
ON FORK-JOIN QUEUES AND MAXIMUM RATIO CLIQUES

A Dissertation

by

SAMYUKTA SETHURAMAN

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Natarajan Gautam
Co-Chair of Committee, Sergiy Butenko
Committee Members, Kiavash Kianfar

Sivakumar Rathinam
Head of Department, César Malavé

December 2015

Major Subject: Industrial Engineering

Copyright 2015 Samyukta Sethuraman



ABSTRACT

This dissertation consists of two parts. The first part delves into the problem

of response time estimation in fork-join queueing networks. These systems have

been seen in literature for more than thirty years. The estimation of the mean

response time in these systems has been found to be notoriously hard for most

forms of these queueing systems. In this work, simple expressions for the mean

response time are proposed as conjectures. Extensive experiments demonstrate the

remarkable accuracy of these conjectures. Algorithms for the estimation of response

time using these conjectures are proposed. For many of the networks studied in

this dissertation, no approximations are known in literature for estimation of their

response time. Therefore, the contribution of this dissertation in this direction marks

significant progress in the analysis of fork-join queues.

The second part of this dissertation introduces a fractional version of the classical

maximum weight clique problem, the maximum ratio clique problem, which is to find

a maximal clique that has the largest ratio of benefit and cost weights associated with

the cliques vertices. This problem is formulated to model networks in which the

vertices have a benefit as well as a cost associated with them. The maximum ratio

clique problem finds applications in a wide range of areas including social networks,

stock market graphs and wind farm location. NP-completeness of the decision version

of the problem is established, and three solution methods are proposed. The results

of numerical experiments with standard graph instances, as well as with real-life

instances arising in finance and energy systems, are reported.

ii



DEDICATION

To Amma and Appa

iii



ACKNOWLEDGEMENTS

I would like to express my profound gratitude to my advisor, Dr. Natarajan

Gautam. He has been extremely patient and supportive throughout the course of

my PhD. His genuine happiness in my achievements, and encouragement when my

spirits were low kept me going through these years. I would also like to thank

my co-advisor, Dr. Sergiy Butenko. The energy and high spirits with which he

approaches any task at hand is something that I wish to incorporate in my life as

well. I consider myself very fortunate to have two advisors who have always put my

interests in the forefront while making any decision. I would also like to thank my

committee members, Dr. Kiavash Kianfar and Dr. Sivakumar Rathinam, for their

valuable inputs to my research and dissertation writing.

I would like to express my gratitude towards my undergraduate advisor, Dr.

Prathap Haridoss. It was his encouragement and belief in my abilities that motivated

me to apply for a PhD program in an area that was different from my undergraduate

major. Sincere thanks are also due to Dr. G. Srinivasan who introduced the field

of operations research to me. The courses taught by him planted the first seeds of

interest in this field that continues to fascinate me up till now.

The faculty and staff of my department have always been there to help me when-

ever I needed anything. I thoroughly enjoyed the courses taught by many faculty

members and I am grateful for having had the opportunity to attend them. I would

like to thank Ms. Judy Meeks and Ms. Erin Roady for patiently clarifying and work-

ing with me on each and every procedure required for the fulfillment of my degree.

Ms. Judy Meeks was also a trusted confidant to me. I could comfortably approach

her with matters that I was unsure whom to talk to about. I would also like to

iv



thank the department for providing me with a teaching assistantship and the Energy

Institute for the MP2 Energy Fellowship.

I have made many valuable friends during my PhD life and I am grateful to each

and every one of them for making this time so enjoyable for me. I would like to thank

Kaarthik Sundar in particular, for patiently helping me with LaTeX and C++ when

I was getting started on them. The TAMU Student Chapter of INFORMS provided

the means to meet many of these friends and I am happy to have been a member

of this organization. I am also grateful to the amazing friends that I made by being

a member of the Rangeela dance group. The numerous evenings that we spent in

practice sessions count among some of my happiest moments in College Station and

will remain in my memory for a very long time to come.

Finally, I would like to thank my parents and sisters. My parents have made

numerous sacrifices for me and my education and I can always count on my sisters

to cheer me on in any task that I take up. This dissertation would not have been

possible without their support.

v



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iii

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vi

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . viii

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ix

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Response Time in Fork-Join Queues . . . . . . . . . . . . . . . . . . . 2

1.2.1 Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . 4
1.3 The Maximum Ratio Clique Problem . . . . . . . . . . . . . . . . . . 8
1.4 Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. SYMMETRIC n-DIMENSIONAL FORK-JOIN QUEUES . . . . . . . . . 10

2.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
2.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.3 Response Time Estimation . . . . . . . . . . . . . . . . . . . . . . . . 15

2.3.1 Exponential Service Times . . . . . . . . . . . . . . . . . . . . 18
2.4 Response Time Computation Algorithm for Non-Exponential Service

Times . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
2.4.1 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 21

2.5 Results and Comparisons . . . . . . . . . . . . . . . . . . . . . . . . . 23
2.5.1 Comparison with Simulations . . . . . . . . . . . . . . . . . . 33
2.5.2 Approximation by Nelson and Tantawi . . . . . . . . . . . . . 34
2.5.3 Approximation by Ko and Serfozo . . . . . . . . . . . . . . . . 37
2.5.4 Approximation by Thomasian and Tantawi . . . . . . . . . . . 38

2.6 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39

3. MORE ON FORK-JOIN QUEUEING NETWORKS . . . . . . . . . . . . 41

vi



3.1 Literature Review . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
3.2 Symmetric Tandem Fork-Join Queueing Network . . . . . . . . . . . 43

3.2.1 Response Time Estimation . . . . . . . . . . . . . . . . . . . . 45
3.2.2 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . 49
3.2.3 Experimental Results . . . . . . . . . . . . . . . . . . . . . . . 49

3.3 Heterogeneous Fork-Join Queueing Systems . . . . . . . . . . . . . . 53
3.3.1 Problem Description . . . . . . . . . . . . . . . . . . . . . . . 53
3.3.2 Response Time Estimation . . . . . . . . . . . . . . . . . . . . 53
3.3.3 Numerical Example and Results . . . . . . . . . . . . . . . . . 55

3.4 (n,k) Fork-Join Queues . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.4.1 Comparison with Simulations . . . . . . . . . . . . . . . . . . 60
3.4.2 Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

4. The Maximum Ratio Clique Problem . . . . . . . . . . . . . . . . . . . . . 63

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63
4.2 Computational Complexity . . . . . . . . . . . . . . . . . . . . . . . . 67
4.3 Integer Programming Formulation . . . . . . . . . . . . . . . . . . . . 71
4.4 Solution Methods . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

4.4.1 Linearization . . . . . . . . . . . . . . . . . . . . . . . . . . . 72
4.4.2 Binary Search . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.4.3 Newton’s Method . . . . . . . . . . . . . . . . . . . . . . . . . 76

4.5 Results of Computational Experiments . . . . . . . . . . . . . . . . . 77
4.5.1 Description of Test Instances . . . . . . . . . . . . . . . . . . . 78
4.5.2 Comparison of Results . . . . . . . . . . . . . . . . . . . . . . 80

4.6 Conclusion . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

5. CONCLUSIONS AND FUTURE WORK . . . . . . . . . . . . . . . . . . . 95

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99

vii



LIST OF FIGURES

FIGURE Page

1 Fork-Join Queueing Network . . . . . . . . . . . . . . . . . . . . . . . 3

2 Symmetric n-Dimensional Fork-Join Queueing Network . . . . . . . . 13

3 Plot of simulated average response time vs. ρ
1−ρ for n = 5, µ = 1 and

exponential service time distribution . . . . . . . . . . . . . . . . . . 18

4 Plot of parameter mn vs. log(n) . . . . . . . . . . . . . . . . . . . . . 19

5 Plot of simulated and predicted average response times vs. ρ
1−ρ for

n = 5, µ = 1 and exponential service time distribution . . . . . . . . . 21

6 Plot of simulated and predicted average response times vs. ρ
1−ρ for

n = 5, µ = 1 and Erlang-2 service time distribution . . . . . . . . . . 22

7 Symmetric Tandem Fork-Join Queueing Network . . . . . . . . . . . 44

8 Plot of simulated average response time vs. ρ
1−ρ for n = 5, l = 5 and

µ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 48

9 Plot of simulated and predicted average response times vs. ρ
1−ρ for

n = 5, l = 5 and µ = 1 . . . . . . . . . . . . . . . . . . . . . . . . . . 49

10 Plot of E[T
(1)
(5,3)] vs. E[T(5,3)] . . . . . . . . . . . . . . . . . . . . . . . 60

viii



LIST OF TABLES

TABLE Page

1 List of Notations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15

2 Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for
n = 3 and exponential service time distribution . . . . . . . . . . . . 24

3 Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for
n = 5 and exponential service time distribution . . . . . . . . . . . . 24

4 Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for
n = 10 and exponential service time distribution . . . . . . . . . . . . 25

5 Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for
n = 20 and exponential service time distribution . . . . . . . . . . . . 25

6 Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for
n = 30 and exponential service time distribution . . . . . . . . . . . . 26

7 Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for
n = 40 and exponential service time distribution . . . . . . . . . . . . 26

8 Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for
n = 50 and exponential service time distribution . . . . . . . . . . . . 27

9 Comparison with simulation results and approximations of Thomasian
and Tantawi [47] and Varma and Makowski [61] for n = 3 and Erlang-2
service time distribution . . . . . . . . . . . . . . . . . . . . . . . . . 27

10 Comparison with simulation results and approximations of Thomasian
and Tantawi [47] and Varma and Makowski [61] for n = 5 and Erlang-2
service time distribution . . . . . . . . . . . . . . . . . . . . . . . . . 28

ix



11 Comparison with simulation results and approximations of Thomasian
and Tantawi [47] and Varma and Makowski [61] for n = 10 and Erlang-
2 service time distribution . . . . . . . . . . . . . . . . . . . . . . . . 28

12 Comparison with simulation results and approximations of Thomasian
and Tantawi [47] and Varma and Makowski [61] for n = 15 and Erlang-
2 service time distribution . . . . . . . . . . . . . . . . . . . . . . . . 29

13 Comparison with simulation results and approximations of Thomasian
and Tantawi [47] and Varma and Makowski [61] for n = 20 and Erlang-
2 service time distribution . . . . . . . . . . . . . . . . . . . . . . . . 29

14 Comparison with simulation results and approximations of Thomasian
and Tantawi [47] and Varma and Makowski [61] for n = 30 and Erlang-
2 service time distribution . . . . . . . . . . . . . . . . . . . . . . . . 30

15 Comparison with simulation results and approximation of Varma and
Makowski [61] for n = 2 and Pareto service time distribution . . . . . 30

16 Comparison with simulation results and approximation of Varma and
Makowski [61] for n = 3 and Pareto service time distribution . . . . . 31

17 Comparison with simulation results and approximation of Varma and
Makowski [61] for n = 5 and Pareto service time distribution . . . . . 31

18 Comparison with simulation results and approximation of Varma and
Makowski [61] for n = 7 and Pareto service time distribution . . . . . 31

19 Comparison with simulation results and approximation of Varma and
Makowski [61] for n = 10 and Pareto service time distribution . . . . 32

21 Comparison with simulation results for n = 2, l = 2 and n = 2, l = 3 51

22 Comparison with simulation results for n = 2, l = 4 and n = 2, l = 5 51

23 Comparison with simulation results for n = 5, l = 2 and n = 5, l = 3 51

24 Comparison with simulation results for n = 5, l = 4 and n = 5, l = 5 52

25 Comparison with simulation results for n = 10, l = 2 and n = 10, l = 3 52

26 Comparison with simulation results for n = 10, l = 4 and n = 10, l = 5 52

27 Comparison with simulation results for n = 2, µ1 = 1.0 and µ2 = 1.5 . 58

x



28 Comparison with simulation results for n = 3, µ1 = 0.5, µ2 = 1.0 and
µ3 = 1.5 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 58

29 Description of test instances used, optimal objective function values,
and the corresponding maximal clique sizes. . . . . . . . . . . . . . . 83

30 Comparison of the results of experiments using the proposed approaches
on the graph instances described in Table 29. . . . . . . . . . . . . . . 88

xi



1. INTRODUCTION

1.1 Overview

Mankind is constantly on the look out for methods to achieve more benefit while

utilizing lesser resources. Accomplishment of this ideology however, can happen in

a very wide variety of ways and forms the basis of the entire discipline of operations

research. Many interesting research problems have been studied to this end since

the late nineteenth century. Now, in the twenty-first century, due to the rapid pace

of advent of new technology, there is more scope for research on improvement in

system efficiency than ever before with new problems arising every day. Solutions to

these problems provide guidelines for making decisions on input parameters that are

within human control and which will result in an efficient system.

To be able to construct a processing system which generates the maximum pos-

sible benefit, it is important to know how much benefit is gained given the resource

availability in the form of input parameters and how this benefit changes with change

in the parameters. However, this basic information can prove to be extremely hard to

obtain. The processing systems analyzed in the first part of this dissertation fall into

this category. In many systems obtaining this information is enough to determine

the input parameters that will result in the most efficient system possible. How-

ever, there exist systems in which the relationship between the benefit gained and

the input parameters is a function that turns out to be so complex that it becomes

extremely hard to see which input parameters are the best for a given scenario. The

system analyzed in the later part of this dissertation falls into the second category.

Our contribution lies in giving a hitherto unavailable set of guidelines in the form

of algorithms to enable the controlling authority to make informed decisions. We

1



now describe these two kinds of systems in detail. The next section serves as an

introduction to Chapters 2 and 3.

1.2 Response Time in Fork-Join Queues

Time is one of the most precious resources available to mankind. Parallel process-

ing of tasks is a method that humans have come up with to make efficient utilization

of time. To gain the most out of parallel processing systems, it is important to know

how their performance in general and time reduction in particular would change

with change in parameters of the system. However, this relationship between in-

put parameters and processing time is not necessarily straightforward. This is true

especially if there are waiting times and queues being formed in the system.

Day-to-day situations faced by people have been successfully modeled as queueing

systems since the early 20th century [22]. In the rich queueing literature that has de-

veloped since then, there are a very wide range of problems that have been analyzed.

Some systems like the M/M/s queueing system have been shown to be simple enough

to have a closed form solution. However, even for systems that look and sound rel-

atively simple, like the G/G/1 queue, it has not been possible to derive closed form

solutions yet. For such systems, approximations under general and/or heavy traffic

conditions, bounds and other properties have been studied by researchers over the

years.

The phenomenon of queueing is observed in many parallel processing systems.

An arriving job to such a system is partitioned into tasks being processed in parallel,

some or all (depending on the system definition) of which need to be completed to

finish processing the job. Jobs arrive into this system at random time intervals. If

a particular task belonging to an arriving job finds that task of another job being

processed, it will wait in queue for its turn to be processed. Each parallel processor

2



processes tasks one by one and does not coordinate with other processors. Therefore,

it is possible that one task of a job is finished but another task is not, even though

all the processors operate on a first come first served service discipline. When this

happens, the job waits for the last of its tasks to get done, to exit the system. This

queueing system is called the fork-join queueing system. Fig. 1 shows a fork-join

queueing network with n tasks. Arriving jobs are partitioned instantaneously at the

fork (F ) station and each task joins its own queue. Once the processing of a task

is complete, it waits in a buffer for other tasks belonging to the same job to be

completed before joining to complete the job at the join (J) station. The typical

quantity of interest in this scenario is the average time spent in the system by a

job, known as the mean response time of the system. This quantity is known to be

notoriously hard to find. In this research we provide some new insights that will help

us to derive a numerical approach to estimate the mean response time of the system.

F

J

1 2 n

Figure 1: Fork-Join Queueing Network

3



1.2.1 Applications

Fork-join queueing networks have a very diverse set of applications ranging from

manufacturing systems to health care and wireless sensor networks. We enumerate

some of these here.

1. Network Coding: The interest in fork-join queueing systems first arose when

parallel processing computer systems became popular [38]. Data in computer

systems is stored on multiple disks (disk arrays) and is accessed in parallel to

improve efficiency. The same data might be replicated onto multiple disks to

improve the reliability of the system [46], [13], [45], [28]. When a request for a

file is made to this system, this corresponds to arrivals to the queueing system.

The request requires data from multiple disks in the array and each disk would

process requests in the order in which they arrive. The response time of the

system is the time needed to satisfy the request made. This parallel accessing of

data from multiple disks leads to a fork-join queue. This scenario is also seen in

RAID5 disk arrays when one of the disks fail. In the coding of disk arrays, fork-

join queues are also encountered at times when one of the disks fail in which

case, the data on the disk is also encrypted in a distributed fashion among

other disks in the array and response from all the disks is needed to complete

the request [56]. This distributed storage is made more effective using network

coding which again leads to fork-join queueing systems in a similar manner

[32].

2. Manufacturing Systems: One of the most well-known examples of a fork-

join queueing network is that of parallel assembly lines in manufacturing sys-

tems. We present a simple example from [49]. Consider a shop that manufac-

tures coats. An arrival of a job into the system would correspond to an order

4



for a coat given by a customer. The job of stitching this coat might consist of

tasks that can be processed in parallel. For example, if the shop is adequately

staffed, the sleeves, fronts, backs, collars, pockets, lining etc. could be prepared

at the same time. Once all the above are ready the coat is ready for the final

assembly which corresponds to the join process. After the final assembly, the

coat can be delivered to the customer which corresponds to the job leaving the

system. If there are multiple orders pending, the other tasks of other orders

would wait in queue until that task of all the previous orders are processed.

This is a simple example of a fork-join queueing system in a manufacturing

facility. More complex systems involving multiple sub-tasks within one task

might be necessary in more sophisticated processes like car assembly. If the

product requires the same server to process multiple tasks, this results in a

multi-class fork-join queueing system [29].

3. Health Care Systems: In the area of healthcare, applications of fork join

queues exist in the process of a physician arriving at a diagnosis. A patient

entering a hospital for consultation corresponds to arrivals to the system. The

physician might need to prescribe a series of tests which could be performed in

parallel. The processing of the test sample would probably be conducted on a

first come first served basis. Each of the tests corresponds to a parallel task.

Once all the test results are available the physician arrives at a diagnosis which

corresponds to the job exiting the system.

In a different setting, mental processes have been modeled as fork-join

queueing networks by Liu [42]. Stimulants that require a response from the

human body are modeled as customers to the queueing system and the au-

thor gives instances where the brain processes different issues associated with

5



the stimulant in parallel. The response time is the time between when the

stimulant is encountered and when the human body responds to it.

4. Global Data Collection: Existing theory on fork-join queues has been used

in global data collection and analysis by Wu et al [63]. This type of data

analysis is important in the context of global supply chains. In this case,

the online algorithm requests data from a data generating center such as a

raw material supplier and transfers that to a center that combines this data

with data from other centers to perform data analysis. The result of this

analysis is then sent to the next processing center. The request for data from

a data generating center corresponds to arrivals to the system. The collection

of the requested data results in a finite service time and any pending requests

wait in a virtual queue for their turn to be processed. Wu et al [63] use

existing approximations for fork-join queues in the literature to estimate the

response time of this system and make appropriate decisions on the design of

the algorithm for data analysis.

5. Wireless Sensor Networks: Consider a wireless sensor network with spa-

tially distributed sensors. A real life example where fork join queues are ob-

served in wireless sensor networks is in cities such as Singapore. Sensors capable

of sensing environmental factors such as temperature, humidity, air pollution

and noise level are installed on lamp posts in the city. The controlling author-

ity is interested in only a function of the data being collected, for example the

maximum temperature. All the sensors sense at exactly the same instants of

time. The time interval between consecutive sensing instants of time is random

with a known distribution. This sensing of data corresponds to arrivals to the

system. Once a set of data has been sensed, each sensor needs to transmit

6



it to the controlling authority. The sensors can transmit only one data point

at a time. It takes a random amount of time with a known distribution to

complete the transmission of one data point from a sensor to the end user.

This corresponds to the service time of the system. If a set of data are sensed

while a transmission is taking place at a sensor, the new data point waits in

queue in a buffer at the sensor for its turn to be transmitted. For each set of

data that has been sensed at the same time, the controlling authority waits to

receive data points from each sensor before computing the function of the data.

Computing the function takes a negligible amount of time. Once the function

of a set of data that has been sensed simultaneously has been computed, the

information is stored and this corresponds to departure of the entity from the

system.

Fork join queues arise in wireless sensor networks in many other situations

[7]. Wireless sensors can be used to monitor water and electricity utilization in

smart cities. Similar to the previous case, fork-join queues are encountered in

the analysis of this utilization. In environmental applications, wireless sensors

are installed at places that are hard to reach and can be used for monitoring

of wildlife habitats and forest fires. For monitoring of forest fires for example,

knowing the maximum temperature among temperatures measured by a set

of sensors in an area might be sufficient. Wireless sensors are also employed

in security applications for surveillance at airports and borders, where again

fork-join queues are encountered.

The analysis of the time required by fork-join queueing systems to complete

processing a task forms the first part of this dissertation. The second part considers

a problem in which the benefit attained is easily expressed as a function of the input

7



parameters. However, the function is so complex that it becomes extremely hard to

find the set of parameters that will result in the most efficient performance. In the

next section we give an overview of this system. A detailed introduction and analysis

is presented in Chapter 4.

1.3 The Maximum Ratio Clique Problem

Natural assets and money are another set of resources apart from time, which

become highly important due to their limited availability in most situations. Any

productive system requires the investment of these resources in some form to obtain

benefit in some other form. The ratio of the benefit to the investment determines the

overall value gained per unit resource and is an important measure of the performance

of the system. To enable the controlling authority to make informed decisions, this

ratio is expressed in terms of the input parameters to the system. However, once this

expression is obtained, if the number of input parameters is high, it can become very

difficult to determine the combination of parameters that will result in the highest

benefit to cost ratio.

