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ABSTRACT 

 

Drought has become and continues to be a major concern throughout many areas 

of the United States. To better manage water supplies, municipalities are constantly in 

search of ways to conserve and ration water. In this process, they must identify the areas 

of importance to continue to allocate sufficient water and others in which to make 

reductions. Home lawns and turfgrass in general have been viewed as luxuries rather 

than necessities, and therefore lawns and turfgrass are the first areas to experience 

watering reductions. These come in the form of municipal water restrictions in which, 

depending on the severity of the drought, will limit the extent to which a lawn can be 

irrigated during conservation periods.  

Limited knowledge of turfgrass maintenance under drought conditions and water 

restrictions has created challenges for home owners’ and turf managers’ inabilities to 

take care of turf. Selecting cultivars and management practices that result in a higher 

tolerance of drought can be the difference between having a healthy lawn and a dead 

lawn when water is decreased. Maintenance during establishment is arguably just as 

important as proper cultivar selection. To combat limited moisture in the upper part of 

the soil, deep rooting will help turf to utilize water well below the soil surface. In areas 

where warm-season turfgrass enters winter dormancy, cool season turfgrasses have 

historically been overseeded to maintain green color throughout the dormancy period. 

However, this practice may not be feasible under limited irrigation frequency associated 

with water restriction periods. Alternatives that do not require supplemental water, such 
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as the use of colorants, have been increasingly utilized on areas that do not endure 

excessive wear.     

The objectives of this study are to (1) evaluate establishment cultural practices on 

turf quality and root development of ‘Floratam’ and newly released St. Augustinegrass 

cultivar ‘TamStar’ during a simulated water variance period and (2) evaluate the 

performance of overseeded, colorant treated, and untreated ‘Tifway’ bermudagrass under 

water restriction and traffic. 
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NOMENCLATURE 

 

PGR Plant growth regulator 

TE Trinexapac-ethyl 

VWC Volumetric water content 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

Municipal Water Restrictions 

 Over the last 50 years, drought-like conditions have been ever increasing 

throughout the United States. Due to lack of precipitation and growing demand for 

potable water in areas extending throughout the southern and western portions of the 

United States, municipalities have forced to enact water usage restrictions in an effort to 

conserve limited water supplies. As the population grows, the demand for water 

increases, which leads to greater importance of allocating water usage toward 

necessities. Between the years 2010 and 2030, Texas is expected to see an increase in 

population by 36.6% (Census, 2005). Without proper regulations from municipalities, 

water consumption will eventually exceed supply. In fact, given our current growth rate, 

an estimated 8.3 million acre feet of additional water supply would be needed by 2060 if 

demand remains unchanged (Texas Water Development Board, 2012). 

 Prioritizing water usage has become vital to maintaining an adequate supply 

without completely depleting water reserves. Currently, depending on the month, 

irrigation accounts for up to 60% of total residential water demand in Texas, and is 

expected to remain the highest category until 2060 (Texas Water Development Board, 

2012). Irrigation for residential and commercial landscapes has become an area in which 

stricter restrictions have been placed to reduce the amount of water waste. In Texas, 
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approximately 1,000 of the roughly 4,600 total public water systems already has or is 

currently imposing restrictions (Combs, 2012). Depending on water supplies and 

severity of drought, municipalities have enacted regulations that limit the duration of 

watering to particular days in order to balance water demands. The San Antonio Water 

System (SAWS), as well as other municipal water purveyors in Texas have developed a 

stage-based system to determine the frequency of irrigation in accordance to the severity 

of drought. All stages from 1 to 3 limit residents to irrigate before 11:00 am or after 7:00 

pm (San Antonio Water System 2013). As the stage increases, the frequency at which 

residents can use irrigation systems decreases. For example in the San Antonio area, 

stages 1 and 2 allow for irrigation once a week, stage 3 once every other week and stage 

4 prohibits the use of irrigation systems entirely, whereas in Allen Texas, homeowners 

can water up to twice a week during stage 1 before cutting back to similar restrictions 

from stages 2 to 4 (San Antonio Water System 2013, City of Allen, TX 2015). 

Variance Periods 

 Variance requests during drought are often submitted for areas such as newly 

planted lawns or athletic facilities. Per request, municipalities will determine whether the 

variance is warranted and will only be considered if the current drought stage doesn’t 

exceed stage 2 (San Antonio Water System, 2013). Newly planted residential lawns that 

have had the variance request approved will be allowed to water daily for up to 5 weeks 

(San Antonio Water System, 2013). Athletic facilities often aren’t able to maintain a safe 

and playable surface under strict water restrictions because of an inability to sustain 
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turfgrass density under the combined effects of drought, traffic and wear. Variance 

requests can be submitted for athletic facilities and irrigation frequency will be 

determined after the completion of an irrigation audit (San Antonio Water System, 

2013). 

 Landscape water restrictions present unique challenges in terms of turfgrass 

management, and little research has focused on best establishment and management 

practices under these conditions.  Difficulties in the establishment of warm-season 

turfgrasses have become more pronounced depending on the type of installation. While 

sodding is most common, techniques such as plugging or sprigging are cheaper options 

but require 60 days of optimal care to become fully established with total ground cover 

(Chalmers and McAfee, 2010).  These methods become unfavorable under any stage of 

drought since irrigation would presumably become limited after the 5-week variance 

period. Additionally, to enable for optimal care during the variance period, proper 

installation of irrigation systems becomes vital. Often, irrigation systems are not 

properly installed or adjusted, which can lead to as much as a 50% of water lost as 

runoff. 

 As rapid population growth and droughts continue, water conservation 

throughout the southern and western portions of the United States will become 

increasing more important. As water restrictions are imposed more frequently, turf 

managers must become increasingly familiar with proper establishment and management 

techniques which promote turf health and survival.  
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St. Augustinegrass Sod Establishment During Water Restrictions 

 St. Augustinegrass (Stenotaphrum secundatum (Walt.) Kuntze) is a widely used 

turfgrass throughout the southern United States, found as far east as the Carolinas and as 

far west as California. St. Augustinegrass is the primary lawn grass in Texas due to its 

tolerance to high summer temperatures as well as shade tolerance and ability to keep its 

color at lower temperatures than bermudagrass (Cynodon dactylon L.)  (Duble, 2013). 

St. Augustinegrass is commonly established by sodding, but in areas where water is 

highly accessible it can also be established by sprigging or plugging. Ideal establishment 

time is mid-spring through mid-summer when soil temperatures range from 18 to 24 °C 

(Goatley et al., 2009). Although not the most commonly used cultivar in Texas, 

‘Floratam’ St. Augustinegrass has become widely used across the southeastern U.S. for 

home lawns, largely due to its above average drought tolerance and its resistance to the 

St. Augustine Decline (SAD) virus as well as chinch bugs (Duble, 2013).   

Establishment 

Homeowners with newly planted lawns are often challenged with establishing a 

strong stand during the variance period, commonly lasting 35 days. Once water 

restrictions are again imposed following this variance period, homeowners are likely to 

see the quality of their lawn diminish drastically under drought stress. During the first 

three month after planting, fertilization is critical. Contingent on soil test results, an 

application of a complete fertilizer should be applied during the planting and up to 4.9 g 

nitrogen m
-2

 may be required every 4-6 weeks during the growing season (Trenholm et 
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al., 2000; Duble, 2013).. Atrazine is also commonly recommended during establishment 

as a pre-emergent herbicide without causing early growth retardation (Johnson, 1973). 

The application of a pre-emergence herbicide will allow the St. Augustinegrass to utilize 

all available water and nutrients without competition from weeds. Proper watering 

frequency and duration during establishment will allow the newly planted St. 

Augustinegrass to maintain moisture without becoming too wet or too dry. Frequent, 

light watering during the first 7 to 10 days is recommended to allow the sod to rapidly 

establish roots before reducing irrigation frequency further for the following 10 days 

(Trenholm et al., 2000). Ideally, during the last 10 days of the variance period 0.635 to 

1.27 cm of water should be applied two to three times weekly or as needed (Trenholm et 

al., 2000).  

Rooting 

Due to the potentially abrupt change in irrigation frequency following the 

variance period, drought-resistant mechanisms become vital to the long term success of 

the St. Augustinegrass. Rooting depth has been shown to be a key factor contributing to 

the survival of the turfgrass under drought conditions (Marcum et al., 1995; Carrow, 

1996; Steinke et al., 2011; Levitt, 2012). The majority (~91%) of St. Augustinegrass 

roots occur in the top 30 cm of the soil profile (Peacock and Dudeck, 1985).  The 

percentage of rooting at depths greater than 30 cm is minimal compared to that in the 

upper 30 cm. During drought conditions, however, these deeper roots allow St. 
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Augustinegrass to survive (or avoid drought altogether) by extracting the deeper water 

reserves as water becomes limiting in the top 30 cm as soils dry.  

In order to promote deeper rooting within established turf, it has been 

recommended to raise the height of cut and to mow less frequently (Madison, 1962).  

Wright (1962) found in a study involving Blue Panicgrass (Panicum antidotale Retz.), 

that raising the height of cut significantly increased root weight. Standard 

recommendations for managing St. Augustinegrass turf are to mow within the range of 

of 8.89-10.16 cm. Frequent mowing at lower heights has generally contributed to more 

shallow root development (Salaiz et al., 1995; Trenholm et al., 2000; Liu and Huang, 

2002). 

Plant Growth Regulators 

While mowing height and frequency can impact root development, another 

potential chemical option for affecting root development of sod may be the use of plant 

growth regulators (PGRs), specifically gibberellic acid inhibitors, either prior to or after 

sodding. PGRs are divided into two groups, type I and type II, depending on their 

specific effects on plant growth regulation. Type I PGRs are foliar absorbed and inhibit 

cell elongation while type II PGRs are root absorbed and interfere with gibberellic acid 

biosynthesis (McCarty and Whitwell, 2006).  Trinexapac-ethyl (TE) (4-[Cyclopropyl-a-

hydroxymethylene]-3,5-dioxo-cyclohexanecarboxylic acid ethylester)  is commonly 

used on turfgrass to limit shoot growth by inhibiting gibberellin acid synthesis which 

ultimately allowed a reduction in mowing frequency (Adams et al., 1992; Fagerness and 
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Penner, 1998; Ervin and Koski, 2001). McCarty et al. (2004) conducted an experiment to 

examine the effects of plant growth regulators on St. Augustinegrass and found that 

mowing frequency could effectively be reduced by 50% with the use of TE. In this same 

study, authors also reported a minimal decrease in seed head production from a single 

application of TE. Not only will TE help in the reduction of leaf elongation but can also 

have secondary benefits on rooting and tillering of turfgrasses (Ervin and Koski, 1998; 

Beasley et al., 2005). A study from Beasley (2005) on ‘Moonlight’ Kentucky bluegrass 

(Poa pratensis) showed a significant increase in the number of tillers 3 weeks after 

application of TE at a rate of0.27 kg ha
-1

. In the same study, root length and root surface 

area also increased in response to TE. The use of TE could help homeowners or sports 

field managers decrease the frequency of mowing. Limited information is currently 

available regarding plant growth regulator effects on St. Augustinegrass. Thus, more 

data is needed to determine if they have positive benefits particularly during early 

establishment. 

