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ABSTRACT 

 

The use of enhanced heat transfer fluid and heat exchanger can improve the 

performance of thermal energy systems. Microencapsulated phase change material 

(MPCM) slurry is considered as an enhanced heat transfer fluid and can be used in heat 

transfer applications because of the higher heat capacity of MPCM slurry, which can 

improve heat transfer performance. In addition, coil heat exchangers (CHX) have been 

used in various heat transfer applications due to their compact structure and superior heat 

transfer performance. However, little is known about how MPCM may exhibit enhanced 

heat transfer performance in CHX. Therefore, flow and heat transfer characteristics of 

MPCM slurry in CHX have been investigated. 

Fully instrumented pressure drop and heat transfer test sections were built to 

investigate pressure drop and the local convective heat transfer characteristics of MPCM 

slurry in a coiled tube, which resembles a CHX. The thermophysical properties of 

MPCM slurry were measured and characterized experimentally. The viscosity results 

show that MPCM slurry with a mass fraction of 10.9 % or less can be considered as a 

Newtonian fluid. Pressure drop and heat transfer experiments were conducted at 

different mass fractions of MPCM slurries under turbulent flow conditions. The pressure 

drop results indicate that higher viscosity of MPCM slurry increases pressure drop, 

which is greater than water.  Furthermore, the correlated friction factor curve of MPCM 

slurry compares well with previous correlations used for homogeneous Newtonian fluids. 

The heat transfer results indicate that phase change process of the PCM enhances the 
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heat transfer coefficient of MPCM slurry. However, the heat transfer coefficient of 

MPCM slurry still is lower than that of water due to decreased momentum transfer. The 

experimental results also show that secondary flows are imminent and lead to variations 

in heat transfer coefficient within the coiled tube. Useful correlations have been 

postulated to predict friction factor and Nusselt number of MPCM slurry in a coiled tube, 

respectively. Energy evaluation analyses were conducted to determine the benefits of 

using MPCM slurry in terms of heat transfer performance and heat capacity, respectively. 

The results show that MPCM slurry cannot enhance the heat transfer performance due to 

the high viscosity and low latent heat of fusion of the PCM, but it can considerably 

improve the heat capacity.  
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1. INTRODUCTION 

 

Energy consumption in cooling and heating systems in buildings has grown 

rapidly in recent decades. Advanced heat transfer systems using geothermal energy, 

solar heat, and waste heat have been applied in buildings to conserve energy. However, 

these systems still require large amounts of heat transfer fluids to be able to operate 

efficiently and cost effectively. Therefore, increasing the effective heat carrying capacity 

of heat transfer fluids should result in energy and cost savings. 

In the past three decades, the use of microencapsulated phase change material 

(MPCM) slurry as an enhanced heat transfer fluid has been considered to be very 

promising for saving energy in thermal energy systems. MPCM slurry can improve the 

thermal performance of heat transfer systems through its high heat capacity enhanced by 

phase change materials (PCM) that undergo phase change under certain conditions. The 

PCM absorbs or releases heat equivalent to its latent heat of fusion with no significant 

change of temperature during the phase change process. However, MPCM slurries 

usually need heat exchangers with relatively high surface area for adequate heat transfer 

given the higher heat capacity and observed lower heat transfer rates. Therefore, 

appropriate heat exchangers should be used to harness the potential of MPCM slurries. 

A coil heat exchanger (CHX) is widely used in many applications including 

heating, ventilating, and air conditioning (HVAC) systems, chemical processing, and 

nuclear reactors. The CHX can accommodate a large heat transfer area in a small space 

and ensure high heat transfer rate partly due to the secondary flows induced by its 
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configuration. However, little is known about how MPCM may exhibit enhanced heat 

transfer performance in a CHX. Thus, understanding the flow and heat transfer 

characteristics of MPCM slurry in CHX is very important and necessary. 

 

1.1 Purpose and Objectives 

The purpose of this study was to gain a better understanding about hydraulic and 

heat transfer characteristics of MPCM slurry in CHX, and to determine how MPCM 

slurry can enhance the thermal performance of the CHX. The experimental results 

obtained from this study will be used to provide guidelines and basic data that can be 

used to design the heat transfer systems with MPCM and to determine their performance. 

In order to attain the purpose of this study, the following objectives were 

identified: 

1. Measure and characterize thermophysical properties of MPCM slurries. 

2. Measure pressure drop of MPCM slurries in a CHX under turbulent flow 

conditions and examine the effects of the MPCM’s mass fraction and fluid 

velocity on pressure drop. 

3. Postulate a correlation for the prediction of friction factor of MPCM slurries in a 

CHX. 

4. Measure and characterize local convective heat transfer of MPCM slurries in the 

CHX under turbulent flow conditions and investigate the effects of the MPCM’s 

mass fraction, fluid velocity and heat flux on the heat transfer coefficient. 



3 

 

5. Investigate how Nusselt number is affected by the presence of microcapsules that 

make up MPCM slurry in a CHX taking into account the phase change process. 

6. Postulate a correlation for estimating Nusselt number of MPCM slurries in a 

CHX. 

7. Determine and quantify the benefits of using MPCM slurries in a CHX by 

comparing with water using the performance efficiency coefficient (PEC) and the 

figure of merit for heat capacity (FOMHC) approaches. 

 

1.2 Overview 

This dissertation is comprised of six chapters. Chapter II provides a literature 

review of MPCM slurries and coil heat exchangers. Characterization of MPCM slurry is 

presented in Chapter III, and the experimental heat transfer and pressure drop systems 

used for the study are described in Chapter IV. Chapter V presents heat transfer and 

pressure drop results, and analysis of hydraulic and thermal performance of MPCM 

slurry. Chapter VI presents concluding remarks and recommendations for future studies. 
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2. LITERATURE REVIEW
*
 

 

Microencapsulated phase change material (MPCM) slurries have had an 

increasingly important role as heat transfer fluids because of their high heat carrying 

capacity induced by the latent heat of fusion, which in turn can improve the performance 

of the heat transfer systems. In addition, studies of flow patterns and heat transfer 

performance in coil heat exchangers (CHX) have been performed due to the extensive 

use of CHXs in commercial and industrial applications. In this chapter, a review of past 

studies related to MPCM slurries and CHXs is presented. 

 

2.1 Microencapsulated Phase Change Material Slurry  

MPCM slurry has been studied and tested in heat transfer systems because of its 

high heat carrying capacity enhanced by the phase change material (PCM) that 

undergoes phase change. The studies on MPCM slurries as a heat transfer fluid have 

been performed for the last three decades to understand the flow and heat transfer 

characteristics of MPCM slurries in heat transfer systems.  

 

                                                 

*
Part of the data reported in this chapter is reprinted with permission from “Effect of secondary fluid 

motion on laminar flow heat transfer in helically coiled tubes” by A.N. Dravid, K.A. Smith, E.W. Merrill, 

P.L.T. Brian, 1970. AIChE J., 17 (5), pp. 1114-1122, Copyright [2004] by John Wiley and Sons 
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 2.1.1 Thermophysical Properties of MPCM Slurry 

Alvarado et al. [1] used and characterized MPCM consisting of n-tetradecane 

with an average size of 2-10 μm as a PCM and tetradecanol, which was used as a 

nucleating agent to reduce the supercooling effect. The experimental viscosity results 

showed that MPCM slurry exhibited a Newtonian-like behavior when the mass fraction 

was kept below 18 %, and that the MPCM’s relative viscosity was independent of 

temperature. Alvarado et al. [2] also studied how to reduce subcooling (or supercooling) 

of microencapsulated n-tetradecane by adding nucleating agents such as silica fume (0.2 

wt %) and tetradecanol (2 and 4 wt %). The results showed that tetradecanol was a better 

nucleating agent to suppress subcooling.  

Taherian et al. [3] used and characterized methyl stearate as a PCM and the 

MPCM particle diameters were less than 5 μm. The viscosity of MPCM slurry was 

measured using a rotating drum viscometer. The viscosities increased with the mass 

fraction of MPCM in the slurries and decreased slightly with increasing temperature. 

The results also showed that MPCM slurries behaved like a Newtonian fluid at mass 

fraction less than 15 %.  

Kong et al. [4] used methyl stearate encapsulated by polyurea and the average 

diameter of MPCM particles was approximately 5 μm. The measured viscosity of 

MPCM slurry increased with MPCM concentration and was about 2.5 to 2.8 times 

higher than water. They also found that MPCM slurry behaved as a Newtonian fluid at 

the tested mass fractions of 4.6 % and 8.7 %, which was consistent with previous 

experiments [1]. 
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Yamagishi et al. [5] observed that surfactant agents were effective in reducing 

the viscosity of MPCM slurries, which behaved as Newtonian fluids at low volume 

fraction. Zhang and Zhao [6] found that the dynamic viscosity of MPCM slurries 

decreased as temperature increased. Overall, MPCM slurry can be considered as a 

Newtonian fluid at a high shear rate and a mass fraction of less than 20 %. Yang et al. [7] 

investigated rheological properties of microencapsulated tetradecane slurries and used 

four different shell materials such as polyvinyl acetate, polystyrene, polymethyl 

methacrylate and polyethyl methacrylate. Experimental results showed that the viscosity 

increased with the concentration of MPCM in the slurry and the shell materials slightly 

affected the apparent viscosity. Roy and Sengupta [8] used n-eicosane and stearic acid as 

phase change materials with two different wall thicknesses, comprising of around 15 % 

and 30 % of the total microcapsule volume. The results showed that the microcapsules 

with thinner walls were unable to withstand repeated thermal cycles. However, the 

microcapsules with thicker walls were found to be structurally and thermally stable. 

Wang et al. [9] found that the relationship between shear stress and shear rate 

was perfectly linear, when the mass fraction of MPCM was less than around 30 %. It 

was found that the MPCM slurry can be generally considered as a Newtonian fluid. 

Additionally, the viscosity of MPCM slurry, with a mass fraction of less than around 

30 %, was 1.5 to 8.5 times higher than water [10]. They also found that the MPCM 

slurry should be considered as a non-Newtonian fluid when the concentration was above 

30 %. 
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At low volume fraction, MPCM slurries can be treated as homogeneous fluid and 

the viscosity can be calculated by using the Vand equation [11].  

     (1) 

where  is defined as relative viscosity, cv is the volume fraction, and A varies for 

different materials and sizes. 

Many researchers have used the Vand equation to predict the viscosity of the MPCM 

slurry. Yamagishi et al. [12] estimated the value of A in the Vand equation to be 3.7 for 

microencapsulated octadecane slurry with an average diameter of 6.3 μm. Mulligan et al. 

[13] obtained an A value of 3.4 for 10-30 μm diameter microcapsules in MPCM slurry. 

Wang et al. [9] showed that the value of parameter A was 4.4 for MPCM slurry with 

around 5 to 30 % mass fraction. Dammel and Stephan [14] found that this equation 

underestimated the viscosity of MPCM slurries because the MPCM particles were 

treated as ideal rigid sphere.  

In summary, adding MPCM particles to carrier fluid increases the value of 

viscosity and MPCM slurry can be considered as a Newtonian fluid at low mass 

fractions. 

 

 2.1.2 Pressure Drops of MPCM Slurry 

Alvarado et al. [1] conducted a series of experiments where pressure drop of 

MPCM slurries were measured under turbulent conditions. The data collected by 

Alvarado et al. [1] indicated a potential drag-reducing effect of MPCM slurry, which 
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could play a major role in reducing pressure drop. The experimental results showed that 

the pressure drop for the MPCM slurry at 5.9 % mass fraction was less than that for 

water. They suggested that a small amount of ruptured and released microcapsules into 

the carrying fluid could create favorable conditions for the drag-reducing effect and 

contribute to the reduction of pressure drop. 

