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ABSTRACT 

 

A greenhouse experiment was designed to test phenolic-exuding horticultural plant 

species for their phytoremediation potential in soils contaminated with polycyclic 

aromatic hydrocarbons (PAHs). Species included high-phenolic-exuding plants: Malus 

sp., Osmanthus fragrans, Sambucus nigra, Castanea pumila, Morus alba, and Myrica 

cerifera and low-polyphenol-exuding plants: Ziziphus jujube, Ribes aureum, and Cassia 

fistula. The species were planted in soil amended with benzo[a]pyrene, phenanthrene, and 

pyrene. After 7 months, nitrogen, phosphorus, and potassium amendments were added 

each month for three months. Plant roots were harvested; polyphenols were ethanol-

extracted and quantified using the Folin-Ciocalteu method. Rhizosphere DNA was 

extracted, quantified, and the 16S rRNA gene and ITS region were sequenced for bacteria 

and fungi, respectively.  In addition, qPCR was conducted that targeted the 16S rRNA and 

ITS region of bacteria and fungi, respectively. The highest and lowest concentrations of 

phenolics were from Sambucus nigra and Ribes aureum, respectively. There were no 

significant differences between 16S rRNA and ITS abundance among treatments. 

Sequencing showed a significant difference between the rhizosphere bacterial community 

compositions on a global level. Specifically, several Actinobacteria were over-represented 

in the low-phenolic-exuding plants, while high-phenolic-exuding plants were over-

represented by several Proteobacteria. There were no significant differences between the 

fungal populations of treatments and all were dominated by Ascomycota. However, high-

phenolic exuders had a higher abundance of Basidiomycota, than the low-phenolic 
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exuders. Results showed that different microbial communities were selected for by high 

polyphenol-exuding plants and low polyphenol-exuding plants. This selection was more 

pronounced in bacteria than in fungi. The drastic ways in which bacteria respond to 

phenolic inputs highlight their importance in phytoremediation. 
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INTRODUCTION 

 

When two or more aromatic rings are fused in a linear or clustered fashion, they 

are known as polycyclic aromatic hydrocarbons (PAHs) (Cerniglia, 1992). High molecular 

weight PAHs (HMW PAHs) contain at least four rings, while those with fewer are known 

as low molecular weight PAHs (LMW PAHs) (Lee et al., 2013). Polycyclic aromatic 

hydrocarbons are created by the natural or industrial combustion of organic material 

(Cerniglia, 1992).  PAHs have been known to occur as a result of automobile exhaust, 

coal-burning, forest fires, and volcanic eruptions (Lee and Vu, 2010; EPA; Haritash and 

Kaushik, 2009; Killops and Massoud, 1992; Liu et al., 2001). PAHs are ubiquitous 

compounds and have been found in such innocuous places as parking lots and can be 

present in food products (Mahler et al., 2005; Cerniglia, 1992; Van Metre et al., 2006). 

PAHs are even a main component of creosote, a wood preservative (National Library of 

Medicine, 2002). 

The properties of PAHs include low water solubility, high lipophilicity, non-polar, 

high melting and boiling points, and low vapor pressure (Table 1) (Haritash and Kaushik, 

2009; Boffetta et al., 1997). These properties become more pronounced as the number of 

fused benzene rings increase (Cerniglia, 1992). Therefore, in addition to possessing a 

higher molecular weight, 5-ringed benzo(a)pyrene is less water soluble, more lipophilic, 

and has higher melting and boiling points than 2-ringed naphthalene (Cerniglia, 1992). 

Lipophilicity is measured using the octonal-water partition coefficient (Kow). Kow is the 
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ratio of the concentration of a chemical in octanol [Coc] to its concentration is water [Cw] 

(Dzantor and Beauchamp, 2002). 

𝐾𝑜𝑤 =  
[𝐶𝑜𝑐]

[𝐶𝑤]
 

Low Kow values are associated with compounds that are soluble in water while 

those with high Kow are more lipophilic (Dzantor and Beauchamp, 2002). The range of 

Kow for PAHs is 103.4 to 107.4, but often represented in the logarithmic form as log Kow = 

3.4 to 7.4 (Dzantor and Beauchamp, 2002). The most mobile PAHs have a log Kow less 

than 4 and readily bioaccumulate. Bioaccumulation is the term used to describe the 

propensity of pollutants to enter the food chain and exist at higher concentrations at the 

top of the food chain than at the bottom or entry point. PAHs with Kow values greater than 

4 are not considered mobile in the environment (Harvey et al., 2002).  

The ubiquity of PAHs does not negate their toxicity, and their aforementioned 

properties make them a high-priority health risk. Many PAHs are carcinogenic 

(Mastrangelo et al., 1996). Nine different PAHs, including benzo(a)pyrene, are considered 

when assessing the cancer risk to people from contaminated soil (James et al., 2011). In 

fact, benzo(a)pyrene is considered one of the most toxic, carcinogenic, and mutagenic 

PAHs and is often used as a marker of PAH exposure (Boffetta et al., 1997; Juhasz and 

Naidu, 2000). Primary routes of human exposure include inhalation from urban air and 

tobacco smoke, ingestion by drinking water and grilled food, and skin contact. The result 

of PAH exposure can be cancer of the lungs, skin, or bladder (Figure 1) (Boffetta et al., 

1997; Agency for Toxic Substances and Disease Registry (ATSDR), 1995). In addition to 

being carcinogens, many PAHs are lipid-soluble which allow them to be readily absorbed 
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by the gastrointestinal tract of mammals and localized in body fat at an average of 597 

µg/kg (Samanta et al., 2002; Diggs and Huderson, 2011; Kim et al., 2013). These 

compounds also have the ability to produce fetal malformations. The teratogenicity of 

PAHs have been experimentally determined with several projects. One determined that 

the risk of a newborn with a neural tube defect was 4 to 5 times greater when the levels of 

PAHs were above the average known to be in lipids (Ren et al., 2011). Kristensen et al., 

(1995) determined that offspring had birth defects and decreased body weight when 

mothers ingested high levels of benzo(a)pyrene during pregnancy. All of the health risks 

associated with PAHs are a result of the bioactive parent compounds and their metabolites. 

Their metabolites (dihydrodiols, glutathione conjugates, and phenols), especially 

epoxides, are responsible for the carcinogenic activities of the compounds (Jerina et al., 

1978; Sims and Grover, 1974). The interactions between the compounds and the affected 

tissue occur via metabolic activation by Cytochrome P450 (Cavalieri and Rogan, 1992; 

Shimada and Fujii-Kuriyama, 2004; Shimada et al., 2013). Cytochrome P450 is an 

enzyme family characterized by strong absorbance at 450 nm and heme-containing 

monooxygenases (Alexander et al., 2013). The enzymes facilitate the binding of PAHs to 

DNA. Once the PAHs have been activated, their metabolites are able to attack cellular 

DNA and cause extensive damage (Shimada et al., 2013). The likelihood of a PAH 

forming carcinogenic metabolites can be attributed to the presence of the K-region, L-

region, or Bay-region (Figure 2). 
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Table 1 - Structure and physicochemical properties of common polycyclic aromatic hydrocarbons 

Structure Name 
Molecular Formula 

Molecular 
Weight 
(g/mol) 

Log 
Kow 

CAS # 

 

Naphthalene 
C10H8 

128 3.17 91-20-
3 

 

Fluorene 
C13H10 

166 4.02 86-73-
7 

 

Phenanthrene 
C14H10 

178 4.35 85-01-
8 

 

Anthracene 
C14H10 

178 4.35 120-
12-7 

 

Pyrene 
C16H10 

202 4.93 129-
00-0 

 

Benzo(a)pyrene 
C20H12 

252 6.11 50-32-
8 

 

