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ABSTRACT

In this dissertation, we focus on the uncertainty quantification problems in sub-

surface flow models which can be computationally demanding because of the large

number of unknowns in forward simulations. First, we propose a general frame-

work for the uncertainty quantification of quantities of interest for high-contrast

single-phase flow problems. It is based on the Generalized Multiscale Finite Element

Method (GMsFEM) and Multilevel Monte Carlo (MLMC) methods. The former pro-

vides a hierarchy of approximations at different resolutions, whereas the latter gives

an efficient way to estimate quantities of interest using samples on different levels.

By suitably choosing the number of samples at different levels, one can use less of

expensive forward simulations on the fine grid, while more of inexpensive forward

simulations on the coarse grid in Monte Carlo simulations. Further, we describe

a Multilevel Markov Chain Monte Carlo (MLMCMC) method, which sequentially

screens the proposal with different levels of approximations and reduces the number

of evaluations required on the fine grid, while combining the samples at different levels

to arrive at an accurate estimate. The framework seamlessly integrates the multi-

scale feature of the GMsFEM with the multilevel feature of the MLMC methods,

and our numerical experiments illustrate its efficiency and accuracy in comparison

with standard Monte Carlo estimates.

We also propose a multiscale space-parameter separation model reduction method

for handling uncertainties in forward problems. The method is based on the idea of

separation of variables. This involves seeking the solution in terms of an expansion,

where each term is a separable function of space and parameter variables. To find
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each term in the expansion, we solve a minimization problem associated with the

forward problem. The minimization is performed successively for each term consist-

ing of a separable function. In this proposed approach, we need to solve the PDE

repeatedly, where we use GMsFEM to speed up the computation. We discuss how

the GMsFEM can be used in this context and how the computational gain can be

achieved. We present numerical results, which illustrate the efficiency and accuracy

of our method.

We also discuss efficient sampling techniques for uncertainty quantification in

inverse problems. In particular, we consider Approximate Bayesian computation

(ABC) and develop a Multilevel Approximate Bayesian computation (MLABC) by

using a hierarchy of forward simulation models within the MLMC framework. This

approach improves the MLMCMC approach. In this part of the dissertation, we de-

velop a mixed Generalized Multiscale Finite Element Method (GMsFEM) for solving

parameter-dependent two-phase flow problems with transport model. A hierarchy

of approximations at different resolutions can be provided by this mixed GMsFEM.

ABC can be incorporated in different levels to reduce the computational cost, and

to produce an approximate solution by ensembling at different levels.
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1. INTRODUCTION

Uncertainties exist inherently in subsurface flow problems in heterogeneous porous

media. Mathematical models include uncertainties that come from the modeling er-

rors, which reveal the differences between the models we choose and the real physical

facts. For example, uncertainties in the description of subsurface lithofacies, porosity

and permeability are major contributors to the uncertainties in reservoir performance

forecasting, which can greatly affect the prediction of production and reservoir man-

agement. We will focus on this kind of uncertainties, which mainly come from the

model parameters in our mathematical models. The parameters, such as permeabil-

ity and porosity, are typically high-contrast with multiscale nature. The uncertainties

associated with these quantities need to be quantified and reduced for better predic-

tions. Our goal is to efficiently quantify and reduce these uncertainties, so that we

can get a model with less uncertainties in the parameters, which can provide better

predictions.

There are two main types of uncertainty quantification problems that we will

consider in the dissertation. The first is the forward uncertainty propagation. The

second is the inverse uncertainty quantification. The forward propagation of uncer-

tainties is the quantification of uncertainties in the model outputs that are propagated

from uncertain input parameters to the solution space. All possible parameter values

that are consistent with the available measurement data and other known geologi-

cal descriptions should be considered to study the propagation of the uncertainties

through the model and how it affects the simulation results. Different approaches

have been proposed to evaluate the quantities of interest of the model outputs. For

instance, Monte Carlo sampling [15, 72, 32, 59] is one of the popular approaches,
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which requires generating a set of independent realizations from the parameter space

and solving the equations for each sample in the set. Based on obtained results from

multiple realizations, one can infer statistical quantities, such as mean, variance, and

so on. Other approaches, such as the response surface method [42, 5], Galerkin-type

polynomial approximation methods [6, 24, 11] and spectral decomposition methods

[69, 65, 62, 38], also require repeatedly solving a huge amount of deterministic PDEs

with high dimensional parameter space. In approaches such as polynomial chaos

approximation [66, 82, 84, 83, 37], multiscale high dimensional problems will im-

pose heavy computational challenge due to a huge amount of degrees of freedom.

Approaches such as POD [53] can achieve dimension reduction, but at the cost of

computing a large space of global snapshots. More discussions can be found in

[85, 23].

The inverse problem aims at estimating the discrepancy between experiment and

mathematical model and the values of unknown parameters, given some experimen-

tal measurements and simulation results. In these problems, the observed data is

used to estimate the input parameters and associated uncertainties. The calibrated

parameters are then used to make predictions for other output variables in a for-

ward modeling procedure. Bayesian framework based methods [73, 67, 60, 32, 25]

are often used to solve the inverse problems. In this framework, the inverse problem

is solved from a probabilistic point of view by seeking the posterior distribution of

parameters given the observations using Bayes' theorem. For subsurface flow models,

this task can be done by running a large number of trial simulations with different

parameter values, hence is prohibitively expensive. More discussions can be found in

[85, 23, 80, 78, 71, 47]. One of the prominent approaches for solving Bayesian inverse

problem is Markov Chain Monte Carlo [73, 60]. There are many other approaches

for solving inverse problems [12, 77, 50, 51]. In the dissertation, we will mostly focus
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on Bayesian approaches.

From the above, we can see that although a number of approaches for both

forward and inverse uncertainty quantification problems have been developed, there

exist several difficulties and challenges, especially in the case of high-contrast input

parameters with multiscale nature. The reservoir parameters are typically defined on

a large number of grid blocks. This leads to a high computational cost when we try

to resolve the system. For Monte Carlo simulations and Markov Chain Monte Carlo

(MCMC) methods, forward model needs to be solved for each sample. A huge number

of samples will be needed to get a proper evaluation of the mean, variance, or other

statistics in the Monte Carlo simulations. Moreover, to guarantee the convergence of

MCMC, the computational cost in the forward simulations is the most expensive part

in the whole algorithm. Similarly, chaos expansion methods also involves multiple

solves of the forward model. Different methods have been developed to accelerate the

forward models, for example, multiscale finite element methods [45, 46, 49, 68, 43],

etc. On the other hand, the low acceptance rate and local-trapping issues [56, 57, 58]

of MCMC need to be overcome in the simulations, which also increase the cost of the

forward simulation. Several modifications of MCMC have been proposed to improve

these issues [32, 35, 58, 25, 60, 16, 41].

In the dissertation, we try to propose several efficient methods for both the for-

ward and inverse uncertainty quantification for multiscale problems. Permeability

fields of interest will be parametrized. To accelerate the forward simulation, we pro-

pose a Generalized Multiscale Finite Element Method (GMsFEM) [27, 26, 19] for

stochastic PDEs. We consider both continuous Galerkin and mixed versions of GMs-

FEM. A mixed GMsFEM [19, 55] follows the mixed finite element framework [1, 3, 48]

will be described for solving two-phase flow with transport model. This technique can

be paired with Multilevel Monte Carlo (MLMC) [21, 39] methods and separation of
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variables [54, 8], which forms computationally efficient framework for forward uncer-

tainty quantification. We also combine the multilevel methods with sampling process

like MCMC and Approximation Bayesian Computation (ABC) [79, 22, 13, 63, 64] to

reach computational savings for inverse uncertainty quantification problems.

In Section 2, we cover the preliminary background materials. We introduce the

porous media flow equations that will be studied throughout the dissertation. We

will consider these equations for single- and two-phase flows. We then introduce

the forward uncertainty quantification and Monte Carlo methods. Inverse uncer-

tainty quantification is also introduced and the Bayesian framework is presented.

Basic coarse-grid solution techniques to solve porous media flow equations and the

parametrization of the parameters are also briefly discussed.

In Section 3, we present a framework for uncertainty quantification of quantities

of interest based on the Generalized Multiscale Finite Element Method (GMsFEM)

and Multilevel Monte Carlo (MLMC) methods. The GMsFEM provides a hierarchy

of approximations to the solution, and the MLMC provides an efficient way to esti-

mate quantities of interest using samples on multiple levels. In MLMC methods, a

respective number of samples are used at different levels. More realizations are used

at the coarser levels with inexpensive forward computations, and fewer samples are

needed at the finer and more expensive levels due to the smaller variances. There-

fore, the coupled GMsFEM-MLMC framework naturally integrates the multilevel

feature of the MLMC with the multiscale nature of the high-contrast flow prob-

lem. MLMC is also considered jointly with Multilevel Markov Chain Monte Carlo

(MLMCMC) methods, in which GMsFEM provides the mapping between the levels.

We obtain samples from hierarchical posteriors corresponding to multilevel approx-

imations which can be used for rapid computations within a MLMC framework to

estimate the expected value. We apply the proposed methods to single phase flow
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and numerical results show the efficiency of the framework in comparison with the

standard MCMC estimates.

In Section 4, we propose an approach for forward uncertainty quantification that

follows the idea of separation of variables, where separable basis functions are com-

puted based on optimizations. By separating the parameter (that represents the

uncertainties in the permeability field) and the space variables, the original high

dimensional problem is decomposed into a sequence of low dimensional problems.

The solution can be approached with a small number of terms in the expansion,

which achieves a global model reduction. GMsFEM will be utilized here to solve the

parameter-independent PDE in the expansion process repeatedly in order to speed

up the computation, which achieves a local model reduction. Several numerical re-

sults are presented to show the accuracy of the solution achieved by the first few

terms in this model reduction approach. Adaptivity is briefly discussed in the end.

In Section 5, we discuss the Approximate Bayesian computation (ABC) which

can be viewed as an approximation of MCMC and can be utilized in inverse uncer-

tainty quantification problems. In ABC, there is no burden of expensive likelihood

computation and it is adaptable in many senarios. Here, ABC is implemented in

a multiscale scenario, and the quantities of interest are estimated in a multilevel

framework which follows the idea of MLMC. We also apply GMsFEM to provide

hierarchical posteriors and mapping between levels. A multilevel ABC (MLABC)

algorithm is proposed and numerical results are shown for both single-phase and

two-phase flow models. We compare MLABC with standard MCMC and MLMCMC

to show its computational efficiency. We discuss the convergence of MLABC in the

end.

Lastly, in Section 6, we summarize our findings and present possibilities for future

research.
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2. BACKGROUND

2.1 Model problem

A significant part of the computational expense in uncertainty quantification

problems is to solve the forward flow problem through multiscale geologic models

repeatedly. In the dissertation, we will consider coupled flow and transport equations

in heterogeneous porous media. In particular, we will study single- and two-phase

flows, where single-phase flow can be considered as a special case of the two-phase flow

systems. First, we briefly describe the two-phase flow equations. We consider two-

phase flow in a subsurface formation (denoted by D) under the assumption that the

displacement is dominated by viscous effects. The effects of gravity, compressibility

and capillary pressure are neglected. The two phases are referred to as water and

oil, designated by subscripts w and o, respectively. Darcy’s law can be written as

follows for each phase, with all quantities dimensionless:

vj = −κrj(S)

νj
κ · ∇u, (2.1)

where vj, j = w, o, is the phase velocity, νj, j = w, o, is the phase viscosity, κ is

the permeability tensor, κrj is the relative permeability to phase j, S is the water

saturation (volume fraction) and u is the pressure. Combining Darcy’s law with a

statement of conservation of mass allows us to express the governing equations in

terms of pressure and saturation equations:

∇ · (λ(S)κ∇u) = Qs, (2.2)

∂S

∂t
+ v · ∇fs(S) = 0, (2.3)
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where λ(S) is the total mobility, Qs is the source term, v is the total velocity and

fs(S) is the fraction flux of water, which are respectively given by:

λ(S) =
κrw(S)

νw
+
κro(S)

νo
, (2.4)

v = vw + vo = −λ(S)κ · ∇u, (2.5)

fs(S) =
κrw(S)/νw

κrw(S)/νw + κro(S)/νo
. (2.6)

The above description is referred to as the fine model of the two-phase flow problem.

For the single-phase flow, we have λ(S) = 1 and fs(S) = S. Throughout, the porosity

is assumed to be constant.

For some examples in this dissertation, we will focus on the uncertainty quantifi-

cation of a single-phase, high-contrast flow model. Let D ⊂ Rd (d = 2, 3) be an open

bounded domain, with a boundary ∂D. The model equation reads:

−∇ · (κ(x, µ)∇u) = f in D, (2.7)

subject to suitable boundary conditions. Here f is the source term, u is the pressure

within the medium, and κ(x, µ) is the heterogeneous spatial permeability field with

multiple scales and high contrast, where µ represents the dependence on a multi-

dimensional random parameter, typically resulting from a finite-dimensional noise

assumption on the underlying stochastic process. κ(x, µ) can be parametrized by

Karhunen-Loéve expansion [61, 81, 75] as:

κ(x, µ) =
∞∑
j=1

√
λjθj(µ)Φj(x), (2.8)

in which θj(µ)’s are uncorrelated random variables and λj’s are eigenvalues of the

7
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Figure 2.1: Top and middle row: The first 6 basis Φj used in the permeability
parametrization (2.8). Bottom row: Examples of log-permeability field generated by
(2.8).

covariance matrix (see discussions in Section 2.5). To demonstrate a permeability

parameterization, in Figure 2.1, we show the first 6 basis (which we will commonly

have, see later sections for details) we use in the permeability parametrization and

some examples of log of κ’s. More details on permeability parametrization can be

found in Section 2.5.

2.2 Monte Carlo methods for forward problem

As introduced in Section 1, forward uncertainty quantification is a process to

study how the parameter uncertainties (such as permeability field) propagate through

8



the model and affect the simulation results. In our model problems (2.3) and (2.7),

the parameter κ(x, µ) is expressed as a stochastic process, which can be character-

ized by the corresponding probability distribution. With stochastic parameters, the

output of the forward model also becomes random with uncertainties that propagate

from the inputs. Hence, the target of forward uncertainty quantification is to reduce

the uncertainties and make reliable predictions.

Various methods for forward uncertainty quantification are mentioned in Section

1. Among these methods, Monte Carlo simulation is one of the most straightforward

methods for solving stochastic equations. This widely used approach is conceptually

simple and is based on the idea of approximating stochastic process by a large number

of equally probable realizations. In the following we will briefly introduce the Monte

Carlo method and show a simple example of forward uncertainty quantification.

Let X(µ) be a random variable. We are interested in the efficient computation

of the expected value of X, denoted by E[X]. In our calculations, X is a function of

the permeability field κ, e.g., the solution to (2.7) evaluated at measurement points.

To compute an approximation to E[X] by Monte Carlo method, one first generates

a number M of independent realizations of the random variable X, denoted by

{Xm}Mm=1, and then approximates the expected value E[X] by the arithmetic mean

EM(X) :=
1

M

M∑
m=1

Xm.

Now we define the Monte Carlo integration error eM(X) by

eM(X) = E[X]− EM(X).

Then the central limit theorem asserts that for large M , the Monte Carlo integration

9



error

eM(X) ∼ Var[X]1/2M−1/2ν, (2.9)

where ν is a standard normal random variable, and Var[X] is the variance of X.

Hence the error eM(X) in Monte Carlo integration is of order O(M−1/2) with a

constant depending only on the variance Var[X] of the integrand X [73].

For example, in a two-phase water-oil flow problem modeled as (2.3), the per-

meability κ is the input parameter with uncertainties. Various production related

information can be evaluated by solving the forward problem. In later sections of this

dissertation, these outputs of the model problem that we consider will be denoted

by F . Both pressure field and water-cut will be used in this dissertation. Water-cut

means the fraction of water produced in relation to the total production rate. We

compute the saturation S at different pore volume injected (PVI). PVI represents

dimensionless time and is computed via

PVI =

∫
Q

Vp
dt,

where Vp is the total pore volume of the system, Q =
∫
∂Dout

v · nds is the total

flow rate and ∂Dout is the outflow boundary. The water-cut (denoted by F (t) in

this section) for a two-phase water-oil flow is defined as the fraction of water in the

produced fluid and is given by qw/qt, where qt = qo + qw, with qo and qw the flow

rates of oil and water at the production edge of the model, i.e.,

F (t) =

∫
∂Dout

vnf(S)dl∫
∂Dout

vndl

, (2.10)

where ∂Dout is the outflow boundaries and vn is normal velocity field.
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Figure 2.2: An example of a permeability realization and the corresponding output
water-cut by solving (2.3).

