results are consistent with the experimentally measured

evolution of the unsteady disturbance energy shown in Fig. 4.9.

Mode shapes of p̂ and T̂ were converted to mode shapes of total pressure using

linearized isentropic relations. The calculated total pressure disturbances of the four

most unstable modes at x̃/L̃s = 0.94 for f̃1 = 30.1 kHz and f̃2 = 65 kHz are shown

in Figs. 4.13 and 4.14, respectively. The total pressure fluctuations are confined to a

narrow band high in the boundary layer similar to the experimental measurements

shown in Fig. 4.10. Additionally, a combination of the two dominant instability modes,

shown in Figs. 4.13a and 4.14a, are likely present in the unsteady total pressure

measurements shown in Fig. 4.10. The results for x̃/L̃s = 0.94 suggest that although
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Figure 4.12: Spatial secondary instability growth rates for the hypersonic experiment
of Sharp [73]. Matching colors between plots do not necessarily indicate matching
modes. a) x̃/L̃s = 0.86. b) x̃/L̃s = 0.90. c) x̃/L̃s = 0.94.

the Sharp [73] experiment did not reveal transition, only a slightly higher Reynolds

number or a longer cone might have transitioned.

4.5 Summary & Conclusions

This section described the development of a framework of BiGlobal stability

solvers for incompressible/compressible, temporal/spatial, viscous/inviscid secondary

instability computations of roughness-induced transient growth. These solvers are
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Figure 4.13: Computed total pressure disturbance mode shapes at f̃ = 30.1 kHz
corresponding to x̃/L̃s = 0.94 in the hypersonic experiment by Sharp [73]. The sonic
line is indicated by the black line. a) cr = 0.86, αi = −0.0025. b) cr = 0.88, αi =
−0.0018. c) cr = 0.89, αi = −0.0004. d) cr = 0.86, αi = −0.0004.
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Figure 4.14: Computed total pressure disturbance mode shapes at f̃ = 65 kHz
corresponding to x̃/L̃s = 0.94 in the hypersonic experiment by Sharp [73]. The sonic
line is indicated by the black line. a) cr = 0.89, αi = −0.0044. b) cr = 0.89, αi =
−0.0017. c) cr = 0.89, αi = −0.0015. d) cr = 0.91, αi = −0.0002.
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fast and robust, both of which are qualities needed for their use in the main results of

Section 5. The solvers were applied to experimental basic states for both low-speed

and hypersonic flows.

Kuester & White [70] performed a low-speed experiment to examine the shielding

effect of smaller distributed roughness surrounding larger discrete roughness. BiGlobal

secondary instabilities were computed for two roughness configurations: discrete

roughness only and combined discrete roughness shielded by distributed roughness.

The computed growth rates and mode shapes were compared for each BiGlobal solver.

The computed growth rates are slightly lower than the measured unsteady disturbance

energy growth rate over a similar frequency range, however, the most unstable

streamwise velocity mode shape shows excellent agreement with the experimental

data. Spatial N -factors were computed for each roughness case and the agreement is

excellent when compared to the experimental temporal power spectrum at a point

near the largest u′rms fluctuations.

Sharp [73] obtained detailed measurements of the local Mach number behind

an azimuthally spaced array of roughness elements. The assumption that transient

growth only redistributes parcels of fluid was used to extract the basic state tempera-

ture and velocity from the measured Mach numbers. As a result, only qualitative

comparisons can be made between the computations and experiment. Nevertheless,

the spectrum of secondary instabilities at the three streamwise locations is consistent

with the measured total unsteady disturbance energy growth and decay. Addition-

ally, the dominate instability mode shapes agree well with unsteady total pressure

measurements at the most downstream location.

Validation of the BiGlobal secondary instability codes against both low- and

high-speed experiments provides increased confidence in the continued use of the

solvers. The inviscid secondary instability mode shapes are noticeably different from
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the otherwise equivalent viscous mode shapes. The inviscid secondary instability

growth rates were also approximately 30% higher than the viscous growth rates

for the low-speed experiment. Despite these short-comings, the inviscid solvers are

almost an order-of-magnitude faster in execution time than the viscous solvers. The

effect of temporal or spatial analysis on the secondary instability results is much

less significant than the differences between the inviscid and viscous solvers. Very

little improvement in execution time is achieved using the temporal/viscous solvers

compared to the spatial/viscous solvers. Therefore the spatial/viscous solver will be

used exclusively for the optimization in Section 5.
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5. SECONDARY INSTABILITY BASED OPTIMAL DISTURBANCES

While optimal disturbances computed by Andersson et al. [17], Tumin &

Reshotko [48], and others [16, 46] show some agreement with transition due

to freestream turbulence, they show many differences with physically realized

roughness-induced transient growth [20, 24]. Denissen & White [20] showed that a

periodic array of cylindrical roughness elements within a flat-plate boundary layer

excites continuous spectrum modes of the LSEs with larger wall-normal wave numbers.

Traditional optimal disturbances, those which maximize the steady disturbance

energy growth, excite continuous spectrum modes with smaller wall-normal wave

numbers and smaller spatial decay rates compared to those excited by roughness.

Denissen & White [24] also show that roughness-induced transient growth is much

more unstable to secondary instabilities than traditional optimal disturbances.

Therefore optimal disturbances are not the “most-dangerous” disturbances for

transition.

5.1 Theory and Motivation

To make optimal disturbances more relevant to surface roughness, using objective

functions other than the steady disturbance kinetic energy is required. Objective

functions that provide a measure of secondary instability growth rate are particularly

interesting. Optimizing over spatial growth rates or N -factors allow the following

questions to be answered:

• What is the most destabilizing disturbance that has a maximum spanwise

steady disturbance amplitude, maxx,y(u
′
rms)?

• What is the most stabilizing disturbance that has a maximum spanwise steady
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disturbance amplitude, maxx,y(u
′
rms)?

The answer to the first question will be more representative of the “most-dangerous”

transient disturbance than traditional optimal disturbances. The answer to the second

will shed light on potential control possibilities. The solution to both problems is

formulated in general terms as:

maximize g(Qk, αk, q̂k)

subject to f(Qk, αk, q̂k) = 0.