Combinatorial optimization is an area of study dealing with choosing the best

possible set of parameters subject to their feasibility. Many classical problems in this

field have been studied over the years. However, use of combinatorial optimization

to maximize a function that is in the form of a ratio of functions of input parameters

is a relatively new field of study. Therefore, it is rich with prospects of formulating

and solving new problems. We formulate one such problem, known as the Maximum

Ratio Clique Problem.

The input parameters in the expression for the benefit to cost ratio represent the

utilization of available resources. Often, these resources are such that the use of one

prohibits the use of another. The solution to the maximum ratio clique problem

8



finds a set of compatible resources that maximizes the benefit to cost ratio of the

system under consideration. Similar to fork-join queues, this problem also has a very

wide range of applications including but not limited to social network analysis, stock

markets and establishment of wind farms.

In the second part of this dissertation, we formulate and conduct a thorough

analysis of the maximum ratio clique problem.

1.4 Organization

The rest of this dissertation is organized as follows: In Chapter 2, we propose a

new and highly efficient technique to estimate the response time in the basic form of

fork-join queues. In Chapter 3, we extend this technique to more complex forms of

fork-join queues for which there are no response time estimation methods available

in literature to the best of our knowledge. Chapter 4 deals with formulation and

solution methods of the maximum ratio clique problem. Finally, we conclude this

dissertation in Chapter 5.

9



2. SYMMETRIC n-DIMENSIONAL FORK-JOIN QUEUES

In this chapter we consider the basic and most well-studied form of fork-join

queues, the symmetric n-dimensional fork-join queueing system. Arriving jobs are

partitioned into n stochastically identical tasks each of which need to be completed

before the job can exit the system. The arrivals are according to a Poisson process and

service times at each task are independent, identical and follow a known distribution.

We present a highly efficient approximation technique to estimate the mean response

time of this system. We now provide a review of the advances made in literature

with respect to understanding these queueing systems.

2.1 Literature Review

Work on fork-join queues started appearing in literature approximately 30 years

ago. Flatto and Hahn [24] considered a system with two service stations in parallel

and exponential inter-arrival and exponential service times. They gave a parametric

expression for the bi-variate distribution of the number in the second task queue

when there are zero entities in the first task queue. In the sequel to this work,

Flatto [23] analyzed the asymptotic interdependence between the number in the two

queues as these numbers tend towards infinity. Flatto and Hahn [23]’s parametric

expression was used by Nelson and Tantawi [47] to find the mean sojourn time in a

system with two parallel tasks and exponential inter-arrival and service times. They

also developed an approximation for the case of more than two parallel tasks using

parameters found using simulations. Baccelli [4] derived the stability condition for

the system with general inter-arrival and service times and obtained simple upper

and lower bounds based on independence of the n queueing systems in the case of de-

terministic and independent arrivals respectively. Continuing this work, Baccelli [5]

10



used properties of associated random variables and stochastic orderings using given

sub-sigma algebras to obtain bounds for the symmetric fork-join queueing system

with general inter-arrival and service times. They also analyzed the asymptotics of

the moments of the system response time as the number of parallel tasks grows to be

very large. The performance of these bounds are not investigated in either of [6] or

[5]. Kim and Agarwala [35] gave an approximation for a fork-join queueing system

with only two tasks and general inter-arrival and service times. They provided a

general form of the virtual waiting time in terms of unknown coefficients and these

coefficients can be calculated recursively for each arriving entity. In steady state,

these coefficients are approximated. For higher number of tasks, this representation

becomes tedious and the number of coefficients might blow out of proportion. Varma

and Makowski [61] considered systems with general inter-arrival and service times.

They provided a conjecture for when the system is in a state of heavy traffic. Using

this and light traffic approximations, they provided an interpolation approximation

for any traffic intensity. Nelson et al [48] considered a different form of fork-join

queue in which the number of tasks of each job is a discrete random variable. The

tasks wait in a single queue and are served by the servers according to a FCFS service

discipline. Tasks belonging to a the same job are served in a random order. They

provided an iterative solution for this case. Towsley et al [58] extended this work

to the case where the servers follow a processor sharing service discipline. They de-

rived bounds and computed approximations for this case and compared the processor

sharing service discipline against the FCFS service discipline. Their findings showed

that systems operating under FCFS perform better in terms of response times. Due

to lack of efficient approximations for these systems, Dai [16] and Chen et al [14]

devised efficient simulation techniques for these systems. A review of the advances

made in the response time estimation of fork-join queues until the year 1994 can be

11



found in the work of Boxma et al [11].

In spite of the high volume of research work in the area of fork-join queues, the

hardness of the problem is evidenced by the fact that to the best of our knowledge,

there is still no exact solution method for even the system with exponential inter-

arrival and service times when the number of parallel tasks is greater than two. This

is further reinforced in the Acknowledgement section of the work by Ko and Serfozo

[36]. The only way to estimate the response time in fork-join queueing systems is

simulations which require a huge amount of time and computing resources. In the

current work, we present a numerical method to estimate the sojourn time in a fork

join queueing system with exponential inter-arrival and general service times with no

constraint on the number of tasks. To the best of our knowledge, no such technique

exists in literature. Our results show that our method outperforms over all earlier

methods significantly and in multiple respects.

We present a formal definition of the problem in the next section.

2.2 Problem Description

In the queueing system under consideration, jobs arrive according to a Poisson

process with rate λ. On arrival, each job instantaneously splits into n tasks. There

are n single server queueing stations with infinite buffer space and operating under

FIFO service discipline. Task indexed by i, 1 ≤ i ≤ n is routed to the queue

at queueing station i. We consider a symmetric (i.e. all servers and tasks are

stochastically identical) fork-join queueing network. The service times for the tasks

are independent and identically distributed across jobs and across constituting tasks

of the same job. These service times are R+ valued and follow a general distribution

with cumulative distribution function G(x) that has a finite mean and variance. We

denote the mean of G(x) by 1/µ, i.e. µ is the average service rate. The traffic

12



intensity at each queueing station is denoted by ρ = λ
µ
. Each of the n task queueing

stations has a join buffer. After completion of a task, it is routed to it’s join buffer

where the task waits for the rest of the tasks belonging to it’s parent job to get

completed. Joining is assumed to occur instantaneously. Therefore, the departure

time of the last task of a job to finish service coincides with the departure time of

the job from the system. This network model is shown in Figure 2.

1 2

F

J

n

λ

µ µ µ

Tn

Figure 2: Symmetric n-Dimensional Fork-Join Queueing Network

Baccelli and Makowski [4] derived the stability condition for this system. This

is same as the stability condition of a G/G/1 queue i.e. the symmetric fork-join

queueing system is stable iff λ < µ which is same as ρ < 1.

Using index j, j ≥ 1 for the arriving jobs in order of their arrival, we denote the

13



sequence of inter-arrival times of the jobs by {τj, j = 1, 2, . . .} and the sequence of

service times at task i, 1 ≤ i ≤ n by {σ(i)
j , j = 1, 2, . . .}. We let W

(i)
0 , defined by

the initial state of the system, denote the initial workload in the queueing station of

task i. We denote the workloads observed by subsequent customers by W
(i)
j . These

are defined by the Lindley recursions as follows:

W
(i)
j =

[
W

(i)
j−1 + σ

(i)
j−1 − τj

]+
, i = 1, . . . , n; j = 1, 2, . . .

We denote the time interval between the arrival of job j and its completion of

task i by T
(i)
j which is defined below:

T
(i)
j = W

(i)
j + σ

(i)
j , i = 1, . . . , n; j = 1, 2, . . .

The response time of job j, denoted by Tj,n is defined as:

Tj,n = max
i=1,...,n

T
(i)
j j = 1, 2, . . . (1)

We denote the response time of any job in steady state by Tn. When ρ < 1, the

steady state distribution of Tn exists, has a finite mean represented by E[Tn], and the

distribution is independent of the initial state of the system. This E[Tn] is the system

performance measure that is of interest to us. It is to be noted that the assumption of

instantaneous join operation of the tasks does not impact the approximation derived

in this work, and can be removed by adding the average joining time to the estimated

value of E[Tn].

From Equation (1) it is seen that Tn is the maximum of n identically distributed

random variables. Each of these n random variables is the response time of an

M/G/1 queueing system whose steady state distribution is known. However, there

14



are no known methods for the evaluation of E[Tn] using Equation (1) because these

n random variables are not independent. The synchronized arrivals to all the n task

queues introduce a correlation between the queue lengths. This correlation has been

found to be extremely hard to quantify thus proving a closed form expression for

E[Tn] elusive for many researchers. In the next section we present an estimation

technique for E[Tn]. In the rest of this dissertation, for brevity E[Tn] is denoted by

T n. Table 1 lists the notations used.

Notation Description
λ Mean arrival rate
µ Mean service rate for each task
G(x) CDF of service times
ρ Traffic intensity (= λ

µ
)

Tn Random variable representing steady state response time
T n Expected steady state response time

Table 1: List of Notations

2.3 Response Time Estimation

We present an approximation technique whose performance is excellent in terms

of the error percentage observed with respect to the simulated value of the expected

response time. The conjecture which forms the basis of this technique is the following:

Conjecture 1. The mean response time of the symmetric n-dimensional fork-join

queueing network is linear with respect to ρ
1−ρ , i.e. the slope and intercept are inde-

pendent of the traffic intensity, ρ.

T n =
ρmn

µ(1− ρ)
+Mn (2)

15



where, mn is a parameter independent of ρ and Mn =
∫∞
0
nx{G(x)}n−1dG(x).

The constant term in Equation (2) is the maximum of n i.i.d. random variables

with CDF G(x). This is explained by the following reasoning: as ρ approaches zero

from the right, an arriving job sees an empty system with probability approaching

approaching one i.e. an arriving entity will find an empty system almost surely.

Therefore, with probability approaching one, the response time of any job arriving

into the system is the maximum of the service times at the individual tasks and since

these times are independent, we obtain Mn in Equation (2).

We do not have an analytical expression for the parameter mn currently and it

needs to be estimated using simulations.

Remark 1. The result in Conjecture 1 is satisfied by systems with general service

times when n = 1 and exponential service times when n = 2, for which the analytical

expressions for average response time are available. When n = 1, the system is an

M/G/1 queue. The expected response time in steady state is (1+C2
v)ρ

2µ(1−ρ) + 1
µ

. In this

case, the parameter m1 = 1+C2
v

2
, where C2

v is the squared coefficient of variation of

the service time distribution G(x). When n = 2 and service times are exponentially

distributed, Nelson and Tantawi [47] show that the expected response time in steady

state is 12−ρ
8µ(1−ρ) which can be written as 11ρ

8µ(1−ρ) + 3
2µ

. In this case m2 = 11
8

and M2 = 3
2
.

Intuition behind Conjecture 1. The expected response time when the number of

tasks is n can be written in the following form:

E[Tn] = E[Tn−1] + E[T (n) − Tn−1|T (n) > Tn−1]P (T (n) > Tn−1) (3)

Here we revert to the traditional representation of expectations for clarity. T (n)

denotes the steady state response time random variable of the nth task. P (T (n) >

16



Tn−1) is the probability that the nth task is the last one to get completed among the

n tasks. Due to the symmetry of the system, we have the following relationship:

P (T (n) > Tn−1) =
1

n
(4)

Using an induction argument, since Conjecture 1 holds when the number of tasks

n = 1, we assume that Conjecture 1 holds when the number of tasks is n − 1 and

obtain the following relationship:

E[Tn] =
ρmn−1

µ(1− ρ)
+Mn−1 +

E[T (n) − Tn−1|T (n) > Tn−1]

n
(5)

E[T (n) − Tn−1|T (n) > Tn−1] is the expected excess time needed to complete the

nth task given that it is the last one to get completed. The expected workloads of

each of the individual M/G/1 queues are known to be linear with respect to ρ
1−ρ .

As ρ increases, ρ
1−ρ increases and the variance of the individual workloads increases.

Therefore, it is expected that the excess time needed to complete the last task also

increases with increase in ρ
1−ρ . When these quantities were plotted, they displayed a

very convincing linear relationship.

To demonstrate the performance of Conjecture 1, we plot the average response

time obtained using simulations against ρ
1−ρ for the case of n = 5, µ = 1 and

exponential service time distribution. The linear relationship is observed in Figure

3.

When the task service times are exponentially distributed, the parameter mn

in Equation (2) displays some special properties which are explained in the next

subsection.

17



0 2 4 6 8

5

10

15

20

ρ
1−ρ

M
ea

n
R

es
p

on
se

T
im

e

Figure 3: Plot of simulated average response time vs. ρ
1−ρ for n = 5, µ = 1 and

exponential service time distribution

2.3.1 Exponential Service Times

When the service times are exponential, we have G(x) = 1 − e−µx. In this case,

Mn = Hn
µ

, where, Hn = 1 + 1
2

+ . . . + 1
n
, is the harmonic sum. Furthermore, the

parameter mn is observed to have two interesting properties:

• mn is independent of the service rate µ

• mn is directly proportional to the natural logarithm of n. This linear relation-

ship is demonstrated in Fig. 4.

As mentioned in Remark 1, the values of mn for n = 1 and n = 2 are known.

Using these values and the observed properties, we arrive at the following conjecture:

Conjecture 2. The mean response time of the symmetric n-dimensional symmetric

fork-join queueing network with exponential inter-arrival and service times is given

by the following relationship:

18



0 0.5 1 1.5 2 2.5

1

1.5

2

log(n)

m
n

Figure 4: Plot of parameter mn vs. log(n)

T n =
ρ [0.541 log(n) + 1]

µ(1− ρ)
+
Hn

µ
(6)

Intuition behind Conjecture 2. A lower bound for T n is given by the expectation

of the maximum of n i.i.d. task service time random variables i.e. Hn
µ

. Nelson and

Tantawi show that an upper bound is given by the expectation of the maximum

of n i.i.d. M/M/1 response time random variables. Since the response time of an

M/M/1 queueing system is also an exponential random variable with mean 1
µ(1−ρ) ,

the upper bound is given by Hn
µ(1−ρ) . Considering that both the lower bound (which

is also the constant term in Equation 2) and the upper bound increase linearly with

Hn, the first impulse is to check if mn also increases linearly with respect to Hn.

However, experiments show that this does not hold. Nevertheless, since Hn increases

logarithmically with n, therefore, the values of mn obtained using simulations were

plotted against log(n) and the linear fit demonstrated in Figure 4 was observed.

19



Even though we have been unable to prove Conjectures 1 and 2, we have con-

ducted extensive experiments to establish their utility as a tool for approximating

the expected response time of the symmetric fork-join queueing system. In the next

section, an algorithm constructed using Conjecture 1 for the computation of the

expected response time is presented.

2.4 Response Time Computation Algorithm for Non-Exponential Service Times

Given the number of parallel tasks n, the mean service rate µ and the service time

CDF G(x), T n only depends on the traffic intensity ρ. For clarity, we write this as

T n(ρ). When the task service times are exponentially distributed, the estimate for

the mean response time is obtained directly from Equation 6. When, the task service

times are not exponential, to compute the response time for any traffic intensity ρ

using Equation (2), the value of mn needs to be estimated. Towards this end, the

system is simulated to estimate the mean response time for one value of ρ, say

ρ = 0.5. We denote this estimate obtained using simulation by T̂
sim

5 (0.5). Using this

estimate, Equation (2) is now solved to obtain an estimate of mn represented by m̂n.

Since according to Conjecture 1, mn is independent of ρ, the estimate m̂n can now

be used to estimate the mean response time for any other value of ρ in the interval

[0, 1). Therefore, by simulating the system for one value of the traffic intensity ρ,

it has become possible to obtain an estimate of the mean response time for infinitely

many values of ρ. This technique is explained formally in Algorithm 1. We denote

the estimate of T n obtained using Equation 6 for exponential task service times or

by the method outlined above for general service times by T̂ n.

We now demonstrate the use of Conjecture 2 and Algorithm 1 to estimate the

mean response time using numerical examples.

20



Algorithm 1 Computation of T̂ n
Input: Number of parallel tasks, n; Service rate, µ; Service time distribution G(.)
Output: Expression for expected sojourn time for any traffic intensity, ρ ∈ [0, 1)

1: Simulate the system for ρ = 0.5. Estimate expected sojourn time T̂
sim

5 (0.5).
2: Compute Mn =

∫∞
0
nx{G(x)}n−1dG(x)

3: Solve linear equation for m̂n: T̂
sim

5 (0.5) = 0.5m̂n
µ(1−0.5) +Mn

4: return T̂ n(ρ) = ρm̂n
µ(1−ρ) +Mn

0 2 4 6 8

5

10

15

20

ρ
1−ρ

M
ea

n
R

es
p

on
se

T
im

e

T̂
sim

5

T̂ 5

Figure 5: Plot of simulated and predicted average response times vs. ρ
1−ρ for n = 5,

µ = 1 and exponential service time distribution

2.4.1 Numerical Example

Consider a fork-join queueing system with n = 5, µ = 1 and exponential service

time distribution. Using Conjecture 2, we obtain the following approximation: T̂ 5 =

ρ [0.541 log(5)+1]
1(1−ρ) + 2.283

1
. We plot this approximation and compare it against the values

obtained using simulations for ρ values of 0.1 to 0.9 at increments of 0.1 in Figure 5.

The closeness of the approximation is obvious in the figure.

21



0 2 4 6 8

2

4

6

8

10

12

14

ρ
1−ρ

M
ea

n
R

es
p

on
se

T
im

e

T̂
sim

5

T̂ n

Figure 6: Plot of simulated and predicted average response times vs. ρ
1−ρ for n = 5,

µ = 1 and Erlang-2 service time distribution

Now consider a system with n = 5, µ = 1 and Erlang-2 service time distribution.

Equation (2) results in the following linear relationship: T 5(ρ) = ρm5

(1−ρ) + 1.904. The

value of E[T5](ρ) for only one value of ρ is needed to find the the unknown parameter,

m5. Therefore, the system is simulated for ρ = 0.5 and the value of T̂
sim

5 (0.5) is

estimated to be equal to 3.149. The simulation parameters used for obtaining the

estimate of T n are detailed in Section 2.5. The following linear equation is now

solved for m̂n: 3.149 = m̂n + 1.904 which gives m̂n = 1.245. Thus, the value of m5

has been estimated for estimating the value of T 5 for any other value of the traffic

intensity ρ. This is given by: T̂ n(ρ) = 1.245ρ
µ(1−ρ) + 1.904. Figure 6 shows the plot of the

simulated average response times for ρ values of 0.1 to 0.9 at increments of 0.1 and

the corresponding predicted value using the simulation for ρ = 0.5 and µ = 1. The

closeness of the approximation to the simulated values leads us to believe that our

conjecture is indeed correct.

In the next section, we describe our experimental results on the response-time

22



estimation of the symmetric fork-join queueing system and compare against existing

approximation techniques in the literature.

2.5 Results and Comparisons

Considering the hardness of the problem, exact estimation techniques for the

symmetric fork-join queueing system do not exist. In this section, we compare the

results obtained using our approximation technique with those obtained using simu-

lations. Furthermore, we describe existing approximation methods in the literature

and compare those against our method. We present our arguments based on exper-

iments conducted with different values of the number of tasks n and for different

service time distributions.

For exponential service time distribution, results are reported for n = 3, 5, 10,

20, 30, 40 and 50 (Tables (2)–(8)). For Erlang-2 service time distribution, results are

reported for n = 3, 5, 10, 15, 20 and 30 (Tables (9)–(14)). Lastly for Pareto service

time distribution, results are reported for n = 2, 3, 5, 7 and 10 (Tables (15)–(19)).

The mean service rate µ for all simulations and calculations was assumed to take unit

value, i.e. µ = 1. This determines the parameters for the exponential and Erlang-2

distributions. The Pareto distribution parameters are α = 2.291 and xm = 0.563.

The values of n for reporting results were chosen based on the reliability of sim-

ulations with respect to reaching steady state and having reasonable variance. For

exponential and Erlang-2 service time distributions, results are reported for the traffic

intensity ρ ranging from 0.1 to 0.9. For the Pareto service time distribution results,

since the service time variability is higher, reasonable values could only be obtained

for up till ρ = 0.8, except for the case of n = 2 for which the results for ρ = 0.9 are

also reported.