In Figure 2.2, we show an example of permeability field and the corresponding

water-cut output in model (2.3). In this example, κ is assumed to be a log-Gaussian

field which is parametrized as (2.8). Following the Monte Carlo method, we can

generate multiple realizations of κ and take the sample mean of the output water-

cuts to be the estimator.

2.3 Uncertainty quantification inverse problem

The observations of flow behavior is another important source of information

which helps improve the estimation of parameters as well as the credibility of pre-

dictions. The uncertainty quantification inverse problem is a process which infers

the input parameters from the observations on some of the output variables. The

observed data is denoted by Fobs. For example, in model problem (2.7), we can do

uncertainty quantification by sampling the permeability field conditioned on the ob-

served pressure data Fobs. The pressure is an integrated response, and the map from

the pressure to the permeability field is not one-to-one. So there may exist many

different permeability realizations that equally reproduce the given pressure data
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Fobs. In practice, the measured pressure data Fobs inevitably contains measurement

errors. For a given permeability field κ, we denote the pressure as F (κ), which can

be computed by solving the model equation (2.7) on the fine grids. The computed

pressure F (κ) will contain also modeling error, which induces an additional source

of errors, apart from the inevitable measurement error. By assuming the combined

error as a random variable ε we can write the model as

Fobs = F (κ) + ε. (2.11)

For simplicity, the noise ε will be assumed to follow a normal distribution N (0, σ2
fI),

i.e., the likelihood p(Fobs|κ) is assumed be of the form

p(Fobs|κ) ∝ exp

(
−‖F (κ)− Fobs‖2

2σ2
f

)
.

We will represent the permeability field κ through the now classical Karhunen-Loéve

expansion (KLE) [61], which we describe in more details in Section 2.5. Our goal

is to generate permeability fields κ consistent with the observed pressure data Fobs.

Let the permeability field κ be parameterized by θ1, θ2, · · · , θn completely, and we

assume that θ1, θ2, · · · , θn are independent and identically distributed (i.i.d.). By

Bayes’ theorem the posterior distribution can be written as

π(k) = p(κ|Fobs) ∝ p(Fobs|κ)p(κ)

= p(Fobs|κ)p(θ1, θ2, · · · , θn)

= p(Fobs|κ)p(θ1)p(θ2) · · · p(θn).

In the expression for the posterior distribution π(κ), p(Fobs|κ) is the likelihood func-

tion, incorporating the information in the data Fobs, and p(κ) is the prior. Further,
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we may also incorporate other prior information, e.g., that the permeability field κ

is known at some spatial locations corresponding to the wells.

2.4 Coarse-grid solution techniques

Both forward and inverse uncertainty quantification problems involve solving the

model flow problem for the quantities of interest repeatedly, which requires large

computational cost due to the high dimensionality in spatial space. To reduce the

computational cost of the fine model, coarse-grid solution techniques such as Multi-

scale Finite Element Method (MsFEM) are utilized to solve the flow problem on a

coarse grid. As for the coarse-scale model, we will consider single-phase flow based

multiscale simulation methods. In this technique, multiscale basis functions are cal-

culated. These basis functions are coupled through a variational formulation of the

problem [27, 31, 36, 33, 28, 30, 4]. For multi-phase flow and transport simulations,

the conservative fine-scale velocity is often needed. For this reason, the mixed Ms-

FEM is used. In this section, we will have an overview of the coarse-grid solution

technique for the model problem (2.7).

To discretize the model equation (2.7), we first introduce the notion of fine and

coarse grids. Let T H be a conforming triangulation of the computational domain D

into finite elements (triangles, quadrilaterals, tetrahedra, etc.). We refer to this par-

tition as the coarse grid and assume that each coarse subregion is further partitioned

into a connected union of fine grid blocks. The fine grid partition will be denoted by

T h. We use {xi}Nvi=1 (where Nv is the number of coarse nodes) to denote the vertices

of the coarse mesh T H , and define the neighborhood ωi of the node xi by

ωi =
⋃
{Kj ∈ T H ; xi ∈ Kj}. (2.12)

See Figure 2.3 for an illustration of neighborhoods and elements subordinated to the
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Figure 2.3: Illustration of a coarse neighborhood and coarse elements.

coarse discretization.

Our objective is to seek the multiscale basis functions for each node xi that

represent the spatial heterogeneities and uncertainties. We denote the multiscale

basis function corresponding to the node xi as ψji , and assume that the basis functions

are supported in ωi. As in standard finite element method, once multiscale basis

functions are constructed (see Figure 2.4 for illustration), we will look for u0 =∑
ij cijψ

j
i , where cij are determined from

a(u0, v) = f(v), for all v ∈ V0,

in which V0 = span(ψji ),

a(u, v) =

∫
D

κ(x)∇u(x)∇v(x)dx for allu, v ∈ H1
0 (D),
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Figure 2.4: Illustration of some multiscale basis functions.

and

f(v) =

∫
D

f(x)v(x)dx for all v ∈ H1
0 (D).

A GMsFEM for stochastic problems will be introduced later in Section 3 which

has a similar structure. The main difference between the two approaches is that we

systematically enrich coarse spaces in GMsFEM and generalize it by considering an

input space consisting of parameters and source terms. This method can be used to

solve parameter-dependent problems with computational saving, while providing a

hierarchy of solutions.

2.5 Permeability parametrization

To obtain a permeability field in terms of an optimal L2 basis, we use the

Karhunen-Loève expansion (KLE) [61, 81, 75]. For our numerical tests, we truncate

the expansion and represent the permeability matrix by a finite number of random

parameters. We consider the random field Y (x, ω) = log[κ(x, µ)], where µ repre-
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sents randomness. We assume a zero mean E[Y (x, µ)] = 0, with a known covariance

operator R(x, y) = E [Y (x)Y (y)]. Then we expand the random field Y (x, µ) as

Y (x, µ) =
∞∑
k=1

Yk(µ)Φk(x),

with

Yk(µ) =

∫
D

Y (x, µ)Φk(x)dx.

The functions {Φk(x)} are eigenvectors of the covariance operator R(x, y), and form

a complete orthonormal basis in L2(D), i.e.,

∫
D

R(x, y)Φk(y)dy = λkΦk(x), k = 1, 2, . . . , (2.13)

where λk = E[Y 2
k ] > 0. We note that E[YiYj] = 0 for all i 6= j. By denoting

θk = Yk/
√
λk (whence E[θk] = 0 and E[θiθj] = δij), we have

Y (x, µ) =
∞∑
k=1

√
λkθk(µ)Φk(x), (2.14)

where Φk and λk satisfy (2.13). The randomness is represented by the scalar random

variables θk. After discretizing the domain D into a rectangular mesh, we truncate

the KLE (2.14) to a finite number of terms. In other words, we keep only the leading-

order terms (quantified by the magnitude of λk), and capture most of the energy of

the stochastic process Y (x, µ). An example of descending eigenvalues in a KLE is

shown in Figure 2.5. For an N -term KLE approximation

YN =
N∑
k=1

√
λkθkΦk,
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Figure 2.5: Example of descending eigenvalues in the KL expansion.

the energy ratio of the approximation is defined by

e(N) :=
E‖YN‖2

E‖Y ‖2
=

∑N
k=1 λk∑∞
k=1 λk

.

If the eigenvalues {λk} decay very fast, then the truncated KLE with the first few

terms would be a good approximation of the stochastic process Y (x, µ) in the L2

sense.
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3. MULTILEVEL MARKOV CHAIN MONTE CARLO *

3.1 Introduction

In this section, we present a framework for uncertainty quantification of quantities

of interest based on the Generalized Multiscale Finite Element Method (GMsFEM)

and Multilevel Monte Carlo (MLMC) methods. The GMsFEM provides a hierar-

chy of approximations to the solution, and the MLMC provides an efficient way to

estimate quantities of interest using samples on multiple levels. Therefore, the frame-

work naturally integrates the multilevel feature of the MLMC with the multiscale

nature of the high-contrast flow problem.

GMsFEM is a generalized framework that follows the Multiscale Finite Element

Method (MsFEM) which is a class of coarse-grid solution techniques introduced in

Section 2.4. The GMsFEM achieves efficiency via coarse space enrichment, which is

split into two stages, following an offline-online procedure (see also [8, 14, 68, 74]).

At the first stage of the computation, a larger-dimensional (relative to the online

space) parameter-independent offline space is formed. The offline space accounts for

a suitable range of parameter values that may be used in the online stage, and consti-

tutes a one-time preprocessing step. The offline space is created by first generating a

set of “snapshots” in which a number of localized problems are solved on each coarse

subdomain for a number of parameter values. The offline space is then obtained

through solving localized eigenvalue problems that use averaged parameter quanti-

ties within the space of snapshots. A number of eigenfunctions are kept in order to

form the offline space. At the online stage, we solve analogous eigenvalue problems

*Reprinted with permission from “Multilevel Markov chain Monte Carlo method for high-
contrast single-phase flow problems” by Y. Efendiev, B. Jin, P. Michael and X. Tan, Communica-

tions in Computational Physics, 17(01):259-286, 2015. Copyright 2015 by Global Science Press.
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using a fixed parameter value within the offline space to form a reduced-order online

space. A notable advantage of the GMsFEM construction is that the flexible coarse

space dimension naturally provides a hierarchy of approximations to be used within

the MLMC framework. Further, we avoid unnecessary large-dimensional eigenvalue

computations for each parameter realization.

The main idea of Multilevel Monte Carlo (MLMC) [44, 39, 40, 9, 21] is to use a

respective number of samples at different levels to compute the expected values of

quantities of interest. In these techniques, more realizations are used at the coarser

levels with inexpensive forward computations, and fewer samples are needed at the

finer and more expensive levels due to the smaller variances. By suitably choosing

the number of realizations at each level, one can obtain a multilevel estimate of the

expected values at much reduced computational efforts.

In this work, we couple the GMsFEM with the MLMC methods to arrive at a

general framework for the uncertainty quantification of the quantities of interest in

multiscale flow problems. Specifically, we take the dimension of the multiscale space

to be the MLMC level, where the accuracy of the global coarse-grid simulations

depends on the dimension of the multiscale coarse space. The convergence with

respect to the coarse space dimension plays a key role in selecting the number of

samples at each level of MLMC. We take different numbers of online basis functions to

generate the multiscale coarse spaces, running more forward coarse-grid simulations

with the smaller dimensional multiscale spaces and fewer simulations with larger

dimensional multiscale spaces. By combining these simulation results in a MLMC

framework one can achieve better accuracy at the same cost as the classical Monte

Carlo (MC) method.

Further, we will consider the use of MLMC jointly with Multilevel Markov Chain

Monte Carlo (MLMCMC) methods following [52]. The main idea of MLMCMC ap-
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proach is to condition the quantities of interest at one level (e.g., at a finer level)

to that at another level (e.g., at a coarser level). The multiscale model reduction

framework provides the mapping between the levels, and it can be used to estimate

the expected value. Specifically, for each proposal, we run the simulations at differ-

ent levels to screen the proposal and accept it conditionally at these levels. In this

manner, we obtain samples from hierarchical posteriors corresponding to our mul-

tilevel approximations which can be used for rapid computations within a MLMC

framework.

The rest of this section is organized as follows. In Section 3.2, we describe the

two-stage procedure of the GMsFEM for high-contrast single-phase flow problems.

We shall discuss the offline and online computations in detail. In Section 3.3 we

discuss the idea of Multilevel Monte Carlo methods, and also the crucial issue of

complexity analysis. The algorithm for coupling the GMsFEM with the MLMC is

described. Then, in Section 3.4, we describe a Multilevel Markov Chain Monte Carlo

method for generating samples from hierarchical posterior distributions, which can

be used in the MLMC framework. A preliminary analysis of the convergence of the

MLMCMC algorithm is also provided. In Section 3.5, we present numerical examples

to illustrate the efficiency of the framework, in comparison with the standard MCMC

estimates.

3.2 GMsFEM for stochastic problems

In this section we describe the offline-online computational procedure for the

efficient construction of GMsFEM coarse spaces. To discretize the model equation

(2.7), the notion of fine and coarse grids is introduced in Section 2.4. The GMsFEM

has a structure similar to MsFEM mentioned in Section 2.4, the main difference is

that we enrich coarse spaces in GMsFEM and generalize it by considering an input
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space consisting of parameters and source terms. At the offline stage, one generates

the snapshot set, and constructs a low-dimensional offline space by model reduction.

At the online stage, for each input parameter µ, one first computes multiscale basis

functions and then solves for a coarse-grid problem for any force term and boundary

condition. Below we describe the offline and online procedures in more detail.

3.2.1 Offline computation

At the offline stage, we first construct a snapshot space V ωi
snap on each coarse

neighborhood ωi in the domain (cf. Figure 2.3). The construction involves solving

a set of localized problems for various choices of input parameters. Specifically, we

solve the following eigenvalue problems on each ωi:

A(µj)ψ
ωi,snap
l,j = λωi,snap

l,j S(µj)ψ
ωi,snap
l,j in ωi, (3.1)

where {µj}Jj=1 is a set of parameter values to be specified. Here we consider only

Neumann boundary conditions, but other boundary conditions are also possible. The

matrices A(µj) and S(µj) in (3.1) are respectively defined by

A(µj) = [a(µj)mn] =

∫
ωi

κ(x, µj)∇φn · ∇φmdx,

S(µj) = [s(µj)mn] =

∫
ωi

κ̃(x, µj)φnφmdx,

(3.2)

where φn denotes the standard bilinear, fine-scale basis functions and k̃ will be de-

scribed below, cf. (3.5). We note that (3.1) is the discrete counterpart of the contin-

uous Neumann eigenvalue problem

−div(κ(x, µj)∇ψωi,snap
l,j ) = λωi,snap

l,j κ̃(x;µj)ψ
ωi,snap
l,j in ωi.
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For notational simplicity, we omit the superscript ωi. For each ωi, we keep the first Li

eigenfunctions of (3.1) corresponding to the lowest eigenvalues to form the snapshot

space

Vsnap = span{ψsnap
l,j : 1 ≤ j ≤ J, 1 ≤ l ≤ Li}.

We then stack the snapshot functions into a matrix

Rsnap =
[
ψsnap

1 , . . . , ψsnap
Msnap

]
,

where Msnap = J×Li denotes the total number of snapshots used in the construction.

Next we construct the offline space V ωi
off , which will be used to efficiently (and

accurately) construct a set of multiscale basis functions for each µ value at the

online stage. To this end, we perform a dimensionality reduction of the snapshot

space using an auxiliary spectral decomposition. Specifically, we seek a subspace of

the snapshot space such that it can approximate any element of the snapshot space

in a suitable sense. The analysis in [29] motivates the following eigenvalue problem

in the space of snapshots:

AoffΨoff
k = λoff

k S
offΨoff

k , (3.3)

where the matrices Aoff and Soff are defined by

Aoff = [aoff
mn] =

∫
ωi

κ(x, µ)∇ψsnap
m · ∇ψsnap

n dx = RT
snapARsnap,

Soff = [soff
mn] =

∫
ωi

κ̃(x, µ)ψsnap
m ψsnap

n dx = RT
snapSRsnap,

respectively. Here κ(x, µ) and κ̃(x, µ) are domain-based, parameter-averaged coef-

ficients, and A and S denote fine scale matrices for the averaged coefficients. To

generate the offline space, we choose the smallest Moff eigenvalues to (3.3), and take
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the corresponding eigenvectors in the space of snapshots by setting

ψoff
k =

∑
j

Ψoff
kjψ

snap
j , k = 1, . . . ,Moff

to form the reduced snapshot space, where Ψoff
kj are the coordinates of the vector Ψoff

k .

We then create the offline matrix

Roff =
[
ψoff

1 , . . . , ψ
off
Moff

]
to be used in the online computation.