Overseeding During Winter Bermudagrass Dormancy 

 Hybrid bermudagrass (Cynodon dactylon x C. Transvaalensis Burtt-Davey) is the 

most common warm-season grass to be overseeded during winter dormancy due to its 

wide usage on sports fields and golf courses across the transition zone and southern U.S.. 

The transition zone extends from the east coast to the west coast in areas in which winter 

temperatures are too cold for warm-season grass growth and summers too hot for cool-

season grass growth. Regions where mean temperatures during winter months range 
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from 4 to 24 °C are well suited for overseeding of dormant warm season turf (Trlica, 

2013). Most turf managers overseed to improve the playability of the field during the 

winter months and also for aesthetic purposes (Willis et al., 2007). On golf courses, it is 

common for greens to be overseeded with cool-season grasses including red fescue 

(Festuca rubra), creeping bentgrass (Agrostis stolonifera), annual ryegrass (Lolium 

multiflorum), or perennial ryegrass (Lolium perenne) (Ward et. al, 1974).  

 For sport complexes and golf courses that are expected to support a high level of 

play and provide superior playability during the winter dormancy of the warm-season 

grass, it is vital for turf managers to establish a stand of cool-season grass to withstand 

the usage and help protect the playability of the surface (Mazur and Rice, 1999; Thoms 

et al., 2011). The time required to reach full establishment will be determined by the 

usage schedule.  For instance, a multi-use field may only have 2-3 weeks to establish a 

stand of ryegrass due to a short transition between football and soccer. Mazur and Rice 

(1999) determined that overseeding with higher rates of ’Gator’ perennial ryegrass 

ranging from 150 to 180 g·m‾² resulted in an established ryegrass stand capable of 

holding up to traffic within 30 days of planting, while rates of 120 g·m‾² required 60 

days.  Even lower rates of 90 g·m‾² required 120 days for full establishment. Thus, it is 

not uncommon for perennial ryegrass to be overseeded at rates as high as 150 to 200 

g·m‾², however, these plants will remain in a much more juvenile stage of maturity 

during the winter period (Ward et al., 1974; Duble, 1978; Schmidt and Shoulders, 1980). 

Duble (1978) found that lower seeding rates resulted in more tillering and overall 

stronger plants which became an issue when the bermudagrass started coming out of 
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dormancy in spring, resulting in delayed transition and unacceptable turf quality. 

Athletic field managers, who are increasingly concerned with the transition period, tend 

to overseed at rates between 49 to 73 g·m‾² (Powell and Bergstrom, 2009). Of course, 

cost may ultimately dictate seeding rates, as higher rates can result in costs of $5,000 per 

acre for seed, preparation and application (Liu et al., 2007). 

Compaction 

  During the dormancy period, bermudagrass is not actively growing, and thus, 

has a limited capacity to recover from wear damage. For this reason, turf managers who 

manage athletic surfaces receiving high wear during the winter months often turn to 

overseeding to maintain playability (Mazur and Rice, 1999). Previous research has 

shown both intra and interspecific differences in performance and wear tolerance of the 

cool-season grasses used for overseeding.  For instance, Shearman and Beard (1975) 

found that ‘Manhattan’ perennial ryegrass (Lolium perenne) ranked 1
st
 and 2

nd
, 

respectively, in wear tolerance under both wheel-induced and sled-induced traffic 

compared to six other cool season grasses. While injury or wear is the most common 

visual symptom of traffic, soil compaction from traffic is another serious factor that can 

cause stress, especially to turfgrass roots (O’Neil and Carrow, 1983). Carrow (1980) 

found that visual quality was directly correlated to bulk density and aeration porosity, 

two soil attributes directly impacted by compaction. In this particular study involving 

cool-season grasses, it was also reported that perennial ryegrass and Kentucky bluegrass 

(Poa pratensis L.)  only slightly declined in quality with increased compaction, while the 
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quality of tall fescue decreased greatly. Furthermore, shoot density effects varied among 

species and density decreased in Kentucky bluegrass, and tall fescue (Festuca 

arundinacea Schreb.) as compaction increased. Density in the perennial ryegrass 

actually increased at 12x compaction before ultimately decreasing at 24x compaction. 

Overseeding with Ryegrass 

While overseeding athletic turf with perennial ryegrass is very common, annual 

ryegrass is also commonly used, yet differs in many aspects. Cockerham et al. (1990) 

found that perennial ryegrass cultivars displayed a higher traffic tolerance than annual 

ryegrass and tall fescue cultivars when overseeded into common bermudagrass. 

Although, the use of two higher quality perennial ryegrass cultivars ‘Caliente’ and 

‘Elka’, resulted in poor spring transition of bermudagrass.  Recently, a ryegrass hybrid, 

known as intermediate ryegrass (Lolium hybridum Hausskn), was introduced to the 

overseeding market as an alternative to perennial ryegrass and annual ryegrass. Perennial 

ryegrass tends to persist into the warmer spring months because of its heat and disease 

tolerance. Intermediate ryegrass has similar aesthetic characteristics to perennial 

ryegrass but transitions more similar to an annual ryegrass (Lolium rigidum Gaud.) 

(Richardson, 2004). Data are limited on traffic tolerance differences between annual, 

perennial, and intermediate ryegrasses.  Richardson (2004) evaluated 2 intermediate 

ryegrass cultivars, ‘Froghair’ and ‘Transist’, and observed that Froghair had more 

similar physical and morphological characteristics to an annual ryegrass compared to 

Transist. Froghair established as quickly as annual ryegrass and had a similar color to 
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annual ryegrasses. Transist did not establish as quickly as Froghair but was quicker than 

perennial ryegrass. Typically, perennial ryegrasses are slower to establish compared to 

annual ryegrasses (Dudeck and Peacock, 1981). 

 There are many qualities that athletic turf managers focus on when preparing and 

maintaining turf surfaces. Three of these qualities are safety, playability, and aesthetics. 

While all three are important in their own respects, the safety of the athlete is arguably of 

utmost importance. According to Harper et al. (1984) in a study comparing injuries 

between practice and game fields for high school football in Pennsylvania, about 20% of 

injuries could have been prevented or less severe with more favorable field conditions. 

Factors such as poor turf coverage and density resulted in less than desirable playing 

surfaces and an increase in injury. Thus, because warm-season grass dormancy can 

potentially occur from October through April in many parts of the transition zone, winter 

overseeding has been considered to offer a safer environment for the athletes (Harper et 

al., 1984).  

Preparation and Management 

 Maintenance practices such as nutrient management, weed and pest control, 

water management, and mowing are all critical in establishing and maintaining the 

ryegrass (Duble, 1978). Before overseeding with ryegrass, turf managers often prepare 

the area for overseeding. This may consist of practices such as verticutting or 

aerification along with lowering the height of cut of the bermudagrass to allow for the 

seeds to come in direct contact with the soil and allow more favorable conditions for 
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germination (Duble, 1978; Polomski et al., 1999). Also fertilizer may need to be applied 

depending on the soil results and the newly overseeded site should be kept moist (Duble, 

1978).  Once the ryegrass reaches a height between 2.54 and 5.08 cm, it should be 

mowed, and then mowed regularly once the ryegrass reaches 6.35 cm (Polomski et al., 

1999). Once established, ryegrass on athletic fields should ideally be maintained 

between 2.54 and 3.81 cm.  

 Given the increasing demand for exceptional playability and aesthetically 

pleasing athletic fields and golf courses, turf managers are relying heavily on the use of 

ryegrass and other cool-season grasses during winter dormancy of warm-season 

turfgrasses. Advanced cultivars and hybrids such as intermediate ryegrasses, along with 

proper management techniques allow turf managers to accomplish those goals while 

creating a smoother spring transition after winter dormancy (Richardson, 2004). At this 

time, the use of intermediate ryegrasses has not become widely adopted, and data on 

their comparative performance relative to annual and perennial ryegrasses are limited.  

Therefore, closer examination of intermediate ryegrasses characteristics would be 

beneficial to professional turf managers and homeowners alike. 

Colorants During Winter Dormancy  

 While overseeding warm-season turf during the winter months has been fairly 

common in past decades, declining budgets and water availability at many facilities have 

led turf manager to explore other options to accommodate winter play. In response to 

continued desire by athletes for green playing surfaces, products have emerged in recent 
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years which are used to mask the dormancy of the warm season turfgrass.  Colorants 

have seen rapid market growth in recent years, used primarily as an alternative to 

overseeding, while turf paints, which are commonly seen on athletic fields, are used 

primarily for emblems, designs, or outlines. Although each contains various pigments, 

there are slight differences with regards to the chemical make-up of colorants and turf 

paints. Colorants have lower levels of heavy metals such as zinc and copper, as well as 

less resin and a lower viscosity.   

Budgetary Restrictions 

Budget is often the major driver for use of colorants during winter dormancy.  

For example, Liu et al. (2007) reported the cost of painting dormant bermudagrass for 

two applications per acre to be $1,600 to $1,800, considerably lower cost than 

overseeding, which may be between $2,500 and $5,000 depending on the seeding rate. 

These costs were similar to those reported by Carson (2004), who estimated overseeding 

would cost twice as much as using turf colorants. It should also be mentioned this does 

not take into account cost for maintenance of overseeded stands, such as fertilization, 

mowing and irrigation. Whether a single colorant application may be adequate to last 

through the entire dormancy period is likely influenced by application rate, amount of 

traffic, and/or environmental conditions such as temperature and rainfall. 

Spring Transition 

A major challenge for turf managers during the spring period is the process of 

transitioning out of the cool-season overseed stand while encouraging regrowth of the 
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bermudagrass without sacrificing playability or aesthetics. Since perennial ryegrass has 

the ability to tolerate warming conditions as bermudagrass initiates growth in spring, it 

can essentially become a problematic weed once weather is conducive for spring green-

up of bermudagrass (Horgan and Yelverton, 2001). The most favorable conditions for 

spring transition back to bermudagrass have been found to occur once nighttime soil 

temperatures are consistently above 18°C for 5 straight days (Duble, 1978). At this time, 

turf managers who are looking to transition with the aid of herbicides to remove cool 

season grasses will typically lower the height of cut and apply a herbicide such as 

‘Revolver’ (foramsulfuron), ‘Tranxit’ (rimsulfuron), and ‘Monument’ 

(trifloxysulfuron)(Horgan and Yelverton, 2001).  This process generally takes between 2 

to 4 weeks (Yelverton, 2005). The use of colorants as an alternative to overseeding may 

allow for managers to avoid this annual challenge of spring transition following 

overseeding. Additionally, colorants may actually enhance the rate of spring 

bermudagrass green-up and growth. For example, Liu et al. (2007) found that application 

of turf colorants, Green Lawnger, Titan, or Regreen, to dormant bermudagrass golf 

greens resulted in higher surface temperatures, which significantly enhanced 

bermudagrass green-up. These results were consistent with those found by Long et al. 

(2005) and Shearman et al. (2005) on buffalograss (Boutelous dactyloides (Nutt.) 

Engelm.). 
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Traffic Tolerance 

 The looming question for many turf managers in regards to using colorants 

during winter dormancy is how well the dormant bermudagrass will hold up to traffic. 