In Tables (2)–(19), for different values of n, T̂
sim

n denotes the estimate of the av-

23



Table 2: Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for n = 3 and
exponential service time distribution

ρ T̂
sim

3 T̂ 3 % Error T̂NT3 % Error T̂ VM3 % Error T̂KS3 % Error
0.1 2.01±0.000 2.01 -0.002 2.01 0.180 2.011 0.009 2.21 10.131
0.2 2.23±0.000 2.23 -0.020 2.22 0.373 2.232 -0.005 2.49 11.586
0.3 2.51±0.000 2.52 -0.050 2.50 0.573 2.517 -0.034 2.85 13.065
0.4 2.89±0.001 2.90 -0.0921 2.88 0.780 2.896 -0.072 3.32 14.573
0.5 3.43±0.001 3.43 -0.141 3.40 1.014 3.428 -0.146 3.99 16.114
0.6 4.23±0.001 4.22 -0.207 4.18 1.218 4.225 -0.201 4.98 17.677
0.7 5.57±0.003 5.55 -0.307 5.49 1.459 5.553 -0.298 6.64 19.245
0.8 8.24±0.007 8.21 -0.453 8.10 1.694 8.210 -0.397 9.96 20.803
0.9 16.27±0.025 16.18 -0.582 15.95 2.122 16.181 -0.703 19.93 22.429

Table 3: Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for n = 5 and
exponential service time distribution

ρ T̂
sim

5 T̂ 5 % Error T̂NT5 % Error T̂ VM5 % Error T̂KS5 % Error
0.1 2.49±0.000 2.49 0.047 2.50 0.503 2.49 -0.001 2.97 19.365
0.2 2.75±0.000 2.75 0.051 2.78 0.989 2.75 -0.044 3.34 21.607
0.3 3.08±0.000 3.09 0.024 3.13 1.471 3.08 -0.121 3.82 23.897
0.4 3.53±0.001 3.53 -0.045 3.60 1.940 3.52 -0.243 4.46 26.223
0.5 4.16±0.001 4.15 -0.164 4.26 2.388 4.14 -0.418 5.35 28.578
0.6 5.11±0.002 5.09 -0.343 5.25 2.805 5.07 -0.653 6.69 30.949
0.7 6.69±0.003 6.65 -0.568 6.90 3.207 6.62 -0.935 8.92 33.356
0.8 9.85±0.009 9.77 -0.845 10.20 3.590 9.72 -1.273 13.37 35.793
0.9 19.35±0.033 19.12 -1.176 20.11 3.950 19.03 -1.666 26.75 38.260

24



Table 4: Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for n = 10 and
exponential service time distribution

ρ T̂
sim

10 T̂ 10 % Error T̂NT10 % Error T̂ VM10 % Error T̂KS10 % Error
0.1 3.17±0.000 3.18 0.143 3.21 1.259 3.17 -0.031 4.06 27.906
0.2 3.48±0.000 3.49 0.226 3.57 2.523 3.48 -0.127 4.57 31.145
0.3 3.88±0.001 3.89 0.236 4.03 3.780 3.87 -0.305 5.22 34.448
0.4 4.42±0.001 4.43 0.161 4.64 5.019 4.39 -0.579 6.09 37.804
0.5 5.18±0.002 5.17 -0.022 5.50 6.219 5.13 -0.970 7.31 41.185
0.6 6.32±0.002 6.30 -0.323 6.78 7.370 6.22 -1.488 9.13 44.577
0.7 8.23±0.005 8.17 -0.751 8.93 8.463 8.05 -2.143 12.18 47.970
0.8 12.07±0.014 11.91 -1.348 13.22 9.453 11.72 -2.975 18.27 51.298
0.9 23.64±0.063 23.14 -2.134 26.08 10.314 22.70 -4.003 36.54 54.524

Table 5: Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for n = 20 and
exponential service time distribution

ρ T̂
sim

20 T̂ 20 % Error T̂NT20 % Error T̂ VM20 % Error T̂KS20 % Error
0.1 3.88±0.000 3.89 0.289 3.95 1.885 3.88 -0.047 5.19 33.743
0.2 4.23±0.001 4.25 0.490 4.39 3.786 4.22 -0.203 5.83 37.858
0.3 4.69±0.001 4.72 0.578 4.96 5.683 4.67 -0.491 6.67 42.059
0.4 5.32±0.001 5.34 0.533 5.72 7.555 5.27 -0.938 7.78 46.321
0.5 6.20±0.002 6.22 0.326 6.78 9.378 6.10 -1.566 9.34 50.608
0.6 7.53±0.003 7.53 -0.072 8.37 11.118 7.35 -2.405 11.67 54.878
0.7 9.78±0.005 9.71 -0.698 11.03 12.734 9.44 -3.494 15.56 59.067
0.8 14.31±0.010 14.08 -1.604 16.34 14.163 13.61 -4.881 23.34 63.084
0.9 27.96±0.040 27.18 -2.787 32.27 15.400 26.13 -6.560 46.68 66.915

25



Table 6: Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for n = 30 and
exponential service time distribution

ρ T̂
sim

30 T̂ 30 % Error T̂NT30 % Error T̂ VM30 % Error T̂KS30 % Error
0.1 4.29±0.000 4.31 0.381 4.39 2.197 4.29 -0.058 5.86 36.354
0.2 4.67±0.001 4.71 0.659 4.88 4.418 4.66 -0.249 6.59 40.926
0.3 5.17±0.001 5.21 0.805 5.51 6.639 5.14 -0.600 7.53 45.598
0.4 5.84±0.001 5.89 0.791 6.36 8.834 5.78 -1.144 8.78 50.337
0.5 6.79±0.002 6.84 0.586 7.54 10.973 6.67 -1.911 10.54 55.101
0.6 8.24±0.003 8.26 0.153 9.32 13.016 8.00 -2.935 13.17 59.834
0.7 10.68±0.005 10.62 -0.544 12.27 14.921 10.23 -4.251 17.57 64.475
0.8 15.59±0.013 15.36 -1.535 18.19 16.646 14.68 -5.887 26.35 68.959
0.9 30.39±0.043 29.56 -2.755 35.94 18.266 28.03 -7.779 52.70 73.387

Table 7: Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for n = 40 and
exponential service time distribution

ρ T̂
sim

40 T̂ 40 % Error T̂NT40 % Error T̂ VM40 % Error T̂KS40 % Error
0.1 4.59±0.000 4.61 0.449 4.70 2.400 4.59 -0.065 6.33 37.948
0.2 4.99±0.000 5.03 0.782 5.23 4.827 4.97 -0.279 7.12 42.820
0.3 5.51±0.001 5.56 0.971 5.91 7.257 5.47 -0.678 8.14 47.801
0.4 6.21±0.001 6.28 0.978 6.82 9.657 6.13 -1.295 9.50 52.847
0.5 7.22±0.001 7.27 0.771 8.08 11.994 7.06 -2.165 11.40 57.914
0.6 8.74±0.002 8.77 0.312 9.99 14.225 8.45 -3.324 14.25 62.942
0.7 11.32±0.004 11.27 -0.446 13.16 16.296 10.77 -4.816 19.00 67.847
0.8 16.51±0.011 16.26 -1.510 19.51 18.190 15.41 -6.646 28.50 72.602
0.9 32.19±0.069 31.24 -2.959 38.57 19.802 29.33 -8.886 57.00 77.047

26



Table 8: Comparison with simulation results and approximations of Nelson and
Tantawi [47], Varma and Makowski [61] and Ko and Serfozo [36] for n = 50 and
exponential service time distribution

ρ T̂
sim

50 T̂ 50 % Error T̂NT50 % Error T̂ VM50 % Error T̂KS50 % Error
0.1 4.82±0.000 4.84 0.500 4.94 2.545 4.82 -0.062 6.70 39.059
0.2 5.23±0.000 5.28 0.877 5.50 5.123 5.22 -0.289 7.54 44.152
0.3 5.77±0.001 5.83 1.100 6.22 7.707 5.73 -0.713 8.62 49.362
0.4 6.50±0.001 6.58 1.130 7.17 10.260 6.41 -1.373 10.06 54.640
0.5 7.55±0.002 7.62 0.921 8.51 12.738 7.37 -2.314 12.07 59.926
0.6 9.13±0.003 9.17 0.440 10.51 15.100 8.81 -3.570 15.09 65.160
0.7 11.81±0.006 11.77 -0.351 13.86 17.302 11.20 -5.174 20.11 70.276
0.8 17.22±0.016 16.96 -1.471 20.54 19.314 15.99 -7.142 30.17 75.225
0.9 33.56±0.086 32.55 -3.008 40.61 21.015 30.35 -9.556 60.34 79.818

Table 9: Comparison with simulation results and approximations of Thomasian and
Tantawi [47] and Varma and Makowski [61] for n = 3 and Erlang-2 service time
distribution

ρ T̂
sim

3 T̂ 3 % Error T̂ TT3 % Error T̂ VM3 % Error
0.1 1.73±0.000 1.73 0.100 1.93 11.658 1.73 0.003
0.2 1.88±0.000 1.88 0.163 2.03 7.966 1.88 -0.037
0.3 2.07±0.000 2.07 0.176 2.17 4.566 2.07 -0.130
0.4 2.33±0.000 2.33 0.127 2.37 1.463 2.32 -0.297
0.6 3.25±0.001 3.24 -0.240 3.13 -3.854 3.22 -0.920
0.7 4.18±0.003 4.15 -0.622 3.93 -6.080 4.12 -1.445
0.8 6.04±0.007 5.97 -1.208 5.56 -8.051 5.91 -2.184
0.9 11.67±0.031 11.43 -2.041 10.53 -9.778 11.30 -3.179

27



Table 10: Comparison with simulation results and approximations of Thomasian
and Tantawi [47] and Varma and Makowski [61] for n = 5 and Erlang-2 service time
distribution

ρ T̂
sim

5 T̂ 5 % Error T̂ TT5 % Error T̂ VM5 % Error
0.1 2.04±0.000 2.04 0.154 2.33 14.013 2.04 0.002
0.2 2.21±0.000 2.22 0.251 2.40 8.675 2.21 -0.064
0.3 2.43±0.000 2.44 0.274 2.52 3.655 2.43 -0.220
0.4 2.73±0.000 2.73 0.200 2.70 -1.051 2.72 -0.486
0.6 3.78±0.001 3.77 -0.371 3.42 -9.552 3.73 -1.483
0.7 4.85±0.003 4.81 -0.954 4.21 -13.372 4.74 -2.303
0.8 7.01±0.006 6.88 -1.809 5.82 -16.929 6.77 -3.411
0.9 13.51±0.028 13.11 -2.992 10.78 -20.238 12.85 -4.863

Table 11: Comparison with simulation results and approximations of Thomasian and
Tantawi [47] and Varma and Makowski [61] for n = 10 and Erlang-2 service time
distribution

ρ T̂
sim

10 T̂ 10 % Error T̂ TT10 % Error T̂ VM10 % Error
0.1 2.47±0.000 2.47 0.228 2.87 16.245 2.47 -0.030
0.2 2.66±0.000 2.67 0.369 2.91 9.325 2.66 -0.171
0.3 2.92±0.000 2.93 0.402 3.00 2.741 2.91 -0.440
0.4 3.26±0.001 3.27 0.293 3.15 -3.517 3.24 -0.879
0.6 4.50±0.001 4.48 -0.539 3.82 -15.119 4.39 -2.448
0.7 5.76±0.002 5.68 -1.390 4.58 -20.509 5.55 -3.711
0.8 8.31±0.006 8.09 -2.631 6.18 -25.659 7.86 -5.391
0.9 16.00±0.037 15.31 -4.330 11.11 -30.584 14.79 -7.553

28



Table 12: Comparison with simulation results and approximations of Thomasian and
Tantawi [47] and Varma and Makowski [61] for n = 15 and Erlang-2 service time
distribution

ρ T̂
sim

15 T̂ 15 % Error T̂ TT15 % Error T̂ VM15 % Error
0.1 2.71±0.000 2.72 0.266 3.18 17.210 2.71 -0.062
0.2 2.93±0.000 2.94 0.436 3.21 9.598 2.92 -0.250
0.3 3.20±0.000 3.22 0.477 3.28 2.325 3.18 -0.602
0.4 3.57±0.000 3.59 0.349 3.41 -4.622 3.53 -1.152
0.6 4.92±0.001 4.88 -0.626 4.05 -17.609 4.76 -3.085
0.7 6.28±0.002 6.18 -1.598 4.79 -23.685 5.99 -4.589
0.8 9.05±0.007 8.78 -2.979 6.38 -29.503 8.46 -6.541
0.9 17.42±0.026 16.56 -4.909 11.30 -35.127 15.84 -9.072

Table 13: Comparison with simulation results and approximations of Thomasian and
Tantawi [47] and Varma and Makowski [61] for n = 20 and Erlang-2 service time
distribution

ρ T̂
sim

20 T̂ 20 % Error T̂ TT20 % Error T̂ VM20 % Error
0.1 2.89±0.000 2.90 0.289 3.41 17.791 2.89 -0.091
0.2 3.11±0.000 3.13 0.480 3.42 9.766 3.10 -0.318
0.3 3.40±0.000 3.42 0.529 3.47 2.080 3.38 -0.723
0.4 3.79±0.001 3.81 0.386 3.59 -5.286 3.74 -1.362
0.6 5.21±0.002 5.17 -0.697 4.21 -19.125 5.02 -3.561
0.7 6.65±0.004 6.53 -1.778 4.95 -25.642 6.30 -5.266
0.8 9.58±0.010 9.26 -3.339 6.52 -31.928 8.86 -7.491
0.9 18.44±0.043 17.44 -5.431 11.43 -37.981 16.54 -10.285

29



Table 14: Comparison with simulation results and approximations of Thomasian and
Tantawi [47] and Varma and Makowski [61] for n = 30 and Erlang-2 service time
distribution

ρ T̂
sim

30 T̂ 30 % Error T̂ TT30 % Error T̂ VM30 % Error
0.1 3.14±0.000 3.15 0.328 3.72 18.522 3.13 -0.126
0.2 3.37±0.000 3.39 0.539 3.71 10.002 3.36 -0.410
0.3 3.68±0.000 3.70 0.592 3.74 1.819 3.64 -0.900
0.4 4.10±0.001 4.11 0.432 3.85 -6.049 4.03 -1.651
0.6 5.61±0.003 5.57 -0.776 4.44 -20.916 5.37 -4.198
0.7 7.16±0.006 7.02 -1.984 5.16 -27.964 6.72 -6.155
0.8 10.30±0.014 9.92 -3.714 6.72 -34.785 9.41 -8.682
0.9 19.83±0.051 18.63 -6.048 11.62 -41.392 17.48 -11.856

Table 15: Comparison with simulation results and approximation of Varma and
Makowski [61] for n = 2 and Pareto service time distribution

ρ T̂
sim

2 T̂ 2 % Error T̂ VM2 % Error
0.1 1.50±0.011 1.49 -0.134 1.48 -1.297
0.2 1.77±0.026 1.76 -0.221 1.72 -2.437
0.3 2.11±0.045 2.11 -0.250 2.04 -3.422
0.4 2.57±0.069 2.57 -0.159 2.46 -4.214
0.6 4.17±0.156 4.18 0.247 3.94 -5.383
0.7 5.75±0.244 5.79 0.653 5.42 -5.693
0.8 8.87±0.424 9.00 1.519 8.38 -5.530
0.9 18.10±0.982 18.6609 3.111 17.25 -4.663

30



Table 16: Comparison with simulation results and approximation of Varma and
Makowski [61] for n = 3 and Pareto service time distribution

ρ T̂
sim

3 T̂ 3 % Error T̂ VM3 % Error
0.1 1.82±0.052 1.81 -0.386 1.73 -4.860
0.2 2.21±0.114 2.20 -0.543 2.02 -8.808
0.3 2.72±0.195 2.71 -0.567 2.39 -12.097
0.4 3.39±0.304 3.38 -0.401 2.89 -14.795
0.6 5.69±0.681 5.73 0.683 4.63 -18.620
0.7 7.96±1.076 8.08 1.510 6.37 -19.956
0.8 12.42±1.881 12.78 2.854 9.85 -20.716

Table 17: Comparison with simulation results and approximation of Varma and
Makowski [61] for n = 5 and Pareto service time distribution

ρ T̂
sim

5 T̂ 5 % Error T̂ VM5 % Error
0.1 2.30±0.051 2.28 -0.648 2.12 -7.936
0.2 2.86±0.112 2.84 -0.935 2.46 -14.096
0.3 3.58±0.192 3.55 -0.980 2.90 -19.010
0.4 4.53±0.297 4.50 -0.702 3.49 -22.894
0.6 7.73±0.658 7.81 1.034 5.55 -28.197
0.7 10.85±1.038 11.13 2.602 7.62 -29.810
0.8 16.87±1.792 17.77 5.307 11.74 -30.422

Table 18: Comparison with simulation results and approximation of Varma and
Makowski [61] for n = 7 and Pareto service time distribution

ρ T̂
sim

7 T̂ 7 % Error T̂ VM7 % Error
0.1 2.66±0.033 2.63 -0.918 2.42 -8.977
0.2 3.33±0.074 3.28 -1.371 2.80 -15.868
0.3 4.17±0.129 4.11 -1.405 3.28 -21.229
0.4 5.27±0.199 5.22 -0.953 3.93 -25.359
0.6 8.95±0.439 9.09 1.554 6.20 -30.753
0.7 12.46±0.679 12.97 4.049 8.47 -32.055
0.8 19.16±1.176 20.72 8.105 13.00 -32.145

31



Table 19: Comparison with simulation results and approximation of Varma and
Makowski [61] for n = 10 and Pareto service time distribution

ρ T̂
sim

10 T̂ 10 % Error T̂ VM10 % Error
0.1 3.23±0.075 3.18 -1.383 2.79 -13.546
0.2 4.17±0.162 4.09 -1.887 3.21 -23.091
0.3 5.35±0.274 5.25 -1.798 3.74 -30.130
0.4 6.88±0.425 6.80 -1.194 4.44 -35.431
0.6 12.00±0.957 12.23 1.928 6.92 -42.278
0.7 16.83±1.491 17.65 4.891 9.40 -44.124
0.8 26.00±2.577 28.50 9.643 14.36 -44.752

erage response time obtained using simulations, T̂ n denotes the approximation using

the methods described in Section 2.3, T̂NTn denotes the approximation by Nelson

and Tantawi [47], T̂ TTn denotes the approximation by Thomasian and Tantawi [57],

T̂ VMn describes the approximation by Varma and Makowski [61] and T̂KSn denotes the

approximation by Ko and Serfozo [36]. The approximations by these authors will be

described briefly in Sections (2.5.2)–(2.5.4).

For all approximation techniques considered, we calculate the error percentage

based on the mean response time from simulations and list them in the column next

to the respective approximation. The error percentage calculation is the same for all

the approximation methods compared. For example, for the techniques described in

Section 2.3, the error percentage is calculated as follows:

%Error =

(
T̂ n − T̂

sim

n

)
× 100

T̂
sim

n

(7)

The percentage error that is the least among the approximations compared is

shown in bold font in Tables (2)–(19).

32



We now describe how our approximation compares with the response times esti-

mated using simulations and other approximations in literature.

2.5.1 Comparison with Simulations

Simulations were run on a DELL OPTIPLEX 960 computer with INTEL(R)

CORE(TM) 2 QUAD 3 GHZ processor and 8 GB of RAM. The simulations were

run using Microsoft Visual Studio 2010. Each simulation result reported is a result

of 10 simulation runs. For each simulation run, 30 million arriving job entities and

the corresponding n service times were generated. The response time of each entity

was calculated using Equation 1. Out of these, response times of the first 10 million

entities was thrown out to account for warm up period. Response times of the last

20 million entities were used for the calculation of the average response time. 95%

confidence intervals are reported for each average response time. These confidence

intervals are generated using the average response times in the 10 simulation runs.

For the case of exponential service times (Tables (2)–(8)), the estimate is obtained

directly using Conjecture 2 and no simulation is necessary. The estimated mean

response time T̂ n is remarkably close to the values observed in simulations with an

error percentage going only upto 3% even for the highest traffic intensity, ρ = 0.9

and n = 50.

For Erlang-2 task service times (Tables (9)–(14)), the error percentages are within

4% for up to ρ = 0.8 and go up to 6% for n = 20 and n = 30 when ρ = 0.9.

When the task service times are according to a Pareto distribution (Tables (15)–

(19)), the error percentages are less than 5% for up to ρ = 0.8 and less than 10%

for ρ = 0.9 when n = 7 and n = 10. However, even when the error percentages are

higher, it is encouraging to note that for the Pareto distribution, T̂ n lies within the

95% confidence interval of T̂
sim

n . The increase in error percentages can be attributed

33



to the higher variance of Pareto distribution.

The increase in error percentage with increase in the traffic intensity ρ can be

attributed to the higher warm up period requirement to reach steady state for higher

traffic intensities. Similarly, increase in the error percentage with increase in n can

be attributed to the higher variance of the response time.

The time required for running the simulations ranged from 16 minutes and 45

seconds for n = 2, Pareto task service times and ρ = 0.1, to 3 hours, 10 minutes and

20 seconds for n = 50, exponential task service times and ρ = 0.9. Compared to these

long simulation run times, the approximation T̂ n can be computed instantaneously

for exponential service time distribution while the other distributions require only one

simulation to compute the estimate for the other infinitely many values of ρ ∈ [0, 1).

We now describe approximations for the symmetric n-dimensional fork-join queue-

ing system existing in literature.

2.5.2 Approximation by Nelson and Tantawi

Nelson and Tantawi [47] provided an approximation for the system with expo-

nential service time distribution at the tasks. They observed that a lower bound to

the expected response time is given by the maximum of n independent task service

times which for the exponential distribution is Hn
µ

. Using properties of associated

random variables, they showed that an upper bound for the expected response time is

given by the expected value of the maximum of the response times of n independent

M/M/1 queues. This is given by Hn
µ(1−ρ) . The authors used simulations to obtain

a scaling approximation between these two bounds using the observation that both

the lower and upper bounds increase with n at the same rate, Hn. We denote the

approximation obtained using this method by T̂NTn and this is given by the following

expression:

34



T̂NTn =

[
Hn

H2

+
4

11

(
1− Hn

H2

)
ρ

]
12− ρ

8µ(1− ρ)
. (8)

The estimated mean response time using Equation 8 and the corresponding error

percentages are reported in Tables (2)–(8). Based on these, our estimation technique

using Conjecture 2 scores over this method in the following ways:

1. The estimation using Equation 8 is valid only for the exponential task service

time distribution. Our technique can be applied to other distributions as well.