Taherian et al. [3] measured pressure drop of MPCM slurry in a circular 

horizontal tube, and experimental results showed that the pressure drop of MPCM 

slurries was higher than water. However, they found that the pressure drop of one of 

MPCM slurries, which contained the proprietary PCM, was close to or less than water.  

This could be attributed to the drag-reducing effect as reported by Alvarado et al. [1]. 

Kong et al. [4] measured pressure drop of MPCM slurry flowing through a coil 

heat exchanger. Experimental results showed that the pressure drop of MPCM slurry 

increased with increasing MPCM concentration and fluid velocity. Also, the pressure 

drop of MPCM slurry was slightly greater than that of water, even though the viscosity 

was about 2.5 to 2.8 times higher than for water. 

Yamagishi et al. [5] studied the relationship between pressure drop and the mean 

fluid velocity and showed that pressure drop of MPCM slurry at 19.1 % volume fraction 

in a pipe was found to be 20 % greater than that of the carrier fluid at the same fluid 

velocity. However, they found that pressure drop of a 29.4 vol. % MPCM slurry was 

lower than pure water when the fluid velocity was in the range of 2.0 to 2.5 m/s because 

the slurry became laminarized. Additionally, Yamagishi et al. [12] measured pressure 

drop of MPCM slurries in a circular tube with no heat and showed that the friction factor 
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of MPCM slurries was approximately equal to that for water. However, pressure drop for 

30 % volume fraction of MPCM slurry was lower than that of water because high 

viscosity led to laminarization of the slurry flow. They also claimed that turbulence was 

suppressed because particle size was smaller than the turbulence length scale. Crowe et 

al. [15] found that the small size of microcapsules ranged from 2 to 10 μm suppressed 

turbulence, which could have a major role in reducing pressure drop. 

Inaba et al. [16] reported that the Blasius equation overestimated friction factor 

of MPCM slurry under turbulent flow because of the flow drag reduction effect of the 

fine particles. Inaba et al. [16] also studied the heat transfer rate-to-pumping power ratio 

at different Reynolds numbers. Under turbulent flow condition, the ratio of MPCM 

slurry was less than that of water, while the ratios of MPCM slurry and water were 

approximately equal under laminar flow condition. It was found that the enhancement of 

MPCM slurry was not as large as expected due to the increased pumping power [17, 18]. 

Chen et al. [19] showed that pressure drop of a 15.8 wt% MPCM slurry was apparently 

higher than that of water at the same velocity. The pressure drop slightly increased with 

a decrease of fluid temperature. 

Overall, MPCM concentration in the slurry increases pressure drop, which is 

typically greater than that of carrier fluid due to the increased viscosity. However, 

pressure drop of MPCM slurry is lower than that of carrier fluid at certain conditions due 

to a drag-reducing effect or laminarization. 
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 2.1.3 Heat Transfer Characteristics of MPCM Slurry 

Alvarado et al. [1] conducted several experiments to determine the heat transfer 

characteristics of MPCM slurry under constant heat flux and turbulent conditions using a 

circular horizontal tube. The results indicated that the heat transfer coefficient increased 

considerably during the phase change process, even at low mass fractions. However, the 

enhancement was reduced due to the turbulence damping effect, when the mass fraction 

of MPCM in the slurries increased. They also found that the heat transfer coefficient was 

affected by the slurry velocity more significantly than by heat flux. 

Taherian et al. [3] investigated the effect of flow rate, MPCM concentration and 

heat flux on heat transfer coefficients under turbulent flow conditions using a circular 

horizontal tube. The increased flow rate increased the heat transfer coefficient and 

moved the maximum heat transfer coefficient towards the test section outlet, as observed 

by Alvarado et al. [1] and Yamagishi et al. [12]. The heat transfer coefficient decreased 

with increasing the mass fraction of MPCM in the slurry at the same fluid velocity 

conditions because of the reduced momentum transfer. The increased heat flux shifted 

the maximum heat transfer coefficient towards the test section inlet but it did not 

significantly affect the magnitude of the maximum heat transfer coefficient value. Also, 

Taherian et al. [3] found that the effective heat capacities of MPCM slurry were 

considerably greater than those of water due to the latent heat of fusion of PCM. 

Kong et al. [4] conducted heat transfer experiments to investigate the effect of 

using MPCM slurry flowing through a CHX on heat transfer performance. Experimental 

results showed that MPCM slurry led to heat transfer enhancement in the range of 13 % 
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to 29 %, because of the latent heat of fusion of PCM. It was also found that MPCM 

enhanced the overall heat transfer coefficients and heat exchanger effectiveness. To 

assess the benefits of using MPCM slurry, Kong et al. [4] used performance efficiency 

coefficient (PEC), which was defined as the ratio of the overall heat transfer coefficient 

ratio to the friction factor ratio between MPCM slurry and water. PEC values for the 4.6 % 

MPCM slurry were higher than one. It was clear that using MPCM slurry at low mass 

fraction could improve the overall performance of a CHX by increasing the amount of 

heat transfer, even though MPCM slurries have higher viscosity, which leads to higher 

pressure drop when compared to water. 

Wang et al. [9] performed an experimental study to investigate the heat transfer 

characteristics of MPCM slurries at both laminar and turbulent flow conditions in a 

circular horizontal tube under constant heat flux conditions. The results showed that the 

local heat transfer coefficient of MPCM slurry was higher than that for water due to the 

latent heat of PCM. In turbulent flow, the local heat transfer coefficient varied with heat 

flux and the maximum heat transfer coefficient at high heat flux appeared earlier than at 

low heat flux. Wang et al. [9] also found that the average heat transfer coefficient was 

considerably affected by turbulence. Wang et al. [10] showed that the average Nusselt 

number of MPCM slurry was up to about 2.5 times higher than that for pure water in 

turbulent flow. Wang et al. [10] also proposed correlations for the estimation of the 

Nusselt numbers for laminar and turbulent flow conditions.  

Yamagishi et al. [12] noticed that the local heat transfer coefficients of MPCM 

slurries in turbulent flow increased when PCM underwent phase change. The 
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experimental results showed that local heat transfer coefficients of MPCM slurry were 

higher than those of pure water and increased with the slurry fraction at the same 

Reynolds number. However, since increasing the slurry fraction caused a reduction in 

turbulence, the local heat transfer coefficient of MPCM slurry decreased as the slurry 

fraction increased under the same fluid velocity. Yamagishi et al. [12] also observed that 

the maximum value of the local heat transfer coefficient was found to depend upon the 

MPCM fraction in the slurry, the degree of turbulence, and the heating rate in the test 

section. 

Inaba et al. [16] investigated the heat transfer characteristics of MPCM slurries 

comprising of microcapsules of 1.5 μm diameter made of n-tetradecane and 17 μm 

diameter microcapsules made of n-docosane as phase change materials. Inaba et al. [16] 

claimed that Nusselt number for the plural slurries with two kinds of sized slurries 

increased, and that the average heat transfer coefficient for the plural slurries was about 

2.8 times greater than water. 

Rao et al. [20] conducted an experimental study to investigate the heat transfer 

characteristics of MPCM slurries flowing through rectangular mini-channels at low 

Reynolds number. Rao et al. [20] were able to observe that MPCM slurry at a low mass 

flow rate showed better cooling performance when compared with that of water. Heat 

transfer coefficient and Nusselt number increased with mass fraction of MPCM at low 

Reynolds number. The heat transfer performance of MPCM slurries at higher mass 

fractions was less effective at higher mass flow rates because of the shorter residence 

time of the suspended MPCM particles within the mini-channels. 
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In summary, the use of MPCM slurry can significantly enhance the heat capacity 

when compared to water (carrier fluid) due to the latent heat of fusion of PCM. Heat 

transfer coefficient increases considerably during phase change process, but the average 

heat transfer coefficient of MPCM slurry is typically lower than that of water at the same 

fluid velocity condition. However, since heat transfer coefficient of MPCM slurry is 

strongly affected by the magnitude of latent heat of fusion, slurry viscosity, and phase 

change rate, MPCM slurry used under moderate conditions can lead to enhanced heat 

transfer performance. 

 

2.2 Coil Heat Exchanger  

Coil heat exchangers (CHX) are widely used in many applications including 

HVAC systems, chemical processing, and nuclear reactors. The CHX can accommodate 

a large heat transfer area in a small space and transfer a large amount of heat. Due to the 

extensive use of CHXs, a considerable number of studies for understanding flow 

patterns, pressure drop, and the heat transfer characteristics in the helically coiled heat 

exchanger have been performed. 

 

 2.2.1 Flow Characteristics in CHX 

The curvature of a coil heat exchanger induces secondary flow patterns 

perpendicular to the main axial flow direction, as shown in Fig. 1 [21]. The secondary 

flow patterns arise due to the centrifugally induced pressure gradient. Fluid in the core of 

the tube moves towards the outer wall and then return to the inner portion of tube by 
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flowing back along the wall. As the Reynolds number  Re  mainly affects the flow in 

straight tubes, the flow in coiled tube is governed by the Dean number  De , that is the 

ratio of the square root of the product of inertial and centrifugal forces to viscous forces. 

The magnitude of the Dean number is used to quantify the intensity of the secondary 

flow and it can be determined by the following equation. 

R

rdu

R

r im



 
 ReDe      (2) 

where ,    , and  are density and viscosity of the fluid, fluid mean 

velocity, diameter of inner tube of the heat exchanger, radius of inner tube, radius of 

coil. 

 

Fig. 1. Secondary flow field at low and high Dean numbers [21] 

 

Dravid et al. [21] conducted a study of heat transfer characteristics for water 

flowing through coils under laminar flow. The numerical results showed that secondary 

flow induced the variation of wall temperature along the periphery of the tube and wall 

 
mu id r R
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temperature on the outer side was lower than on the inner side. Dravid et al. [21] found 

that cyclical oscillations in axial wall temperature occurred in the developing region due 

to secondary flow, which decayed and damped out in the fully developed region. 

Huttl and Friedrich [22] conducted a direct numerical simulation for turbulent 

flow in helical coils. The numerical results showed that a secondary flow was induced 

due to the curvature and the maximum mean axial velocity moved from the pipe’s center 

towards the outer wall. Huttl and Friedrich [22] also found that torsional forces induced 

by a coil pitch increased the secondary flow effect and changed its pattern, while having 

negligible effects on the axial velocity.  

Yao and Berger [23] studied the ratio of entrance length for coiled tube to that for 

straight tube for fully developed flow and concluded that the entrance length for a coiled 

tube was approximately equal to half of a straight pipe. Shah and Joshi [24] noted that 

the entrance length for curved tubes was 20 to 50 % shorter than for a straight tube for 

most engineering applications for De  greater than 200. 

 

 2.2.2 Transitional Flow Regime in CHX 

The flow and heat transfer characteristics of fluids in coil heat exchangers 

depend on the flow regime such as laminar flow and turbulent flow. In general, the 

transition in the coil heat exchanger occurs at a higher Reynolds number than that in the 

straight tube due to the presence of secondary flow, that can stabilize the flow pattern. 

Since the critical Reynolds number at which the flow changes from laminar to turbulent 
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in a coil is a function of the curvature ratio, therefore, the critical Reynolds numbers for 

various coil heat exchangers have been defined. 

Ito [25] proposed the empirical correlation to determine the critical Reynolds 

number for the curvature ratios (r/R) of coil heat exchangers in the range of 0.001 to 

0.067. 

     (3) 

Since the correlation proposed by Ito [25] did not give the critical Reynolds 

number for straight tubes, Srinivasan et al. [26] developed the following correlation 

based on their experiments for the curvature ratios ranged from 0.0097 to 0.135. 

           (4) 

The critical Reynolds number for the curvature ratios of CHXs in the range of 

0.012 to 0.2 was determined by using the correlation by Schmidt [27], as shown in 

Equation (5). 