Although delayed bermudagrass transition may result, ryegrass and other overseeded 

cool-season grasses are thought to help protect the crowns of the dormant bermudagrass 

under traffic stress during dormancy. Dunn et al. (1994) reported that ‘Midiron’ 

bermudagrass quality declined greatly during October and November under simulated 

traffic, compared to non-trafficked bermudagrass.  The authors reported nearly a 50% 

reduction in turfgrass quality (~5 to ~2.5) due to traffic in the study.   Furthermore, 

trafficked plots were reported to have considerably greater exposed bare soil and 

increased weed incidence. This decreased turf quality response emphasizes the inability 

of bermudagrass to withstand heavy traffic during fall and winter months.  This is 

commonly seen in conditions of non-overseeded bermudagrass football fields, which, 

due to decreased solar radiation and suboptimal temperatures, often succumb to traffic 

after repeated football games and frequent vehicular traffic during fall months. Turf 

managers may also need to take in consideration the amount of use a facility will receive 

before determining whether overseeding or colorant application is most appropriate. It is 

possible that lower-usage facilities such as a football stadia receiving only one game per 

week for the first couple months of dormancy, or golf courses that receive lower rounds 

during fall/winter months may be better positioned for using colorants for maintaining 

aesthetic appearances with limited bermudagrass damage.  Heavy bermudagrass damage 

during dormancy can also lead to reduced recuperative potential during spring (Dunn et 
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al., 1994; Deaton and Williams, 2010; Thoms et al., 2011). This can result in delayed 

spring green-up and a lack of uniformity due to areas damaged beyond recovery. 

Heavy Metal Toxicity 

 Long-term toxicity from the copper and zinc content in colorants may also be a 

concern, especially where reported applications are made over successive year. 

Concentrations of zinc in the shoots of bermudagrass turf are considered high at levels 

greater than 250 mg kg
-1

 (McCarty, 2011). Zinc toxicity levels may differ from one 

cultivar to another but long-term effects from repeated applications need to be observed. 

Copper is also commonly found in turfgrass colorants and paints. Copper has a low 

mobility and thus accumulates near the soil surface over time (McBride, 1994). In a 

study conducted by McCarty et al. (2014), turfgrass colorant, Evergreen (Milliken and 

Company, Spartanburg, SC) significantly increased the concentration of copper in the 

tissue of creeping bentgrass. While this did not create an immediate problem, the effects 

of long-term exposure and repeated applications need to be studied to evaluate potential 

issues. 

 It is also not uncommon for turf managers to use a combination of colorants and 

overseeding. Turf managers will overseed at very minimal rates to allow for protecting 

and cushioning for the dormant bermudagrass, as well as increased wear tolerance 

during events. In situations where overseeding has been done at relatively low rates, 

aesthetic uniformity may be lacking. Therefore, turf managers may apply a colorant to 

achieve a more uniform appearance. This process has become common for professional 
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sports venues, where increased pressure to achieve aesthetic perfection during televised 

events occurs (Van Dam and Kurtz, 1971). The question that remains is whether 

repeated applications of colorants year after year on the same areas result in residual 

effects over time. The longevity and color quality of several colorants has been 

examined, but closer examination of soil effects in regards to metal toxicities should also 

be considered. 

 This research was carried out in order to provide supporting data relating to many 

questions regarding establishment and maintenance of turfgrasses under water 

restrictions. Results of the research will benefit homeowners, athletic turf managers, sod 

producers and lawn care specialists in areas of the country currently or have been prone 

to drought conditions 
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CHAPTER II 

EFFECTS OF MOWING AND PLANT GROWTH REGULATOR ON ST. 

AUGUSTINEGRASS SOD ESTABLISHMENT DURING A 35-DAY WATER 

VARIANCE PERIOD 

During drought induced irrigation restriction periods, municipal water purveyors 

often limit irrigation for established lawns to once every 7 to 14 days, although a 4 to 6 

week variance to these restrictions is often permitted for turfgrass establishment. 

Therefore, establishment practices promoting rapid development of a deep and 

expansive root system during this time may support long-term success of the turf once 

irrigation is scaled back. Sod producers and turf managers could benefit from 

information on the influence of mowing practices and plant growth regulator 

applications on turf root development during this initial establishment period. The 

objectives of this greenhouse study were to 1) evaluate the effects of mowing and 

trinexapac-ethyl application on final turf quality and root development characteristics 

(mass, total length, and extension rate) of St. Augustinegrass (Stenotaphrum secundatum 

(Walter) Kuntze)) sod during a 35-day establishment period, and 2) compare the quality 

and rooting potential of ‘TamStar’ St. Augustinegrass, a newly released, cultivar 

possessing good drought resistance, with ‘Floratam’, the current industry standard for 

drought resistance.  Weekly mowing dramatically reduced both total (2.5-90 cm deep) 

and deep (45-90 cm deep) root mass and root length in both cultivars.  Trinexapac-ethyl 

had no effect on visual quality of TamStar, but decreased turf quality in Floratam.  

Trinexapac-ethyl reduced clipping yields of both cultivars but did not improve root 
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development for either cultivar.  Depth of maximal root extension during establishment 

was unaffected by cultivar, mowing, or trinexapac-ethyl treatment. At the conclusion of 

the 35-day establishment period, TamStar exhibited superior turf quality and root mass 

relative to Floratam, but also produced higher rates of shoot growth. Results emphasize 

the importance of withholding mowing during St. Augustinegrass establishment, 

particularly for improving total root length and deep root production, and also show that 

trinexapac-ethyl does not improve root development of St. Augustinegrass during 

establishment. 

Introduction 

Due to recurring drought and increased demands for potable water throughout the 

southern and western United States, municipalities are enacting landscape irrigation 

restrictions to conserve water. Homeowners and turf managers are often the first to be 

affected by restrictions on landscape irrigation. Commonly, these restrictions include a 

variance period of approximately 35-days post-planting, during which the homeowner or 

turf manager may water as needed to facilitate establishment (San Antonio Water 

System, 2015; Southwest Florida Water Management District, 2015).  During this time, 

establishment practices promoting rapid development of a deep and expansive root 

system may help ensure long-term success of the turf as irrigation is reduced.  

Within Texas and across the southeastern U.S., St. Augustinegrass 

[Stenotaphrum secundatum (Walter) Kuntze] is a predominant warm-season turfgrass 

utilized for lawns due to its ability to withstand heat and shade Duble, 2013).  St. 
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Augustinegrass cultivar Floratam is widely used throughout the southeastern U.S. for 

home lawns due to its good drought resistance (Siefers and Beard, 1999; Duble, 2013).  

Steinke et al. (2010) reported that Floratam exhibited significantly delayed leaf firing as 

well as superior turfgrass quality and green ground cover relative to other St. 

Augustinegrass cultivars during a 60-day drought in San Antonio, TX.  In the same 

study, Floratam also demonstrated superior recovery attributes as compared to other 

cultivars following resumption of irrigation. 

 Genetic variation in St. Augustinegrass manifests in morphology, adaptability, 

and stress tolerance (Chandra et al., 2015).  Such genetic variation is observed to be 

partitioned between ploidy levels. Diploids tend to exhibit superior turfgrass quality due 

to their finer leaf texture, color and compact growing habits, whereas polyploids such as 

Floratam have been shown to exhibit increased resistance to insect, disease and drought 

stress (Busey, 1986; 2003).  Genovesi et al., (2009) reported the use of embryo rescue 

technique to develop interploid hybrids between polyploid and diploid germplasm of St. 

Augustinegrass to facilitate gene exchange between different ploidy levels. ‘TamStar’ 

(formerly tested under the experimental name ‘DALSA0605’), is the first and only 

reported embryo rescue-derived interploid cultivar of St. Augustinegrass and was 

recently released by Texas A&M AgriLife Research (Genovesi et al., 2009; Chandra et 

al., 2015).   

 Much of the research involving drought resistance in turfgrasses highlights the 

importance of rooting depth and density as factors contributing to drought avoidance 
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(Marcum et al., 1995; Carrow, 1996; Miller and McCarty, 1998; Steinke et al., 2011; 

Levitt, 2012). Busey (2003) reported that drought resistance in St. Augustinegrass is not 

due to reduced evapotranspiration but rather due to wilt avoidance resulting from deeper 

and more extensive root systems.  Huang and Gao (2000) examined developmental 

characteristics of roots of tall fescue (Lolium arundinaceaum (Schreb.) Darbys.) and 

reported that a general root decline occurred in the upper 20 cm of soil as the drought 

stress ensued.  However, drought resistant cultivars in the study developed increased 

root length within the 40-60 cm depth, which reportedly aided plants by increasing water 

uptake from greater depths and compensated for decreased water uptake near the soil 

surface. Similar observations have been reported by Huang et al. (1997) as well as Sharp 

and Davies (1985) for warm-season turfgrasses and maize (Zea mays L.).  To promote 

deeper and more extensive root systems it has generally been recommended to increase 

the height of cut in managed turfgrass situations.  As mowing height is reduced, the 

development of the root system is reduced through a root-shoot compensatory effect 

(Madison, 1962; Salaiz et al., 1995; Trenholm et al., 2000; Liu and Huang, 2002).  

While increasing the mowing height during a 35-day establishment period would likely 

encourage increased root development, withholding mowing altogether could 

conceivably produce even greater and more rapid benefits, so long as turf quality was 

not significantly sacrificed once mowing commenced at the end of the establishment 

period. 

Plant growth regulators (PGRs) are widely used in turf management for reducing 

shoot growth and frequency of mowing and/or seedhead suppression.  Trinexapac-ethyl 
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(TE) (4-[Cyclopropyl-a-hydroxymethylene]-3,5-dioxo-cyclohexanecarboxylic acid 

ethylester) is a commonly used PGR that reduces turfgrass shoot growth by inhibiting 

the production of biologically active forms of gibberellins (King et al, 1997; Turgeon, 

2002) but has shown little to no effect on seedhead suppression in St. Augustinegrass 

(McCarty et al., 2004).  Trinexapac-ethyl has been shown to have little to no effect on 

photosynthesis (Qian et al., 1998) and leads to reduced rates of maintenance respiration 

(Heckman et al., 2001).  As such, it is believed that greater net photosynthesis may occur 

in TE-treated plants, with excess photosynthate not used for leaf elongation allocated to 

other organs (Ervin and Zhang, 2008).  In fact, Fagerness et al. (2004) found that hybrid 

bermudagrass (Cynodon dactylon x C. transvaalensis Burtt-Davey) allocated 50% more 

15
N-labelled ammonium nitrate to roots and rhizomes when treated with TE.  This 

suggests that the altered allocation of nonstructural carbohydrates may promote greater 

rates of tillering, stem growth, or rooting during the period of TE suppression (Ervin and 

Zhang, 2008). While it is currently labeled for use on a range of warm-season turfgrasses 

including St. Augustinegrass, limited published information is available regarding the 

effects of TE on St. Augustinegrass growth and development.  Weinbrecht and Miller 

(2009) reported the growth responses of St. Augustinegrass to five commercial PGRs 

and noted that root length density was unaffected by PGR application. Information on 

the effects of TE application and mowing practices during early establishment of St. 