2. Our method performs better in terms of error percentages in all the instances.

In many cases, the difference is quite significant. For example, in the case of

n = 50 and ρ = 0.9, the percentage error of T̂ 50 is −3.008% while that of T̂NT50

is 21.015% (Table 8).

3. The error percentages for all the instances for the estimate by Nelson and

Tantawi [47] are positive. This leads us to believe that this method gives an

upper bound rather than an approximation of the average response time.

2.5.2.1 Approximation by Varma and Makowski

Varma and Makowski [61] considered a system with general inter-arrival and

service times. They provided a light traffic approximation using the fact that the in-

dividual response times are independent when an arriving job encounters an empty

system. For the systems with exponential inter-arrival times and general service

times, they provided a conjecture for the heavy traffic limit using diffusion approxi-

mation. They extended this conjecture to the case of general inter-arrival and service

times. We denote this approximation by T̂ VMn . The heavy traffic conjecture is as

follows:

35



lim
ρ→1

µ(1− ρ)T n(ρ) =

[
Hn + (4Vn − 3Hn − 1)

σ2
o

σ2
o + σ2

+ 2(1 +Hn − 2Vn)

(
σ2
o

σ2
o + σ2

)2
]
σ2
o + σ2

2
µ2 (9)

where σ2
o and σ2 are the variances of the inter-arrival time and service time

distributions respectively and Vn =
n∑
r=1

(
n
r

)
(−1)r−1

r∑
m=1

(
r
m

)
(m−1)!
rm+1 .

Using the light traffic approximation and the heavy traffic conjecture, they ob-

tained an interpolation approximation for the symmetric fork-join queueing system

with general inter-arrival and service times. In our experiments, we compare against

this approximation for exponential, gamma and Pareto service time distributions.

For exponential service time distribution, T̂ VMn is given by the following:

T̂ VMn =
[
Hn + (Vn −Hn)ρ

] 1

µ(1− ρ)
. (10)

For gamma service time distribution with mean equal to ’1’ and shape parameter

k equal to ’2’, T̂ VMn is as follows:

T̂ VMn =

[
Fn +

(
1

6
− Hn

12
+

2

3
Vn − Fn

)
ρ

]
1

µ(1− ρ)
, n = 2, 3, . . . (11)

where Fn =
n∑
r=1

(
n
r

)
(−1)r−1

r∑
m=0

(
r
m

) (m)!
2rm+1 .

For Pareto service time distribution, T̂ VMn is given by the following expression:

T̂ VMn =
Mn + g1µρ

µ(1− ρ)
(12)

where g1 =

[
Hn+(4Vn−3Hn−1) σ2

o

σ2
o+σ

2 +2(1+Hn−2Vn)

(
σ2
o

σ2
o+σ

2

)2
]
σ2
o+σ

2

2
µ2−Mn.

36



Based on results in Tables (2)–(19), we compare our technique against this tech-

nique as follows:

1. With exponential and Erlang-2 distributions, our method performs better in

terms of the percentage error for higher values of n and ρ. For example, when

n = 50, ρ = 0.9 and service times are exponentially distributed, the error

percentage of T̂ 50 is −3.008% while that of T̂ VM50 is 9.556 (Table 8). For the

cases where T̂ VMn performs better, which happens for low values of ρ, the error

percentages obtained from both T̂ VMn and T̂ n are less than 1% and perform

comparably.

2. This technique performs well only when the service time distributions are

exponential-like. When the service times are distributed according to a Pareto

distribution, the utility of the approximation using Equation 12 is questionable.

The error percentages go up to −44.752% when n = 10 and ρ = 0.8 (Table

19). This value is very high when compared to the error percentage obtained

from T̂ n which is 9.643%.

3. The accuracy of the approximation T̂ VMn for low values of ρ can be explained

by the fact that this is an interpolation approximation and the exact mean

response time is known when ρ = 0+.

4. Our conjectures contradict the heavy traffic conjecture of Varma and Makowski

[61]. The difference in error percentages lends more confidence to Conjectures

1 and 2.

2.5.3 Approximation by Ko and Serfozo

Ko and Serfozo [36] gave an approximation for the expected response time in

a fork-join queueing system with exponential inter-arrival and service times, where

37



each node acts as a queueing station with s servers, s ≥ 1. They used elementary

probability laws and properties of associated random variables to come up with this

approximation. Since we are concerned with single server queues, we denote this

approximation, for s = 1, by T̂KSn and this is same as the exact result by Nelson and

Tantawi [47] for n = 2. For n ≥ 3, T̂KSn is given by:

T̂KSn =

[(
3

2
− ρ

4

)
+

(
5

4
− ρ

8

)(
5

4
− ρ

4

)(
Hn −

3

2

)]
1

µ(1− ρ)
(13)

Our method scores over this method for the same reasons as enumerated in Sec-

tion 2.5.2. However, in this case, the error percentages are exorbitantly high even

for low values of ρ and n. When n = 3 and ρ = 0.1 for the exponential service

time distribution (Table 2), the error percentage is 10.131% which is the lowest ob-

served. This goes up to 79.818% when n = 50 and ρ = 0.9 making the utility of the

approximation by Ko and Serfozo [36] very highly questionable.

2.5.4 Approximation by Thomasian and Tantawi

Thomasian and Tantawi [57] extended the work of Nelson and Tantawi [47] to

come up with an approximation for the expected response time of symmetric fork-

join queues with exponential inter-arrival times and general service times. We denote

this approximation by T̂ TTn and it is of the form:

T̂ TTn = T 1 +
Mn − 1

µ

σG
αn(ρ) (14)

where, T 1, µ and Mn are as defined in Sections 2.2 and 2.3 respectively, σG is the

standard deviation of the service time CDF G(.), and αn(ρ) is a possibly non-linear

function of the the traffic intensity ρ and depends on G(.). Estimation of αn(ρ)

requires many simulations to obtain enough data points to be able to fit a function

38



on the values of αn(ρ).

The advantages of our method over than of Thomasian and Tantawi [57] are as

follows:

1. The computation of T̂ TTn requires a large number of simulations to fit a curve on

αn(ρ). However, our method requires no simulations for the case of exponential

service times and exactly one simulation for other service time distributions.

Since simulations take up a lot of time and computing resources, therefore ours

is more resource efficient.

2. Our method performs significantly better in terms of the error percentages

observed in Tables (9)–(14). For example, when n = 15 and ρ = 0.9 (Table

12), the error percentage obtained from T̂ TT15 is −35.127 while that obtained

from T̂ 15 is 4.909.

From the discussion presented above,it can be concluded that the superior perfor-

mance of our method when compared to those existing in literature is indisputable.

2.6 Conclusions

In this chapter, we analyzed the symmetric n-dimensional fork-join queueing sys-

tem. Even though this system has been around in queueing literature for more than

thirty years, its performance analysis has remained a very difficult problem due to

dependence between random variables that arise as a result of synchronized arrivals

to the queues. We present a conjecture that is strongly supported by simulations

and use that to accurately predict the mean response times. We compare this ap-

proximation against those in literature and present strong arguments and results in

favor of our method. The utility of the results in this chapter lies in making informed

decisions on system design. The fork-join queueing system is stable when the arrival

39



rate of jobs is less than the service rate. However, the response time increases in

a continuous manner and converges to infinity as the arrival rate gets close to the

service rate. Consequently, even when the system is stable the response times can

become inordinately large as the arrival rate increases and gets closer to the value

of the service rate. However, given a target mean response time of the system, the

results presented here can be used to estimate the maximum allowable arrival rate

to the system by simply solving a linear equation. In the next chapter, we extend

these methods to other forms of fork-join queueing networks.

40



3. MORE ON FORK-JOIN QUEUEING NETWORKS

In Chapter 2 we considered the basic form of fork-join queues. This model, though

useful as it is in many applications, is restrictive. In this chapter, we relax three

aspects of the model in Chapter 2: (i) queueing network structure, (ii) symmetric

tasks and (iii) number of tasks that need to be complete before the job exits the

system. We analyze fork-join queueing network models constructed by relaxing each

of the above constraints individually.

We first provide a brief review of the literature on other fork-join queueing net-

work models.

3.1 Literature Review

The first variation to the symmetric n-dimensional fork-join queueing network

was introduced by Baccelli et al [6]. This work analyzed acyclic fork-join queueing

networks i.e. queueing systems whose precedence requirements result in a queueing

network with no cycles. They derived bounds for the response time based on proper-

ties of associated random variables and stochastic ordering. However, these bounds

are hard to compute in general and do not perform well in terms of distance from

the simulated mean response time, as shown by Kemper and Mandjes [34]. Baccelli

and Liu [3] computed bounds based on similar concepts for the case of a fork-join

queueing system in which multiple tasks are assigned to the same server. This anal-

ysis is similar to that of a multi-class queue. Using techniques similar to Baccelli

et al [6], Kumar and Shorey [37] derived bounds for fork-join queueing networks in

which the number of tasks created at a forking station is a random number which

takes a value less than or equal to the number of subsequent task servers available.

Nelson et al [48] compared this system with one that has a centralized queue instead

41



of a separate queue for each task. They modeled the latter system as a MX/M/n

system with synchronization constraints. Their experiments suggest that systems

with centralized queues lead to smaller response times as compared to systems with

separate queues. Lee and Katz [40] considered a closed fork-join system with variable

number of tasks. In this case the number of jobs in the system and the number of

tasks in each job are fixed. They gave an approximation technique for the response

time and justified their approximations using simulations. Ammar and Gershwin [2]

considered a fork-join queueing network with limited buffer capacities and blocking.

They showed equivalence relationships between some fork-join networks and more

tractable queueing systems such as tandem queues. The results from such queues

can then be used for fork-join queues. However, this equivalence relationship is use-

ful for only a very limited set of fork-join queueing networks. Gershwin [27] further

extended this work to an acyclic fork-join queueing network with limited buffer space

and blocking. In his work an approximate solution was developed to compute the

throughput of the system using decomposition of the network into smaller networks.

However, this method does not perform well if the buffer sizes are large. Dallery

et al [17] showed reversibility properties of fork-join queueing networks with lim-

ited buffer capacities and blocking. The throughput of such a network is proved

to be a concave function of the buffer sizes and the initial number in each buffer.

These properties were consequently used to construct throughput optimal networks.

Li and Xu [41] provided approximations and bounds for fork-join queueing systems

with finite buffer spaces. However, the performance of these bounds and approx-

imations was not analyzed. Guide Jr. et al [29] considered a heterogeneous and

multi-class fork-join queue with only two servers and two classes of jobs. One job

consists of two tasks which can be processed in parallel at the two servers and one

job requires service at only one server. This work provided an approximation for the

42



average weighted job response time by approximating the correlated waiting times

at the two servers as independent waiting times. Duda and Czachórski [21] derived

bounds and approximations for closed fork-join queueing networks. This approxi-

mation is based on representing the system as a single server queueing system with

state dependent service rate. Varki [59] and Varki [60] also derived approximations

and bounds respectively for closed fork-join queueing networks. The approximations

were derived using mean-value approach and the upper bound in [60] was derived

using basic properties of the underlying Markov chain.

We now present three models of fork-join queues. There have been bounds pro-

posed in literature for each of these systems. However, to the best of our knowledge,

no approximations are known for these systems.

In the next section, we relax the restriction on the network structure and present

our work on symmetric tandem fork-join queueing networks.

3.2 Symmetric Tandem Fork-Join Queueing Network

In a symmetric tandem fork-join queueing network, jobs arrive according to a

Poisson process with rate λ. On arrival, each job splits into n tasks. Each task

consists of l sub-tasks in series each of which is served at its own queueing station

which consists of a single server operating under FIFO service discipline. Completion

of task i corresponds to completion of the last of the l sub-tasks constituting task

i, 1 ≤ i ≤ n. After completion of all the n tasks, the job is said to be complete

and it departs from the system. The service time at each station is exponentially

distributed with mean 1/µ and these service times are independent across sub-tasks

as well as jobs. Each sub-task is processed by a single server operating under FIFO

service discipline. This network model is shown in Figure 7. The symmetric tandem

fork-join queueing system falls into a wider class of queueing systems known as the

43



acyclic fork-join queueing system. Similar to the symmetric n-dimensional fork-join

queue, Baccelli et al [6] showed that this system is also stable iff λ < µ. They

derived bounds for the mean response time of the system. However, to the best

of our knowledge, no approximations are available for general (non-heavy) traffic

intensities for this system.

In this work, we extend the conjectures in Chapter 2 to estimate the mean re-

sponse time in steady state for this system.

(1,1)

(2,1)

F J

(n,1)

λ

µ

µ

µ

(1,2)

(2,2)

(n,2)

µ

µ

µ

(1,l)

(2,l)

(n,l)

µ

µ

µ

Figure 7: Symmetric Tandem Fork-Join Queueing Network

44



3.2.1 Response Time Estimation

Following the idea in Chapter 2, we provide a conjecture that can be used to

estimate the expected response time in steady state of the symmetric tandem fork-

join queueing network.

Conjecture 3. The mean response time of the symmetric tandem fork-join queueing

network is linear with respect to ρ
1−ρ , i.e. the slope and intercept are independent of

the arrival rate, λ and the service rate, µ.

E[T(n,l)] =
m(n,l)ρ

µ(1− ρ)
+
M(n,l)

µ
(15)

where, m(n,l) is a parameter independent of λ and M(n,l) is the mean of the max-

imum of n iid Erlang(l, 1) random variables.

Intuition behind Conjecture 3 In the case of symmetric tandem fork-join

queues, we denote the number of sub-task queueing stations remaining for the nth

task to get completed at the time when the last among the first n − 1 tasks joins

the join buffer by Rl. The value of the expectation of Rl is the expected number of

sub-task stations that have been crossed by a job in the slowest task queue when

it’s first n− 1 tasks are complete subtracted from the total number of tasks l. This

time between the arrival of the job and when the value of Rl is observed depends

on the time taken by all the sub-tasks that are complete for that job in the system

at the moment when the second from the last task is complete. Since the arrivals

are synchronized at all task queues and all the sub-tasks have identical service time

distribution, if the arrival intensity changes, it changes for all the subtasks in the

same manner. We conjecture that the time interval after which Rl is observed changes

appropriately with the change in the arrival rate. Therefore, Rl does not depend

45



on the arrival rate. In fact we prove that this is true when n = 2 in Lemma 1.

If this holds true, then the time required at the remaining Rl sub-task queueing

stations is similar to the excess time required by the last task to get completed after

the completion of the second from the last to finish in the case of l = 1. In our

experiments in Chapter 2 we observed that this excess time is linear with respect to

ρ
1−ρ . This leads to Conjecture 3.

We now show that the expectation of Rl above is indeed independent of λ and µ

when n = 2.

Lemma 1. In a symmetric tandem fork-join queueing network with number of tasks

n = 2 and the number of sub-tasks of each task, l, the mean number of sub-tasks

of the second task remaining to be completed when the first task is completed, Rl, is

independent of the arrival intensity λ and is given by:

E[Rl] =
l∑

s=1

s

22l−s

(
2l − s− 1

l − s

)
= M(2,l) − l − 1 (16)

Proof. We denote the time required to complete the first task in steady state by

T (1). Each sub-task in the second task requires a random amount of time that is

exponentially distributed with rate µ(1 − ρ). Conditioned on knowing T (1), the

number of completed sub-tasks of the second task is a Poisson random variable. The

expectation is given by the following:

E[Rl] = E
[
E[Rl|T (1)]

]
= E

[
l∑

s=1

s.
e−µ(1−ρ)T

(1){µ(1− ρ)T (1)}l−s

(l − s)!

]
(17)

Since the distribution of T (1) is known to be Erlang (l, µ(1 − ρ)), we obtain the

following result:

46



E

[
e−µ(1−ρ)T

(1){µ(1− ρ)T (1)}l−s

(l − s)!

]

=

∫ ∞
0

e−µ(1−ρ)T
(1){µ(1− ρ)T (1)}l−s

(l − s)!
.
{µ(1− ρ)}l{T (1)}l−1e−µ(1−ρ)T (1)

(l − 1)!
dT (1)

=
1

22l−s

(
2l − s− 1

l − s

)

Substituting in Equation (17), we obtain the first part of the result in Lemma 1.

Since E[Rl] is independent of ρ, therefore, this value remains the same when ρ→ 0+

which leads to the second part of Lemma 1.

Remark 2. Similar to the case of symmetric n-dimensional fork-join queues, our

experiments show that the value of the parameter mn in Equation 15 does not depend

on the sub-task service rate µ. Therefore, for a system with fixed number of parallel

tasks n and sub-tasks l, the value of mn remains unchanged with changes in service

rate µ and job arrival rate λ. Since these are the system parameters that change

frequently, therefore, once m(n,l) is estimated using one simulation of the system, it

can be treated as a constant for those values of n and l.

Remark 3. Conjecture 3 is satisfied when the number of tasks n = 1. In this case,

the system is a tandem M/M/1 queueing network. The mean response time in steady

state is lρ
µ(1−ρ) + l

µ
, with m(1,l) = l and M(1,l) = l

µ
.

We demonstrate the performance of Conjecture 3 in Figure 8. The linear rela-

tionship is obvious from the straight line observed.

Conjecture 3 leads to an approximation technique similar to that in Chapter 2 for

the mean response time in steady state of the symmetric tandem fork-join queueing

system. For completion, we present this is Algorithm 2. For brevity, we denote

47



0 2 4 6 8

20

40

60

ρ
1−ρ

M
ea

n
R

es
p

on
se

T
im

e

Figure 8: Plot of simulated average response time vs. ρ
1−ρ for n = 5, l = 5 and µ = 1

E[T(n,l)] by T (n,l), our estimate by T̂ (n,l) and the estimate obtained by simulations

by T̂
sim

(n,l). We also denote the estimate of the parameters m(n,l) in Equation (15) by

m̂(n,l).

Algorithm 2 Computation of T̂ (n,l)

Input: Number of parallel tasks, n; Number of sub-tasks, l

Output: Expression for T̂ (n,l) ∀ρ ∈ [0, 1), i.e. ∀λ ∈ [0, µ), µ > 0.

1: Simulate the system for ρ = 0.5 and µ = 1. Estimate expected response time

T̂
sim

(n,l)(0.5).
2: Compute M(n,l)

3: Solve linear equation for m̂(n,l): T̂
sim

(n,l)(0.5) =
0.5m̂(n,l)

µ(1−0.5) +M(n,l)

4: return T̂ (n,l)(ρ) =
ρm̂(n,l)

µ(1−ρ) +M(n,l)

We now demonstrate the use of Algorithm 2 with a numerical example.

48



0 2 4 6 8

10

20

30

40

ρ
1−ρ

M
ea

n
R

es
p

on
se

T
im

e

T̂
sim

(5,3)

T̂ (5,3)

Figure 9: Plot of simulated and predicted average response times vs. ρ
1−ρ for n = 5,

l = 5 and µ = 1

3.2.2 Numerical Example

Consider a system with n = 5 and l = 3. When we run a simulation for this

system with ρ = 0.5 and µ = 1, we get the value of T̂
sim

(3,5)(0.5) to be equal to 9.37 time

units. Computing the expectation of the maximum of five independent Erlang-(3, 1)

random variables, we get M(5,3) = 5.19. We solve the following equation for m̂(5,3):

9.37 =
0.5m̂(5,3)

1(1−0.5) + 5.19, to obtain m̂(5,3) = 4.17. Therefore, ∀ρ ∈ [0, 1) and µ ≥ 0, we

obtain the following approximation for T (3,5): T̂ (3,5) = 4.17ρ
µ(1−ρ) + 5.19

µ
. We demonstrate

the performance of Algorithm 2 in Figure 9.

3.2.3 Experimental Results

In this section we present results to compare the performance of Algorithm 2

with the estimates of mean response times obtained from simulations. Results are

reported for l = 2, 3, 4 and 5 and n = 2, 5 and 10 (Tables (21)–(26)). A sub-task

service rate of µ = 1 was assumed. In the tables in this section, for the values of n and

49



l for which results are reported, T̂
sim

(n,l) denotes the expected response time estimate

obtained using simulations, T̂ (n,l) denotes that obtained using Algorithm 2 and %

Error denotes the error percentage observed. The calculation of this value is similar

to that in Equation (7). Results are reported for ρ = 0.1 to 0.9 with increments of

0.1 excluding ρ = 0.5. This has been excluded since this simulated mean response

time estimate for ρ = 0.5 was used in the estimation of the response times for other

values of ρ using Algorithm 2. The set up of simulations is similar to that in Chapter

2. For each simulation result, 95% confidence intervals are reported.

When n = 2 (Tables (21)–(22)), the error percentages are within 2%, the highest

being 1.912% when l = 5 and ρ = 0.9. When n = 5 (Tables (23)–(24)), the error

percentages fall within 5% with the maximum being 4.117% when l = 5 and ρ = 0.9.

Lastly, when n = 10 (Tables (25)–(26)), the error percentages are within 6%, the

maximum being 5.617% when l = 5 and ρ = 0.9. The increase in error percentages

with increase in ρ can again be attributed to the fact that more time is required to

approximate steady state accurately in that case.

The time required for simulations ranged from 37 minutes and 29 seconds when

n = 2, l = 2 and ρ = 0.1 to 4 hours, 33 minutes and 45 seconds when n = 10, l = 5

and ρ = 0.9. These huge simulation times highlight the importance of our work

in approximating the average response time in less than a second once the value

of m(n,l) is known for a given number of tasks and sub-tasks. The importance of

our contribution increases with the fact that to the best of our knowledge, there are

no approximation methods available for estimating the steady state average response

time of the symmetric tandem fork-join queueing system, at general traffic intensities,

available in literature.