As an example, the objective and constraint functions for finding the disturbance of

fixed disturbance amplitude maxx,y(u
′
rms) that reaches the largest spatial growth rate

is:

g(q̂k, αk, Qk) = −imag (αNx−1)

f(q̂k, αk, Qk) =


Ak(Qk)q̂k − αkBk(Qk)q̂k

q̂Hk q̂k − 1

Fi(Q0, Q1, . . . , Qi)

 = 0

where Ak(Qk)q̂k − αkBk(Qk)q̂k = 0 is the BiGlobal eigenvalue problem, Fi(Q0,

Q1, . . ., Qi) = 0 represents propagation of an initial disturbance downstream,

k = 0, 1, . . . , Nx− 1, and i = 1, 2, . . . , Nx− 1. Two x indices, i and k, are necessary

since Q0 is the vector of free parameters. Multiple constraint functions are necessary

due to the complexity of the problem. The first and second constraint equations

specify the stability equations for the modified basic state. While the third constraint

represents disturbance propagation from the initial to final streamwise location.

In order to accommodate the parabolic Navier–Stokes and BiGlobal secondary

instability codes, a robust optimization method must be developed. This is a nonlinear

optimization problem with many free parameters. Most nonlinear optimization meth-
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ods require the gradient of the objective function with respect to the free parameters

to be known. In this case, the free parameters are the initial velocity disturbances.

Computing the gradient using finite differences is prohibitively expensive so adjoint

optimization is used. There are two types of adjoint optimization: discrete and

continuous [75]. Both methods have been used extensively in the literature. Continu-

ous adjoint methods first derive the adjoint equation directly from the continuous

governing equations. Discrete adjoint methods derive the adjoint of the discretized

governing equations. This research uses discrete adjoint optimization to take ad-

vantage of the independently developed PNS and BiGlobal secondary instability

codes. The advantage of the discrete approach is straightforward implementation of

boundary conditions.

The gradient of a general objective function can be written as: [76]

dg

dp

∣∣∣∣
f=0

=
∂g

∂p
− λT ∂f

∂p
,

where the adjoint equation for λ is:

(
∂f

∂x

)T

λ =

(
∂g

∂x

)T

. (5.1)

To put the most-critical disturbance problem in this notation, we note that:

x = [q̂k, αk, Qi]
T ,

p = Q0,

λ =
[
λ̂k, βk,Λi

]
.
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Expanding ∂f
∂x

results in a very sparse matrix:

∂f

∂x
=



(A0 − α0B0) 0 0 0 −B0q̂0 0 0 0 0 0 0

0 (A1 − α1B1) 0 0 0 −B1q̂1 0 0
[

∂
∂Q1

(A1 − α1B1)
]
q̂1 0 0

0 0 (A2 − α2B2) 0 0 0 −B2q̂2 0 0
[

∂
∂Q2

(A2 − α1B2)
]
q̂2 0

0 0 0
. . . 0 0 0

. . . 0 0
. . .

2q̂H0 0 0 0 0 0 0 0 0 0 0

0 2q̂H1 0 0 0 0 0 0 0 0 0

0 0 2q̂H1 0 0 0 0 0 0 0 0

0 0 0
. . . 0 0 0 0 0 0 0

0 0 0 0 0 0 0 0 ∂F1

∂Q1
0 0

0 0 0 0 0 0 0 0 ∂F2

∂Q1

∂F2

∂Q2
0

0 0 0 0 0 0 0 0
... ... . . .



.
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When the adjoint equation, Eq. (5.1), is fully expanded, an optimization algorithm

becomes apparent:

1. Solve the forward PNS equations:

Fi(Q0, Q1, . . . , Qi) = 0

∂Fi

∂Qi

∆q = −Fi

Q
(n+1)
i = Q

(n)
i +∆q

2. Compute the BiGlobal stability at each x-location:

Akq̂k − αkBkq̂k = 0

3. Compute the objective function g(Qk, q̂k, αk)

4. Compute the left-eigenvectors and normalization of BiGlobal stability problem

(the adjoint solution):

(Ak − αkBk)
T λ̂k =

(
∂g

∂q̂k

)T

− 2βkq̂k

For solutions to exist, βk = 1
2
q̂Tk

(
∂g
∂q̂k

)T

because (Ak − αkBk)
T is singular.

However for all cases considered the objective function does not depend on the

BiGlobal modes shapes, q̂k, so the right-hand-side of the above equation is zero.

The following eigenvalue problem and normalization equation is then solved:

(Ak − αkBk)
T λ̂k = 0
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−q̂TkBT
k λ̂k =

∂g

∂αk

.

5. March the adjoint PNS equations upstream in x with inhomogeneous forcing

from the adjoint BiGlobal solution:

(
∂Fj

∂Qi

)T

Λj =

(
∂g

∂Qi

)T

−
Nx−1∑
j=i+1

(
∂Fj

∂Qi

)T

Λj −
{

∂

∂Qi

[(Ai − αiBi) q̂i]

}T

λ̂i

6. Finally, find the gradient using:

dg

dQ0

=
∂g

∂Q0

−
Nx−1∑
j=1

ΛT
j

∂Fj

∂Q0

− λ̂T
0

{
∂

∂Q0

[(A0 − α0B0) q̂0]

}

In some cases, the gradient must be smoothed in order to ensure independence from

discretization. The smoothing method is the same as that advocated by Siva &

Jameson [75]. The smoothed gradient is found as a solution to the following diffusion

equation: (
I − ε∇2

) dg

dQ0

= <
(
dg

dQ0

)
,

where dg
dQ0

is the smoothed gradient, ε is a smoothing parameter, and < projects the

gradient onto the real axis.

The smoothing mechanism in the above equation can be demonstrated by assuming

that the gradients are simple one-dimensional sinusoids, dg
dQ0

= Geikx and dg
dQ0

= Geikx.

Substituting these expressions into the smoothing equation shows G = (1 + εk2)−1G.

Thus, short wavelength fluctuations are highly damped. This smoothing method is

only used for the traditional optimal disturbance objective function. The cases that

include secondary instabilities in the optimization do not require smoothing.
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Figure 5.1: Flow chart showing the adjoint optimization process. The direct equations
refers to both the PNS and BiGlobal solvers and gradient smoothing is only used as
necessary.

