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ABSTRACT

This dissertation studies the travel time estimation at roadway link level using

entry/exit time stamps of trips on a steady-state transportation network. We propose

two inference methods based on the likelihood principle, assuming each link associates

with a random travel time. The first method considers independent and Gaussian

distributed link travel times, using the additive property that trip time has a closed-

form distribution as the summation of link travel times. We particularly analyze

the mean estimates when the variances of trip time estimates are known with a

high degree of precision and examine the uniqueness of solutions. Two cases are

discussed in detail: one with known paths of all trips and the other with unknown

paths of some trips. We apply the Gaussian mixture model and the Expectation-

Maximization (EM) algorithm to deal with the latter. The second method splits

trip time proportionally among links traversed to deal with more general link travel

time distributions such as log-normal. This approach builds upon an expected log-

likelihood function which naturally leads to an iterative procedure analogous to the

EM algorithm for solutions. Simulation tests on a simple nine-link network and on

the Sioux Falls network respectively indicate that the two methods both perform

well. The second method (i.e., trip splitting approximation) generally runs faster

but with larger errors of estimated standard deviations of link travel times.
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1. INTRODUCTION

1.1 Background and Motivation

Travel time is one of the most important factors when a traveler plans a route

from an origin to a destination, and it is also critical to transportation planners and

operators as a performance measure. Reducing travel time (e.g., through traffic con-

gestion mitigation or tolling) is often considered as equivalent to improving mobility

and network efficiency. Therefore, accurate travel time estimation on a transporta-

tion network is becoming an essential task and is being made possible now by widely

available traffic data.

A regular way to obtain travel time data on a network is by means of traffic

tracking. This can be done through probing phones (e.g., Bar-Gera [5], Ygnace et al.

[98]), global positioning system (GPS) devices (Bertini and Tantiyanugulchai [7]),

and vehicle ID readers (through either Bluetooth or vehicle plate identification and

matching, Haghani et al. [34], Barcelo et al. [6], Chang et al. [12]). When data is

sufficient all these methodologies work well. However, a main drawback is that these

methods demand a huge volume of vehicular data. For example, in order to obtain

the speed or travel time information of a specific roadway link, one would need to

track vehicle movement at both ends of that particular link, which gives rise to the

requirement for a huge amount of data, both across the network and over a period

of time (e.g., during both peak hours and off-peak hours). A research question is:

Is it necessary to have two points tracked for every link in order to obtain the link

travel time? This research studies an alternative way to estimate link travel time

based only on records of the travelers’ start and end locations and time stamps of

trips on a network. We refer to the start and end locations and time stamps of trips
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as travelers’ entry/exit time stamps on a network in this dissertation. By knowing

both ends of trip itineraries for a sufficiently large amount of travelers, one is able

to estimate the link travel times with an acceptable accuracy.

This research is first motivated by a practical application in which vehicles’ en-

try/exit locations and time stamps are available on a toll road network. Toll road

operators have a practical need to use this information for link travel time estima-

tion and prediction. There may be many other similar applications with the public

transit systems as well. A broader impact of this study is that through finding the

mapping relationship between trip itinerary and link travel time, one may choose

to archive the itinerary information in order to keep link travel time information,

therefore to reduce the amount of data collected and archived for the transportation

network performance measures.

1.2 Problem Statement

In this dissertation, a roadway network is represented by a graph, where nodes

represent intersections and links (edges) represent road segments. A link connects

either between two intersections on an urban arterial road or between two entry and

exit ramps on a highway section. Each link associates with a random travel time

that follows a certain distribution. A path is defined as an alternating sequence of

links and nodes from an origin to a destination node (known as an OD pair). Each

trip consists of a path, the entry (starting) time at the origin, and the exit (ending)

time at the destination. Multiple trips may take place on the same path. Trips on

the network are observed each with an OD pair associated entry/exit times. Paths

may not be known for some trips. A trip time, the difference between entry/exit

times, is the summation of link travel times along a path. With a sufficiently large

number of trips observed, our goal is to estimate the parameters of link travel time

2



distribution by handling the unobserved routes if necessary.

We propose two inference methods based on the likelihood principle. The first

method (Method I) considers independent and Gaussian distributed link travel times,

using the additive property that trip time has a closed-form distribution as the

summation of link travel times. To overcome the modeling challenge that random

link times do not typically add up to a trip time with closed-form distribution,

we develop another method (Method II) that can apply to the general case with

arbitrary link travel time distribution. For each case, two versions of the study

problem are examined respectively. First we address a simpler version in which each

trip observation has a known route on the network. In a second step, we further study

the problem in which the associated routes of some trip observations are unknown.

The first version of the problem provides a basis for the study of the second one.

1.3 Outline

The remainder of this dissertation is organized as follows. Section 2 overviews

the prior studies on travel time estimation techniques and relevant literature on

statistical inference methods. Section 3 proposes the first method assuming that

the trip time has a closed-form distribution, using Gaussian distribution for link

travel time as an example. Section 4 develops a statistical framework of the trip

splitting method to deal with a more general trip travel time distribution. Two cases

are discussed in each model approach: one with known routes of all trips and the

other with unknown routes of some trips. Section 5 tests the proposed methods with

simulated data on a simple 9-link network and the Sioux Falls network, respectively.

Section 6 discusses the advantages and disadvantages of both methods. Section 7

concludes this research.
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2. LITERATURE REVIEW*

Several commercially available systems are capable of estimating roadway travel

times on the real-time basis using varying sources of traffic data. Dion and Rakha [28]

broadly classify the systems into three categories: spot speed measurement systems,

spatial travel time systems, and probe vehicle technologies. The following reviews

literature according to this classification, as in Yin et al. [99].∗

2.1 Data Sources

2.1.1 Spot Speed Measurement Systems

Spot speed measurement system, specifically consisting of inductance loop de-

tectors, has been a main source of traffic information in the past decades. The

traditional single loop detectors consist of a single inductance loop that is able to

generate a magnetic field and detect the passing of vehicles. These detectors are

usually set in fixed points along a roadway, and they output traffic variables such as

traffic flow (number of passing vehicles per hour), and occupancy (percentage of time

that detector is occupied) at specific points. Substantial studies have focused on this

indirect estimation of roadway travel times using each vehicle’s speed observed at

discrete points along a roadway. The spatial travel time over an entire trip can be

calculated based on the space-mean-speed estimates.

The prominence of this spot speed measurement approach results from the large

number of available traffic data provided by inductance loop detectors. Additional

research efforts have also been made in improving the accuracy of spot speed estima-

tion from single loop detectors (Coifman [17], Dailey [23], and Pushkar et al. [74]).

∗Part of this section is reprinted with permission from “Link travel time inference using entry/exit
information of trips on a network” by K. Yin, W. Wang, X.B. Wang, and T.M. Adams, 2015.
Transportation Research Part B: Methodological, 80, 303-321, Copyright [2015] by Elsevier.
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The use of double loop detectors can also help to obtain accurate estimates of spot

speed. The double loop detectors consist of a pair of single loop detectors, which

are set very close to each other. Other than the traffic flow and occupancy, this pair

of sensors can also collect traffic speed and vehicle lengths using the obtained travel

times of vehicles between two sensors (Leduc [50]).

These conventional sensors can provide high quality data and are not affected

by external factors. They are usually widely deployed along a roadway. However,

their installation and maintenance are expensive and complicated (Bar-Gera [5]). To

resolve these issues, other evolving measurements have emerged such as infrared and

radar technology as well as the video image detection method in recent years. For

example, detectors can use video cameras and the image processing method to obtain

vehicle counts and speeds at specific points along the road. The main drawbacks are

that they are usually susceptible to external factors (for example, weather), and they

may also need periodic maintenance (Leduc [50]).

2.1.2 Spatial Travel Time Systems

Different from indirect estimation using spot speed measurement, study on travel

time estimation has also focused on direct measurement of the time interval that a

particular vehicle takes to travel from one point to another.

Many researchers have proposed smart use of loop detector data by matching the

particular vehicles in consecutive loop detectors based on their characteristic lengths

(Coifman and Cassidy [19]; Coifman and Ergueta [20]; Coifman and Krishnamurthy

[21]), or particular inductive signature on the detectors (Abdulhai and Tabib [1], and

Sun et al. [86]). However, these techniques require the upgraded hardware and/or

software loop configurations, thus they have not been widely put into practice for

highway operation.
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Other than the loop detector data, deployment of Intelligent Transportation Sys-

tems (ITS) in the last decade has brought the chance to use more suitable traffic

data to directly measure travel times (Turner et al. [89]). The merging spatial travel

time measurement systems use equipment at fixed locations to automatically identify

and track vehicles in the traffic stream. Spatial travel time estimates can be com-

puted by matching vehicle identifications at different reader locations. This is the

case with data obtained from the Automated Vehicle Identification (AVI) systems,

which can be of various types, such as toll collection systems (e.g., Al-Deek et al.

[3]), video cameras and license plate recognition techniques (e.g., Kazagli and Kout-

sopoulos [48]), and also the recent Bluetooth-based detection systems (e.g., Haghani

et al. [34]). The AVI systems can detect and match vehicles on both ends of a

road section, thus the travel times can be directly computed if the clocks at different

locations are properly synchronized.

The TranStar system in Houston (Houston TranStar [41]), and the Transmit

system in the New York metropolitan area (Mouskos et al. [65]), estimate link

travel times by tracking the passage times at specific locations among those vehicles

equipped with electronic tags of automatic toll collection system. And the Trans-

Guide system in San Antonio (Southwest Research Institute [87]) collects travel time

information from voluntary vehicles equipped with electronic transponder tags for

research purposes. These AVI systems monitor vehicles’ movements using tag readers

that are typically installed every 1 to 5 miles along highway segments.

2.1.3 Probe Vehicle Technologies

Another approach to measuring travel times is to use probe vehicle technologies,

which are capable of tracking a sample of probe vehicles as they travel through a

transportation network. The use of probe vehicles can provide the information of

6



vehicles’ trajectories, and travel times between two points can be easily derived.

The emerging technologies include smart phones, global positioning systems (GPS),

and automatic vehicle location (AVL) systems. Those probe vehicles act as mobile

traffic sensors equipped with tracking devices (e.g., GPS or mobile phones), and send

location, direction and speed information every few seconds or minutes. They are

being used to collect network-wide traffic information such as instantaneous speeds

and travel times at any network location without the need of roadside equipment.

In order to accurately represent realistic traffic conditions, the sample size needed

is generally quite large, especially in the case of probe vehicle systems (Turner and

Holdener[90]; Chen and Chien [15]). Even the increasing GPS tracking of taxis,

buses, and other vehicles has resulted in a large number of equipped vehicles trav-

eling through an urban transportation network, prior research using probe vehicle

data have examined the number of probe vehicles needed to reflect realistic traffic

conditions.

Sanwal and Walrand [79] suggest the use of vehicles as sensors, considering the

insufficient amount of sensors available for traffic surveillance. Their simulation

results show that probe vehicles, accounting for approximately 4% of total traffic, are

necessary for desirable travel speed estimation. Srinivasan and Jovanis [85] indicate

that the number of probe vehicles required increases non-linearly as the reliability

criterion is made more stringent. They also conclude that the number of probes

required increases with the desired proportion of link coverage on the network, or

with shorter travel time measurement periods. And with a fixed number of probes, a

larger proportion of freeway links can be reliably covered than that of a major arterial.

Zou et al. [104] propose a method for arterial speed estimation by utilizing taxi GPS

data from 100 vehicles in Guangzhou, China. Their study shows that the number

of probe vehicles accounting for 3% of total traffic result in significantly lower errors
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for travel speed estimation. Lorkowski et al. [57] discuss the potential applications

of probe vehicle data, such as dynamic routing and automatic congestion detection,

using GPS data from 700 taxis in Stuttgart, Germany. Their results indicate that

probe vehicles accounting for about 1% of total traffic are required to estimate traffic

conditions.

Several studies have also been conducted to deal with the route inference in map-

matching processes for probe vehicle data. Yokota and Tamagawa [100] develop a

map-matching and route identification algorithm based on dynamic programming,

using GPS probe data from freight vehicles. The experiment results demonstrate

that their method can analyze the tour of freight vehicles along highway, and ef-

fectively detect vehicles’ on and off ramp trajectories. Rahmani and Koutsopoulos

[75] also propose a simultaneous map-matching and path inference method for low-

frequency GPS probe data on urban network based only on available information of

geo-locations and time stamps. Their case study in Stockholm indicate that the pro-

posed method is robust with respect to the frequency of probe data, and appropriate

for off-line and real-time applications.

2.2 Review on Travel Time Estimation Models

Two main issues concerning travel time are estimation and prediction. These two

concepts are different with respect to objectives and dynamism (Mori et al. [64]).

Travel time estimation calculates the travel times of vehicles’ trajectories that have

already ended based on data obtained during the trip. It aims to provide a reasonable

value of travel time that gives a general idea of traffic conditions on a certain roadway

section and within a certain time interval. In contrast, travel time prediction aims to

forecast the travel time for a vehicle’s trajectory that will start right away in future

intervals, by using traffic data currently available as well as historical data from the
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past.

Both estimation and prediction have been extensively studied in literature. This

dissertation focuses on the estimation of link travel times on a transportation net-

work. Therefore, a comprehensive review is provided on model approaches in terms

of travel time estimation, in order to build a complete background analysis of avail-

able models and algorithms. The following summarizes the relevant literature on the

estimation methods using data from various measurement systems.

2.2.1 Travel Time Estimation Using Loop Detector Data

The loop detector is able to output the traffic flow and the occupancy at the

fixed point of detection. A significant body of literature has developed travel time

estimation approaches using loop detector data, including traffic theory-based and

data-based methods (Mori et al. [64]).

The traffic theory-based methods utilize relations between traffic variables based

on the conventional traffic flow theory. Nam and Drew [66] propose a method to

estimate freeway travel times in real time directly from flow measurements. Their

model approach is essentially based on the stochastic queuing theory, flow conserva-

tion and propagation principles. The analysis results indicate that the estimates are

consistent with empirical data.

Long et al. [56] develop link travel time models based on the piecewise-linearized

profiles of link cumulative flows. They prove that the proposed models preserve the

first-in-first-out (FIFO) principle and the continuity of travel times with respect to

flows.

The advantage of traffic theory-based methods is that they are capable of captur-

ing the dynamic characteristics of traffic, by applying the realistic relations between

traffic variables. However, traffic flow needs extra monitoring if an entry/exit ramp
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exists between two point detectors, in order to obtain accurate cumulative inflow

and outflow profiles for a study link.

The data-based methods use statistical and machine learning approaches to find

underlying structures that relate traffic flow, occupancy of detector, and travel times

using empirical data, for example, time series analysis with cross correlation tech-

niques (Dailey [22]), polynomial regression model (Sisiopiku and Rouphail [81]),

stochastic model assuming travel times of vehicles arriving at a detector in a given

interval follow a distribution (Petty et al. [73]), and application of artificial neural

networks (Palacharla and Nelson [70]). The main drawbacks of these data-based

methods are that they require a large amount of quality data and only apply to

specific sites.

Even with accurate spot speed estimates obtained from point detectors, travel

time estimates can still be flawed as extrapolating spot measurements to a roadway

section. Different traffic conditions may exist along a roadway. It is noted that

this issue particularly arises on a roadway with low density of detection sites. As

suggested by Hopkin et al. [40], one detector site every 500 meters of highway is

desirable to provide accurate travel time estimates.

Several approaches have also been developed to overcome the issue and avoid

the enormous cost of intensive loop surveillance, such as the identification of vehicle

trajectories between loop detectors (Coifman [18] and Li et al. [51]), and development

of sensor deployment methods for reliable travel time estimation (Hu el al. [42],

Li and Ouyang [52]). In addition, it shall be taken into account that in the traffic

situations of stop and go, the loop speed estimates may not represent the space mean

speed of traffic stream. Therefore, indirect estimation of roadway travel times using

spot speed measurement systems still has limitations to generate accurate travel time

estimates.
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2.2.2 Travel Time Estimation Using AVI Data

The AVI systems can provide real-time travel time information to travelers within

Advanced Traveler Information Systems (ATIS). The collected AVI data need to be

cleaned and filtered prior to their use in ATIS or other applications. For example,

the outlier observations exist when a tracked vehicle makes a stop for refueling, or

detours between successive detection stations. Some research efforts have been made

to address this issue (Ohba et al. [69]; Dion and Rakha [28]; Tam and Lam [88]).

Dion and Rakha [27] develop a method to estimate the roadway link travel times

using AVI data by designing a robust data-filtering procedure to identify valid obser-

vations. Their method deals with both steady state and transient traffic conditions,

and can be applied to the roadway segments with low levels of AVI penetration. The

case study using travel time data from the San Antonio AVI system demonstrates

the validity of proposed method, and its ability to track sudden travel time changes

even with a small sample.

The concept of using AVI data from toll collection systems to directly measure

highway travel times is first proposed by Davies et al. [25]. A large number of litera-

ture mainly deal with the usage of Electronic Toll Collection (ETC) data to measure

travel time. The systems can identify the vehicles through on-vehicle electronic tags

and roadside equipment on highway segments. However, the basic problems of this

configuration include the level of market penetration of electronic toll tags, and time

periods in order to obtain a continuous measurement of travel times when only small

samples are available (see Dion and Rakha [28]).

Additional research has been conducted on travel time measurement using the

typical configuration of a closed toll system, which has been widely extended in

Europe and Asia (Ohba et al. [69]). For a closed toll system, the toll a particular
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vehicle is charged varies depending on its origin and destination, and the individual

toll is approximately proportional to the traveled distance along highway. Soriguera

et al. [83] present a new approach for measuring travel times on closed toll highways.

Considering tollbooths are located on the entry/exit ramps with each vehicle charged

a fee depending on its origin and destination, the data from toll collection system are

filtered and fused in a statistical way in order to extract valid itinerary travel time

information. The proposed method allows estimating travel times on single sections

of highway using itineraries covering different pairs of origin and destination.

2.2.3 Travel Time Estimation Using Probe Vehicle Data

A significant body of literature focuses on model-based and data-driven methods

to estimate travel times or link-based travel speeds with probe vehicle data for traffic

monitoring or planning purposes.

A mathematical model by Jula et al. [47] estimates link travel times and arrival

times at nodes on a real-time, stochastic network. Hellinga et al. [36] propose an

analytical model to decompose partial link or route travel time from a probe vehicle

into individual link travel times along urban arterial, utilizing real traffic conditions

on arterial network. Their evaluation suggests that the proposed method outperforms

the benchmark (deterministic) method.