Dibenz(a,h)anthracene 
C22H14 

278 6.70 53-70-
3 
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Polycyclic 
Aromatic 

Hydrocarbons

Short-term Health 
Effects

Eye and skin 
irritation

Nausea and 
vomiting

Inflammation

Long-term Health 
Effects

Skin, lung, 
bladder and 

gastrointestinal 
cancers

DNA, cataracts, 
kidney and liver 

damage

Gene mutation, 
cell damaging, 

and 
cardiopulmonary 

mortality

Figure 1-Short-term and long-term health effects associated with polycyclic aromatic hydrocarbons 

Figure 2-Bay-, L-, and K-region examples on polycyclic aromatic hydrocarbons 

a 
b 

a 
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Figure 3-Example of cancer causing structures in polycyclic aromatic hydrocarbons: 

dihydrodiol and K - region epoxide 
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In unsubstituted PAHs, the highly reactive L-region undergoes metabolic methyl 

–substitution and electrophilic substitution. These substitutions enhance the carcinogenic 

effects of the PAH. The bay-region theory postulates that the carcinogenic properties of 

PAHs are a result of the creation of a trans-dihydrodiol by the addition of water to the 

epoxide that was created in the region. It is possible for these epoxides to be metabolized 

into dihydrodiols that may form soluble detoxification products or be oxidized to diol-

epoxides (Figure 3) (Samanta et al., 2002). According to the bay-theory, a PAH must 

contain two bonds in an end ring capable of undergoing metabolic reactions  (Flesher et 

al., 2002). The reactivity of a bay-region epoxide stems from its position as part of an 

angular benzo-ring that forms part of the bay region (Jerina et al., 1978). 

PAHs are highly recalcitrant. With time, PAHs become less available to undergo 

processes that would remove them from the soil environment (Erickson et al., 1993). 

Interactions between physicochemical, physiological, and toxicological processes 

influence the bioavailability of the compounds (Cachada et al., 2014). The parameters that 

control these three processes are outlined in Table 2. These factors include, but are not 

limited to, chemical structure, pH, temperature, oxygen level, nutrient availability, 

moisture level, presence of organisms capable of degrading the PAHs, and organic content 

of the soil (Bamforth and Singleton, 2005; Luo et al., 2012). 
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Table 2 - Factors that influence the bioavailability of PAHs 

Physicochemical Physiological Uptake Toxicological 

Soil organic matter Receptor type Metabolism 

Soil quality Anatomy Detoxification capacity 

Soil inorganic constituents Feeding strategy Accumulation capacity 

Lipophilicity of compounds Lipid content of organism  

 

 

Luo et al. (2012) studied the diffusion of PAHs in soils from labile to non-labile 

domains and found that it was dependent on pore size and organic carbon content. When 

PAHs were added to a microcosm that was filled with contaminated soil, added PAHs 

were rapidly lost via biodegradation while the concentration of the original PAHs 

remained static (Erickson et al., 1993). The researchers concluded that the original PAHs 

were “bound to soil in a way that made them unavailable for degradation.” Amellal et al. 

(2001) determined that low and high molecular weight PAHs were localized in the fine 

soil fraction and present in low concentration in the larger fraction. The inaccessibility of 

PAHs can cause the overestimation of health-risk if the total amount of PAHs is quantified 

without considering actual bioavailability (Alexander, 2000).  

Bioavailable is a term that encompasses the portion of PAHs that are able to be 

transformed by organisms, and there are a variety of chemical methods and bioassays used 

to determine its quantity. These methods can be exhaustive, non-exhaustive, or biomimetic 

(Table 3) (Cachada et al., 2014). Still the most accurate method to assess bioavailability 

is to use actual organisms as part of a bioassay. However, it is not always feasible to collect 
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PAH measurements from the organisms’ tissue. The effectiveness of chemical techniques 

for bioavailability determinations are often measured by their correlation to biological 

bioassay measurements. A chemical method that is strongly positively correlated to the 

bioassays is considered accurate. Methods that are exhaustive can overestimate the 

bioavailable portion of PAHs by up 10,000 times and are weakly correlated to the assays 

that utilize organisms to determine bioavailability (Cachada et al., 2014; Gomez-Eyles et 

al., 2010).  

Extensive reviews have been completed by Cui et al. (2013) and Cachada et al., 

(2014) concerning the principles and conventions associated with each of these extraction 

methods. Assessing the bioavailability of PAHs is necessary to determine the best 

remediation techniques for their removal and to accurately describe their health risk. 
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Table 3 - Techniques used to assess the bioavailability of PAHs 

Exhaustive Non-exhaustive 
extractions 

Biomimetics Bioassays 

Hot solvent 
(Soxhlet) 

Mild solvent 
extraction 

Solid phase 
microextraction (SPME) 

Earthworms 

Ultrasonic 
solvent 
extraction 

Subcritical water 
extraction (SWE) 

Polyoxymethylene solid 
phase extraction (POM-
SPE) 

Plants 

Accelerated 
solvent 
extraction 

Supercritical fluid 
extraction (SFE) 

Extraction disks  

 Solid phase 
extraction (SPE) 
from soil water 

Composite membranes  

 Solubilizing agents   
 Cyclodextrin 

extraction 
  

 Tenax extraction   
 Persulfate 

oxidation 
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REMEDIATION OF PAHS 

 

To develop technologies that can effectively remediate petroleum contaminated 

soil, understanding the properties of PAHs that facilitate soil sorption/desorption and 

impact ease of extraction is imperative. Previous research concerning PAH sorption and 

desorption, kinetics, and soil chemistry has led to the development of several PAH 

remediation methods. These methods take advantage of the physico-chemical properties 

of the compounds, biological processes or, in some cases, both (Pazos et al., 2010). 

 

Biopiling/Composting 

Biopiling uses indigenous microbial populations, biostimulation, and aeration to 

help degradation of PAHs (Van Hamme et al., 2003). Biopiling is an ex situ 

bioremediation technology that simulates microbial degradation by providing optimal 

growth conditions (Germaine et al., 2014). As  the name suggests, biopiling gathers the 

contaminated soil into piles, about 2 to 4 m high, and selects for aerobic degradation 

process due to the introduction of oxygen (Jørgensen et al., 2000). Other environmental 

controls include maintaining optimal pH levels, moisture levels, and  biostimulation or the 

addition of nutrients (Germaine et al., 2014). Soil texture influences the soil permeability, 

moisture content, and bulk density of the soil and thereby impacts the effectiveness of 

biopiling.  Optimum pH levels are usually close to neutral, but pH between 5 and 9 are 

acceptable, and temperature is set between 20 and 45 °C  (Bamforth and Singleton, 2005; 

Chemlal et al., 2013). Although degradation can occur at more extreme temperatures, 
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mesophilic temperatures are the most studied (Bamforth and Singleton, 2005). The 

temperature requirement makes it difficult to control this remediation effort year-round. 

Other drawbacks include slow degradation rates and the potential to contaminate ground 

and surface water (Van Hamme et al., 2003). Like temperature, non-optimal pH does not 

completely inhibit PAH degradation. Various species of microorganisms have been 

determined to complete degradation at pH 5.5, but degradation increased by 40% when 

pH was raised to 7 (Bamforth and Singleton, 2005). Mono- and di-oxygenase enzymes in 

the microorganism are activated by the addition of oxygen to a biopile. These enzymes 

initiate the oxidation of the aromatic ring by the addition of hydrodiols (Bamforth and 

Singleton, 2005). However, the process is often limited by nutrient levels. Nitrogen and 

phosphates are added to the biopile to increase microbial activity (Bamforth and Singleton, 

2005). One hundred m3 of soil was used to create a biopile that dissipated 4,600 mg/kg of 

total petroleum hydrocarbon (TPH) to 691 mg/kg TPH at the end of 66 days (Iturbe et al., 

2004). After 40 days, 70% of diesel was removed from a contaminated site by biopiling 

whereas a year was required to reach a comparable result through natural attenuation 

(Chemlal et al., 2012). A biopile was able to remove 85.5% of TPH after 76 days, but an 

aeration pipe burst on day 20 and researchers mention that as another drawback to 

biopiling (Chemlal et al., 2013). 