Remark 3.2.1. At the offline stage the bilinear forms in (3.3) are chosen to be

parameter-independent, such that there is no need to construct the offline space for

each µ value.

3.2.2 Online computation

Next for a given input parameter µ value, we construct the associated online

coarse space V ωi
on (µ) on each coarse subdomain ωi. In principle, we want this to

be a low-dimensional subspace of the offline space for computational efficiency. The

online coarse space will be used by the continuous Galerkin finite element method for

solving the original global problem. In particular, we seek a subspace of the offline

space such that it can approximate any element of the offline space in an appropriate

sense. We note that at the online stage, the bilinear forms are parameter-dependent.

The analysis in [29] motivates the following eigenvalue problem in the offline space:

Aon(µ)Ψon
k = λon

k S
on(µ)Ψon

k , (3.4)
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where the matrices Aon(µ) and Son(µ) are defined by

Aon(µ) = [aon(µ)mn] =

∫
ωi

κ(x, µ)∇ψoff
m · ∇ψoff

n dx = RT
offA(µ)Roff,

Son(µ) = [son(µ)mn] =

∫
ωi

κ̃(x, µ)ψoff
m ψ

off
n dx = RT

offS(µ)Roff,

respectively. Note that κ(x, µ) and κ̃(x, µ) are now parameter-dependent. To gener-

ate the online space, we choose the eigenvectors corresponding to the smallest Mon

eigenvalues of (3.4), and set

ψon
k =

∑
j

Ψon
kjψ

off
j , k = 1, . . . ,Mon,

where Ψon
kj are the coordinates of the vector Ψon

k .

Remark 3.2.2 (Adaptivity in the parameter space). We note that one can use adap-

tivity in the parameter space to avoid computing the offline space for a large range of

parameters and compute the offline space only for a short range of parameters and

update the space. To demonstrate this concept, we assume that the parameter space

Λ can partitioned into a number of smaller parameter spaces Λi, Λ =
⋃
i Λi, where

Λi may overlap with each other. Furthermore, the offline spaces are constructed for

each Λi. In the online stage, depending on the online value of the parameter, we can

decide which offline space to use. This reduces the computational cost at the online

stage. In many applications, e.g., in nonlinear problems, one may remain in one of

Λi’s for many iterations and thus use the same offline space to construct the online

space. Moreover, one can also adaptively add multiscale basis functions at the online

stage using error estimators. This is a subject of our future research.
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3.2.3 Global coupling mechanism

To incorporate the online basis functions into a reduced-order global formula-

tion of the original problem (2.7), we begin with an initial coarse space V init(µ) =

span{χi}Nvi=1 (Nv denotes the number of coarse nodes). The functions χi are standard

multiscale partition of unity functions defined by

−div
(
κ(x;µ)∇χi

)
= 0 K ∈ ωi,

χi = gi on ∂K,

for each coarse element K ∈ ωi, where gi is a bilinear boundary condition. Next we

define the summed, pointwise energy κ̃ as, cf. (3.2),

κ̃ = κ
Nv∑
i=1

H2|∇χi|2, (3.5)

where H is the coarse mesh size. In order to construct the global coarse grid solution

space we multiply the partition of unity functions χi by the online eigenfunctions

ψωi,on
k from the space V ωi

on (µ) to form the basis functions

ψi,k = χiψ
ωi,on
k for 1 ≤ i ≤ Nv and 1 ≤ k ≤Mωi

on , (3.6)

where we recall that Mωi
on denotes the number of online basis functions kept for each

ωi. The basis constructed in (3.6) is then used within a global continuous Galerkin

formulation. Now we define the online spectral multiscale space as

Von(µ) = span{ψi,k : 1 ≤ i ≤ Nv, 1 ≤ k ≤Mωi
on}, (3.7)
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and using a single index notation, we write Von(µ) = span{ψi}Nci=1 where Nc denotes

the total number of basis functions in the coarse scale formulation. Using the online

basis functions, we define the operator matrix R = [ψ1, . . . , ψNc ], where ψi represents

the vector of nodal values of each basis function defined on the fine grid. To solve

(2.7) we seek u(x, µ) =
∑

i uiψi(x, µ) ∈ Von such that

∫
D

κ(x, µ)∇u · ∇vdx =

∫
D

f vdx for all v ∈ Von. (3.8)

The above equation yields the discrete form

A(µ)u = F, (3.9)

where

A(µ) := [aIJ ] =

∫
D

κ(x, µ)∇ψI · ∇ψJdx

is a coarse stiffness matrix,

F := [fI ] =

∫
D

f ψIdx

is the coarse forcing vector, Pc denotes the vector of unknown pressure values, and ψI

denotes the coarse basis functions that span Von. We note that the coarse system may

be rewritten using the fine-scale system and the operator matrix R. In particular,

we may write A(µ) = RTAf (µ)R and F = RTF f , where

Af (µ) ..= [aij] =

∫
D

κ(x;µ)∇φi · ∇φjdx,

F f ..= [fi] =

∫
D

f φidx,
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and φi are the fine-scale bilinear basis functions. Analogously, the operator matrix

R may be used to map coarse scale solutions back to the fine grid.

3.3 Multilevel Monte Carlo methods

As was mentioned earlier, one standard approach for exploring posterior distri-

butions is the Monte Carlo method, especially Markov Chain Monte Carlo (MCMC)

methods. Here, generating each sample requires the solution of the forward model,

which is unfortunately very expensive for many practical problems defined by partial

differential equations, including high-contrast flows. Therefore, it is imperative to

reduce the computational cost of the sampling step. We shall couple the Multilevel

Monte Carlo with the multiscale forward solvers to arrive at a general framework for

uncertainty quantification of high-contrast flows.

3.3.1 MLMC-GMsFEM framework

The MLMC approach was first introduced by Heinrich in [44] for finite- and

infinite-dimensional integration. Later on, it was applied to stochastic ODEs by

Giles [40, 39]. More recently, it has been used for PDEs with stochastic coefficients

[9, 21]. We now briefly introduce the MLMC approach in a general context, and

derive our MLMC-GMsFEM framework for uncertainty quantification.

Let X(ω) be a random variable. In Section 2.2, Monte Carlo (MC) method is

introduced to approximate the quantity of interest, X(ω), in forward uncertainty

quantification. In this work, we are interested in MLMC methods. The idea is to

compute the quantity of interest X = XL using the information on several different

levels. Here we couple the MLMC with the GMsFEM, where the level is identified

with the size of the online space. We assume that L is the level of interest, and

computing many realizations at this level is very expensive. Hence we introduce

levels smaller than L, namely L − 1, . . . , 1, and assume that the lower the level is,
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the cheaper the computation of Xl is, and the less accurate Xl is with respect to XL.

By setting X0 = 0, we decompose XL into

XL =
L∑
l=1

(Xl −Xl−1) .

The standard MC approach works with M realizations of the random variable XL

at the level of interest L. In contrast, within the MLMC approach, we work with Ml

realizations of Xl at each level l, with M1 ≥M2 ≥ · · · ≥ML. We write

E [XL] =
L∑
l=1

E [Xl −Xl−1] ,

and next approximate E [Xl −Xl−1] by an empirical mean:

E [Xl −Xl−1] ≈ EMl
(Xl −Xl−1) =

1

Ml

Ml∑
m=1

(
Xm
l −Xm

l−1

)
, (3.10)

where Xm
l is the m-th realization of the random variable X computed at the level l

(note that we have Ml copies of Xl and Xl−1, since Ml ≤ Ml−1). Then the MLMC

approach approximates E[XL] by

EL(XL) :=
L∑
l=1

EMl
(Xl −Xl−1) . (3.11)

We note that the realizations ofXl used with those ofXl−1 to evaluate EMl
(Xl −Xl−1)

do not have to be independent of the realizations of Xl used with those of Xl+1 to

evaluate EMl+1
(Xl+1 −Xl). In our context, the permeability field samples used for

computing EMl
(Xl −Xl−1) and EMl+1

(Xl+1 −Xl) do not need to be independent.

We would like to mention that the MLMC can also be interpreted as a multilevel

control variate, following [76]. Specifically, suppose that X = XL on the level L is the
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quantity of interest. According to the error estimate (2.9), the error is proportional

to the product of M
−1/2
L and the variance Var[XL] of XL. Let XL−1 be a cheaper

pointwise approximation, e.g., the finite element approximation on a coarser grid, to

XL with known expected value. Then it is natural to use XL−1 as the control variate

to XL [73] and to approximate the expected value E[XL] by

E[XL] = E[XL −XL−1] + E[XL−1]

≈ EML
(XL −XL−1) + E[XL−1].

Here we approximate the expected value E[XL −XL−1] by a Monte Carlo estimate,

which, according to the error estimate (2.9), will have a small error, if the approxi-

mations XL and XL−1 are close to each other. More generally, with a proper choice

of weights, the latter condition can be relaxed to high correlation. In practice, the

expected value E[XL−1] may be still nontrivial to evaluate. In the spirit of classical

multilevel methods, we can further approximate the expected value E[XL−1] by

E[XL−1] ≈ EML−1
(XL−1 −XL−2) + E[XL−2],

where XL−2 is a cheap approximation to XL−1. By applying this idea recursively,

one arrives at the MLMC estimate as described in (3.11).

Now we can give the outline of the MLMC-GMsFEM framework, cf. Algorithm

1. Here, the offline space is fixed and preprocessed. The level of the samples is

determined by the size of the online multiscale basis functions. The larger the online

multiscale space Von is, the higher the solution resolution is, but the more expen-

sive the computation is; the smaller the online multiscale space Von is, the cheaper

the computation is, but the lower the solution resolution is. The MLMC approach

as described above provides a framework for elegantly combining the hierarchy of
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approximations from the GMsFEM, and leveraging the expensive computations on

level L to those lower level approximations. In addition, we note that the samples

{κm}Ml
m=1 used in the Monte Carlo estimate EMl

(Xl−Xl−1) are identical on every two

consecutive levels, i.e., the permeability samples {κm}Ml
m=1 used in the Monte Carlo

estimates on two consecutive levels are nested. For a prescribed error bound ε, one

can choose the number of samples Ml by equating the error terms for each level.

Algorithm 1 MLMC-GMsFEM

1. Offline computations:

– Construct the snapshot space;

– Construct a low-dimensional offline space by model reduction.

2. Multi-level online computations for estimating an expectation at level l, 1 ≤
l ≤ L:

– Generate Ml realizations of the permeability {κml }
Ml
m=1 (from {κml−1}

Ml−1

m=1 );

– For each realization κml , compute online multiscale basis functions;

– Solve the coarse-grid problem for Xm
l ;

– Calculate the arithmetic mean EMl
(Xl −Xl−1) by (3.10).

3. Output the MLMC approximation EL(X) by (3.11).

3.3.2 Cost analysis

In the following, we are interested in the root mean square errors:

eMLMC(XL) =
√
E[‖E[XL]− EL(XL)‖2],

eMC(XL) =
√

E[‖E[XL]− EML
(XL)‖2],
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for the MLMC estimate EL(XL) and the MC estimate EML
(XL), respectively, with

an appropriate norm depending on the quantity of interest (e.g., the absolute value

for any entry of the permeability coefficient, and the L2-norm of the solution). For

the error estimation, we will use the fact that for any random variable X and any

norm, E[‖E[X]−EM(X)‖2] defines a norm on the error E[X]−EM(X), and further,

there holds the relation

E[‖E[X]− EM(X)‖2] =
1

M
E[‖X − E[X]‖2].

In the analysis, we will be dealing with solutions at different scales. In the MLMC

framework, we denote the scale hierarchy by H1 ≥ H2 ≥ · · · ≥ HL. The number of

realizations used at the level l for the scale Hl is denoted by Ml. We take

M1 ≥M2 ≥ · · ·ML.

For the MLMC approach, the error reads

eMLMC(XL) =
√
E[‖E[XL]− EL(XL)‖2]

=

√√√√E[(E[
L∑
l=1

(Xl −Xl−1)]−
L∑
l=1

EMl
(Xl −Xl−1))2]

=

√√√√E[(
L∑
l=1

(E− EMl
)(Xl −Xl−1))2]

≤
L∑
l=1

√
E[((E− EMl

)(Xl −Xl−1))2]

≤
L∑
l=1

1√
Ml

√
E[(Xl −Xl−1 − E(Xl −Xl−1))2],

where the second last line follows from the triangle inequality for norms, and the last
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line follows from (2.9). Next we rewrite Xl − Xl−1 = (Xl − X) + (X − Xl−1), and

since Ml ≤Ml−1, we deduce

eMLMC(XL) ≤
L∑
l=1

1√
Ml

(√
E[(Xl −X − E(Xl −X))2]

+
√

E[(Xl−1 −X − E(Xl−1 −X))2]
)

=
1√
ML

√
E[(XL −X − E(XL −X))2] +

1√
M1

√
E[X2]

+
L−1∑
l=1

(
1√
Ml+1

+
1√
Ml

)√
E[((Xl −X)− E(Xl −X))2]

≤
L∑
l=1

2√
Ml+1

√
E[(Xl −X)2] +

1√
M1

√
E(X2)

≤
L∑
l=1

2√
Ml+1

δl +
1√
M1

√
E[X2],

where the second last line follows from the inequality

√
E[((Xl −X)− E(Xl −X))2] ≤

√
E[(Xl −X)2],

a direct consequence of the bias-variance decomposition, and the assumption ML+1 ≤

ML. Here we denote
√

E[(Xl −X)2] as δl. As mentioned in Section 3.3.1, the lower

the level l is, the less accurate the approximation Xl is with respect to XL, hence we

will have δ1 > δ2 > · · · > δL. To equate the error terms we choose

Ml = M


(

1
δL

)2

E[X2], l = 1,(
δl−1

δL

)2

, 2 ≤ l ≤ L+ 1,
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where M > 1 is a fixed positive integer. Then we end up with

eMLMC(XL) ≤ (2L+ 1)

M
δL.

In principle, for a prescribed error bound ε such that eMLMC(XL) ≤ ε, one can deduce

from the formula the proper choice of the number N of samples, for any given level

L.

3.4 Multilevel Markov chain Monte Carlo

One of the most popular and versatile methods for numerically exploring posterior

distributions arising from the Bayesian formulation is the Markov chain Monte Carlo

(MCMC) method. The basic idea is to construct a Markov chain with the target

distribution as its stationary distribution. However, the sampling step remains very

challenging in high-dimensional spaces. One powerful idea of improving the sampling

efficiency is preconditioning, first illustrated in [18, 32], and more recently extended

in [7]. In the latter work, some theoretical properties, e.g., asymptotic confidence

interval, of a multistage version of the two-level algorithm ([32]) are also established.

3.4.1 MLMCMC with GMsFEM

The standard Metropolis-Hastings algorithm generates samples from the posterior

distribution π(κ) = p(κ|Fobs) (introduced in Section 2.3), cf. Algorithm 2. Here

U(0, 1) is the uniform distribution over the interval (0, 1). As described in Section

2.5, the permeability field κ is determined by the parameters θk’s. Hence, given

the current sample κm, parameterized by its parameters θk’s, one can generate the

proposal κ by generating the proposal for θk’s first, i.e., draw θk from distribution

qθk(θk|θmk ) respectively for each k (in view of the independence among all the θk’s),

for some proposal distributions qθk(θk|θmk ), and then form the proposal for the entire
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permeability field κ.

Algorithm 2 Metropolis-Hastings MCMC

1: Specify κ0 and M ;
2: for m = 0 : M do
3: Generate the entire permeability field proposal κ from q(κ|κm);
4: Compute the acceptance probability γ(κm) by (3.12);
5: Draw u ∼ U(0, 1);
6: if γ(κm, κ) ≤ u then
7: κm+1 = κ;
8: else
9: κm+1 = κm.