Augustinegrass would be of interest to sod producers and turf managers as tools for 

potentially improving success of newly planted sod in the context of tight establishment 

timelines.  
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The objectives of this greenhouse study were to 1) evaluate the effects of 

mowing and TE application on shoot growth, final turf quality, and root development 

characteristics (mass, total length, and extension rate) of St. Augustinegrass sod during a 

35-day establishment period, and 2) compare the quality and rooting potential of 

TamStar and Floratam. 

Materials and Methods 

This research was conducted at the Texas A&M University Department of Soil 

and Crop Science greenhouses in College Station, Texas. The experiment was initiated 

on April 4
th

, 2012 (hereafter referred to as ‘study 1’) and repeated May 29, 2013 

(hereafter referred to as ‘study 2’), with each study lasting 35 days. Greenhouse 

temperatures were set to 30/23⁰C (day/night) temperatures for both studies. The 

greenhouse caused a 12% reduction in photosynthetic photon flux relative to ambient 

solar radiation. The study was arranged as a completely randomized block design with 

four replicates.  A factorial arrangement with all possible combinations of cultivar 

(Floratam vs. TamStar), mowing (unmowed vs. mowed weekly at 6.3 cm); PGR (no 

PGR vs. TE-applied at day 0 and 21) was used. Trinexapac-ethyl (Primo Maxx, 

Syngenta, Greensboro, NC) was applied to select treatments using a CO2 powered 

backpack sprayer with XR Teejet 8002VS nozzles (Spraying System Co., Wheaton, IL) 

at 40 psi, at a rate of 28 mg m
-2 

active ingredient diluted in 81.5 mL of H2O m
-2

. 

Applications were made immediately after transplant and at day 21.  During 
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applications, non-PGR-treated plants were covered with paper bags to prevent off target 

movement of TE. 

Plant materials of Floratam and TamStar were obtained from the Texas A&M 

AgriLife Research and Extension Center, Dallas, TX. Six weeks prior to the start of 

study 1, sod plugs were established for both studies in 58 cm
2
 diameter pots using 

washed stolon segments (6 single node stolons per pot).  Stolons were allowed to 

establish into potting soil (Sunshine Mix, Sungro Horticulture, Bellevue, WA) and 

provided an initial fertilization using a 21:7:14 (N:P2O5:K2O)granular starter fertilizer 

(Green Diamond Supreme Lawn Food, BCF Products, Greenville, TX) at a rate of 7.4 g 

N m
-2

.  Sprigged pots were watered twice daily, and trimmed twice weekly to maintain a 

6.3 cm tall canopy height using scissors.  After approximately 4 weeks, grasses had fully 

grown into pots with a well-developed root system.   

Established plugs were then removed from pots, trimmed and washed free of soil 

to produce a 58 cm
2
 x 2.5 cm deep sod plug.  To initiate both studies, washed sod plugs 

were planted atop clear walled, extruded acrylic plastic (81 cm
2 
x 90 cm deep) cylinders 

(Boedeker Plastics, Inc, Shiner, TX) filled with potting soil (Sunshine Mix, Sungro 

Horticulture, Bellevue, WA) and capped at the base with a polyvinyl chloride endcap. 

Holes were drilled into the cap and covered with a 2.5 cm pea gravel layer and screen to 

facilitate drainage.  Efforts were made to uniformly tamp and saturate the potting soil 

before planting to prevent soil from settling during the experiment.  Two layers of white 

polyester spandex material were used to encase the outside of the cylinders to prevent 
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light penetration into the clear columns.  The previously mentioned 21-7-14 granular 

was thoroughly mixed into the upper 10 cm of soil at a rate of 7.4 g N m
-2 

just prior to 

planting sod pieces. During the initial week of both studies, 80 ml (1 cm)
 
of water was 

applied to each treatment on a daily basis.  From weeks two through five, 175 ml (2.2 

cm) of irrigation was applied three times weekly.    

Clippings from mowed treatments were collected weekly and when pots were 

trimmed at 6.3 cm during both studies using scissors and a ruler. Overhanging shoots 

and stolons extending beyond the perimeter of the column were also clipped and 

included in clipping samples.  Clippings were oven dried at 65⁰C for 72 hours before 

being weighed. Visual quality assessments of each treatment were made on a weekly 

basis during the study immediately following mowing, rated on a scale from 1 to 9 with 

1 = dead and 9 = best with minimum acceptable ≥5.  Turfgrass visual quality was taken 

for all treatments immediately after clippings were collected each week.  At the 

conclusion of the study, all treatments (including unmowed) were trimmed to 6.3 cm, 

following which a final visual quality rating was then obtained for the previously 

unmowed treatments. 

No seedheads became apparent during study 1.  However, during study 2 seed 

head production became apparent in the treatments, most notably in unmowed 

treatments.  Therefore, seedhead production was visually evaluated during the final two 

weeks of study 2.  Seedhead evaluations were made on a 0 to 5 scale, with 0= no 

seedheads present and 5 = high density of seedheads visible.  
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Weekly measurements of depth of maximal root extension were also noted 

within treatments similar to that previously reported by Wherley et al. (2011).  

Measurements were made by temporarily removing white polyester sleeves to expose 

the clear cylinder so that the depth of the two deepest roots could be measured and 

marked with tape on columns.  These two readings were then averaged for each 

measurement date. Readings were recorded throughout the study or until two roots had 

reached the bottom of the 90 cm deep cylinders.  Data were then plotted over time to 

calculate rate of root extension for the treatments. 

Following each 35-day study, roots were removed from the cylinders and washed 

thoroughly to analyze total root length and root weight. Roots were divided into two 

categories, upper (2.5-45 cm depth) and lower (45-90 cm depth) to allow for 

characterization of root development within shallow vs. deep soil depths.  Total root 

length of these samples was measured using WinRhizo software (Regent Instruments, 

Ontario, Canada). Immediately after root length analysis was complete, the roots were 

dried at 65⁰ C for 72 hours then weighed. 

 Data for each parameter were subjected to analysis of variance using the general 

linear model, univariate test procedure using SPSS ver. 21.0 (IBM Corp, Armonk, NY) 

to determine statistical significance of the results.  Where analysis of variance indicated 

a significant study effect, parameters were presented separately by study.  Mean 

separation procedures were performed using Fisher’s Least Significant Difference test at 

P ≤ 0.05 level.   
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Results and Discussion 

Turfgrass Visual Quality 

Delaying mowing for 35-days did not significantly reduce final turf quality relative to 

weekly-mowed treatments in either study (Table 2.1).  There was a significant cultivar x 

PGR interaction on visual quality at the conclusion of study 1, although no significant 

differences on quality were observed for study 2 (Table 2.1, Figure 2.1).  Trinexapac-

ethyl application resulted in a lower final turf quality of Floratam, but had no effect on 

the quality of TamStar (Figure 2.1). Final visual quality ratings for Floratam decreased 

from 7.9 to 6.9 due to TE application, while final quality of TamStar exhibited a slight 

but non-significant increase from 8.4 to 8.8 following addition of TE.   

The observation that TE application resulted in decreased quality in Floratam in 

study 1 is consistent with findings of McCarty et al (2004), who reported that TE 

decreased visual quality in ‘Floralawn’ St. Augustinegrass over a 5-week period in late 

June. However, by the completion of their 12-week study, both TE-treated and untreated 

Floralawn exhibited similar visual quality ratings.   

.



 

 

  

2
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Table 2.1.  Analysis of variance for the 35-day establishment study factors.  Where significant study main effect or interactions 

occurred, studies have been presented separately. 

P-values 

  
Final 

Turf Quality 
Clippings 

Maximal 

Root 

Extension 

Depth 

Total 
Root Mass 

Deep 
Root Mass 

Total 

Root 

Length 

Deep 

Root 

Length 

 Study 1 Study 2 Study 1 Study 2 Study 1 Study 2 Study 1 Study 2 Study 2 Study 2 

Cultivar (C) *** ns *** ns ns * ns ns ns ns ns 

PGR (P) ns ns *** ns ns * ns ns ns * ns 

Mowing (M) ns ns --- --- ns *** *** ** ** *** ** 

Week (W) --- --- *** ns *** --- --- --- --- --- --- 

C x P *** ns *** ns ns ns ns ns ns ns ns 

C x M ns ns --- --- ns * ns ns ns ns ns 

C x W --- --- ** ns ns --- --- --- --- --- --- 

P x M ns ns --- --- ns ns ns ns ns ns ns 

P x W --- --- *** ns ns --- --- --- --- --- --- 

C x P x W --- --- ns ns ns --- --- --- --- --- --- 

C x P x M ns ns --- --- ns ns ns ns ns ns ns 

 ns, *, **, *** not significant, significant at P ≤ 0.05, 0.01, or 0.001, respectively
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Figure 2.1. Final visual turf quality of Floratam and TamStar at day 35 as influenced by 

application of PGR trinexapac-ethyl for study 1.  Data are pooled across mowing 

treatments.   
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Clippings  

Similar to visual quality, although numerous significant treatment effects and 

interactions were noted for study 1, no significant differences were detected for study 2.  

During study 1, there was a significant cultivar x PGR interaction on clipping dry 

weights (Figure 2.2).  Trinexapac-ethyl application to TamStar resulted in 47% (734 mg 

vs. 388 mg) reduction in clipping dry weight.  Mean clipping reductions due to TE 

applications were slightly less substantial in Floratam (39% reduction; 346 mg vs. 210 

mg). While no significant differences due to TE were observed in study 2, there were 

again decreased clipping yields observed with the use of TE in both cultivars.  

TE is commonly used on turfgrass to reduce mowing requirements.  This occurs 

through inhibition of gibberellin acid synthesis, which reduces cell elongation and 

ultimately clipping yields and mowing frequency (Adams et al., 1992; Fagerness and 

Penner, 1998; Ervin and Koski, 2001).  Our growth suppression data for St. 

Augustinegrass for study 1 (39-47% suppression) are consistent with McCarty et al. 

(2004), who reported that TE reduced clipping production by 50% on Floralawn. The 

slightly lower levels of suppression we observed could be related to the relatively high 

amounts of irrigation that were applied for the newly establishing sod. 

There was a significant cultivar by week interaction on clippings in study 1 

(Figure 2.3).  As such, rates of shoot growth for both cultivars dramatically increased 

over the 35 day period, from less than 100 mg per week at week 1 to greater than 600 

mg per week by week 5.  TamStar clippings were nearly twice those of Floratam for 
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each week, with the largest difference observed after week 3, where average clipping 

mass of TamStar was 2.5 times that of Floratam.  The apparent differences between 

cultivars may be related to morphological growth habit differences.  Based on our 

observations, TamStar appears to possess a denser and upright growth habit compared to 

Floratam.  Cultivar differences in shoot growth rates have been previously noted within 

St. Augustinegrass (Atkins et al., 1991).  
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Figure 2.2.  Effect of trinexapac-ethyl on mean weekly clipping dry weights for study 1.  

Data are pooled across mowing treatments. Error bar denotes LSD(0.05). 
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Figure 2.3.  Weekly clipping dry weights for study 1 as influenced by cultivar.  Data are 

pooled across PGR treatments. Asterisks denote significance based on LSD(0.05). 