             (5) 

Kubair and Varrier [28] developed an equation to estimate the critical Reynolds 

number for the curvature ratios of coil heat exchangers in the range of 0.0005 to 0.103, 

as follows: 
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 2.2.3 Flow Resistance in CHX 

When a fluid flows through coils, a secondary flow is superimposed on the main 

flow and the maximum velocity tends to move towards the outer side of the tube. The 

flow resistance near the tube walls increases and pressure drop in the coil is greater than 

that in a straight tube. Thus, in order to determine the friction factors in various helically 

coiled tubes, correlations have been developed as shown below. 

Ito [25] presented the results of the frictional resistance for turbulent flow 

through curved pipes with curvature ratios from 0.0015 to 0.061, and proposed empirical 

formulas to express friction factor for turbulent flow through curved pipes with 

satisfactory accuracy. For  2/Re Rr  ranged from 0.034 to 300, the empirical correlation 

is as follows [25]: 

    (7) 

For  2/Re Rr  less than 0.034, the friction factor of a curved pipe was practically 

equivalent to that of a straight pipe. The following empirical equation for large values of 

 2/Re Rr  was defined and used for  2/Re Rr  greater than 6 [25]. 
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Mishra and Gupta [29] measured pressure drop of water flowing through sixty 

helical coils in the laminar and turbulent regions. For laminar flow, friction factor was 

calculated using the following correlation [29]. 

  4

mDelog033.01 sc ff      (9) 
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where 3000De1    

 

 

is a ratio of pitch to coil diameter and the Fanning friction factor  for the 

straight tube in laminar flow condition was determined by the following equation. 

        (11) 

For turbulent flow, the following correlation was obtained by the least-square analysis of 

all the turbulent flow data. 
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where  

 

 

Mishra and Gupta [29] used the Fanning friction factor  for the straight tube in 

turbulent flow condition, given by Blasius [30], as follows: 

              (14) 

where  

Srinivasan et al. [26] conducted an experimental study on twelve coils with 

curvature ratios from 0.0097 to 0.135. The experiments were conducted with water and 

oil under laminar to turbulent conditions. The correlation for the estimation of the 

friction factors for laminar flow was defined as follows [26]: 
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The equation used to predict the friction factor in the transitional region is as follows 

[26]: 
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where criDeDe300   

 

criDe  is critical Dean number and determined by multiplying a square root of curvature 

ratio by critical Reynolds number calculated by the Equation (4). 

The friction factor for turbulent flow was predicted by the following equation [26]. 
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where 14000DeDecri   

 

Additional experiments were performed to investigate the effects of helical coil pitch on 

flow resistance, varying from 0.0381m to 0.2032m. The influence of coil pitch was 

insignificant because the variation in friction factors was ± 4 %. 

 

 2.2.4 Heat Transfer Characteristics in CHX 

Seban and McLaughlin [31] conducted an experimental study to determine the 

local heat transfer characteristics in two helical coils, having curvature ratios of 1/17 and 

1/104, for laminar flow of oil and turbulent flow of water under constant wall flux 

boundary conditions. For laminar flow, the Reynolds number was in the range of 15 to 

5600 and the Prandtl number was from 100 to 657. Seban and McLaughlin [31] showed 

that the heat transfer coefficient on the outer surface was higher than on the inner surface, 

and both values were greater than those in straight tubes. The results in laminar flow also 
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indicated that the thermal entry length affected Nusselt number. The empirical formula 

to predict the Nusselt number was postulated as follows [31]: 
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In addition, Seban and McLaughlin [31] suggested an alternative form in terms of the 

Reynolds number, friction factor, and Prandtl number, as follows.  
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The value A was 0.13 for a coil with a curvature ratio of 1/17. Since the above 

correlation was not good for coils with a curvature ratio of 1/104, the value A should be 

adjusted by using a correction factor of 0.74 based on the Adler’s theory [32]. For 

turbulent flow, the same experimental setup with water was used to determine the 

Nusselt number in the same coils as mentioned above. Reynolds number range was 

between 6000 and 65600, and the Prandtl number ranged from 2.9 to 5.7. The 

experimental results showed the ratios of the outside to inside heat transfer coefficients 

were of the order of 2 and 4 for coils with curvature ratios of 1/104 and 1/17, 

respectively. An empirical correlation for the estimation of the Nusselt number was 

postulated, and the Nusselt number from the correlation deviated by less than 10 % and 

15 % for coils with curvature ratios of 1/104 and 1/17, respectively, when compared 

with the experimental Nusselt numbers.  
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       (21) 

       (22) 

Rogers and Mayhew [33] conducted forced convection experiments with water in 

steam heated helically coiled tubes with curvature ratios of 0.093, 0.075 and 0.05 under 

turbulent flow conditions. The experimental results were more than 10 % higher than 

Kirpikov results [34] calculated by the following Equation (23) because Kirpikov [34] 

defined fluid properties at the bulk fluid temperature instead of using film fluid 

temperature. 
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where  

 

Rogers and Mayhew [33] suggested that curvature ratio exponent in Kirpikov correlation 

[34] should be smaller based on experimental data. The experimental Nusselt numbers 

were also compared with Seban and McLaughlin’s results [31] for a coil with curvature 

ratio of 1/17 and were about 10 % lower than Seban and McLaughlin correlation [31]. 

Furthermore, Rogers and Mayhew [33] postulated the correlation for Nusselt number, as 

follows.  
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where  

 

Mori and Nakayama [35] performed theoretical and experimental studies of fully 

developed laminar flow in a curved pipe under uniform heat flux condition. In the 

theoretical study, Mori and Nakayama [35] assumed that the flow was divided into the 

core region and the boundary layer along the wall. In addition, it was found that the 

additional flow resistance in a curved pipe was caused by a secondary flow. Mori and 

Nakayama [35] also postulated a ratio between the thermal boundary layer thickness and 

the velocity boundary layer thickness expressed in terms of Prandtl number. Through the 

boundary layer approximation, the theoretical correlation for Nusselt number in curved 

pipes was also postulated and expressed in terms of Dean number and the ratio of 

thermal boundary layer thickness to hydrodynamic boundary layer thickness. 

Experiments were performed by using a coil with a curvature ratio of 0.025 and the 

results were in good agreement with the theoretical correlation. Mori and Nakayama [36] 

also studied a fully developed turbulent flow under constant heat flux both theoretically 

and experimentally. From the boundary layer approximation, a correlation to predict 

average Nusselt number was postulated in terms of Reynolds number, curvature ratio, 

and Prandtl number. Experiments were performed with air flowing through curved pipes 

with curvature ratios of 1/18.7 and 1/40. The experimental results showed that Nusselt 

numbers agreed well with the theoretical values. Mori and Nakayama [37] extended their 

earlier work to the theoretical analysis of uniform wall temperature. The results showed 

that the formula for Nusselt number for uniform wall temperature condition was the 
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same as that for uniform heat flux. They also summarized all the formulae for the 

estimation of Nusselt number in coiled pipes under laminar and turbulent flow 

conditions, respectively, as follows [35-37]: 
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is a ratio of thickness of thermal boundary layer to that of hydrodynamic boundary 

layer, and critical Reynolds number is determined using the Ito’s correlation[25].  
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Jayakumar et al. [38] numerically studied the heat transfer characteristics of 

water under turbulent conditions in vertically-oriented helical coils and simulations were 

conducted both at constant wall heat flux and constant wall temperature boundary 

conditions. Jayakumar et al. [38] stated that Nusselt number on the outer side of the coil 

was the highest among all the points at a specified cross-section, while the inner side had 

the lowest Nusselt number values. The oscillatory motion of fluid particles led by the 
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combination of the centrifugal force, inertial force, and buoyancy force influenced heat 

transfer around the periphery at a cross section along the axial distance. This could lead 

to the periodic behavior of Nusselt number along the length of the tube. With respect to 

the influence of coil pitch on heat transfer, the torsional forces induced by the pitch led 

to oscillations of Nusselt number in the developing region. However, the pitch effect was 

not significant on the average Nusselt number. The correlation for the estimation of the 

average Nusselt number under the constant wall heat flux boundary condition was 

postulated by using a multiple regression analysis as follows: 
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where  

 

 

 

In addition, Jayakumar et al. [38] showed that the correlation for constant wall 

temperature boundary condition gave almost the same value as the Nusselt number with 

constant heat flux as boundary condition. 

 Overall, heat transfer coefficients in a coiled tube are higher than those in a 

straight tube because of the presence of secondary flows. The secondary flow also leads 

to the difference of heat transfer coefficient between inner and outer surfaces of tube and 

the heat transfer coefficient on the outer surface is higher than on the inner surface 

because of higher axial velocity near the outside. Oscillatory behavior of heat transfer 

coefficient is observed due to the interaction of secondary flow with the main flow.  
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As seen in the literature review, even though a significant number of studies for 

CHXs have been conducted to investigate flow and heat transfer characteristics, little is 

known about the effects of MPCM slurries on pressure drop and heat transfer 

characteristics in CHX. Therefore, a study should be undertaken to understand the 

effects of phase change and dilute particle-laden fluids on both pressure drop and 

convective heat transfer in CHXs. 
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3. CHARACTERIZATION OF MICROENCAPSULATED PHASE CHANGE 

MATERIAL SLURRY 

 

3.1 Description of MPCM 

MPCM slurries produced by Thies Technology Inc. were used as heat transfer 

fluids in experiments. The phase change material (PCM) used in the study was butyl 

stearate, which is an organic compound. Each microcapsule was made by encapsulating 

the PCM using polyurea as shell material, which made up about 35 % of the total 

volume of each microcapsule. The MPCM particle size range used in the experiments 

was between 5 to 10 μm in diameter. Differential scanning calorimetry (DSC) tests were 

carried out by Thies Technology Inc. using a METTLER DSC unit to determine the 

thermal properties of MPCM. The DSC method based on ASTM C1784 [39], was used 

and the amount of energy absorbed or released was measured as a function of 

temperature at a constant heating and cooling rate of 5 ˚C/min, as shown in Fig. 2. The 

latent heat of fusion of the PCM was about 88 J/g and the onset and peak melting 

temperatures were 17.4 ˚C and 22.2 ˚C, respectively.  
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Fig. 2. DSC results 

 

3.2 Thermophysical Properties of MPCM Slurry 

 To analyze the pressure drop and heat transfer results, thermophysical properties 

of MPCM slurries were measured and determined. Four different mass fractions of 

MPCM slurries were used as heat transfer fluids, as shown in Table 1. 

 

Table 1. Concentration of MPCM in the slurry 

Mass Fraction Volume Fraction 

2.1 % 2.4 % 

5.9 % 6.8 % 

8.3 % 9.6 % 

10.9 % 12.5 % 

 

 

 



29 

 

 3.2.1 Density 

The density of MPCM slurry was determined by taking several samples from the 

heat transfer loop. The volume and mass of each sample were measured using a 

graduated beaker, a pipette, and a digital weight scale to determine the density of the 

MPCM slurry at different mass fractions. Density values of MPCM slurry at 10.9 %, 

8.3 %, 5.9 %, and 2.1 % mass fractions are shown in Table 2. The measured densities 

were in good agreement with the values calculated by using the following equation [3], 

which are within 1 % of the experimental values. 
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     (28) 

where w , MPCM , and MF  are the density of water, the density of the MPCM, and the 

mass fraction of the MPCM in the slurry, respectively. 