50



Table 21: Comparison with simulation results for n = 2, l = 2 and n = 2, l = 3

ρ T̂
sim

(2,2) T̂ (2,2) % Error T̂
sim

(2,3) T̂ (2,3) % Error

0.1 3.02±0.000 3.03 0.077 4.32±0.000 4.33 0.133
0.2 3.37±0.000 3.37 0.112 4.81±0.001 4.82 0.202
0.3 3.81±0.001 3.81 0.115 5.44±0.001 5.45 0.203
0.4 4.40±0.001 4.40 0.080 6.29±0.001 6.30 0.137
0.6 6.48±0.003 6.47 -0.122 9.26±0.003 9.24 -0.212
0.7 8.56±0.005 8.54 -0.284 12.25±0.006 12.19 -0.496
0.8 12.74±0.013 12.68 -0.484 18.25±0.013 18.09 -0.865
0.9 25.26±0.057 25.09 -0.682 36.24±0.049 35.78 -1.284

Table 22: Comparison with simulation results for n = 2, l = 4 and n = 2, l = 5

ρ T̂
sim

(2,4) T̂ (2,4) % Error T̂
sim

(2,5) T̂ (2,5) % Error

0.1 5.59±0.000 5.60 0.183 6.84±0.001 6.85 0.226
0.2 6.22±0.001 6.24 0.276 7.60±0.001 7.63 0.335
0.3 7.03±0.001 7.05 0.278 8.60±0.001 8.63 0.333
0.4 8.13±0.002 8.14 0.189 9.93±0.001 9.96 0.220
0.6 11.99±0.005 11.95 -0.281 14.66±0.004 14.62 -0.331
0.7 15.87±0.010 15.76 -0.662 19.42±0.007 19.27 -0.764
0.8 23.65±0.025 23.38 -1.137 28.96±0.022 28.59 -1.289
0.9 47.03±0.096 46.25 -1.662 57.64±0.078 56.54 -1.912

Table 23: Comparison with simulation results for n = 5, l = 2 and n = 5, l = 3

ρ T̂
sim

(5,2) T̂ (5,2) % Error T̂
sim

(5,3) T̂ (5,3) % Error

0.1 4.14±0.000 4.15 0.211 5.64±0.000 5.66 0.313
0.2 4.56±0.000 4.58 0.327 6.21±0.000 6.24 0.483
0.3 5.11±0.001 5.12 0.339 6.95±0.000 6.99 0.498
0.4 5.84±0.001 5.86 0.234 7.95±0.001 7.98 0.341
0.6 8.45±0.002 8.42 -0.382 11.52±0.002 11.46 -0.535
0.7 11.08±0.005 10.98 -0.918 15.13±0.006 14.94 -1.276
0.8 16.36±0.014 16.09 -1.608 22.39±0.014 21.89 -2.218
0.9 32.25±0.048 31.45 -2.483 44.26±0.064 42.77 -3.383

51



Table 24: Comparison with simulation results for n = 5, l = 4 and n = 5, l = 5

ρ T̂
sim

(5,4) T̂ (5,4) % Error T̂
sim

(5,5) T̂ (5,5) % Error

0.1 7.07±0.000 7.10 0.395 8.46±0.001 8.50 0.465
0.2 7.78±0.000 7.83 0.610 9.30±0.001 9.37 0.715
0.3 8.71±0.001 8.76 0.627 10.41±0.001 10.49 0.728
0.4 9.97±0.002 10.01 0.426 11.92±0.001 11.98 0.490
0.6 14.46±0.004 14.37 -0.652 17.33±0.003 17.21 -0.732
0.7 19.02±0.007 18.73 -1.521 22.82±0.006 22.43 -1.689
0.8 28.18±0.018 27.45 -2.597 33.84±0.021 32.88 -2.838
0.9 55.76±0.051 53.62 -3.841 66.99±0.099 64.24 -4.117

Table 25: Comparison with simulation results for n = 10, l = 2 and n = 10, l = 3

ρ T̂
sim

(10,2) T̂ (10,2) % Error T̂
sim

(10,3) T̂ (10,3) % Error

0.1 4.99±0.000 5.01 0.314 6.62±0.000 6.65 0.432
0.2 5.47±0.000 5.49 0.493 7.24±0.001 7.29 0.676
0.3 6.08±0.001 6.12 0.518 8.05±0.001 8.11 0.702
0.4 6.92±0.001 6.94 0.361 9.16±0.001 9.21 0.484
0.6 9.90±0.003 9.85 -0.584 13.14±0.004 13.04 -0.769
0.7 12.93±0.005 12.75 -1.413 17.19±0.007 16.88 -1.826
0.8 19.02±0.015 18.55 -2.492 25.35±0.016 24.55 -3.153
0.9 37.39±0.056 35.96 -3.833 49.89±0.084 47.57 -4.659

Table 26: Comparison with simulation results for n = 10, l = 4 and n = 10, l = 5

ρ T̂
sim

(10,4) T̂ (10,4) % Error T̂
sim

(10,5) T̂ (10,5) % Error

0.1 8.15±0.000 8.19 0.532 9.62±0.001 9.68 0.614
0.2 8.91±0.001 8.98 0.827 10.52±0.001 10.62 0.950
0.3 9.91±0.001 10.00 0.856 11.70±0.001 11.82 0.972
0.4 11.28±0.002 11.35 0.586 13.33±0.002 13.42 0.657
0.6 16.23±0.005 16.08 -0.905 19.21±0.004 19.02 -0.994
0.7 21.26±0.009 20.81 -2.103 25.20±0.009 24.63 -2.292
0.8 31.39±0.017 30.28 -3.569 37.27±0.022 35.83 -3.857
0.9 61.94±0.079 58.67 -5.273 73.59±0.118 69.46 -5.617

52



3.3 Heterogeneous Fork-Join Queueing Systems

In Chapter 2, we provided an approximation for the expected response time in

steady state of the symmetric n-dimensional fork-join queueing system. The restric-

tion of a symmetric system requires all the service time random variables to follow

identical distributions. In this section we relax this requirement and allow the task

service times to take different mean values. We now define the problem formally.

3.3.1 Problem Description

Similar to the systems that we have seen so far, jobs arrive into the system

following a Poisson process with rate λ. Each job is split instantaneously into n

tasks. The tasks are processed at n single server queueing stations operating under

FIFO service discipline. The service times of the tasks are independent across jobs

and across tasks belonging to the same job. However, these tasks are not identically

distributed. Task i, i = 1, . . . , n is exponentially distributed with rate µi. A job

is considered complete and leaves the system when all the n tasks are complete.

It follows from the work of Baccelli et al [6] that this system is stable iff λ <

mini=1,...,n µi. To our knowledge, there are no approximations available in literature

for the steady state response time of this system when n > 2. We now present an

estimation technique for the steady state mean response time of this system.

3.3.2 Response Time Estimation

We provide a conjecture which, like in systems previously described, can be used

to estimate the mean response time in steady state. In this system, each task response

time is exponential with rate µi − λ. For a given arrival intensity λ and values of

i = 1, . . . , n, we denote the expectation of the maximum of i independent exponential

random variables with rate µi − λ by Mi(λ). We denote the steady state response

53



time random variable of this system by Hn.

Conjecture 4. The mean response time in steady state of the heterogeneous fork-join

queueing network, E[Sn] is given by:

E[Sn] =
n∑
i=1

(Mi(λ)−Mi−1(λ))(µi − λ)

[
λm

(i)
n

µi(µi − λ)
+

1

µi

]
(18)

where, m
(i)
n are parameters independent of λ, m

(1)
n = 1 and M0(λ) = 0, ∀λ ∈

[0,mini=1,...,n µi).

Remark 4. As an example, for n = 2, (M2(λ) − M1(λ))(µ2 − λ) = µ1−λ
µ1+µ2−2λ .

Therefore, we have

E[S2] =
1

µ1 − λ
+

µ1 − λ
µ1 + µ2 − 2λ

[
λm

(2)
2

µ2(µ2 − λ)
+

1

µ2

]
. (19)

If we substitute µ1 = µ2 = µ in Equation (19), we obtain the expression for the

symmetric 2-dimensional fork-join queue given in Nelson and Tantawi [47], where

m
(2)
2 = 3

4
. On the other hand, if 1

µ1−λ >>
1

µ2−λ , E[S2] ≈ 1
µ1−λ . This is true due to the

following reason: if one service rate is much higher than the other, the response time

will be dominated by the contribution of the slower queue, especially as the difference

in the response times in the two queues increases with increase in the traffic intensity.

Intuition behind Conjecture 4. Consider the symmetric fork-join queue of

Chapter 2 with n = 2 in steady state. Once the task with index 1 of any job is

completed, if it is the last of the two tasks to get completed, it departs from the

system. If not it waits in a join buffer for the other task to get completed. If we

denote the excess time that it waits for by R, it was observed that:

E[R] =
3λ

8µ(µ− λ)
+

1

2µ
. (20)

54



The mean synchronization time consists of two parts. One is the mean service

time of the second task. Due to the memoryless property of the exponential distri-

bution, the expectation of this is equal to M2(0)−M1(0)
µ2

. The other is the workload in

front of the second task of the job in the second task queue when the first finishes. It

was shown by Nelson and Tantawi [47] for n = 2 and observed in Chapter 2 for n > 2

that this residual expected workload is directly proportional to the average steady

state workload in the second queue, i.e. λ
µ(µ−λ) and the proportionality constant is

independent of λ. We extend this to the heterogeneous case to obtain Conjecture 4.

We now use Conjecture 4 to come up with an algorithm to estimate the response

time in steady state of the heterogeneous fork-join system. In this case, we have

n − 1 parameters that need to be estimated. Therefore, we require n − 1 values

of the arrival intensity λ for which we simulate the system. Using these values, we

solve n − 1 linear equations to obtain the values of these parameters. These can

then be used to estimate the mean response time in steady state for all other arrival

intensities. We present this algorithm formally in Algorithm 3. For brevity, we

denote E[Sn] by Sn, our estimate by Ŝn and the estimate obtained by simulations

by Ŝ
sim

n . We also denote the estimate of the parameters mn in Equation (15) by m̂n.

Remark 5. Suppose we have a network with n tasks, each with service rate µi,

i = 1, . . . , n. If the network controlling authority is considering adding a new task

with service rate µn+1 while keeping the initial network the same, the structure of

Algorithm 3 is such that the estimated values of m
(i)
n will remain the same in the new

network with n+ 1 tasks. Only one simulation will be needed to estimate m
(n+1)
n+1 .

3.3.3 Numerical Example and Results

We now demonstrate the use of Algorithm 3 with a numerical example. We

consider the case of n = 2, µ1 = 1 and µ2 = 1.5. Conjecture 4 for this case takes

55



Algorithm 3 Computation of Ŝn
Input: Number of parallel tasks, n; Arrival rate λ, Service rates µi, i = 1, . . . , n

Output: Expression for Ŝn ∀λ ∈ [0,mini=1,...,n µi)

1: Choose any n− 1 values of λ ∈ [0,mini=1,...,n µi), λ̂j, j = 2, . . . , n. Simulate and

estimate expected response times Ŝ
sim

n (λ̂j).

2: Compute Mi(λ̂j), ∀i = 1, . . . , n and j = 2, . . . , n.

3: Solve system of linear equations for m̂
(i)
n , i = 1, . . . , n: m̂

(1)
n = 1; Ŝ

sim

n (λ̂j) =∑n
i=1(Mi(λ̂j)−Mi−1(λ̂j))(µi − λ̂j)

[
λ̂jm̂

(i)
n

µi(µi−λ̂j)
+ 1

µi

]
, ∀j = 2, . . . , n.

4: return Ŝn(λ) =
∑n

i=1(Mi(λ)−Mi−1(λ))(µi − λ)
[

λm̂
(i)
n

µi(µi−λ) + 1
µi

]

the form in Equation (19). We choose λ̂2 = 0.5 and run simulations to obtain

Ŝ
sim

2 (0.5) = 2.216 time units. M1(0.5) = 1
1−0.5 = 2 and M2(0.5) = 2.333. We

solve the resulting linear equation to get m̂
(2)
2 = 0.322. Finally, we substitute this

in Equation (19) to obtain the approximations for the steady state mean response

time.

We exhibit the performance of Algorithm 3 by comparing the predicted values of

the expected response time in steady state against those obtained from simulations.

In this section, we report values for various values of the arrival intensity λ as op-

posed to the traffic intensity ρ like in previous sections. Let Ŝ
sim

n denote the values

of the expected steady state response times obtained using simulations. These are

reported along with their 95% confidence interval. Let Ŝn denote the values obtained

using Algorithm 3. Lastly, the error percentages are calculated using Equation (7).

Since more than one simulation is required in the running of Algorithm 3, therefore,

we present results for more values of the arrival intensity than in previous sections.

Traffic intensities are calculated based on the task with the lowest service rate. Re-

sults are reported for arrival intensities corresponding to ρ = 0.05, . . . , 0.9 at intervals

56



of 0.05.

In the first system (Table 27), the parameters are same as that in the numerical

example. Only one simulation is required in this case. Simulation results for λ =

0.5 were used to estimate the unknown parameter. The error percentages are very

encouraging with the maximum being 0.454% when the arrival intensity is 0.9.

In the second system (Table 28), n = 3, µ1 = 0.5, µ2 = 1.0 and µ3 = 1.5. In this

case, it would have been possible to use the values of unknown parameters obtained

in the previous system as suggested in Remark 5, and obtain the required predicted

response time values by running only one simulation. However, the results reported

here are calculated by following Algorithm 3 explicitly. Simulations for arrival inten-

sities of 0.150 and 0.350 were used to estimate the two unknown parameters. In this

case too, the error percentages are less than 1% with the maximum being 0.802%

when the arrival intensity is 0.450.

We now present a brief preliminary analysis for another fork-join system with

promising applications.

3.4 (n,k) Fork-Join Queues

In analyzing the (n, k) fork-join queueing system, we relax the restriction on the

number of tasks that need to be processed before the job is considered to be complete.

Joshi et al [32] introduced these (n, k) fork-join queues which are encountered in

network coding algorithms. Arrivals into the system are according to a Poisson

process with rate λ. As in previous sections, the job is split into n tasks that are

processed in parallel at n queueing stations operating on a FIFO service discipline.

Each task requires independent service times distributed exponentially with rate µ.

So far, the system description is identical to that in Chapter 2. However, out of

the n tasks, only k need to be finished for the job to be complete. When an entity

57



Table 27: Comparison with simulation results for n = 2, µ1 = 1.0 and µ2 = 1.5

λ Ĥ
sim

2 Ĥ2 % Error
0.05 1.32±0.000 1.32 -0.049
0.10 1.38±0.000 1.38 -0.094
0.15 1.45±0.000 1.45 -0.128
0.20 1.52±0.000 1.52 -0.151
0.25 1.61±0.000 1.61 -0.160
0.30 1.71±0.000 1.70 -0.157
0.35 1.82±0.000 1.81 -0.139
0.40 1.94±0.000 1.94 -0.107
0.45 2.10±0.001 2.09 -0.059
0.55 2.49±0.001 2.50 0.072
0.60 2.77±0.001 2.77 0.149
0.65 3.12±0.001 3.12 0.230
0.70 3.58±0.002 3.59 0.312
0.75 4.23±0.003 4.25 0.381
0.80 5.21±0.006 5.23 0.427
0.85 6.84±0.012 6.87 0.454
0.90 10.12±0.031 10.16 0.420

Table 28: Comparison with simulation results for n = 3, µ1 = 0.5, µ2 = 1.0 and
µ3 = 1.5

λ Ĥ
sim

3 Ĥ3 % Error
0.025 2.53±0.000 2.53 0.013
0.050 2.64±0.000 2.65 0.016
0.075 2.77±0.001 2.77 0.016
0.100 2.91±0.001 2.91 0.012
0.125 3.07±0.001 3.07 0.006
0.175 3.46±0.001 3.46 -0.009
0.200 3.70±0.001 3.70 -0.019
0.225 3.99±0.002 3.99 -0.029
0.250 4.34±0.002 4.34 -0.036
0.275 4.77±0.002 4.77 -0.042
0.300 5.30±0.003 5.30 -0.044
0.325 6.00±0.004 5.99 -0.033
0.375 8.23±0.007 8.23 0.067
0.400 10.19±0.012 10.22 0.198
0.425 13.49±0.021 13.55 0.438
0.450 20.11±0.049 20.27 0.802

58



reaches the server for service for task i, 1 ≤ i ≤ n, if k tasks belonging to that job

are already complete, the service time of task i is zero. However, if k tasks are not

complete, the entity enters service and remains in service until its service completion

or the completion of k tasks of that entity, whichever happens first.

Joshi et al [32] showed that the (n, k) fork-join queueing system is stable iff

λ < nµ
k

. They computed bounds for the response time of the system. To the best of

our knowledge, this is the only work on this topic.

We denote the workload at a single task station by T
(i)
(n,k), 1 ≤ i ≤ n. Due to

symmetry, we have E[T
(1)
(n,k)] = E[T

(2)
(n,k)] = . . . = E[T

(n)
(n,k)]. We denote the steady state

response time random variable by T(n,k). We present a conjecture on the relationship

between E[T(n,k)] and E[T
(1)
(n,k)].

Conjecture 5. The mean response time of the (n, k) fork-join queueing network is

linear with respect to the expected steady state response time of a single task.

E[T(n,k)] = m(n,k)

(
E[T (1)]− k

nµ

)
+
Hn −Hk−2

µ
(21)

where, m(n,k) is a parameter independent of ρ and Hn is the nth harmonic sum.

The term Hn−Hk−2

µ
in Equation (21) is the mean response time of an entity that

enters an empty system, i.e. the expected value of the k-th order statistic of n i.i.d.

exponential random variables with rate µ. Since we write Equation (21) in terms

of the expected response time of a single queue and not the expected workload in a

single queue, we subtract the average service time from the expected response time.

Remark 6. In the previous sections, we encountered systems where the realizations

of the service times at any task were independent of those at other tasks. In this

system this is not the case since smaller service times at the first k tasks to complete

59



1 2 3 4

1

2

3

4

E[T
(1)
(5,3)]

E
[T

(5
,3
)]

Figure 10: Plot of E[T
(1)
(5,3)] vs. E[T(5,3)]

will result in smaller service times at the remaining n − k tasks too. This opens

up the possibility that Conjecture 1 could be extended to systems even when the task

service times are correlated.

3.4.1 Comparison with Simulations

We now present preliminary simulation results that support Conjecture 5. In

particular, in Figure 10 we present the plot of the simulated average response time

of the system on the y-axis and the average time spent by a job at only one task,

which we denote by E[T
(1)
(n,k)] on the x-axis. The straight line supports Conjecture 5.

Unfortunately, unlike the previous sections, we do not have an expression for

E[T
(1)
(n,k)] in Equation (21). This is because the individual queues do not behave

as independent systems. For any task queue, the service time of an entity might

decrease depending on the service times of other entities in the same as well as other

task queues. Since the dependence structure of this system is extremely complicated,

estimation of E[T
(1)
(n,k)] is very difficult. However, efficient bounds on the individual

60



task response times can be used to obtain good bounds on the total response time

of the system and this forms part of our future work.

3.4.2 Conclusions

In this chapter, we provide simple and easy to obtain expressions for fork-join

queueing systems that are so hard to analyze that no approximations for the mean

response time of these systems exist in literature. We provide conjectures that are

strongly suggested to be true in experiments. We use these conjectures to design

efficient approximation algorithms for the fork-join queueing networks. This analysis

is useful in making decisions on system design.

Algorithm 2 can be used to make decisions on construction of the symmetric

tandem fork-join queueing network. For example, division of one task into sub-tasks

and having a separate queueing station for each sub-task results in an improvement

in the response time. However, if there is a cost (labor cost, for example) for op-

erating each queueing station, then the trade-off between the benefit gained from

lower sojourn times and increased cost of keeping the system in operation is not

easy to analyze without knowing the increase or decrease in response times with n

and l. Prior to this work, the only way to quantify this trade-off was simulations

which require huge computing resources and time. Conjecture 3 can now be used

to quantify the trade-off between the reduction in response time by increasing the

number of subtasks and the cost of operating a queueing station for each sub-task.

This knowledge is important for the construction of efficient systems.

Similarly, in the case heterogeneous fork-join queues, we can use Algorithm 3

to estimate the change in response times with addition to or subtraction from the

number of parallel tasks by conducting just one extra simulation. This would save

computing resources and the time required for running a simulation for each change

61



in the arrival rate of the new system.

Finally, in the (n, k) fork-join queueing system, if the server starts processing

a task and k other tasks get completed before the service completion of that task,

then the server has wasted some amount of time and resources in serving a task that

left the system before completion. Therefore, it is not obvious that the response

time is minimized by sending the entity to all n task processors and waiting for k of

them to finish. For example, simulations show that for lower traffic intensities, when

(n, k) = (5, 3), the system performs better in terms of lower expected response times

than when (n, k) = (10, 6). However, for higher traffic intensities, the system with

(n, k) = (10, 6) performs better for the same value of the service rate µ. Therefore,

bounds obtained using Conjecture 5 can be used to construct an efficient system

based on the requirement.

62



4. THE MAXIMUM RATIO CLIQUE PROBLEM∗

We now move on to the second part of this dissertation. The problem considered

in this chapter is encountered when a performance measure is expressed as a ratio of

functions of the decision variables and input parameters of the system. We formulate

a new fractional programming problem and present solution methodologies.