This research makes use of the gradient-descent algorithm. At each iteration, the

adjoint method given above is used to compute the gradient of the objective function

with respect to the initial state vector. The initial state vector is then updated as:

Q
(n+1)
0 = Q

(n)
0 + γ

dg

dQ0

,

where γ is a parameter that controls the convergence rate. The γ parameter is positive

for maximization problems and negative for minimization problems. If γ is too large,

the convergence may suffer due to overshoot. At every iteration the disturbance

kinetic energy of the initial state is set equal to that of the previous iteration:

Q
(n+1)
0 =

E(Q(n)
0 )

E(Q(n+1)
0 )

Q
(n+1)
0 . (5.2)
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This optimization algorithm is summarized in Fig. 5.1.

Enforcement of the maxx,y(u
′
rms) parameter is carried out using a predictor-

corrector step of the propagation equations. The initial state from Eq. (5.2) is

propagated by solving the PNS equations. The corrector step is obtained by linearly

rescaling the predictor step to achieve the desired maxx,y(u
′
rms):

Q
(n+1)
0 |corr. =

maxx,y(u
′
rms)

R(Q
(n+1)
i )

Q
(n+1)
0 |pred.,

where R(Q
(n+1)
i ) is an operator that computes the maximum spanwise u′rms over the

entire streamwise and wall-normal domain. The corrector initial condition, Q(n+1)
0 |corr.,

is then used for the remainder of the iteration.

The optimization method outlined above allows the evaluation of several different

objective functions. Each of these cases reveal crucial details of the growth and

breakdown of transient disturbances. The three main cases that will be considered are:

traditional optimal disturbances, most-stabilizing disturbances, and most-destabilizing

disturbances.

Ensuring converged solutions is important any time an iterative method is used.

The optimization method used here consists of multiple separate codes that each must

converge. First, the PNS code iterates until the Newton iterations have converged.

The criteria used to assess this convergence was discussed in Section 3.2. In addition

to the Newton iterations, convergence of the PNS code as a whole is assessed by

comparing results from fine, medium, and coarse discretizations in the x, y, and z

directions. The same comparison of discretizations is used to assess the convergence

of the BiGlobal secondary instability code.
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The gradient descent algorithm must also converge. Convergence is achieved

when:
E(Q(n+1)

0 −Q(n)
0 )

E(Q(n)
0 )

< 10−5. (5.3)

A large portion of the following results consist of streamwise vortices. It is

desirable to monitor the changes in location and strength of these streamwise vortices

as parameters are varied. The λ2 vortex identification method developed by Jeong &

Hussain [77] will be used here. This method consists of computing the eigenvalues of

the following tensor at every location in the flow:

T = S2 +Q2, (5.4)

where S and Q are the symmetric and antisymmetric portions of the velocity gradient:

S =
1

2

[
∇u+ (∇u)T

]
,

Q =
1

2

[
∇u− (∇u)T

]
.

If λ = [λ1, λ2, λ3]
T is a vector containing the eigenvalues of T where λ1 > λ2 > λ3,

then λ2 is the quantity of interest. Locations with λ2 < 0 are within a vortex core,

with the center of the core at the local λ2 minimum.

The previous work by Andersson et al. [17], Tumin & Reshotko [48], and others

will be referred to in this section as traditional optimal disturbances. The objective

function for traditional optimal disturbances is the steady disturbance kinetic energy

at the optimization location divided by the initial upstream disturbance kinetic energy.

Using the present optimization method to compute these traditional disturbances is

used to validate the optimization scheme before incorporating secondary instabilities.
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Figure 5.2 is a plot of the traditional optimal disturbance energy growth normalized

by the change in Reynolds number between the upstream and optimization locations

for several spanwise wavenumbers and disturbance amplitudes. Results using the PNS

solver are compared to those from Andersson et al. [17] and Tumin & Reshotko [48].

The results from both of those works are for Rexf
− Rex0 = 106. Andersson et

al. [17] used the leading edge as the initial upstream location, or Rex0 = 0. Tumin &

Reshotko [48] employed the parallel flow assumption. The results of the present work

were obtained using Rex0 = 0.25× 106 and Rexf
= 1.25× 106.

Traditional optimal growth factors computed here are of similar magnitude and

are largest for similar spanwise wavenumbers. The results of the present method

follow those of Andersson et al. [17] better than those of Ref. [48]. The difference is

attributed to nonparallel effects. The difference in amplitude between the present

results and Ref. [17] is due to differences in Rex0 . Figure 5.3 shows the structure of

counter-rotating streamwise vortices located high in the boundary layer that is typical

of traditional optimal disturbances. The magnitude and direction of the arrows is

computed using the initial spanwise and wall-normal velocity disturbances. At this

initial location the streamwise velocity disturbance is zero. Similarly to Zuccher

et al. [46], the optimization method used here allows nonlinear traditional optimal

disturbances to be computed. Figure 5.4 shows the effects of increasing maxx,y(u
′
rms)

on the optimal disturbance kinetic energy growth. As maxx,y(u
′
rms) increases, the

optimal growth factor decreases.

5.1.1 Most-Unstable Disturbances

As mentioned several times now, the main goal of this research is to compute

the initial disturbances that maximize secondary instability growth rates. The

most-destabilizing disturbances are computed by maximizing the spatial growth
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Figure 5.2: Optimal disturbance energy growth normalized by Reynolds number
for several spanwise wavenumbers. Results using the present optimization method
are compared to the results of Andersson et al. [17] and Tumin & Reshotko [48].
The present optimization method was used for multiple disturbance amplitudes,
maxx,y(u

′
rms): 0.001 ( ), 0.01 ( ), 0.05 ( ), 0.10 ( ), 0.15 ( ). Results for β < 0.2 did

not converge.
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Figure 5.3: Similar to the results of Andersson et al. [17] and Tumin & Reshotko [48],
the traditional optimal disturbance is counter-rotating streamwise vortices high in
the boundary layer.
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Figure 5.4: Comparison of linear and nonlinear optimal transient growth using the
disturbance energy objective function.
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Figure 5.5: This is an example sinuous mode shape that is the result of the initial
disturbance which maximizes the sinuous instability growth rate at Rexf

= 0.32×106.
Colors are contours of |û|.

rate of the sinuous secondary instability. The sinuous instability has been shown to

have a primary role in roughness-induced transition [24] and is the main instability

investigated here. Figure 5.5 is an example sinuous mode shape that is the result of an

initial disturbance that maximizes the sinuous mode growth rate at Rexf
= 0.32×106.