 

A PGR by week interaction was also observed for clippings in study 1 (Figure 

2.4). Clipping mass increased weekly for plants not receiving TE application. However, 

in TE-treated plants, greater shoot growth was observed at week 3.  Although total 

clippings increased in both TE-treated and untreated plants, the level of growth 

suppression offered by the second TE application was slightly less than that observed 
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from the first application. Weinbrecht et al. (1998) reported St. Augustinegrass growth 

suppression by TE of up to four weeks.  

The overall reduced efficacy of TE in affecting clipping production and visual 

quality for study 2 may have been partially due to greater metabolism within the plant 

during the summer months (Lickfeldt et al., 2001; Beasley et al., 2007; Wherley et al., 

2009; Kreuser and Soldat, 2011).  Although greenhouse temperatures for both studies 

were set to produce similar conditions, the longer days and more intense solar radiation 

of study 2 likely resulted in greater energy loading and plant temperatures. Furthermore, 

a developmental shift to reproductive seedhead development in plants was observed in 

all treatments midway into study 2.  Consistent with previous research on PGR induced 

seedhead suppression (McCarty et al., 2004); we observed no suppression in seedhead 

numbers with TE application (data not shown).  The fact that clipping collections 

included any growth (shoots and seedheads) occurring above a height of 6.3 cm 

apparently negated effects of TE on measured clippings during study 2. 
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Figure 2.4.  Weekly clipping dry weights as influenced by PGR for study 1.  Data are 

pooled across cultivar. Asterisks denote significance based on LSD(0.05). 
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Maximal Root Extension Depth 

 Neither cultivar, mowing, nor PGR treatments had any effect on depth of 

maximal root extension, and there were no differences detected between studies (Table 

2.1).  As such, only week main effect was found to be significant for rooting depth.  

Therefore, data were pooled across studies, cultivar, and treatment (Table 2.1).  Average 

depth of the two deepest roots at the conclusion of the study approached 80 cm over the 

35-day period for both studies, resulting in an average root extension rate of ~2.3 cm d
-1

 

(Figure 2.5). Turf having a deeper root system is more likely to survive periods of 

drought stress (Marcum et al., 1995; Carrow, 1996; Steinke et al., 2010; Steinke et al., 

2011; Levitt, 2012).  In a similar type of study, Wherley et al. (2011) found that St. 

Augustinegrass, bahiagrass, and zoysiagrass root extension rates during establishment 

were unaffected by mowing heights.  The authors reported root extension rates between 

1 and 1.8 cm d
-1

, but also reported that increasing nitrogen fertility during establishment 

of these grasses resulted in accelerated root extension into deep soil for all species. 
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Figure 2.5.  Depth of maximal root extension both St. Augustinegrass cultivars over the 

35-day establishment period.  Data are pooled across study, cultivars, and treatments.  

Error bars denote standard error.   
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Root Mass  

 Weekly mowing had profound negative impacts on total root mass measured at 

the conclusion of both studies.  Although ANOVA detected a PGR main effect on total 

root mass for study 1, subsequent LSD (0.05) analysis revealed this was not in fact 

significant.  There was a cultivar by mowing interaction on total root mass during study 

1, and a mowing main effect detected for both studies (Table 2.1).  Weekly mowing 

resulted in significant decrease in total root mass for both cultivars (Figure 2.6).  For 

Floratam and TamStar, 53 and 71% reductions in total root mass occurred due to weekly 

mowing.  For study 2, reductions in total root mass due to mowing were substantially 

greater (~85% reductions), but were similar among cultivars (Figure 2.7).  

While total root mass is important, deep root production is arguably of even 

greater importance in terms of drought resistance.  A significant effect of weekly 

mowing on deep root mass (45-90 cm) was observed in both studies, although noticeably 

greater differences between mowed and unmowed treatments occurred in study 2 (Figure 

2.8).  Bonos and Murphy (1999) examined rooting responses of Kentucky bluegrass 

cultivars under summer heat/drought stress and found that the more tolerant entries 

produced greater root mass at deeper soil depths (65% greater root mass at 30 to 45 cm 

depth) compared to less intolerant entries. They also noted that within shallower (0 to 15 

cm) depths, stress tolerant entries exhibited an 18% greater root mass. Although mowing 

heights were not evaluated in their study, the results emphasize the benefits of increased 

root mass within deeper soil depths to heat and drought stress.  
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While limited published data are available to compare rooting differences 

between mowed and unmowed turf, similar results were observed in terms of mowing 

height by Wherley et al. (2011), where significantly greater total (0-90 cm) and deep 

(45-90 cm) root mass for St. Augustinegrass, bahiagrass, zoysiagrass, and bermudagrass 

occurred with high as opposed to low mowing heights.  While not measured under 

establishment conditions, similar results are reported for cool-season putting green turf.  

Fagerness and Yelverton (2001) reported that root biomass was 32% and 36% greater 

when cool-season ‘Penncross’ creeping bentgrass was maintained a cutting height of 4.8 

mm or 4.0 mm as opposed to 3.2 mm.   
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Figure 2.6.  Total (2.5-90 cm) root mass at the conclusion of study 1 for Floratam and 

TamStar as affected by weekly mowing vs. unmowed conditions.  Data are pooled 

across PGR treatments.  Error bar denotes LSD(0.05). 
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Figure 2.7.  Total (2.5-90 cm) root mass at the conclusion of study 2 as affected by 

weekly mowing vs. unmowed conditions.  Data are pooled across cultivar and PGR 

treatments.  Error bars denote LSD(0.05). 

 

 

 

Mowed weekly Unmowed

T
o
ta

l 
R

o
o
t 
M

a
s
s
, 
m

g

0

1000

2000

3000

4000

5000

6000

7000

LSD(0.05)=2680



 

40 

  

 

Total Root Length Effects 

The effects of cultivar, mowing, and PGR applications on total root length are 

also of interest because increased root proliferation within soil contributes to more 

efficient absorption of water and nutrients during establishment.  In our study, mowing 

caused significant effects on total root length (2.5-90 cm) and deep root length (45-90 

cm) in study 2 (Table 2.1), but neither cultivar nor TE significantly impacted root length 

in either study.  It should be noted that although ANOVA detected a significant (P = 

0.05) effect of PGR on total root length for study 2 (Table 2.1), subsequent LSD analysis 

revealed this reduction in root length caused by TE was not significant. Weekly mowing 

significantly reduced both total root length (20,433 and 8,478 cm for unmowed and 

mowed, respectively) and deep root length (7,513 and 3,597 cm for unmowed and 

mowed, respectively) (Figure 2.9).  Qian et al. (1997) reported correlations between 

wilting of warm-season grass species and root length density within bermudagrass and 

zoysiagrass.  Furthermore, PGRs such as TE inhibit gibberellin production and reduce 

cell elongation, and therefore, could conceivably influence elongation of both turfgrass 

shoots and roots.  Carrow (1996) evaluated rooting responses to soil dry-down in a range 

of warm- and cool-season grasses in Georgia and found the largest decrease in root 

length and density occurred in the top 10 cm of soil.  In deeper (20 to 60 cm depth) soil, 

total root length and density increased in all turfgrasses during dry-down.  A relationship 

was noted between total root length within the deeper 20-60 cm soil depth and delayed 

leaf firing under drought stress.  Interestingly, although ‘Raleigh’ St. Augustinegrass 

was noted to have similar rooting depth, but significantly lower root length density than 
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‘Tifway’ bermudagrass within deep soil, it exhibited excellent tolerance to soil dry down 

with minimal leaf firing.  This may suggest that rooting depth alone is as important a 

factor relating to drought resistance as root length density.  

 

Figure 2.8.  Deep (45-90 cm) root mass at the conclusion of studies 1 and 2 as affected 

by weekly mowing vs. unmowed conditions.  Data are pooled across cultivar and PGR 

treatment. Error bars denote LSD(0.05). 
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Figure 2.9.  Total root length as affected by weekly mowing vs. unmowed conditions for 

study 2.  Data are pooled across cultivars and PGR treatments.  Error bars denote 

LSD(0.05). 
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Conclusions 

 As municipal water restrictions become more commonplace across the southern 

and western U.S., turf managers and homeowners will face challenges with shorter 

turfgrass establishment windows during water conservation periods. Thus, it has become 

increasingly important to examine cultural strategies for maximizing success during the 

early establishment period.  A key component for long-term drought resistance in 

turfgrass is the development of a deep and extensive root system.  In evaluating the 

effects of mowing and TE applications during this 35-day St. Augustinegrass 

establishment period, we observed that weekly mowing dramatically reduced total and 

deep root mass as well as root length characteristics in both St. Augustinegrass cultivars.  

Furthermore, while applications of TE slightly reduced turf quality in Floratam, and also 

resulted in reduced clipping yields in both cultivars, it failed to provide benefit in terms 

of root development for either cultivar.  Neither mowing nor TE influenced depth of 

maximal root extension for either cultivar.  TamStar exhibited superior turf quality and 

root mass relative to the Floratam, but also generated higher amounts of cumulative 

shoot growth.  Collectively, the results emphasize the importance of delaying mowing 

during St. Augustinegrass establishment to promote enhanced root length and deep root 

production.  Whether these observed short-term benefits would translate into actual 

drought resistance under subsequent mowing and water stress conditions is a question 

that will require further investigation 
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CHAPTER III 

EFFECTS OF SIMULATED TRAFFIC ON PERFORMANCE OF WINTER 

OVERSEEDED VERSUS COLORANT-TREATED TIFWAY BERMUDAGRASS  

Municipal water restrictions across the southwestern U.S. have created additional 

challenges for maintaining safe playing surfaces on recreational turf facilities.  In recent 

years, many cities within the southern and southwestern U.S. have even begun to impose 

irrigation restrictions during winter months. Although winter overseeding has been 

regularly practiced in these areas, interest and use of colorants as an alternative to 

overseeding has grown due to decreasing water availability and budget concerns.  While 

possibly more cost-effective than winter overseeding, the extent of traffic injury 

tolerable by colorant-treated versus overseeded dormant turf has not been fully explored. 

The objectives of this 2-year field study were to evaluate performance, tolerance to 

simulated traffic, and spring transition of ‘Tifway’ bermudagrass (Cynodon dactylon x 

C. transvaalensis Burtt-Davy) winter treatments under a 1-day per week irrigation 

schedule.   Treatments included 1) untreated bermudagrass, 2) fall colorant-treated 

bermudagrass, 3) perennial ryegrass (Lolium perenne L.) overseeded bermudagrass, and 

4) turf-type annual ryegrass (Lolium multiflorum Lam.) overseeded bermudagrass.  In 

both years, highly significant treatment differences were detected for percent green 

cover, soil volumetric water content, percent visual injury, surface hardness, and percent 

bermudagrass transition.  Percent green cover and visual injury levels were similar 

between annual and perennial ryegrass stands in year 1, however, loss of green cover 

and greater injury were noted in annual ryegrass during spring of year 2.  Residual 
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benefits of fall colorant application extended into February of year 1, but dissipated by 

late December of year 2, likely due to substantially greater rainfall.  Overseeding 

reduced bermudagrass spring transition by 40 to 50% compared to untreated and 

colorant-treated plots, however, no acceleration of bermudagrass transition resulted from 

fall colorant treatment.  Results of the study demonstrate that environmental differences 

from season to season can impact the relative benefits derived from overseeding or 

colorant application. 