When organic matter, such as wood chips or bark, is added to a biopile, the 

technology is termed composting (Jørgensen et al., 2000). 
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Landfarming 

 Landfarms are above-ground, engineered systems that rely on oxygen to stimulate 

microbial degradation of hydrocarbons and are, in that regard, similar to biopiles (United 

States et al., 1995). Landfarms treat oil waste by adding oil sludge and nutrients to 

agricultural land and mixing by agricultural practices such as tilling to improve 

distribution of contaminants and supply oxygen (Jørgensen et al., 2000; Wick et al., 2011). 

For optimal microbial degradation, soil moisture should be maintained between 30-90% 

of the field moisture capacity (FMC). The FMC was described as the moisture content of 

the soil expressed as the percentage of the oven-dry weight after the free water has drained 

away (Straube et al., 2003). Landfarming is an in situ remediation technique, but 

remediating contaminated soil by land-farming is difficult on a year-round basis and there 

remains the potential for ground and surface water contamination. Landfarming is not 

considered environmentally acceptable, and other remediation techniques are being 

considered more often (Van Hamme et al., 2003). 

 

Natural Attenuation 

 Natural attenuation of contaminated soil occurs without human intervention (Van 

Hamme et al., 2003). This process takes advantage of the intrinsic biodegradation capacity 

of the indigenous microorganisms and can be quite slow (Chemlal et al., 2013). Natural 

attenuation is the least invasive method of remediation but requires continued monitoring 

to ensure that remediation is occurring or, at the very least, contamination is not spreading 

(Van Hamme et al., 2003; Romantschuk et al., 2000). Natural attenuation allows for the 
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natural evolution of genes capable of degrading aromatic hydrocarbons. These genes can 

then be mined and utilized in advanced remediation approaches. However, this 

remediation method can take a long time.  

 

Bioremediation 

Polycyclic aromatic hydrocarbons have several fates in the environment. PAHs 

may be adsorbed to the soil particles, volatilized, photolysed, chemically degraded, or 

microbially degraded. Microbial degradation is the most common degradation process, 

and its occurrence depends on a number of factors including environmental conditions, 

microbial composition and population, and chemical structure. In addition, the microbe 

must express chemotaxis to and uptake of the PAH (Gibson and Parales, 2000). The PAHs 

are metabolized into simpler metabolites and mineralized to non-toxic inorganic minerals 

like carbon dioxide and water.  

The rate of degradation depends on pH, temperature, oxygen, microbial 

composition and population, nutrients, and chemical structure (Haritash and Kaushik, 

2009). For example, HMW PAHs are degraded at a slower rate by bacteria, fungi, and 

algae than their LMW counterparts. In addition, the rate of degradation can be impacted 

by the catabolic pathway utilized by an organism. Fungi utilize Cytochrome P450 

monooxygenases while bacteria use various enzymes of the Rieske non-heme iron 

oxygenases family;  these enzymes catalyze the initial oxidation of aromatic hydrocarbons 

to create cis-diols and can be either a dioxygenase or monooxygenase system (Gibson and 

Parales, 2000).  



 

15 

  

 

There are four dioxygenase families: Naphthalene, Toluene/Biphenyl, Phthalate, 

and Benzoate/Toluate. Their electron transfer and catalysis is carried out by the α-subunits 

common to the multicomponent dioxygenases (Iwai et al., 2011). Each family is 

responsible for the degradation of a subset of PAHs. Naphthalene 1,2-dioxygenase (NDO) 

serves as the prototype for Rieske non-heme iron oxygenases (RniO) and contains a 

Rieske [2Fe-2S] cluster, non-heme iron (II), a water molecule and other components. It is 

similar to Cytochrome P450, but P450 does not catalyze the cis-hydroxylation of arenes 

and NDO does not oxidize alkenes to epoxides. For all RniO, dihydroxylation occurs at 

the bay-region, which has the lowest electron density. Juhasz & Naidu (2000) wrote an 

extensive, but not exhaustive, list of PAH degrading microorganisms which is classified 

by hydrocarbon substrate. A few other microorganisms that were not listed on the table 

have been added to Table 4 below. 

 

 

Table 4 - Polycyclic aromatic hydrocarbons oxidized by different genera of bacteria 

Compound Organism (Bacteria) References 

Naphthalene Paenibacillus (Daane et al., 2002) 
Anthracene Anthrobacter sp. (Dean-Ross et al., 2002) 
Phenanthrene Rhodotorula 

Paenibacillus 
(Romero et al., 1998) 
(Daane et al., 2002) 

Fluoranthene Pseudomonas sp. (Dean-Ross et al., 2002) 
Pyrene Rhodococcus sp. (Rehmann et al., 2008) 
Chrysene Rhodococcus sp. (Walter et al., 1991) 
Benzo(a)pyrene Agrobacterieum 

Bacillus 
Burkholderia 
Pseudomonas 
Flavobacterium 
Rhodococcus 

(Ye et al., 1996) 
(Aitken et al., 1998) 
(Romero et al., 1998) 
(Trzesicka-Mlynarz and Ward, 1995) 
(Schneider et al., 1996) 
(Walter et al., 1991) 
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Phytoremediation 

Phytoremediation is also referred to as plant-assisted bioremediation and can take 

advantage of the intrinsic degradation capabilities of a contaminated area (Badri et al., 

2009). In addition, specific plants and microbes can be paired and planted in a specific 

environment to elicit speedier remediation of the area. Phytoremediation is an attractive 

alternative to traditional remediation techniques due to its environmental, aesthetic, 

energy, and economic value. The cost associated with traditional remediation techniques 

have reached as much as $500 million whereas the cost to phytoremediate a site can range 

from $15,000 to $694,000 (Russell, 2005). Table 5 provides the cost of phytoremediation 

compared to other techniques (Schnoor, 1997). However, only natural attenuation takes 

longer to establish remediation results as significant as the more invasive and expensive 

remediation techniques. Also, this technology hinges on the ability of the plant to access 

the contaminants; remediation is limited to the depth of the root.  

 Several phytoremediation mechanisms exist by which pollutants can be treated in 

soil. These mechanisms include, but are not limited to: phytodegradation, phytoextraction, 

phytostabilization, rhizodegradation, and phytovolatilization. A description of each 

mechanism is listed in Table 6. The plant that is used at the site depends on the 

contaminant present and the specific needs of the treatment. The requirements for metal 

and organic contaminants are different and vary even more depending on the 

phytoremediation mechanism utilized. For organic pollutants, like PAHs, the plant should 

be fast growing, easy to plant and maintain, and, depending on the need, provide the ability 
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to enhance microbial degradation via root exudation (Schnoor, 1997; Interstate 

Technology and Regulatory Cooperation Work Group, 2001). 