Figure 5.6 shows a vector plot of the initial disturbance that produces the sinuous

instability in Figure 5.5. The most-destabilizing initial disturbance is counter-rotating

streamwise vortices located much lower in the boundary layer than traditional optimal

disturbances (Fig. 5.3). Additionally, the vortices are clustered more closely together

as opposed to the even spanwise spacing of traditional optimal disturbances. Both of

these characteristic have been observed in roughness experiments [18, 19, 8].

By performing the optimization for the most-destabilizing disturbance at multiple
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Figure 5.6: This is a plot of a characteristic initial disturbance at Rex0 = 0.25× 106

which maximizes the secondary instability growth rate at Rexf
= 0.32×106. Compared

to the traditional optimal disturbance, the streamwise vortices are closer together
which increases gradients to which the sinuous instability is sensitive.
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Figure 5.7: Envelope of the most unstable spatial growth rates for disturbances with
a maximum maxx,y(u

′
rms) = 0.08 versus Reynolds number based on the streamwise

coordinate. Disturbances were computed using Rex0 = 0.25× 106, F = 300× 10−6,
and β0 = 0.45.

locations, an envelope of the maximum spatial growth rate is obtained for steady

transient disturbances with a maximum amplitude of maxx,y(u
′
rms) = 0.08. This

envelope is shown in Fig. 5.7. The corresponding maximum spatial N -factors are

shown in Fig. 5.8. Both of these plots show that if transition does occur, it will be

initiated in the immediate vicinity of the roughness. This effect was also observed by

Denissen & White [24].

A key question in the literature [21, 46] is: “What is the minimum disturbance

amplitude that can destabilize secondary instabilities?” Using traditional optimal

disturbance theory the minimum amplitude for sinuous instability is A = 0.26 or
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Figure 5.8: Maximum spatial N -factor over the entire domain as a function of
the location of secondary instability optimization for maxx,y(u

′
rms) = 0.08, Rex0 =

0.25× 106, F = 300× 10−6, and β0 = 0.45.
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maxx,y(u
′
rms) = 18% [21]. The amplitude A is defined as:

A =
1

2

[
max
y,z

(U − UB)− min
y,z

(U − UB)

]
,

where U is the streamwise velocity basic state and UB is the streamwise velocity of

the Blasius solution. The optimization method developed here makes addressing

this question easier. Figure 5.9 is a plot of max(−αi) versus disturbance spanwise

root-mean-square amplitude for several optimization locations. This shows that a

sinuous instability can occur for disturbances amplitudes as low as maxx,y(u
′
rms) =

2.5%. This is consistent with roughness experiments that see subcritical transition

with steady disturbance amplitudes only slightly higher than this value [8] and much

lower than those reported by Andersson et al. [21].

Figure 5.10 is a plot of max(−αi) as a function of nondimensional frequency for

several disturbance amplitudes. The envelope of sinuous mode growth rates reaches a

local maximum between F = 150 × 10−6 and F = 300 × 10−6. Sinuous modes are

able to achieve higher growth rates as F increases though. Convergence was not

achieved beyond F = 700× 10−6. Ergin & White [8] observed a band of amplified

frequencies from 300 to 800 Hz, or approximately F = 200 × 10−6 to 600 × 10−6

which is consistent with the results in Fig. 5.10.

5.1.2 Tollmien–Schlichting Wave Stabilization

Previous researchers [22, 23, 78, 79] have shown that streamwise streaks in a

boundary-layer can be stabilizing for TS waves. This optimization computes the dis-

turbance that is most effective at TS wave stabilization. For both the most-stabilizing

and the most-destabilizing disturbances, the objective function is g = −imag(αxf
)

or the spatial growth rate at the optimization location. The computation of the

objective function gradient is the same. A change in sign on the gradient descent

79



0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09
−0.01

0

0.01

0.02

0.03

maxx,y(u
′
rms)

m
ax

(−
α
i)

Rexf
= 0.28× 106

Rexf
= 0.27× 106

Rexf
= 0.265× 106

Figure 5.9: Maximum spatial sinuous mode growth rate as a function of the maximum
transient growth steady amplitude, maxx,y(u

′
rms), for three optimization locations:

Rexf
= 0.265 × 106, 0.27 × 106, and 0.28 × 106. For all cases shown in this plot,

Rex0 = 0.25× 106, β0 = 0.45, and F = 300× 10−6.
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Figure 5.10: Maximum spatial sinuous mode growth rate as a function of nondi-
mensional frequency for maxx,y(u

′
rms) = 0.06, 0.07, and 0.08, Rex0 = 0.25 × 106,

Rexf
= 0.30× 106, and β0 = 0.45.

81



0.5 1 1.5 2 2.5 3 3.5 4 4.5
−0.01

−0.008

−0.006

−0.004

−0.002

0

0.002

0.004

0.006

0.008

Rexf
× 106

m
a
x
(−

α
i)

maxx,y(u
′
rms) = 0.05

maxx,y(u
′
rms) = 0.10

maxx,y(u
′
rms) = 0.15

Blasius Flow

Figure 5.11: Minimization of spatial TS wave instability growth rate for several
spanwise streak amplitudes, maxx,y(u

′
rms), as Rexf

is varied compared to the TS
growth rate for Blasius flow.

factor changes whether a maximization or minimization problem is being solved. The

most-stabilizing disturbances are computed to minimize the spatial growth rate of

TS waves and so the sign of the gradient descent factor is chosen accordingly.