 

Table 2. Density of MPCM slurry 

Fluid Density, measured Density, calculated % Difference 

Water (1) 998.2 kg/m
3
 - - 

Butyl Stearate (PCM)(2) 860.0 kg/m
3
 - - 

2.1 % MPCM slurry 990.4 kg/m
3
 994.9 kg/m

3
 -0.5 % 

5.9 % MPCM slurry 986.6 kg/m
3
 988.9 kg/m

3
 -0.2 % 

8.3 % MPCM slurry 982.0 kg/m
3
 985.1 kg/m

3
 -0.3 % 

10.9 % MPCM slurry 978.3 kg/m
3
 981.1 kg/m

3
 -0.3 % 

Note: Values are determined at 20 ˚C. 
(1)

 NIST Chemistry Webbook [40], 
(2) 

MatWeb [41] 
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 3.2.2 Thermal Conductivity 

Thermal conductivity is one of the important properties in heat transfer, since it 

is a measure of the material’s ability to transfer heat within a medium. However, thermal 

conductivity measurement for the slurry is difficult because it is hard for microcapsules 

to be uniformly dispersed in a carrier fluid during a prolonged amount of time. Thus, in 

this study, thermal conductivity of the MPCM slurry was determined using the Maxwell 

correlation for homogeneous mixtures [42], which takes into account the mass fraction 

of MPCM in the slurry, thermal conductivity of water, and thermal conductivity of 

MPCM. The Maxwell correlation has been used to estimate well the thermal 

conductivity of particle-laden fluids [43, 44] and it has been used in previous studies [3, 

10, 19] to determine thermal conductivity of MPCM slurry. The thermal conductivities 

of the MPCM slurries calculated using Equation (29) are shown in Table 3. 
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kkMFkk
kk

2

22
   (29) 

where wk  and MPCMk  are thermal conductivities of water and MPCM, respectively. MF  

is the mass fraction of the MPCM in the slurry. 
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Table 3. Thermal conductivity of MPCM slurry 

Fluid 
Thermal Conductivity, 

calculated 

% difference of thermal 

conductivity 

Water (1) 0.601 W/m-˚C - 

Butyl Stearate (PCM)(2) 0.230 W/m-˚C - 

2.1 % MPCM slurry 0.591 W/m-˚C -1.7 % 

5.9 % MPCM slurry 0.573 W/m-˚C -4.7 % 

8.3 % MPCM slurry 0.563 W/m-˚C -6.3 % 

10.9 % MPCM slurry 0.551 W/m-˚C -8.3 % 

Note: Values are determined at 20 ˚C. 
(1)

 NIST Chemistry Webbook [40], 
(2) 

MatWeb [41] 

 

 3.2.3 Specific Heat 

The specific heat of the MPCM slurry without phase change was calculated using 

the following equation. 

 MFcMFcc wpMPCMpMPCMsp  1,,,    (30) 

where MPCMpc ,  and wpc , are the specific heat of MPCM and the specific heat of water, 

respectively. Specific heat of the MPCM slurry calculated using Equation (30) is shown 

in Table 4. 

 

Table 4. Specific heat of MPCM slurry without phase change 

Fluid Specific Heat % enhancement in specific heat 

Water 
(1)

 4.18 kJ/kg-˚C - 

Butyl Stearate (PCM) 
(2)

 2.41 kJ/kg-˚C - 

2.1 % MPCM slurry 4.15 kJ/kg-˚C -0.7 % 

5.9 % MPCM slurry 4.08 kJ/kg-˚C -2.4 % 

8.3 % MPCM slurry 4.04 kJ/kg-˚C -3.3 % 

10.9 % MPCM slurry 3.99 kJ/kg-˚C -4.5 % 

Note: Values are determined at 20 ˚C. 
(1)

 NIST Chemistry Webbook [40], 
(2) 

MatWeb [41] 



32 

 

When MPCM particles undergo phase change, the specific heat of the MPCM 

slurry is strongly affected by the amount of the latent heat of fusion of the PCM, which 

is called the effective specific heat. Since the rate of heat transfer of the MPCM slurry is 

a combination of the sensible energy of the slurry and the latent heat of fusion of the 

PCM in the slurry, the difference between the inlet and outlet fluid temperatures is lower 

than that of a fluid without phase change, which can lead to increased specific heat. The 

effective specific heat was determined by the following equation. 

MPCMsMPCMs

effp
Tm

Q
c







,          (31) 

where Q , MPCMsm  and MPCMsT  are the heat transfer rate, the mass flow rate of the 

MPCM slurry, and the temperature difference between the inlet and outlet slurry 

temperatures. 

In order to estimate the effect of using MPCM slurry on the enhancement of the specific 

heat, the effective specific heat of the MPCM slurry was calculated using the energy 

balance equation for a slurry temperature rise of 3 ˚C, as shown in Fig. 3. Specific heat 

of MPCM slurry increases with the mass fraction and the enhancement is up to 79 % 

when compared to water, when phase change takes place, which can lead to increased 

heat transfer performance. 
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Fig. 3. Effective specific heat of MPCM slurry 

 

 3.2.4 Viscosity 

Viscosity is an important property which is used to determine flow regime and 

predict hydrodynamic conditions. In addition, the viscosity plays a significant role in the 

performance efficiency of thermal energy systems by strongly affecting both pressure 

drop (pumping power) and momentum transfer. In this study, the apparent viscosity of 

MPCM slurries was measured using a coaxial cylinder viscometer from Brookfield 

Engineering Laboratories Inc. The viscometer used in this study consisted of a controller, 

a spindle, and a container. While the spindle inside the cylinder rotates at certain 

rotational speed, the viscometer can provide the viscosity of the fluid by measuring the 

torque generated by the fluid. In order to control fluid temperature, the container was 
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connected to a chiller, which circulated water at a constant temperature. A UL adapter, 

including a container and spindle, was used to obtain accurate measurements for low 

viscosity fluids [1] and the viscometer was calibrated using a reference fluid. 

Figures 4 (a), (b), (c), and (d) show the apparent viscosity of MPCM slurries at 

different mass fractions as a function of shear rate. The viscosity was measured at three 

different rotational speeds, 50 RPM (= 61.7 rad/sec), 60 RPM (= 74.1 rad/sec), and 100 

RPM (= 123.4 rad/sec). The shear rate was calculated using the following equation.  

22

22

sc

c

RR

R





                  (32) 

where   is the angular velocity of the spindle (rad/sec) [ = 60/2 N ] where N is the 

spindle speed in RPM. cR  and sR  are the radius of the container (1.38 cm) and the 

radius of the spindle (1.2575 cm), respectively. 

The experimental results clearly showed that the viscosity of MPCM slurry is 

independent of shear rate and the coefficient of variation 








X

 of the viscosity is less than 

1.2 %. It was found that the MPCM slurry behaves as a Newtonian fluid at the tested 

mass fractions ranging from 2.1 % to 10.9 %, which is consistent with previous 

experiments [1, 3, 4, 12]. 
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Fig. 4. Apparent viscosity of MPCM slurry as a function of shear rate at (a) 10.9 % 

MPCMs, (b) 8.3 % MPCMs, (c) 5.9 % MPCMs, (d) 2.1 % MPCMs  
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 Fig. 4 Continued. 

 

Figure 5 shows the apparent viscosity of MPCM slurries as a function of 

temperature. The viscosity of the MPCM slurry was measured at different temperatures, 

which were within the range of the working temperatures in the heat transfer 
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experiments. It was observed that the apparent viscosity of the MPCM slurries depends 

on the mass fraction of MPCM in the slurry and the temperature of the slurry. The 

viscosity at constant temperature increased with the concentration of MPCM dispersed 

in water, while increasing the slurry temperature reduced the apparent viscosity. The 

experimental results clearly show that the viscosity of the MPCM slurries is about 1.3 to 

3.2 times higher than water, depending on the mass fraction of MPCM. The relative 

viscosity of the MPCM slurry is shown in Fig. 6. The relative viscosity is defined as the 

ratio of the apparent viscosity of the slurry to the viscosity of pure water. The 

experimental results show that the relative viscosity of the MPCM slurries is 

independent of temperature, which is consistent with previous studies [1, 4, 12].  

 

 

Fig. 5. Apparent viscosity of MPCM slurry as a function of temperature 
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Fig. 6. Relative viscosity of MPCM slurry as a function of temperature 

 

The Vand equation [11] was used to estimate the viscosity of the slurry, which is 

defined as:   5.22A1


 vvr cc  , where r  is the relative viscosity, cv is the volume 

fraction, and A is a constant that takes into account the shape and rigidity of the particles 

in the fluid. For comparison purposes, Figure 7 shows the relative viscosity as a function 

of volume fraction using the Vand equation and the experimental results. The results 

show that the Vand correlation (A=1.16) underestimates the viscosity of MPCM slurry, 

which was observed in previous studies [12, 14]. This could be attributed to that MPCM 

particles are not ideal rigid spherical particles [14]. In addition, the results show that the 
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spherical. The use of spherical particles can increase maximum packing fraction 

compared to oblate or elongated particles [45]. By increasing maximum packing fraction 

at constant volume fraction should lead to lower viscosity due to the increased free 

volume that particles can move without resistance or lower rate of collisions [45, 46].  

 

 

Fig. 7. Relative viscosity of MPCM slurry as a function of volume fraction 

 

The Andrade equation was used for estimating fluid viscosity as a function of 

fluid temperature, which is defined as:  









T

B
expA  where A and B are constants, 

and T is absolute temperature (K) [47, 48]. Based on the relationship between fluid 

viscosity and temperature, a multiple regression analysis was performed to postulate a 

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16 0.18

R
el

at
iv

e 
V

is
co

si
ty

 

Volume Fraction 

Present (exp)

Vand correlation (A=1.16)

Alvarado et al. [1] (exp)



40 

 

correlation for predicting apparent viscosity of MPCM slurry as a function of the fluid 

temperature, T(K), and the mass fraction of the MPCM (MF) in the slurry, as follows: 

  









T

4.2092
exp-1001.0

9.55-
MF       99.02 R              (33) 

where 11.00  MF  and KK 15.303T15.283   

As shown in Fig. 8, the viscosity calculated by the correlation (33) is compared 

with the experimental values. The values of the correlation fit well with the experimental 

values which deviate by less than ± 6 %. From the correlation, it is clear that the 

apparent viscosity increases with mass fraction of MPCM in the slurry, and decreases 

with fluid temperature. 

 

 

Fig. 8. Comparison of apparent viscosities between the experiment and correlation 
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Overall, the results show that MPCM slurry behaves as a Newtonian fluid at 

mass fraction less than 10.9 %, which were observed by previous studies [1, 3, 4, 12]. 

The experimental results also reveal that as the mass fraction of the MPCM in the slurry 

increases, the viscosity of the MPCM slurry increases, which is greater than that of water 

due to increased particle interactions [46, 49]. Thus, it can be inferred that the higher 

viscosity of MPCM slurry should lead to a reduction in thermal performance efficiency 

of energy system by increasing pumping power and decreasing momentum transfer 

under constant fluid velocity condition. 

 

3.3 Durability of MPCM Slurry 

Durability of MPCM is critically important for the implementation of MPCM 

slurry in industrial applications. To ensure that MPCM particles withstand continuous 

pumping conditions during long-term operations, the durability of the microcapsules 

should be determined. The durability of MPCM particles can also ensure that all the 

results obtained from the experiments are reliable and repeatable. Thus, many 

researchers have conducted durability experiments for long-term applications. Alvarado 

et al. [1] studied the durability of MPCM particles consisting of tetradecane as a PCM 

and a gelatin shell. The experimental results with small MPCM particles (2-10 μm) 

clearly showed no damage after 1200 circulation cycles, even though larger 

microcapsules were broken after 400 circulation cycles. These results were also 

observed by Yamagishi et al. [12]. In addition, Roy and Sengupta [8] reported that the 
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breakage of microcapsules decreased as the ratio of particle diameter to shell thickness 

decreased. 

In this study, microcapsules in the range of 5 to 10 μm in terms of diameter were 

used and the effective specific heat of the slurries was used to evaluate the durability of 

MPCM particles [3, 4]. The change in the effective specific heat values during the 

experiments was investigated and the experimental values were also compared with the 

theoretical values to evaluate any degradation of effective specific heat of the MPCM 

slurry during the experiments. The experimental value of effective specific heat of the 

MPCM slurry was determined using Equation (31). Theoretical values were calculated 

based on Equation (34), assuming that all the MPCM particles underwent phase change. 