 

 

Table 5 - Cost of various remediation techniques (Schnoor, 1997; Interstate Technology and Regulatory 

Cooperation Work Group, 2001) 

Treatment Type Cost per Ton 

Phytoremediation $10-35 
In situ bioremediation $50-150 
Ozonation $20-220 
Soil washing $80-200 
Stabilization $240-340 
Solvent extraction $360-440 
Incineration $200-1,500 

 

 

 

Table 6 - Description of phytoremediation mechanisms (Pivetz, 2001) 

Phytodegradation Contaminants are metabolically 
transformed within the plant tissue 

Phytoextraction Plants accumulate contaminants in above 
ground tissue and the plants are taken 
from the treated area 

Phytostabilization The movement of contaminants is 
inhibited by the plant through adsorption 

Rhizodegradation Microbial activity is enhanced in the root 
zone and the increased activity breaks 
down contaminants 

Phytovolatilization Plants uptake contaminants then release 
them into the air 
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LITERATURE REVIEW: ROOT EXUDATES, MICROBIAL COMMUNITIES, AND 

PAH DISSIPATION 

 

Root exudates are compounds that are released by plants in the form of amino 

acids, organic acids, sugars, phenolic acids, secondary metabolites (low-molecular 

weight), mucilage and proteins (high-molecular weight) (Badri and Vivanco, 2009). Root 

exudates are a major source of soil organic carbon as up to 40% of carbon fixed by plants 

can be exuded by the roots (Badri and Vivanco, 2009; Ziegler et al., 2013; Vranova et al., 

2013). The quantity and composition of root exudates depends on a number of 

physiological and environmental factors such as plant species and age (Gransee and 

Wittenmayer, 2000; Fletcher and Hegde, 1995), soil pH, soil type, and nutritional status 

(Marschner et al., 2004). In addition, root exudates are involved in plant-plant and plant-

microbe interactions by serving as chemical signals for communication.  

 Carbon compounds can be exuded from the root in several ways. Low-molecular 

weight substances are released via passive diffusion and different plant metabolic 

processes release a variety of high-molecular weight substances (Vranova et al., 2013). 

These carbon compounds are used by microbes as a nutrient source that lead to an increase 

in microbial biomass and activity near the root. The physical and chemical alterations 

surrounding the root coupled with the increase in microbial mass and activity are known 

as the rhizosphere effect (Ziegler et al., 2013). The rhizosphere effect can be either positive 

or negative, with positive effects being symbiotic associations with beneficial microbes 

and negative effects including associations with parasitic or pathogenic bacteria (Badri 
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and Vivanco, 2009). Hartwig et al. (1991) determined that flavonoids exuded from alfalfa 

seeds enhanced the growth rate of Rhizobium meliloti and characterized those flavonoids. 

Bais et al. (2006) wrote an extensive review concerning the various roles of root exudates 

since they are numerous. The function of root exudates, specifically phenolics, that is most 

critical to this project concerns their effect on microbial communities and PAH 

dissipation. 

Phenolic compounds are involved in rhizogenesis, vitrification, resistance to biotic 

and abiotic stress, and redox reaction in soils (Kevers et al., 1984; Makoi and Ndakidemi, 

2007). They serve as flower pigments, act as constitutive protection agents against 

invading organisms, function as signaling molecules, act as allelopathic compounds, affect 

cell and plant growth and are an important natural animal toxicant. Time, depth, root age, 

soil type, and nutrient level all influence the release of exudates. For example, Lupinus 

albus and Brassica napus can release large amounts of phenolics in response to 

phosphorus deficiency. In addition, the phenolic concentration in Cistus albidus green 

leaves can range from 66.5 to 95.9 mg gallic acid per gram of soil dissolved matter. 

(Castells and Peñuelas, 2003; Makoi and Ndakidemi, 2007).  

Phenolic exudation enhances PAH degradation by influencing the microbial 

population. Due to their structural similarity to PAHs, phenolics can increase the 

expression of genes that code for enzymes that are necessary for hydrocarbon degradation 

pathways or increase the total microbial population thereby increasing the abundance of 

genes associated with PAH degradation. (Dzantor, 2007). Although nahG expression, one 

of the genes responsible for naphthalene dioxygenase production, was repressed in the 
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presence of root exudates from sorghum, switchgrass, osage orange, red mulberry, hybrid 

willow, hybrid poplar, and kou, the treatments experienced increased microbial growth 

that is likely responsible for the faster PAH degradation reported in planted soils (Kamath 

et al., 2004). Lee et al. (2008) found that after 80 days, pyrene and phenanthrene 

dissipation was greater in soils planted with Panicum bisulcatum, Echinogalus crus-galli, 

Astragalus membranaceus, and Aeschynomene indica compared to unplanted soil. 

Miya & Firestone (2001) added slender oat plant root debris and root exudates, 

individually and in conjunction, to phenanthrene-amended soils for a total of three 

experimental treatments (four including control). The researchers analyzed heterotrophic 

microbial populations and phenanthrene degrader populations separately and observed an 

overall positive effect of plant-based amendments on both communities. The microbial 

analysis was conducted using a most probable number (MPN) assay. Within the first four 

days of plant amendments heterotrophic microbial populations increased. The increase for 

the phenanthrene-degrader populations occurred within the first six days. The largest 

effects of plant-based amendments were seen when both plant root exudates and plant 

debris were added. When both plant residue types were added jointly, at least 75% of 

phenanthrene was removed from the soil almost a week sooner that the control.   

Another experiment corroborated the findings of Miya and Firestone (2001) when 

four bacterial isolates were able to utilize D-mannitol as a sole carbon source. This 

indicated the bacteria’s likely increase in population when the compound was exuded by 

plants because D-mannitol is a common component of root exudates. The bacterial isolates 

were detected by MPN assays conducted on rhizosphere sediment samples of pyrene-
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exposed Phragmites australis collected from 3 freshwater sites in Japan. Partial 16S rRNA 

gene sequences identified them as Mycobacterium gilvum (Toyama et al., 2011). In 

another study, Sphingomonas yanoikuyae experienced an increase in growth while using 

root extracts from willow, poplar, slender oat, mulberry, and kou as the sole carbon and 

energy sources. The growth was validated by calculating the change in optical density 

(OD600) (Rentz et al., 2005). In the presence of ryegrass root exudates, Pseudomonas sp. 

and Arthrobacter sp. were the major microbial players in a study that utilized stable 

isotope probing to identify the effects of root exudates on microbial diversity of a PAH-

contaminated soil. The study found that the key microbes in the soil amended with 

exudates differed greatly from the soil without exudates. The unamended soil contained 

Pseudoxanthomonas sp. and Microbacterium sp. as the dominant microorganisms 

(Cébron et al., 2011).  

Leigh et al. (2002) were able to show that Burkholderia sp. colonies were able to 

utilize naturally occurring mulberry exudates as a sole carbon source. These exudates were 

specifically flavones: morusin, morusinol, and kuwanon C. This fact hints at an expected 

increase in Burkholderia sp. populations in soil in response to mulberry root exudates 

because the microorganisms can utilize them as alternative nutritional sources. In a study 

that analyzed  16S rRNA samples from a diverse group of microorganisms, researchers 

found that less than 5% of taxa responded negatively to the introduction of organic acids 

(quinic, lactic, and maleic) which were used as model root exudates in the experiment. 

Using 16S rRNA gene PhyloChip analysis, researchers found 10 to 22 more taxa of 

microorganisms in soils amended with organic acids as compared to the control. 
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Actinobacteria, Proteobacteria and Firmicutes dominated within each treatment (Shi et 

al., 2011).  

Mycobacterium gilvum (strain IPF) grew in response to the addition of Phragmites 

australis root exudates (Toyama et al., 2011). The growth of the microbes equated to a 

comparable degradation of pyrene when compared to the control. Plant residues like 

bamboo leaves, orange peels, and wood chips enhanced the bio-dissipation of PAH in a 

soil environment. The reduction of PAH correlated positively with the growth of the two 

microorganisms used in the study, B1 (Pseudomonas putida) and B2 (uncharacterized 

isolate) (Chen and Yuan, 2012). The effect was still more or less prominent depending on 

the plant and the microbe. Orange peel extracts were a more effective growth medium and 

PAH remover when B1 was involved, but bamboo leaves were better for B2. 