Figure 5.11 is a plot of TS wave growth rate as a function of optimization

location for several disturbance amplitudes. The optimization results are compared

to the baseline Blasius boundary layer TS wave. The TS wave is stabilized for all

optimization locations computed. The minimized TS wave growth rate as a function

of nondimensional frequency is shown in Fig. 5.12. Comparison is again made to the

Blasius TS wave growth rate. Based on these results, streamwise streaks are better

at stabilizing TS waves at higher frequencies. Figure 5.13 is a plot of the minimized

TS wave growth rate as a function of spanwise wavenumber. For Rex0 = 0.25× 106,
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Figure 5.12: Minimization of spatial TS wave instability growth rate for several
spanwise streak amplitudes, maxx,y(u

′
rms), for various nondimensional frequencies, F ,

compared to the TS growth rate for Blasius flow.
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Figure 5.13: Minimization of spatial TS wave instability growth rate for varying
spanwise wavenumber, β0, compared to the TS growth rate for Blasius flow. Rex0 =
0.25× 106, Rexf

= 0.30× 106, F = 25× 10−6, and maxx,y(u
′
rms) = 0.05.

Rexf
= 0.30 × 106, F = 25 × 10−6, and maxx,y(u

′
rms) = 0.05, the best spanwise

wavenumber for TS wave stabilization is β0 = 0.18.

The initial disturbance that is best at stabilizing TS waves is similar to traditional

optimal disturbances except located slightly lower in the boundary layer. An example

of the streamwise vortex structure is shown in Fig. 5.14. An example of a spanwise

modulated TS wave streamwise velocity mode shape is shown in Fig. 5.15.

There are a few caveats to using these disturbances to attempt to delay transition.

First, if the transient growth induced streaks grow too large sinuous instabilities may

appear. Second, while the TS wave growth rate is reduced by these disturbances, the

resulting spanwise modulated TS wave may be unstable to secondary instabilities at

a lower amplitude due to increased three dimensionality.
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Figure 5.14: This is a plot of a characteristic initial disturbance which minimizes
the TS wave growth rate at Rexf

= 3.0 × 106, F = 25 × 10−6, β0 = 0.45, and
maxx,y(u

′
rms) = 0.15. This initial disturbance is similar to the traditional optimal

disturbances.
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Figure 5.15: This is an example spanwise modulated TS mode shape that is the result
of the initial disturbance which minimizes the spatial growth rate at Rexf

= 3.0×106,
F = 25× 10−6, β0 = 0.45, and maxx,y(u

′
rms) = 0.15.
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6. CONCLUSIONS AND FUTURE WORK

Transient growth helps explain roughness-induced transition to turbulence. Unlike

primary instabilities of the LSE, such as TS waves, the disturbance growth rate is

strongly dependent on receptivity. This fact is the main challenge in understanding

transient growth. Previous researchers [17, 16, 48] addressed receptivity by computing

the initial disturbances that caused the greatest disturbance kinetic energy growth.

Although this approach sidesteps the receptivity question, the results were dissimilar

to several experimental observations [18, 49, 19, 8] of laminar boundary layers

encountering surface roughness.

Tumin [42] and Denissen & White [20] focused on the characterization of recep-

tivity for known flows by extracting the amplitude functions for continuous spectrum

modes of the LSE. This characterization unequivocally demonstrates that optimal

disturbances and roughness-induced transient growth excite different continuous spec-

trum modes. In order to develop transient growth theory that is more characteristic

of roughness, finding the disturbances that maximize secondary instability growth

rate was the primary goal of this dissertation.

Nonlinear adjoint optimization of solutions of the PNS and BiGlobal stability

equations has been used to compute optimal disturbances satisfying three objective

functions: disturbance kinetic energy growth, sinuous instability growth rate, and TS

wave growth rate. Computations involving the first objective function, referred to as

traditional optimal disturbances, serve to validate the present optimization methods

with previous results in literature. Maximization of sinuous instability growth rate

results in transient disturbances similar to roughness-induced transient growth. And,

finally, minimization of the TS wave growth rate reveals potential transition control
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possibilities.

The traditional optimal disturbance results show good agreement with Andersson

et al. [17] with slight differences in amplitude since the present computations were not

started at the leading edge. Nonlinear effects reduce the disturbance kinetic energy

growth by 25% at a disturbance amplitude of maxx,y(u
′
rms) = 20%.

Maximizing the sinuous instability growth rate yields initial disturbances similar

to observations from experiments and DNS. The initial disturbance that leads to the

largest sinuous growth rate consists of counter-rotating streamwise vortices grouped

together and located low in the boundary layer. Sinuous instabilities were found

for disturbance amplitudes as low as maxx,y(u
′
rms) = 2.5%. Similar to roughness

experiments and the results of Denissen & White [24] there is a much larger potential

for unstable sinuous modes in the near vicinity of the initial disturbance. Sinuous

modes are shown to be unstable at nondimensional frequencies as low as F = 50×10−6

and up to at least F = 700× 10−6.

Several previous researchers [22, 23, 78, 79] have shown that streamwise streaks

can stabilize TS waves. However, this work was all based off of using linear traditional

optimal disturbances as the initial condition. This research directly computes the

disturbances that minimize the TS wave growth rate. These disturbances are evenly

spaced similar to traditional optimal disturbances but are located slightly lower in

the boundary layer. Significant stabilization can be realized, especially at higher

frequencies. If one were to attempt to use these disturbances to delay transition, care

would need to be taken not to generate too large of an amplitude and destabilize a

sinuous mode.

Much of the parameter space for all three objective functions remains unexplored.

Thus a future goal is the complete exploration of the parameter space. To accomplish

this, the stability of both the PNS and optimization codes must be improved. A
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first step in this direction would be to perform a Von Neumann stability analysis of

the PNS code. This is not a straightforward task because there is nonuniform grid

spacing in the wall-normal direction.

Once the parameter space has been more fully explored for incompressible Blasius

flow, the next step would be to explore the parameter space for flow around an

airfoil. This would be particularly interesting for the most-destabilizing disturbances

as an analog for surface roughness and for the stabilization of TS waves for potential

transition control.

For understanding future in-situ roughness configurations it is recommended to

obtain the steady laminar flow using standard CFD methods with no turbulence

modeling then compute the stability using the BiGlobal methods developed in

Section 4.
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APPENDIX A

NUMERICAL METHODS

A.1 Finite Differences

The advent and widespread use of digital computers during the 20th century

has enabled the simulation of many complex physical problems governed by partial

differential equations (PDEs). Computers are able to obtain approximate solutions

to these PDEs by approximating the continuous domain by many discrete points.

The PDEs are then enforced at these discrete points using approximations of the

derivatives. The main method of derivative approximation used in this work is finite

differences.