                              
MPCMs

MPCMpwptheoeffp
T

MF
cMFcMFc







,,)(, 1   (34) 

where MF , wpc , , MPCMpc , , , and MPCMsT  are the mass fraction of the MPCM in the 

slurry, the specific heat of water, the specific heat of MPCM, the latent heat of fusion of 

the PCM, and the temperature difference between the inlet and outlet slurry temperatures, 

respectively. 

Figure 9 shows the effective specific heat of MPCM slurry as a function of the 

number of cycles, which was defined as 
sys

cycles
V

TVF
N


  (where VF, T, and Vsys are 

volumetric flow rate (l/min), operating time (min) and system volume (l), respectively). 

The effective specific heat was determined at four different mass fractions of MPCM in 

the slurry (10.9 %, 8.3 %, 5.9 %, and 2.1 %), as shown in Figs. 9 (a), (b), (c), and (d), 
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respectively. The effective specific heats for the MPCM slurries were 7.7, 6.4, 5.5, and 

4.6 kJ/kg-˚C for each corresponding mass fraction, respectively. The results revealed 

that effective specific heat remained constant and deviated by less than 1.5 % when 

compared to the theoretical values. It was found that the MPCM particles with 5 to 10 

μm in diameter used in the study resisted continuous pumping condition (2200 

circulation cycles) without any degradation of heat transfer performance. This also 

ensured that all the results obtained from the experiments are reliable and repeatable. 

 

 

Fig. 9. Effective specific heat of MPCM slurry as a function of the number of cycles at 

(a) 10.9 % MPCMs, (b) 8.3 % MPCMs, (c) 5.9 % MPCMs, (d) 2.1 % MPCMs 
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Fig. 9 Continued. 
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Fig. 9 Continued. 
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4. DESCRIPTION OF HEAT TRANSFER AND PRESSURE DROP 

EXPERIMENTAL SYSTEM 

 

4.1 Purpose and Description of Experimental System 

An experimental setup was designed and built in order to experimentally 

determine the pressure drop and heat transfer characteristics of MPCM slurry flowing 

through a coil heat exchanger. A schematic diagram of the experimental setup is shown 

in Fig. 10. The experimental setup mainly consisted of two loops for MPCM slurry and 

cold water. The MPCM slurry loop contained a heat transfer test section, a pressure drop 

test section, a preheater (PH1), a progressive cavity pump (P1), an electromagnetic flow 

meter (FM1), a differential pressure transducer (DPT1), and a sampling station (SS1). 

The cold-water loop consisted of an air-cooled water chiller (CH1), a Coriolis flow 

meter (FM2), and a coaxial heat exchanger (HX1). The cold water supplied by the air-

cooled water chiller (CH1) was circulated through the annulus of the heat exchanger 

(HX1) to cool the MPCM slurry to ensure complete crystallization of the phase change 

material. The MPCM slurry delivered by the progressive cavity pump (P1) was 

circulated through the heat transfer test section where it was fully melted in the section. 

The heat transfer characteristics of MPCM slurries were investigated for melting 

conditions only. The MPCM slurry was heated using a preheater (PH1) to maintain 

constant inlet temperature of the slurry entering the heat transfer test section. A sampling 

station (SS1) was used to take samples to determine thermophysical properties of 
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MPCM slurries. The pressure drop test section was used to measure pressure drop of 

MPCM slurries. All data were read directly from a data logger (DAQ). 

 

 

Fig. 10. Schematic diagram of experimental setup 

 

4.2 Description of Heat Transfer Section 

Figure 11 shows the instrumented heat transfer test section. A helically two-turn 

coiled tube was made of a 3/8-inch coiled copper tube (10.2 mm ID) with 2.6 m in 

length, which consisted of four 0.65 m long subsections. The coil diameter was 0.414 m 

with a specified curvature ratio (d/D) of 0.025, which is the ratio of a tube diameter (d) 

to a coil diameter (D). The copper tubing length guaranteed a full phase change 

transition and a 30 cm long straight tube (10.2 mm ID) was connected before the section 

to ensure fully developed flow conditions. 
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Fig. 11. Heat transfer test section 

 

Each subsection had six T-type thermocouples, which were soldered in grooves 

cut longitudinally along the tube wall to measure surface temperature at different 

locations, as shown in Fig. 12. Thermocouple pairs were mounted on the outside and 

inside of the coiled tube at three different axial locations spaced evenly along the test 

section. The positions for the wall temperature thermocouples along the coiled tube 

periphery direction were determined based on the results of preliminary experiments, to 

determine suitable positions for wall temperature thermocouples by mounting the 

thermocouples on the inside, outside, top and bottom of the tube periphery at the same 

axial location. The experimental results showed that the wall temperatures on the top and 



49 

 

bottom of the coiled tube represented the average wall temperature in the periphery 

direction of the coiled tube. It was also found that the lowest and highest temperatures 

were observed on the outside and inside of the coiled tube, respectively, which is 

consistent with previous study [50]. 

 

 

Fig. 12. Schematic of the subsection and thermocouple locations 

 

The subsections were coated with paint to electrically isolate them from the 

nichrome wires, which were used as heating element. In order to provide constant heat 

flux, the insulated or coated nichrome wires were wound around the coated tube very 

evenly. Two independent nichrome wire sections were connected in parallel to a variable 

voltage transformer in each subsection. In order for each nichrome wire section to 

provide the same heat flux, the total length of each nichrome wire was adjusted 

externally. The heat transfer section was wrapped with a fiberglass insulation to 

minimize heat losses to the environment. Five T-type immersion thermocouples were 
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located before and after each subsection to measure bulk fluid temperatures. To ensure 

thermal isolation, PVC connectors were used to mount the thermocouples. 

 

4.3 Description of Pressure Drop Section 

A helically two-turn coiled tube was made of a 3/8-inch coiled copper tube (10.2 

mm ID) with 2.6 m in length to measure pressure drops, as shown in Fig. 13. The coil 

diameter was 0.414 m with a curvature ratio (d/D) of 0.025. Pressure tap connectors 

were placed on the inlet and outlet of the coiled tube to measure pressure drop. To 

ensure hydraulically fully developed flow, a 30 cm long straight copper tube (10.2 mm 

ID) was connected before the section. The entire pressure drop section was wrapped 

with thermal insulation to minimize heat losses to the environment. 

 

 

Fig. 13. Pressure drop test section 
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4.4 Description of Components (Devices and Sensors) 

 4.4.1 Pump and Air-cooled Water Chiller  

A Moyno progressive cavity pump (P1) as shown in Fig. 14 was used to circulate 

MPCM slurries in the heat transfer loop. This pump has been found to be suitable for 

viscous slurries without causing damage to the solid particles in the slurry [1, 12]. The 

capacity of the pump is 18.9 l/min and the maximum operating pressure is 689.5 kPa. An 

air-cooled water chiller (CH1) was used to circulate the cold water to cool MPCM 

slurries to ensure complete solidification of the phase change material after melting in 

the heat transfer loop. The capacity of the chiller is 5 tons and the chiller uses the R22 

refrigerant as a cooling medium. Figure 14 shows the air-cooled water chiller used in the 

experiment. 

 

Fig. 14. Progressive cavity pump (left) and air-cooled water chiller (right) 

 

 4.4.2 Heat Exchanger 

As shown in Fig. 15, a coil heat exchanger (HX1) manufactured by Turbotec 

with a capacity of 2.5 tons was used for exchanging heat between the cold water and 

MPCM slurry to ensure that the phase change material with the MPCM particles fully 
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crystalized. The outer tube of the heat exchanger was made of carbon steel, while the 

inner tube of the heat exchanger was made of copper with a corrugated surface to 

enhance heat transfer. Water and MPCM slurry flowed through the outer and inner tube 

sides of the heat exchanger, respectively. 

 

 

Fig. 15. Coil heat exchanger 

 

 4.4.3 Flow Measuring Devices 

An electromagnetic flow meter (FM1) with an accuracy of ± 0.5 %, 

manufactured by Omega, was used to measure flow rate of the MPCM slurries flowing 

through the heat transfer loop. The electromagnetic flow meter basically measures 

volumetric flow rates of electrically conductive materials on the basis of Faraday’s Law 

of electromagnetic induction. The electromagnetic flow meter is suitable for 

measurement of flow of slurries without compromising the accuracy of the measurement 

[1, 4]. The full scale of the flow meter is 94.6 l/min with an output of 4 to 20 mA. A 

Coriolis flow meter (FM2) from Endress+Hauser Promass was also used to measure the 



53 

 

flow rate of cold water. The Coriolis flow meter measures the mass flow rate by using 

Coriolis force generated in oscillating systems. The Coriolis force can cause a slight 

distortion of the measuring tube and is directly proportional to mass flow rate. The 

Coriolis flow meter used can measure the flow rate ranging from 0 to 31.753 kg/min 

with an accuracy of ± 0.1 %. The two flow meters used in the experiments are shown in 

Fig. 16. 

 

 

Fig. 16. Electromagnetic flow meter (left) and Coriolis flow meter (right) 

 

 4.4.4 Thermocouples 

Immersion type thermocouples (T-type) were used to measure fluid temperatures 

and the T-type thermocouple wires installed on the surface of the coiled tube were used 

to measure tube wall temperatures. The thermocouples were manufactured by Omega 

and their accuracy is ± 0.4 %. All the thermocouples were calibrated by using water as a 

heat transfer fluid under isothermal conditions throughout the entire experimental system. 
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 4.4.5 Differential Pressure Transducer 

A Rosemount differential pressure transducer (DPT1) was used to measure 

pressure difference of MPCM slurry flowing through the pressure drop test section. The 

pressure transducer can measure the pressure difference ranged from 0 to 344.8 kPa with 

± 0.04 % accuracy of the full range. 

 

 4.4.6 Variable Transformers and Power Meter 

Two Staco variable voltage transformers were used to provide voltage to the 

nichrome heating wires to set constant heat flux conditions. The variable transformers 

were selected to provide variable output voltage that could be adjusted from 0 to 117 % 

of the input voltage. It could operate on 240 V input and the output voltage ranged from 

0 to 280 V. The allowable power was 6.7 kVA and maximum current was 28 Amps. 

Two voltage transformers provided voltage to the heat transfer section and the preheater, 

respectively. A Fluke power meter was used to measure voltage and current, which were 

used to determine the electrical power delivered to each subsection. 

 

 4.4.7 Data Acquisition Unit 

An Agilent data acquisition unit was used to record data from thermocouples, 

pressure transducer and flow meters. The data logger (34970A) with two 20-channel 

multiplexers was used. The Agilent Bench Link Data Logger software was used to 

control the data logger through a 34970A unit to record all the data. 
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5. CHARACTERIZATION OF PRESSURE DROP AND HEAT TRANSFER OF 

MICROENCAPSULATED PHASE CHANGE MATERIAL SLURRY 

 

The flow and heat transfer characteristics of fluids strongly depend on the flow 

regime, laminar flow or turbulent flow. In general, the transition in the coil heat 

exchanger occurs at a higher Reynolds number than in the straight tube due to the 

presence of a secondary flows, which stabilize the flow pattern and attenuate velocity 

fluctuations. Correlations [26, 27] were used to estimate the critical Reynolds number to 

determine flow conditions for turbulent flow in this study. Figure 17 shows the critical 

Reynolds number as a function of curvature ratio. As a result, the critical Reynolds 

number for the coil with a curvature ratio of 0.025 used in this study is about 6000. The 

Reynolds number range of the experiments was from 6000 to 25000; therefore, the flow 

regime was mainly turbulent.  