4.1 Introduction

Given a simple undirected graph G = (V,E) with the set V = {1, . . . , n} of

vertices, a clique is a subset of vertices inducing a complete subgraph. A maximal

clique is a clique that is not a subset of a larger clique, and a maximum clique is a

clique with the maximum possible number of vertices in the graph. Given a non-

negative weight wi associated with each vertex i ∈ V , the maximum weight clique

problem is to find a clique that maximizes the sum of its vertex weights. The case

where wi = 1 ∀i ∈ V corresponds to the classical maximum clique problem.

The clique concept was originally introduced by Luce and Perry [43] to describe

a group of friends, or cohesive subgroup, in a social network. It should be noted that

maximality by inclusion was required as a part of the original definition, i.e., only

maximal cliques were treated as cohesive subgroups. Since then, cliques have found

numerous applications in diverse areas, including social network analysis, computa-

tional biology and coding theory among others [10]. From an applied perspective,

cliques are typically used to model clusters in a network representation of a cer-

tain complex system, where one wants to maximize the overall weight of a cluster.

However, in some cases a fractional objective function provides a more appropriate

∗Reprinted with permission from The Maximum Ratio Clique Problem by S. Sethuraman and
S. Butenko, 2015. Computational Management Science, 12(1):197-218, Copyright [2015].

63



description of the underlying goal. For example, in social network analysis, one may

be interested in finding cohesive subgroups with the maximum (minimum) average

value of a measure of interest, e.g., a group with the highest or lowest average income.

As another example, consider a variation of the market graph [9], where the vertices

represent stocks and the edges correspond to pairs of stocks with negative correla-

tions of price fluctuations. Then a maximal clique describes a diversified portfolio of

stocks, which we will refer to as a clique portfolio. Assume that the buying price of

a fixed number of shares of stock i at time 0 is given by bi, and the selling price of

the same number of shares of the same stock at time 1 is projected to be si. Then

finding a clique portfolio with the maximum projected return requires maximizing

the ratio (
∑

i∈C si)/(
∑

i∈C bi), where C is a maximal clique in the market graph.

In addition, a fractional objective arises in network-based location models, such

as establishment of wind farms. To minimize the effects of wind speed variability, it

is required that wind farms be located at places that have a negative correlation with

each other in terms of wind speed over time. However, the costs of setting up wind

farms might vary widely depending on factors like the size of the farm, the height of

wind turbines, and geographical factors. High wind speeds are required to get the

maximum possible power output in a wind farm. The problem of finding appropriate

locations for wind farms that maximize the overall energy output per dollar invested

can be modeled as the problem of finding a maximal clique, where the vertices of

the graph represent different possible wind farm configurations for the prospective

locations of interest. Then a maximum ratio clique has the highest value of the ratio

of the net wind speed to the net cost.

Next, we formally define the problem studied in this chapter.

Definition 1. Given a simple undirected graph G = (V,E), where each vertex i ∈ V

64



is assigned two non-negative rational weights, ai and bi, the maximum ratio clique

problem (MRCP) is to find a maximal clique C in G that maximizes the quantity∑
i∈C ai∑
i∈C bi

.

When bi = 1 for all i ∈ V , we obtain a special case of MRCP, which we will refer

to as the maximum average weight clique problem (MAWCP).

To the best of our knowledge, the maximum ratio clique problem has not been

considered in literature. However, fractional objective functions have been studied

for many classical problems in combinatorial optimization. Prokopyev et al. [51]

proved that the unconstrained fractional 0-1 programming problem is NP-hard. The

problem of finding a minimal cost to time ratio cycle was discussed by Dantzig et

al. [18] and Lawler [39]. Fox [25] proposed an out-of-killer algorithm for this problem.

A special case of this problem, the minimum cycle mean problem, was studied by

Karp [33], who gave a polynomial time algorithm. Orlin and Ahuja [50] developed an

approximate binary search procedure, which uses a scaling for an assignment problem

in its iterations. Dasdan and Gupta [19] discussed polynomial time algorithms to

solve this problem for system-performance analysis. Chandrasekaran [12] introduced

the minimal ratio spanning tree problem and proposed a polynomial time solution

algorithm. Shigeno et al. [54] developed algorithms for the fractional assignment

problem and Billionnet [8] developed approximations for the fractional knapsack

problem.

Methods for solving general fractional 0-1 programming problems have received

considerable attention in the literature. Isbell and Marlow [31] apply Newton’s

method for solving linear fractional programming problems over a polyhedron. This

approach was generalized to special non-linear cases by Dinkelbach [20]. Lawler [39]

gave a binary search procedure for solving linear and some cases of nonlinear frac-

65



tional programming problems. A comparison of these methods along with some

modifications was provided by Ibaraki [30]. Radzik [52] gave a modification of New-

ton’s method that has the number of iterations bounded by a polynomial function

of the number of variables. Megiddo [44] established the relation between the time

complexity of the linear objective version of a combinatorial optimization problem

and that of the corresponding fractional objective version. It was shown that if the

linear version had an efficient algorithm, then an efficient algorithm could be found

for the fractional version. Megiddo’s method is useful for the minimum ratio cy-

cle, minimum ratio spanning tree, minimum ratio (simple) path and maximum ratio

weighted matching problems because it gives an algorithm running in polynomial

time in the number of vertices in the graph. Wu [64] proposed a method for solving

a linear fractional 0-1 programming problem by converting it into a mixed integer

linear programming problem.

In this work, we prove that the decision version of MRCP is NP-complete and

formulate it as an integer programming problem with linear constraints. We investi-

gate three solution methods, namely, a mixed integer programming approach based

on linearization of the proposed integer formulation; binary search; and Newton’s

method. These methods are used to solve MRCP in stock market and wind en-

ergy graphs, as well as in instances from the 2nd and 10th DIMACS Implementation

Challenges. The corresponding results are tabulated and compared.

The remainder of this chapter is organized as follows: In Section 4.2, we establish

the computational complexity of the problem of interest and some related problems.

In Sections 4.3 and 4.4 we formulate MRCP as an integer programming problem and

describe the proposed solution methodologies. Section 4.5 describes graph instances

used for testing and presents the results of computational experiments.

66



4.2 Computational Complexity

Given a simple undirected graph G = (V,E), two non-negative rational weights,

ai and bi, associated with each vertex i ∈ V , and a positive rational number c, the

decision version of MRCP is to verify if there exists a maximal clique C in G such

that
∑
i∈C ai∑
i∈C bi

≥ c. The decision version of MAWCP is defined likewise.

Proposition 1. The decision version of MRCP and the decision version of MAWCP

are NP-complete.

PROOF. Clearly, the decision version of MRCP is in the class NP. To prove NP-

completeness, we reduce two different NP-complete problems to MRCP. First, we

use a reduction from the minimum maximal clique problem, i.e. the problem of

finding the maximal clique in a graph with the minimum number of vertices. This

problem is equivalent to the minimum independent dominating set problem in the

complement graph, the decision version of which is known to be NP-complete [26].

Let G = (V,E) with V = {1, . . . , n} be an instance of the minimum maximal

clique problem. Construct an instance G′ = (V ′, E ′) of MRCP with V ′ = {vi : i ∈

V } ∪ {v0}, E ′ = {(vi, vj) : (i, j) ∈ E} ∪ {(vi, v0) : i ∈ V }, and ai = 1 ∀i ∈ {0, . . . , n};

b0 = 1; bi = 2 ∀i ∈ {1, . . . , n}.

Consider two maximal cliques, C1 and C2, in G′, with |C1| = p+1 and |C2| = q+1,

where p < q. Since v0 is connected to every other vertex in G′, it belongs to every

maximal clique, i.e., v0 ∈ C1 and v0 ∈ C2. The MRCP objective value for C1 is

f1 =
∑
i:vi∈C1

ai∑
i:vi∈C1

bi
= p+1

2p+1
, and that for C2 is f2 =

∑
i:vi∈C2

ai∑
i:vi∈C2

bi
= q+1

2q+1
. We have

f1 − f2 =
p+ 1

2p+ 1
− q + 1

2q + 1
=

q − p
(2p+ 1)(2q + 1)

> 0.

Note that any maximal clique in G′ with vertex v0 removed corresponds to a maximal

67



clique in G. Therefore, G has a maximal clique of size p or less iff G′ has a maximal

clique C with
∑
i:vi∈C

ai∑
i:vi∈C

bi
≥ c, where c = p+1

2p+1
. Thus, the decision version of MRCP is

NP-complete.

Using the same construction G′ with a0 = 2, ai = 1 ∀i ∈ {1, . . . , n}; bi = 1 ∀i ∈

{0, . . . , n}, G has a maximal clique of size p or less iff G′ has a maximal clique with∑
i:vi∈C

ai∑
i:vi∈C

bi
≥ c, where c = 1 + 1

p+1
. This shows that MAWCP is NP-complete (which

also implies that MRCP is NP-complete and provides another way of solving the

minimum maximal clique problem using methods for MRCP).

Note that if we set a0 = 0.5 instead of a0 = 2 above, it is easy to see that G

has a clique of size at least p iff G′ has a maximal clique C with
∑
i:vi∈C

ai∑
i:vi∈C

bi
≥ c,

where c = 1− 0.5
p+1

, thus we obtain an alternative reduction from the maximum clique

problem. The same arguments can be used to show that the decision version of the

minimization problem, which asks to find a maximal clique with the minimum value

of the fractional objective, is also NP-complete. �

To construct a feasible solution to MRCP it is sufficient to find any maximal

clique in G, which can be easily done using, e.g., a simple greedy algorithm. Next

we show that given an arbitrary feasible solution for MRCP finding a better solution

is a hard problem. Subsequently, the problem Π1 is defined as follows.

Π1: Given a simple undirected graph G = (V,E), and two non-negative rational

weights, ai and bi, associated with each vertex i ∈ V , do there exist two maximal

cliques C1 and C2 in G such that |
∑
i∈C1

ai∑
i∈C1

bi
−

∑
j∈C2

aj∑
j∈C2

bj
| > 0.

Proposition 2. Problem Π1 is NP-complete.

PROOF. Problem Π1 is clearly in NP. To show NP-completeness, we use a reduction

from the following problem. A well-covered graph is a graph in which every maximal

68



independent set is a maximum independent set. The problem of recognizing a well-

covered graph is known to be NP-hard [15, 53]. Let G = (V,E) with V = {1, . . . , n}

be an instance of the problem of recognizing a well-covered graph. Construct an

instance G′ = (V ′, E ′) of Π1 with V ′ = {vi : i ∈ V } ∪ {v0}. For i, j ∈ V , an

edge exists between vi and vj in G′ iff there is no edge between vertices i and j

in G. In addition, vertex v0 is adjacent to all vertices in V ′ \ {v0}. Set a0 = 2;

ai = 1 ∀i ∈ {1, . . . , n}; and bi = 1 ∀i ∈ {0, . . . , n}. The MRCP objective function

value for any maximal clique of size p+ 1 in G′ is p+2
p+1

. Hence, the absolute value of

the difference between the MRCP objective function values of two maximal cliques is

non-zero iff they have different cardinalities, i.e., iff G is not well-covered. Therefore,

two maximal cliques C1 and C2 with |
∑
i:vi∈C1

ai∑
i:vi∈C1

bi
−

∑
j:vj∈C2

aj∑
j:vj∈C2

bj
| > 0 exist in G′ iff G is

not well-covered. �

Even though determining whether two feasible solutions with different MRCP

objective function values exist in a graph is a hard problem in general, to prove that

the answer is positive it suffices to find two maximal cliques with different objective

values. Assuming that we are dealing with an instance of MRCP such that maximal

cliques with different objective values are known to exist, an interesting question is

how to find the minimum difference in the objective values that two maximal cliques

can have. This difference could be used as a part of a stopping criterion ensuring an

optimal solution in the methods proposed in Sections 4.4.2 and 4.4.3. Next, we show

that obtaining this minimum difference is a hard problem. The formal definition of

the problem, which is henceforth referred to as problem Π2, is as follows.

69



Π2: Given a simple undirected graph G = (V,E) with the set V = {1, . . . , n} of

vertices, where each vertex i ∈ V , is assigned two non-negative rational weights,

ai and bi, find the least non-zero value of the quantity |
∑
i∈C1

ai∑
i∈C1

bi
−

∑
j∈C2

aj∑
j∈C2

bj
|, where

C1 and C2 are any two maximal cliques in G, assuming that such a quantity

exists.

Subsequently, the decision version of Π2 is the following: Given a simple undi-

rected graph G = (V,E), two non-negative weights, ai and bi, associated with each

vertex i ∈ V , and a positive rational number k, do there exist two maximal cliques

C1 and C2 in G such that |
∑
i∈C1

ai∑
i∈C1

bi
−

∑
j∈C2

aj∑
j∈C2

bj
| ≤ k?

Proposition 3. The decision version of Π2 is NP-complete.

PROOF. The decision version of Π2 is clearly in the class NP. To prove NP-completeness,

a reduction from the maximum clique problem is used. Let G = (V,E) with V =

{1, . . . , n} be an instance of the maximum clique problem. Construct an instance

G̃ = (Ṽ , Ẽ) of Π2 with Ṽ = V ′∪V ′′ and Ẽ = E ′∪E ′′, where V ′ = {vi : i ∈ V }∪{v0},

V ′′ = {vi : i = n + 1, . . . 2n} ∪ {v2n+1}; and E ′ = {(vi, vj) : (i, j) ∈ E} ∪ {(v0, vi) :

i ∈ V }, E ′′ = {(vn+i, vn+j) : (i, j) ∈ E} ∪ {(v2n+1, vn+i) : i ∈ V }. Therefore, graph

G̃ has two identical components defined by subsets of vertices V ′ and V ′′ with no

edge between them. For graph G̃, set ai = 1 ∀i ∈ {1, . . . , 2n}, a0 = 2, a2n+1 = 1.5,

bi = 1 ∀i ∈ {1, . . . , 2n}, b0 = 1 and b2n+1 = 0.5. Then the quantity of interest is

r(C1, C2) =

∣∣∣∣∣
∑

i:vi∈C1
ai∑

i:vi∈C1
bi
−
∑

j:vj∈C2
aj∑

j:vj∈C2
bj

∣∣∣∣∣ , (22)

where C1 and C2 are any two maximal cliques in G̃. Let G′ and G′′ be the subgraphs

of G̃ induced by V ′ and V ′′, respectively. Then G′ and G′′ are isomorphic and there is

a one-to-one correspondence between maximal cliques in G′ and G′′. Hence, it can be

70



shown that r(C1, C2) is minimized when C1 ⊂ V ′ and C2 ⊂ V ′′ are maximum cliques

of the same size in G′ and G′′, respectively. Then the least value that r(C1, C2) can

take is r = 0.5
(p+1)(p+0.5)

, where p + 1 is the size of a maximum clique in G′, which is

the same as saying that p is the size of a maximum clique in G. Therefore, there

exist two maximal cliques C1 and C2 in G̃ such that r(C1, C2) ≤ 0.5
(p+1)(p+0.5)

iff there

exists a clique of size at least p in G. �

4.3 Integer Programming Formulation

The maximum ratio clique problem can be formulated as follows:

maximize

∑n
i=1 aixi∑n
i=1 bixi

(23)

subject to xi + xj ≤ 1, ∀(i, j) /∈ E, i 6= j (24)

n∑
i=1

(1− aij)xi ≥ 1, ∀j ∈ V (25)

xi ∈ {0, 1}, ∀i ∈ V, (26)

where ∀i ∈ V, xi ∈ {0, 1} is a decision variable indicating whether i is a part of the

solution clique; aij are the elements of the adjacency matrix for graph G, that is

aij = 1 if vertex i and vertex j are connected by an edge and 0 otherwise. Note

that for the maximum weight clique problem, the objective function and the non-

negativity of the weights force the optimal solution to the problem to be a maximal

clique. On the other hand, for MRCP, we need to include additional constraints (25)

to guarantee that the solution is a maximal clique. Otherwise, a single vertex i with

maximum ratio ai/bi would trivially be an optimal solution for the above integer

program.

71



4.4 Solution Methods

In this section, we propose three solution methods for MRCP, which will be

compared in terms of their computational efficacy in Section 4.5.

4.4.1 Linearization

We use the formulation (23)–(26) to develop a mixed integer linear programming

(MILP) formulation for MRCP. We follow the linearization framework proposed by

Wu [64]. Namely, we introduce new variables y = 1∑n
i=1 bixi

and zi = yxi, ∀i ∈ V and

replace the quadratic expression for zi with the following four linear constraints:

zi ≤ Uxi, ∀i ∈ V (27)

zi ≥ Lxi, ∀i ∈ V (28)

zi ≤ y − L(1− xi), ∀i ∈ V (29)

zi ≥ y − U(1− xi), ∀i ∈ V, (30)

where L and U are the upper and lower bounds on y, respectively. For MRCP, we

can use L and U values given by

L =
1∑n
i=1 bi

and U =
1

min1≤i≤n{bi}
,

72



respectively. The resulting MILP formulation is:

maximize
n∑
i=1

aizi (31)

subject to xi + xj ≤ 1, ∀(i, j) /∈ E, i 6= j (32)

n∑
i=1

(1− aij)xi ≥ 1, ∀j ∈ V (33)

n∑
i=1

bizi = 1 (34)

zi ≤ Uxi, zi ≥ Lxi, ∀i ∈ V (35)

zi ≤ y − L(1− xi), zi ≥ y − U(1− xi), ∀i ∈ V (36)

xi ∈ 0, 1; L ≤ y ≤ U ; zi ≥ 0, ∀i ∈ V. (37)

The first proposed solution method uses the MILP (31)–(37) in conjunction with a

modern MILP solver.

4.4.2 Binary Search

Binary search has been used as a method to solve fractional programming prob-

lems by Lawler [39] and Ibaraki [30]. We adopt this method for MRCP as follows.

For λ ∈ R+, denote by P (λ) the optimal objective function value of the following

binary program:

Q(λ) : maximize
n∑
i=1

aixi − λ(
n∑
i=1

bixi) (38)

subject to xi + xj ≤ 1, ∀(i, j) /∈ E, i 6= j (39)

n∑
i=1

(1− aij)xi ≥ 1, ∀j ∈ V (40)

xi ∈ {0, 1}, ∀i ∈ V (41)

73



For MRCP, P (λ) is convex, piece-wise linear and strictly decreasing. Let C(λ)

denote the maximal clique corresponding to the solution to Q(λ). For a given value

of λ, if P (λ) > 0, then for the maximal clique C(λ), we have λ <
∑
i∈C(λ) ai∑
i∈C(λ) bi

. On

the other hand, if P (λ) < 0, then λ >
∑
i∈C ai∑
i∈C bi

for any maximal clique C in G.

Therefore, the binary search algorithm seeks to find an approximation to λ∗ such

that P (λ∗) = 0.

Let C̃ be any maximal clique in G. Then
∑
i∈C̃ ai∑
i∈C̃ bi

gives a lower bound of the

optimal ratio value for MRCP. Such C̃ can be found by selecting the vertex with the

maximum value of the ratio of its weights and adding its neighbors in the decreasing

order of the ratio of their weights while ensuring that the chosen set of vertices still

forms a clique. An upper bound is given by max
1≤i≤n

ai
bi

. Let λ1 =
∑
i∈C̃ ai∑
i∈C̃ bi

and λ2 =

max
1≤i≤n

ai
bi

. Then
∑
i∈C(λ1)

ai∑
i∈C(λ1)

bi
gives an improved lower bound (LB) and λ2P (λ1)−λ1P (λ2)

P (λ1)−P (λ2)

gives an improved upper bound (UB) for the root of P (λ) [30]. At each iteration of

the binary search algorithm, λ = LB+UB
2

is computed and P (λ) is found along with

the corresponding maximal clique solution C(λ). For a given ε > 0, if UB−LB < ε,

then the algorithm returns C(λ) and the corresponding objective function value as an

ε-approximation of the optimal objective value λ∗ of MRCP. Otherwise, if P (λ) > 0,

then the algorithm reassigns the value of λ1 to be equal to λ and the corresponding

values of LB and UB are updated. On the other hand, if P (λ) < 0, then the value

of λ2 is reassigned to be equal to λ and the value of UB is updated. The procedure

is summarized in Algorithm 4.

It should be noted that the upper bound on the MRCP objective function value

given by max
1≤i≤n

ai
bi

might be of arbitrarily poor quality. For example, consider an

instance of MRCP given by a graph G = ({v1, v2}, (v1, v2)) with the weights a1 = a,

b1 = 1, a2 = 1 and b2 = a, where a is an arbitrarily large positive integer. Then the

MRCP objective function value is a+1
a+1

= 1, while the upper bound is a.

74



Algorithm 4 Binary search algorithm for MRCP

Input: G = (V,E), ai, bi ∀i ∈ V , any maximal clique C̃ in G, ε > 0
Output: A maximal clique C(λ1) and λ = (

∑
i∈C(λ1)

ai)/(
∑

i∈C(λ1)

bi) such that

λ∗ − λ < ε, where λ∗ is the optimal objective function value for MRCP

λ1 =
∑
i∈C̃ ai∑
i∈C̃ bi

λ2 = max
1≤i≤n

ai
bi

Compute P (λ1), C(λ1), P (λ2) and C(λ2) by solvingQ(λ1) andQ(λ2) in (38)–(41)

LB =
∑
i∈C(λ1)

ai∑
i∈C(λ1)

bi

UB = λ2P (λ1)−λ1P (λ2)
P (λ1)−P (λ2)

λ = λ1, P (λ) = P (λ1) and C(λ) = C(λ1)
Set the number of iterations k = 1
while UB − LB ≥ ε do
λ = LB+UB

2

Compute P (λ) and C(λ)
if P (λ) ≥ 0 then
λ1 = λ and P (λ1) = P (λ)

LB =
∑
i∈C(λ1)

ai∑
i∈C(λ1)

bi

UB = λ2P (λ1)−λ1P (λ2)
P (λ1)−P (λ2)

else
λ2 = λ and P (λ2) = P (λ)

UB = λ2P (λ1)−λ1P (λ2)
P (λ1)−P (λ2)

k = k + 1
end if

end while
return C(λ), λ = (

∑
i∈C(λ)

ai)/(
∑

i∈C(λ)

bi)

The results of experiments with this algorithm are given in Section 4.5. The

linear convergence of the binary search method for general fractional programming

problems is shown by Ibaraki [30].