10: end if
11: end for

The transition kernel Kr(κ
m, κ) of the Markov chain generated by Algorithm 2

is given by

Kr(κ
m, κ) = γ(κm, κ)q(κ|κm) + δκm(κ)

(
1−

∫
γ(κm, κ)q(κ|κm)dκ

)
,

where q(κ|κm) denotes the proposal distribution and γ(κm, κ) denotes the acceptance

probability for the proposal κ defined by

γ(κm, κ) = min

{
1,

q(κm|κ)π(κ)

q(κ|κm)π(κm)

}
. (3.12)

Now we integrate the multilevel idea with the Metropolis-Hastings algorithm and
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the GMsFEM. Like before, we start with the telescopic sum

EπL [FL] =

∫
FL(x)πL(x)dx

=

∫
F0(x)π0(x)dx+

L∑
l=1

∫
(Fl(x)πl(x)− Fl−1(x)πl−1(x))dx,

where πl denotes the approximate target distribution at level l, and π0 is our initial

level. We note that after the initial level each expectation involves two measures,

πl and πl−1, which is different from the case of the MLMC (see [52]). Therefore, we

rewrite the integration using a product measure as

∫
(Fl(x)πl(x)− Fl−1(x)πl−1(x))dx =

∫
Fl(x)πl(x)dx−

∫
Fl−1(y)πl−1(y)dy

=

∫ ∫
(Fl(x)− Fl−1(y))πl(x)πl−1(y)dxdy

= Eπl,πl−1
[Fl(x)− Fl−1(y)].

Therefore, we have

EπL [FL] = Eπ0 [F0] +
L∑
l=1

Eπl,πl−1
[Fl − Fl−1]. (3.13)

The idea of our multilevel method is to estimate each term of the right hand side of

equation (3.13) independently. In particular we can estimate each term in (3.13) by

an MCMC estimator. The first term Eπ0 [F0] can be estimated using the standard

MCMC estimator in Algorithm 2. We estimate the expectation Eπl,πl−1
[Fl(x) −

Fl−1(y)] by the sample mean

Eπl,πl−1
[Fl(x)− Fl−1(y)] ≈ 1

Ml

Ml∑
m=1

(Fl(x
m
l )− Fl−1(yml )), (3.14)
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where the samples {(yml , xml )}Ml
m=1 are drawn from the product measure πl−1(y) ⊗

πl(x). Next we describe an efficient preconditioned MCMC method for generating

samples from the product measure πl−1(y)⊗ πl(x), extending our earlier work [32].

Here we introduce a multilevel MCMC algorithm by adapting the proposal dis-

tribution q(κ|κm) to the target distribution π(κ) using the GMsFEM with different

sizes of the online space which we call different levels, cf. Algorithm 3. The process

modifies the proposal distribution q(κ|κm) by incorporating the online coarse-scale

information. Let Fl(κ) be the output (pressure/water-cut) computed by solving the

online coarse problem at level l for a given κ. The target distribution π(κ) is ap-

proximated on level l by πl(κ), with π(κ) ≡ πL(κ). Here we have

πl(κ) ∝ exp

(
−||Fobs − Fl(κ)||2

2σ2
l

)
× p(κ). (3.15)

In the algorithm we still keep the same offline space for each level. From level

0 to level L, we increase the size of the online space as we go to a higher level,

which means for any levels l, l + 1 ≤ L, samples of level l are cheaper to generate

than that of level l + 1. This idea underlies the cost reduction using the multilevel

estimator. Hence the posterior distribution for coarser levels πl, l = 0, . . . , L − 1 do

not have to model the measured data as faithfully as πL, which in particular implies

that by choosing suitable value of σ2
l it is easier to match the result Fl(κ) with the

observed data. We denote the number of samples at level l by Ml, where we will

have M0 ≤ · · · ≤ ML. As was discussed above, our quantity of interest can be

approximated by the telescopic sum (3.13). We denote the estimator of Eπ0 [F0] at

the initial level by F̂0. Then by the MCMC estimator we have

F̂0 =
1

M0

M0∑
m=1

F0(xm0 ).
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Here xm0 denotes the samples we accepted on the initial level (after discarding the

samples at the burn-in period). Similarly we denote the estimator of the differences

Eπl,πl−1
[Fl(x)− Fl−1(y)] by Q̂l. Then with (3.14) we have

Q̂l =
1

Ml

Ml∑
m=1

(Fl(x
m
l )− Fl−1(yml )),

where the samples {(yml , xml )}Ml
m=1 are drawn from the product measure πl−1(y) ⊗

πl(x). Finally denote the estimator of EπL [FL] or our full MLMCMC estimator by

F̂L, then the quantity of interest EπL [FL] is approximated by

F̂L = F̂0 +
L∑
l=1

Q̂l. (3.16)

3.4.2 Convergence analysis

In this part, we briefly analyze the convergence property of the multilevel MCMC

algorithm, cf. Algorithm 3. Specifically, we discuss the detailed balance relation and

the ergodicity of the Markov chain, following the general convergence theory in [73].

To this end, we denote

E l = {κ : πl(κ) > 0}, l = 1, 2, . . . , L,

D = {κ : ql−1(κ|κml ) > 0 for some κml ∈ E l}.
(3.17)

The set E l is the support of the distributions πl(κ) at level l. The set EL is the support

of the target distribution π(κ) = πL(κ) at the finest level. The set D is the set of all

the proposals which can be generated by the proposal distribution ql−1(κ|κml ). To

sample from π(κ) correctly, it is necessary that EL ⊆ EL−1 ⊆ . . . ⊆ E1 ⊆ D (up to a

set of zero measure). Otherwise, if one of these conditions is not true, say, E l+1 6⊆ E l,
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Algorithm 3 Multilevel Metropolis-Hastings MCMC

1: Given κm, draw a trial proposal κ from distribution q(κ|κm1 ) = q0(κ|κm1 );
2: Compute the acceptance probability

ρ1(κm1 , κ) = min

{
1,

q0(κm1 |κ)π1(κ)

q0(κ|κm1 )π1(κm1 )

}
;

3: u ∼ U(0, 1);
4: if u < ρ1(κm1 , κ) then
5: κm+1

1 = κ (at the initial level);
6: else
7: κm+1

1 = κm1 (at the initial level);
8: end if
9: for l = 1 : L− 1 do

10: if κ is accepted at level l then
11: Form the proposal distribution ql (on the l + 1th level) by

ql(κ|κml+1) = ρl(κ
m
l+1, κ)ql−1(κ|κml+1)+δκml+1

(1−
∫
ρl(κ

m
l+1, κ)ql−1(κ|κml+1)dκml+1);

12: Compute the acceptance probability

ρl+1(κml+1, κ) = min

{
1,

ql(κ
m
l+1|κ)πl+1(κ)

ql(κ|κml+1)πl+1(κml+1)

}
= min

{
1,
πl(κ

m
l+1)πl+1(κ)

πl(κ)πl+1(κml+1)

}
;

13: u ∼ U(0, 1);
14: if u < ρl+1(κml+1, κ) then
15: κm+1

l+1 = κ and go to next level (if l = L− 1, accept κ and set κm+1
L = κ);

16: else
17: κm+1

l+1 = κml+1, and break.
18: end if
19: end if
20: end for
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then there will exist a subset A ⊂ (E l+1 \ E l) such that

πl+1(A) =

∫
A

πl+1(κ)dκ > 0 and πl(A) =

∫
A

πl(κ)dκ = 0,

which means no element of A can pass the level l and A will never be visited by

the Markov chain {κml+1}. Thus, the distribution at level l + 1, i.e., πl+1(κ) is not

sampled properly.

For most practical proposal distributions ql−1(κ|κml ), such as random walk sam-

plers, the condition E1, . . . , EL ⊆ D is naturally satisfied. To show the inclusion

E l+1 ⊆ E l for any level l, notice that if the precision parameters σl+1 and σl are

chosen to be relatively small, then πl+1(κ) and πl(κ) are very close to zero for most

proposals. From the numerical point of view, the proposal κ is very unlikely to be

accepted if πl+1(κ) and πl(κ) are close to zero. Consequently the support of the

distributions should be interpreted as

E l+1 = {κ : πl+1(κ) > δ} and E l = {κ : πl(κ) > δ},

where δ is a small positive number. If κ ∈ E l+1, then πl+1(κ) > δ and ‖Fobs −

Fl+1(κ)‖2/2σ2
l+1 is not very large. To make κ ∈ E l, ‖Fobs − Fl(κ)‖2/2σ2

l should

not be very large either. If ‖Fobs − Fl(κ)‖ is bounded by ‖Fobs − Fl+1(κ)‖ up to a

multiplicative constant, then the condition E l+1 ⊆ E l can be satisfied by choosing the

parameter σl properly. For our model, the coarser level quantity is indeed bounded

by the fine level quantity. Thus, the condition EL ⊆ EL−1 ⊆ . . . ⊆ E1 ⊆ D is satisfied.

Let

Ql(κ
m
l , κ) = ρl(κ

m
l , κ)ql−1(κ|κml ) + δκml (1−

∫
ρl(κ

m
l , k)ql−1(κ|κml )dκml ) (3.18)

39



denote the transition kernel of the Markov chain at level l. As in a regular MCMC

method, we can show that Ql(κ
m
l , κ) satisfies the detailed balance condition at level

l, i.e.,

πl(κ
m
l )Ql(κ

m
l , κ) = πl(κ)Ql(κ, κ

m
l ), (3.19)

for any κ, κml ∈ E l. In fact, the equality (3.19) is obviously true when κ = κml . If

κ 6= κml , then Ql(κ
m
l , κ) = ρl(κ

m
l , κ)ql−1(κ|κml ), we have

πl(κ
m
l )Ql(κ

m
l , κ) = πl(κ

m
l )ρl(κ

m
l , κ)ql−1(κ|κml )

= min (πl(κ
m
l )ql−1(κ|κml ), πl(κ)ql−1(κml |κ))

= min

(
πl(κ

m
l )ql−1(κ|κml )

πl(κ)ql−1(κml |κ)
, 1

)
πl(κ)ql−1(κml |κ)

= ρl(κ, κ
m
l )πl(κ)ql−1(κml |κ) = πl(κ)Ql(κ, κ

m
l ).

So the detailed balance condition (3.19) is always satisfied. Using (3.19) we can

easily show that π(A) =
∫
Ql(κ,A)dκ for any A ∈ B(E l), where B(E l) denotes all

measurable subsets of E l. Thus, πl(k) is indeed the stationary distribution of the

transition kernel Ql(κ
m
l , κ).

In a regular MCMC method, cf. Algorithm 2, the proposal q(κ|κm) is usually

chosen to satisfy q(κ|κm) > 0 for any (κm, κ) ∈ E × E , which guarantees that the

resulting MCMC chain is irreducible. Similarly the irreducibility holds for multilevel

MCMC at each level l if ql−1(κ|κml ) > 0 for any (κml , κ) ∈ E l × E l. We already have

EL ⊆ EL−1 ⊆ . . . ⊆ E1 holds, which means ρl(κ
m
l , κ) > 0, and also for common

choices of the proposal distribution, we have ql−1(κ|κml ) positive, which guarantees

the irreducibility of the chain at each level.

To prove the convergence of the distribution, we need to show that the chain

is aperiodic. Recall that a simple sufficient condition for aperiodicity is that the

40



transition kernel Q(κm, {κm}) > 0 for some κm ∈ E . In other words, the event

{κm+1 = κm} happens with a positive probability. For our multilevel MCMC at

finest level l, consider the transition kernel (3.18), we have

Ql(κ
m
l , {κml }) = 1−

∫
κ6=κml

ρl(κ
m
l , κ)ql−1(κ|κml )dκml

= 1−
∫
κ6=κml

ρl(κ
m
l , κ)ρl−1(κml , κ) . . . ρ1(κml , κ)q0(κ|κml )dκml .

Hence Ql(κ
m
l , {κml }) ≡ 0 requires ρs(κ

m
s , κ) = 1 for s = 1, . . . , l, for almost all κ ∈ D.

which means that all the proposals generated by q0(κm1 , κ) are correct samples for

distributions at all levels. In this case it does not make sense to use the MCMC

method since we can sample directly from q(κ|κm). Thus in practice we can always

safely assume that the chain generated by the multilevel MCMC is aperiodic. As a

result the Markov chain generated by MLMCMC converges.

In Algorithm 3, the specific proposal distribution ql can be computed easily and

at no additional cost, as we can simplify the acceptance probability for level l+ 1 to

ρl+1(κml+1, κ) = min

{
1,
πl(κ

m
l+1)πl+1(κ)

πl(κ)πl+1(κml+1)

}
. (3.20)

This is true when κml+1 = κ, so we will demonstrate this for the case κml+1 6= κ. In

this case, ql(κ|κml+1) = ρl(κ
m
l+1, κ)ql−1(κ|κml+1), then,

ρl+1(κml+1, κ) = min

{
1,

ql(κ
m
l+1|κ)πl+1(κ)

ql(κ|κml+1)πl+1(κml+1)

}
= min

{
1,

ρl(κ, κ
m
l+1)ql−1(κml+1|κ)πl+1(κ)

ρl(κml+1, κ)ql−1(κ|κml+1)πl+1(κml+1)

}
.
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Assume for simplicity ql−1(κml+1|κ)πl(κ) > ql−1(κ|κml+1)πl(κ
m
l+1), then

ρl(κ
m
l+1, κ) = 1 and ρl(κ, κ

m
l+1) =

ql−1(κ|κml+1)πl(κ
m
l+1)

ql−1(κml+1|κ)πl(κ)
.

Using these relations we obtain the desired formula (3.20). Similarly, in the case of

ql−1(κml+1|κ)πl(κ) < ql−1(κ|κml+1)πl(κ
m
l+1), then

ρl(κ, κ
m
l+1) = 1 and ρl(κ

m
l+1, κ) =

ql−1(κml+1|κ)πl(κ)

ql−1(κ|κml+1)πl(κml+1)
.

With these relations we also deduce that (3.20) holds.

3.5 Numerical results

In our numerical examples, we consider permeability fields described by two-point

correlation functions, and use Karhunen-Loève expansion (KLE) to parameterize

the permeability fields as described in Section 2.5. Then we apply the MLMC and

MLMCMC with the GMsFEM algorithms described earlier. The permeability field

κ in this section is assumed to follow a log-normal distribution with a known spatial

covariance, with the correlation function R(x, y) given by

R(x, y) = σ2 exp
(
−|x1 − y1|2

2l21
− |x2 − y2|2

2l22

)
, (3.21)

where l1 and l2 are the correlation lengths in x1- and x2-direction, respectively, and

σ2 = E[Y 2] is a constant that determines the variation of the permeability field.

Thus we have the following prior random field by N-term KLE:

Y (x, µ) =
N∑
k=1

√
λkθk(µ)Φk(x), θk ∼ N(0, 1). (3.22)
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3.5.1 MLMC

In our simulations, we evaluate the performance of the MLMC method on com-

puting the expected values of our quantity of interest F . In particular, we consider

the stationary, single-phase flow model (2.7) on the unit square domain D = (0, 1)2

with f ≡ 1 and linear boundary conditions. The forward problem is solved with the

GMsFEM, and the fine grid and coarse grid are chosen to be 50 × 50 and 5 × 5,

respectively. The quantity of interest F for this set of simulations is the fine scale

pressure field. We consider the following two Gaussian covariance functions:

• Isotropic Gaussian field with correlation lengths l1 = l2 = 0.1 and a stochastic

dimension 5;

• Anisotropic Gaussian field with correlation lengths l1 = 0.1 and l2 = 0.05, and

a stochastic dimension 5.

In both cases, we use the variance σ2 = 2, and keep N = 5 terms in the final KL

expansion where the θk coefficients are drawn from a normal distribution with zero

mean and unit variance.

We denote by Fl the fine scale pressure field at level l in MLMC. The level of

our interest is L = 3. As stated in Algorithm 1, we generate Ml realizations at level

l of the permeability field, solve the model problems by choosing Nl eigenvalues to

generate the online space in the GMsFEM, and compute the MLMC approximation

of E[FL] by (3.11). We compare MLMC with the standard MC at the level L of

interest with the same amount of cost. Hence we choose

M̂ =

∑L
l=1 N

2
l Ml

N2
L
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as the number of samples in the standard MC algorithm. We use the arithmetic

mean of Mref samples of the pressure field as reference and compute the relative

L2-errors

(erelMLMC)[FL] =
‖ErefMref

[FL]− EL[FL]‖L2(D)

‖ErefMref
[FL]‖L2(D)

,

(erelMC)[FL] =
‖ErefMref

[FL]− EMC
M̂

[FL]‖L2(D)

‖ErefMref
[FL]‖L2(D)

.