 

 

Fig. 17. Critical Reynolds number as a function of curvature ratio 
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5.1 Validation of Experiments 

 5.1.1 Pressure Drop Measurements 

In order to validate the pressure drop measurement, the pressure drop of water 

flowing through a test section was measured using a differential pressure transducer. The 

fluid velocity varied from 0.7 to 2.9 m/s, with an equivalent Reynolds number range of 

6500 to 27000, and the fluid temperature was maintained at 16.5 ˚C. All pressure drop 

data were recorded with an Agilent data logger when the water temperature and flow 

rate reached steady state conditions. Uncertainty propagation analysis was carried out 

using the multivariate error formula described in NIST Technical Note 1297 [51]. The 

experimental uncertainty in determining the associated friction factor was ± 6.4 %. 

Figure 18(a) shows the pressure drop of water as a function of fluid velocity. The 

results clearly showed that pressure drop increases with fluid velocity. As shown in Fig. 

18(b), the pressure drop results are expressed in terms of a Fanning friction factor, which 

is defined as: 

22 uL

Pd
f







         (35) 

where  , d , L , and u  are the fluid density, tube diameter, tube length , and fluid mean 

velocity, respectively. 

The friction factor curves shown in Fig. 18(b) decreased with Dean number, which is the 

product of the Reynolds number and the square root of the curvature ratio (d/D). To 

validate the pressure drop measurements, the friction factor values from the present 

experiments were compared with the correlations from Srinivasan et al. [26] presented in 
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Equation (17) and Mishra and Gupta [29] shown in Equation (12). It was found that the 

present results are in good agreement with the previous results and deviate within 7 %. 

 

 

 

Fig. 18. (a) Pressure drop of water as a function of fluid velocity; (b) Friction factor as a 

function of Dean number 
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A multiple regression analysis was performed to postulate a correlation capable 

of predicting friction factor for water. The correlation is based on Dean number  De  

and it is applicable for a coiled tube with a curvature ratio ( Rr / ) of 0.025, as follows: 

-0.17De035.0cf       99.02 R     (36) 

where 4000De1000   

As shown in Fig. 19, the friction factor values calculated by the correlation (36) are 

compared with those of the experiments. The values of the correlation fit well with the 

experimental values and deviate by less than ± 1.5 %. 

 

 

Fig. 19. Comparison of friction factors between the experiment and correlation 
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 Overall, pressure drop results fitted well with the results calculated using 

previous correlations [26, 29], which indicate that pressure drop measurement using the 

present experimental setup is reliable and applicable for MPCM slurry. 

 

 5.1.2 Heat Transfer Measurements 

For the validation of the heat transfer coefficient measurements, heat transfer 

experiments with water were conducted using an instrumented two-turn coiled tube and 

all the data were collected using a data acquisition system. The amount of power was 

measured to determine wall heat flux as boundary condition. The heat transfer 

coefficients were calculated using the following equation: 

 bw TT

q
h




       (37) 

where q  , wT , and bT  are the wall heat flux, wall surface temperature, and bulk fluid 

temperature, respectively. 

 Nusselt numbers were determined using the following equation: 

k

dh 
Nu       (38) 

where d  is the tube diameter and k  is the fluid thermal conductivity determined at the 

fluid bulk temperature. 

Heat transfer experiments were conducted using water as a heat transfer fluid at 

two different wall heat flux conditions (35.8 kW/m
2
 and 25.4 kW/m

2
). The fluid velocity 

varied from 0.7 to 2.5 m/s (equivalent Reynolds number range of 7500 to 24500). The 
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data were collected once all the physical variables reached steady state values. 

Uncertainty propagation analysis revealed that the experimental uncertainty for 

calculating Nusselt number was ± 3.1 %. 

Figure 20 shows fluid bulk temperature as a function of angle from the start of 

the coil under constant heat flux (35.8 kW/m
2
) condition. Experimental results clearly 

show that fluid bulk temperature linearly increases along the coil and the temperature 

gradient decreases with fluid velocity, as well as Reynolds number.  

 

 

Fig. 20. Fluid temperature as a function of angle 
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 
 ibob

ibw

w
TT

TT

,,

,




      (39) 

where wT , ibT , , and obT ,  are the wall temperature, the inlet fluid temperature, and the 

outlet fluid temperature, respectively. The experimental uncertainty in determining the 

associated dimensionless wall temperature was ± 2.8 %. 

Dimensionless wall temperatures on the inside ( iw, ) and the outside ( ow, ) of the tube 

were calculated using wall temperatures on the inside ( iwT , ) and the outside ( owT , ) of the 

tube, respectively. Average dimensionless wall temperature ( w ) was determined by 

averaging iw,  and ow, . The experimental results show that all the dimensionless wall 

temperatures linearly increase with angle from the start of the coil. As fluid velocity 

(Reynolds number) increases, the average dimensionless wall temperature ( w ) increases 

because of greater momentum transfer within the coil [50]. The dimensionless wall 

temperature on the outside of the tube wall ( ow, ) is always lower than that on the inside 

of the tube wall ( iw, ) under constant fluid velocity condition, which can be attributed to 

the maximum fluid velocity being shifted towards the outside of the tube due to the 

centrifugal force effect of the coil. In addition, formation of the secondary flows could 

also play a role in the distribution of peripheral temperature. 
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Fig. 21. Dimensionless wall temperature as a function of angle 
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Fig. 22. Comparison of Nusselt numbers 
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4.084.0

c PrRe02.0Nu        99.02 R     (40) 
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that the Nusselt number increases with Reynolds number and Prandtl number. It is also 

clear that Reynolds number plays a more significant role in increasing the magnitude of 

Nusselt number rather than Prandtl number, which is indicative of the effect of fluid 

momentum, bulk motion, on heat transfer. 

 

 

Fig. 23. Comparison of Nusselt numbers between the experiment and correlation 
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5.2 Experiments with MPCM Slurry 

 5.2.1 Pressure Drop Measurements 

 The pressure drop experiments were conducted to determine the pressure drop of 

MPCM slurry at four different mass fractions. The pressure drop of MPCM slurry 

flowing through the pressure drop test section shown in Fig. 10 was measured, when the 

slurry reached steady-state conditions in terms of temperature and flow rate. The test 

conditions for the pressure drop experiments are shown in Table 5. 

 

Table 5. Test conditions for the pressure drop experiments 

Fluid Fluid Velocity Reynolds Number Fluid Temperature 

2.1 % MPCM slurry 1.9 – 2.9 m/s 13000 – 19600 16.5 ˚C 

5.9 % MPCM slurry 1.9 – 2.9 m/s 9300 – 14000 16.5 ˚C 

8.3 % MPCM slurry 1.9 – 2.9 m/s 7300 – 11000 16.5 ˚C 

10.9 % MPCM slurry 1.9 – 2.9 m/s 6000 – 8500 
16.5 ˚C 

20.5 ˚C 

 

Figure 24 shows the pressure drop of 10.9 % MPCM slurry at different slurry 

temperatures as a function of fluid velocity to determine the effect of PCM’s states on 

the pressure drop. When the slurry temperatures are set at 16.5 ˚C and 20.5 ˚C, the PCM 

is expected to be at solid state and liquid state, respectively. The results showed that the 

difference of the pressure drop is small and negligible. This could be attributed to the 
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shell material, which was always in contact with the carrier fluid and other particles [9] 

regardless of the phase change process taking place within each microcapsule. 

 

 

Fig. 24. Pressure drop of 10.9 % MPCM slurry as a function of fluid velocity 
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phenomena might suggest the presence of a drag reduction effect between the MPCM 

slurry and the inner surfaces of the coiled tube as reported in earlier studies [1, 3, 12]. 

 

 

Fig. 25. Pressure drop of MPCM slurry as a function of fluid velocity 
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Fig. 26. Friction factor of MPCM slurry as a function of Dean number 

 

A multiple regression analysis was performed to postulate a correlation for 
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Fig. 27. Comparison of friction factor values between the experiment and correlation 

 

Friction factor of MPCM slurry as a function of fluid velocity is shown in Fig. 28. 
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Fig. 28. Friction factor of MPCM slurry as a function of fluid velocity 

 

 In summary, pressure drop of MPCM slurry flowing through a CHX was higher 

than water at constant flow conditions and increased with mass fraction of MPCM in the 
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 5.2.2 Heat Transfer Coefficient Measurements 

Heat transfer experiments were conducted to determine the convective heat 

transfer coefficient of MPCM slurry at four different mass fractions. Test conditions are 

shown in Table 6. The heat transfer characteristics of the MPCM slurry flowing through 

CHX were investigated for melting conditions only. To investigate the effects of MPCM 

particles, additional heat transfer experiments were conducted without a phase change of 

the PCM by setting the inlet temperature (20.5 ˚C) of MPCM slurry, which is  greater 

than the melting temperature (17.4 ˚C) of the PCM. All the data were recorded when the 

slurry reached steady-state conditions in terms of temperature and flow rate. 

 

Table 6. Test conditions for the heat transfer experiments  

Fluid 
Fluid Velocity 

(Reynolds Number) 

Inlet Fluid 

Temperature 
Heat Flux 

Water 
0.7 – 2.9 m/s 

( 7500 – 24500 ) 
16.5 ˚C 

36 kW/m
2
  

25 kW/m
2
 

2.1 % MPCM slurry 
1.9 – 2.9 m/s 

( 14000 – 20500 ) 

16.5 ˚C 

 20.5 ˚C 

46 kW/m
2
  

28 kW/m
2
 

5.9 % MPCM slurry 
1.9 – 2.9 m/s 

( 9900 – 14500 ) 

16.5 ˚C 

20.5 ˚C 

46 kW/m
2
  

37 kW/m
2
 

8.3 % MPCM slurry 
1.9 – 2.9 m/s 

( 7800 – 11400 ) 

16.5 ˚C 

20.5 ˚C 

46 kW/m
2
  

42 kW/m
2
 

10.9 % MPCM slurry 
1.9 – 2.9 m/s 

( 5900 – 8700 ) 

16.5 ˚C 

20.5 ˚C 
46 kW/m

2
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Fig. 29. Percentage of MPCM particles undergoing phase change 

  

 Determining the percentage of MPCM particles ( ) that underwent phase change 

is important in the heat transfer experiments with MPCM slurry to investigate the effects 

of the latent heat of fusion of the PCM on heat transfer characteristics. Energy balance 
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,,1       (42) 
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and PCMpc ,  is the specific heat of the PCM. The experimental uncertainty for calculating 

  was ± 5.5 %.  

Figure 29 shows the percentages of MPCM particles that underwent phase change, 

which were in the range of 95 to 98 % for the experiments with phase change of the 

PCM and 0 to 3.9 % for the experiments without phase change of the PCM. 