Finite differences are approximations to the derivative of a quantity found by

the weighted summation of the quantity at nearby points, where the weights depend

solely on the discretization. For example, the derivative of a general function f(x)

can be written as:
df

dx

∣∣∣∣
x=xi

≈ δx[f ](xi) =

q/2∑
j=−q/2

cjfi+j, (A.1)

where fi are the function values at the discrete x coordinates xi for i = 0, 2, . . . , Nx,

Nx + 1 is the total number of discrete x coordinates, q + 1 is the number of points

used to approximate the derivative, and cj are the finite difference weights determined

from xi. In the above equation a short-hand notation for finite differences has been

introduced:
df

dx

∣∣∣∣
x=xi

≈ δx[f ](xi).

In this notation, δ is the finite difference operator, the subscript is the coordinate
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along which the operator acts, the term in square brackets is the quantity that it

acts on, and the discrete coordinate(s) in the parenthesis indicate the location of

the approximation. Since the finite difference expansion in Eq. (A.1) has an equal

number of points on both sides of the discrete coordinate where the derivative is

being approximated, it is referred to as a central difference. Forwards and backwards

differences are obtained when the limits on the summation are changed to [0, q] and

[−q, 0], respectively. Forwards and backwards differences are often used at domain

boundaries and for numerical considerations such as the use of upwind schemes for

handling shockwaves in compressible CFD. In this section only central differences

will be considered, however, similar methods can be used to obtain the weights cj for

both forward and backwards differences.

There are two main methods of obtaining the weights, cj, for finite differences:

Taylor series expansion and Lagrange interpolation. The Taylor series expansion

technique is best for demonstrating the order of accuracy but the Lagrange interpola-

tion method makes the process of determining the weights for arbitrary spaced grids

trivial.

To obtain the finite difference approximation, δx[f ](xi), first expand f(x) around

x = xi:

f(x) = f(xi) +
df(xi)

dx
(x− xi) +

d2f(xi)

dx2
(x− xi)

2

2
+
d3f(xi)

dx3
(x− xi)

3

3!
+ · · · .

Now lets use the above Taylor series expansion to obtain expressions for f(xi−1) and

f(xi+1):

f(xi−1) = f(xi) +
df(xi)

dx
(xi−1 − xi) +

d2f(xi)

dx2
(xi−1 − xi)

2

2!

+
d3f(xi)

dx3
(xi−1 − xi)

3

3!
+ · · · ,

(A.2)
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f(xi+1) = f(xi) +
df(xi)

dx
(xi+1 − xi) +

d2f(xi)

dx2
(xi+1 − xi)

2

2!

+
d3f(xi)

dx3
(xi+1 − xi)

3

3!
+ · · · .

(A.3)

Next Eq. (A.2) is subtracted from Eq. (A.3):

f(xi+1)− f(xi−1) =
df(xi)

dx
(xi+1 − xi−1) +

d2f(xi)

dx2

[
(xi+1 − xi)

2 − (xi−1 − xi)
2

2!

]

+
d3f(xi)

dx3

[
(xi+1 − xi)

3 − (xi−1 − xi)
3

3!

]
+ · · · .

(A.4)

After rearranging, an expression for the derivative is found:

df(xi)

dx
=
f(xi+1)− f(xi−1)

(xi+1 − xi−1)
+
d2f(xi)

dx2

[
(xi−1 − xi)

2 − (xi+1 − xi)
2

2! (xi+1 − xi−1)

]

+
d3f(xi)

dx3

[
(xi−1 − xi)

3 − (xi+1 − xi)
3

3! (xi+1 − xi−1)

]
+ · · · .

(A.5)

For the special case of a uniform grid with spacing ∆x, the finite difference expression

above reduces to:

df(xi)

dx
=
f(xi+1)− f(xi−1)

2∆x
− d3f(xi)

dx3

[
∆x2

3!

]
+ · · · . (A.6)

The last term in the equation above is the leading truncation error of this finite

difference approximation. The only portion of this term that the user has any control

over is the grid spacing, ∆x. This finite difference approximation is classified as

2nd-order because the truncation error decreases proportionally to ∆x2 as the grid

spacing is reduced. It is important to note that this expansion is only 1st-order for

non-uniform grid spacing. For uniform grid spacing the order of accuracy of central
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finite differences is equal to q, where q is defined as in Eq. (A.1).

The other method of obtaining the finite difference weights is called Lagrange

interpolation. A Lagrange interpolating polynomial [80] is the polynomial of least

degree passing through the points (xj, fj) for j = 0, 2, . . . , q. The Lagrange

interpolation polynomial, P (x) can be written as:

P (x) =

q∑
j=0

Pj(x), (A.7)

where

Pj(x) = fj

q∏
k=0
k 6=j

x− xk
xj − xk

.

The finite difference weights are easily found by differentiating Eq. (A.7). For this

work, the algorithm developed by Fornberg [81] has been used to obtain the finite

difference weights on arbitrarily spaced grids.

A.2 FD-q Method

Higher-order finite differences (in this work defined as q > 2) can lead to inaccurate

results near the edges of bounded domains. To illustrate this point, consider the

following polynomial approximation of the function u(x):

u(x) ≈ fi(x) =

si+q∑
j=si

cij(x)uj,

where

si = 0, . . . , 0︸ ︷︷ ︸
q/2 times

, 0, 1, . . . , Nx − q︸ ︷︷ ︸
centered FD

, Nx − q, . . . , Nx − q︸ ︷︷ ︸
q/2 times

.
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Derivatives of u(x) can then be found by taking derivatives of the interpolation

polynomial fi(x). The error of this approximation is defined as:

εi(x) = u(x)− fi(x) = πi(x)
u(q+1)(x)

(q + 1)!
,

where

πi(x) =

q∏
m=0

(x− xsi+m).

The error consists of two components: the (q + 1)st derivative of u(x) and the

polynomial πi(x). Nothing can be done about the smoothness of the function being

approximated, but πi(x) can be minimized over the domain of interest. [63] High-order

finite differences become unstable near the domain boundaries because πi(x) grows

rapidly as q is increased.