Different from the conventional loop detector data, probe vehicle data does not

provide direct information about flow, density, and average speeds that are usually

the inputs for analytical models. Instead, data-driven methods are used for travel

time estimation. The existing data-driven methods include regression models (Chan

et al. [11]), and neural network based models. Zheng and Van Zuylen [102] propose

a three-layer neural network model to estimate link travel times for individual probe

vehicles. The results with simulated data demonstrate that their model outperforms
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the analytical model. However, the many required parameters associated with those

models limit their applicability in practice.

Instead of exclusively utilizing probe vehicle data, Bhaskar et al. [8] propose a

model to incorporate probe vehicle data into traditional cumulative plots in order

to estimate the average travel times on a urban network. Zhang and Rice [101] use

data from both probe vehicles and double loop detectors to develop a linear model

for travel time prediction on freeways. Sananmongkhonchai et al. [78] combine the

real-time taxi data with the historical hourly speed profiles. Their results display an

improvement in travel speed estimation. In addition, to address the issue of sparse

truck GPS data available, Morgul et al. [63] present an empirical method for truck

travel time estimation, using taxi GPS data to supplement the limited truck GPS

data on the Manhattan network. Their results indicate that the taxi GPS data

supplement the sparse truck data well.

2.3 Statistical Approaches in Relevant Literature

While the associated methods to estimate roadway travel time range from regres-

sion model (Chan et al. [11]), machine learning approach (Zheng and Van Zuylen

[102]) to analytical model dealing with traffic conditions (Hellinga et al. [36]), many

required parameters limit their applicability in practice and a lack of general model

approaches has been identified when it comes to a network-wide travel time estima-

tion problem. To date, valid statistical analysis becomes increasingly important as

the data becomes widely available (Fan et al. [30]). In this section, we provide a

detailed review on the statistical techniques and approaches for network travel time

modeling and analysis.

13



2.3.1 Travel Time Distribution and Reliability

Many existing models relate the link travel time to traffic volume or signal timing

information (Davidson [24]; Spiess [84]; Skabardonis and Dowling [82]; Xie et al.

[96]), but they can only provide the average travel time for all the traveling vehicles

along a roadway section and are generally used for planning purposes. In reality, it

is important to consider the uncertainty associated with roadway travel time, due

to the unexpected road conditions, different driver behavior, impact of traffic signals

on arterial roads, etc. The estimation and prediction of travel time probability

distribution can be more valuable than a deterministic estimate of travel time. Even

though the common objective in literature is to provide the mean travel time (e.g.,

using the length of road section divided by the obtained space mean speed) for a

study roadway, providing an estimation or prediction of travel time distribution is

more informative and reliable to guide vehicles traveling through that roadway. It can

also be used for risk-averse routing, fleet vehicle decision support of on-time delivery,

or reporting travel time reliability to a traveler (Liu et al. [55]; Samaranayake et al.

[77]; Chen et al. [13]).

Modeling travel time reliability on traffic networks has attracted substantial at-

tention in literature (Noland and Polak [68]; Chen et al. [14]; Clark and Watling

[16]; Al-Deek and Emam [2]; Li et al. [53]). It is increasingly important to accu-

rately estimate and predict the range of possible variations in travel times and the

associated probabilities for the use of roadway travelers and traffic system operators.

Extensive studies on this topic have proposed various parametric probability density

functions to characterize the travel time distributions based on historical travel time

data. The traditional models that are commonly used in literature include Gaussian,

lognormal, Gamma and Weibull distributions (Emam and Ai-Deek [29]; Arroyo and
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Kornhauser [4]; Rakha et al. [76]).

Recent research on travel time data analysis and travel time distribution modeling

has benefited from the application of advanced statistical techniques. One of the

promising approaches in this context is the use of finite mixture models, which is

considered a useful extension of classical statistical models.

Jintanakul et al. [46] apply a hierarchical Bayesian mixture model to the travel

time distribution along freeway sections based on small samples of vehicle probe data.

The model uses two normal components to capture the heterogeneity in the travel

time observations and various distribution shapes such as the skewed or multimodal

distributions. The results of their simulation study demonstrate that the proposed

model can well approximate the true travel time distribution for each roadway section

during each interval.

Kazagli and Koutsopoulos [48] develop a log-normal mixture model approach

to identify valid observations in the processing of traffic data from an Automatic

Number Plate Recognition (ANPR) system. Their model takes into account that

ANPR observations have a significant amount of noise and need to be filtered due

to vehicles stopping along the route, taking detours, mismatched license plates, etc.

Guo et al. [33] propose mixture distributions to model travel time reliability.

Their model captures the multi-modality in travel time distributions considering

the travel time data collected under multistate traffic conditions. The simulation

study and field data analysis based on San Antonio AVI travel time data show the

superiority of using the two-component normal mixture model over the traditional

single-mode probability distributions.

Kim and Mahmassani [49] also propose a two-component Gamma-Gamma mix-

ture model to capture the vehicle-to-vehicle and day-to-day variability of travel times

on a traffic network. They compare the distribution fitting using both the proposed
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model and the standard one-component Gamma-Gamma model. The results indicate

that the mixture model provides a better fit to the travel delay observations.

Considering the availability of mixture modeling techniques described above, this

dissertation addresses the trip observations with unlabeled routes to be on different

possible paths with probabilities, such that the observed travel times of unlabeled

trips with the same OD pair are thought of as a sample drawing from a multimodal

distribution, where each of modality represents the random travel time on a pos-

sible path. Under the assumption of Gaussian distributed link travel times, this

research formulates the multimodal distribution as the classical Gaussian mixture

model(Bishop [10]; Bickel and Doksum [9]).

2.3.2 Maximum-Likelihood Method and Bayesian Approach

In what follows, we review two categories of statistical approaches to address

network travel time estimation and prediction in relevant literature: the traditional

maximum-likelihood method and Bayesian approach.

Among the scant literature that focuses directly on this topic, Hunter et al. [44]

formulate a maximum-likelihood problem to estimate link travel time distributions

on an arterial network. Their model takes into account that an unknown trajec-

tory observation may incur the path uncertainty. They present the Expectation-

Maximization (EM) algorithm to simultaneously learn the likely paths by probe

vehicles as well as the travel time distributions on the network. They assume that

the travel times on different links are independent, and briefly report the estimation

results in their case study using San Francisco taxi data.

In order to extract travel time distributions from sparse, noisy GPS measurements

collected in real-time from vehicles on a large network, Hunter et al. [43] also present

a probabilistic model of travel times on the arterial network along with an online EM
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algorithm for learning the model parameters. Their framework can accommodate a

wide variety of travel time distributions proposed in prior studies (Hellinga and Fu

[37]; Hofleitner et al. [39]; Lin et al. [54]). Although it is common to use Gaussian

random variables because of closed-form solutions, they use Gamma distributions

considering positive valued distributions with heavy tails, and present algorithms

to sample and compute densities for Gamma distributed link travel times. Their

EM algorithm has no closed-form expression, and requires sampling and nonlinear

optimization techniques. But it can estimate travel times on a large urban network

(e.g., the San Francisco bay area) by processing tens of thousands of observations

per second, with a latency of a few seconds.

Instead of the assumption of independent link travel times, Jenelius and Kout-

sopoulos [45] present a statistical model for travel time estimation on an urban road

network based on the vehicle trajectories from low frequency GPS probe data. They

consider the correlation between travel times on different links, and capture the

correlation using a moving average specification for link travel times. The specific

information of link attributes (such as speed limit and roadway functional class)

and trip conditions (such as day-of-week, time-of-day, and weather condition) are

incorporated as explanatory variables in the model. The model is estimated using

maximum-likelihood method, and it is applied to estimate travel times for a partic-

ular route of the Stockholm network in Sweden. Their case study results highlight

the potential of using sparse probe vehicle data for monitoring the performance of

urban transport system.

In contrast to traditional maximum-likelihood method, some relevant studies ap-

ply the Bayesian approach to travel time distribution prediction. Hofleitner et al.

[38, 39] propose a dynamic Bayesian network for unobserved traffic conditions on

links, and model link travel time distributions conditional on traffic states. Their
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method is from the traffic flow perspective, and is applied to a San Francisco road

network to predict travel times using taxi data.

Feng et al. [31] propose two approaches to estimate link travel time distributions

on urban arterial roadways. They model the link travel time distributions as mixtures

of normal densities. Their first approach applies the EM algorithm to empirical

estimates of the travel times when prior travel time data is available. The second

approach estimates the travel time distributions based on signal timing information

and arterial geometry. The GPS data is utilized to update the parameters of the

travel time distributions using the Bayesian approach. They conduct the case studies

using both the Peachtree Street (in Atlanta, GA) data and Washington Avenue (in

Minneapolis, MN) GPS data. The comparison results from the Bayesian update and

EM algorithm indicate that overall, the EM algorithm fit the data better. However,

the Bayesian approach can still reflect the real world situation for some scenarios

with missing data.

Westgate et al. [93] also propose a Bayesian model to estimate the distribution

of ambulance travel times on road segments in Toronto. They apply a multinomial

Logit model to formulate the path choices for ambulance trips, and perform the

path inference and travel time estimation simultaneously using a Bayesian approach.

They also assume that the link travel times are independent and log-normally dis-

tributed. The parameters are estimated using Markov Chain Monte Carlo (MCMC)

methods. Instead of modeling travel time at the link level in the previous work,

Westgate et al. [94] model the ambulance travel times at trip level. They propose a

regression approach for estimating the ambulance travel time distribution along an

arbitrary route on a road network, and use a Bayesian formulation to estimate the

model parameters. The advantage of applying the Bayesian approach is that it can

utilize expert knowledge as prior information to represent estimates as a conditional
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distribution, and it can also tackle many complicated problems that traditional sta-

tistical approaches find difficult to analyze. However, the implementation relies on

computationally expensive methods such as MCMC.

2.4 Objectives and Contributions of this Research Compared with Literature

This research aims to develop inference methods for link travel time estimation

on a steady state network, given that each link is associated with a random travel

time. We estimate network-wide link travel times by only using vehicle start and

end locations and time of trips, referred to as traveler entry/exit time stamps in this

dissertation. This type of data is available nowadays when discrete points of a trip

are recorded. Sparse vehicle trajectories reported by GPS-equipped probe vehicles or

smart phones (Wang et al. [91]) can also be regarded as a particular case of traveler

entry/exit trip information on a network. Specially, this research is motivated by a

practical application on a toll road network, in which traveler entry/exit time stamps

are recorded at tollbooths and the toll road authority has a practical need to use

travel time inference results to evaluate the toll systems. Other potential applications

include using public transit data for network performance analysis when passenger

entry/exit information is recorded at fare boxes (Ma et al. [59]).

We start with the assumption of independent and Gaussian distributed link travel

times, and present the EM algorithm to address the trips with unknown routes, as

Hunter et al. [44] and Siripirote et al. [80]. However, different from relevant litera-

ture, we focus on exploring the analytical properties of fundamental model framework

from the statistical perspective. We examine the impact of errors in trip variance

estimates on mean link travel time estimates, and investigate the uniqueness of so-

lutions in the algorithm. We also provide the calculation of confidence intervals

for mean link times. Furthermore, we provide a statistical method of trip splitting
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approximation to mainly address a technical situation in which the summation of

random link travel times for a route does not have a closed-form probability dis-

tribution. The basic idea of decomposing trip travel time already has been seen in

practical applications (Hellinga et al. [36]), but without appropriate justification and

investigation. The proposed trip splitting method can apply to arbitrary distribu-

tions, and is statistically justified for the network estimation problem. Its potential

application appears more promising if more traffic information is available.
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3. METHOD I: ESTIMATION USING TRIP TIME DISTRIBUTIONS*

In this section, we study the problem where the trip travel time has a closed-form

distribution as the summation of link travel times, as in Yin et al. [99].∗

A key technical challenge is regarding the randomness of the link travel time and

the specific distributions to represent it. A nice feature of the Gaussian distribution

is that the sum of random variables that follow Gaussian distributions still follows

a Gaussian distribution. Because the Gaussian distribution is often representative

of reality, in Method I that follows, we develop models assuming link travel times

follow Gaussian distributions. Note that we generally assume all link travel times

are independent in our study unless specified otherwise.

3.1 Link Time Estimation Using Trips with Known Routes

We first study the basic case in which all the observed trips have known routes.

In other words, each OD observation has a specific set of links on which the itinerary

trip takes place. link travel times are estimated according to a specific time interval

of the day, although the time interval may be wide such as half an hour or longer.

We let A be the set of road links and n be the total number of links. Let I be

the total number of observations and xi denote the observed travel time of trip i.

We assume that I is larger than n throughout the rest of this study. The set of

observations is represented by D, i.e., D = {x1, x2, . . . , xI}. As all the trips have

known routes, we denote by δi,a an incidence indicator, which is equal to 1 when link a

is on trip i and 0 otherwise. Let the corresponding incidence matrix be ∆ = [δi,a]I×n.

In addition, we denote the mean travel time on link a by µa and the corresponding

∗Part of this section is reprinted with permission from “Link travel time inference using entry/exit
information of trips on a network” by K. Yin, W. Wang, X.B. Wang, and T.M. Adams, 2015.
Transportation Research Part B: Methodological, 80, 303-321, Copyright [2015] by Elsevier.
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standard deviation by σa, where a ∈ A. Let µ and σ be the n-by-1 vectors of µa

and σa, respectively. Following Rakha et al. [76] and Wen et al. [92], we make the

following assumption:

Assumption 1 All link travel times on the study network are independently and

normally distributed, as denoted by N (µa, σa) for each link a.

If, however, the link travel times are correlated, as long as a joint distribution of

link travel times is available, the problem can still be technically modeled. Here, we

maximize the following likelihood for the trip observations:

The likelihood function of the observations is described as follows:

Maximize LL(η, τ | D) =
∑
i

log

(
1√
2πτi

e
− (xi−ηi)

2

2τ2
i

)
, (3.1)

where ηi and τi denote respectively the mean travel time and the standard deviation

of trip i. η and τ denote vectors of ηi and τi, respectively.

As we assume the link travel time distributions are independent, the following

equations hold:

ηi =
∑
a

δi,aµa, (3.2)

τi =

√∑
a

δi,aσ2
a. (3.3)

The objective function (3.1) is equivalent to a minimization function as follows

Minimize W(µ, σ | D) =
∑
i

(
log (

∑
a

δi,aσ
2
a) +

1∑
a δi,aσ

2
a

(xi −
∑
a

δi,aµa)
2

)
(3.4)

The objective leads to the following equations, by setting the partial derivative to
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zero for a specific link a with respect to its parameters µa and σa, respectively,

∑
i

δi,a(
∑

b δi,bµb)∑
b δi,bσ

2
b

=
∑
i

δi,axi∑
b δi,bσ

2
b

, (3.5)

∑
i

δi,a∑
b δi,bσ

2
b

=
∑
i

(
δi,a

(
∑

b δi,bσ
2
b )

2
(xi −

∑
b

δi,bµb)
2

)
. (3.6)

Equations (3.5) and (3.6) are nonlinear but one may refer to Newton–Raphson’s

method for solutions. To solve Equations (3.5) and (3.6), an iterative practical

approach can be designed as follows: First we observe that if σ2
a are determined, µa

can be solved easily by Equation (3.5) due to the resulting linear system in terms

of µa . Then based on the obtained µa, we solve for σ2
a by Equation (3.6) using

traditional techniques for nonlinear system. This process iterates until convergence.

3.1.1 Matrix Representation

It is convenient to format Equations (3.5) and (3.6) in matrix to simplify the

further analysis. Two approaches are available: one through the observation–link

incidence matrix and the other through the itinerary–link matrix. While the former

appears more natural, the latter has a more compact form that will be useful for

practical implementation. We present the first approach in this section and present

the second in Appendix A.1.

Let X be a I-by-1 vector with the i-th element being xi and Σ be the n × n

covariance matrix of link travel times. Since the link travel times are assumed to be

independent, Σ is a diagonal matrix here with the element Σa,a = σ2
a. We denote by

Λ a I × I diagonal matrix with Λi,i =
∑

b δi,bσ
2
b . In fact, we have the representation

Λ = diag(∆Σ · 1), where 1 is an n-by-1 vector with 1 as its element, and diag(·)

denotes the transformation of a vector to a diagonal matrix. In this representation,

the operator · emphasizes that the multiplication is taken between a matrix and
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a vector. If we let ∆̃ = Λ−1∆, i.e., ∆̃ being the incidence matrix ∆ scaled by

(
∑

b δi,bσ
2
b )
−1 for all δi,a in the row i, Equation (3.5) can be written as ∆̃T∆ · µ =

∆̃T · X. We note that the matrix ∆ is of the same rank with the matrix ∆̃. This

result actually implies that a unique solution exists as long as the incidence matrix

∆ is of full rank and all σa are known. Under this condition, Equation (3.5) has the

solution µ = (∆̃T∆)−1∆̃T ·X, which is the weighted least squares estimation. If ∆

does not have full rank, (∆̃T∆)−1 is considered as a generalized inverse. Moreover,

Equation (3.6) can be written as ∆̃T ·1 = ∆T · [(Λ−1(X −∆ ·µ)) ◦ (Λ−1(X −∆ ·µ))],

where ◦ denotes the element-wise product.

3.1.2 Analysis of Mean Estimates: Impact of Errors in Variance Estimates

Equation (3.5) can be reduced to a series of linear equations regarding link time

mean estimates, given the values of variance estimates. It can be shown that if

the trip variance values are predetermined within a certain range of estimate errors,

it would be computationally easy to solve for the mean link time estimates with

reasonable errors. We illustrate this point below.

We let σ̂2
b be the variance estimate used in Equation (3.5) and let σ2

b be its real

value. For convenience, we assume that there is a disturbance εb in the variance

estimates, i.e., σ̂2
b = σ2

b − ε2b in the following analysis. A similar analysis can be

applied to the case σ̂2
b = σ2

b + ε2b as well as the general case σ̂2
b = (σb − εb)2.

We denote by µ̂ the vector solution to Equation (3.5) with σ̂2
b . The matrix ∆̃ is

the same as defined before with σ2
b , i.e., ∆̃ = Λ−1∆ with Λi,i =

∑
b δi,bσ

2
b . We also

use ‖ ·‖ to denote the norm of matrices or vectors. Let Λε be a I× I diagonal matrix

with the i-th element in diagonal being
∑
b δi,bε

2
b∑

b δi,bσ
2
b
, then we have the following.