Figure 30 shows fluid temperature profiles of MPCM slurries at mass fractions of 

5.9 % and 10.9 % for several fluid velocities, which varied from 1.9 m/s to 2.9 m/s under 

constant heat flux (46 kW/m
2
) condition. When fluid temperature reached the melting 

temperature (17.4 ˚C) of the phase change material (PCM), the temperature gradient 

decreased due to the phase change process of the PCM from solid to liquid. After 

complete phase change of the PCM, the temperature gradient increased. Theoretically, 

the slurry temperature should be constant during the phase change process but there was 

a slight temperature gradient in the experiments. This was because not all the MPCM 

particles underwent phase change at the same time [1, 12, 52]. The melting process of 

MPCM particles flowing through the coil was as follows: 1) MPCM particles near the 

wall underwent phase change by absorbing heat from the tube wall; 2) MPCM slurry 

near the wall transferred heat to the slurry in the core of the tube through fluid mixing 

due to turbulence and secondary flows; 3) as the slurry temperature increased, MPCM 

particles in the core of the tube underwent phase change. Since secondary flow in a CHX 

can redistribute fluid elements in a radial direction, it can improve the phase change 

process of the MPCM particles when compared to a straight tube case, where isotropic 

turbulence in the dominant transport mechanism. 
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Fig. 30. Fluid temperature profile of MPCM slurry along the coiled tube at (a) 5.9 % 

MPCMs, (b) 10.9 % MPCMs 
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 Figure 31 shows dimensionless wall temperatures for 5.9 % and 10.9 % MPCM 

slurries, which were determined using Equation (39). Average dimensionless wall 

temperatures ( w ) for 5.9 % and 10.9 % MPCM slurries are shown in Figs. 31 (a) and 

(b), respectively. The figure shows that as fluid velocity increases, the dimensionless 

wall temperature increases due to greater momentum transfer [50]. The experimental 

results also show that the gradient of the dimensionless wall temperature changes during 

phase change process [9, 10], which mainly takes place in the test section between 180 

and 360 degrees. Dimensionless wall temperatures on the inside ( iw, ) and the outside 

( ow, ) of the tube for 5.9 % and 10.9 % MPCM slurries at two different fluid velocity 

conditions are shown in Figs. 32 (a) and (b), respectively. The experiment results show 

that the dimensionless wall temperature on the outside of the tube wall is always lower 

than that on the inside of the tube wall. This can be attributed to the centrifugal force 

induced by the tube curvature, which tends to shift the maximum axial fluid velocity 

toward the outside of the tube.  
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Fig. 31. Average dimensionless wall temperature of MPCM slurry at (a) 5.9 % MPCMs, 

(b) 10.9 % MPCMs 
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Fig. 32. Dimensionless wall temperatures on the inside and the outside of the tube at (a) 

5.9 % MPCMs, (b) 10.9 % MPCMs 
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Figure 33 shows the difference of heat transfer coefficients between the outside 

( oh ) and the inside ( ih ) of the wall as a function of angle. The experimental results show 

that the heat transfer coefficient difference increases with fluid velocity, which is about 

18 to 27 % of the average heat transfer coefficient. This can be attributed to the 

intensified centrifugal force within the flow structure. Moreover, the centrifugal force 

induced by the coil curvature moves the location of maximum axial velocity toward the 

tube’s outer region [53, 54]. Specifically, the shift in location is caused by the centrifugal 

force which is balanced by the radial pressure gradient as follows [54]: 

 
R

v

r

P 2




 
      (43) 

where  , v , and R  are the density of fluid, axial fluid velocity, and the coil radius, 

respectively. 

Furthermore, at higher Dean number, the location of maximum axial velocity shifts more 

to the outer region of the tube, which leads to greater fluid shear in the outer region than 

in the inner region inside the helical coil [54-56]. As a result, higher Dean number leads 

to a greater heat transfer coefficient difference as well as a higher heat transfer 

coefficient overall. The experimental results, Fig. 33, also show that the heat transfer 

coefficient difference ( io hh  ) shows an oscillatory behavior, and the magnitude of the 

oscillation tends to increase with fluid velocity (Dean number), even though it has no 

effect on the average heat transfer coefficients. This is expected because the secondary 

flows in the helical coil affect the heat transfer coefficients around the periphery of the 

tube, which researchers [21, 50, 57, 58] have observed, specifically within the 
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developing region. Previous studies [21, 50, 57, 58] also reported that the oscillatory 

behavior of the heat transfer coefficient decays and damps out in the fully developed 

region. However, Jayakumar et al. [38] observed through numerical simulations that the 

fluid elements move within various trajectories and oscillate along the helically coiled 

tube. Jayakumar et al. [38] also found that Nusselt number fluctuates because of an 

overall spiral movement of the fluid generated by a combination of centrifugal, inertial, 

and buoyancy forces, even though the oscillations are marginal in the fully developed 

region.  

 

 

Fig. 33. Difference of heat transfer coefficients between the outside and the inside of the 

tube for (a) water, (b) 5.9 % MPCM slurry without phase change, (c) 10.9 % MPCM 

slurry without phase change at different fluid velocities 
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Fig. 33 Continued. 

 

Figure 34 shows the difference of the heat transfer coefficients for different mass 
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mass fraction of MPCM in the slurry because of the increased viscosity at higher mass 

fractions. The experimental results suggest that higher viscosity attenuates and damps 

the oscillatory behavior of ( io hh  ) and the secondary flows even at high velocities. 

Since the pressure losses are higher for MPCM at high mass fractions, it is expected that 

viscous effects would limit the intensity of secondary flows. The phase change process 

did not significantly affect the difference of heat transfer coefficients and the 

oscillations, as shown in Fig. 35. 

 

 

Fig. 34. Difference of heat transfer coefficients between the outside and the inside of the 

tube for different mass fractions of MPCM slurries 
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Fig. 35. Difference of heat transfer coefficients between the outside and the inside of the 

tube for 8.3 % MPCM slurry 
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Fig. 36. Nusselt number of MPCM slurry as a function of fluid temperature at different 

fluid velocities at (a) 2.1 % MPCMs, (b) 5.9 % MPCMs, (c) 8.3 % MPCMs, (d) 10.9 % 

MPCMs 
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Fig. 36 Continued. 
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Fig. 37. Fluid temperature and Nusselt number as a function of angle for 5.9 % MPCM 

slurry at fluid velocity of 2.3 m/s 
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Nusselt number decreased again. After finishing the melting process, the Nusselt number 

remained almost constant, as is the case of the single phase fluid. 

 

 

Fig. 38. Nusselt number as a function of angle at different mass fractions of MPCM 

slurries 

 

 Figure 38 shows the effects of mass fraction of MPCM in the slurry on Nusselt 

number at a constant fluid velocity (2.5 m/s) and constant heat flux (46 kW/m
2
). The 

experimental results show that the average Nusselt number decreases with mass fraction 

of MPCM in the slurry, which is lower than that of water. Adding particles to a carrier 

fluid usually increases the fluid viscosity, which reduces the Reynolds number at the 

same fluid velocity due to the increased viscosity associated with particle loading. In 

turn, the lower turbulence decreases the momentum transfer and the Nusselt number as 

0

40

80

120

160

200

240

0 180 360 540 720

N
u
ss

el
t 

N
u
m

b
er

 

Angle (Degrees) 

2.1% MPCMs (v=2.5m/s, Re=18000)

5.9% MPCMs (v=2.5m/s, Re=12600)

8.3% MPCMs (v=2.5m/s, Re=9900)

10.9% MPCMs (v=2.5m/s, Re=7600)

Water (v=2.5m/s, Re=24500)



87 

 

well. In addition, the relatively low latent heat of fusion of the PCM (88 J/g) used in the 

study led to a lower Nusselt number than water. Organic phase change materials with a 

latent heat of fusion ranging from 150 to 200 J/g were typically used in previous studies 

[1, 3, 4, 9, 10, 12], which was approximately 1.7 to 2.3 times greater than that used in 

the study. For similar rheological properties of MPCM slurry, a higher latent heat of 

fusion can considerably enhance heat transfer performance. Kong et al. [4] reported that 

the overall heat transfer coefficient of MPCM slurry, having a latent heat of fusion of 

152 J/g, was higher than that of water in a commercial coil heat exchanger.  

 The Nusselt number of MPCM slurry can also be affected by MPCM particle 

interactions within the fluid. In order to investigate the effects of MPCM particle 

interactions on Nusselt number, the Nusselt number of MPCM slurry without phase 

change of PCM was compared with that of a hypothetical fluid, assuming the following 

conditions: 

- The fluid has no particles but matches the viscosity of the MPCM slurry 

- The thermo-physical properties of the fluid are the same as those of MPCM 

slurries including density, viscosity, specific heat, and thermal conductivity 

- The Nusselt number of the fluid is determined by using the correlation (Equation 

(26)) postulated by Mori and Nakayama [36], which is applicable for a coil with 

a curvature ratio of 0.025 and turbulent flow of homogeneous Newtonian fluid.  

Figure 39 shows the Nusselt numbers of water, MPCM slurry with phase change, 

MPCM slurry without phase change, and a hypothetical fluid at a constant fluid velocity 

(2.5 m/s) and heat flux (46 kW/m
2
). Figures 39 (a), (b), (c), and (d) show the results for 
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2.1 %, 5.9 %, 8.3 %, and 10.9 % MPCM slurries, respectively. As the results show, the 

ratio of Nusselt number of MPCM slurry without phase change to that of the 

hypothetical fluid increases from 1.02 to 1.08, when mass fraction increases from 2.1 % 

to 5.9 %. However, the ratio decreases at higher mass fractions. This suggests that 

microcapsules can enhance the heat transfer performance through the interactions of 

particles induced by a combination of the secondary flow and turbulence at a particular 

low mass fraction. At higher mass fraction of MPCM in the slurry, particle interactions 

negatively affect turbulence intensity leading to reduced momentum transfer. This 

phenomenon was observed in previous studies [60, 61]. 

Nusselt number of MPCM slurry with phase change was compared to the slurry 

without phase change to investigate the effect of the latent heat of fusion. The 

experimental results show that the latent heat of fusion of the PCM increases Nusselt 

number. It was also found that the ratio of Nusselt number of MPCM slurry with phase 

change to the slurry without phase change increases with mass fraction of MPCM in the 

slurry. This was expected because of the greater latent heat of fusion available for heat 

transfer, as the mass fraction of the MPCM increases. 
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Fig. 39. Nusselt numbers of MPCM slurry with and without phase change and a 

hypothetical fluid at (a) 2.1 % MPCMs, (b) 5.9 % MPCMs, (c) 8.3 % MPCMs, (d) 10.9 % 

MPCMs 
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Fig. 39 Continued. 
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To investigate the effects of using a coiled tube on heat transfer performance of 

MPCM slurry, the heat transfer enhancement factor 









w

MPCMs

h

h
 of MPCM slurry in the 

coiled tube was compared to that in a straight tube studied by Alvarado et al. [1]. As 

shown in Table 7, the heat transfer enhancement factor (0.73) in the coiled tube is higher 

than the one (0.6) for a straight tube. This is attributed to enhanced fluid mixing of the 

MPCM particles. To evaluate the effects of using a coiled tube on enhanced fluid mixing, 

the minimum required length of heat transfer section needed to ensure complete melting 

should be determined. It is hypothesized that better fluid mixing leads to a faster phase 

change process by allowing MPCM particles to interact with the heated surface 

energetically. Under ideal conditions, when the fluid reaches the melting point of the 

PCM, all the energy would then be used to melt the PCM while the carrier’s fluid 

temperature remains constant or with a temperature rise of zero, as shown in Fig. 40. 

However, due to less than ideal mixing conditions, MPCM particles require a longer 

distance to melt inside the heat transfer section, which results in a temperature rise 

greater than zero.  

 

Table 7. Comparison of heat transfer enhancement factors 

Test section 

Latent heat of 

fusion of PCM 

( J/g ) 

Mass fraction 

of MPCM 

( % ) 

Fluid 

velocity 

( m/s ) w

MPCMs

h

h
 

Actual

Ideal

L

L
 

Coiled Tube 88  8.3 1.9 0.73 0.78 

Straight Tube 163 7.0 1.9 0.60 0.67 
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Fig. 40. Fluid temperature profile at ideal and actual conditions 
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where MF ,  , m , q  , and d  are the MPCM mass fraction, the latent heat of fusion of 

the PCM, the mass flow rate of the MPCM slurry, the heat flux, and the inner diameter 

of the tube, respectively. 

Ideal length applies only when there is no temperature rise in the carrier fluid since all 

the energy is being absorbed by the phase change material in the form of latent heat.  

ActualL  was determined experimentally by noting the changes of the slope of the 

temperature curve along the axial direction. Specifically, the changes in slope associated 

with the onset of melting and complete melting were used as the limits of ActualL , as 

shown in Fig. 40. As Table 7 shows, the melting length ratio (MLR) is greater for the 

coiled tube than for the straight tube even when taking into account the latent heat of 

fusion and mass fraction of the MPCM slurries. It is then inferred that better fluid 

mixing exists in the coiled loop than in the straight loop because of the presence of 

secondary flows, which leads to an enhanced phase change process of the PCM.  