Introduction 

In the transition zone and southern U.S., winter overseeding of dormant 

bermudagrass athletic turf has become a common practice. Winter overseeding provides 

an actively growing cool-season turfgrass stand that offers protection of the underlying 

dormant turf as well as green coverage throughout winter dormancy.  However, 

maintaining a healthy stand of overseeded turf requires regular irrigation or 

precipitation, and therefore has become more of a challenge in some areas of the country 

where municipal water restrictions may now limit winter irrigation to once per 7 to 14 

days, or prohibit the practice entirely (City of Allen, TX, 2015; San Antonio Water 

System, 2013).  Little is known regarding the potential for perennial or annual ryegrass 

overseed stands to persist under these infrequent irrigation schedules.  In light of 

tightening water restrictions and reduced budgets, many turf managers have begun to 

explore turf colorants as an alternative to overseeding. 
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Turfgrass colorants have become more widely used as an alternative to winter 

overseeding in recent years, particularly on warm-season golf course greens, tees, and 

fairways (Van Dam and Kurtz, 1971; Sheffer, 1987; Hartwiger and O’Brien, 2013) as 

well as athletic turf fields (Miller and Pinnix, 2014). The rise in colorant use may be 

partially related to water conservation efforts, but has likely also been driven by reduced 

operating budgets. The cost of colorant application has been shown to be 2 to 3 times 

less than overseeding (Carson, 2004; Liu et al., 2007). Some turf managers have reported 

more rapid and consistent spring green-up due to colorant application, likely a result of 

elevated canopy temperatures of colorant-treated turf during the early spring green-up 

period (Liu et al., 2007; Long et al., 2005; Shearman and Beard, 1975; Shearman et al., 

2005). While there are advantages to using colorants as an alternative to overseeding, 

there could also be disadvantages. Non-overseeded warm-season turfgrass that are under 

heavy winter traffic may benefit more from overseeding due to the protection offered by 

the actively growing cool-season turfgrass. Significantly reduced quality of non-

overseeded dormant ‘Midiron’ bermudagrass during October and November was 

reported due to simulated winter traffic, with injury disrupting uniformity and delaying 

green-up during spring (Dunn et al., 1994; Deaton and Williams, 2010; Thoms et al., 

2011).  Additionally, improper dilution, application, and/or accumulation of turf 

colorants in plant tissues or soil are other potential concerns, particularly in relation to 

heavy metal toxicity.  Turfgrass colorant applications significantly increased Cu 

concentration in creeping bentgrass leaf tissues, although concentrations did not reach 

toxic levels (McCarty, 2011). Application of colorants may also interfere with or block 
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absorption of photosynthetically active radiation and thus reduce photosynthesis and/or 

stomatal conductance, which could potentially lead to decreased plant health over time 

(McCarty et al., 2013; Reynolds et al., 2013).  

While perennial ryegrass has been a primary cool-season turfgrass used for 

winter overseeding of athletic turf, turf-type annual ryegrasses have been developed in 

recent years which possess finer texture and improved color relative to older annual 

ryegrass cultivars such as ‘Gulf’, and improved spring transition relative to perennial 

ryegrass.  Nelson et al. (2005) compared the performance and quality of ‘Axcella’ and 

‘Panterra’ annual ryegrass (Lolium multiflorum) with perennial ryegrass (Lolium 

perenne) cultivars and reported more rapid (~1 month earlier) transition with turf-type 

annual ryegrasses, although turf quality was reportedly slightly inferior to perennial 

ryegrass.  Data are currently lacking regarding comparative performance of turf-type 

annual ryegrass and perennial ryegrass cultivars used for overseeding under limited 

irrigation frequency and traffic.  Such data would be useful for guiding appropriate 

species selection as restrictions on winter time irrigation become more prevalent in the 

future. 

The objectives of this 2-year field study were to evaluate performance, tolerance 

to simulated traffic, and spring transition of Tifway bermudagrass winter treatments 

under a 1-day per week irrigation schedule.  Treatments included 1) untreated 

bermudagrass, 2) colorant-treated bermudagrass, 3) perennial ryegrass overseeded 

bermudagrass, and 4) turf-type annual ryegrass overseeded bermudagrass. 
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Materials and Methods 

 This research was conducted at the Texas A&M Agrilife Research Turfgrass 

Field Laboratory in College Station, Texas. The experiment was initiated on 10 October 

2013 (hereafter referred to as ‘year 1’) and repeated 15 October 2014 (hereafter referred 

to as ‘year 2’), with each experiment lasting 7 months.  For each year of the study, 

separate plots of established Tifway bermudagrass were used.  Soils for both study sites 

were characterized as a Booneville series (fine, smectitic, thermic, chromic vertic 

Albaqualf).  Based on physical analysis of the 0-15 cm soil depth, the year 1 site topsoil 

was characterized as sandy loam (79% sand, 12% silt, 9% clay) with pH 9.7, while year 

2 site topsoil was characterized as a sand (89% sand, 8% silt, 3% clay), with pH 8.9.  At 

both sites, the A horizon topsoil varied from a depth of 10-30 cm, and lies atop a heavy 

clay B horizon subsoil.  The study was arranged as a split-plot design with four replicate 

plots per treatment.  

Main plots (1.5 m x 1.5 m) consisted of winter treatments 1) untreated 

bermudagrass, 2) colorant-treated bermudagrass, 3) perennial ryegrass overseeded 

bermudagrass, and 4) turf-type annual ryegrass overseeded bermudagrass.  Untreated 

bermudagrass entered shoot dormancy following November frosts each year, with some 

active green shoots visible deep within the base of the canopy throughout the winter 

months.  Colorant treated bermudagrass received a single fall (mid-October at time of 

seeding) application of Greenlawnger turf colorant (Becker Underwood, Ames, IA) prior 

to dormancy each year using a CO2 powered backpack sprayer equipped with XR Teejet 



 

49 

  

 

8002VS nozzles (Spraying System Co., Wheaton, IL) and spray pressure of 40 psi.  The 

sprayer was calibrated to deliver 561 L ha
-1

 and a 7:1 H2O to colorant dilution was used.  

In early February of each year, untreated and colorant-treated plots were selectively 

treated for annual bluegrass using foramsulfuron (Revolver 0.19 SC; Bayer Crop 

Science, Research Triangle Park, NC), at a rate of 2.8 mg a.i. m
-2

 using handheld boom 

sprayer equipped with XR Teejet 8005VS nozzles and calibrated to deliver 610 L ha
-1

.   

Overseeded treatments were seeded 10 October of year 1 and 15 October of year 

2.  Prior to overseeding, plots were mowed to their maintenance height of 2.5 cm.  

Perennial ryegrass plots were seeded using ‘Futura 2000’ perennial ryegrass blend 

(Pickseed, Tangent, OR), while annual ryegrass plots were seeded using ‘Panterra V’ 

annual ryegrass blend (Barenbrug USA, Tangent, OR).  Plots of both species were 

overseeded via hand shaker jars at a rate of 49 g m
-2

.  A 29-0-5 (N-P2O5-K2O) granular 

starter fertilizer (Sta-Green All Season Lawn Fertilizer, Infinity Lawn and Garden, 

Milan, IL) was applied to the entire study area at the time of overseeding using a 

broadcast spreader delivering a rate of 4.9 g N m
-2

.  The fertilizer was again applied 2 

and 4 months after overseeding, resulting in a total of 14.7 g N m
-2

 applied to the study 

area during the 7-month period.  

Newly seeded plots were established under well-watered conditions during the 

initial 30 days of each year (mid-October through mid-November).  During this time, all 

treatment plots received 6 mm irrigation 5 to 7 days weekly.  After the 30-day 

establishment period, plots received 2 cm irrigation once weekly.  This irrigation amount 
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was estimated to be the volume required to return the 0 to 15 cm soil depth root zone in 

plots to field capacity.  Weekly irrigation amounts were adjusted to account for any 

rainfall events of 2 cm or less received during the prior 7-day period.  During the study, 

weather data including Penman-Monteith reference evapotranspiration (ETo), 

precipitation, air temperature, and solar radiation were monitored via an onsite weather 

station (Campbell Scientific, Logan, UT) connected to the Texas ET Network 

(texaset.tamu.edu).  Cumulative weather data totals for each month of the study are 

presented in Table 2.  Plots were mowed weekly during the study at 3.2 cm height of cut 

using a rotary walk mower with clippings removed.  

After the 30-day establishment period, treatment main plots were subdivided into 

halves receiving either 0 (untrafficked) or 4 passes once weekly simulated traffic using a 

Cady Traffic Simulator (Henderson et al., 2005) equipped with rubber football cleats and 

operated in the forward direction.  Traffic was applied immediately following each 

weekly mowing event.  When rainfall occurred less than 24 hours prior to a scheduled 

traffic event, trafficking was delayed by 24 hours.  Relative to other simulated traffic 

machines, traffic produced by the Cady Traffic Simulator has been considered to best 

mimic that occurring on highly trafficked athletic fields (Henderson et al., 2005). Two 

passes with the Cady Traffic Simulator have been reported to simulate the amount of 

injury equivalent to one NCAA football game (Henderson et al., 2005).   
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Evaluation of Winter Treatments 

Percent green cover was evaluated for all treatments from plot images obtained 

monthly during the study.  Digital images were taken of the center of plots from 

December through May during the study.  Images were taken 2 days following mowing 

and traffic application using a digital camera (Canon PowerShot SX-170 IS, Tokyo, 

Japan) mounted on a metal 0.6 m x 0.6 m x 0.6 m cube light-box equipped with 4 

compact fluorescent bulbs.  Images were analyzed for percent green cover using Sigma 

Scan Pro (Systat Software, Inc., San Jose, CA).  Hue and saturation settings of 45 to 120 

and 0 to 100, respectively, were used (Richardson et al., 2001; Karcher and Richardson, 

2003; Karcher and Richardson, 2005).  

Visual assessment of percent injury from simulated traffic was also recorded 

monthly, 2 days following mowing and traffic application, in trafficked plots.  

Evaluations were adapted from the method described previously by Shearman and Beard 

(1975).  Briefly, a rating of 0% indicated no injury, while 100% indicated bare soil was 

exposed and only stems remained in plots.  Intermediate ratings were as follows:  25% = 

25% of leaf blades were shredded from sheaths, 50% = 50% of leaf blades were 

shredded from sheaths and 75% = 75% of leaf blades were shredded from sheaths with 

some exposed soil.   

Percentage of actively growing bermudagrass was estimated in April and May of 

each year.  Estimates were based on the method previously described by Dunn et al. 

(1994), and were based on a visual estimation of the amount of green, actively growing 
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bermudagrass evident in plots relative to dormant, straw colored bermudagrass, 

overseeded ryegrass, or bare soil.   

Soil volumetric water content within the 0-5 cm depth was measured monthly 

using a soil moisture meter (Fieldscout TDR 300, Spectrum Technologies, Inc., Aurora, 

IL). Measurements were taken between 1-2 days prior to irrigation events and were 

obtained within both trafficked and non-trafficked subplots.  

Canopy temperatures were also measured during cloudless afternoon periods 

using a handheld infrared thermometer (Spectrum Technologies, Inc., Aurora, IL), from 

a distance of 92 cm above the soil surface.   