Proposition 1 ‖µ−µ̂‖ is sufficiently small provided ‖Λε‖ � 1, where µ = (∆̃T∆)−1∆̃T ·

X.
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Proof. We have the following equation:

(
∑
b

δi,bσ̂
2
b )
−1 =

(∑
b

δi,bσ
2
b

(
1−

∑
b δi,bε

2
b∑

b δi,bσ
2
b

))−1

=

(∑
b

δi,bσ
2
b

)−1(
1 +

∑
b δi,bε

2
b∑

b δi,bσ
2
b

+ ...

)
, (3.7)

provided that
∑
b δi,bε

2
b∑

b δi,bσ
2
b
� 1 and the higher order terms are omitted. Then the Left

Hand Side (LHS) and the Right Hand Side (RHS) of Equation (3.5) for all links

become

LHS =
∑
i

δi,a(
∑

b δi,bµ̂b)∑
b δi,bσ

2
b

+
∑
i

δi,a(
∑

b δi,bµ̂b)(
∑

b δi,bε
2
b)

(
∑

b δi,bσ
2
b )

2
+ ... ,

= ∆̃T∆ · µ̂+ (Λε∆̃)T∆ · µ̂+ ... ; (3.8)

RHS =
∑
i

δi,axi∑
b δi,bσ

2
b

+
∑
i

δi,axi(
∑

b δi,bε
2
b)

(
∑

b δi,bσ
2
b )

2
+ ... ,

= ∆̃T ·X + (Λε∆̃)T ·X + ... , (3.9)

where the omitted terms are of a higher order of
∑
b δi,bε

2
b∑

b δi,bσ
2
b
. Note that the second lines

in Equations (3.8) and (3.9) are understood as the matrix representation for all links.

Then we have the following by omitting all higher order terms:

[
∆̃ + Λε∆̃

]T
∆ · µ̂ =

[
∆̃ + Λε∆̃

]T
·X, (3.10)

and, assuming all inverse of matrices can be performed properly 1, we have

µ̂ =

([
∆̃ + Λε∆̃

]T
∆

)−1 [
∆̃ + Λε∆̃

]T
·X,

= (∆̃T∆)−1∆̃T ·X − (∆̃T∆)−1(Λε∆̃)T∆(∆̃T∆)−1∆̃T ·X + .... (3.11)

1We use (A+B)−1 = A−1 −A−1BA−1 + . . . , provided ‖A−1B‖ < 1 where A and B are matrices.
Such inverse in Equation (3.11) is guaranteed by assumption of ‖Λε‖ � 1.
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Since the norm of Λε is far less than 1, i.e., ‖Λε‖ � 1, the norm of all matrices from the

second term in Equation (3.11) is less than or of higher order of ‖Λε‖‖(∆̃T∆)−1∆̃T ·

X‖ � ‖µ‖, i.e., ‖µ− µ̂‖ being sufficiently small. �

This proposition indicates a network property that the ratio of estimate errors

to the mean link time estimates has the same order with the ratio of total errors to

the trip variance estimates along a route. In other words, even if errors of some link

variance estimates are relatively large, the accuracy of mean estimates is still ensured

as long as the trip variance estimates are with reasonable errors. This finding can

help compute the mean estimates easily, by solving linear equations given that the

predetermined link time variance values are with reasonable errors. Otherwise it

would be difficult to solve all the derivative equations due to the nonlinear part in

terms of travel time variances.

3.1.3 Relationship with Ordinary Least Squares

To illustrate the relationship between the objective (3.4) and least squares, let us

look at some special cases below.

It can be seen that Equation (3.4) is generally an objective function in terms of

both the variance and mean of travel time on each link. Therefore, if the variance

of travel time on each link is considered as constant, the objective function would

actually become weighted least squares, and the weight of each trip observation is

equal to the reciprocal of total travel time variance along that trip itinerary.

Moreover, from the mathematical point of view, if the variance σ2
a are also the

same for all links, one can let
∑

a δi,a = Ni, which denotes the number of links that

trip i traverses along its itinerary. Then Equation (3.5) becomes

∑
i

δi,a(
∑

b δi,bµb)

Ni

=
∑
i

δi,axi
Ni

, for all a. (3.12)
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The above equation is a weighted least squares, with the weight of each trip obser-

vation equal to the reciprocal of total number of traversed links.

A special case for Equation (3.12) that Ni are the same for all trips, would

essentially lead to the Ordinary Least Square results, i.e., ∆T∆ · µ = ∆T · X. In

other words, if the total travel time variance along each trip itinerary (i.e.,
∑

a δi,aσ
2
a

for each trip i) is the same, Equation (3.5) would definitely lead to the resulting

estimates equal to the ones by solving the ordinary least squares. Therefore, under

the strong mathematical assumptions with respect to the variance of travel times on

links, solving the maximum likelihood estimates can be converted to the ordinary

least squares.

3.1.4 Discussion on the Rank Issue

It is already demonstrated in Section 3.1.1 that there would exist an unique

solution of mean estimates in Equation (3.5) as long as the incidence matrix ∆ is

of full rank. We further analyze the possible rank issue of incidence matrix in this

section.

Mathematically, if the incidence matrix has the issue of deficient rank, we can

still solve for the generalized inverse to get the mean estimates. Moreover, for prac-

tical applications, we may also identify those co-existent links and make appropriate

allocation of travel time estimates among them.

The definition of co-existent links is illustrated in the following example. As

shown in Figure 3.1, if links c and d are considered as two distinct sections of road-

ways, and if all trips coming from link a or b also cover both links c and d, it would

be impossible to uniquely estimate the link travel times on link c and d. One may get

an estimate for the total travel time on sections c and d, but any split of this total

between them would result in a feasible solution for the under-determined system.
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Figure 3.1: Illustrative example of co-existent links.

Therefore, we refer to such pair of links as co-existent links.

We propose the following procedure to identify those sets of co-existent links:

Take two links from the set of arcs, and extract the corresponding two columns in

the incidence matrix ∆ as a sub-matrix. If the sub-matrix has a rank of one (i.e.

two columns are exactly the same), the two chosen links are co-existent. Splitting

the travel time estimates between the two links in different ways is always feasible.

Besides, considering the spatial nature of network and physical connectivity of links,

only connected links may be examined for unique estimation.

Proposition 2 If links a and b are co-existent, and so are b and c, then links a and c

are also co-existent. It implies that the mean estimates of travel times for the entire

sections through a to c can be split among a, b, and c in any way as feasible solution

to the under-determined system.

This proposition is straightforward according to the definition of co-existent links.

Considering the co-existent links are always the adjacent sections along a route,

we can first regard them as a single link such that the incidence matrix can be

reduced. After we get the mean estimate of this link, the allocation among them

will be conducted to obtain the individual estimates of each co-existent link. A

simple allocation method could be splitting the whole travel time estimate among
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co-existent links in proportion to their free flow travel times (or travel distances).

If extra information is available regarding traffic conditions or geometric features of

links, further adjustment may be made for this allocation of travel time estimates.

3.2 Solution Framework Considering Unknown Route Trips

This section extends to the estimation problem where routes of some trip obser-

vations are unknown. The routes of travelers across the network need to be inferred.

Finding the actual trajectory of a vehicle (path inference) can be challenging espe-

cially in dense urban areas, since multiple paths may exist that are consistent with

a trip observation. Given observations D = {xi} that consist of some trips with

labeled (or known) routes and a portion of trips with unlabeled (or unknown) routes,

we can divide the entire trip observations D = {xi} into two subsets: Dl represents

those labeled trips, and Du denotes those trips with unlabeled route information,

i.e., D = Dl ∪Du.

In this case, we need to simultaneously infer the routes of recorded trips, with

the objective of maximizing the total likelihood over all trip observations. One can

easily imagine an iterative mechanism that once the path assignment is conducted,

the resulting link travel time estimates would be affected, then in return, one can

adjust the path assignment accordingly. Therefore, the critical challenge here is

to examine the convergence condition for maximizing total likelihood function with

adjusted trip assignment at iterations. In other words, a meaningful question is if we

can derive a path assignment mechanism that assures the non-decrease of resulting

total likelihood at iterations?
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3.2.1 An Algorithm for Hard Assignment of Unknown Route Trips

To estimate the distribution parameters for each link, we maximize the total

likelihood based on the sample of observed trip travel times:

max
µ,σ,π
LL(µ, σ, π | D) =

∑
i∈Dl

log

(
N (xi |

∑
a

δi,aµa,
∑
a

δi,aσ
2
a)

)
+

∑
i∈Du

log
∑
k∈Ki

rikN (xi |
∑
a

δk,aµa,
∑
a

δk,aσ
2
a). (3.13)

Note that the second term of function represents the likelihood for trips with un-

known routes, and Ki denotes the set of possible paths that trip i may traverse.

For the hard assignment of each data point xi, we introduce a corresponding set of

binary indicator variables rik ∈ {0, 1}, such that
∑

k∈Ki rik = 1, for any i ∈ Iu.

A straightforward iterative mechanism can be designed as follows.

Step 1: Initialize the indicator variables rik for each unknown-route trip.

Step 2: Solve for the MLE of distribution parameters according to the proposed

derivations for trips with known routes.

Step 3: Adjust the path assignment rik for those trip observations with unknown

trajectory: For any i ∈ Iu, compare its resulting likelihood among candidate paths

k ∈ Ki, based on the currently estimated distribution parameters, and reassign it

onto the path with maximum one (i.e. its most likely path obtained at current

iteration). More formally, this can be expressed as

rik =


1 if k = arg maxk∈Ki N (xi |

∑
a δk,aµa,

∑
a δk,aσ

2
a)

0 otherwise

(3.14)

Step 4: Repeat Steps 2 and 3 until convergence of either the estimated parameters
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or the total log likelihood.

Intuitively, Step 3 would always improve or non-decrease the resulting total log-

likelihood function (even with the same solution as obtained in Step 2 for distribution

parameters). As long as we can solve Step 2 at each iteration, this procedure can

guarantee the convergence generally. However, it may converge to a local rather than

global optimum. We may try to randomly assign those unknown-trajectory trips

onto their corresponding candidate paths initially in Step 1, and run the procedure

multiple times in order to obtain the best convergence results.

This iterative procedure essentially applies the K-means clustering algorithm

(Hastie et al. [35]), which is often used to identify clusters of data. We briefly

introduce this algorithm in Appendix A.2. In the context of our travel time estima-

tion problem here, we use such K-means algorithm to cluster unlabeled trips with the

same OD pair based on their candidate paths. For each iteration, every unlabeled

trip is assigned uniquely to a path, which may be considered as hard assignment

in contrast to the model in the next section. However, there may be data points

that lead to roughly similar likelihoods on different candidate paths. In that case, it

is not clear that the hard assignment would be the most appropriate. Furthermore,

the algorithm cannot guarantee the convergence. Therefore, we adopt a probabilistic

approach next, known as soft assignment, for the unknown route trips.

3.2.2 Gaussian Mixture Model and EM Algorithm for Soft Assignment of

Unknown Route Trips

We adopt a probabilistic point of view for the assignment of unlabeled trips.

Instead of mapping it to a unique route, we consider each unlabeled trip to be on

different possible paths with probabilities. The observed travel times of unlabeled

trips with the same OD pair are thought of as a sample drawing from a multimodal
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distribution, where each of modality represents the random travel time on a possible

path. Such view may also be known as the soft assignment (Bishop [10]). Under

the assumption of independent and normally distributed link times, it is natural

to formulate the multimodal distribution as the classical Gaussian mixture model

(Bishop [10]; Bickel and Doksum [9]).

The Gaussian mixture model is a parametric probability density function repre-

sented as a weighted sum of Gaussian component densities. The mixture weight for

each component is usually called the mixing coefficient. In our context, the prob-

ability density for those unlabeled trip travel times with a distinct OD pair, i.e.,

with a distinct set of candidate paths, is a Gaussian mixture model, where every

mixture component corresponds to a candidate path that has normally distributed

travel times.

Our objective is to maximize the likelihood function based on the sample of

observed trip travel times as below: 2

max
µ,σ,π
LL(µ, σ, π | D) =

∑
i∈Dl

log

(
N (xi |

∑
a

δi,aµa,
∑
a

δi,aσ
2
a)

)

+
∑
i∈Du

log

(∑
k∈Ki

πkN (xi |
∑
a

δk,aµa,
∑
a

δk,aσ
2
a)

)
(3.15)

subject to

∑
k∈Ki

πk = 1, for path set Ki with a distinct OD pair, i ∈ Du, (3.16)

0 ≤ πk ≤ 1. (3.17)

where Ki denotes the set of possible paths that trip i may traverse; µa and σa denote

the estimated mean travel time and the standard deviation on link a; πk is the mixing
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coefficient and the sum of all πk for the corresponding path set is equal to 1; and

δk,a by abuse of notation is equal to 1 if the path k of trip i contains the link a for

k ∈ Ki, otherwise 0. Also note that Ki = Kj if unlabeled trips i and j have the

same OD pair.

The objective (3.15) leads to the following equations, by setting the partial deriva-

tive to zero for a specific link a with respect to its parameters µa and σa, respectively,

0 =
∑
i∈Dl

δi,a(xi −
∑

b δi,bµb)∑
b δi,bσ

2
b

+
∑
i∈Du

∑
k∈Ki

δk,aγk(xi)(xi −
∑

b δk,bµb)∑
b δk,bσ

2
b

, (3.18)

0 =
∑
i∈Dl

(
δi,a∑
b δi,bσ

2
b

− δi,a
(
∑

b δi,bσ
2
b )

2
(xi −

∑
b

δi,bµb)
2

)

+
∑
i∈Du

∑
k∈Ki

δk,aγk(xi) [2(
∑

b δk,bσ
2
b )− (xi −

∑
b δk,bµb)

2]

(
∑

b δk,bσ
2
b )

2
, (3.19)

where γk(xi) represents the probability that the component (or candidate path) k

takes for explaining the trip observation i:

γk(xi) =
πkN (xi |

∑
a δk,aµa,

∑
a δk,aσ

2
a)∑

j∈Ki πjN (xi |
∑

a δj,aµa,
∑

a δj,aσ
2
a)
, (3.20)

where N (xi |
∑

a δk,aµa,
∑

a δk,aσ
2
a) is used by abuse of notation to represent the

probability density function of Gaussian distribution at xi with parameters mean∑
a δk,aµa and variance

∑
a δk,aσ

2
a. Equation (3.20) provides another perspective on

mixing coefficients πk and γk(·). We can think of πk as the prior probability of taking

the path k for trips between a OD pair and γ(·) as the posterior probability after

observing a particular trip time.

2Note that the second term of Equation (3.15) essentially classifies the unknown-route trips with
distinct OD pairs, and each class corresponds to a Gaussian mixture model with associated mixing
coefficients to be determined. We ignore the summation over OD pairs here for the convenience
of notations.
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We also maximize the objective (3.15) with respect to the mixing coefficients πk,

taking into account the constraint (3.16) that requires the mixing coefficients sum-

ming up to one for unknown-route trips with a distinct OD pair. By incorporating

Lagrange multipliers, we can solve for πk by setting its partial derivative equal to

zero:

πk =

∑
i∈Durs

γk(xi)

| Du
rs |

. (3.21)

where Du
rs denotes the set of unknown-route trips with a distinct OD pair rs.

We apply the expectation-maximization (EM) algorithm to solve for the param-

eter estimates, which leads to a MLE of the model if it exists. The algorithm it-

erates between performing an Expectation (E) step that creates a function for the

expectation with respect to the latent variables (trip routes in our context) of the

log-likelihood evaluated using current estimates, and a Maximization (M) step that

updates the parameter estimates by maximizing the expected log-likelihood from the

E-step. The detailed discussion on Gaussian mixture model and EM algorithm can

be found in Dempster et al. [26], McLachlan and Krishnan [61], and Bickel and

Doksum [9]. The EM algorithm is applied here as:

Step 1: Initialize µa, σa for all links, and mixing coefficients πk for all mixture

models (each model corresponds to unknown route trips with the same OD pair),

and evaluate the initial value of the total log likelihood.

Step 2 (E-step): Evaluate the probabilities γk(xi) using the current parameter

values based on Equation (3.20).

Step 3 (M-step): Re-estimate the parameters µa and σa sequentially using the

current probabilities γk(xi): First keep current σa fixed, and update µa based on

Equation (3.18), then update σa based on Equation (3.19).
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Also update πk accordingly: for those trips with the same OD pair, the mixing

coefficients πk are updated based on Equation (3.21).

Step 4: Evaluate the log likelihood as Equation (3.15), and check for the conver-

gence of either the parameters or the log likelihood. If the convergence criterion is

not satisfied, return to Step 2.

It is noted that updating σa values in Step 3 may be challenging due to the

complicated nonlinear Equation (3.19) in terms of travel time variances. Referring to

Proposition 1 of mean estimates, for simplicity we may compute the mean estimates

by following the proposed EM algorithm given the constant variances, and then

update and maximize the total likelihood function to solve for variance estimates.

The proposed EM algorithm can guarantee the improvement of total log likelihood

at iterations, and lead to the local convergence. The detailed proof is given in Section

3.2.4.

3.2.3 Properties of the Mean Estimates

This section examines whether Equation (3.18) has unique solution with known

γk(xi) and σa in each iteration. For simplicity, we answer by only considering the

case that σa is identical for all links. Let
∑

b δk,b = Nk, k ∈ Ki, i ∈ Du, denoting

the number of links on the possible path k in the set Ki of unlabeled trip i. Also let∑
b δi,b = Ni, i ∈ Dl. Then Equation (3.18) turns to

∑
i∈Dl

δi,a(
∑

b δi,bµb)

Ni

+
∑
i∈Du

∑
k∈Ki

δk,aγk(xi)(
∑

b δk,bµb)

Nk

=
∑
i∈Dl

δi,axi
Ni

+
∑
i∈Du

∑
k∈Ki

δk,aγk(xi)xi
Nk

, for any link a. (3.22)

To explain Equation (3.22) in the matrix form, we define an augmented incidence

matrix ∆∗ as the combination of all labeled and unlabeled trips. The observation
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index in ∆∗ is arranged beginning with those in Dl followed by those in Du, so that

a labeled trip i ∈ Dl corresponds to a unique row of δi,a in ∆∗, while an unlabeled

trip i ∈ Du corresponds to multiple rows of δk,a, k ∈ Ki, in ∆∗ (the number of

corresponding rows is the cardinality of Ki). The augmented incidence matrix ∆∗

differs from the original incidence matrix for including all the possible routes for each

trip in Du. Let ∆∗∗ denote a matrix after δi,a in ∆∗ is scaled by 1
Ni

, for i ∈ Dl and

δk,a is scaled by γk(xi)
Nk

for k ∈ Ki and i ∈ Du. These two matrices are illustrated as

follows.