Corgié et al. (2003) spiked sand with phenanthrene and found that remediation of 

PAH was a function of proximity to ryegrass root where organic substrates were up to 

65% of the root exudates. 

Gao et al. (2010) amended brown-red, yellow-brown, and red soil collected from 

the A-horizon in China with phenanthrene and pyrene and used artificial root exudates: 

glucose, fructose, sucrose, succinic acid, malic acid, serine, arginine, and cysteine to study 

the desorption of PAH from soils by root exudates. Desorption of PAH from soil increases 

bioaccessibility and microbial degradation of the hydrocarbons. The desorption of 

phenanthrene and pyrene in soils, and the effects depended on concentration, aging time, 

and soil properties with more desorption occurring in soils with lower organic matter 

content. 
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Overall, the research showed a net positive effect of root exudates on microbial 

communities and PAH dissipation, but the effect depended widely on the origin of the 

exudation, the affected microbes and soil conditions. 

Table 7 provides an incomplete, but representative list of plant species used in root 

exudation and PAH dissipation studies and, if known, their respective contaminant media. 

In addition, many studies rely on artificial root exudates to study their influence on 

microbial communities and PAH dissipation. The effect of those root exudates on PAH 

dissipation is described in Table 8 below as neutral (=) or positive (+). 
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Table 7 - Representative list of plant species used in root exudation and PAH dissipation studies and their respective contaminant media 

  

Scientific Name Common Name PAH Media Reference 

Miscanthus x giganteus perennial grass Soil sample characterized by total PAH 

contamination of 1480 mg kg−1 dry soil 

sample from a former coal mine 

(Techer et al., 2012) 

Populus deltoids X nigra 

DN34 

hybrid poplar Naphthalene added to mineral medium 

Benzo(a)pyrene added to solution 

(Kamath et al., 2004) 

(Rentz et al., 2005) 

Salix alba X massudana hybrid willow Naphthalene added to mineral medium 

Benzo(a)pyrene added to solution 

(Kamath et al., 2004) 

(Rentz et al., 2004) 

Avena sativa slender oat Benzo(a)pyrene added to solution (Rentz et al., 2005) 

Maclura pomifera osage orange Naphthalene added to mineral medium 

Benzo(a)pyrene added to solution 

(Kamath et al., 2004) 

(Rentz et al., 2005) 

Morus rubra red mulberry Naphthalene added to mineral medium 

Benzo(a)pyrene added to solution 

(Kamath et al., 2004) 

(Rentz et al., 2005) 

Morus alba white mulberry Benzo(a)pyrene added to solution (Rentz et al., 2005) 

Festuca arudinacea tall fescue Pre-treated contaminated soil (Parrish et al., 2004) 

Melilotus officinalis yellow sweet clover Pre-treated contaminated soil (Parrish et al., 2004) 

Cordial subcordata kou Naphthalene added to mineral medium 

Benzo(a)pyrene added to solution 

(Kamath et al., 2004) 

(Rentz et al., 2005) 

Sorghum bicolor (L.) Moench sorghum 0 or 100mg of phenanthrene added to 

water 

Phenanthrene concentrations were 

applied to heat sterilized quartz sand 

(Liste and Alexander, 

1998) 

(Muratova et al., 2009) 

Triticum aestivum L. wheat 0 or 100mg of phenanthrene added to 

water 

(Liste and Alexander, 

1998) 
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Table 7 cont.  

Scientific Name Common Name PAH Media Reference 

Zea mays L. corn 0 or 100mg of phenanthrene added to 

water 

clay loam from an abandoned pasture 

Soil from a petroleum refinery land 

treatment 

(Liste and Alexander, 

1998) 

(Yoshitomi and Shann, 

2001) 

Helianthus annuus L. sunflower 0 or 100mg of phenanthrene added to 

water 

(Liste and Alexander, 

1998) 

Raphanus sativus L. radish 0 or 100mg of phenanthrene added to 

water 

(Liste and Alexander, 

1998) 

Pisum sativum L. pea 0 or 100mg of phenanthrene added to 

water 

(Liste and Alexander, 

1998) 

Glycine max L. soybean 0 or 100mg of phenanthrene added to 

water 

(Liste and Alexander, 

1998) 

Panicum bisulcatum grass Phenanthrene and Pyrene added to 

“clean” soil 

(Lee et al., 2008) 

Echinogalus crus-galli grass Phenanthrene and Pyrene added to 

“clean” soil 

(Lee et al., 2008) 

Astragalus membranaceus legume Phenanthrene and Pyrene added to 

“clean” soil 

(Lee et al., 2008) 

Aeschynomene indica legume Phenanthrene and Pyrene added to 

“clean” soil 

(Lee et al., 2008) 

Medicago sativa L. alfalfa phenanthrene, anthracene, fluorene and 

fluoranthene added to mineral medium 

(Zhang et al., 2012) 

Lolium perenne L. ryegrass Sand spiked with phenanthrene 

Pre-treated contaminated soil 

(Corgié et al., 2003) 

(Parrish et al., 2004) 
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Table 8 - Effect of selected root exudates on polycyclic aromatic hydrocarbon dissipation. A neutral effect 

is designated by (=) and positive effects are designated by (+). 

Name of Root Exudate PAH Effect 

Quercetin Phenanthrene4 = 

Fluorene4 = 

Pyrene4 = 

Fluoanthene4 = 

Rutin 

 

Phenanthrene4 = 

Fluorene4 = 

Pyrene4 = 

Fluoranthene4 = 

Catechin Naphthalene2 + 

Fluoranthene2 + 

Phenanthrene2 + 

Pyrene2 + 

Chrysene2 + 

Benzo[a]pyrene2 + 

Guaiacol Phenanthrene3 + 

Pyrene3 + 

Salicylic acid Fluoranthene1 + 

Pyrene1 + 

Naphthalene1 + 

Benz[a] 

anthracene1 

+ 

Chrysene1 + 

Benzo[a]pyrene1 + 

Gallic acid 

 

Naphthalene2 + 

Fluoranthene2 + 

Phenanthrene2,3 + 

Pyrene2,3 + 

Chrysene2 + 

Benzo[a]pyrene2 + 

1. (Singer et al., 2003) 

2. (Nam et al., 2001) 

3. (Ting et al., 2011) 

4. (Techer et al., 2012) 
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PURPOSE AND METHODOLOGY 

 

Purpose 

The purpose of this research is to screen horticulturally significant phenolic-

producing plants for their potential use as bioremediation technology. We will do this by 

observing the ability of the plants to persist in contaminated soil, to produce phenolic 

exudates, and to impact microbial abundance and community composition. 

We propose the following objective and supporting hypotheses: 

Objective: To examine the role of exudation of phenolics in the rhizosphere on 

microbial community composition in the presence of PAH contaminated soil 

 Hypotheses: 

1. Malus sp., Osmanthus fragrans, and Castanea pumila will exude more 

phenolics than Ziziphus jujuba, Ribes aureum, and Cassia fistula. 

2. Overall rhizosphere bacterial and fungal abundance will positively 

correlate with an increase in phenolic root exudation. 