Surface hardness ratings (Gmax) were measured monthly within all treatments 

using a 2.25 kg Clegg impact soil tester (Turf-Tec International, Tallahassee, FL), which 

provides a measure of impact absorption (Rogers and Waddington, 1990).  Gmax is 

defined as the ratio of maximum negative acceleration on impact in units of gravities to 

the acceleration due to gravity.  Gmax measurements were taken 2 days after simulated 

traffic was applied to plots. Three Gmax values were obtained at a representative area 

within each plot and then averaged.   

Data Analysis  

Data for each parameter were subjected to analysis of variance using the general 

linear model, univariate test procedure using SPSS ver. 21.0 (IBM Corp, Armonk, NY) 

to determine statistical significance of the results.  Where analysis of variance indicated 
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a significant study effect, parameters were presented separately by study.  Mean 

separation procedures were performed using Fisher’s Protected LSD test at the P ≤ 0.05 

level. 

Results and Discussion 

Weather Data 

The first year of the study was characterized by higher evaporative demand, less 

precipitation, higher monthly solar radiation, and lower mean air temperatures relative to 

year 2 (Table 3.2).  ETo increased from 5.6 cm in December to a maximum of 16.8 cm in 

May of year 1, and from 5.7 cm in December to a maximum of 13.1 cm in year 2.  Solar 

radiation increased from 8.0 MJ m
-2 

in December to 19.6 MJ m
-2 

in May of year 1, and 

from 7.6 MJ m
-2 

in December to 15.1 MJ m
-2 

in May of year 2.  While total precipitation 

for the 6-month period was greater in year 2, May of year 1 was considerably wetter than 

that of year 2 (21.0 vs. 13.8 cm, respectively).  Nighttime temperatures were lower 

during year 1, which contributed to a greater degree of visible shoot dormancy in plots 

compared to year 2 (data not shown).  

Percent Green Cover 

 Date, treatment, and traffic all significantly affected percent green cover in plots 

in both years.  There was also a significant date x treatment interaction on percent green 

cover during both years (Table 3.1). Whereas untreated bermudagrass fell to 0% green 

cover by January in year 1, it declined to only ~30% green cover in February of year 2, 
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as some green shoots persisted through the winter months deep within the canopy.  This 

was likely due to the relatively higher (~1-4°C) mean daily and nighttime air 

temperatures for the December through February period of year 2, which may have 

prevented onset of full shoot dormancy (Table 3.2). With the exception of December of 

year 1, overseeded plots maintained consistently higher percent green cover compared to 

non-overseeded and colorant-treated plots from December through March of both years 

(Figure 3.1).  From December through March, overseeding resulted in approximately 65 

to 80% green cover in years 1 and 2, respectively.  Percent green cover of perennial 

ryegrass remained stable through the entire period during both years, but annual ryegrass 

declined by 50% in April of year 2 due to excessive growth and scalping resulting from 

weekly mowing during the excessively cloudy and rainy March and April months.  

Colorant application resulted in 60% green cover ratings for December of both years.  In 

year 1, the effects of the colorant application lasted through February; however, in year 

2, they only remained through December.  This is likely due to the considerably higher 

(more than 200% higher) rainfall amounts received in December and January of year 2 

compared to year 1. By March of year 1 and January of year 2, there were no differences 

in percent green cover remaining between untreated and colorant treated plots.  By May 

of year 1, all treatments exhibited similar levels (~70%) of green cover, however, at the 

conclusion of year 2, annual ryegrass green cover declined by 25% compared to all other 

treatments, which were exhibiting between 80-90% green cover levels.   
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Table 3.1.  Analysis of variance for bermudagrass athletic turf study factors.  Where significant study main effect or 

interactions occurred, studies have been presented separately by year. 

P-values 

Percent Green 

Cover 
Volumetric 

Water Content 
Spring Canopy 

Temperatures 
Percent Injury GMAX 

Percent Active 

Bermudagrass 

Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 Year 1 Year 2 

Date (D) *** *** *** *** ns ns *** *** ns *** *** *** 

Treatment (T) *** *** *** ns ns ns *** *** *** *** *** *** 

Traffic (Tr) *** *** *** ns --- --- ns ns *** *** *** ns 

D x T *** *** *** ns ns ns *** *** ns *** *** ns 

D x Tr ns ns ns ns --- --- --- --- ns *** *** ns 

T x Tr ns ns ns ns --- --- --- --- ns *** * ns 

D x T x Tr ns ns ns ns --- --- --- --- ns *** --- ns 

 ns, *, **, *** not significant, significant at P ≤ 0.05, 0.01, or 0.001, respectively
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Table 3.2.  Monthly reference evapotranspiration (ETo), precipitation, supplemental irrigation, solar radiation, and mean daily 

air temperature for each year of the study.  Environmental data were provided through an onsite weather station linked to the 

Texas ET Network.   

  

  Dec. Jan. Feb. Mar.     Apr. May 

 

 

 
Year 1 

ETo , cm 5.6 8.3 6.7 10.2 14.8 16.8 

Precipitation, cm  2.9 3.5 2.7 3.8 3.0 21.0 

Irrigation, cm  5.1 5.1 4.4 5.1 7.6 2.5 

Solar radiation, MJ m
-2

  8.0 10.6 10.3 13.7 18.4 19.6 

Mean Temperature, °C 8.9 8.3 11.4 13.3 19.4 22.5 

        

 

 

 
Year 2 

ETo , cm 5.7 5.8 6.3 8.7 12.2 13.1 

Precipitation, cm  6.7 8.1 1.9 8.4 12.5 13.8 

Irrigation, cm  3.8 1.9 4.4 0.0 0.0 0.6 

Solar radiation, MJ m
-2

  7.6 11.3 11.8 14.1 15.2 15.1 

Mean Temperature, °C 13.1 9.7 11.1 15.8 21.1 23.6 
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Figure 3.1. Percent green cover as influenced by treatments for years 1 (top) and 2 

(bottom).  Data are pooled across traffic levels. Error bars denote differences between 

treatments based on Fishers LSD(0.05). 

 

Dec. Jan. Feb. Mar. Apr. May

%
 G

re
e

n
 C

o
ve

r

0

20

40

60

80

Untreated

Colorant

Annual

Perennial

nsYear 1

 

Dec. Jan. Feb. Mar. Apr. May

%
 G

re
e

n
 C

o
ve

r

20

40

60

80

100 Year 2

 



 

58 

 

A significant traffic main effect on percent green cover was also detected during both 

years (Table 3.1).  Traffic resulted in a ~15% decrease in percent green cover in year 1, 

but only a ~3% decrease in year 2 (Figure 3.2).  It is likely that differences by year with 

respect to traffic effects on percent green cover may have been attributable to 

bermudagrass achieving complete shoot dormancy in year 1, but retaining >30% green 

cover through most of year 2.  This maintenance of minimal levels of bermudagrass 

activity may have aided in offsetting the effects of traffic.  Furthermore, while cloudier 

conditions prevailed, the slightly elevated temperatures of year 2 were also possibly 

more conducive to growth of the overseeded ryegrass.  Haselbauer et al. (2012) 

evaluated effects of repeated autumn simulated traffic on percent green cover of 5 

experimental bermudagrasses as well as cultivars Tifway, ‘Tifsport’, and ‘TifGrand’ 

bermudagrass in Tennessee.  By mid-November (after 20 simulated traffic events) of 

their study, percent green cover of non-overseeded plots ranged from 14 to 34% after 

year 1, but ranged from 58 to 79% in year 2.  The increased cover observed was 

attributed to ~5° C higher air temperatures in year 2, which promoted greater levels of 

bermudagrass recovery during the second year.  Similarly, Thoms et al. (2011) reported 

percent green cover of Tifway bermudagrass decreased from 95% to 63% after 17 

autumn traffic events (August through November) in Tennessee.  While there are a 

number of reports evaluating traffic tolerance of bermudagrass during summer and 

autumn months, limited to no published data are available regarding effects of repeated 

winter traffic on dormant bermudagrass.  
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Figure 3.2.  Effect of traffic on percent green cover for years 1 and 2.  Data are pooled 

across winter treatments. Error bars denote differences between winter treatments based 

on Fishers LSD(0.05). 
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Volumetric Water Content 

A significant date x treatment interaction, as well as date and traffic main effects 

were detected for soil volumetric water content (VWC) in year 1, however, only date 

significantly affected VWC during year 2 (Table 3.1, Figure 3.3). During December of 

year 1, no differences in VWC were detected among treatments, with all plots exhibiting 

VWC of ~38%.  On subsequent rating dates, significant differences in VWC occurred 

among the treatments.  For January through May ratings, overseeded treatments 

exhibited from ~2 to 6% lower VWC compared to untreated and colorant-treated plots.  

Although the slightly lower VWC within annual ryegrass plots relative to perennial 

ryegrass would suggest higher ET rates, these differences were minimal, and were not 

significant.  Not surprisingly, no differences occurred between colorant-treated and 

untreated plots for any month.  Water consumption of bermudagrass has been reported to 

range from 2.5 to 7.5 mm per day during active growth periods (Beard, 1972), however, 

the influence of bermudagrass ET on soil moisture during these winter months was 

likely negligible with the exception of the May rating date.  Although there are little to 

no published data comparing water requirements or ET rates of annual and perennial 

ryegrass cultivars, levels of irrigation/precipitation received during this study period 

were sufficient to support acceptable levels of turf quality for both species through the 

duration of the winter growth period until onset of warmer May temperatures (data not 

shown).  Had lower than normal amounts of precipitation occurred during the study 

period, it is likely that higher levels of stress may have occurred under this 1-day per 

week irrigation.  
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 A significant effect of traffic on VWC was also observed during year 1 (Table 

3.1). As such, plots trafficked plots exhibited a 7% decrease in VWC as compared to 

non-trafficked plots (data not shown). While similar effects were not observed in year 2, 

trafficked plots did again exhibit a slight decrease in VWC as compared to non-

trafficked plots (data not shown). It is likely that these differences could be attributed to 

compaction caused by the simulated traffic.  Compaction causes changes in soil such as 

altered pore size distribution and increased bulk density (Boufford and Carrow, 1980; 

Carrow, 1980). Agnew and Carrow (1985) also reported decreased soil moisture content 

with increasing traffic within the 0-3 cm soil depth, reporting soil moisture decreases of 

8 and 12% for short- and long-term traffic, respectively. Similar findings have also been 

reported by O’Neil and Carrow (1983).  Both elevated precipitation amounts as well as 

the sandier-textured soils used in year 2 may have limited the capacity to once again 

detect similar treatment differences.   
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Figure 3.3.  Soil volumetric water content by month for year 1.  Data are pooled across 

traffic treatments. Error bars denote differences between treatments based on Fishers 

LSD(0.05). 
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Percent Visual Injury 

 A date x treatment interaction for percent visual injury occurred due to weekly 

traffic during both years 1 and 2 (Table 3.1, Figure 3.4).  Percent injury peaked at 22% 

for all treatments in April of year 1, prior to recovery taking place during May.  For year 

2, peak injury of 28% injury was noted for untreated and colorant treated plots in 

February before recovery ensued.  Not surprisingly, untreated and colorant-treated plots 

exhibited the greatest levels of visual injury from January through March rating dates, 

with no differences noted between the two treatments on any rating date (Figure 3.4).  