∆∗ =



a1 a2 . . . . . . an

1 δ1,a1 δ1,a2 . . . . . . δ1,an

... . . . . . .
. . . . . . . . .

k δk,a1 δk,a2 . . . . . . δk,an

k1
1 δk11 ,a1 δk11 ,a2 . . . . . . δk11 ,an

...
...

...
. . . . . .

...

k1
m δk1m,a1 δk1m,a2 . . . . . . δk1m,an

...
...

...
. . . . . .

kj1 δkj1,a1
δkj1,a2

. . . . . . δkj1,an
...

...
...

. . . . . .
...

kjq δkjq ,a1 δkjq ,a2 . . . . . . δkjq ,an



(3.23)
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∆∗∗ =



1
δ1,a1
N1

δ1,a2
N1

. . . . . . δ1,an
N1

... . . . . . .
. . . . . . . . .

k
δk,a1
Nk

δk,a2
Nk

. . . . . .
δk,an
Nk

k1
1

γ
k11

(xk1 )δ
k11,a1

N
k11

γ
k11

(xk1 )δ
k11,a2

N
k11

. . . . . .
γ
k11

(xk1 )δ
k11,an

N
k11

...
...

...
. . . . . .

...

k1
m

γ
k1m

(xk1 )δ
k1m,a2

N
k1m

γ
k1m

(xk1 )δ
k1m,a2

N
k1m

. . . . . .
γ
k1m

(xk1 )δ
k1m,an

N
k1m

...
...

...
. . . . . .

kj1
γ
k
j
1
(x
kj

)δ
k
j
1,a1

N
k
j
1

γ
k
j
1
(x
kj

)δ
k
j
1,a2

N
k
j
1

. . . . . .
γ
k
j
1
(x
kj

)δ
k
j
1,an

N
k
j
1

...
...

...
. . . . . .

...

kjq
γ
k
j
q
(x
kj

)δ
k
j
q,a1

N
k
j
q

γ
k
j
q
(x
kj

)δ
k
j
q,a2

N
k
j
q

. . . . . .
γ
k
j
q
(x
kj

)δ
k
j
q,an

N
k
j
q



(3.24)

where 1, ..., k ∈ Dl denotes the row index for each labeled trip with known route,

and kij ∈ Kki denotes the row index for unlabeled trip ki ∈ Du with trip time xki .

In the presentation (3.24) of matrix ∆∗∗, for example, k1
1, ..., k

1
m indicate that there

are m possible routes for trip time xk1 . In general, kj1, ..., k
j
q indicate that there are q

possible routes for the trip time xkj . Note that matrix ∆∗ is of the same rank with

matrix ∆∗∗.

Equation (3.22) is therefore rewritten as

(∆∗∗)T∆∗ · µ = (∆∗∗)T ·X. (3.25)

where X by abuse of notation denotes the column vector of trip times with proper

arrangement and augmentation, i.e., xki has |Kki | duplications in X. Equation (3.25)

and prior analysis imply the following proposition.

37



Proposition 3 There is a unique solution to Equation (3.22) provided that the

augmented incidence matrix ∆∗ is of full rank, and γk(xi) and σa are known.

3.2.4 Proof of Convergence

In this section, we prove that the derived EM algorithm can guarantee the non-

decrease of total log likelihood and lead to the local convergence, by referring to the

classic proof on the convergence of EM algorithm (Dempster et al. [26], Wu [95],

Bishop [10]).

For notation convenience, we denote Θ = {µ, σ, π} as parameters to be estimated

for the log likelihood function (3.15), and represent the total log likelihood of all trip

observations as:

LL(Θ) = log p({xi, i ∈ Dl} | Θ) + log p({xi, i ∈ Du} | Θ)

=
∑
i∈Dl

log p(xi | Θ) +
∑
i∈Du

log p(xi | Θ) (3.26)

As for the second term in Equation (3.26), we denote the hidden variables Y

for the route choices of those unlabeled route trips. Therefore, the second term is

essentially the marginal log likelihood for the observed trip data X. Then, we can

convert it as

LL(Θ) =
∑
i∈Dl

log p(xi | Θ) +
∑
i∈Du

log p(xi | Θ)

=
∑
i∈Dl

log p(xi | Θ) +
∑
i∈Du

log
∑
k∈Ki

p(xi, y = k | Θ)

=
∑
i∈Dl

log p(xi | Θ) +
∑
i∈Du

log
∑
k∈Ki

p(y = k | Θ) · p(xi | y = k,Θ)(3.27)

Note that compared to Equation (3.15), here p(xi | Θ) corresponds to N (xi |∑
a δi,aµa,

∑
a δi,aσ

2
a) for any i ∈ Dl, p(y = k | Θ) corresponds to πk as the probability
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of choosing path k, and p(xi | y = k,Θ) corresponds to N (xi |
∑

a δk,aµa,
∑

a δk,aσ
2
a)

for any i ∈ Du, k ∈ Ki.

Since there is a summation inside the log for the second term, there would be no

longer a nice closed form solution if we maximize the total log likelihood by setting

the gradient to zero. The EM algorithm essentially constructs a easy-to-optimize

lower bound at each iteration based on the currently obtained parameters.

According to the Jensen’s inequality log
∑

i pifi ≥
∑

i pi log fi, where pi forms a

probability distribution (i.e., non-negative and sum up to 1), we have

LL(Θ) =
∑
i∈Dl

log p(xi | Θ) +
∑
i∈Du

log
∑
k∈Ki

p(y = k | xi,Θ(t)) · p(xi, y = k | Θ)

p(y = k | xi,Θ(t))

≥
∑
i∈Dl

log p(xi | Θ) +
∑
i∈Du

∑
k∈Ki

p(k | xi,Θ(t)) log
p(xi, k | Θ)

p(k | xi,Θ(t))
(3.28)

where Θ(t) is the estimated parameters at current iteration t, and it is noted that

the introduced probability distribution p(y = k | xi,Θ(t)) actually equals the com-

puted γk(xi) value in E step to evaluate the posterior probabilities or responsibilities

the path k takes to explain trip xi.

We denote the lower bound of LL(Θ) as

Q(Θ,Θ(t)) =
∑
i∈Dl

log p(xi | Θ) +
∑
i∈Du

∑
k∈Ki

p(y = k | xi,Θ(t)) log
p(xi, k | Θ)

p(k | xi,Θ(t))
(3.29)

Then, in M-step, the lower bound Q(Θ,Θ(t)) is actually maximized by setting its

gradient to zero, and the obtained closed form solution is indeed Equations (3.18),

(3.19) and (3.21). Here, we denote the new estimated parameters as Θ(t+1). Since

Θ(t+1) maximizes the lower bound function, we have

Q(Θ(t+1),Θ(t)) ≥ Q(Θ(t),Θ(t)) = LL(Θ(t)) (3.30)
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Considering Q is the lower bound of LL, the following relationship holds

LL(Θ(t+1)) ≥ Q(Θ(t+1),Θ(t)) ≥ Q(Θ(t),Θ(t)) = LL(Θ(t)) (3.31)

Therefore, it indicates that the resulting total log likelihood would always non-

decrease with iterations, and this EM algorithm can lead to a local maximum of

log likelihood function LL.

3.3 Confidence Interval Calculation Based on Profile Likelihood

In practice, it is also important to obtain the confidence intervals for estimated

parameters, e.g., for the mean link travel times. The corresponding estimation can

be approximated by the profile likelihood method, as briefly described below.

Let µ = (µ1, . . . , µn) denote the parameters of interest (mean link time in our

context) and φ a vector of other parameters (i.e., nuisance parameters). Suppose

we want to estimate the confidence interval for µ1. We let µ−1 = (µ2, . . . , µn) and

express the log-likelihood function as LL(µ1, µ−1, φ). Then we may express the log-

likelihood ratio statistic for parameter µ1, denoted by r(µ1), in terms of the profile

likelihood function as

r(µ1) = 2

{
max
µ,φ
LL(µ, φ)− max

µ−1,φ
LL(µ1, µ−1, φ)

}
(3.32)

It can be shown that r(µ1) is asymptotically distributed as χ2
1 (chi-square distri-

bution with one degree of freedom) when the sample size goes to infinity (see Bickel

and Doksum [9]). Therefore, the 95% confidence interval for µ1 can be approximated

as

{
µ1 : r(µ1) ≤ χ2

1(0.95)
}

(3.33)
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The profile likelihood method may be computationally expensive for large-scale

networks. An alternative approach to estimating confidence interval is through the

observed Fisher information matrix (see Bickel and Doksum [9]). In the proposed

framework, the observed information matrix can be computed on the last iteration

of the EM procedure. We do not present details here, but interested readers can also

refer to Louis [58].

3.4 Discussion on Correlation Between Link Travel Times

In the previous sections we consider the link travel times as independent of each

other. Such assumption often leads to appropriate results for most application sit-

uations, though we do observe travel times on certain links show some degree of

correlation. If we incorporate correlation into modeling, we need strong assump-

tions for the network travel times. The following provides a brief illustration of the

proposed approach towards this direction.

We assume that the travel time on links follow the multivariate Gaussian dis-

tribution N (µ,Σ) where µ denotes the vector of travel times on all n links, i.e.,

µ = (µa1 , ..., µan)T , and Σ denotes the n × n covariance matrix, i.e., Σi,j , σ2
i,j =

Cov(Xi, Xj) for travel time Xi and Xj on link i and j, respectively. Then the likeli-

hood function (3.15) becomes

LL(µ,Σ, π | D) =
∑
i∈Du

log

(∑
k∈Ki

πkN (xi |
∑
a

δk,aµa,
∑
a

δk,aσ
2
a + 2

∑
a<b

δk,aδk,bσ
2
a,b)

)

+
∑
i∈Dl

log

(
N (xi |

∑
a

δi,aµa,
∑
a

δi,aσ
2
a + 2

∑
a<b

δi,aδi,bσ
2
a,b))

)
(3.34)

Equations (3.18) and (3.19) for µ and Σ need to be adjusted accordingly. Therefore,

the framework in Section 3.2.2 is still applicable in this case. We remark here that

the likelihood function (3.34) involves more unknown parameters and hence has a
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higher degree of freedom. In order to obtain reasonable results by the proposed

framework in this case, some prior knowledge of link correlation may be needed.
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4. METHOD II: TRIP SPLITTING APPROXIMATION*

In our earlier models, Gaussian distribution of link travel times gives rise to a

trip time that follows a closed form distribution, which makes modeling technically

tractable. However, the link time may follow other probability distributions than the

Gaussian such as the log-normal, or a mixed distribution due to the recurrent traffic

congestion, in which case, no closed form distribution for trip time is available. We

propose to split the trip time among traversed links. Different approaches to splitting

trip travel time would lead to different estimates. In this section, we propose a

statistical method of trip splitting approximation and examine its properties, as in

Yin et al. [99].∗

We mainly focus on the case that the route of each trip observation is known and

travel time on each link follows a certain general distribution. Then we also briefly

discuss the case that the trip routes are unknown for some observations.

4.1 General Approach

We denote by Dp the set of trips traveling along path p, and the set P compris-

ing of all paths of trips. In other words, the trips are grouped according to their

paths. Let incidence indicator δi,a denote if trip i traverses link a. Trip time xi,

i ∈ Dp, actually comprises of unobserved xi,a on link a along path p, and hence

xi =
∑

a δi,axi,a. We use ξi,a to denote the corresponding random variable of travel

time on link a for observed trip i, whose realized value being xi,a, and denote by

fa( · ; Θa) its probability density function with the parameter vector Θa. Also as-

sume that ξi,a are independent for trip i. Since the link travel time is unobserved,

∗Part of this section is reprinted with permission from “Link travel time inference using entry/exit
information of trips on a network” by K. Yin, W. Wang, X.B. Wang, and T.M. Adams, 2015.
Transportation Research Part B: Methodological, 80, 303-321, Copyright [2015] by Elsevier.
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we have to maximize the following conditional expected log-likelihood function with

respect to all parameters:

LL(Θ | D) =
∑
p∈P

∑
i∈Dp

E

{∑
a

δi,a log fa(ξi,a; Θa)

∣∣∣∣∣∑
a

δi,aξi,a = xi

}
(4.1)

where Θ denotes the vector of all parameters in the above function. If we denote by

(xi,a) the row vector (xi,a1 , xi,a2 , ..., xi,an) where n is number of links, and denote by

f(· |
∑

a δi,aξi,a = xi; Θ) =
∏

a fa(· |
∑

a δi,aξi,a = xi; Θa) the conditional probability

density function of (ξi,a) given the trip observation xi, then we have

LL(Θ | D) =
∑
p∈P

∑
i∈Dp

∫
Rn
f((xi,a) |

∑
a δi,aξi,a = xi; Θ)

∑
aδi,a log fa(xi,a; Θa) d(xi,a)(4.2)

If δi,a = 0 for some a in the integral in Equation (4.2), the corresponding xi,a will

be automatically integrated out. Then the log-likelihood Equation (4.2) should be

maximized according to the following

LL(Θ | D) =
∑
p∈P

∑
i∈Dp

∫
∑
a δi,axi,a=xi

∏
a fa(xi,a; Θa)

P(
∑

a δi,aξi,a = xi; Θ)

∑
aδi,a log fa(xi,a; Θa) d(xi,a)(4.3)

where P(
∑

a δi,aξi,a = xi; Θ) =
∫∑

a δi,axi,a=xi

∏
a fa(xi,a; Θa) d(xi,a).

The difficulty of maximizing Equation (4.3) is the evaluation of the multi-dimensional

integral. It may be possible to employ Monte Carlo techniques to evaluate the inte-

gral, especially when the probability density enjoys some special structures. However,

it generally involves expensive computation even for a small-size network, therefore

it is difficult to implement in practice.

One practical approach is to approximate the conditional probability density in

Equation (4.2) by directly splitting path travel time onto links. We assume that trips
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on the same path under similar traffic conditions have more or less a fixed fraction of

the trip time for the same link. Let wp,a denote the proportion of travel time on link

a among the total travel time on path p, and w be the vector of wp,a. If the variation

of the proportion wp,a is relatively small, the conditional probability density may

be approximated by
∏

a δ(xi,a − wp,axi) where δ(·) denotes the Dirac delta function

(Gelfand and Shilov [32]). This Dirac delta function notation should not be confused

with the incidence notation δi,a. Then the problem of maximizing Equation (4.2) is

approximated as 1

max
Θ,w
LL(Θ, w | D) =

∑
p∈P

∑
i∈Dp

∑
a

δi,a log fa(wp,axi; Θa), (4.4)

subject to

∑
a

wp,aδp,a = 1, for any trip path p, (4.5)

0 ≤ wp,a ≤ 1. (4.6)

In Equation (4.5), δp,a is used for the convenience of notations, denoting if a trip

along path p traverses link a. Note that we use δp,a instead of previous notation

δi,a in order to go with the notation wp,a, and we also enforce wp,a = 0 if δp,a = 0.

Similar to the EM algorithm, an iterative approach to obtain the parameters Θ can

be performed by repeating the following steps until convergence. Specifically, at k-th

iteration, we have

Step 1 Estimate wp,a by using the estimates of Θ from Step 2 in the (k − 1)-th

iteration;

1This derivation applies the property of Dirac delta function:
∫
δ(xi,a − wp,axi)g(xi,a) dxi,a =

g(wp,axi) for any function g(·).

45



Step 2 Estimate Θ by using wp,a obtained from Step 1.

We next consider a case with known paths of trips in which link times follow Gaus-

sian distributions. This special case allows a comparison with Method I proposed

earlier. Then we consider the case of link times following log-normal distributions.

4.2 Case of Gaussian Distribution

We assume that all link travel time variables ξi,a are independent and follow

Gaussian distributions, i.e., N (· | µa, σa2). The objective (4.4) with constraints

(4.5)–(4.6) leads to the following equations, by setting the partial derivative to zero

for a specific link a with respective to its parameters µa and σa respectively,

µa =

∑
p∈P

∑
i∈Dp δi,awp,axi∑

p∈P
∑

i∈Dp δi,a
, (4.7)

σ2
a =

∑
p∈P

∑
i∈Dp δi,a(wp,axi − µa)

2∑
p∈P

∑
i∈Dp δi,a

, (4.8)

where
∑

p∈P
∑

i∈Dp δi,a 6= 0. Obviously,
∑

p∈P
∑

i∈Dp δi,a is the number of trip obser-

vations traversing link a. We maximize the objective (4.4) with respect to the ratio

wp,a by considering Lagrange multipliers:

∑
p∈P

∑
i∈Dp

∑
a

δi,a · log
(
N (wp,axi | µa, σa2)

)
+
∑
p∈P

λp(
∑
a

wp,aδp,a − 1). (4.9)

Taking the partial derivative with respective to wp,a and solving for λp and wp,a, we

obtain the following equations

λp =

∑
i∈Dp xi(xi −

∑
a δp,aµa)∑

a δp,aσ
2
a

, for any trip path p and
∑
a

δp,aσ
2
a 6= 0, (4.10)
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and,

wp,a = µa ·
∑

i∈Dp xi∑
i∈Dp x

2
i

+ λp ·
σ2
a∑

i∈Dp x
2
i

, for trip path p, link a and δp,a 6= 0 (4.11)

There is a statistical interpretation for the Lagrange multiplier. Consider a simple

case where all trips have the same path p. In this case,
∑

i∈Dp δi,a is the same for

any link a along this fixed path, and is denoted by Np. We also denote the sum of

link travel time variance σ2
a along the path by σ2

p. Then plugging Equation (4.7) into

Equation (4.10), we have

λp =

∑
i∈Dp x

2
i −

(
∑
i∈Dp xi)

2

Np

σ2
p

=
s2
p

σ2
p

(Np − 1), (4.12)

where s2
p denotes the sample variance of trip travel time along path p. When a large

number of trips are observed, s2
p ≈ σ2

p, which gives rise to λp ≈ Np − 1.

We also note that Equation (4.11) cannot guarantee positive wp,a in some ex-

treme cases. If this situation happens, we may either directly solve the constrained

optimization (4.4) –(4.6) with fixed µa, σ
2
a, or re-initialize wp,a and then perform the

iterative algorithm.