For the simulations use N1 = 4, N2 = 8, and N3 = 16 eigenfunctions for the online

space construction. We respectively set the number of samples at each level to be

M1 = 128, M2 = 32, and M3 = 8, and equate the computational costs for the MLMC

and MC relative error comparisons. With this choice of realizations for MLMC, we

use M̂ = 20 permeability realizations for the standard MC forward simulations. The

parameters we have used and the respective relative errors are summarized in Table

3.1. Figure 3.1 illustrates expected pressure fields for different correlation lengths

and different methods (MLMC and MC). For both covariances, we observe that the

MLMC approach yields errors which are about 1.5 times smaller than those resulting

from the MC approach. We note that the gain is larger for the isotropic case than

for the anisotropic case.

3.5.2 MLMCMC

In our MLMCMC experiments we also consider the model problem (2.7) on

D = (0, 1)2 with f ≡ 1 and linear boundary conditions. The prior permeability

distribution p(κ) is also parameterized by KLE as above. The “observed” data Fobs

is obtained by generating a reference permeability field (indicated as reference solu-

tion in Figure 3.5), solving the forward problem with the GMsFEM, and evaluating

the pressure at nine points away from the boundary. The locations of the reference

pressures are shown in Figure 3.2. We note that the data generated by the GMsFEM
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Table 3.1: Parameters and errors for the estimates by MLMC vs. MC.

Isotropic Gaussian Anisotropic Gaussian
(N1, N2, N3) (4, 8, 16) (4, 8, 16)
(M1,M2,M3) (128, 32, 8) (128, 32, 8)

N̂ 16 16

M̂ 24 24
MMCref 5000 5000
erelMLMC 0.0431 0.0653
erelMC 0.0802 0.0952
erelMC/e

rel
MLMC 1.86 1.45

(a) Isotropic Gaussian.

(b) Anisotropic Gaussian.

Figure 3.1: Pressure field solutions for different methods and correlation lengths.
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Figure 3.2: The points where pressure is evaluated.

is very close to that by the standard finite element method on a refined mesh, with

a relative error less than 0.1%, and thus the “inverse crime” is not present.

Our proposal distribution is a random walker sampler in which the proposal

distribution depends on the previous value of the permeability field and is given by

q(κ|κn) = κn + δεn where εn is a random perturbation with mean zero and unit

variance, and δ is a step size. The random perturbations are imposed on the θk

coefficients in the KL expansion.

We consider two examples, one with isotropic Gaussian field of correlation length

l1 = l2 = 0.1, the other with anisotropic Gaussian field of correlation lengths l1 =

0.05, l2 = 0.1. For both examples we use δ = 0.2 in the random walk sampler. We

again use the level L = 3, and for each level l we take the same number of KLE

terms, N = 5 for the tests. For the GMsFEM, we take the number of eigenvalues

to generate the online space at each level as N1 = 4, N2 = 8, N3 = 16. We take our

quantities of interest F as the pressure values at the same nine points and use them

in order to compute the acceptance probabilities as shown in Algorithm 3.

For the MLMCMC examples, we run Algorithm 3 until P4 = 1000 total samples

pass the final level of acceptance. We note that 300 initial accepted samples are
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Figure 3.3: Acceptance rate of multilevel sampler with both isotropic and anisotropic
trials.

discarded as burn-in. The acceptance rates of the multilevel sampler are shown in

Figure 3.3. To compute the acceptance rates, we assume that P1, P2, and P3 samples

are proposed for respective levels L1, L2, and L3. Then, the rate at the l-th level is

the ratio Pl+1/Pl. Most notably, the results in Figure 3.3 show that the acceptance

rate increases as l increases. In particular, for more expensive (larger) levels, we

observe that it is much more probable that a proposed sample will be accepted. This

is an advantage of the multilevel method, due to the fact that fewer proposals are

wasted on more expensive computations. We also show a set of plots in Figure 3.4

that illustrate the errors Ek = ‖Fobs−FL(κ)‖, cf. (3.15), of the accepted samples on

the finest level. In Figure 3.5 we plot some of the accepted permeability realizations

that have passed all levels of computation. We note that the general shapes of the

accepted the fields do not necessarily match that of the reference field, reinforcing

the notion that the problem is ill-posed due to the fact that a variety of proposals

may explain the reference data equally well.
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Figure 3.4: Plots of iteration vs. error with both isotropic and anisotropic trials.

Figure 3.5: Isotropic MLMCMC accepted realizations.
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4. MULTISCALE SEPARABLE SPACE-PARAMETER BASIS FUNCTIONS

4.1 Introduction

In this section, we propose an approach that follows the idea of separation of

variables where special separable basis functions are computed based on optimization.

In particular, we propose special multiscale basis functions which are product of

multiscale spatial basis functions and special parameter-dependent functions. These

basis functions are calculated as a result of optimization, which is described in the

dissertation. It is worthy mentioning that the approach that we propose can be

considered as belonging to the Proper Genaralized Decomposition(PGD) [70, 54, 2,

69].

We will combine efficient numerical techniques for handling uncertainties and

spatial scales through the proposed model reduction. Specifically, we seek the ap-

proximate solution of the model problem (2.7) in the form

u(x, µ) =
∑
i

ai(µ)vi(x), (4.1)

and find ai(µ) and vi(x) in each term successively. Here, µ is the parameter and x is

the space variable. The equations for each ai and vi are derived by minimizing the

energy related to the original parameter-independent PDE. In this way, the original

high dimensional problem is decomposed into a sequence of low dimensional prob-

lems. Although we still have to solve the parameter-independent PDEs repeatedly,

like in the case of Monte Carlo sampling approach, we recover the approximated

solution for all the parameters. To obtain an accurate solution, the required number

of terms N in the expansion is not a function of the problem dimension, but rather
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depends on the regularity of the exact solution [17]. Thus, the exponential growth of

degrees of freedom with respect to the dimension of parameter space can be avoided

and the solution can be approached with a small number of N , which achieves a

global model reduction.

We note that solving the parameter-independent PDEs repeatedly can still im-

pose prohibitively expensive computational cost. And solving these PDEs accurately

won’t contribute too much to the overall solution since the iteration result of them

only provide the expression of one term in our expansion. Therefore, we apply

the Generalized Multiscale Finite Element Method (GMsFEM) [26, 27, 20] to these

parameter-independent PDEs in order to speed up the computation.

The main idea of GMsFEM is to generalize the Multiscale Finite Element Method

(MsFEM) by systematically enriching the coarse spaces and taking into account small

scale information and complex input spaces. This approach divides the computation

into an offline-online procedure which is described in details in Section 3.2. To im-

plement this method in this work, firstly we select a number of realizations of the

permeability field and create the snapshot space by solving local problems on the

coarse subdomain. The offline space is then obtained through solving localized eigen-

value problems that use averaged parameter quantities within the space of snapshots.

This offline space should only be computed once and is used for multiple solves in

the online stage, which achieves a local model reduction in our iterative solving for

each term in the expansion, and brings computational savings.

We present numerical results, which show the convergence of the proposed meth-

ods. In our numerical results, we consider several examples of parameter-dependent

PDEs and compute the convergence rate as we increase the number of terms in (4.1)

and also enrich the multiscale space. First, we observe that the errors associated

with adding more terms in (4.1) and the errors due to GMsFEM can be of the same
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order in some cases. In general, one needs to balance these errors for computational

efficiency. We observe that with only a few terms in the expansion (4.1), we can

achieve a fast convergence. This demonstrates that these methods can be more effi-

cient compared to Monte Carlo approaches. Moreover, we discuss adaptive strategies

where additional terms are added based on error indicators.

The section is organized as follows. In Section 4.2, we introduce the general

framework of the PGD method and propose our global separating algorithm. In

Section 4.3, we outline the procedure of the GMsFEM to solve for our parameter-

independent problems. Section 4.4 is devoted to the numerical results and some

analysis of the method, and we have a brief discussion on the adaptivity of the

method.

4.2 Global separating algorithm

We are interested in the solution of the following problem:

−∇ · (κ(x, µ)∇u(x, µ)) = f in D,

u|∂D = 0,
(4.2)

where the coefficient κ, and thereby the solution u, depends on the parameter µ.

We seek our solution in the mean sense, i.e., we are looking for our solution u

such that

u = arg min
v

∫
µ

∫
D

(
1

2
κ|∇v|2 − fv)dxdµ. (4.3)

To numerically solve u from (4.3), we seek an approximation of our solution in the

following form:

u =
Nterm∑
i=1

ai(µ)vi(x), (4.4)

where ai(µ) depends only on µ, while vi(x) depends only on x. In the following, we
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introduce an algorithm to solve for ai(µ) and vi(x). A similar algorithm has been

introduced in [54] to separate among the spatial variables.

As a start, we obtain the first term a1v1 by solving the following minimization

problem:

(a1, v1) = arg min
ã1ṽ1

∫
µ

∫
D

(
1

2
κ|∇ã1ṽ1|2 − fã1ṽ1)dxdµ. (4.5)

This can be solved by differentiating with respect to v1(x) and a1(µ), respectively.

Specifically, let

G(a1(µ), v1(x)) =

∫
µ

∫
D

(
1

2
κ(x, µ)|∇a1(µ)v1(x)|2 − f(x)a1(µ)v1(x))dxdµ

=

∫
µ

∫
D

(
1

2
κ(x, µ)|∇v1(x)|2a2

1(µ)− f(x)a1(µ)v1(x))dxdµ.

For derivative with respect to v1(x), we consider

G(a1(µ),v1(x) + δv1(x))−G(a1(µ), v1(x))

=

∫
µ

∫
D

(
1

2
κ(x, µ)a2

1(µ)δ∇v1(x) · ∇v1(x)− f(x)δv1(x)a1(µ))dxdµ

=

∫
D

(
δ∇v1(x) · (

∫
µ

κ(x, µ)a1(µ)dµ)∇v −
∫
µ

a1(µ)dµf(x)δv1(x)
)
dx

=

∫
D

(
−∇ · (

∫
µ

κ(x, µ)a1(µ)dµ∇v1(x))−
∫
µ

f(x)a1(µ)dµ
)
δv1(x)dx.

By setting it to zero we get an equation for v1,

−∇ · (
∫
µ

κa2
1dµ∇v1) =

∫
µ

fa1. (4.6)
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Also, consider the derivative with respect to a1(µ),

G(a1(µ)+δa1(µ), v1(x))−G(a1(µ), v1(x))

=

∫
µ

∫
D

(κ(x, µ)|∇v1(x)|2δa2
1(µ)− f(x)v1(x)δa1(µ))dxdµ

=

∫
µ

(∫
D

(κ(x, µ)|∇v1(x)|2a1(µ)− f(x)v1(x))dx
)
δa1(µ)dµ.

By setting it to zero we get an equation for a1,

a1 =

∫
D

fv1dx∫
D

κ|∇v1|2dx
. (4.7)

By the computation above, we arrive at two coupled equations (4.6) and (4.7) for v1

and a1. We solve v1 and a1 by iterating alternatively between (4.6) and (4.7). When

the change of a1 and v1 between two neighboring steps is sufficiently small, we stop

the iteration.

After obtaining a1 and v1, we substitute them into the original PDE (4.2) and

then solve for the rest of the solution u − a1v1 following the same strategy, which

gives us the second tensor product approximation a2v2. In particular, a similar

minimization problem as (4.5) will be considered for a2 and v2. By differentiating

with respect to a2 and v2 respectively, we will arrive at two coupled equations for a2

and v2:

−∇ · (
∫
µ

κa2
2dµ∇v2) =

∫
µ

f2a2, (4.8)

and

a2 =

∫
D

f2v2dx∫
D

κ|∇v2|2dx
, (4.9)
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where

f2 = f +∇ · (κ∇a1v1).

a2 and v2 will also be solved by iterating alternatively between (4.8) and (4.9). We

keep doing this until the right hand side fn is sufficiently small. Eventually, we have

our approximation in the form u =
Nterm∑
i=1

ai(µ)vi(x).

We summarize the above procedure in Algorithm 4.

Algorithm 4 Multiscale Variable Separation Algorithm

1: while (‖f‖ > tolf ) do

2: Set ai = 1, vi = 1;

3: Set δa = 1, δv = 1;

4: while (δa > tola) or (δv > tolv) do

5: Solve −∇ · (
∫
µ
κ(x, µ)a2

i (µ)dµ∇v(x)) =
∫
µ
fai for v;

6: Update a =

∫
D

fvidx


∫

D

κ|∇vi|2dx
 ;

7: Set δa = ‖a− ai‖, δv = ‖v − vi‖;

8: Set ai = a, vi = v;

9: end while

10: Update f = f +∇ · (κ∇aivi);

11: Update i = i+ 1;

12: end while
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4.3 Separable space-parameter GMsFEM

4.3.1 Overview

We notice that in the above algorithm, for each term aivi, we need to solve a PDE

alike (4.6) repeatedly. This constitutes a heavy computational load for the overall

algorithm. Besides, each term aivi is just a portion of our whole expansion in (4.4),

solving them accurately might not benefit us too much on the overall approximation.

Therefore, we want to apply the GMsFEM to solve these PDEs in order to acceler-

ate the overall computation. In the following, we briefly explain how to apply the

GMsFEM to solve PDE (4.6) in Algorithm 4. The entire procedure is demonstrated

in the chart shown in Algorithm 5. More details regarding GMsFEM can be found

in [26, 27, 20].

4.3.2 Generalized MsFEM for solving (4.6)

To discretize the PDE (4.6) numerically, the notion of fine and coarse grids intro-

duced in Section 2.4 will be used. See Figure 2.3 for an illustration of neighborhoods

and elements subordinated to the coarse and fine discretization. With the above

definitions, we proceed to describe the offline-online computational procedure for

GMsFEM.

At the offline stage, we first generate the snapshot space, and then a lower-

dimensional offline space. This offline space is computed once and used repeatedly

at the online stage. At the online stage, we carry out the iterations in Algorithm

4 to solve the terms vi and ai alternatively. Specifically, for each given ai, we solve

PDE (4.6) using the constructed offline space and for each given vi, we evaluate ai

based on the expression (4.7), until the alternation stops.
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Algorithm 5 Separable space-parameter GMsFEM

1. Offline computations:

– Select µ1, µ2, · · · , µN ;

– Generate snapshot space using µ1, µ2, · · · , µN ;

– Generate offline space using µ1, µ2, · · · , µN .

2. Online computations:

– Compute each vi and ai in u =
∑Nterm

i=1 ai(µ)vi(x);

– Start global iteration and compute vi and ai;

– The computation of vi will be performed on a coarse grid using offline
space by solving −∇ · (

∫
µ
κ(x, µ)a2

i (µ)dµ∇v(x)) =
∫
µ
fai;

– The computation of ai will be performed on a coarse grid by a =∫
D

fvidx


∫

D

κ|∇vi|2dx
 ;

– Use adaptive criteria to select the number of terms and local resolution.
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4.3.2.1 Local basis functions

At the offline stage, we first construct a snapshot space V ωi
snap on each coarse

neighborhood ωi, which involves solving a set of local problems for a number of

selected parameters. This algorithm is the same as the one we discussed in Section

3.2. For completeness, we present the main steps very briefly. We solve the following

eigenvalue problems on each ωi:

A(µj)ψ
ωi,snap
l,j = λωi,snap

l,j S(µj)ψ
ωi,snap
l,j in ωi, (4.10)

where {µj}Jj=1 is a set of selected parameters. The boundary conditions for eigenvalue

problem (4.10) can be set as the Neumann type, although other types of boundary

conditions can also be considered, see [26, 27, 20].

The matrices A(µj) and S(µj) in (4.10) are defined as

A(µj) = [a(µj)mn] =

∫
ωi

κ(x;µj)∇φn · ∇φmdx,

S(µj) = [s(µj)mn] =

∫
ωi

κ̃(x;µj)φnφmdx,

(4.11)

respectively, where φn denotes the chosen fine-scale basis functions. The choice of κ̃

can be found in [26].

We keep the first few eigenfunctions of eigenvalue problem (4.10) corresponding to

the lowest eigenvalues as the snapshot basis from ωi. We then extend these snapshot

basis from all the ωi to the whole domain as our global snapshot basis functions and

call the resulting space the snapshot space, denoted as Rsnap.