75



4.4.3 Newton’s Method

Newton’s Method for fractional programming problems was proposed by Isbell

and Marlow [31] and has been adapted to MRCP here. We define C̃, P (λ) and

C(λ) for λ ∈ R+, as in Section 4.4.2. The lower bound (λ1) to MRCP is then given

by
∑
i∈C̃ ai∑
i∈C̃ bi

. We set the initial value of LB to be equal to λ1. At each iteration of

Newton’s method, the values of P (λ1) and C(λ1) are computed. For a given ε > 0, if

P (λ1) < ε then C(λ1) and the corresponding objective function value are returned.

If P (λ1) > ε, then λ1 is reset to the value
∑
i∈C(λ1)

ai∑
i∈C(λ1)

bi
. The algorithm is summarized in

Algorithm 5. The results of computational experiments with Algorithm 5 are given

in Section 4.5. The quadratic rate of convergence of Newton’s method for general

fractional programs is shown by Ibaraki [30].

Algorithm 5 Newton’s Method for the Maximum Ratio Maximal Clique Problem

Input: G = (V,E), ai, bi ∀i ∈ V , any maximal clique C̃ in G, ε > 0
Output: A maximal clique C(λ1) and λ = (

∑
i∈C(λ1)

ai)/(
∑

i∈C(λ1)

bi) such that

λ∗ − λ < ε/(min
i∈V

bi), where λ∗ is the optimal objective function value for MRCP

λ1 =
∑
i∈C̃ ai∑
i∈C̃ bi

Compute P (λ1) and an optimal maximal clique solution C(λ1) of (38)–(41)
Set the number of iterations k = 1
while P (λ1) ≥ ε do

λ1 =
∑
i∈C(λ1)

ai∑
i∈C(λ1)

bi

Compute P (λ1) and C(λ1)
k = k + 1

end while
return C(λ1), λ = (

∑
i∈C(λ1)

ai)/(
∑

i∈C(λ1)

bi)

76



Note that Algorithm 5 returns C(λ1), where λ1 is such that 0 ≤ P (λ1) < ε, i.e.,

∑
i∈C(λ1)

ai − λ1
∑
i∈C(λ)

bi < ε.

Let C∗ be a maximum clique that solves MRCP to optimality. Then

(
∑
i∈C∗

ai)/(
∑
i∈C∗

bi) ≥ λ ≥ λ1

and ∑
i∈C∗

ai − λ1
∑
i∈C∗

bi ≤
∑

i∈C(λ1)

ai − λ1
∑

i∈C(λ1)

bi < ε,

implying

0 ≤ (
∑
i∈C∗

ai)/(
∑
i∈C∗

bi)− λ ≤ (
∑
i∈C∗

ai)/(
∑
i∈C∗

bi)− λ1 < ε/(
∑
i∈C∗

bi) < ε/(min
i∈V

bi).

We could scale bi, i ∈ V to obtain an equivalent instance of MRCP with min
i∈V

bi = 1,

thus obtaining an ε-approximation algorithm with respect to the objective function

of MRCP.

Thus, Algorithms 4 and 5 are ε-approximation algorithms. The results from

propositions 2 and 3 show that the value of ε such that the algorithms can be claimed

to be exact cannot be found in polynomial time, unless P=NP.

4.5 Results of Computational Experiments

In this section we present the results of computational experiments with the

proposed methods for solving MRCP. We start by describing the test instances used

in the experiments.

77



4.5.1 Description of Test Instances

The instances used in the computational experiments are constructed as follows.

Set A and Set B. We generated uniform random graphs, where each edge exists

with probability 0.5, with both weights as integers between 1 and 100 following a

discrete uniform distribution. For Set A, no additional constraint was imposed on

these weights. However, in practical applications like the stock market graph, the

two weights at each vertex may be highly correlated. Therefore, in Set B, the two

weights of each vertex were constrained to be within 1.5% of each other.

Set C. We constructed this set of instances using stock market data for 500

financial instruments over a 500-day period, as described in [9]. We calculated the

correlation of price fluctuations for each pair of stocks over the considered period.

An edge exists between two vertices iff this correlation is below a threshold value

set at 0 for the purpose of experiments. The first and second weights for each node

are the prices of stocks of the corresponding financial instrument on the last and

first day, respectively. These represent the selling and buying prices of the financial

instrument over this time period.

Set D. Another application considered was establishment of wind turbines. We

used wind energy information from [1] to determine 250 prospective locations for

wind energy farms. The historical wind speed data at these locations at heights of

80 and 100 meters are available at the same source. Each location results in two

vertices in the wind turbine graph. The first vertex corresponds to the construction

of a 80 meter high wind turbine at the location and the second corresponds to the

construction of a 100 meter high wind turbine. The first weight of each vertex is the

average wind speed at the corresponding location and height. The second weight

for each node is proportional to the sum of the installed capital cost and the annual

78



operating cost for the corresponding height of the wind turbine. In this case, the

weight of the 80 meter high turbine was set to 1 and that of the 100 meter high

turbine was set to be equal to the ratio of the net costs of the 100 meter high turbine

to that of the 80 meter high turbine. The capital and operating costs are obtained

from [62]. Two nodes are connected if the wind speeds at the two locations are

negatively correlated (i.e., the correlation threshold is 0) in the historical data. This

analysis was conducted for the data from 3 years: 2004, 2005 and 2006. In practice,

the wind speeds over the years can be averaged to form an instance of MRCP.

Set E. Observing that the proof of Proposition 1 gives a simple one-to-one cor-

respondence between optimal solutions of the minimum maximal clique problem and

MRCP, we solved the minimum maximal clique problem on instances from the 2nd

and 10th DIMACS Implementation Challenges using the first reduction in the proof

of Proposition 1. Based on the construction of the instance of MRCP from the cor-

responding instance of the minimum maximal clique problem, the number of vertices

in the constructed graph and in its maximum ratio clique are one more than those

in the original graph and its minimum maximal clique, respectively.

Set F. Finally, we solved the maximum ratio maximal clique problem on instances

from the 2nd and 10th DIMACS Implementation Challenges. For a graph with vertex

set V , the first and second weights for vertex i were assigned to be equal to i and

|V | − i+ 1, respectively, for i ∈ V .

Table 29 summarizes the basic characteristics of the instances used. In particular,

it provides the name of each instance, its number of vertices, number of edges, density,

the optimal objective function value, and the size of a maximal clique representing

an optimal solution. The entries reported in the last two columns were obtained

using the proposed solution methods as described next.

79



4.5.2 Comparison of Results

We applied the three methods described in Section 4.4 to solve MRCP on the

considered graph instances using a DELL OPTIPLEX 960 computer with INTEL(R)

CORE(TM) 2 QUAD 3 GHZ processor and 8 GB of RAM. We implemented the

algorithms using Microsoft Visual Studio 2008 and CPLEX 11 as the MILP solver.

We set a time limit of 4 hours for the linearization method. For the binary search and

Newton’s method, the time limit for each iteration was 3 hours and the next iteration

was begun only if the clock time did not exceed 3 hours. In addition, ε = 10−3 was

used in the stopping criterion. Results reported are only for the cases where at least

one of the methods returned a solution within the given time limits.

Table 30 compares the results obtained using the solution methodologies proposed

in Section 4.4 in terms of CPU time in seconds. In addition, the number of iterations

required for convergence for the binary search and Newton’s method are tabulated

under the columns “Steps”. In this table “TE” stands for unavailability of results due

to the time limit being exceeded and “OM” stands for unavailability of results due

to CPLEX out of memory error. It should be noted that the binary search requires

the solution of problem Q(λ) for for the lower and upper bounds in the first iteration

while Newton’s method algorithm requires this only for the lower bound. Therefore,

even with the same or smaller number of steps, the performance of the binary search

method might be worse than that of the Newton’s method. Below we summarize

our observations concerning the results of experiments for each considered set of test

instances.

Sets A and B. The densities of these instances in Table 29 are close to 50% as

expected from the construction. The objective function in all instances in Set B is

close to 1 since the weights are constrained to be close to each other. In Table 30,

80



we observe that for all these instances, Newton’s method and binary search perform

better than the linearization method. The difference becomes more pronounced as

the size of the instances increases. For some instances, the linearization method did

not return an optimal solution within the time limit. The performance of Newton’s

method and binary search were comparable to each other on the considered random

graphs.

Set C. The high values of the ratio of the sum of selling prices to the sum of

the buying prices in the optimal solution in Table 29 show that at least some of the

financial instruments corresponding to the vertices of the optimal maximal clique

themselves have a high value of the ratio between their weights. For these instances,

Newton’s method performed better than binary search, which in its turn performed

better than linearization as seen in Table 30. The time required to solve these

instances was considerably lower than the time required to solve the instances with

500 vertices in the first two sets of instances. This can be explained by observing

that these graphs have a lower edge density than the uniform random graphs used.

Set D. As can be seen from the description in Table 29, these graphs have a

very low edge density. The correlation threshold can be varied to obtain a higher

density and subsequently a higher clique size in the optimal solution. The high values

of the objective function result from using the relative costs as the second weights

of the vertices instead of the actual costs. The comparison of solution methods on

these graphs in Table 30 shows the same trend as in the stock market graphs. The

performance of Newton’s method is again the best followed by the binary search and

linearization methods in that order. The time required to obtain the solution for

these instances is lower compared to the time required for other instances with 500

vertices seen up till now. This again corresponds to the decrease in edge density in

these instances.

81



Set E. Recall that based on the construction of an instance of MRCP from

the corresponding instance of the minimum maximal clique problem, the number

of vertices in a maximum ratio clique is one more than that in the corresponding

minimum maximal clique in the original graph. These are tabulated in the column

“Clique Size” in Table 29. The cardinality of the minimum maximal clique in these

instances is always 2 for the instances listed between karate and email. This is

consistent with the low density of these graphs. The same trend as before is observed

in the performance of the three methods in Table 30. Newton’s method and binary

search are comparable for this set of instances. However, Newton’s method is seen to

be more robust than the binary search, since there are instances in which a solution

is obtained within the time limit for Newton’s method, but not for binary search.

Both methods in general perform better than linearization. However, there are some

exceptions, e.g., c-fat500-1 and c-fat500-10.

Set F. Since the average of the numerator and denominator weights over all

the vertices is equal in these instances, the objective function value in Table 29 is

close to 1 in many cases. In general, for this set of instances Newton’s method

outperforms binary search and binary search outperforms linearization. However,

we again observe exceptions in c-fat graphs and johnson32-2-4 graph.

The number of iterations of Newton’s method and binary search has not been seen

to be very different from each other in general. However, for the instances for which

binary search performs better, the number of steps was at least one less than that

of the Newton’s method. This is consistent with the number of times the problem

Q(λ) is solved in both methods. From the numerical experiments above, it can be

concluded that Newton’s method can be expected to perform better than binary

search and linearization in many cases. However, graphs with a specific structure

might arise, which make it easier for CPLEX to solve the linearized formulation

82



faster than expected. Similarly, if the lower and upper bounds are very effective,

then binary search can perform better than Newton’s method. For many instances

of the DIMACS Implementation Challenges, the lower and upper bounds described

in Section 4.4 were very tight. This is discerned from the number of iterations, which

was 1 for many of these instances.

Table 29: Description of test instances used, optimal objective function values, and
the corresponding maximal clique sizes.

# |V | |E| Density (%) Obj. Fn. Clique Size

Set A: Uniform random graphs with uncorrelated weights

random-1 100 2266 45.78 3.28 10

random-2 150 5212 46.64 4.69 8

random-3 200 10008 50.29 4.21 5

random-4 400 40786 51.11 4.83 7

random-5 500 63789 51.13 3.65 9

Set B: Uniform random graphs with constrained vertex ratio

random-6 100 2655 53.64 1.15 13

random-7 150 5767 51.61 1.20 9

random-8 200 10220 51.36 1.19 10

random-9 400 38942 48.80 1.32 7

random-10 500 62444 50.06 1.37 9

Set C: Stock market graphs

market-1 500 23116 18.53 21.21 4

market-2 500 26431 21.19 23.69 5

market-3 500 27704 22.21 13.92 4

market-4 500 25819 20.70 18.74 5

83



Table 29: (continued)

# |V | |E| Density (%) Obj. Fn. Clique Size

market-5 500 26196 21.00 14.19 4

Set D: Wind energy graphs

wind-2004 500 10277 8.24 94142.30 3

wind-2005 500 10516 8.43 94686.60 2

wind-2006 500 9681 7.76 98471.00 2

Set E: DIMACS instances for minimum maximal clique

brock200 1 201 15034 74.80 0.53 9

brock 200 2 201 10076 50.13 0.56 5

brock200 3 201 12248 60.94 0.55 6

brock200 4 201 13289 66.11 0.54 7

c-fat200-1 201 1734 8.63 0.52 11

c-fat200-2 201 3435 17.09 0.51 23

c-fat200-5 201 8673 43.15 0.50 57

c-fat500-1 501 4959 3.96 0.52 13

c-fat500-2 501 9639 7.70 0.51 25

c-fat500-5 501 23691 18.91 0.50 63

c-fat500-10 501 47127 37.63 0.50 125

hamming6-2 65 1888 90.77 0.52 13

hamming6-4 65 768 36.92 0.60 3

hamming8-4 257 21120 64.20 0.56 5

johnson8-2-4 29 238 58.62 0.56 5

johnson8-4-4 71 1925 77.46 0.53 8

johnson16-2-4 121 5580 76.86 0.53 9

84



Table 29: (continued)

# |V | |E| Density (%) Obj. Fn. Clique Size

johnson32-2-4 497 108376 87.93 0.52 17

keller4 172 9606 65.32 0.55 6

p hat300-1 301 11233 24.88 0.57 4

p hat300-2 301 22228 49.23 0.55 6

p hat300-3 301 33690 74.62 0.53 10

p hat500-1 501 32069 25.60 0.57 4

p hat700-1 701 61699 25.15 0.57 4

p hat1000-1 1001 123253 24.63 0.57 4

san200 0.7 1 201 14130 70.30 0.54 7

san200 0.7 2 201 14130 70.30 0.54 7

san200 0.9 1 201 18110 90.10 0.52 16

san200 0.9 2 201 18110 90.10 0.52 17

san200 0.9 3 201 18110 90.10 0.52 16

san400 0.5 1 401 40300 50.25 0.56 5

san400 0.7 2 401 56260 70.15 0.53 9

san1000 1001 251500 50.25 0.55 6

sanr200 0.7 201 14068 69.99 0.53 8

sanr200 0.9 201 18063 89.87 0.52 17

sanr400 0.5 401 40384 50.35 0.54 6

sanr400 0.7 401 56269 70.16 0.53 9

karate 35 112 18.82 0.60 3

dolphins 62 221 11.69 0.60 3

polbooks 106 546 9.81 0.60 3

85



Table 29: (continued)

# |V | |E| Density (%) Obj. Fn. Clique Size

adjnoun 113 537 8.49 0.60 3

football 116 728 10.91 0.60 3

jazz 199 2940 14.92 0.60 3

celegans metabolic 454 2478 2.41 0.60 3

email 1134 6584 1.02 0.60 3

Set F: DIMACS instances with ai = i, bi = |V | − i+ 1

brock200 1 200 14834 74.54 6.88 12

brock 200 2 200 9876 49.63 15.30 6

brock200 3 200 12048 60.54 13.89 8

brock200 4 200 13089 65.77 8.63 8

c-fat200-1 200 1534 7.71 1.22 10

c-fat200-2 200 3235 16.26 1.15 22

c-fat200-5 200 8473 42.58 1.02 58

c-fat500-1 500 4459 3.57 1.26 12

c-fat500-2 500 9139 7.33 1.07 26

c-fat500-5 500 23191 18.59 1.04 62

c-fat500-10 500 46627 37.38 1.01 126

hamming6-2 64 1824 90.48 1.65 16

hamming6-4 64 704 34.92 2.94 2

hamming8-4 256 20864 63.92 1.99 9

johnson8-2-4 28 210 55.56 1.15 4

johnson8-4-4 70 1855 76.81 1.41 7

johnson16-2-4 120 5460 76.47 1.26 8

86



Table 29: (continued)

# |V | |E| Density (%) Obj. Fn. Clique Size

johnson32-2-4 496 107880 87.88 18.59 16

keller4 171 9435 64.91 4.15 7

keller5 776 225990 75.15 4.53 15

p hat300-1 300 10933 24.38 25.76 4

p hat300-2 300 21928 48.89 7.51 13

p hat300-3 300 33390 74.45 7.23 16

p hat500-1 500 31569 25.31 19.66 4

p hat700-1 700 60999 24.93 21.08 4

p hat1000-1 1000 122253 24.48 35.01 5

san200 0.7 1 200 13930 70.00 10.96 15

san200 0.7 2 200 13930 70.00 18.14 12

san200 0.9 1 200 17910 90.00 4.94 20

san200 0.9 2 200 17910 90.00 5.03 26

san200 0.9 3 200 17910 90.00 4.55 21

san400 0.5 1 400 39900 50.00 57.68 6

san400 0.7 1 400 55860 70.00 12.53 11

san400 0.7 2 400 55860 70.00 16.19 15

san400 0.7 3 400 55860 70.00 17.94 12

san1000 1000 250500 50.15 83.42 7

sanr200 0.7 200 13868 69.69 10.06 11

sanr200 0.9 200 17863 89.76 4.86 23

sanr400 0.5 400 39984 50.11 15.23 7

sanr400 0.7 400 55869 70.01 14.19 10

87



Table 29: (continued)

# |V | |E| Density (%) Obj. Fn. Clique Size

karate 34 78 13.90 16.5 3

dolphins 62 159 8.41 11.6 2

polbooks 105 441 8.08 12.25 3

adjnoun 112 425 6.84 19.55 2

football 115 613 9.35 9.55 2

jazz 198 2742 14.06 7.29 2

celegans 453 2025 1.98 6.32 2

email 1133 5451 0.85 57.15 2

Table 30: Comparison of the results of experiments using the proposed approaches
on the graph instances described in Table 29.