To summarize, we apply the iterative algorithm here as:

Step 1: Initialize µa, σa for all links.

Step 2: Evaluate the Lagrange multipliers λp using the current parameter values

based on Equation (4.10), and update the splitting ratios wp,a accordingly based on

Equation (4.11).

Step 3: Re-estimate the parameters µa and σa using the current splitting ratios

wp,a based on Equations (4.7) and (4.8).

Step 4: Evaluate the total log likelihood as Equation (4.4), and check for the
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convergence of either the parameters or the log likelihood. If the convergence criterion

is not satisfied, return to Step 1; otherwise, terminate.

4.3 Case of Log-Normal Distribution

We consider another case with known paths of trips, in which link travel time

variables ξi,a are independent and follow log-normal distributions for any link a of

trip i. We have the probability density function fa(xi,a; Θ) = 1
xi,a
N (log xi,a | µa, σa2).

The objective (4.4) in this case becomes

LL(µ, σ, w | D) =
∑
p∈P

∑
i∈Dp

∑
a

δi,a · log

(
1

wp,axi
N (log(wp,axi) | µa, σa2)

)
. (4.13)

Similarly, constraints (4.5)–(4.6) still hold.

For the estimates of parameters in Step 2 of the proposed iterative approach in

Section 4.1, we have the following equations by fixing wp,a:

µa =

∑
p∈P

∑
i∈Dp δi,a log(wp,axi)∑
p∈P

∑
i∈Dp δi,a

, (4.14)

σ2
a =

∑
p∈P

∑
i∈Dp δi,a(log(wp,axi)− µa)2∑

p∈P
∑

i∈Dp δi,a
. (4.15)

For the estimates of wp,a in Step 1 in Section 4.1, there is no closed-form expression.

Therefore, we can estimate wp,a through the nonlinear optimization (4.13) with con-

straints (4.5)–(4.6) by fixing µa and σa at each iteration.

4.4 Case with Unknown Route Trips

We briefly discuss the case that the routes of some trip observations are unknown

in this section. Similar to the previous solution framework, we can apply the EM

steps at iterations to infer the unknown routes as well as travel time estimates. If

link travel time follows a Gaussian distribution, the derivation in both the E-step
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and the M-step may lead to a closed form. While for other general distributions such

as log-normal distribution, it may not be possible to obtain closed form solutions

in some steps. Taking log-normal distributed link travel time as an example, the

splitting ratios may be derived after applying some approximations to the sum of

log-normal random variables. One can also apply some optimization methods to

solve for the parameters in M-step, though the computational cost would become

prohibitive. In general, the EM algorithm is desirable as long as either the E-step

or M-step can be solved easily. However, we leave the detailed discussions for the

future work.

49



5. EXPERIMENTAL RESULTS*

This section numerically tests the proposed models and procedures on networks,

as in Yin et al. [99].∗

First we test the EM algorithm of Method I to see individual algorithm efficiency,

followed by testing the trip splitting method for the log-normal distributed link travel

times. We also compare the estimates from using both Method I and Method II with

link times following Gaussian distributions. All the numerical tests in this section

are conducted on a Windows 7 x64 Workstation with two 2.70 GHz CPUs and 4

GB RAM. We code the algorithms in MATLAB, and the convergence criterion is set

that the gap of objective value of total likelihood from two consecutive iterations is

no larger than 1e-4.

5.1 Test EM Algorithm for the Case with Unknown Route Trips

5.1.1 Test Method I on a Simple Network with 9 Directional Links

Figure 5.1 shows a simple test network consisting of 9 directional links. Given

that all the link travel times are independently and normally distributed, trips are

generated/observed to guarantee that the rank of the link-path incidence matrix has

a rank equal to the number of links to estimate (i.e., a full rank system). In addition,

trips on two OD pairs with ‘unknown’ routes are also generated: from A to F and

from C to D, respectively, which means actual routes traversed by those trips are

kept from the observed trips and are inferred instead by the proposed procedure

earlier. The path information for trips of ‘unknown’ paths is kept as the ground

truth for assessing the estimated paths.

∗Part of this section is reprinted with permission from “Link travel time inference using entry/exit
information of trips on a network” by K. Yin, W. Wang, X.B. Wang, and T.M. Adams, 2015.
Transportation Research Part B: Methodological, 80, 303-321, Copyright [2015] by Elsevier.
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Figure 5.1: A simple test network.

We randomly generate link travel times with an arbitrary mean between 40 and

80 and a standard deviation between 6 and 20 for each link. Different times on the

same link are experienced by trips, all following a normal distribution of the same

mean and variance. OD trips are generated whose total travel time is the sum of the

link times traversed. The generated link times are used as ground truth to assess the

link estimates from the proposed methods. As for the test sample size, we generate

50 trips along each link, 50 trips covering multiple links, and also 200 and 50 trips

for the two unknown-route OD pairs respectively.

The candidate paths of the two OD pairs with unknown routes are enumerated

as: From A to F: [1, 2, 3]; [4, 5, 6]; From C to D: [5, 8]; [7, 2]; [7, 9, 8]. The numbers

in each bracket represent the traversed links sequentially.

We then compute the estimates of link means by following the proposed EM

algorithm in Method I, and solve for variance estimates by maximizing the total

likelihood function. The variances are solved by coding the interior point method in

MATLAB for the constrained nonlinear program. The total computational time to

obtain estimates is about 2 minutes.
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Table 5.1: Estimated and Ground Truth Values of Parameters for Each Link

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error
1 72.6 68.4 5.78% 18.7 20.1 7.35%
2 59.6 58.1 2.39% 10.7 12.0 11.70%
3 68.9 68.8 0.09% 8.1 7.6 5.63%
4 53.6 58.4 8.84% 14.5 13.5 7.22%
5 63.0 60.6 3.80% 17.8 18.9 6.25%
6 66.7 65.9 1.19% 14.4 14.9 3.07%
7 57.0 61.2 7.50% 12.0 12.5 4.36%
8 63.3 63.7 0.58% 13.7 14.3 4.24%
9 68.9 69.9 1.50% 18.3 15.6 14.95%

MAPE - - 3.52% - - 7.20%

Table 5.1 summarizes the resulting estimates and errors, where the Mean Absolute

Percentage Error (MAPE) is recorded for each estimate. To illustrate, MAPE for

the link mean estimate is calculated as

MAPE =
1

n

n∑
a=1

| µa − µ̂a |
µa

(5.1)

where n denotes the total number of links, µ̂a denotes the estimated mean travel

time on link a, and µa denotes its ground truth mean value.

We also obtain the resulting mixing coefficients for each Gaussian mixture model

from optimization of the total likelihood function, and their estimates from the iter-

ative EM algorithm serve as initial guess for the nonlinear optimization. As for trips

with unknown routes, the truth is that trips from A to F are equally split between

the two alternative paths, and trips from C to D all traverse the path [7, 9, 8]. Table

5.2 shows the estimated mixing coefficients for trips on the two OD pairs, which

demonstrates close proximity to the true path choices.
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Table 5.2: Estimated Mixing Coefficients for Unlabeled Trips

OD Pair Candidate Paths Mixing Coefficients

AF
[1, 2, 3] πAF1 0.5765
[4, 5, 6] πAF2 0.4235

CD
[5, 8] πCD1 0
[7, 2] πCD2 0

[7, 9, 8] πCD3 1

 

Figure 5.2: The objective value of total log likelihood with iterations for EM method
on the 9-link network.

Besides, Figure 5.2 shows that the proposed EM algorithm results in fast im-

provement of total likelihood to its convergence at iterations.

In addition, we also test the effect of trip observations along a single link and

the unknown-route trip observations on estimation accuracy. As shown in Table 5.3,

the input setting is the same, except the varying number of trips along each link.

We compare the resulting mean estimates using only single-link trips, trips with-

out unlabeled ones, and all the trips respectively. The results demonstrate that the
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Table 5.3: Comparison of Mean Estimates with Basic Setting

Trips along
Each Link

Percent
MAPE for Mean Estimates

Use Single-link
Trips

Use Labeled
Trips

Use All
Trips

10 23.08% 9.11% 8.94% 6.86%
20 37.50% 8.89% 8.43% 7.18%
40 54.55% 6.64% 5.97% 5.93%
60 64.29% 4.53% 4.32% 3.44%
80 70.59% 2.43% 2.40% 2.33%

Table 5.4: Comparison of Mean Estimates with Modified Setting

Trips along
Each Link

Percent
MAPE for Mean Estimates

Use Single-link
Trips

Use Labeled
Trips

Use All
Trips

10 13.04% 16.14% 13.93% 10.14%
20 23.08% 13.69% 12.77% 8.33%
40 37.50% 13.63% 12.46% 8.19%
60 47.37% 10.44% 10.15% 7.57%
80 54.55% 6.27% 6.19% 5.06%

proposed method incorporating unknown-route trips can generally lead to more ac-

curate estimates, especially when the single-link observations are insufficient. Then,

we modify the input setting to make the sampling of single-link observations more

biased, and also double the number of multiple-link trip observations. The resulting

estimates are compared in Table 5.4, which indicates that if single-link observations

are biased and insufficient, the proposed method can fully utilize all trip observa-

tions and make more effective improvement for the mean estimates, while the simple

estimation using only single-link observations incurs larger errors.
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Table 5.5: Basic Input Information to Generate Test Sample for the Case with
Unknown Route Trips

Type of Generated Trips Number of Trips
Trips along each link 10

Trips covering multiple links 550
Trips with unlabeled paths 300

Setting of Randomly Generated Parameters Value of Bounds

Mean
Upper Bound 70
Lower Bound 40

Standard Deviation
Upper Bound 20
Lower Bound 6

Table 5.6: Estimate Errors for All Links

Estimated Parameters MAPE
Mean 4.68%

Standard Deviation 12.16%

5.1.2 Test Method I on Sioux Falls Network

The Sioux Falls network in Figure 5.3 consists of 76 links and 24 nodes. The

corresponding link number is marked along each link. Based on the predetermined

Gaussian distribution on each link, we randomly generate the sample of trip travel

times. Trips with ‘unknown’ routes are also generated similarly as for the 9-link

network earlier. The trips generated again guarantees a full rank system. The input

information for the estimation analysis is summarized in Table 5.5. We code the

iterative procedure in MATLAB, and also use the optimization toolbox in MATLAB

to solve the constrained nonlinear problem.

Table 5.6 illustrates estimation errors using the Sioux Falls network, which ap-
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Figure 5.3: Sioux Falls test network.
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Figure 5.4: The objective value of total log likelihood with iterations for EM method
on the Sioux Falls network.

pear to be within range of general acceptance. Figure 5.4 shows that for the Sioux

Falls network, the proposed EM algorithm can still lead to convergence of the total

likelihood within 11 iterations.

As noted earlier, the application of nonlinear solver in MATLAB may experience

computational issues due to the large number of variables. The total computational

time here is nearly 20 minutes. Besides, its ability to search for good solutions

appears challenged. Therefore, design of heuristic algorithms for this particular

constrained nonlinear problem is meaningful in future studies.

To further examine the computational performance of proposed EM algorithm,

we test the same Sioux Falls network but with varying number of unknown-route

trips as illustrated in Table 5.7. Figure 5.5 displays that the total computational

time increases fast with larger sample of unknown-route trips.
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Table 5.7: Computational Time of EM Method for Varying Number of Unknown-
route Trips

Input for Unknown-route Trips
Computational Time(min)

OD Pairs / Trips Per Pair Total Trips
5 / 15 75 13.26
5 / 30 150 15.00
5 / 45 225 18.15
5 / 60 300 24.49
5 / 75 375 34.69
5 / 90 450 56.05

 

 
Figure 5.5: Computational time with varying number of unknown-route trips.
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Table 5.8: Illustration of Generated Trip Itineraries

Path No. 1 2 3 4 5 6
Link Sequence [1,2,3] [1,9,8,3] [4,5,6] [5,6] [7,9,8] [4,7,9]

5.2 Test Trip Splitting Method for the Case of Log-Normal Distribution

5.2.1 Test Method II on a Simple Network with 9 Directional Links

In this case, all the link travel times are log-normally distributed. We generate

link times with randomly selected mean value between 40 and 80, and standard

deviation between 6 and 20, similarly as before. The ground truth of parameters

for each link are the same as listed in Table 5.1. Specifically, we sample both the

trips along a single link and trips covering multiple links as illustrated in Table 5.8,

where the numbers in each bracket represent the traversed links sequentially, and we

randomly generate 50 trips on each path.

We solve for the parameter estimates for link travel times using trip splitting

method. It takes less than 1 minute to obtain the estimates. The errors of resulting

estimates are displayed in Table 5.9, where Mean and SD denote the mean and

standard deviation of travel times on each link following log-normal distribution,

while Mu and Sigma denote the parameters of corresponding normal distribution.

We also find that the splitting ratios between the same pair of links for different

trips are consistent. The results are illustrated in Table 5.10, where wp,a denotes the

resulting proportion of travel time on link a among those trips along path p.

Besides, Figure 5.6 shows that the trip splitting method results in fast improve-

ment of total likelihood with iterations to convergence.

Then, we test the effect of standard deviations of link travel times on the estima-
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Table 5.9: Estimate Errors for Each Link

Link No.
Estimate Errors

Mean SD Mu Sigma
1 0.60% 13.01% 0.33% 13.19%
2 1.61% 1.94% 0.40% 0.34%
3 1.84% 8.03% 0.41% 6.03%
4 3.22% 23.68% 1.20% 25.47%
5 5.88% 25.53% 1.13% 20.31%
6 2.44% 12.07% 0.49% 9.68%
7 4.56% 2.68% 1.18% 6.79%
8 0.12% 16.67% 0.20% 16.48%
9 4.40% 24.66% 1.41% 27.25%

MAPE 2.74% 14.25% 0.75% 13.95%

Table 5.10: Comparison of Splitting Ratios between a Same Link Pair along Various
Paths

Link Pairs Notations Results

Links 1 and 3
Path 1 w1,1/w1,3 1.0543
Path 2 w2,1/w2,3 1.0559

Links 5 and 6
Path 3 w3,5/w3,6 0.9018
Path 4 w4,5/w4,6 0.9036

Links 7 and 9
Path 5 w5,7/w5,9 0.8223
Path 6 w6,7/w6,9 0.8157

Links 8 and 9
Path 2 w2,8/w2,9 0.8724
Path 5 w5,8/w5,9 0.8793
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Figure 5.6: The objective value of total log likelihood with iterations for trip splitting
method on the 9-link network.

tion accuracy using trip splitting method. Table 5.11 shows that the errors of mean

estimates increase with the larger standard deviations of link times, where Mean, SD

and Mu are defined the same as for Table 5.9. It is worth noting that the application

of trip splitting method would have an issue as the link travel times become more

unstable (i.e., with particularly large standard deviation). This can be explained

by its underlying assumption of relatively stable traffic conditions on the network.

For the practical applications, those individual links with heavy congestion or unex-

pected incidents need to be identified and carefully examined, which is beyond the

scope of this study.

5.2.2 Test Method II on Sioux Falls Network

We additionally test log-normal distributions for links on the Sioux Falls network.

The basic input information is summarized in Table 5.12. Note that all trips are with
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Table 5.11: Comparison of Mean Estimates with Varying Standard Deviations

Interval to Generate Random
Numbers for SD

MAPE for Estimates
Mean Mu

[3, 6] 0.91% 0.23%
[6, 20] 2.74% 0.75%
[20, 30] 4.97% 1.40%
[30, 40] 7.25% 2.06%

Table 5.12: Basic Input Information to Generate Test Sample for the Case of Log-
Normal Distribution

Type of Generated Trips Number of Trips
Trips along each arc 10

Trips covering multiple links 810
Setting of Randomly Generated Parameters Value of Bounds

Mean
Upper Bound 70
Lower Bound 40

Standard Deviation
Upper Bound 20
Lower Bound 6

labeled paths. Table 5.13 illustrates the estimation errors from the trip splitting

approximation, where Mean, SD, Mu, and Sigma are defined the same as in Table

5.9. Figure 5.7 indicates a fast convergence of the total likelihood with iterations.

In the case of log-normal distribution, solving for splitting ratios in the nonlinear

optimization can be computationally expensive at iterations. The total computa-

tional time is about 15 minutes in this example. A good initial point of splitting

ratios is important. In practice we can always refer to the travel speeds or distances

along consecutive links to provide a good starting point of splitting ratios. Besides,

those trips traversing a single link are important to trip splitting method. A sample

62



Table 5.13: Estimate Errors for All Links

Estimated Parameters MAPE
Mean 5.48%
SD 15.73%
Mu 1.40%

Sigma 14.98%

 

Figure 5.7: The objective value of total log likelihood with iterations for trip splitting
method on the Sioux Falls network.
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Table 5.14: Comparison of Estimate Errors Using Both Methods on the 9-link Net-
work

Link No.
Estimate Errors

Mean Standard Deviation
Method I Method II Method I Method II

1 0.27% 0.68% 12.01% 14.44%
2 1.85% 1.85% 6.24% 2.21%
3 0.65% 1.50% 3.35% 1.05%
4 4.57% 4.16% 11.70% 25.66%
5 5.00% 4.93% 4.77% 20.77%
6 3.45% 3.30% 2.05% 10.60%
7 3.73% 4.22% 10.31% 7.42%
8 0.40% 1.51% 0.85% 17.12%
9 4.63% 4.09% 7.30% 28.84%

MAPE 2.73% 2.92% 6.51% 14.23%

with sufficient single-link trips can help get accurate estimates.

5.3 Compare the Estimates Using Two Methods for the Case of Gaussian

Distribution

In the case of Gaussian distributions for link travel times, we compare the esti-

mates from using both Method I and Method II (i.e., trip splitting method) as they

apply to the simple 9-link network and the Sioux Falls network respectively. The test

sample size is the same as used in Section 5.2. Tables 5.14 and 5.15 summarize the

estimates from both methods. Besides, we also calculate the 95% confidence interval

of the mean estimates for several links on the 9-link network, as illustrated in Table

5.16. The resulting confidence intervals for mean estimates appear very close under

two model approaches.