3. The dominant rhizosphere microbial populations will differ among plant 

species with varying root phenolic concentrations 

4. In the presence of high-phenolic input, there will be an increase in the 

relative abundance of known PAH-degraders such as Proteobacteria for 

bacteria and Basidiomycoa for fungi 

5. Plant species with similar phenolic exudation will show similar microbial 

community structures 



 

28 

  

 

Methodology 

Selection of plants 

 Plants were chosen based on their reported production or non-production of 

polyphenol exudates as observed in various studies. Because polyphenols are primarily 

studied for their antioxidant properties, the original plant list originated from a large 

screening by health scientists (Fujii et al., 2003; Katalinic et al., 2006; Li et al., 2008). We 

used these studies to select plant species with high concentrations of phenolics and those 

that had close to no detectable amounts of polyphenols. Plants were then accepted for 

further consideration or rejected based on their confirmed allelopathic properties. A plant 

that utilizes allelopathy exudes compounds that generally create a hostile environment for 

other organisms (Lovett, 1985). Polyphenols have been confirmed as an aspect of the root 

exudates mixture; therefore, it is to be believed that plants with strong allelopathic 

properties also exude polyphenols (Zhang et al., 2007; Alsaadawi et al., 2012). On the 

other hand, the plants that lack allelopathic properties may not exude as much polyphenols 

and were also accepted for further consideration in the experiment as a control. 

The allelopathic potential of root exudates of Malus pumila L., Prunus persica L., 

and Ziziphus jujuba Mill. against apple germination were tested and researchers found that 

M. pumila L. and P. persica L. inhibited growth of apple seeds while Z. jujuba did not. 

Qualitative determination of root exudates of these plants determined that the root 

exudates of M. pumila L. mainly contained organic acids, glycol, esters, and benzophenol 

derivatives. The root exudates of Z. jujuba Mill. did not contain any phenolic acids (Zhang 

et al., 2007). The allelopathic potential of Ribes aureum and other invasive wood plant 
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species in Hungary was tested by observing their ability to effect the germination rate, 

shoot length and root length of white mustard (Sinapis alba L.). Researchers found that 

Ribes aureum did not significantly affect the germination rate or shoot length of white 

mustard (Csiszár, 2009). The allelopathic activity of Cassia fistula was tested by observing 

their ability to inhibit the growth of select weeds in crop farms. C. fistula did impact the 

growth of the weeds and the plants. Another experiment tested the affect Cassia fistula 

had on the growth of radish. When compared with other treatments from the study, C. 

fistula did not significantly impact the growth of the radish (Hussain et al., 2007; Hong et 

al., 2003). Other experiments explicitly targeted the phenolic production of Malus sp., 

Osmanthus fragrans, Castanea pumila or their relatives. 

Finally, the plants needed to be horticulturally significant because they would, 

ideally, be used in the construction of remediation gardens. We chose plants that were 

aesthetically pleasing and could be planted in various beautification projects. We used a 

total of 6 plant species for the study (Table 9). Three are considered to be high phenolic-

producing plants while the other three are considered low phenolic-producing plants. 
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Table 9 - List of plants used in the study 

Scientific Name Common Name Phenolic 

Production 

Referencing 

Articles 

Ziziphus jujuba Jujube Low (Zhang et al., 2007) 

Ribes aureum Golden Currant Low (Csiszar, 2009) 

Cassia fistula Cassia Low (Hussain et al., 

2007; Hong et al., 

2003) 

Malus sp. Crabapple High (Fletcher and 

Hegde, 1995; Zhang 

et al., 2007; 

Francini and 

Sebastiani, 2013) 

Osmanthus 

fragrans 

Tea Olive High (Benavente-García et 

al., 2000; Del Río et 

al., 2003; Petridis et 

al., 2012) 

Castanea pumila  Dwarf Chestnut High (G. Osterc, M. 

Štefančiča, A. Solar, 

2008) 

 

 

 

The plants were ordered, bare root, if possible and transplanted to the contaminated 

soil contained in ~4 L pots (TyTy Nursery, TyTy, GA) in a greenhouse. The plants were 

hand-watered every other day with 400 mL of reverse osmosis water at 50mg/kg total 

dissolved solids, fertilized three times during the experiment, and allowed to grow 

normally for nine months. Fertilizer, at the rate of 264 mg/kg N, 26 mg/kg P, and 33 mg/kg 

K was applied to each plant. The fertilizer was split over three applications applied in 50 

mL volumes, once a month, for three months starting during month 7 of the experiment. 

This fertilizer was used to decrease competition between the plant and microorganisms 
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for nutrients and facilitate microbial degradation of the PAHs (Fu et al., 2012). At the end 

of the experiment, the plants were destructively sampled. 

 

Soil 

The soil was collected from Texas A&M Agrilife Research Farm, approximately 

8 km southwest of College Station, TX and situated within the Brazos River Floodplain 

in south-central Texas. The soil is a Weswood silty clay loam with 25:57:18 sand:silt:clay, 

a pH of 8.2 and an organic C concentration of 0.8 g C kg-1 (Wight et al., 2012; Dou et al., 

2014). The soil was sieved on site using a 1.75 mm mesh, and allowed to air-dry for 2 

weeks before being contaminated. Aliquots of soil (3.5 kg) were amended with 12 mL 

diesel fuel, 38 mL acetone, 10 mg/kg benzo[a]pyrene, 50 mg/kg phenanthrene, and 50 

mg/kg pyrene. PAHs exist in petroleum matrix and are not found alone; therefore, diesel 

was used as a carrier for the hydrocarbons and to emulate a petroleum matrix. The soil 

was shaken to homogenize the distribution of contaminants and air-dried overnight to 

allow the acetone to evaporate. The resulting concentrations were 35 mg/kg diesel fuel, 

50 mg/kg phenantrene, 50 mg/kg pyrene, and 10 mg/kg benzo[a]pyrene. The soil was then 

placed in a 4 L pot as the growth medium for the plants and a small volume (50 mL) of 

non-contaminated soil was added to each pot to replenish the microbial population. 

 

Sample collection and DNA extraction 

 To collect the rhizosphere soil, the pot was cut open to reveal the contents. Using 

gloved hands, the bulk soil was removed from the roots slowly. The plant, roots and 
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attached soil were then shaken, by hand, to allow less adhered soil to fall away. A mid-

sagittal cut with ethanol-sterilized scissors divided the root in half. One half was placed in 

a 50 mL centrifuge tube and immediately placed on ice for microbial analysis. The other 

half was placed in a small envelope to be dried at 50°C for 72 hours and used for 

polyphenol analysis. The remaining bulk soil was dried, bagged, and placed in a -80°C 

freezer until PAH analysis. The 50 mL centrifuge tubes were centrifuged at 1600 rpm on 

an Eppendorf 5430/5430 R with F-45-30-11 rotor for 20 min. The supernatant was 

discarded and the remaining soil was extracted using PowerSoil DNA Isolation Kits (Mo 

Bio Laboratories Inc., Carlsbad, CA, USA). DNA was ethanol-precipitated and quantified 

using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, Wilmington, 

DE). 

 

Colorimetric phenolic assay 

 Root polyphenols were extracted using the Folin-Ciocalteu Method (Sulaiman et 

al., 2011; Ainsworth and Gillespie, 2007). Gallic acid was used as the surrogate for 

polyphenol analysis. Gallic acid (0.05 g) was dissolved in 2 mL of 96% ethanol and filled 

to 50 mL with deionized water. This stock solution was then diluted to create 0, 0.1, 0.2, 

0.4, 0.6, 0.8 and 1 mg/mL concentrations. Each standard solution (100 µL) was placed in 

a test tube and 5 mL of 0.1% (v/v) 2 N Folin-Ciocalteu reagent was introduced. After 

mixing, 3.5 mL of 0.12% sodium carbonate (w/v) was added and the solution was allowed 

to incubate, in the dark, for 1 hour. The absorbance was read at 760 nm. The percent 
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transmittance (%T) was noted and plotted in a graph from which a logarithmic regression 

equation was derived and used for concentration determination.  