Figure 41 shows the Nusselt number of MPCM slurry as a function of fluid 

velocity at a constant fluid inlet temperature (16.5 ˚C) and heat flux (46 kW/m
2
). The 

experimental results clearly show that Nusselt number increases with fluid velocity. This 

can be attributed to the combination of increased fluid velocity effect and intensified 

secondary flow effect [62]. As the MPCM mass fraction increases, the Nusselt number 

of the MPCM slurry decreases and is lower than water at the same fluid velocity. This is 

expected because the higher viscosity of MPCM slurry decreases the turbulence intensity 

and thus momentum transfer. 
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Fig. 41. Nusselt number of MPCM slurry as a function of fluid velocity 

 

 

Fig. 42. Nusselt number of MPCM slurry as a function of Dean number 
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Figure 42 shows Nusselt number of MPCM slurry as a function of Dean number. 

The experimental results show that Nusselt number increases with Dean number and 

MPCM concentration due to the increased momentum and greater latent heat of fusion 

from the PCM. Based on the results, a multiple regression analysis was performed to 

formulate a correlation capable of predicting Nusselt number for MPCM slurry flowing 

through the coiled tube with a curvature ratio ( Rr / ) of 0.025. The correlation is based on 

Dean number ( De ), mass fraction of MPCM in the slurry ( MF ), and Prandtl number 

( Pr ), as follows: 

  4.019.00.95 Pr1De03.0Nu


 MFc       97.02 R              (46) 

where 4000De1000   and 11.00  MF  

As shown in Fig. 43, the Nusselt number values of the correlation (46) are compared 

with those of the experiments. The values of the correlation are in good agreement with 

the experimental values and deviate by less than ± 10 %. From the correlation, it is clear 

that the Nusselt number increases with Dean number, mass fraction of the MPCM, and 

Prandtl number. It is also clear that Dean number plays a more significant role in 

increasing the Nusselt number than the MPCM concentration and Prandtl number since 

its exponent in the correlation is greater than the other ones. 
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Fig. 43. Comparison of Nusselt numbers between the experiment and correlation 
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 5.2.3 Energy Evaluation of MPCM Slurry 

In order to determine the benefits of using MPCM slurry as a heat transfer fluid 

in terms of energy, the effects of both heat transfer and pressure drop on energy 

efficiency should be considered. Many researchers [63-67] have used a performance 

coefficient including both heat transfer and flow resistance characteristics to compare the 

overall performance of heat exchangers between new fluids and base fluids. In this study, 

the effect of using MPCM slurry was assessed using the performance efficiency 

coefficient (PEC) or Bergles number, which is defined as the ratio of Nusselt number 

ratio to friction factor ratio between MPCM slurry and water, and it is calculated as 

follows: 
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where MPCMsNu , wNu , MPCMsf , and wf  are the Nusselt numbers of MPCM slurry and 

water, the friction factors of MPCM slurry and water, respectively. 

In addition, PEC values were determined using the results at a constant fluid velocity as 

suggested by Yu et al. [63] to definitely determine the benefits of using MPCM slurry as 

a heat transfer fluid.  

 Figure 44 shows the PEC values of MPCM slurry as a function of mass fraction 

of MPCM in the slurry. As the mass fraction of the MPCM in the slurry increases, the 

PEC values decrease and all are lower than one. The low PEC values can be attributed to 

that the viscosity of MPCM slurry should increase pressure drop and decrease turbulence 
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and momentum transfer. In addition, the relatively lower latent heat of fusion of the 

PCM (88 J/g) used in the study was low to promote enhancement of Nusselt number 

compared to that of water. Recently, Kong et al. [4] used methyl stearate microcapsules 

with a latent heat of fusion of 152 J/g and observed that PEC value for 4.6 % MPCM 

slurry was higher than one. It is evident that using MPCM slurry can enhance the overall 

performance of CHX by considerably increasing the heat transfer, even though the 

higher viscosity of MPCM slurry leads to a higher pressure drop (pumping power).  

 

 

Fig. 44. Performance efficiency coefficient (PEC) as a function of mass fraction 
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fluid can carry with a raise in temperature. Thus, increased energy transferred can reduce 

the required flow rate of heat transfer fluid and consequently save energy through 

decreased pumping power. To evaluate the use of MPCM slurry as a heat transfer fluid 

from the heat capacity point of view, a figure of merit for heat capacity ( HCFOM ) is 

defined, as follows: 
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where MPCMspc , , wpc , , MPCMsf , and wf  are the effective specific heat of MPCM slurry, 

the specific heat of water, the friction factors of MPCM slurry and water, respectively. 

Figure 45 shows the HCFOM  values of MPCM slurry as a function of mass fraction of 

MPCM in the slurry. The experimental results show that the HCFOM  values increase 

with MPCM’s mass fraction, from 1.11 to 1.49. This can be attributed to the specific 

heat of the MPCM slurry, which significantly increases due to the latent heat of fusion of 

the PCM even at low mass fraction. It is found that the use of MPCM slurry can enhance 

the performance of the thermal energy systems by significantly increasing the heat 

capacity, even though the higher viscosity of MPCM slurry leads to the increased 

pumping power. 
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Fig. 45. Figure of merit for heat capacity (FOMHC) as a function of mass fraction for T 

of 3 ˚C 
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6. CONCLUSIONS 

 

In the present experimental study, thermophysical properties of MPCM slurry 

were characterized and a variety of experiments for pressure drop and heat transfer 

coefficient measurements were conducted to investigate the flow and heat transfer 

characteristics of MPCM slurry in a helically coiled tube. Main observations and 

findings and recommendations for future work are as follows: 

 

6.1 Concluding Remarks 

 Adding MPCM particles to water increased the viscosity due to particle 

interactions. MPCM slurry behaved as a Newtonian fluid at mass fractions less than 

10.9 %. For the durability, MPCM particles used in the study resisted continuous 

pumping condition (2200 circulation cycles) without any degradation of heat transfer 

performance. From the pressure drop measurements, pressure drop of MPCM slurry 

increased with MPCM’s mass fraction, which was higher than water because of the 

increased viscosity. Friction factor curve of MPCM slurry fitted well with previous 

correlation used for homogeneous Newtonian fluids and friction factor correlation was 

postulated as a function of Dean number only. 

 From the heat transfer experiments, Nusselt number of MPCM slurry 

significantly increased during the phase change process due to the increased heat 

capacity provided by the latent heat of fusion of the PCM. Nusselt number of MPCM 

slurry was lower than that of water at the same flow rate condition due to the decreased 
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momentum transfer. Difference of heat transfer coefficient between outside and inside 

regions of the coiled tube occurred because of a skewed axial fluid velocity generated by 

centrifugal force, which showed an oscillatory behavior due to the formation of 

secondary flows. In addition, the heat transfer coefficient difference decreased with mass 

fraction of MPCM due to higher viscosity and the viscous effect of MPCM slurry would 

limit the intensity of secondary flows. Fluid mixing in the radial direction induced by 

secondary flows led to an enhanced phase change process and increased heat transfer 

performance, when compared to MPCM heat transfer cases involving straight heat 

transfer sections. Moreover, the correlation for predicting Nusselt number of MPCM 

slurry in a coiled tube was postulated and Dean number played a more significant role in 

increasing Nusselt number than other parameters. 

 Energy evaluation was performed to determine the benefits of using MPCM 

slurry as a heat transfer fluid. Energy evaluation results revealed that using MPCM 

slurry do not have any enhancement in terms of performance efficiency coefficient due 

to the increased pressure drop, decreased momentum transfer, and low latent heat of 

fusion of the PCM used in the study. However, MPCM slurry increased the figure of 

merit in terms of heat capacity even at low mass fraction of MPCM in the slurry. 

In summary, MPCM slurry can become a viable heat transfer fluid in thermal 

energy applications. MPCM slurry can significantly enhance heat capacity due to the 

latent heat of fusion of the PCM. MPCM slurry used under moderate conditions 

including high latent heat of fusion, low slurry viscosity, and high phase change rate can 

lead to enhanced heat transfer performance. In addition, a coil heat exchanger can be 
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appropriate for phase change process of PCM by enhancing fluid mixing induced by 

secondary flows. However, from the heat transfer performance point of view, optimum 

conditions still have to be identified to maximize the benefits of using MPCM slurry in 

the coil heat exchanger in future studies. 

 

6.2 Future Studies 

The following recommendations should be considered in future studies: 1) 

evaluation of heat transfer performance of MPCM slurry with a PCM with high latent 

heat of fusion in a coiled tube, 2) investigation of the effects of coil configurations 

including curvature and pitch on flow and heat transfer characteristics of MPCM slurry, 

3) numerical simulation for MPCM slurry in the coiled tube to completely understand 

how MPCM particles behave inside the coiled tube and to determine the effect of flow 

behavior on heat transfer performance of MPCM slurry, 4) evaluation of the effects of 

MPCM particle material, particle shape, particle size, and particle size distribution on the 

pressure drop of MPCM slurry.  
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APPENDIX A 

CALIBRATION OF THERMOCOUPLES 

 

This section presents the procedures and the results for the thermocouple 

calibrations. Twenty four surface temperature thermocouples and ten fluid temperature 

thermocouples were used and calibrated before heat transfer experiments. The 

thermocouple calibration was conducted with pure water under isothermal conditions. 

All the temperatures were measured using an Agilent data logger at steady state 

conditions. The calibration process is as follows: 

Experimental measurements were taken for all the thermocouples under 

equilibrium isothermal conditions for a period of 10 days. To get the average 

temperature value for each thermocouple, an arithmetic mean was taken and defined as:  
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where i is the number of each thermocouple, which is from 1 to 34. 

 A total average temperature was calculated using the average temperature values 

of the thermocouples, as follows: 
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Finally, correction factor ( iCF ) was found for each of the corresponding 

thermocouple based on the deviation from the total average temperature value, as 

follows: 

 iavgtotalavgi TTCF ,,                                                   (A.3) 

The correction factors for all the thermocouples used in the experiments are 

shown in Table A.1 and were incorporated directly in the data acquisition system 

software. 

 

Table  A.1. Correction factors for thermocouples 

Thermocouples 

Average Temperature, 

Tavg,i 

( ˚C ) 

Correction Factor, 

CFi 

( ˚C ) 

% Difference 

 

( % ) 

TC1 18.18 0.29 1.6 

TC2 18.20 0.27 1.5 

TC3 18.14 0.33 1.8 

TC4 18.37 0.10 0.5 

TC5 18.57 -0.10 -0.5 

TC6 18.36 0.11 0.6 

TC7 18.53 -0.06 -0.3 

TC8 18.41 0.06 0.3 

TC9 18.52 -0.04 -0.2 

TC10 18.43 0.05 0.3 

TC11 18.49 -0.02 -0.1 

TC12 18.50 -0.03 -0.1 

TC13 18.40 0.08 0.4 

TC14 18.40 0.07 0.4 

TC15 18.53 -0.06 -0.3 
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TC16 18.19 0.28 1.5 

TC17 18.27 0.20 1.1 

TC18 18.74 -0.26 -1.4 

TC19 18.51 -0.04 -0.2 

TC20 18.49 -0.02 -0.1 

TC21 18.65 -0.18 -1.0 

TC22 18.56 -0.09 -0.5 

TC23 18.58 -0.10 -0.6 

TC24 18.64 -0.17 -0.9 

TC25 18.61 -0.14 -0.7 

TC26 18.64 -0.17 -0.9 

TC27 18.80 -0.33 -1.8 

TC28 18.56 -0.09 -0.5 

TC29 18.58 -0.10 -0.6 

TC30 18.55 -0.08 -0.4 

TC31 18.36 0.11 0.6 

TC32 18.29 0.18 1.0 

TC33 18.46 0.01 0.0 

TC34 18.57 -0.10 -0.5 

Total Average 

Temperature, 

Tavg,total 

( ˚C ) 

              18.47 

 