The trip splitting method of Method II generally runs very fast at iterations

compared with Method I in the case of Gaussian distribution. For example, it takes
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Table 5.15: Comparison of Estimate Errors Using Both Methods on the Sioux Falls
Network

Estimated Parameters
MAPE

Method I Method II
Mean 4.98% 5.38%

Standard Deviation 9.00% 15.59%

Table 5.16: Illustration of 95% Confidence Interval Calculation for 9-link Network

Link No.
Method I Method II

Mean Estimate CI Mean Estimate CI
1 72.79 [69.20, 76.99] 73.08 [70.30, 76.49]
4 56.10 [53.38, 58.61] 55.88 [53.73, 58.12]
8 63.59 [60.75, 66.43] 63.67 [61.26, 65.91]

only a few seconds for Sioux Falls network using trip splitting method, as compared

with nearly 3 minutes using Method I. This is likely because Method I takes relatively

long time to solve for variance estimates in the nonlinear optimization. However,

accuracy of the trip splitting method may be in the check, especially that of the

variance estimates. To summarize the trade off again, the trip splitting method may

incur larger errors with estimating the standard deviation of link travel time in trade

for a much faster time compared with Method I. In terms of the mean estimates,

both methods are comparably competitive.
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6. DISCUSSION OF THE TWO METHODS*

This section discusses the advantages and disadvantages of both methods, as in

Yin et al. [99].∗

The two proposed methods in this dissertation are based on the additive prop-

erty of link time distributions, i.e., whether the summation of link travel times has

a closed-form distribution. Starting from the likelihood principle, both methods,

whenever necessary, decompose the link travel time inference into structural steps

that share the same spirit of the EM machinery. The key strategy is the introduction

of the augmented data (or complete data), namely augmenting the observed data

with hidden (unobserved) variables that represent the problem structure.

In Method I, the unobserved variables represent the path choices for individual

travelers with unknown routes. While the proposed method involve path inference,

it mainly focuses on the estimation of model parameters (so as to approximate the

real values) and the stable solution, rather than the accuracy of individual path

inference. The investigation of the case with all trips of known routes reveals its

connection to a least squares solution. And the analysis on the property of mean

estimates when trip variance estimates are within reasonable errors demonstrates

the validity of our iterative calculation of mean and variance. The hard-assignment

algorithm that addresses the case with some trips of unknown routes usually provides

the initial solution to the soft-assignment algorithm. Because of easy computation,

solution from hard assignment can also serve as a crude approximation to the real

values. When dealing with the uncertainty of path choices, applying the mixture

∗Part of this section is reprinted with permission from “Link travel time inference using entry/exit
information of trips on a network” by K. Yin, W. Wang, X.B. Wang, and T.M. Adams, 2015.
Transportation Research Part B: Methodological, 80, 303-321, Copyright [2015] by Elsevier.
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model in the soft assignment is more appropriate.

While similar methods to Method I have somewhat been studied in literature, the

proposed Method II appears new. The method of splitting trip travel time is straight-

forward, but directly applying it cannot guarantee certain property of results. We

show that this method can be viewed from the statistical perspective, and redesign

the method through maximum conditional likelihood function. The trip splitting

method is fast in computation compared to Method I, and can apply to various link

time distributions. But it requires many parameters. Some variable selection tech-

niques (e.g., Fan et al. [30]) can be used to overcome the proliferation of parameters.

Moreover, since the E-step involves a probability inference for the augmented vari-

ables based on the observed data, properly defining the augmented variables can help

improve the convergence of the algorithm (Meng and Van Dyk [62]). The proposed

framework of trip splitting is built mainly from the statistical perspective, which can

further combine the results from conventional traffic flow theory in order to obtain

more reliable estimates for practical applications. For example, one may incorpo-

rate the empirical speed-volume relationship into the iterative procedure to generate

reasonable splitting ratios.

The maximum-likelihood model framework can also be extended to deal with the

correlation among different links. Our modeling approaches will lay a methodological

foundation that we can use to extend to a dynamic network with time-dependent

link travel times (e.g., Xing et al. [97]), to the OD flow estimation (e.g., Parry and

Hazelton [71]), to the travel time reliability (e.g., Ng et al. [67]), or to the day-to-

day dynamic travel pattern inference (e.g., Parry and Hazelton [72]), as future study

efforts. As different sources of traffic data become available (see Zheng et al. [103];

Mori et al. [64]), we will find the proposed statistical framework useful.
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7. CONCLUSIONS

Link travel time estimation on a roadway network is essential for performance as-

sessment in order to improve traffic mobility and network efficiency. It is made possi-

ble now by widely available traffic data. This dissertation develops model framework

based on statistical inference methods for link travel time estimation using entry/exit

information of trips on a network.

First, we propose a method considering that the trip time has a closed-form

distribution, using independent Gaussian distribution for link travel time as an ex-

ample. We particularly analyze the property of mean estimates and investigate the

uniqueness of solutions in the derived EM algorithm. To overcome the modeling

challenge that random link times do not typically add up to a trip time with close-

form distribution, we develop a trip splitting method assuming a relatively reliable

way to partition the trip time between links. The proposed trip splitting method

applies to the general case with arbitrary link travel time distribution, although with

varying complexity in computation, making it potentially applicable to many traffic

situations. And it is also statistically justified for the network estimation problem.

The proposed methods are tested and compared numerically on two networks, a

simple 9-link network and the Sioux Falls network. The experimental results indicate

that both methods perform well and generate quality estimates, and that the trip

splitting method generally runs much faster. A trade off is that the trip splitting

method incurs larger errors for standard deviation estimates than the first method.

Worthy of a special mention is that link travel time inference on a network is

complicated and much still remains to be addressed. For example, can we obtain

reliable link travel time estimates if the mapping relationship between trip itineraries
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and link travel times has the rank deficiency issue? How do we improve the com-

putational performance when solving for large number of estimates for a large-size

network? Besides, further extension to the Bayesian approach with more traffic data

available as prior information is also worth our examinations, and the application to

various realistic networks with empirical data would be desirable in the future work.
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APPENDIX A

SUPPLEMENT TO SECTION 3

A.1 Alternative Representation of Equations (3.5) and (3.6)

We present another way to format Equations (3.5) and (3.6) by the path-link

relationship. The same approach is applied to other equations in the dissertation.

Let the path-link matrix be ∆P = [δpi,a]v×n, where v is the number of all paths,

pi the i-th path connecting an origin and a destination, and n the total number of

links. We also denote by npi the number of observations and by x̄pi the average of

the travel time along path pi. Then Equations (3.5) and (3.6) are read as

0 =
∑
pi

δpi,anpi(
∑

b δpi,bµb − x̄pi)∑
b δpi,bσ

2
b

, (A.1)

0 =
∑
pi

δpi,anpi
(
∑

b δpi,bσ
2
b )

2

(∑
b

δpi,bσ
2
b −

1

npi

∑
j∈pi

(xj −
∑
b

δpi,bµb)
2

)
. (A.2)

where j ∈ pi means that the observation j associates with route pi. Let ∆̃P be the

matrix ∆P scaled by npi(
∑

b δpi,bσ
2
b )
−1 for all δpi,a in the row pi, and let X̄ be the

vector of x̄pi . Then Equation (A.1) can be also written as

∆̃T
P∆P · µ = ∆̃T

P · X̄. (A.3)

Comparing with the matrix representation in Section 3.1.1, the above equation

is more compact and saves memory for numerical computation. However, it seems

that Equation (A.2) does not have a more compact representation than the one in

Section 3.1.1.
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A.2 Introduction of K-means Clustering Algorithm

K-means clustering is a method often used to identify groups or clusters of data

points. The term of K-means was first proposed by MacQueen [60] in 1967. It aims

to partition N observations into K clusters in a way that each observation belongs

to the cluster with the nearest mean value, serving as the prototype of the cluster.

The problem is defined as follows.

Given a data set {x1, ..., xN} consisting ofN observations of a randomD-dimensional

variable x, the objective is to find an assignment of these observations into K clus-

ters, as well as a set of D-dimensional vectors {µk} where µk denotes the prototype

associated with the kth cluster, such that the sum of squared distances of each data

point to its closest vector µk is minimized. The objective is formulated as below.

Minimize
N∑
i=1

K∑
k=1

rik‖xi − µk‖2. (A.4)

where rik ∈ {0, 1} is binary indicator variables denoting if data point xi is assigned

to cluster k.

The basic idea of K-means algorithm is the successive optimization with respect

to rik and µk: given the initial values for the {µk}, in the first stage minimize the

objective with respect to rik with fixed values of µk; then in the second stage minimize

the objective with respect to µk with fixed values of rik. Repeat this two-stage

optimization until convergence. These two stages of updating rik and µk essentially

corresponds to the E(expectation) and M(maximization) steps respectively in the

EM algorithm.

Therefore, an iterative procedure to solve this problem involves two successive

steps as
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Step 1: Assign each data point to the cluster whose mean yields the least within-

cluster sum of squares:

rik =


1 if k = arg minj∈K ‖xi − µj‖2

0 otherwise

(A.5)

Step 2: Update the mean (i.e. centroid) of all the data points assigned to each

cluster:

µk =

∑N
i=1 rikxi∑N
i=1 rik

, (A.6)

which is the result of minimizing the objective of within-cluster sum of squares, with

the rik held fixed.

Repeat these two steps until there is no further change in the assignments.

This procedure is known as K-means algorithm. The convergence of this algo-

rithm is assured since each step reduces the value of the objective function. However,

it may converge to a local optimum rather than global optimum. The convergence

properties of this K-means algorithm have been studied by MacQueen [60]. A com-

monly used initialization method is to randomly choose a subset of K data points to

get the cluster centers µk and use them as the initial means. Typically one can use

multiple runs from random starting guesses, and chooses the solution with the small-

est within-cluster sum of squares. This K-means algorithm is essentially a variant of

the generalized EM algorithm.
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APPENDIX B

SUPPLEMENT TO SECTION 5

As for testing EM algorithm for the case with unknown-route trips, Table B.1

summarizes the resulting estimates and errors for each link on the Sioux Falls net-

work.

Table B.1: Detailed Estimates for Testing EM Algorithm on

Sioux Falls Network

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

1 64.44 65.75 2.03 18.68 21.46 14.87

2 68.72 71.87 4.59 12.80 11.77 8.05

3 60.36 58.43 3.19 16.61 18.85 13.48

4 60.84 62.88 3.35 10.44 8.36 19.95

5 61.28 58.62 4.34 16.57 14.37 13.25

6 47.65 48.23 1.20 13.08 15.75 20.36

7 47.31 49.96 5.62 19.01 19.06 0.26

8 48.58 51.12 5.24 16.60 18.58 11.90

9 54.08 53.23 1.57 6.17 5.53 10.25

10 62.44 59.76 4.30 12.31 14.39 16.96

11 68.86 70.19 1.94 6.06 6.73 11.01

12 47.91 47.67 0.50 8.04 6.37 20.74

13 42.28 41.26 2.41 9.36 8.23 12.11

14 67.00 65.23 2.65 11.17 12.63 13.08
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Table B.1: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

15 41.79 43.09 3.10 9.29 9.41 1.30

16 48.89 50.75 3.80 16.43 13.05 20.53

17 53.08 54.63 2.94 12.25 10.42 14.93

18 68.17 69.77 2.34 18.26 16.10 11.87

19 45.12 45.67 1.22 9.19 9.51 3.53

20 52.26 49.21 5.84 14.33 13.37 6.71

21 47.87 50.16 4.77 17.21 14.68 14.72

22 46.95 48.06 2.38 12.84 14.10 9.81

23 47.86 45.94 4.01 10.69 10.79 0.93

24 60.96 62.95 3.26 8.77 7.29 16.90

25 45.49 45.83 0.76 9.36 10.78 15.19

26 41.27 41.01 0.63 7.00 6.47 7.58

27 64.01 61.63 3.72 12.35 11.51 6.81

28 55.81 51.74 7.29 11.84 10.44 11.81

29 54.69 56.02 2.42 10.75 11.53 7.25

30 49.04 51.08 4.14 15.82 15.16 4.15

31 60.08 62.52 4.08 8.67 8.19 5.54

32 43.62 44.21 1.35 14.25 14.30 0.31

33 50.32 53.08 5.48 14.18 13.83 2.43

34 45.36 44.23 2.50 11.92 9.42 20.95

35 59.63 60.61 1.63 11.71 9.29 20.62

36 47.99 49.90 3.97 8.15 6.37 21.80

37 60.28 60.04 0.40 10.05 10.73 6.77
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Table B.1: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

38 40.20 41.78 3.93 14.43 14.53 0.71

39 54.20 52.95 2.32 8.14 8.66 6.40

40 42.73 51.04 19.43 14.07 16.86 19.89

41 47.09 48.25 2.47 7.67 6.06 21.04

42 47.69 52.69 10.49 14.59 14.62 0.20

43 56.34 58.74 4.26 15.06 17.27 14.63

44 50.97 48.69 4.48 16.69 18.14 8.72

45 65.83 63.43 3.66 12.79 12.47 2.51

46 47.28 49.48 4.66 12.19 9.25 24.14

47 48.11 46.11 4.15 8.76 7.79 11.07

48 63.71 65.65 3.04 19.29 17.13 11.20

49 57.64 54.71 5.08 8.17 6.99 14.38

50 60.36 65.37 8.31 12.93 9.82 24.10

51 66.37 88.18 32.86 19.84 15.76 20.57

52 62.16 67.47 8.54 14.20 16.87 18.74

53 67.85 65.61 3.30 14.12 14.05 0.53

54 50.87 44.04 13.43 6.69 5.54 17.22

55 60.85 62.38 2.51 12.99 13.37 2.95

56 52.51 54.44 3.67 8.88 11.03 24.14

57 62.14 64.50 3.81 6.89 6.81 1.20

58 68.17 66.23 2.85 10.22 8.51 16.73

59 41.63 43.92 5.51 8.48 6.36 25.04

60 64.55 62.86 2.61 7.40 6.37 13.91
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Table B.1: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

61 67.36 65.59 2.63 7.46 7.17 3.90

62 47.27 43.34 8.32 6.75 7.68 13.75

63 41.86 40.43 3.42 10.18 10.79 6.03

64 64.77 66.08 2.01 10.73 10.62 1.09

65 48.64 45.99 5.44 15.70 11.26 28.23

66 66.71 64.95 2.65 17.19 18.86 9.72

67 43.52 50.34 15.65 14.97 13.60 9.15

68 50.99 47.93 6.01 11.17 8.47 24.12

69 46.87 40.26 14.11 14.99 12.66 15.54

70 43.37 46.08 6.25 16.98 15.39 9.39

71 45.62 44.14 3.26 9.73 11.25 15.71

72 41.78 40.28 3.59 10.42 10.31 1.08

73 43.79 43.01 1.78 7.88 7.48 5.13

74 56.67 57.49 1.44 8.58 10.36 20.73

75 47.73 45.36 4.98 11.56 13.51 16.92

76 66.13 63.69 3.69 10.91 8.22 24.68

MAPE - - 4.68 - - 12.16

As for testing trip splitting method for the case of log-normal distributed link

travel times, Table B.2 summarizes the resulting estimates and errors for each link

on the Sioux Falls network.
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Table B.2: Detailed Estimates for Testing Trip Splitting on

Sioux Falls Network

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

1 64.44 77.61 20.43 18.68 22.77 21.91

2 68.72 81.36 18.40 12.80 9.99 21.90

3 60.36 55.52 8.02 16.61 18.61 12.05

4 60.84 60.01 1.36 10.44 8.10 22.41

5 61.28 58.17 5.08 16.57 18.23 10.04

6 47.65 50.34 5.65 13.08 9.65 26.22

7 47.31 44.73 5.44 19.01 16.13 15.13

8 48.58 49.43 1.77 16.60 14.28 13.95

9 54.08 54.87 1.46 6.17 5.36 13.08

10 62.44 58.87 5.72 12.31 14.45 17.43

11 68.86 73.30 6.46 6.06 8.07 33.01

12 47.91 46.08 3.83 8.04 6.67 16.99

13 42.28 38.86 8.08 9.36 7.91 15.44

14 67.00 69.66 3.96 11.17 13.57 21.50

15 41.79 38.85 7.05 9.29 8.37 9.89

16 48.89 50.41 3.11 16.43 18.49 12.59

17 53.08 55.00 3.62 12.25 6.98 43.05

18 68.17 65.94 3.28 18.26 19.61 7.40

19 45.12 45.56 0.97 9.19 6.25 31.98

20 52.26 44.07 15.67 14.33 11.51 19.64

21 47.87 47.83 0.09 17.21 14.45 16.04

22 46.95 50.60 7.77 12.84 8.96 30.25
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Table B.2: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

23 47.86 48.12 0.55 10.69 9.46 11.54

24 60.96 64.06 5.08 8.77 6.46 26.38

25 45.49 46.44 2.10 9.36 8.43 9.94

26 41.27 42.50 2.98 7.00 6.18 11.66

27 64.01 58.98 7.86 12.35 11.16 9.65

28 55.81 54.72 1.95 11.84 8.99 24.04

29 54.69 55.06 0.67 10.75 9.18 14.63

30 49.04 50.86 3.71 15.82 15.69 0.80

31 60.08 61.90 3.04 8.67 8.18 5.56

32 43.62 44.17 1.26 14.25 10.08 29.28

33 50.32 49.45 1.71 14.18 12.99 8.34

34 45.36 42.05 7.30 11.92 9.35 21.57

35 59.63 60.07 0.73 11.71 9.48 19.00

36 47.99 51.20 6.69 8.15 6.69 17.90

37 60.28 63.48 5.31 10.05 11.16 11.08

38 40.20 36.09 10.23 14.43 12.79 11.34

39 54.20 54.51 0.57 8.14 8.89 9.20

40 42.73 46.79 9.50 14.07 11.17 20.59

41 47.09 50.48 7.20 7.67 6.17 19.56

42 47.69 50.37 5.62 14.59 14.89 2.05

43 56.34 53.78 4.54 15.06 17.71 17.59

44 50.97 45.29 11.14 16.69 15.30 8.33

45 65.83 64.53 1.98 12.79 8.34 34.79
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Table B.2: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

46 47.28 49.11 3.87 12.19 9.26 24.10

47 48.11 50.08 4.09 8.76 5.53 36.81

48 63.71 70.66 10.91 19.29 15.81 18.03

49 57.64 56.52 1.95 8.17 7.68 6.00

50 60.36 59.47 1.48 12.93 9.65 25.35

51 66.37 76.42 15.14 19.84 16.25 18.10

52 62.16 67.36 8.36 14.20 13.75 3.19

53 67.85 65.15 3.98 14.12 16.89 19.63

54 50.87 48.97 3.75 6.69 6.75 0.87

55 60.85 63.31 4.04 12.99 11.13 14.27

56 52.51 53.82 2.49 8.88 7.79 12.27

57 62.14 68.14 9.66 6.89 8.03 16.54

58 68.17 67.08 1.61 10.22 8.30 18.77

59 41.63 43.87 5.39 8.48 6.65 21.58

60 64.55 60.80 5.80 7.40 5.41 26.94

61 67.36 65.90 2.17 7.46 5.19 30.44

62 47.27 43.33 8.34 6.75 7.58 12.21

63 41.86 41.02 2.01 10.18 9.73 4.37

64 64.77 65.30 0.82 10.73 10.50 2.13

65 48.64 42.43 12.77 15.70 18.69 19.10

66 66.71 70.97 6.38 17.19 15.28 11.10

67 43.52 48.17 10.67 14.97 16.33 9.08

68 50.99 49.06 3.79 11.17 9.88 11.56
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Table B.2: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

69 46.87 38.31 18.26 14.99 15.63 4.30

70 43.37 44.90 3.54 16.98 15.31 9.86

71 45.62 47.74 4.64 9.73 9.04 7.03

72 41.78 39.95 4.38 10.42 10.19 2.23

73 43.79 40.78 6.88 7.88 7.61 3.48

74 56.67 55.13 2.71 8.58 8.11 5.45

75 47.73 45.52 4.64 11.56 10.88 5.87

76 66.13 64.22 2.90 10.91 8.96 17.92

MAPE - - 5.48 - - 15.73

As for comparing the estimates using both methods for the case of Gaussian

distributed link travel times, Table B.3 and Table B.4 summarize the resulting es-

timates and errors using Method I and Method II respectively for each link on the

Sioux Falls network.