After the construction of the snapshot space, we proceed to construct the of-

fline space by performing a dimension reduction within the snapshot space using an

auxiliary spectral decomposition. The main objective is to use the offline space to
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efficiently (and accurately) construct a set of multiscale basis functions for each µ

in the online stage. The procedure for constructing the offline space is similar to

the construction of the snapshot space. We set up the local eigenvalue problem in

the snapshot space, select the first few eigenfunctions and extend them to the whole

domain as our global offline basis functions. Notice that at the offline stage, the

bilinear forms are chosen to be parameter independent, hence the coefficients used

here are parameter-averaged. The resulting space is called the offline space, denoted

as Voff.

We use this offline space Voff to solve PDE (4.6) repeatedly at the online stage of

Algorithm 4.

Remark 4.3.1. One can further construct an online space Von for each current ai

analogously and solve PDE (4.6) in Von at the online stage of Algorithm 4. But in

this section, we will use the offline space to save the computation on the online stage

without sacrificing the accuracy.

Remark 4.3.2. In the discussion above, the global model reduction is performed by

approximating the solution with the expansion (4.4), while the local model reduction

is performed by GMsFEM. We notice that the idea behind expansion (4.4) can also

be used in the local model reduction. Instead of generating the snapshot space using

realizations of the parameter, we can consider the eigenvalue problem (4.10) in the

mean sense.

4.4 Numerical results

In this section, we present several numerical examples to show the performance

of the proposed multiscale variable separation method. From our numerical tests,

we observe that just with a few expansion terms, our approximation u =
∑

i aivi is
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already very close to the best possible solution in our generalized multiscale space.

The following results are presented in this section:

• We investigate how additional terms in the global expansion affect the error;

• We show the number of iterations for global solve and its dependence on the

choice of coarse space;

• We observe that there is a trade-off between global and local errors, i.e., after

some threshold, one needs either increase the number of terms in the global

expansion or the dimension of the coarse space.

We present two different examples of testing coefficients. In Example 1, the

coefficient κ(x, µ) is taken as the linear combination of two high-contrast permeability

fields that are independent of µ (shown in Figure 4.1). In Example 2, the coefficient

is generated as the exponential of the permeability field κ̄ (shown in Figure 4.2),

which is also independent of µ .

For each coefficient, we solve the parameter-dependent PDE (2.7) with different

approaches and compare their respective solutions, whose definitions are given as

below.

• uf? : the approximating solution of PDE (2.7) for a specific realization of µ using

the fine grid space.

• ums? : the approximating solution of PDE (2.7) for a specific realization of µ

using the GMsFEM offline space.

• ufn: the approximating solution of PDE (2.7) in the mean sense (4.3) with n

expansion terms, i.e., ufn =
∑n

i=1 ai(µ)vi(x), using the fine grid space.
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• umsn : the approximating solution of PDE (2.7) in the mean sense (4.3) with n

expansion terms, using the GMsFEM offline space.

Also, we define the L2(µ,D)-norm of a function f as ||f ||2L2(µ,D) :=

∫
µ

∫
D

fdµdx.

Example 1

In this example, our testing coefficient is generated as follows: We start with two

permeability fields that are independent with µ, denoted as κ̄1 and κ̄2, respectively

and shown in Figure 4.1. κ̄1 and κ̄2 both vary at the range from 1 to 104. κ(x, µ) is

generated as the linear combination of κ̄1 and κ̄2:

κ(x, µ) = µκ̄1 + (1− µ)κ̄2.

Coefficient κ̄1. Coefficient κ̄2.

Figure 4.1: Coefficient in Example 1.

We record the results corresponding to different truncation terms in Table 4.1.

The errors considered are defined as below:

• The errors of ufn for each n = 1, . . . 5, which are computed as ||uf? − ufn||L2(µ,D),
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• The errors of umsn for each n = 1, . . . 5, which are computed as ||uf?−umsn ||L2(µ,D),

• The errors between ums? and umsn for each n = 1, . . . 5 , which are computed as

||ums? − umsn ||L2(µ,D),

• The error of ums? , which is computed as ||uf? − ums? ||L2(µ,D). We call this the

irreducible error.

The error and Niter in Table 4.1 are the accumulated results up to this term.

Table 4.1: The error and number of iterations for the first 5 terms of the expansion
by different methods for Example 1.

Terms Error Niter

1 2.18E-02 2

2 1.42E-02 9

3 3.39E-04 12

4 7.38E-05 17

5 6.11E-06 22

(a) ||uf? − ufn||L2(µ,D)

Terms Error Niter

1 9.46E-02 2

2 9.33E-02 9

3 9.24E-02 13

4 9.24E-02 25

5 9.24E-02 30

(b) ||uf? − umsn ||L2(µ,D)

Terms Error

1 2.05E-02

2 1.32E-02

3 6.00E-04

4 4.00E-04

5 1.00E-04

(c) ||ums? − umsn ||L2(µ,D)

The irreducible error ||uf? −ums? ||L2(µ,D) corresponding to the fixed offline space is

9.24E-02.

In Table 4.1a, we can see that the error drops as the number of iterations increases,

reaching the 5th term within 22 iterations and the error reaches 6.11E − 06. This

shows that our separation method converges and works well with the fine solution.

In Table 4.1c, we can see that the difference between the result of our separation

algorithm and the full global model by GMsFEM also reduces fast as the number
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of terms and iterations increases, reaches 1E − 04 at the 5th term. This means our

truncated expansion solutions are already very close to best possible solution in our

generalized multiscale space. Table 4.1b shows the total error of our approach. We

can see that the error also drops by adding terms but it reaches the irreducible error

at the 3rd term and does not change a lot after that. This is due to the fixed offline

space we use in GMsFEM. But all these results show that we can get a quite accurate

approximation of the full parametric space efficiently using the proposed multiscale

variable separation method.

Example 2

In this example, our testing coefficient is generated as follows. We start with a

fixed permeability fields that is independent with µ, denoted as κ̄ and shown in the

left of Figure 4.2. κ(x, µ) is generated as:

κ(x, µ) = e(µκ̄).

The background of κ̄ is 0 such that the background of κ is 1.

Coefficient κ̄. Coefficient κ when µ = 1.

Figure 4.2: Coefficient in Example 2.
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We record the results corresponding to different truncation terms in Table 4.2.

The definitions of errors considered is the same as in Example 1. The error and Niter

in Table 4.2 are the accumulated results up to this term.

Table 4.2: The error and number of iterations for the first 5 terms of the expansion
by different methods for Example 2.

Terms Error Niter

1 2.64E-01 2

2 6.44E-02 8

3 2.91E-02 22

4 1.52E-02 35

5 5.52E-03 40

(a) ||uf? − ufi ||L2(µ,D)

Terms Error Niter

1 2.79E-01 2

2 1.57E-01 8

3 1.52E-01 20

4 1.51E-01 45

5 1.51E-01 72

(b) ||uf? − umsi ||L2(µ,D)

Terms Error

1 2.38E-01

2 4.46E-02

3 1.89E-02

4 1.21E-02

5 1.06E-02

(c) ||ums? − umsi ||L2(µ,D)

The irreducible error ||uf? −ums? ||L2(µ,D) corresponding to the fixed offline space is

1.51E-01.

With exponential coefficient case, we observe similar results as Example 1. In

Table 4.2a, the error drops as the number of iteration increases. The 5th term is

reached within 22 iterations for the FEM case, and the error reaches 5.52E − 03.

In Table 4.2c, we observe that the difference between the result of our separation

algorithm and the full global model solved by GMsFEM reduces fast as the number

of terms and iterations increases, reaches 1E − 02 at the 5th term, which means our

separation method also converges and the best possible solution is reached rapidly

in our generalized multiscale space. For the total error in 4.2b, the error drops very

close to the irreducible error within 4 terms and 45 iterations. But it also stays there
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due to the fixed offline space we use. These results also show that we can get an

accurate approximation of the full parametric space efficiently using the proposed

separation algorithm with GMsFEM local model reduction. Hence, from the result

above we know that solving with our proposed multiscale variable separation method

also produces a good approximation of the solution.

4.4.1 Discussion on adaptivity and applications

In this section, we briefly discuss how one can appropriately choose the number

of terms in the stochastic expansion and the corresponding coarse-space dimension.

We define the errors r = uf? −umsn , rms = uf? −ums? , rmsn = ums? −umsn . Notice that

rms can be decomposed as

rms = uf? − ums? = (uf? − umsn )− (ums? − umsn ) = r − rmsn .

One can show that

‖r − rmsn ‖ ≤ R,

where R = fn + div(κ∇rmsn ) is the residual. Note that R = f + div(κ∇u?), so this

term represents irreducible error.

Also, we have

‖uf? − umsn ‖ ≤ ‖ums? − umsn ‖+ ‖uf? − ums? ‖.

We denote ‖ums? −umsn ‖ to be the truncation error and ‖uf?−ums? ‖ to be the multiscale

error.

For the efficiency of the computation, it is important to balance the multiscale

error and the truncation error. For example, one does not need to achieve a very

64



high accuracy in the truncation process if multiscale error is large. In general, the

multiscale space for each term can be chosen independently. Here, we can fix the

offline space for all vi’s calculations.

The following error indicators can be used. For the multiscale error, we can

estimate ‖ums? − uf?‖ by calculating this quantity for some very few selected µ’s and

the right-hand-side chosen in the offline step. Or one can also use f +div(κ∇ums) in

L2 norm as an error indicator. However, this estimator may not be robust for high-

contrast problems (see [20]). For truncation error, we can solve rn using multiscale

basis functions for selected µ’s and estimate ‖rn‖.
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5. AN APPROXIMATE BAYESIAN APPROACH IN HIGH-CONTRAST

FLOW ESTIMATION

5.1 Introduction

In this section, we integrate the MLMC methods with the Approximate Bayesian

computation (ABC) to form a multilevel ABC algorithm for the estimation of the

underlying quantities of interest in the flow model (2.3). Mixed GMsFEM is coupled

in this method, which provides the mapping between the levels following the idea of

MLMC-GMsFEM framework introduced in Section 3.

Approximate Bayesian computation (ABC) [22] is a novel way to approximate

Bayesian computations, where the likelihood does not have a closed form and is

expensive to compute. Given a prior distribution on parameters, ABC methods use

realizations from the joint distribution of the data and the prior of the parameters,

to approximate the likelihoods without explicitly evaluating them. Using the known

data generating mechanisms, given the parameter, a candidate data set is generated.

The parameter value is feasible when it is close enough to the observed data. The

closeness in that approximating step controls the degree of approximation. There

is no burden of likelihood computation in ABC methods, and it is flexible, hence

adaptable in many different scenarios. Some of the recent developments include the

adaptive approximation [10] and the application in linear regression model [13].

The underlying fine-scale problem is a coupled flow and transport equations. The

flow equations require mass conservative discretization to avoid spurious saturation

values in the convection equation. For this reason, we use mixed finite element dis-

cretization and its multiscale version. A mixed GMsFEM is described in this section

for solving the parameter-dependent two-phase flow equation with transport (2.3).
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In this method, the pressure field is approximated by piecewise constant basis func-

tions, while the velocity field is approximated by multiscale basis. The multiscale

basis are constructed with a offline-online procedure similar to the GMsFEM intro-

duced in Section 3.2. In particular, the snapshot vectors are computed in coarse

blocks that share a common face. In the snapshot space, a local spectral problem

is solved to identify multiscale basis functions for the velocity field. A hierarchy of

approximations to the solution is provided by the resulting mixed GMsFEM, which

can be integrated into the Multilevel Monte Carlo framework.

In this section, we implement ABC rejection algorithm in a multiscale scenario,

and the underlying quantities of interest are estimated in a multilevel set-up which

follows the idea of Multilevel Monte Carlo (see Section 3.3). A multilevel ABC

(MLABC) algorithm is proposed and the quantities of interest are estimated from

the posterior sample mean generated by the MLABC. We use mixed GMsFEM to

solve the forward simulations in the algorithm, where the dimension of the online

multiscale space can be chosen to form the MLABC levels. Some relevant results

and justifications related to the MLABC algorithm are also proved. Results about

the stationary property of the chain at each level generated by the MLABC algo-

rithm are shown and the approximation property is discussed. We implement the

proposed methodology in both single-phase and two-phase flow problems. The pro-

posed MLABC shows improvement of computational cost. Also, the simulation re-

sults show that a higher number of observations are accepted from the higher (finer)

level. Thus, it suggests the scope of a multilevel ABC algorithm in the context of

the flow estimation.

The section is arranged as follows. In Section 5.2, we introduce the mixed GMs-

FEM for solving two-phase flow problem with transport. In Section 5.3, we discuss

ABC thoroughly, propose the MLABC algorithm, and write down the stationary
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distribution in our multilevel case. In Section 5.4, we compare the approximation

and computational gain of the proposed MLABC algorithm with other methods in

case of both single- and two-phase flow examples.

5.2 Mixed GMsFEM as a multilevel solver

GMsFEM for the single-phase flow problem (2.7) is introduced in Section 3.2,

which achieves an efficient forward model simulation, and also provides a hierarchy of

approximations which can be used for constructing Multilevel Monte Carlo estimates.

In this section, a mixed GMsFEM for the two-phase flow model problem (2.3) will

be introduced.

5.2.1 Preliminaries

We consider the following two-phase flow problem with transport in mixed for-

mulation:

κ(x, µ)−1v +∇u = 0 in D,

div (v) = f in D,

(5.1)

with non-homogeneous Neumann boundary condition v ·n = g on ∂D, where κ(x, µ)

is the permeability field, D is the computational domain, and n is the ourward unit-

normal vector on ∂D. In the mixed GMsFEM considered in this section, we construct

the basis functions for the velocity field v with an offline-online procedure. For the

pressure field u, we will use piecewise constant approximations.

First, we introduce the following definitions of coarse and fine grids to descretize

the model problem (5.1). Let T H be a conforming partition of the computational

domain D into finite elements (triangles, quadrilaterals, tetrahedra, etc.). This parti-

tion is referred to as the coarse grid and assume that each coarse subregion is further

partitioned into a connected union of fine grid blocks. We denote the fine grid par-

tition by T h. We use ξH ..=
⋃Ne
i=1{Ei} (where Ne is the number of coarse edges) to
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Kj Kl

Ei
ωi

Figure 5.1: Illustration of a coarse edge Ei and the associated coarse neighborhood
ωi.

denote the set of all edges of the coarse mesh T H , and define the neighborhood ωi

corresponding to the coarse edge Ei by

ωi =
⋃
{Kj ∈ T H ; Ei ∈ ∂Kj}, (5.2)

where Kj denotes the coarse element. See Figure 5.1 for an illustration of neighbor-

hoods and elements subordinated to the coarse and fine discretization.

Let QH be the space of piecewise constant functions with respect to the coarse

grid T H , the approximation of the pressure u will be obtained in this space. We define

the multiscale space for velocity field v as the linear span of all local multiscale basis

functions corresponding to edge Ei, which is denoted as

VH =
⊕
ξH

{ψi}.

We also define V 0
H = VH ∩ {v ∈ VH : v · n = 0 on ∂D}. The mixed GMsFEM is to
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find (vH , uH) ∈ VH ×QH such that

∫
D

κ−1vH · wH −
∫
D

div(wH)uH = 0, ∀wH ∈ V 0
H ,∫

D

div(vH)qH =

∫
D

fqH , ∀qH ∈ QH ,

(5.3)

where vH · n = gH on ∂D, and for each coarse edge Ei ∈ ∂D, we have

∫
Ei

(gH − g)ψj · n = 0

for all basis functions ψj corresponding to the edge Ei.

With the above definition, we proceed to deiscribe the offline-online computa-

tional procedure which will construct the multiscale space VH for the approximation

of the velocity field v.