One solution developed by Hermanns & Hernandez [63], referred to as the FD-q

method, is to solve for the grid xj such that πi(x) is uniform over the domain. This

entails solving a system of nonlinear equations to obtain the grid xj = [−1, 1] that

must be mapped to the physical domain. As q → Nx, the grid converges to the

Gauss–Lobatto–Chebyshev nodes. [82]

A.3 Curvilinear Coordinates

The equations in sections 3.2 & 4.1 were left in terms of tensor calculus operators so

that they could be applied to general curvilinear coordinates. A curvilinear coordinate

system can be defined by the associated transformation to Cartesian coordinates:

x̄i = x̄i(x1, x2, x3),
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where x̄i are the coordinates of a Cartesian coordinate system and xj are coordinates

of a general coordinate system [56]. The metric tensor is then defined as:

gij =
∂x̄k

∂xi
∂x̄k

∂xj
.

For orthogonal coordinates, the metric tensor is diagonal and the following definition

is convenient:

gii = h2i (no summation).

All differentiation by the tensor calculus operators is expressed using covariant

differentiation. The covariant derivative is defined for contravariant vectors as:

Ai
;j =

∂Ai

∂xj
+ Γi

jkA
k,

where Ai is an arbitrary contravariant vector and Γi
jk is the Christoffel symbol of the

2nd kind and is defined as:

Γi
jk =

1

2
gim (gmj,k + gmk,j − gjk,m) .

Differentiation of 2nd-order tensors is similar:

T i
j;k =

∂T i
j

∂xk
+ Γi

kmT
m
j − Γm

kjT
i
m.

Because the basic state data used is physical, the covariant and contravariant vectors

and tensors must be converted to physical components. Physical components of

contravariant and covariant vectors in orthogonal coordinates can be obtained as:

A(i) = hiA
i,
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A(i) =
1

hi
Ai,

respectively with no summation on i. Physical components of tensors are obtained as

if each index was treated independently, for example:

T (ij) =
hi
hj
T i
j ,

where T is an arbitrary second-order tensor and there is no summation on i or j. As

an example, the convective operator is written in orthogonal coordinates as:

A · ∇B =
∑
j

A(j)
hi
hj

[
Bi

;j

]
=

∑
j,k

A(j)
hi
hj

[
∂Bi

∂xj
+ Γi

jkB
k

]
=

∑
j,k

A(j)
hi
hj

[
∂

∂xj

(
B(i)

hi

)
+ Γi

jk

B(k)

hk

]
=

∑
j,k

A(j)
hi
hj

[
1

hi

∂B(i)

∂xj
− B(i)

h2i

∂hi
∂xj

+ Γi
jk

B(k)

hk

]
,

with no summation on i.

A.4 Newton Iterations

Solutions to a linear system of equations are easily computed using methods such

as LU decomposition or Gauss–Seidel. However, solutions to nonlinear systems of

equations are not as easily obtained. One method to solve nonlinear systems is called
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Newton iterations. First a general system of equations is written as:

f1(x1, x2, . . . , xn) = 0

f2(x1, x2, . . . , xn) = 0

...

fn(x1, x2, . . . , xn) = 0

and the values of x = [x1, x2, . . . , xn]
T that satisfy the equations above is desired.

This system of equations can be written succinctly as:

F (x) = 0. (A.8)

Newton iterations are the generalization of Newton’s method for one variable to

n variables. Similarly, an initial guess, x0 for the solution is needed. A linear

approximation of F can be written as:

F (x) ≈ F (x0) +
∂F

∂x

∣∣∣∣
x0

(x− x0) , (A.9)

where

∂F

∂x

∣∣∣∣
x0

=



∂f1
∂x1

(x0)
∂f1
∂x2

(x0)
∂f1
∂x3

(x0) · · · ∂f1
∂xn

(x0)

∂f2
∂x1

(x0)
∂f2
∂x2

(x0)
∂f2
∂x3

(x0) · · · ∂f2
∂xn

(x0)

... ... ... . . . ...
∂fn
∂x1

(x0)
∂fn
∂x2

(x0)
∂fn
∂x3

(x0) · · · ∂fn
∂xn

(x0)


.

A solution to the nonlinear system is obtained when F (x) = 0. By substituting this

into Eq. (A.9):

F (x0) +
∂F

∂x

∣∣∣∣
x0

(x1 − x0) = 0, (A.10)
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an improved solution estimate, x1, is obtained:

x1 = x0 −

[
∂F

∂x

∣∣∣∣
x0

]−1

F (x0). (A.11)

Since ∂F
∂x

(xi) is a known matrix, it is more common to write the Newton iteration

method as a two step process:

∂F

∂x

∣∣∣∣
xi

∆x = −F (xi),

xi+1 = xi +∆x.

(A.12)

Eq. (A.12) is a linear equation that can be solved using LU decomposition.

A.5 Arnoldi Iteration Method

The power iteration [83] method is a widely used technique for obtaining the

largest eigenvalue of:

Cx = λx. (A.13)

It is a very simple algorithm that consists of repeated multiplication of the matrix C

with an arbitrary non-zero starting vector b(0):

b(n+1) = Cb(n). (A.14)

After each step, b(n+1) is normalized so that
∥∥b(n+1)

∥∥
2
= 1. The solution is converged

when: ∥∥b(n+1) − b(n)
∥∥ < ε,
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where ε is some tolerance and xmax = b(n+1) is the eigenvector solution with the largest

eigenvalue. The associated largest eigenvalue can then be found from Eq. (A.13):

λmax =
xH

maxCxmax

xH
maxxmax

,

where superscript H indicates the complex-conjugate transpose.

To demonstrate how the power iteration method works, the initial starting vector

can be expanded into a sum of the eigenvectors of C:

b(0) =
N∑
i

cixi,

ci 6= 0,

and N is the order of the matrix C. Plugging the expression for b(0) into Eq. (A.14)

and using Eq. (A.13) shows why the power iteration method works:

b(1) = Cb(0) = C
N∑
i

cixi =
N∑
i

ciλixi.

Extending the above equation in terms of the number of iterations n yields:

b(n+1) = Cb(n) =
N∑
i

ciλ
n+1
i xi.

For a moderately large number of iterations, say n = 10, b(n+1) is dominated by the

contributions of the eigenvector with largest λi. Practical implementations normalize

b(n+1) after each iteration so that
∥∥b(n+1)

∥∥
2
= 1 and start with a randomized vector

to ensure ci 6= 0.