Table B.3: Detailed Estimates Using Method I on Sioux Falls

Network

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

1 64.44 72.32 12.22 18.68 21.46 14.88

2 68.72 77.88 13.34 12.80 10.92 14.66
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Table B.3: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

3 60.36 54.20 10.22 16.61 17.06 2.72

4 60.84 60.34 0.83 10.44 9.23 11.54

5 61.28 58.39 4.72 16.57 14.47 12.66

6 47.65 50.05 5.03 13.08 14.28 9.17

7 47.31 47.19 0.25 19.01 19.13 0.62

8 48.58 51.84 6.72 16.60 18.03 8.59

9 54.08 53.17 1.68 6.17 5.88 4.65

10 62.44 58.09 6.98 12.31 13.25 7.66

11 68.86 69.95 1.59 6.06 6.87 13.35

12 47.91 47.33 1.22 8.04 6.35 20.97

13 42.28 39.39 6.84 9.36 9.23 1.35

14 67.00 69.29 3.42 11.17 13.02 16.58

15 41.79 38.76 7.26 9.29 9.01 2.98

16 48.89 51.68 5.71 16.43 14.89 9.36

17 53.08 55.41 4.40 12.25 11.76 4.01

18 68.17 65.26 4.27 18.26 16.14 11.62

19 45.12 45.69 1.25 9.19 8.22 10.58

20 52.26 43.36 17.03 14.33 13.68 4.55

21 47.87 48.67 1.67 17.21 14.59 15.23

22 46.95 50.12 6.75 12.84 13.39 4.22

23 47.86 48.39 1.11 10.69 9.43 11.78

24 60.96 64.32 5.50 8.77 7.16 18.35

25 45.49 44.83 1.45 9.36 11.43 22.13

95



Table B.3: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

26 41.27 42.88 3.90 7.00 6.08 13.12

27 64.01 58.91 7.96 12.35 11.72 5.14

28 55.81 52.67 5.63 11.84 12.63 6.70

29 54.69 55.24 1.01 10.75 10.84 0.83

30 49.04 51.08 4.14 15.82 15.16 4.15

31 60.08 61.92 3.07 8.67 9.72 12.13

32 43.62 43.98 0.84 14.25 16.31 14.42

33 50.32 49.68 1.27 14.18 13.25 6.52

34 45.36 44.66 1.55 11.92 10.87 8.78

35 59.63 59.87 0.39 11.71 9.58 18.19

36 47.99 50.97 6.20 8.15 6.66 18.30

37 60.28 60.69 0.67 10.05 11.82 17.60

38 40.20 38.82 3.44 14.43 15.06 4.34

39 54.20 53.12 2.00 8.14 8.15 0.11

40 42.73 47.89 12.06 14.07 13.61 3.26

41 47.09 49.56 5.26 7.67 6.30 17.84

42 47.69 50.50 5.88 14.59 14.12 3.24

43 56.34 52.70 6.46 15.06 16.40 8.85

44 50.97 48.26 5.33 16.69 18.72 12.16

45 65.83 64.53 1.98 12.79 11.63 9.04

46 47.28 51.77 9.49 12.19 10.92 10.45

47 48.11 50.07 4.08 8.76 7.69 12.22

48 63.71 70.60 10.81 19.29 19.99 3.61
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Table B.3: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

49 57.64 53.91 6.47 8.17 7.18 12.03

50 60.36 59.76 1.00 12.93 11.74 9.24

51 66.37 77.34 16.52 19.84 17.26 13.00

52 62.16 67.53 8.64 14.20 12.72 10.43

53 67.85 66.38 2.16 14.12 13.73 2.80

54 50.87 48.87 3.94 6.69 7.81 16.61

55 60.85 64.19 5.48 12.99 14.05 8.19

56 52.51 52.50 0.01 8.88 9.33 4.98

57 62.14 64.50 3.80 6.89 7.36 6.83

58 68.17 67.52 0.95 10.22 9.42 7.76

59 41.63 44.21 6.21 8.48 8.34 1.67

60 64.55 60.85 5.73 7.40 6.75 8.84

61 67.36 66.09 1.90 7.46 7.11 4.66

62 47.27 42.90 9.25 6.75 7.25 7.30

63 41.86 41.96 0.24 10.18 11.06 8.69

64 64.77 65.35 0.90 10.73 10.42 2.89

65 48.64 43.27 11.04 15.70 15.11 3.71

66 66.71 69.42 4.06 17.19 17.00 1.09

67 43.52 47.22 8.50 14.97 14.30 4.48

68 50.99 49.55 2.82 11.17 10.23 8.39

69 46.87 40.95 12.63 14.99 14.55 2.91

70 43.37 46.51 7.25 16.98 16.00 5.77

71 45.62 46.21 1.29 9.73 10.77 10.74
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Table B.3: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

72 41.78 39.83 4.68 10.42 10.65 2.18

73 43.79 41.09 6.18 7.88 6.35 19.48

74 56.67 54.89 3.14 8.58 9.45 10.14

75 47.73 45.22 5.27 11.56 12.43 7.54

76 66.13 63.76 3.59 10.91 9.09 16.66

MAPE - - 4.98 - - 9.00

Table B.4: Detailed Estimates Using Method II on Sioux

Falls Network

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

1 64.44 74.57 15.71 18.68 19.34 3.51

2 68.72 77.74 13.13 12.80 8.25 35.54

3 60.36 54.20 10.22 16.61 20.06 20.78

4 60.84 60.34 0.83 10.44 8.23 21.12

5 61.28 57.69 5.85 16.57 15.73 5.05

6 47.65 51.25 7.54 13.08 9.36 28.49

7 47.31 48.37 2.25 19.01 13.15 30.80

8 48.58 52.66 8.40 16.60 10.76 35.15

9 54.08 53.15 1.73 6.17 5.10 17.25

10 62.44 58.09 6.98 12.31 15.25 23.91
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Table B.4: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

11 68.86 69.88 1.48 6.06 6.91 13.98

12 47.91 45.90 4.20 8.04 7.64 4.89

13 42.28 38.93 7.91 9.36 7.95 15.05

14 67.00 69.29 3.42 11.17 13.02 16.58

15 41.79 38.76 7.26 9.29 9.01 2.98

16 48.89 51.74 5.84 16.43 18.37 11.81

17 53.08 55.39 4.36 12.25 10.93 10.79

18 68.17 65.85 3.41 18.26 16.02 12.28

19 45.12 45.95 1.84 9.19 8.05 12.38

20 52.26 43.36 17.03 14.33 13.68 4.55

21 47.87 48.67 1.67 17.21 14.59 15.23

22 46.95 51.10 8.85 12.84 11.55 10.06

23 47.86 48.39 1.11 10.69 9.43 11.78

24 60.96 64.32 5.50 8.77 6.16 29.75

25 45.49 46.49 2.21 9.36 8.19 12.44

26 41.27 42.88 3.90 7.00 6.08 13.12

27 64.01 57.83 9.66 12.35 10.80 12.60

28 55.81 53.53 4.08 11.84 8.55 27.79

29 54.69 54.44 0.46 10.75 9.30 13.56

30 49.04 51.08 4.14 15.82 15.16 4.15

31 60.08 62.49 4.03 8.67 8.09 6.67

32 43.62 45.63 4.60 14.25 9.70 31.96

33 50.32 49.68 1.27 14.18 13.25 6.52
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Table B.4: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

34 45.36 43.47 4.16 11.92 12.50 4.87

35 59.63 59.12 0.86 11.71 7.69 34.29

36 47.99 50.61 5.44 8.15 6.17 24.31

37 60.28 60.41 0.20 10.05 9.86 1.90

38 40.20 39.27 2.31 14.43 8.70 39.73

39 54.20 52.26 3.59 8.14 7.99 1.79

40 42.73 46.39 8.56 14.07 12.14 13.73

41 47.09 49.27 4.64 7.67 5.70 25.74

42 47.69 50.50 5.88 14.59 14.12 3.24

43 56.34 52.70 6.46 15.06 18.40 22.13

44 50.97 48.47 4.92 16.69 14.42 13.62

45 65.83 65.81 0.03 12.79 8.27 35.36

46 47.28 49.51 4.70 12.19 11.99 1.64

47 48.11 49.80 3.52 8.76 7.15 18.33

48 63.71 71.69 12.52 19.29 14.83 23.12

49 57.64 55.24 4.16 8.17 7.49 8.34

50 60.36 59.20 1.93 12.93 11.82 8.59

51 66.37 77.34 16.52 19.84 14.26 28.12

52 62.16 67.53 8.64 14.20 12.72 10.43

53 67.85 63.88 5.85 14.12 16.85 19.34

54 50.87 48.88 3.91 6.69 6.92 3.43

55 60.85 65.73 8.01 12.99 9.44 27.32

56 52.51 52.69 0.33 8.88 7.82 11.94
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Table B.4: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error (%) Truth Estimate Error (%)

57 62.14 64.64 4.03 6.89 7.30 5.91

58 68.17 67.52 0.95 10.22 8.42 17.55

59 41.63 44.21 6.21 8.48 6.34 25.26

60 64.55 60.85 5.73 7.40 5.75 22.34

61 67.36 66.09 1.90 7.46 5.31 28.80

62 47.27 42.90 9.25 6.75 8.25 22.11

63 41.86 41.51 0.83 10.18 8.91 12.42

64 64.77 65.35 0.90 10.73 10.42 2.89

65 48.64 43.27 11.04 15.70 13.11 16.45

66 66.71 72.07 8.03 17.19 15.93 7.28

67 43.52 47.22 8.50 14.97 17.30 15.56

68 50.99 49.55 2.82 11.17 8.23 26.30

69 46.87 39.95 14.76 14.99 16.19 8.03

70 43.37 46.51 7.25 16.98 15.10 11.07

71 45.62 46.19 1.24 9.73 8.99 7.62

72 41.78 39.83 4.68 10.42 10.65 2.18

73 43.79 40.36 7.84 7.88 6.89 12.63

74 56.67 54.14 4.47 8.58 9.39 9.39

75 47.73 45.22 5.27 11.56 12.43 7.54

76 66.13 62.93 4.84 10.91 8.75 19.81

MAPE - - 5.38 - - 15.59
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We also conduct the numerical tests with more sufficient trip observations along

single links on the Sioux Falls network. As for testing EM algorithm for the case

with unknown-route trips, we modify the input setting as shown in Table B.5.

Table B.6 illustrates the average estimation errors for all links, and Table B.7

summarizes the resulting estimates and errors for each link on the Sioux Falls net-

work.

Table B.5: Modified Input Information to Generate Test Sample for the Case with
Unknown Route Trips

Type of Generated Trips Number of Trips
Trips along each link 50

Trips covering multiple links 110
Trips with unlabeled paths 300

Setting of Randomly Generated Parameters Value of Bounds

Mean
Upper Bound 70
Lower Bound 40

Standard Deviation
Upper Bound 20
Lower Bound 6

Table B.6: Estimate Errors of All Links with Modified Setting

Estimated Parameters MAPE
Mean 2.49%

Standard Deviation 7.82%
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Table B.7: Detailed Estimates for Testing EM Algorithm on

Sioux Falls Network with Modified Setting

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

1 64.44 69.56 7.95% 18.68 23.56 26.11%

2 44.88 45.32 0.98% 7.67 7.83 2.10%

3 58.06 57.22 1.44% 9.68 10.52 8.66%

4 43.34 43.40 0.14% 16.92 15.29 9.68%

5 49.04 47.47 3.20% 12.59 12.91 2.50%

6 63.89 63.67 0.34% 7.38 7.24 1.97%

7 52.97 50.54 4.60% 17.55 17.47 0.48%

8 65.67 64.54 1.71% 15.03 13.44 10.59%

9 52.70 52.35 0.68% 7.27 7.04 3.23%

10 60.50 62.35 3.05% 13.65 11.70 14.33%

11 45.76 46.38 1.35% 7.94 7.18 9.57%

12 55.43 57.51 3.75% 18.38 15.55 15.40%

13 40.51 39.37 2.82% 7.69 8.28 7.66%

14 63.57 61.17 3.77% 13.19 10.39 21.24%

15 66.85 65.46 2.08% 7.00 7.30 4.22%

16 62.03 61.51 0.83% 6.72 6.37 5.14%

17 60.84 55.29 9.12% 16.61 17.47 5.16%

18 69.64 68.76 1.26% 8.39 7.74 7.70%

19 66.83 71.20 6.53% 13.23 13.84 4.56%

20 44.27 45.29 2.32% 6.35 7.10 11.77%

21 58.78 59.85 1.82% 7.93 7.10 10.44%

22 47.09 47.75 1.40% 8.48 8.44 0.51%
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Table B.7: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

23 52.42 52.26 0.30% 12.89 14.43 11.95%

24 49.95 51.14 2.38% 8.13 8.14 0.09%

25 64.02 72.50 13.23% 18.55 17.99 3.00%

26 48.26 48.17 0.19% 16.03 14.28 10.93%

27 54.75 55.64 1.63% 6.99 5.92 15.40%

28 40.47 42.99 6.23% 18.09 18.68 3.26%

29 52.20 49.47 5.24% 7.58 7.46 1.53%

30 63.17 64.03 1.37% 9.19 9.71 5.59%

31 44.44 42.97 3.29% 8.77 8.00 8.78%

32 65.11 67.35 3.44% 19.60 20.41 4.18%

33 57.54 57.98 0.76% 9.99 10.19 2.03%

34 52.97 53.53 1.05% 16.49 15.67 4.98%

35 63.55 62.78 1.21% 12.51 12.03 3.84%

36 51.79 52.44 1.25% 8.51 9.22 8.39%

37 57.48 56.36 1.96% 17.97 15.78 12.17%

38 46.58 46.65 0.14% 10.56 9.97 5.57%

39 62.90 66.73 6.09% 17.57 17.99 2.38%

40 49.12 52.85 7.61% 12.77 13.49 5.69%

41 41.98 42.46 1.13% 9.86 9.46 4.04%

42 42.83 44.31 3.45% 18.29 16.56 9.42%

43 60.26 59.75 0.85% 18.65 20.83 11.71%

44 42.11 42.09 0.03% 6.97 6.15 11.72%

45 67.62 66.93 1.03% 12.98 12.23 5.76%
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Table B.7: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

46 64.51 64.56 0.08% 8.65 8.13 6.04%

47 50.74 50.92 0.35% 12.85 11.35 11.65%

48 51.45 53.03 3.08% 13.95 12.82 8.07%

49 69.42 69.21 0.30% 15.03 16.94 12.72%

50 59.60 58.39 2.04% 12.86 14.31 11.33%

51 60.38 65.31 8.17% 19.43 19.27 0.81%

52 65.11 66.15 1.60% 17.67 19.41 9.87%

53 42.05 41.61 1.04% 7.19 5.60 22.09%

54 42.69 44.74 4.80% 17.56 17.55 0.07%

55 54.65 56.27 2.95% 8.24 7.58 7.94%

56 67.32 68.61 1.91% 18.39 21.04 14.40%

57 42.75 43.72 2.27% 18.72 19.79 5.75%

58 66.29 65.10 1.78% 14.54 14.69 1.01%

59 51.92 50.35 3.02% 12.71 13.67 7.51%

60 43.40 43.90 1.17% 10.96 11.64 6.19%

61 66.58 67.98 2.10% 8.99 8.13 9.59%

62 57.23 58.19 1.68% 11.78 10.88 7.60%

63 69.06 70.70 2.38% 7.38 6.65 9.91%

64 54.61 55.16 1.01% 9.67 8.50 12.08%

65 65.79 65.00 1.20% 15.49 14.87 3.98%

66 56.20 56.32 0.22% 9.09 9.05 0.47%

67 64.28 66.29 3.12% 14.52 13.83 4.75%

68 47.01 47.34 0.71% 7.35 6.19 15.79%
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Table B.7: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

69 58.57 58.10 0.80% 8.31 7.12 14.34%

70 42.44 44.74 5.43% 12.76 12.07 5.42%

71 68.85 67.92 1.35% 13.99 12.70 9.22%

72 57.56 58.51 1.64% 7.67 7.46 2.72%

73 55.52 55.46 0.11% 18.64 18.81 0.91%

74 44.99 45.60 1.36% 8.09 9.45 16.76%

75 50.81 49.04 3.50% 17.60 17.95 1.99%

76 41.19 42.34 2.79% 12.57 14.79 17.68%

MAPE - - 2.49% - - 7.82%

As for testing trip splitting method for the case of log-normal distributed link

travel times, we also modify the input setting as shown in Table B.8.