Dried plant material was ground in a mortar and pestle. About 0.070 g of dried 

plant material was weighed and extracted with 5 mL of 80% ethanol in a 25 mL centrifuge 

tube. The tubes were placed in a water bath at 30°C for 30 minutes, and then allowed to 

steep for an hour. The samples were centrifuged at 4500 rpm on an Eppendorf 5430/5430 

R with F-45-30-11 rotor for 10 minutes and the supernatants were placed in an empty 25 

mL centrifuge tube. A 100 µL aliquot of each sample was added to a test tube where 5 mL 

of 0.1% (v/v) 2 N Folin-Ciocalteu Reagent was introduced. The solution was mixed then 

3.5 mL of 0.12% sodium carbonate (w/v) was added. The test tubes were left in the dark 

for 1 hour for color development. Absorbance was measured at 760 nm. 

A standard curve (0-1 mg/ml) prepared with gallic acid was used to convert percent 

transmittance readings into absorbance and then into phenolic concentration. Phenolic 

concentration results were determined using the regression equation y = 1.3585x + 0.0498 

(R² = 0.9814), where x is the absorbance of the various samples. The phenolic data are 

reported in terms of gallic acid equivalents (GAE) determined by the equation GAE = 

(c)(v/m) where c is the phenolic concentration from the regression equation in mg/ml, v is 

the volume used to determine the concentration (0.1 mL), and m is the mass of sample 

used in the determination (g) (Abdelhady, 2011). The units of GAE are mg/g of sample. 

The phenolic values reported are an average of triplicate extractions and determinations 

taken from replicate pots. Significance was determined through a one-way ANOVA 

(p<0.05) and Tukey’s HSD. 
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Community quantitative PCR 

 The quantitative-PCR (qPCR) assays targeting total bacteria and fungi were 

performed using 1100F/1492R for bacteria and ITS1/ITS5.8S for fungi (Table 10). The 

assays were performed in a 22.5 µL reaction mixture containing 12.5 µL SYBR green real 

master mix (5Prime, Gaithersburg, MD), 1.25 µL of each primer (concentration 10 µM), 

2.5 µL template, 0.5 µL bovine serum albumin (10 mg mL-1), and 4.5 µL molecular grade 

water. Each analysis run included a set of standards, negative controls, and samples (each 

with three analytical replicates) on a 96-well plate.  For the ITS region, the qPCR was run 

with the following conditions: 94°C for 5 min; 94°C for 30 sec, 57°C for 45 sec (30 

cycles); 72°C for 1.5 min (Manter and Vivanco, 2007). For the 16S rRNA gene, the qPCR 

conditions were as follows: 95°C for 10 min; 95°C for 30 sec, 53°C for 30 sec (40 cycles); 

72°C for 1 min (Fierer et al., 2005). The qPCR was performed using an Eppendorf 

Mastercycler® ep realplex thermal cycler (Eppendorf, Hamburg, Germany). 
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Table 10 - List of PCR primers used in this study 

Primer Sequence (5’ – 3’) Annealing 

temperature 

(°C) 

References 

1100F GGC AAC GAG CGM GAC CC 53 (Lane et al., 1985; 

Dorsch and 

Stackerbrandt, 1992) 

1492R GGT TAC CTT GTT ACG ACT T  (Turner et al., 1999) 

ITS1F CTT GGT CAT TTA GAG GAA GTA A 57 (Gardes and Bruns, 

1993) 

ITS5.8S CGC TGC GTT CTT CAT CG  (Vilgalys and Hester, 

1990) 

ITS1 TCC GTA GGT GAA CCT GCG G 53 (White et al., 1990) 

ITS4 TCC TCC GCT TAT TGA TAT GC  (White et al., 1990) 
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Standards for the 16S rRNA gene qPCR assays were generated by growing E. coli 

ATCC 8739 on Brain Heart Infusion Agar (BHI Agar) for three days. Cultures were then 

transferred to a 15 ml centrifuge tube with 5 mL of Lysogeny broth (LB broth). After three 

days, the tubes were centrifuged at 1400 rpm on an Eppendorf 5430/5430 R with F-45-

30-11 rotor for 10 minutes and DNA was extracted from the pellet using a Mo Bio 

PowerSoil Kit (Mo Bio Laboratories Inc., Carlsbad, CA). The concentration of DNA was 

quantified using a NanoDrop ND-1000 spectrophotometer (NanoDrop Technologies, 

Wilmington, DE). DNA concentrations ranging from 10-1 to 10-7 ng µL-1 DNA were used 

to generate the 16S rRNA qPCR standard curves. 

Standards for the ITS assays were generated by extracting ITS1-5.8S-containing 

plasmids from E. coli  (Hollister et al., 2013). The E. coli were grown in LB broth with 50 

µL ampicillin for three days then the plasmids were extracted using a 5Prime PerfectPrep 

Spin Mini Kit (VWR International, Radnor, PA). Plasmid DNA concentrations ranging 

from 10-1 to 10-7 ng µL-1 DNA were used to generate the ITS qPCR standard curves.Errors 

in the estimations of relative amounts of DNA can happen at high and low CT; therefore, 

they were not used in the creation of the standard curve equation (Nadkarni et al., 2002). 

The equation used to quantify the 16S rRNA gene number was   y = -2.729x + 33.904 (R2 

= 0.93) and the equation used to quantify ITS was y = -10.098 + 76.703 (R2 = 0.99). 

  



 

37 

  

 

Sequence analysis and community comparisons 

 The 16S rRNA gene PCR primers 1100F/1492R with barcode on forward primer 

and ITS region with primers ITS1/ITS4 were used in a 30 cycle PCR using the HotStarTaq 

Plus Master Mix Kit (Qiagen, USA) under the following conditions: 94°C for 3 minutes, 

followed by 28 cycles of 94°C for 30 seconds, 53°C for 40 seconds and 72°C for 1 minute, 

after which a final elongation step at 72°C for 5 minutes was performed. PCR products 

were used to prepare a DNA library by using the Illumina TruSeq DNA library preparation 

protocol. Sequencing was performed at Mr. DNA (www.mrdnalab.com, Shallowater, TX, 

USA) on a MiSeq following the manufacturer’s guidelines.  

MiSeq sequence data were trimmed to a similar length, aligned, quality checked 

and assigned to operational taxonomic units (OTUs) based on phylotype using the 

MOTHUR MiSeq SOP pipeline (Schloss, 2009). MOTHUR was also used to calculate the 

observed species (Sobs), Shannon’s diversity index values (H’), inverse Simpson index 

values (Simpson-1), and Chao1 richness estimates. Phylogenetic trees were constructed 

using dist.shared and tree.shared commands in MOTHUR and inter-treatment 

comparisons of phylogenetic structure were conducted using the Analysis of Molecular 

Variance (AMOVA) test in MOTHUR. P-values ≤ 0.05 were considered significant and 

pairwise comparisons of individual plants were conducted if the global test was found to 

be statistically significant. Bonferonni correction for multiple comparisons was used 

among the pairwise comparisons, adjusting the significance level to P ≤ 0.0017 (Hollister 

et al., 2010; Neter et al., 1996). 
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Principal Coordinates Analysis (PCoA) of treatment communities based on OTU 

composition was conducted using the dist.shared and pcoa commands in MOTHUR. 

Population-level analysis to determine the organisms that were significantly different 

between the treatment communities (high- vs. low-phenolic exuders) was conducted using 

the lefse command in MOTHUR. 
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RESULTS 

 

Phenolic Concentration 

To answer the question posed by hypothesis 1 which relates to phenolic exudation 

of the various plants, we used a colorimetric phenol assay to determine the phenol 

concentration of the plants. All measurements are in gallic acid equivalents (GAE). 