Graph |V | Linearization Binary Search Newtons Method

Time Time Steps Time Steps

Set A: Uniform random graphs with uncorrelated weights

random-1 100 8.3 1.0 2 0.8 2

random-2 150 3.4 2.1 2 2.2 3

random-3 200 60.6 5.3 3 4.9 3

random-4 400 4213.5 95.0 3 77.2 2

random-5 500 TE 937.5 3 929.0 3

Set B: Uniform random graphs with constrained vertex ratio

random-6 100 2.9 0.6 3 0.2 2

random-7 150 80.7 4.5 4 4.6 4

random-8 200 267.7 25.2 4 10.3 3

88



Table 30: (continued)

Graph |V | Linearization Binary Search Newtons Method

Time Time Steps Time Steps

random-9 400 5642.4 159.1 2 183.9 4

random-10 500 TE 219.8 3 316.7 4

Set C: Stock market graphs

market-1 500 2428.3 121.8 4 82.8 3

market-2 500 910.9 80.7 3 38.6 2

market-3 500 2527.2 117.3 4 68.5 3

market-4 500 1834.4 110.1 4 64.5 3

market-5 500 1294.5 79.9 2 41.2 2

Set D: Wind energy graphs

wind-2004 500 484.5 85.8 3 42.5 2

wind-2005 500 161.0 93.2 3 70.6 3

wind-2006 500 98.8 42.3 1 41.6 2

Set E: DIMACS instances for minimum maximal clique

brock200 1 201 TE 1420.3 1 1117.9 2

brock 200 2 201 5623.8 104.2 1 81.6 2

brock200 3 201 TE 465.7 1 363.2 2

brock200 4 201 TE 764.6 1 784.4 2

c-fat200-1 201 429.8 20.7 1 21.9 2

c-fat200-2 201 347.2 13.5 1 13 2

c-fat200-5 201 241.2 12.3 1 12.3 2

c-fat500-1 501 119.2 447.1 1 397.8 2

c-fat500-2 501 347.2 348.3 1 337.6 2

89



Table 30: (continued)

Graph |V | Linearization Binary Search Newtons Method

Time Time Steps Time Steps

c-fat500-5 501 241.2 217 1 218.7 2

c-fat500-10 501 119.2 143 1 152.7 2

hamming6-2 65 57.5 0.4 1 0.4 2

hamming6-4 65 2.7 < 0.1 1 < 0.1 2

hamming8-4 257 TE 1.6 1 1.5 2

johnson8-2-4 29 < 0.1 < 0.1 1 < 0.1 1

johnson8-4-4 71 49.4 3.2 1 2.7 2

johnson16-2-4 121 0.7 0.4 1 0.3 1

johnson32-2-4 497 TE 1659.5 1 1186.5 1

keller4 172 5640.4 26.6 1 28.1 2

p hat300-1 301 8002.8 99.9 1 98.7 2

p hat300-2 301 TE 205.7 1 205 2

p hat300-3 301 TE 1547.5 1 1787.1 2

p hat500-1 501 TE 889.7 1 660.9 2

p hat700-1 701 TE 6701 1 6944 2

p hat1000-1 1001 TE TE TE 17094.3 2

san200 0.7 1 201 TE 348.2 1 448.9 2

san200 0.7 2 201 TE 104.5 1 106.8 2

san200 0.9 1 201 TE 3888.5 1 3998.8 2

san200 0.9 2 201 TE 3436.2 1 4245.6 2

san200 0.9 3 201 TE 10480 1 12779.9 2

san400 0.5 1 401 TE 1642.5 1 1672.8 2

90



Table 30: (continued)

Graph |V | Linearization Binary Search Newtons Method

Time Time Steps Time Steps

san400 0.7 2 401 TE TE TE 21596.8 2

san1000 1001 TE TE TE 21596.7 2

sanr200 0.7 201 TE 654.1 1 847.9 2

sanr200 0.9 201 TE TE TE 7519.1 2

sanr400 0.5 401 TE TE TE TE TE

sanr400 0.7 401 TE TE TE 21596.6 2

karate 35 0.08 < 0.1 1 < 0.1 2

dolphins 62 0.64 < 0.1 1 < 0.1 2

polbooks 106 3.71 0.3 1 0.3 2

adjnoun 113 3.15 0.3 1 0.3 2

football 116 5.86 0.6 1 0.6 2

jazz 199 80.37 1.6 1 1.8 2

celegans 454 602.507 104.3 4 41.6 2

email 1134 TE 1479.6 1 1449.4 2

Set F: DIMACS instances with ai = i, bi = |V | − i+ 1

brock200 1 200 4047.9 23.2 3 10.1 3

brock 200 2 200 155.6 1.5 1 1.2 2

brock200 3 200 342.1 2.3 1 1.5 2

brock200 4 200 1341.6 16.1 3 4.1 3

c-fat200-1 200 33.5 32.6 1 32.7 2

c-fat200-2 200 35.1 48.3 1 67.2 2

c-fat200-5 200 21.5 44.3 1 28.5 1

91



Table 30: (continued)

Graph |V | Linearization Binary Search Newtons Method

Time Time Steps Time Steps

c-fat500-1 500 827.3 850 1 1253.2 2

c-fat500-2 500 1375.7 953.9 1 822.4 1

c-fat500-5 500 275.2 3251.6 1 6749.2 2

c-fat500-10 500 203.9 1569.8 1 2623.9 2

hamming6-2 64 44.4 3.5 4 0.8 3

hamming6-4 64 0.8 0.3 1 0.3 2

hamming8-4 256 TE 854.7 2 234.4 2

johnson8-2-4 28 0.2 0.1 1 0.0 2

johnson8-4-4 70 46.3 9.7 3 5.6 3

johnson16-2-4 120 2394.2 708.6 1 231.0 2

johnson32-2-4 496 7670.6 OM OM OM OM

keller4 171 380.7 5.9 1 2.0 2

keller5 776 TE TE TE 10184.7 2

p hat300-1 300 431.1 9.7 2 12.9 4

p hat300-2 300 14296.6 107.8 3 25.6 2

p hat300-3 300 TE 105.6 3 66.7 3

p hat500-1 500 8768.1 129.6 3 66.8 3

p hat700-1 700 TE 286.6 3 239.0 3

p hat1000-1 1000 TE 654.3 1 482.0 2

san200 0.7 1 200 298.5 7.5 2 0.6 2

san200 0.7 2 200 222.4 0.5 1 0.4 1

san200 0.9 1 200 TE 17.4 2 9.3 3

92



Table 30: (continued)

Graph |V | Linearization Binary Search Newtons Method

Time Time Steps Time Steps

san200 0.9 2 200 TE 22.9 3 3.1 3

san200 0.9 3 200 TE 41.4 3 20.0 3

san400 0.5 1 400 218.3 6 1 5.4 2

san400 0.7 1 400 TE 128.3 1 24.7 2

san400 0.7 2 400 TE 40.6 1 1.9 1

san400 0.7 3 400 10986.6 13.9 3 5.0 3

san1000 1000 TE 179.8 1 176.7 2

sanr200 0.7 200 805.2 3.5 2 1.3 2

sanr200 0.9 200 TE 22.3 2 5.2 3

sanr400 0.5 400 8505.2 64.8 3 37.0 3

sanr400 0.7 400 TE 96.6 3 33.6 3

karate 34 0.1 < 0.1 1 < 0.1 1

dolphins 62 0.2 < 0.1 1 < 0.1 1

polbooks 105 1.1 0.3 1 0.2 2

adjnoun 112 0.6 0.3 1 0.3 2

football 115 2.4 1.2 2 1.4 3

jazz 198 60.7 11.4 3 13.8 4

celegans 453 463.6 116.6 4 71.7 3

email 1133 1476.9 1164.7 1 578.9 1

93



4.6 Conclusion

In this chapter, we introduce the fractional version of the maximum clique prob-

lem, the maximum ratio clique problem, which may find many interesting applica-

tions. We show that the decision version of this problem is NP-complete and propose

three solution methods. In the first method, the fractional objective function is con-

verted into a linear one by introducing additional variables and constraints. This

linear formulation is then used in conjunction with a modern MILP solver. The

other two methods, binary search and Newton’s method are ε-approximate methods.

We show that it is NP-hard to determine the value of ε which will ensure that these

algorithms are exact. We performed numerical experiments on randomly generated

instances, application-specific instances, and on standard graphs from the 2nd and

10th DIMACS Implementation Challenges. It was observed that most instances with

up to 500 vertices can be solved using the proposed solution methods. In terms of

CPU time, the results show a superior performance of Newton’s method in most

instances. However, there are cases where the linearization and/or binary search

methods perform better. Most of the test instances we used in this chapter are

available in public domain and could be used as benchmarks for evaluation of new

methods.

94



5. CONCLUSIONS AND FUTURE WORK

Improvement of system efficiency is one of the main objectives of any organiza-

tion. This system efficiency is quantified by certain performance measures. These

performance measures can be improved upon by making changes to the input pa-

rameters that are under human control.

To make an informed decision on the changes to be made in these input param-

eters, the basic requirement is to know the relationship between the performance

measure and the input parameters. In some systems, this first step itself becomes

an extremely difficult problem. One set of systems that fall into this category are

fork-join queueing networks. The performance measure in this context is the average

response time in the system. The problem of response time estimation of fork-join

queues has been around in literature for more than thirty years. This response time is

the maximum of a set of random variables that are highly correlated. This correlation

and consequently, the mean response time in fork-join queueing networks, has proved

to be extremely hard to quantify. We propose expressions for the mean response time

in terms of the job arrival and task service rates and the number of tasks that need

to be completed for the job to be complete. The symmetric n-dimensional fork-join

queueing system has been analyzed by many researchers. However, our estimation

technique easily scores over all the approximations available in literature in terms

of its simplicity, time and computing resources consumed, and most importantly its

remarkable accuracy. We have been able to extend the estimation technique of the

symmetric n-dimensional fork-join queue to more complex forms of fork-join queue-

ing networks. To the best of our knowledge, no approximations exist in literature for

these fork-join queues. Therefore, our contribution and its importance to this widely

95



applied set of queueing systems is crystal clear. Our expressions for the average

response times are so simple that the appropriate input parameters can be estimated

for the best possible performance of the system instantaneously in most cases.

Many exciting prospects for future research in the area of fork-join queues have

opened up with the work in this dissertation. The most obvious and glamorous of

these is providing a proof for the conjectures in Chapters 2 and 3. The simulations

presented in this dissertation provide strong justification for the use of these con-

jectures in their present form in applications. However, obtaining a proof would be

gratifying for any researcher. Apart from this, other and possibly easier research

prospects are the following:

1. In the symmetric tandem fork-join queueing system, we consider the case where

the sub-task service time is exponentially distributed. Since the expressions for

the mean response time are accurate for general service times in the symmet-

ric n-dimensional fork-join queueing system, therefore, it is highly likely that

these results can be extended to the case of general service times in the tan-

dem system as well. Extensive simulations need to be conducted to test this

postulate.

2. In Chapter 3, we provide an expression that is strongly supported by simula-

tions for the (n, k) fork-join queueing system. However, this expression cannot

be used directly to estimate the mean response time of this system because the

mean response time of a single task queue is dependent on the other queues

in the system. Nonetheless, it might be possible to obtain tighter bounds on

the mean response time of this single task queue when compared to that of

the entire system. These bounds can be used to used in conjunction with the

expression proposed in this dissertation to provide bounds on the system re-

96



sponse time. The bounds obtained using this procedure are likely to perform

better than those available in literature.

3. It would be interesting to approximate the mean response times in acyclic fork-

join queueing systems which are seen in the work of Baccelli et. al. [6] using

the expressions for the symmetric tandem fork-join queueing system. There

are no approximations available in literature for these systems. Therefore, if

the approximations obtained using this technique prove to be fairly accurate,

then this will be a significant contribution to the fork-join queueing literature.

In the second part of this dissertation, we move on to systems for which the

performance measures are expressed in terms of ratios of functions of the input

parameters. These input parameters represent limited resources. The constraints on

these resources could potentially prohibit the use of one resource at the same time as

another. Such systems are seen in application areas such as social network analysis,

stock markets and establishment of wind farms. The problem of determining the set

of input parameters that will maximize the performance measure is formulated as

a combinatorial optimization problem known as the maximum ratio clique problem.

We prove the complexity of this problem and compare solution methods to determine

the one that performs best in terms of computing time. In this first piece of work

dealing with the maximum ratio clique problem, we restrict the discussion to very

basic solution approaches, leaving much room for future improvements, some of which

are enumerated below:

1. The binary search and Newton’s method algorithms require the solution to

an integer programming problem at each iteration. A polyhedral study of the

polytope of this problem might result in better performance of these methods.

The valid inequalities for the maximum clique problem are also valid for this

97



integer programming problem. A preliminary run with some valid inequalities

based on maximal independent sets shows promising results and provides a

motivation for proceeding in this direction.

2. Exploiting alternative mixed integer linear programming reformulations of the

fractional programming formulation could prove beneficial [55].

3. Developing effective heuristic methods for solving large-scale instances of the

problem is another interesting research avenue to explore.

98



REFERENCES

[1] Nrel: Transmission grid integration - data and resources. http://www.nrel.

gov/electricity/transmission/data_resources.html, 2012. Last accessed:

October 2015.

[2] M. H. Ammar and S. B. Gershwin. Equivalence relations in queueing models

of fork/join networks with blocking. Performance Evaluation, 10(3):233 – 245,

1989.

[3] F. Baccelli and Z. Liu. On the execution of parallel programs on multiprocessor

systems–a queuing theory approach. J. ACM, 37(2):373–414, Apr. 1990.

[4] F. Baccelli and A. Makowski. Simple computable bounds for the fork-join queue.

In Proceedings of the Conference of Information Science Systems, John Hopkins

University, pages 436–441, 1985.

[5] F. Baccelli, A. M. Makowski, and A. Shwartz. The fork-join queue and related

systems with synchronization constraints: Stochastic ordering and computable

bounds. Advances in Applied Probability, 21(3):629–660, 1989.

[6] F. Baccelli, W. A. Massey, and D. Towsley. Acyclic fork-join queuing networks.

J. ACM, 36(3):615–642, 1989.

[7] S. Banerjee, P. Gupta, and S. Shakkottai. Towards a queueing-based framework

for in-network function computation. Queueing Systems, 72(3-4):219–250, 2012.

[8] A. Billionnet. Approximation algorithms for fractional knapsack problems. Op-

erations Research Letters, 30(5):336–342, 2002.

[9] V. Boginski, S. Butenko, and P. Pardalos. Mining market data: A network

approach. Computers and Operations Research, 33:3171–3184, 2006.

99



[10] I. M. Bomze, M. Budinich, P. M. Pardalos, and M. Pelillo. The maximum clique

problem. In D.-Z. Du and P. M. Pardalos, editors, Handbook of Combinatorial

Optimization, pages 1–74, Dordrecht, The Netherlands, 1999. Kluwer Academic

Publishers.

[11] O. Boxma, G. Koole, and Z. Liu. Queueing-theoretic solution methods for mod-

els of parallel and distributed systems. In Performance Evaluation of Parallel

and Distributed Systems Solution Methods. CWI Tract 105 & 106, 1996.

[12] R. Chandrasekaran. Minimal ratio spanning trees. Networks, 7(4):335–342,

1977.

[13] P. M. Chen, E. K. Lee, G. A. Gibson, R. H. Katz, and D. A. Patterson.

Raid: High-performance, reliable secondary storage. ACM Computing Surveys,

26(2):145–185, 1994.

[14] R. Chen, H. Zhang, and H. Hu. A fast simulation for thousands of general

homogeneous fork/join queues. In D. Al-Dabass, A. Pantelous, H. Tawfik, and

A. Abraham, editors, International Conference on Intelligent Systems, Mod-

elling and Simulation, pages 300–305, 2010.

[15] V. Chvátal and P. Slater. A note on well-covered graphs. Ann. Discrete Math.,

55:179–182, 1993.

[16] H. Dai. Exact monte carlo simulation for fork-join networks. Advances in Applied

Probability, 43(2):484–503, 2011.

[17] Y. Dallery, Z. Liu, and D. Towsley. Equivalence, reversibility, symmetry and

concavity properties in fork-join queuing networks with blocking. J. ACM,

41(5):903–942, Sept. 1994.

100



[18] G. B. Dantzig, W. O. Blattner, and M. R. Rao. Finding a cycle in a graph

with minimum cost to time ratio with application to a ship routing problem. In

P. Rosentlehl, editor, Theory of Graphs, pages 77–84, New York, 1967. Gordon

and Breach.

[19] A. Dasdan and R. Gupta. Faster maximum and minimum mean cycle algorithms

for system-performance analysis. IEEE Transactions on Computer-Aided Design

of Integrated Circuits and Systems, 17(10):889–899, 1998.

[20] W. Dinkelbach. On nonlinear fractional programming. Management Science,

13(7):492–498, 1967.

[21] A. Duda and T. Czachórski. Performance evaluation of fork and join synchro-

nization primitives. Acta Informatica, 24(5):525–553, 1987.

[22] A. K. Erlang. The theory of probabilities and telephone conversations. Nyt

Tidsskrift for Matematik B, 20(16):33–39, 1909.

[23] L. Flatto. Two parallel queues created by arrivals with two demands II. SIAM

Journal on Applied Mathematics, 45(5):861–878, 1985.

[24] L. Flatto and S. Hahn. Two parallel queues created by arrivals with two demands

I. SIAM Journal on Applied Mathematics, 44(5):1041–1053, 1984.

[25] B. Fox. Finding minimal cost-time ratio circuits. Operations Research,

17(3):546–551, 1969.

[26] M. R. Garey and D. S. Johnson. Computers and Intractability: A Guide to the

Theory of NP-completeness. W.H. Freeman and Company, New York, 1979.

[27] S. B. Gershwin. Assembly/disassembly systems: An efficient decomposition

algorithm for tree-structured networks. IIE Transactions, 23(4):302–314, 1991.

101



[28] C. Gkantsidis, M. Ammar, and E. Zegura. On the effect of large-scale deploy-

ment of parallel downloading. In Proceedings of The Third IEEE Workshop on

Internet Applications, pages 79–89, 2003.

[29] V. R. Guide Jr., G. C. Souza, and E. van der Laan. Performance of static

priority rules for shared facilities in a remanufacturing shop with disassembly

and reassembly. European Journal of Operational Research, 164(2):341 – 353,

2005.

[30] T. Ibaraki. Parametric approaches to fractional programs. Mathematical Pro-

gramming, 26:345–362, 1983.

[31] J. R. Isbell and W. H. Marlow. Attrition games. Naval Research Logistics

Quarterly, 3(1–2):71–94, 1956.

[32] G. Joshi, Y. Liu, and E. Soljanin. On the delay-storage trade-off in content

download from coded distributed storage systems. IEEE Journal on Selected

Areas in Communications, 32(5):989–997, 2014.

[33] R. M. Karp. A characterization of the minimum cycle mean in a digraph.

Discrete Mathematics, 23(3):309–311, 1978.

[34] B. Kemper and M. Mandjes. Mean sojourn times in two-queue fork-join systems:

bounds and approximations. OR spectrum, 34(3):723–742, 2012.

[35] C. Kim and A. Agrawala. Analysis of the fork-join queue. IEEE Transactions

on Computers, 38(2):250–255, Feb 1989.

[36] S.-S. Ko and R. F. Serfozo. Response times in M/M/s fork-join networks. Ad-

vances in Applied Probability, 36(3):pp. 854–871, 2004.

102



[37] A. Kumar and R. Shorey. Performance analysis and scheduling of stochastic

fork-join jobs in a multicomputer system. IEEE Transactions on Parallel and

Distributed Systems, 4(10):1147–1164, 1993.

[38] S. Lavenberg. A perspective on queueing models of computer performance.

Performance Evaluation, 10(1):53 – 76, 1989.

[39] E. L. Lawler. Combinatorial optimization: Networks and matroids. Holt, Rine-

hart and Winston, New York, 1976.

[40] E. K. Lee and R. H. Katz. An analytic performance model of disk arrays.

SIGMETRICS Perform. Eval. Rev., 21(1):98–109, 1993.

[41] H. Li and S. H. Xu. On the dependence structure and bounds of correlated par-

allel queues and their applications to synchronized stochastic systems. Journal

of Applied Probability, 37(4):1020–1043, 2000.

[42] Y. Liu. Queueing network modeling of elementary mental processes. Psycholog-

ical Review, 103(1):116–136, 1996.

[43] R. Luce and A. Perry. A method of matrix analysis of group structure. Psy-

chometrika, 14:95–116, 1949.

[44] N. Megiddo. Combinatorial optimization with rational objective functions.

Mathematics of Operations Research, 4(4):414–424, 1979.

[45] J. Menon. Performance of RAID5 disk arrays with read and write caching.

Distributed and Parallel Databases, 2(3):261–293, 1994.

[46] J. Menon and D. Mattson. Performance of disk arrays in transaction process-

ing environments. In Proceedings of the 12th International Conference on Dis-

tributed Computing Systems, pages 302–309. IEEE, 1992.

103



[47] R. Nelson and A. N. Tantawi. Approximate analysis of fork/join synchronization

in parallel queues. IEEE Transactions on Computers, 37(6):739–743, 1988.

[48] R. Nelson, D. Towsley, and A. Tantawi. Performance analysis of parallel pro-

cessing systems. IEEE Transactions on Software Engineering, 14(4):532–540,

1988.

[49] V. Nguyen. Processing networks with parallel and sequential tasks: Heavy traffic

analysis and brownian limits. The Annals of Applied Probability, 3(1):28–55,

1993.

[50] J. B. Orlin and R. K. Ahuja. New scaling algorithms for the assignment and

minimum mean cycle problems. Mathematical Programming, 54:41–56, 1992.

[51] O. A. Prokopyev, H. Huang, and P. M. Pardalos. On complexity of uncon-

strained hyperbolic 0-1 programming problems. Operations Research Letters,

33(3):312–318, 2005.

[52] T. Radzik. Newton’s method for fractional combinatorial optimization. In

Proceedings of 33rd Annual Symposium on Foundations of Computer Science,

pages 659–669, 1992.

[53] R. Sankaranarayana and L. Stewart. Complexity results for well-covered graphs.

Networks, 22:247–262, 1992.

[54] M. Shigeno, Y. Saruwatari, and T. Matsui. An algorithm for fractional assign-

ment problems. Discrete Applied Mathematics, 56:333–343, 1995.

[55] M. Tawarmalani, S. Ahmed, and N. V. Sahinidis. Global optimization of 0-1

hyperbolic programs. Journal of Global Optimization, 24:385–416, 2002.

[56] A. Thomasian and J. Menon. RAID5 performance with distributed sparing.

IEEE Transactions on Parallel and Distributed Systems, 8(6):640–657, 1997.

104



[57] A. Thomasian and A. N. Tantawi. Approximate solutions for M/G/1 fork/join

synchronization. In Proceedings of the 26th Conference on Winter Simulation,

pages 361–368, 1994.

[58] D. Towsley, C. Rommel, and J. Stankovic. Analysis of fork-join program re-

sponse times on multiprocessors. IEEE Transactions on Parallel and Distributed

Systems, 1(3):286–303, 1990.

[59] E. Varki. Mean value technique for closed fork-join networks. In ACM SIG-

METRICS Performance Evaluation Review, volume 27, pages 103–112. ACM,

1999.

[60] E. Varki. Response time analysis of parallel computer and storage systems. IEEE

Transactions on Parallel and Distributed Systems, 12(11):1146–1161, 2001.

[61] S. Varma and A. M. Makowski. Interpolation approximations for symmetric

fork-join queues. Performance Evaluation, 20(13):245 – 265, 1994.

[62] R. Wiser, E. Lantz, M. Bolinger, and M. Hand. Recent developments in the lev-

elized cost of energy from us wind power projects. http://eetd.lbl.gov/ea/

emp/reports/wind-energy-costs-2-2012.pdf, 2012. Last accessed: October

2015.

[63] S. Wu, S. Jiang, B. C. Ooi, and K.-L. Tan. Distributed online aggregations. In

Proceedings of the VLDB Endowment, volume 2, pages 443–454, 2009.

[64] T. Wu. A note on a global approach for general 0-1 fractional programming.

European Journal of Operational Research, 101(1):220–223, 1997.

105