The Arnoldi iteration method [65] is very similar to the power iteration method.
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Where the power iteration method only finds the eigensolution with largest eigenvalue,

the Arnoldi iteration method finds the n largest eigenvalues. This is done by using

information from each iteration to form a Krylov subspace [69]:

Kn (C, b0) = span
{
b0, Cb0, C

2b0, . . . , C
n−1b0

}
= span {b0, b1, b2, . . . , bn−1} .

From this subspace an orthonormal basis is extracted into the matrix Vn using

Gram–Schmidt orthonormalization. The problem is then projected onto the upper

Hessenberg matrix Hn:

V H
n CVn =Hn.

For sufficiently large n, the eigenvalues of Hn are approximately equal to the largest

eigenvalues of C. Since Hn is an n×n matrix, dense eigenvalue methods can be used

to quickly obtain these approximate eigenvalues and eigenvectors. If y(j) denotes

the jth eigenvector of the matrix Hn, the corresponding eigenvector to the original

problem is found as:

x(j) = Vny
(j).

The Arnoldi iteration method is summarized in Algorithm 1 where EIG is a

function that uses QR decomposition to return all eigenvalues and eigenvectors. Λn

is a diagonal matrix containing the n largest eigenvalues and Xn is a matrix whose

columns are the corresponding eigenvectors.

Generalized eigenvalue problems can be accommodated by changing the matrix-

vector multiplication of C with (A− σB)−1B where σ is a guess of the eigenvalue

and A and B correspond to the generalized eigenvalue problem in Eq. (A.15):

Ax = λBx. (A.15)
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Algorithm 1 Arnoldi iteration algorithm.
procedure Arnoldi(C)

for k from 2 to n− 1 do
qk = Cqk−1

for j from 1 to k − 1 do
hj,k−1 = q

H
j qk

qk = qk − hj,k−1qj
end for
hk,k−1 = ‖qk‖2
qk =

qk
hk,k−1

end for

Hn =


h1,1 h1,2 h1,3 · · · h1,n
h2,1 h2,2 h2,3 · · · h2,n
0 h3,2 h3,3 · · · h3,n
... . . . . . . . . . ...
0 · · · 0 hn,n−1 hn,n


Vn =

[
q1 q2 · · · qn

][
Λn Yn

]
= EIG(Hn)

Xn = VnYn

return Λn, Xn

end procedure
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Eigenvalues of the generalized problem are recovered from the shift-inverted problem

by:

λ(i) =
1

γ(i)
+ σ,

where γ(i) is the ith eigenvalue of the shift-inverted problem.
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APPENDIX B

NUMERICAL TOOLS

Several numerical tools have been developed in the course of this research. The

main functions of these codes are: multimode decomposition, solving the PNS

equations, computing BiGlobal secondary instabilities, and adjoint optimization. All

of these codes are written in C++ using the KeyCpp and Trilinos software libraries and

are incorporated into the single library named the Transient Growth Library. Due

to the continual evolution of software, this appendix will not give implementation

details of the codes but rather give a high-level overview. Otherwise, this appendix

would very quickly become out-dated.

Multimode Decomposition computes the continuous spectrum amplitude curves,

CA,B
k , for a given velocity profile. The multimode decomposition code is largely

based upon Tumin [42], Denissen & White [20], and Denissen [38]. This library

consists of 3 main classes. The base class is the BES class. The BES class describes

the Biorthogonal Eigenfunction System (BES) for time-invariant, incompressible

Blasius flow. The main job of the BES class is to compute direct and adjoint

solutions of the BES. These direct and adjoint solutions are then used by the

classes CompleteData and PartialData to perform multimode decomposition.

Parabolized Navier–Stokes Solver computes downstream solutions to the PNS

equations given an initial state. The PNS code has been developed similarly to

the methods of Paredes & Theofilis [84] and uses finite-differences and Newton

iterations to solve the nonlinear problem.
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BiGlobal Secondary Instability Solver computes the inviscid/viscous, tempo-

ral/spatial, and incompressible/compressible stability of basic states that are

inhomogeneous in two directions. Finite-differences are used to discretize the LSE

resulting in a generalized eigenvalue problem. The eigenvalue problem is solved

using a shift-invert transformation, LU decomposition, and Arnoldi iterations.

Optimization Solver uses adjoint optimization to compute the initial disturbances

that maximize or minimize objective functions based on BiGlobal secondary

instabilities. This solver also accommodates the traditional definition of an optimal

disturbance which maximizes the growth of the disturbance kinetic energy.
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APPENDIX C

MATRIX OPERATORS

C.1 Linear Stability Equation (LSE) Operators for 1D Boundary Layers

A =



0 1 0 0 0 0

i (αU − ω)Reδ + α2 + β2 0 Reδ ∂U∂y iαReδ 0 0

−iα 0 0 0 −iβ 0

0 − iα
Reδ

−α2+β2

Reδ
− i (αU − ω) 0 0 − iβ

Reδ

0 0 0 0 0 1

0 0 0 iβReδ i (αU − ω)Reδ + α2 + β2 0


(C.1)
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Ã1 =



0 1 0 0 0 0 0 0 0

−iωReδ + β2 0 Reδ ∂U∂y 0 0 0 0 0 0

0 0 0 0 −iβ 0 0 0 0

0 0 − β2

Reδ
+ iω 0 0 − iβ

Reδ
0 0 0

0 0 0 0 0 1 0 0 0

0 0 0 iβReδ −iωReδ + β2 0 0 0 0

0 0 0 0 0 0 1 0 0

0 0 0 0 0 0 0 1 0

0 0 0 0 0 0 0 0 1


(C.2)

Ã2 =



0 0 0 0 0 0 0 0 0

UReδ 0 0 Reδ 0 0 −1 0 0

−1 0 0 0 0 0 0 0 0

0 − 1
Reδ

−U 0 0 0 0 1
Reδ

0

0 0 0 0 0 0 0 0 0

0 0 0 0 UReδ 0 0 0 −1

−1 0 0 0 0 0 0 0 0

0 0 −1 0 0 0 0 0 0

0 0 0 0 −1 0 0 0 0



(C.3)

Ã = Ã1 + iαÃ2 (C.4)
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