5.2.2 The construction of multiscale basis functions

At the offline stage, we first generate the snapshot space by selecting some realiza-

tions, µ1, ..., µJ , and then a lower-dimensional offline space is computed. This offline

space is computed once and used repeatedly at the online stage. We first construct

a snapshot space V Ei
snap on each coarse edge Ei, which involves solving a set of local

problems for a number of selected parameters. Specifically, we will find (v
(i)
l,j , u

(i)
l,j ) by

solving the following problem on each coarse neighborhood ωi corresponding to the

edge Ei:

κ(µj)
−1v

(i)
l,j +∇u(i)

l,j = 0 in ωi,

div (v
(i)
l,j ) = α

(i)
l,j in ωi,

(5.4)

subject to the boundary condition v
(i)
l,j ·ni = 0 on ∂ωi, where ni denotes the outward

unit-normal vector on ∂ωi. Here {µj}Jj=1 is a set of selected parameters. The above

problem (5.4) will be solved separately in the coarse-grid blocks forming ωi, therefore
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we will need an extra boundary condition on Ei. Notice that Ei can be written as a

union of fine-grid edges, Ei =
⋃Li
l=1 el, where Li is the total number of fine-grid edges

on Ei and el denotes a find-grid edge. We define a piecewise constant function δ
(i)
l

on Ei as

δ
(i)
l =

 1, on el,

0, on other fine grid edges on Ei,

for l = 1, 2, · · · , Li. The remaining boundary condition on the coarse edge Ei for the

local problem (5.4) is then taken as

v
(i)
l,j ·mi = δ

(i)
l , (5.5)

where mi is a fixed unit-normal vector on Ei. The constant α
(i)
l,j in (5.4) is chosen to

satisfy the compatibility condition
∫
Kn
α

(i)
l,j =

∫
Ei
δ

(i)
l for all Kn ⊂ ωi.

The collection of the solutions of the above local problems generates the snap-

shot space. Let ψi,snap
l,j

..= v
(i)
l,j be the snapshot fields and the snapshot space V

(i)
snap

corresponding to the coarse edge Ei is defined by

V (i)
snap = span{ψi,snap

l,j : 1 ≤ j ≤ J, 1 ≤ l ≤ Li}.

To simplify the notation, we will use

V (i)
snap = span{ψi,snap

j : 1 ≤ j ≤M (i)
snap},

where M
(i)
snap = J × Li is the total number of snapshot fields corresponding to Ei.

After the construction of the snapshot space, we proceed to construct the offline

space by performing a dimension reduction within the space of snapshots using some

local spectral problems following the general framework of [26]. We consider the
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local spectral problem: find a real number λ ≥ 0 and a function v ∈ V (i)
snap such that

ai(v, w) = λsi(v, w), ∀w ∈ V (i)
snap. (5.6)

Here we take

ai(v, w) =

∫
ωi

κ−1v · w,

si(v, w) =

∫
Ei

[
uv
][
uw
]
,

(5.7)

where κ is domain-based, parameter-averaged (equal weight mean) coefficient, (v, uv),

(w, uw) are solutions of the local problem (5.4), and
[
u
]

denotes the jump of the

function u. To generate the offline space, we choose the smallest M
(i)
off eigenvalues

to (5.6), and take the corresponding eigenvectors, Ψi,off
k . In the space of snapshots,

by setting ψi,off
k =

∑
j Ψi,off

kj ψ
i,snap
j for k = 1, · · · ,M (i)

off , we form the reduced snapshot

space, where Ψi,off
kj are the coordinates of the vector Ψi,off

k . The global offline space is

then

Voff = span{ψi,off
k : 1 ≤ k ≤M

(i)
off , 1 ≤ i ≤ Ne},

where Ne is the total number of edges in the domain. To simplify the notation, we

will use

Voff = span{ψoff
k : 1 ≤ k ≤Moff},

where Moff =
∑Ne

i=1M
(i)
off is the total number of offline basis functions.

One can solve the model problem using the offline space at the online stage. But

here we will further construct an online space Von for each given input parameter µ.

We want it to be a low-dimensional subspace of the offline space for computational

efficiency. In particular, we seek a subspace of the offline space by solving a same

eigenvalue problem to (5.6), but it is solved in the offline space Voff, and in (5.7)

we use the input κ(µ) instead of κ. Similarly, eigenvectors corresponding to the
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smallest Mon eigenvalues will be chosen. We note that at the online stage, the bilinear

forms as in (5.7) will be formed with the input parameter µ, which means that they

are parameter-dependent. Mon can be chosen such that different size of the online

multiscale space will be formed, which provides the hierarchy of approximations.

This online space Von is used to solve the model problem.

Remark 5.2.1. A postprocessing technique is applied in our experiments to obtain

conservative velocity fields on the fine-grid. We notice that the solution of (5.3)

satisfies ∫
∂K

vH · n =

∫
K

f

for every coarse-grid block K. When f has fine-scale oscillation in some coarse

blocks, the velocity field needs to be postprocessed in these coarse blocks. A post-

processed velocity v?h will be constructed such that conservation on the fine grid is

obtained, as following:

∫
∂τ

(v?h · n) =

∫
∂τ

f, ∀τ ∈ T h.

In particular, for each coarse-grid block K, we find (v?h, u
?
h) ∈ Vh(K) × Qh(K) such

that v?h · n = vH · n and

∫
D

κ−1v?h · wh −
∫
D

div(wh)u
?
h = 0, ∀wh ∈ V 0

h ,∫
D

div(v?h)qh =

∫
D

fqh, ∀qh ∈ Qh.

(5.8)

The offline-online procedure of the mixed GMsFEM is introduced as above for the

model problem (5.1). To solve the two-phase flow and transport problem, we solve

the flow equation for each time step and use the fine-scale velocity to advance the

saturation front. In general, one can solve the saturation equation on a coarse grid
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for much faster forward simulations which will be less accurate due to the upscaling

errors in the saturation. These approximations can be used in MLABC, which will be

investigated in our future work. More details and discussions about mixed GMsFEM

can be found in [19].

5.3 MCMC and ABC approximations

Given the observed data Fobs (fraction flow/pressure), our aim is to sample from

the posterior and estimate the permeability field κ. Because of the PDE structure and

the error in the observations, a direct solution is not feasible. A Bayesian framework

is used for this purpose. The main idea of the Bayesian approach is to model the

field of interest by some appropriate spatial process, and exploit the PDE structure

and the error distribution to find the distribution of the permeability field given the

observed data.

As mentioned earlier, we do not observe the true data of the quantity of interest.

The observed data points are convoluted with some random error. We assume the

true data F (κ) is observed with some random error ε, and the error terms are assumed

to be independent normal:

Fobs = F (κ) + ε, (5.9)

ε ∼ N(0, σ2
f ).

The permeability field κ is parametrized with KLE with the parameters θk’s as

introduced in Section 2.5. Under the assumption of independent priors, the posterior

distribution is

π(κ) = p(κ|Fobs) ∝ p(Fobs|κ)p(κ), (5.10)
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as described in Section 2.3. Because of the underlying PDE, a closed form poste-

rior sampling is not possible. Simple Metropolis Hasting method amounts to solving

the PDE at each draw in fine scale which is computationally intensive. A multi-

scale method is therefore appropriate to save the computational cost, using KLE

for parametrization of the random field. A similar parametrization can be adapted

for the ABC approximation. Instead of direct sampling using MCMC, in the ABC

method, we generate data for the candidate κ, and check if it is close to the true ob-

served data in some appropriate metric. Using ABC samples, we implement MLABC

and estimate the κ.

5.3.1 Approximate Bayesian computation

In MCMC, the stationary distribution is achieved by a Gibbs sampling or a similar

algorithm, where the balanced equation corresponding to the stationary distribution

is satisfied. The Metropolis-Hastings MCMC algorithm is outlined in Algorithm

2. Though this sampling is very useful for many practical purpose to obtain the

posterior distribution as the stationary distribution, it may encounter difficulties in

case of an inverse problem where we need to solve a underlying PDE at each draw.

To reduce the computational cost, an alternative route can be employed through an

approximate Bayesian approach.

The main idea behind ABC is to generate pseudo observation Z at each step given

the proposed κ∗. If the distance between the observed data Fobs and Z, d(Fobs,Z), is

less than some chosen β > 0, then we accept κ∗ in the second step. The acceptance

criterion for the second step is given in the algorithm below. If Fobs has a discrete

distribution, then β = 0 gives the exact posterior density. The choice of the tolerance

limit β is subjective and it determines the order of the approximation.

• By the transition kernel q(.) we move κm → κ∗;
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• Generate Z from the likelihood p(.|κ) with κ = κ∗;

• If d(Fobs,Z) < β, the move from κm → κ∗ is accepted with probability

γ(κm, κm+1) = min{1, q(κm|κ
∗)p(κ∗)

q(κ∗|κm)p(κm)
};

• If accepted, κm+1 = κ∗, otherwise, κm+1 = κm.

The resulting stationary distribution is not exactly p(κ|Fobs). Instead it is given

by

πβ(κ,Z|Fobs) =
p(κ,Z)Id(Fobs,Z)<β∫
A
Fobs
β ×κ

p(κ,Z)dZdκ
,

where AFobsβ = {Z : d(Fobs,Z) < β}. Note that if β approaches zero, the stationary

distribution approaches the posterior distribution. Therefore, we obtain an approxi-

mate posterior and the choice of β determines the trade-off between computational

cost and accuracy.

5.3.2 ABC for multilevel MCMC

In a multilevel scenario, we use a similar approach to ordinary ABC. Let β1, . . . βl

the cut off of the affinity between Fobs and the pseudo data points Z’s at the l-th

level. The βi’s from different level may be different and produce an approximation

of true posterior at each level. The algorithm is formally given in Algorithm 6. Here,

κ parametrized by θk’s is our parameter. The prior for level l is given by the prior

on θk’s and is denoted by pl(κ) = p(κ).

Let ξl be the set such that the target density at step level l has density value

greater than zero. Also, let Dl be the set where the proposal density is greater

than zero. Under the normality of (5.10), and the proposal density given by random
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perturbation around the current value

q0(κ|κn) = κn + δεn,

the condition ξ = ξl = Dm = D is satisfied. Also, the resulting chain is aperiodic

at each level l ( [34]). Finally, we can state the following result about the resulting

stationary distribution.

Lemma 1. Under the model (5.10) and prior (3.22), the stationary distribution

corresponding to the MLABC algorithm in Algorithm 6 is given by

πβl (κ,Z|Fobs) =
pl(κ,Z)Id(Fobs,Z)<β∫ ∫

A
Fobs
β,κ

p(κ,Z)dZdκ
,

where Z is a draw from the field value κ at level l, and AFobsβ,κ denotes the set of

observations y = Fl(κ) + ε which has a distance less than β = βl from the observed

Fobs.

Proof. Let c be the value of the integral in the denominator. Without loss of gener-

ality, we assume ρl+1(κml+1, κ) ≤ 1. For a transition (κml+1,Z)→ (κ,Z′), the transition

probability for κml+1 6= κ is

Ql+1(κml+1, κ) = ql(κ|κml+1)ρl+1(κml+1, κ).

Let I denotes the indicator function that Z and Z′ is in AFobs
η,κm+1

l

and AFobsη,κ , respectively.

Writing down the stationary condition for level l from Algorithm 6, we have for level
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l + 1,

πηl+1(κml+1,Z|Fobs)Ql+1(κml+1, κ)pl+1(Z′|κ)I

= c−1pl+1(Z|κml+1)pl+1(κml+1)ql(κ|κml+1)ρl+1(κml+1, κ)pl+1(Z′|κ)I

= c−1pl+1(Z|κml+1)pl+1(κml+1)ql(κ|κml+1)
ql(κ

m
l+1|κ)pl+1(κ)

ql(κ|κml+1)pl+1(κml+1)
pl+1(Z′|κ)I

= c−1pl+1(Z′|κ)pl+1(κ)ql(κ
m
l+1|κ)pl+1(Z|κml+1)I

= c−1pl+1(Z′|κ)pl+1(κ)ρl+1(κ, κml+1)pl+1(Z|κ)I

= πηl+1(κ,Z′|Fobs)Ql+1(κ, κml+1)pl+1(Z|κml+1)I.

For κml+1 = κ, the condition is satisfied trivially.

Remark 5.3.1. Therefore, the marginal posterior of κ would be

πβl (κ|Fobs) =
p(θ)tA(βl, κ)∫ ∫
A
Fobs
β

p(κ,Z)dZdκ
, (5.11)

where

tA(βl, κ) =

∫
A
Fobs
βl,κ

p(Z|κ)dZ.

The choice of βi’s determine the order of approximation of the posterior distri-

bution at the l-th level. With βi approaching zero, the true posterior is achieved.

If some regularity conditions are satisfied, the ABC estimate πβll (κ|Fobs) approaches

the true posterior πl(κ|Fobs) at the l-th level in some appropriate topology, with βl

converging to zero. A simple result for weak topology can be stated in the form of

the following lemma.

Lemma 2. Suppose p(Z|κ) is a continuous function in Z and supZ,κ p(Z|κ) < ∞.

Then, the ABC estimate πβll (κ|Fobs) converges to the true posterior πl(κ|Fobs) at the
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l-th level in terms of weak topology, as βl converges to zero.

Proof. Let p(Z|κ) < co < ∞ for all κ and Z. Let Vn(β) be the volume of the n

dimensional set AFobsβ = {Z : d(Fobs,Z) < β}. Here, n is the length of the observed

vector. Let M be the prior dimension used in KLE. Given δ > 0, there exists a

compact set Kc such that p(K ′c) < δ.

Given δ′ > 0, there exists β′ > 0 such that for all β < β′ and Z ∈ AFobsβ , we have

|p(Fobs|κ)− p(Z|κ)| < δ′

for κ ∈ Kc. Let Nβ and Dβ be the numerator and denominator of (5.11). Hence, we

have

|Dβ −m(Fobs)Vn(β)| < 2δ′Vn(β) + 2Vn(β)coδ.

Here, m(·) denotes the marginal density. Also,

|Nβ(κ)− p(Fobs, κ)Vn(β)| ≤ δ′Vn(β)

on Kc, and on K ′c,

|Nβ(κ)− p(Fobs, κ)Vn(β)| < 2coVn(β).

Thus, on Kc,

πβl (κ|Fobs) = πκl (κ|Fobs) +O(δ) +O(δ′).

Now for any bounded continuous function of κ, g(κ), we have

Eπβl (κ|Fobs)(g(κ)) = Eπβl (κ|Fobs)(g(κ)IKc) + cδ′,
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and hence,

Eπηl (κ|Fobs)(g(κ)) = Eπl(κ|Fobs)(g(κ)) +O(δ) +O(δ′).

As δ and δ′ can be arbitrarily small, it concludes the proof.

Remark 5.3.2. For practical purpose, the choice of βl can be data driven. One

approach may be using some small quantile of the posterior distribution of the pro-

posed metric. This can be done by solving the system in the coarse grid, which is

computationally cheaper.

5.3.3 MLABC implementation

The idea of multilevel MCMC is important in context of drawing posterior sam-

ples from different levels with higher levessl associated with higher costs. A function

of the parameter such as posterior mean may be of interest. The lowest level estimate

may be cheaper but less accurate. Thus, using different levels, we can estimate the

subsequent improvements of adding a new level and estimate the target function as

a telescoping sum.