Visual injury of annual and perennial ryegrass overseeded plots was significantly lower 

than colorant-treated or untreated plots for January through March periods both years.  

Injury of overseeded plots gradually increased from December through April of year 1 

and through May of year 2.  Although no injury differences between the ryegrass species 

were observed in year 1, annual ryegrass overseeded plots succumbed to significantly 

greater injury relative to perennial ryegrass overseeded plots in year 2 (Figure 3.4), 

possibly related to the lower levels of solar radiation and high rainfall early spring of the 

second year.  The lower injury levels observed in perennial versus annual ryegrass are 

consistent with findings of Shearman and Beard (1975), who evaluated wear tolerance of 

seven different winter overseeded cool-season grasses in bermudagrass and reported 

wear tolerance of ‘Manhattan’ perennial ryegrass to be superior to annual ryegrass, 

Kentucky bluegrass, tall fescue, red fescue, chewing fescue, and rough bluegrass. 

Similar results of comparisons of cool-season turfgrass traffic tolerance have been 

reported by Canaway (1978), Bourgoin and Mansat (1979), Carrow and Petrovic (1992).  
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While limited published data are available comparing traffic tolerance of colorant-

treated and untreated dormant bermudagrass, the similar injury levels observed 

throughout the study period suggest that colorant application neither increased nor 

decreased bermudagrass traffic tolerance. 

 

Figure 3.4.  Percent visual injury by month for years 1 (top) and 2 (bottom) as affected 

by winter treatment. Data are for trafficked plots.  Error bars denote differences between 

treatments based on Fishers LSD(0.05). 
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Surface Hardness (Gmax) 

 Both winter treatment and traffic main effects were detected for surface hardness 

in each year of the study.  Year 1 Gmax measurements ranged from 60 to 72, while year 

2 measurements ranged from only 50 to 67, possibly due to the higher sand content in 

year 2 plots (Figures 3.5 and 3.6).  For year 1, overseeding reduced surface hardness 

relative to untreated and colorant-treated plots ~60 vs. 70, respectively), however no 

differences were noted between annual vs. perennial ryegrass or between untreated vs. 

colorant-treated plots.  In year 1, Gmax was higher in trafficked vs. nontrafficked plots 

(74 vs. 61, respectively), regardless of treatment (data not shown). For year 2, a date x 

treatment x traffic interaction for surface hardness was observed (Table 3.1).  During the 

course of year 2, surface hardness of trafficked treatments increased monthly on 

overseeded plots, resulting in an increase of 19% for annual ryegrass and 5% for 

perennial ryegrass by the final May rating date (data not shown).  Untreated and colorant 

treated plots exhibited peak Gmax in March of year 2, just prior to bermudagrass growth 

resumed in spring.  Traffic significantly increased Gmax across all treatments in year 2, 

however, perennial ryegrass showed the least change in surface hardness due to traffic 

(Figure 3.6).  Dunn et al. (1994) reported similar to slightly elevated Gmax 

measurements in non-overseeded compared to perennial ryegrass-overseeded 

bermudagrass plots in ratings taken during early summer in a 2-year Missouri study (51 

vs. 49 and 37 vs. 37 for non-overseeded and overseeded plots, respectively). These 

readings are somewhat lower than those reported in our study, likely due to their 

measurements being taken during summer months, when active growth of bermudagrass 
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had resumed.  Dunn et al. (1994) also reported 36 to 74% increases in surface hardness 

of bermudagrass resulting from traffic in overseeded and non-overseeded plots, 

respectively.  The greater increase in Gmax ratings observed in their study could be a 

result of a substantially greater number of weekly traffic simulator passes made (10 

passes 3 times weekly) compared to the 4 passes provided once weekly in our study.  

Stoloniferous grasses such as bermudagrass tend to produce greater amounts of thatch 

and biomass compared to bunch-type turfgrasses such as perennial ryegrass, and 

therefore may also provide more cushion to the impact of the Clegg tester (Waddington, 

1990).  Canaway et al. (1990) has suggested that Gmax ratings for athletic turf should 

ideally fall between 20 and 80 while acceptable ratings could range from 10 to 100.  

Although all treatments in our study exhibited Gmax measurements of less than 100, it is 

possible that more intensive traffic may have produced these levels. While we are not 

aware of any existing standards for youth or recreational athletic fields, the National 

Football League field testing program currently requires playing surface hardness of 

both natural and synthetic turf fields to be lower than 100 Gmax (Sports Turf Managers 

Association, 2015).   
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Figure 3.5.  Surface hardness (Gmax) as affected by winter treatment for year 1.  Data 

are pooled across traffic levels.  Error bar denotes differences between treatments based 

on Fishers LSD(0.05). 
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Figure 3.6.  Surface hardness (Gmax) as affected by winter treatment and traffic for year 

2. Error bar denotes differences between treatments based on Fishers LSD(0.05). 
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Percent Active Bermudagrass 

 A significant treatment x traffic interaction on percent active bermudagrass 

occurred in year 1 but not for year 2 (Table 3.1, Figure 3.7).  As such, overseeding of 

either species resulted in a significant (~40 to 50%) decrease in visible active 

bermudagrass in plots compared to non overseeded plots (Figure 3.7).  Percent active 

bermudagrass was also similar between annual and perennial ryegrass overseed plots. 

Furthermore, whereas traffic reduced active bermudagrass by ~10% in colorant-treated 

and non-overseeded plots, it had no effect on percent bermudagrass of overseeded plots.  

Interestingly, although there have been anecdotal observations of enhanced spring 

bermudagrass growth due to fall colorant application, we observed no significant 

differences between colorant-treated and untreated plots in terms of April and May 

bermudagrass evaluations.  Spring canopy temperature measurements taken during 

March, April, and May also did not significantly differ between colorant-treated and 

untreated plots (Table 3.1), which may further substantiate this lack of apparent spring 

bermudagrass stimulation resulting from fall colorant application.  For year 2, percent 

active bermudagrass was affected only by treatment, with no effect or interaction due to 

traffic observed (Table 3.1, Figure 3.8).  Consistent with year 1, overseeding 

significantly reduced percent active bermudagrass in plots, however, reductions were 

again similar between annual vs. perennial overseed stands.   

Our results are in agreement with those of Cockerham et al. (1990) who reported 

42% and 61% reductions (untrafficked and trafficked plots, respectively) in 
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bermudagrass transition due to overseeding of perennial ryegrass.  It should be noted 

that percent active bermudagrass ratings in their work was observed at the conclusion of 

the study following chemical transition of perennial ryegrass.  However, our 

observations of bermudagrass transition differs somewhat with that of Cockerham et al. 

(1990), who reported similar amounts of bermudagrass in annual ryegrass-overseeded 

and non-overseeded plots during spring transition evaluations.  Richardson (2004) also 

compared spring transition of annual and perennial ryegrasses in Arkansas and reported 

that annual ryegrass-overseeded plots exhibited 46% and 55% ryegrass in late May, 

whereas perennial ryegrass-overseeded plots still had from 95 to 100% ryegrass. 

Differences between this and our study are likely due to our use of an improved turf type 

annual ryegrass as well as the high rainfall and elevated spring temperatures occurring in 

our study.  
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Figure 3.7.  Percent active bermudagrass as influenced by winter treatment and traffic 

for year 1.  Error bars denote LSD(0.05). 
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Figure 3.8.  Percent active bermudagrass as influenced by winter treatment for year 2.  

Data are pooled across traffic levels.  Error bars denote LSD(0.05). 
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Conclusions 

 Given the need for increased urban water conservation and reduced operating 

budgets, southern and transition zone turf managers will need to continue to evaluate 

options for and alternatives to winter overseeding of trafficked, dormant warm-season 

turf.  Improved ‘turf-type’ annual ryegrasses may offer improved turf quality relative to 

older cultivars, however, there is concern that they may be less tolerant of traffic or 

infrequent irrigation.  Also, while use of turf colorants is an alternative that has seen 

growing adoption within golf and athletic turf management, the practice may not be 

practical for areas that are subjected to larger amounts of wear from traffic. This research 

compared performance, tolerance to simulated traffic, and spring transition of Tifway 

bermudagrass winter treatments under a 1-day per week supplemental irrigation 

schedule.  Based on our results, both improved turf-type annual ryegrass and perennial 

ryegrass overseed stands maintained acceptable levels (60 to 80%) of green cover both 

years of the study.  While tolerance to simulated traffic (4 passes weekly) did not differ 

between the two species in year 1, the higher precipitation and cloud cover of year 2 may 

have contributed to greater injury levels within annual ryegrass in year 2.  Additionally, 

residual benefits of fall colorant application were variable, extending into February of 

year 1, but dissipating by late December of year 2.  These results indicate repeat 

applications may be required during the winter months, depending on environmental 

conditions.  Overseeding, regardless of species, reduced bermudagrass spring transition 

by 40 to 50% compared to untreated and colorant-treated plots, with no stimulation of 

bermudagrass transition resulting from the single fall colorant application.  
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CHAPTER IV 

CONCLUSION 

 As drought becomes more severe and widespread, the necessity for turf managers 

to more effectively conserve water resources will continue to increase. Research further 

examining methods and alternatives to existing management practices will be important 

to the sustainability of the turfgrass industry. These greenhouse and field projects 

identified cultural management techniques that result in development of a deep and 

expansive root system in newly establishing St. Augustinegrass sod, which may be 

beneficial to long term success of the sod. We also examined the use of turf colorants as 

an alternative to overseeding during restricted irrigation practices. 

 In the greenhouse study, we evaluated how the use of PGRs and weekly mowing 

affect root development during the establishment of St. Augustinegrass during a 35-day 

water variance period. In this study, we also evaluated a new St. Augustinegrass cultivar, 

TamStar, in relation to the industry standard for drought tolerance, Floratam. Our 

findings demonstrated that, during establishment, mowing could be withheld during a 

35-day variance period in St. Augustinegrass to ensure more extensive development of 

root systems. The use of PGRs reduced the quality of Floratam, as well as the clipping 

yield from both cultivars, but no benefits were realized in terms of rooting. We also 

found that the new St. Augustinegrass cultivar, TamStar, exhibited improved quality and 

root mass compared to Floratam. 
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 Our field study focused on options for managing trafficked bermudagrass during 

winter dormancy and infrequent irrigation. Specifically, we evaluated the effects of 

traffic on overseeded and non overseeded Tifway bermudagrass during a stage 2, or once 

weekly, irrigation restriction. Our findings showed that, the benefits of turf colorants as 

an alternative to overseeding differed by year and environmental conditions, also, we 

found that both perennial and annual ryegrasses exhibited a similar quality during the 

first year of the study. However, with higher rainfall and cloud cover in year 2, annual 

ryegrass quality declined considerably relative to perennial ryegrass. Traffic also 

increased the surface hardness of all treatments with the non-overseeded plots becoming 

harder than those overseeded.  Future research should address the benefits of repeated 

colorant applications, as well as the impacts of colorants on heavy metals in soil and 

plant tissue. 

 As turf management practices change due to declining water availability in 

coming decades, findings of both the greenhouse and field studies provide practical 

information for turfgrass professionals on the establishment and maintenance of 

turfgrasses during water restriction periods. 
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