Table B.9 illustrates the average estimation errors for all links, and Table B.10

summarizes the resulting estimates and errors for each link on the Sioux Falls net-

work.
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Table B.8: Modified Input Information to Generate Test Sample for the Case of
Log-Normal Distribution

Type of Generated Trips Number of Trips
Trips along each link 50

Trips covering multiple links 810
Setting of Randomly Generated Parameters Value of Bounds

Mean
Upper Bound 70
Lower Bound 40

Standard Deviation
Upper Bound 20
Lower Bound 6

Table B.9: Estimate Errors of All Links with Modified Setting for the Case of Log-
Normal Distribution

Estimated Parameters MAPE
Mean 2.47%
SD 13.36%
Mu 0.60%

Sigma 13.03%
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Table B.10: Detailed Estimates for Testing Trip Splitting on

Sioux Falls Network with Modified Setting

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

1 64.44 69.31 7.55% 18.68 21.52 15.22%

2 44.88 45.01 0.29% 7.67 7.80 1.77%

3 58.06 56.98 1.86% 9.68 10.27 6.07%

4 43.34 41.79 3.56% 16.92 11.56 31.72%

5 49.04 47.55 3.04% 12.59 10.51 16.56%

6 63.89 64.20 0.49% 7.38 6.93 6.12%

7 52.97 50.41 4.84% 17.55 16.77 4.47%

8 65.67 66.53 1.32% 15.03 13.00 13.49%

9 52.70 52.87 0.31% 7.27 6.02 17.25%

10 60.50 61.99 2.46% 13.65 11.98 12.26%

11 45.76 46.55 1.73% 7.94 7.27 8.46%

12 55.43 56.39 1.72% 18.38 10.75 41.50%

13 40.51 38.91 3.94% 7.69 6.43 16.40%

14 63.57 60.04 5.55% 13.19 8.09 38.68%

15 66.85 65.54 1.96% 7.00 7.15 2.10%

16 62.03 61.52 0.82% 6.72 5.27 21.58%

17 60.84 55.94 8.06% 16.61 16.13 2.88%

18 69.64 67.96 2.41% 8.39 6.58 21.55%

19 66.83 70.08 4.86% 13.23 11.67 11.84%

20 44.27 45.22 2.15% 6.35 5.39 15.10%

21 58.78 59.66 1.49% 7.93 7.24 8.66%

22 47.09 47.58 1.03% 8.48 8.55 0.83%
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Table B.10: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

23 52.42 52.08 0.65% 12.89 12.63 2.06%

24 49.95 50.66 1.41% 8.13 8.21 0.94%

25 64.02 73.28 14.46% 18.55 17.67 4.74%

26 48.26 47.03 2.54% 16.03 10.62 33.79%

27 54.75 55.29 0.98% 6.99 5.86 16.17%

28 40.47 40.96 1.22% 18.09 18.69 3.31%

29 52.20 49.51 5.15% 7.58 7.59 0.19%

30 63.17 64.11 1.49% 9.19 9.86 7.23%

31 44.44 42.88 3.51% 8.77 6.36 27.48%

32 65.11 67.59 3.81% 19.60 21.23 8.35%

33 57.54 57.24 0.52% 9.99 8.20 17.95%

34 52.97 52.66 0.58% 16.49 15.67 4.95%

35 63.55 63.71 0.26% 12.51 11.25 10.06%

36 51.79 52.55 1.46% 8.51 9.43 10.82%

37 57.48 55.11 4.12% 17.97 11.29 37.17%

38 46.58 46.26 0.69% 10.56 9.90 6.29%

39 62.90 68.89 9.53% 17.57 16.87 4.00%

40 49.12 51.28 4.40% 12.77 9.91 22.39%

41 41.98 42.02 0.09% 9.86 9.52 3.38%

42 42.83 42.70 0.32% 18.29 16.46 9.99%

43 60.26 58.59 2.77% 18.65 17.43 6.57%

44 42.11 41.94 0.40% 6.97 6.15 11.80%

45 67.62 66.21 2.09% 12.98 9.91 23.66%
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Table B.10: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

46 64.51 64.73 0.35% 8.65 8.67 0.20%

47 50.74 49.51 2.43% 12.85 8.94 30.44%

48 51.45 49.34 4.10% 13.95 8.21 41.12%

49 69.42 70.55 1.63% 15.03 17.76 18.19%

50 59.60 60.53 1.55% 12.86 12.93 0.60%

51 60.38 65.34 8.21% 19.43 20.85 7.29%

52 65.11 65.53 0.64% 17.67 13.21 25.24%

53 42.05 41.65 0.97% 7.19 5.56 22.61%

54 42.69 42.43 0.61% 17.56 11.92 32.15%

55 54.65 56.17 2.77% 8.24 7.83 5.01%

56 67.32 69.82 3.71% 18.39 16.53 10.12%

57 42.75 43.92 2.75% 18.72 22.87 22.18%

58 66.29 65.55 1.11% 14.54 10.74 26.14%

59 51.92 50.67 2.41% 12.71 13.49 6.09%

60 43.40 43.38 0.05% 10.96 10.01 8.74%

61 66.58 67.34 1.15% 8.99 8.24 8.43%

62 57.23 58.02 1.39% 11.78 11.03 6.34%

63 69.06 71.14 3.02% 7.38 7.27 1.58%

64 54.61 55.37 1.40% 9.67 8.54 11.65%

65 65.79 66.09 0.46% 15.49 13.04 15.81%

66 56.20 57.14 1.67% 9.09 9.10 0.02%

67 64.28 66.14 2.89% 14.52 14.32 1.43%

68 47.01 47.10 0.20% 7.35 6.24 15.09%
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Table B.10: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

69 58.57 58.87 0.51% 8.31 7.20 13.35%

70 42.44 43.76 3.12% 12.76 10.64 16.61%

71 68.85 67.02 2.66% 13.99 10.57 24.44%

72 57.56 58.14 1.01% 7.67 7.67 0.00%

73 55.52 53.67 3.34% 18.64 17.09 8.33%

74 44.99 45.88 1.98% 8.09 9.77 20.75%

75 50.81 49.77 2.05% 17.60 13.02 26.03%

76 41.19 42.69 3.65% 12.57 12.80 1.83%

MAPE - - 2.47% - - 13.36%

As for comparing the estimates using both methods for the case of Gaussian

distributed link travel times, Table B.11 and Table B.12 summarize the resulting

estimates and errors using Method I and Method II respectively for each link on the

Sioux Falls network. Table B.13 illustrates the average estimation errors for all links

from both methods.
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Table B.11: Detailed Estimates Using Method I on Sioux

Falls Network with Modified Setting

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

1 64.44 67.79 5.19% 18.68 22.17 18.68%

2 44.88 44.99 0.25% 7.67 7.78 1.46%

3 58.06 56.83 2.12% 9.68 10.45 7.96%

4 43.34 43.41 0.17% 16.92 14.89 12.04%

5 49.04 47.94 2.24% 12.59 12.76 1.33%

6 63.89 63.65 0.38% 7.38 7.16 3.05%

7 52.97 50.25 5.14% 17.55 17.62 0.37%

8 65.67 66.60 1.42% 15.03 14.38 4.31%

9 52.70 52.07 1.20% 7.27 6.99 3.91%

10 60.50 62.39 3.12% 13.65 11.73 14.08%

11 45.76 46.68 2.01% 7.94 7.16 9.89%

12 55.43 57.80 4.27% 18.38 17.58 4.34%

13 40.51 39.32 2.95% 7.69 7.96 3.50%

14 63.57 60.25 5.22% 13.19 10.23 22.44%

15 66.85 65.49 2.03% 7.00 7.29 4.11%

16 62.03 61.37 1.06% 6.72 6.31 6.08%

17 60.84 55.39 8.97% 16.61 17.51 5.42%

18 69.64 67.77 2.68% 8.39 7.47 10.91%

19 66.83 69.92 4.62% 13.23 13.45 1.65%

20 44.27 45.38 2.52% 6.35 7.02 10.56%

21 58.78 59.75 1.66% 7.93 7.14 9.93%

22 47.09 47.59 1.04% 8.48 8.46 0.20%
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Table B.11: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

23 52.42 51.90 0.99% 12.89 14.30 10.89%

24 49.95 50.66 1.42% 8.13 8.09 0.46%

25 64.02 72.44 13.14% 18.55 18.70 0.84%

26 48.26 47.80 0.94% 16.03 14.11 12.00%

27 54.75 55.23 0.87% 6.99 5.98 14.44%

28 40.47 40.84 0.91% 18.09 18.43 1.88%

29 52.20 49.37 5.43% 7.58 7.53 0.57%

30 63.17 64.03 1.37% 9.19 9.71 5.59%

31 44.44 43.26 2.65% 8.77 8.19 6.70%

32 65.11 67.35 3.44% 19.60 20.41 4.18%

33 57.54 56.87 1.16% 9.99 10.09 1.02%

34 52.97 52.86 0.21% 16.49 15.79 4.21%

35 63.55 63.46 0.14% 12.51 11.99 4.16%

36 51.79 52.41 1.20% 8.51 9.28 9.09%

37 57.48 55.96 2.65% 17.97 16.00 10.95%

38 46.58 46.38 0.43% 10.56 9.98 5.50%

39 62.90 67.95 8.03% 17.57 17.87 1.72%

40 49.12 51.51 4.87% 12.77 13.37 4.71%

41 41.98 42.10 0.27% 9.86 9.52 3.37%

42 42.83 43.34 1.18% 18.29 16.63 9.03%

43 60.26 57.84 4.02% 18.65 21.54 15.51%

44 42.11 42.06 0.11% 6.97 6.18 11.31%

45 67.62 66.23 2.07% 12.98 12.16 6.32%
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Table B.11: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

46 64.51 64.32 0.29% 8.65 8.31 3.95%

47 50.74 50.07 1.32% 12.85 11.22 12.68%

48 51.45 50.12 2.59% 13.95 12.34 11.52%

49 69.42 70.00 0.84% 15.03 17.41 15.84%

50 59.60 58.99 1.02% 12.86 14.31 11.33%

51 60.38 65.31 8.17% 19.43 19.27 0.81%

52 65.11 64.97 0.22% 17.67 17.59 0.43%

53 42.05 41.88 0.42% 7.19 5.63 21.64%

54 42.69 44.52 4.30% 17.56 17.66 0.55%

55 54.65 56.25 2.92% 8.24 7.62 7.50%

56 67.32 69.31 2.95% 18.39 19.82 7.77%

57 42.75 42.52 0.54% 18.72 21.89 16.95%

58 66.29 65.04 1.87% 14.54 14.21 2.25%

59 51.92 50.36 2.99% 12.71 13.78 8.42%

60 43.40 43.25 0.35% 10.96 11.59 5.67%

61 66.58 67.45 1.31% 8.99 8.15 9.39%

62 57.23 58.20 1.70% 11.78 10.90 7.48%

63 69.06 71.06 2.90% 7.38 6.61 10.50%

64 54.61 55.06 0.83% 9.67 8.37 13.48%

65 65.79 65.93 0.22% 15.49 14.77 4.61%

66 56.20 56.77 1.01% 9.09 9.14 0.51%

67 64.28 66.27 3.09% 14.52 13.93 4.11%

68 47.01 47.26 0.54% 7.35 6.24 15.12%
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Table B.11: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

69 58.57 59.02 0.77% 8.31 7.18 13.68%

70 42.44 44.19 4.13% 12.76 12.85 0.72%

71 68.85 67.06 2.60% 13.99 12.69 9.27%

72 57.56 58.15 1.02% 7.67 7.59 0.99%

73 55.52 53.88 2.96% 18.64 17.73 4.92%

74 44.99 45.60 1.34% 8.09 9.55 18.04%

75 50.81 49.87 1.86% 17.60 18.03 2.42%

76 41.19 42.66 3.57% 12.57 14.07 11.90%

MAPE - - 2.35% - - 7.30%
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Table B.12: Detailed Estimates Using Method II on Sioux

Falls Network with Modified Setting

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

1 64.44 68.14 5.74% 18.68 20.09 7.52%

2 44.88 44.99 0.25% 7.67 7.78 1.46%

3 58.06 56.83 2.12% 9.68 10.45 7.96%

4 43.34 43.49 0.35% 16.92 12.21 27.84%

5 49.04 47.66 2.80% 12.59 10.77 14.51%

6 63.89 63.45 0.68% 7.38 6.71 9.13%

7 52.97 50.25 5.14% 17.55 17.62 0.37%

8 65.67 66.93 1.92% 15.03 12.99 13.53%

9 52.70 52.15 1.04% 7.27 5.90 18.93%

10 60.50 62.39 3.12% 13.65 11.73 14.08%

11 45.76 46.68 2.01% 7.94 7.16 9.89%

12 55.43 58.15 4.91% 18.38 10.84 41.04%

13 40.51 39.27 3.05% 7.69 6.70 12.89%

14 63.57 60.31 5.12% 13.19 8.61 34.75%

15 66.85 65.49 2.03% 7.00 7.29 4.11%

16 62.03 61.23 1.29% 6.72 5.40 19.65%

17 60.84 55.39 8.97% 16.61 17.51 5.42%

18 69.64 67.54 3.01% 8.39 6.65 20.76%

19 66.83 69.75 4.36% 13.23 11.25 15.01%

20 44.27 45.25 2.23% 6.35 5.36 15.54%

21 58.78 59.75 1.66% 7.93 7.14 9.93%

22 47.09 47.59 1.04% 8.48 8.46 0.20%

116



Table B.12: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

23 52.42 51.47 1.80% 12.89 12.89 0.06%

24 49.95 50.66 1.42% 8.13 8.09 0.46%

25 64.02 72.69 13.54% 18.55 15.76 15.02%

26 48.26 47.90 0.75% 16.03 11.18 30.27%

27 54.75 54.86 0.19% 6.99 5.97 14.61%

28 40.47 40.84 0.91% 18.09 18.43 1.88%

29 52.20 48.89 6.34% 7.58 7.66 1.09%

30 63.17 64.03 1.37% 9.19 9.71 5.59%

31 44.44 42.92 3.41% 8.77 6.50 25.94%

32 65.11 67.35 3.44% 19.60 20.41 4.18%

33 57.54 56.74 1.38% 9.99 8.24 17.54%

34 52.97 52.86 0.21% 16.49 15.79 4.20%

35 63.55 63.48 0.10% 12.51 11.27 9.94%

36 51.79 52.41 1.20% 8.51 9.28 9.09%

37 57.48 56.03 2.52% 17.97 11.78 34.45%

38 46.58 46.38 0.43% 10.56 9.98 5.50%

39 62.90 68.14 8.34% 17.57 15.31 12.89%

40 49.12 51.57 5.00% 12.77 9.64 24.50%

41 41.98 42.10 0.27% 9.86 9.52 3.37%

42 42.83 43.34 1.18% 18.29 16.63 9.03%

43 60.26 58.17 3.47% 18.65 18.03 3.34%

44 42.11 42.06 0.11% 6.97 6.18 11.31%

45 67.62 66.14 2.20% 12.98 10.18 21.54%
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Table B.12: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

46 64.51 63.98 0.81% 8.65 8.89 2.71%

47 50.74 50.09 1.28% 12.85 9.24 28.08%

48 51.45 50.17 2.49% 13.95 8.66 37.93%

49 69.42 70.00 0.84% 15.03 17.41 15.84%

50 59.60 59.10 0.85% 12.86 12.25 4.68%

51 60.38 65.31 8.17% 19.43 19.27 0.81%

52 65.11 65.20 0.13% 17.67 13.22 25.20%

53 42.05 41.88 0.42% 7.19 5.63 21.64%

54 42.69 44.70 4.71% 17.56 12.16 30.78%

55 54.65 56.25 2.92% 8.24 7.62 7.50%

56 67.32 69.77 3.64% 18.39 15.96 13.20%

57 42.75 42.52 0.54% 18.72 21.89 16.95%

58 66.29 65.08 1.82% 14.54 10.90 25.04%

59 51.92 50.36 2.99% 12.71 13.78 8.42%

60 43.40 43.10 0.68% 10.96 10.03 8.54%

61 66.58 67.45 1.31% 8.99 8.15 9.39%

62 57.23 58.20 1.70% 11.78 10.90 7.48%

63 69.06 70.81 2.53% 7.38 6.95 5.81%

64 54.61 54.63 0.04% 9.67 8.47 12.43%

65 65.79 65.87 0.12% 15.49 12.81 17.28%

66 56.20 56.51 0.55% 9.09 8.86 2.61%

67 64.28 66.27 3.09% 14.52 13.93 4.11%

68 47.01 47.26 0.54% 7.35 6.24 15.12%
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Table B.12: Continued

Link No.
Mean Standard Deviation

Truth Estimate Error Truth Estimate Error

69 58.57 59.02 0.77% 8.31 7.18 13.68%

70 42.44 44.53 4.92% 12.76 10.55 17.28%

71 68.85 67.08 2.57% 13.99 10.84 22.52%

72 57.56 58.15 1.02% 7.67 7.59 0.99%

73 55.52 53.88 2.96% 18.64 17.73 4.92%

74 44.99 45.60 1.34% 8.09 9.55 18.04%

75 50.81 50.19 1.23% 17.60 13.33 24.30%

76 41.19 42.92 4.20% 12.57 12.40 1.38%

MAPE - - 2.42% - - 13.09%

Table B.13: Comparison of Estimate Errors Using Both Methods on Sioux Falls
Network with Modified Setting

Estimated Parameters
MAPE

Method I Method II
Mean 2.35% 2.42%

Standard Deviation 7.30% 13.09%

To provide supplemental information of estimate accuracy with respect to the

sample size of single-link observations, we test the sample sizes with different numbers

of single-link observations along each link, and summarize the resulting estimate
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Figure B.1: Estimate errors with various sample sizes of single-link observations on
Sioux Falls network for the case of unknown route trips.

errors accordingly. Figure B.1 displays the average errors on Sioux Falls Network for

the case of unknown-route trips, and Figure B.2 displays the average estimate errors

on Sioux Falls Network for the case of log-normal distribution.

For the case of log-normal distributed link travel times with unknown-route trips,

we do some extra tests using the Gaussian distribution as an approximation, such

that the Gaussian mixture model and EM algorithm can be applied as introduced

in the framework of Method I. The resulting parameter estimates are compared

with the ground true of mean and standard deviation for each link on Sioux Falls

network. Figure B.3 displays the estimate errors using this approximation, with

different numbers of single-link observations in the test sample. It is shown that when

the percentage of total single-link observations accounts for about 50%, the estimate

error under this approximation appears acceptable, with the resulting average error
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Figure B.2: Estimate errors with various sample sizes of single-link observations on
Sioux Falls network for the case of log-normal distribution.

of mean estimates less than 5% and the average error of standard deviation estimates

less than 20%.
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Figure B.3: Estimate errors with various sample sizes of single-link observations on
Sioux Falls network using Gaussian approximation.

122