We start with the telescopic sum

EπL [FL] =

∫
FL(x)πL(x)dx

=

∫
F0(x)π0(x)dx+

L∑
l=1

∫
(Fl(x)πl(x)− Fl−1(x)πl−1(x))dx,

where πl denotes the approximated target distribution at level l, and π0 is our initial

level. We note that after the initial level each expectation involves two measures, πl

and πl−1. We can rewrite the integration using a product measure and we will get,

EπL [FL] = Eπ0 [F0] +
L∑
l=1

Eπl,πl−1
[Fl − Fl−1]. (5.12)
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Algorithm 6 Multilevel ABC

1: Pick β1, β2, . . . , βL;
2: Given κm, draw a trial proposal κ from distribution q(κ|κm1 ) = q0(κ|κm1 );
3: Compute the acceptance probability

ρ1(κm1 , κ) = min

{
1,

q0(κm1 |κ)p1(κ)

q0(κ|κm1 )p1(κm1 )

}
;

4: Compute d(Fobs, F1(κ));
5: if d(Fobs, F1(κ)) ≤ β1 then
6: Accept κ with probability ρ1;
7: end if
8: for l = 1 : L− 1 do
9: if κ is accepted at level l then

10: Form the proposal distribution ql (on the l + 1th level) by

ql(κ|κml+1) = ρl(κ
m
l+1, κ)ql−1(κ|κml+1)+δκml+1

(1−
∫
ρl(κ

m
l+1, κ)ql−1(κ|κml+1)dκml+1);

11: Compute the acceptance probability

ρl+1(κml+1, κ) = min

{
1,

ql(κ
m
l+1|κ)pl+1(κ)

ql(κ|κml+1)pl+1(κml+1)

}
;

12: Compute d(Fobs, Fl(κ));
13: if d(Fobs, Fl(κ)) ≤ βl then
14: Accept κ with probability ρl+1;
15: end if
16: if κ is accepted then
17: κm+1

l+1 = κ and go to next level (if l = L− 1, accept κ and set κm+1
L = κ);

18: else
19: κm+1

l+1 = κml+1, and break.
20: end if
21: end if
22: end for
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The idea of our multilevel method is to estimate each term of the right hand

side of equation (5.12) independently. The proposed ABC estimator can be used

to estimate each term in (5.12). To create different levels, we adapt the proposal

distribution q(κ|κm) to the target distribution π(κ) using the GMsFEM with different

sizes of the online space. The process modifies the proposal distribution q(κ|κm) by

incorporating the online coarse-scale information. Let Fl(κ) be the pressure/water-

cut computed by solving online coarse problem at level l for a given κ. The target

distribution π(κ) is approximated on level l by πl(κ), with π(κ) ≡ πL(κ). Here, we

have

πl(κ) ∝ exp

(
−||Fobs − Fl(κ)||2

2σ2
l

)
× p(κ). (5.13)

In the algorithm we still keep the same offline space for each level. From level

0 to level L, we increase the size of the online space as we go to a higher level,

which means for any levels l, l + 1 ≤ L, samples of level l are cheaper to generate

than that of level l + 1. This idea underlies the cost reduction using the multilevel

estimator. Hence, the posterior distribution for coarser levels πl, l = 0, . . . , L − 1

do not have to model the measured data as faithfully as πL, which in particular

implies that by choosing suitable value of σ2
l it is easier to match the result Fl(κ)

with the observed data. We denote the number of samples at level l by Ml, where

we will have M0 ≤ · · · ≤ ML. As was discussed above, our quantity of interest can

be approximated by the telescopic sum (5.12).

5.4 Numerical results

In this section, we present some numerical examples of the multilevel ABC

method. Suppose the permeability field κ(x, µ), where x is defined on the unit square

Ω = [0, 1]2. We assume that the permeability field κ(x, µ) is a log-normal process

and its covariance function is known. We use the Karhunen-Loéve expansion (KLE)
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to parameterize the permeability field. Then, we apply the multilevel ABC method

described earlier and compare the simulation results with multilevel MCMC method.

Both single-phase and two-phase flow cases will be considered. First, we briefly recall

the permeability parameterization, and then we present numerical results.

In our examples, the permeability field κ is assumed to follow a log-normal distri-

bution with a known spatial covariance, with the correlation function R(x, y) given

by

R(x, y) = σ2 exp
(
−|x1 − y1|2

2l21
− |x2 − y2|2

2l22

)
, (5.14)

where l1 and l2 are the correlation lengths in x1- and x2-direction, respectively, and

σ2 = E[Y 2] is a constant that determines the variation of the permeability field.

5.4.1 Single-phase flow

For the first set of numerical tests, we consider the stationary, single-phase flow

model (2.7) with f ≡ 1 and linear boundary conditions. We apply GMsFEM to

solve the forward problem, with a 5 × 5 coarse grid and a 50 × 50 fine grid. The

“true” data Fobs is obtained by generating a reference permeability field, solving the

forward problem with the GMsFEM, and evaluating the pressure at nine selected

points away from the boundary.

The prior permeability distribution p(κ) is parameterized by KL expansion as

introduced in Section 2.5. We keep N = 5 terms in the KL expansion. The Gaussian

field is of correlation length l1 = l2 = 0.1. Our proposal distribution is a random

walker sampler in which the proposal distribution depends on the previous value of

the permeability field and is given by q(κ|κn) = κn + δεn, where εn is a random

perturbation with mean zero and unit variance, and δ is a step size. The random

perturbations are imposed on the θk coefficients in the KL expansion. The distance

d(Fobs, F (κ)) in Algorithm 6 is taken as the L2-norm. The acceptance criterion βl is
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Table 5.1: Number of accepted samples at each level in MCMC, 3-level MCMC and
3-level ABC.

MCMC 3-level MCMC 3-level ABC
Total 5534 4723 4197
Level 1 2299 1754
Level 2 1573 1176
Level 3 1000 1000 1000

decided by 25% quantile of the L2-norm of pseudo data value Z’s from the draws of

a coarse level MCMC sampling.

To compare the performance of different methods, we test the same problem with

MCMC, 3-level MCMC and 3-level ABC, respectively. For the multilevel methods,

the numbers of eigenvalues to generate the online space at each level are taken to

be 4,8 and 16. For the 3-level ABC, we set the acceptance criterion β = 0.06 for

all the levels. We run the algorithms until 1000 total samples pass the final level of

acceptance. The number of accepted samples are listed in Table 5.1. We can observe

that for more expensive levels, it is more probable that a proposed sample will be

accepted. In Figure 5.2, we plot the reference permeability field, initial permeability

field, and the result posterior mean of the 3 methods. We notice that all 3 sample

means are very close to the reference field. Hence, the proposed multi-level ABC

method is of higher efficiency.

5.4.2 Two-phase flow and transport

In these simulations, we present the performance of the multilevel ABC method

with two-phase flow and transport problems. We consider the model problem (2.3)

on D = (0, 1)2 with zero Neumann boundary condition. The flow equation is solved

by mixed GMsFEM [19] with a 50 × 50 fine grid and a 5 × 5 coarse grid, and the
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Figure 5.2: Top left: The true log-permeability field. Top right: The initial log-
permeability field. Middle Left/ Right: The mean of the sampled log-permeability
field from MCMC and 3-level MCMC. Bottom: The mean of the sampled log-
permeability field from 3-level ABC.
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saturation equation is solved on the fine grid by the finite volume method. The prior

permeability distribution p(κ) is also parametrized by KLE as above. The quantity

of interest is taken to be the water-cut function F . One injecter at (0, 0) and one

producer at (1, 1) are considered when we run the forward model in the reference per-

meability field to get the fractional flow. Two sets of Gaussian covariance functions

are considered in this simulation.

• Isotropic Gaussian field with correlation lengths l1 = l2 = 0.1, and a KL

dimension 8;

• Anisotropic Gaussian field with correlation lengths l1 = 0.05, l2 = 0.1, and a

KL dimension 8.

Our proposal distribution is a random walker sampler in which the proposal dis-

tribution depends on the previous value of the permeability field and is given by

q(κ|κn) = κn + δεn, where εn is a random perturbation with mean zero and unit

variance, and δ is a step size. The random perturbations are imposed on the coef-

ficients in the KL expansion. The distance d(Fobs, F (κ)) in Algorithm 6 is taken as

the L2-norm. The acceptance criterion βl is decided by 20% quantile of L2-norm of

pseudo data value Z’s from draws of a coarse level MCMC sampling.

Again, to compare the performance of different methods we run MCMC, 2-level

MCMC and 2-level ABC on the same problem. For the multilevel methods, the

numbers of eigenvalues to generate the online space at each level are taken to be 2

and 8. For the 2-level ABC test, we set different acceptance criterion βl for each

level. In the isotropic case, β1 = 0.38 and β2 = 0.1. In the anisotropic case β1 = 0.4

and β2 = 0.15. We run the algorithms until 2500 total samples are accepted on the

second-to-last level.
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Table 5.2: Number of accepted samples at each level in MCMC, 2-level MCMC and
2-level ABC for the isotropic case.

MCMC 2-level MCMC 2-level ABC
Total 2500 8119 4810
Level 1 2500 2500
Level 2 462 497 1218

For the isotropic case, the number of accepted samples are listed in Table 5.2.

We can see that the 2-level ABC method has a higher acceptance rate than the

other two methods on the more expensive level. In Figure 5.3, we plot the reference

fraction flow, the initial sample and the sample mean of each method. We observe

that the mean estimate of the fractional flow is very close to the observed data. In

Figure 5.4, we plot some of the accepted permeability realizations that have passed

all levels of computation in the 2-level ABC method. For the anisotropic case, the

number of accepted samples are listed in Table 5.3. We plot the reference fraction

flow, the initial sample and the sample mean of each method in Figure 5.5. And in

Figure 5.6, we plot some of the accepted permeability realizations that have passed

all levels of computation in the 2-level ABC method. Similarly, we observe that the

2-level ABC method has a higher acceptance rate than the other two methods on the

more expensive level and the mean estimate of the fractional flow is very close to the

observed data. We also notice that the run time of the 2-level ABC of both the tests

are around 15% faster than the 2-level MCMC simulations. By these results, we can

see that we achieve higher computational efficiency with the proposed multi-level

ABC method.
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Figure 5.3: Red line designates the reference water cut, the dash line designates
the initial water cut and the green, the blue and the cyan line designate water cuts
corresponding to mean of the sampled water cuts from MCMC, 2-level MCMC and
2-level ABC, respectively.

Table 5.3: Number of accepted samples at each level in MCMC, 2-level MCMC and
2-level ABC for the anisotropic case.

MCMC 2-level MCMC 2-level ABC
Total 2500 5418 3377
Level 1 2500 2500
Level 2 549 828 1717
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Figure 5.4: Top left: The true log-permeability field. Others: The last five accepted
realizations of the log-permeability field for the isotropic case.
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Figure 5.5: The red line designates the reference water cut, the dash line designates
the initial water cut and the green, the blue and the cyan line designate water cuts
corresponding to the mean of the sampled water cuts from MCMC, 2-level MCMC
and 2-level ABC, respectively.

90



Figure 5.6: Top left: The true log-permeability field. Others: The last five accepted
realizations of the log-permeability field for the anisotropic case.
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6. SUMMARY

In this dissertation, the uncertainty quantification problems of subsurface flow

models in heterogeneous porous media have been studied. Several efficient methods

have been proposed for both the forward and inverse uncertainty quantification for

multiscale flow problems. In particular, we have proposed a robust framework for the

uncertainty quantification for the quantities of interest for high-contrast single-phase

flow problems, which combines the Generalized Multiscale Finite Element Method

(GMsFEM) and Multilevel Monte Carlo (MLMC) methods. Within this context,

GMsFEM provides a hierarchy of approximations at varying levels of accuracies and

computational costs, and MLMC offers an efficient way to estimate quantities of

interest using samples on respective levels. The number of basis functions in the on-

line GMsFEM stage may readily and adaptively be modified in order to adjust the

computational cost and accuracy, and efficiently generate samples at different lev-

els. In particular, it is inexpensive to generate samples through smaller dimensional

online spaces with less accuracy, and it is expensive to generate samples through

larger dimensional online spaces with a higher level of accuracy. As such, a suitable

number of samples at different levels allows us to leverage the expensive compu-

tations at finer levels and the less expensive computations at coarser levels, while

retaining the accuracy of the final estimates on the output quantities of interest. We

additionally describe a Multilevel Markov Chain Monte Carlo (MLMCMC) inverse

modeling technique, which sequentially screens the proposal with different levels of

GMsFEM approximations. In particular, the method reduces the number of evalua-

tions that are required at finer levels, while combining the samples at varying levels

to arrive at an accurate estimate. A number of numerical examples are presented in
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order to illustrate the efficiency and accuracy of the multilevel methods as compared

to standard Monte Carlo estimates. The analysis and examples of the proposed

methodology offer a seamless integration between the flexibility of the GMsFEM

online space construction along with the multilevel features of MLMC methods.

We have also proposed an approach for forward uncertainty quantification prob-

lems, which combines the separation of variables methods with the GMsFEM to

achieve efficiency. In this framework, we construct multiscale basis functions as the

product of multiscale spatial basis functions and special parameter-dependent func-

tions, which are computed based on an energy minimization associated with the

global problem. The solution is approximated by an expansion of terms with sep-

arated parameter and space variables. Via this separation, we decompose the high

dimensional problem into a sequence of low dimensional problems, in terms of the

parameter and the space variables. GMsFEM is utilized in repeatedly solving the

corresponding parameter-independent PDEs in the separation approach, in which

the offline space is precomputed and can be used for multiple solves at the online

stage. A local model reduction is achieved by GMsFEM for each term in the global

expansion, which brings computational savings. In the numerical results, we observe

that a fast convergence can be achieved with only a few terms in the expansion.

We have combined the idea of MLMCMC with Approximate Bayesian Compu-

tation (ABC) to develop a Multilevel ABC (MLABC) framework for inverse un-

certainty quantification problems in both single-phase and two-phase flow problems

coupled with transport. A mixed GMsFEM for the parameter-dependent problem

is introduced to provide a hierarchy of approximations, which forms the varying

levels in MLABC for two-phase flow with transport models. In ABC methods, re-

alizations from the joint distribution of the data and the prior of the parameters

are used to approximate the likelihoods without explicitly evaluating them, which
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gains computational efficiency without sacrificing the accuracy of the estimation. In

the numerical results presented in the dissertation, we have compared the proposed

MLABC with standard MCMC estimation and the MLMCMC. We observe that the

number of acceptance in the finer and more expensive level has increased significantly

in MLABC. This gives a scope for more accurate posterior analysis with more poste-

rior samples from the finer grid. Based on our simulations, the proposed MLABC is

faster than the MCMC based methods. Analysis also gives a theoretical justification

of the MLABC approximation.

In future, we plan to consider the following research directions. (1) The KL ex-

pansion for the permeability field is well-suited for Gaussian distributions. Further

work can be done to investigate non-Gaussian fields with different parametrization

and different priors in the Bayesian process. (2) The models presented in this dis-

sertation consider single-phase and two-phase systems. The proposed uncertainty

quantification methods can be extended to handle other models including seismic

wave equation and multi-phase flow with gravity and so on. (3) Rigorous adaptivity

techniques for the space-parameter separation method will help to increase the ef-

ficiency of the proposed approaches. Approaches that allow appropriately choosing

the number of terms in the stochastic expansion and the corresponding coarse-space

dimension can improve the methods considered in the dissertation. (4) A more ex-

tensive study about the choice of approximation parameters in MLABC will help to

consider more complex systems.
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Carlo without likelihoods. Proceedings of the National Academy of Sciences,

100(26):15324–15328, 2003.

[65] Y. Marzouk, H. N. Najm, and L. A. Rahn. Stochastic spectral methods for effi-

cient Bayesian solution of inverse problems. Journal of Computational Physics,

224(2):560–586, 2007.

[66] Y. Marzouk and D. Xiu. A stochastic collocation approach to Bayesian inference

in inverse problems. Communications in Computational Physics, 6:826–847,

2009.

[67] A. Mondal, Y. Efendiev, B. Mallick, and A. Datta-Gupta. Bayesian uncertainty

quantification for flows in heterogeneous porous media using reversible jump

Markov chain Monte Carlo methods. Advances in Water Resources, 33(3):241–

256, 2010.

[68] N. C. Nguyen. A multiscale reduced-basis method for parametrized elliptic

partial differential equations with multiple scales. Journal of Computational

Physics, 227(23):9807–9822, 2008.

102



[69] A. Nouy. A generalized spectral decomposition technique to solve a class of

linear stochastic partial differential equations. Computer Methods in Applied

Mechanics and Engineering, 196(45):4521–4537, 2007.

[70] A. Nouy. Proper generalized decompositions and separated representations for

the numerical solution of high dimensional stochastic problems. Archives of

Computational Methods in Engineering, 17(4):403–434, 2010.

[71] D. S. Oliver, A. C. Reynolds, Z. Bi, and Y. Abacioglu. Integration of production

data into reservoir models. Petroleum Geoscience, 7(S):S65–S73, 2001.

[72] M. Papadrakakis and V. Papadopoulos. Robust and efficient methods for

stochastic finite element analysis using Monte Carlo simulation. Computer Meth-

ods in Applied Mechanics and Engineering, 134(3):325–340, 1996.

[73] C. P. Robert and G. Casella. Monte Carlo Statistical Methods. Springer-Verlag,

New York, second edition, 2004.

[74] G. Rozza, D. B. P. Huynh, and A. T. Patera. Reduced basis approximation

and a posteriori error estimation for affinely parametrized elliptic coercive par-

tial differential equations: application to transport and continuum mechanics.

Archives of Computational Methods in Engineering, 15(3):229–275, 2008.

[75] C. Schwab and R. A. Todor. Karhunen–Loève approximation of random fields
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