Crabapple had the highest phenolic concentration at 0.48 mg GAE/g, followed by tea olive 

at 0.39 mg GAE/g, cassia at 0.17 mg GAE/g, dwarf chestnut at 0.16 mg GAE/g, jujube at 

0.13 mg GAE/g and golden currant at 0.09 mg GAE/g. The bars in Figure 4 are color-

coded based on their expected characterization as either high or low-phenolic producers. 

The green represents purported high-phenolic producers, while red denotes supposed low- 

phenolic producers. Blue represents the control. Crabapple had significantly higher 

phenolic concentrations than the control (p<0.01), golden currant (p<0.01), jujube 

(p<0.01), chestnut, and cassia. Tea olive had significantly higher phenolic concentrations 

than the control (p<0.01) and golden currant only (Figure 4). 
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Figure 4-Phenolic concentration in gallic acid equivalents of the species used in this experiment. 

Data represents the mean of three replicates. Different letters indicate a significant difference at p < 

0.05. Green represents high-phenolic exuders, red represents low-phenolic exuders, and blue 

represents controls. Error bars are based on standard errors of triplicate samples. 
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Previous literature characterized Castanea crenata x Castanea sativa (chestnut 

hybrid) as a likely candidate for high phenolic concentration (G. Osterc, M. Štefančiča, 

A. Solar, 2008); however, Castanea pumila did not follow that trend. Instead it clustered 

more closely with low-phenolic producers. Alternatively, Osmathus fragrans (tea olive) 

was confirmed to be a high-phenolic producer despite previous literature that does not 

explicitly focus on that species of olive, but mostly on a relative, Olea europea 

(Benavente-García et al., 2000; Del Río et al., 2003; Petridis et al., 2012). These 

observations confirm that membership in a taxon is not an adequate measure of potential 

phenolic-production (Fletcher and Hegde, 1995; Phillips et al., 2012). Instead, members 

of a taxon should be tested on an individual basis to determine their relative phenolic-

production potential. 

Various factors determine phenolic output, including root structure and time of 

plant growth. Growth stage is also a major influence on plant phenolic exudation 

(Sellami et al., 2009; Hegde and Fletcher, 1996; Kim et al., 2014). Therefore, the 

differences in the growth rates of plants can impact the phenolic outputs and 

comparisons. However, that consideration is most prominent when considering plants 

that are started from seed. This experiment did not account for differences in growth 

rates of the plants because some of the plants were received with established root 

systems. Differences in phenolic concentrations can also be attributed to the differences 

in root systems within (root size, age, etc.) and between the plants. A relatively large 

root within a root system can contain more bioactive compounds than a smaller root 

within the same system (Wang et al., 2013). Therefore, selecting roots of similar size is 
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imperative. In addition, exudation can differ among the same plant at varying 

developmental stages. For example, a radish sprout contains more phenolics than the 

mature taproot of the same plant (Hanlon and Barnes, 2011). Also, sampling of the 

rhizosphere focused exclusively on total mass without regarding root order. The 

concentration of phenolics decreases as root order increases (Wang et al., 2015). Future 

studies should ensure that sampling accounts for root order, root growth rate, and overall 

mass. 

 

Community Quantitative PCR 

 Hypothesis 2 concerns the abundance of bacterial and fungal genes in the 

treatments as a function of phenolic exudation. Although significant differences exist in 

the phenolic concentrations of the plants, those results did not translate into differences in 

16S rRNA gene or ITS copy numbers. Differences between the 16S rRNA gene or ITS 

copy numbers between samples (Figures 5 and 6) were not significantly different. 

Similarly, Phillips et al. (2012) found that the abundance of the 16S rRNA gene was 

consistent between treatments of mineralization microcosms amended with phenanthrene, 

naphthalene, or hexadecane and planted with either alfalfa or wildrye. Significant 

differences did not exist between these treatments and the control, but differences between 

the abundance of catabolic genes involved in PAH degradation were significant. 

Therefore, changes in microbial community structure cannot be ruled out due to 

insignificant changes in 16S rRNA gene abundance. Quantifying the genes involved in 

PAH degradation or their expression in order to identify changes in microbial communities 



 

43 

  

 

in PAH-contaminated soil may be helpful because overall bacterial or fungal abundance 

were not specific enough to recognize shifts. Attempts at quantifying functional genes in 

this experiment did not occur because of complications with enzyme selection, primer 

design, and selection of positive controls. 

Competition between microbes and plants for nitrogen could lead to considerably 

lower microbial biomass (Kuzyakov and Xu, 2013). Because hydrocarbon substrates were 

added that increased carbon availability, an increase in abundance and activity of 

microorganisms that increased immobilization and depleted available nutrients may have 

occurred. This could halt the original surge in microbial activity and abundance caused by 

the carbon inputs. Although fertilizer was added to the plants a total of three times 

throughout the experiment, the competition for the nutrients may have been sufficient 

enough to impact the microbial population. 

Many studies that note an increase in population size as it relates to phenolic input 

utilized individual compounds, artificial exudates, or actual root exudates applied 

exogenously (Técher et al., 2011; Techer et al., 2012; Rentz et al., 2005; Phillips et al., 

2012).  Not every experiment utilizes actual soil media (Chen and Yuan, 2012; Kamath et 

al., 2004; Rentz et al., 2005), but some do (Lee et al., 2008; Chen and Yuan, 2012). This 

experiment utilized a spiked-soil media and root exudates provided directly from the plant 

through integration in the soil. Although many variables were held constant, other factors 

could still contribute to the statistically equal 16S rRNA gene copy results. A supplemental 

laboratory experiment conducted in microcosms focusing on extracted phenolics and 
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microbial communities could provide more information concerning the effect of these 

specific plant phenolics on microbial populations. 

The bacterial community in the rhizosphere community is highly dependent on 

the host plant, but part of the community may contain microorganisms that are not 

dependent on plant genotype (Lambais et al., 2014). These microorganisms are 

saprophytic and may account for the similarities in microbial and fungal populations 

despite the significant differences in plant exudation. 

 

 

  

Figure 5-Rhizosphere 16S rRNA gene abundance of plants included in experiment. Green 

represents high-phenolic exuders, red represents low-phenolic exuders, and blue represents 

controls. Error bars are based on standard errors of triplicate samples. 
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Figure 6-Rhizosphere ITS abundance of plants included in experiment. Green represents high-

phenolic exuders, red represents low-phenolic exuders, and blue represents controls. Error bars 

are based on standard errors of triplicate samples. 
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Community Composition, Diversity, and Estimated Richness 

DNA sequencing was used to address hypotheses 3 through 5 which concerned a 

change in dominant microbial population, a change in relative abundance of PAH-exuders, 

and similarity in rhizosphere microbial structure as a result of similar phenolic exudation. 

A total of 2,156,177 16S rRNA gene sequences were generated through Illumina 

sequencing with an average read length of 392±25bp (mean±s.d.). Each treatment was 

sampled in triplicate and the average of those sequences reported in Table 11. Overall, a 

total of 863 OTUs were identified. Shannon diversity index values (H’) suggest variation 

in diversity among the samples, but a discernible trend based on phenolic concentration 

was lacking. Chao 1 richness estimates suggest that over half of the estimated diversity 

present in these communities was identified by sequencing. While the inverse Simpson 

suggests an increase in diversity in planted treatments compared to the uncontaminated 

and the unplanted contaminated, the increase does not seem to correlate with an increase 

in phenolic exudation. 

Members of 27 bacterial phyla were detected among the samples. Proteobacteria 

and Acidobacteria were encountered most frequently, representing 44 to 74% and 10 to 

27% of each sample, respectively. Firmicutes, Bacteroidetes, and Actinobacteria 

represented 3 to 22%, 1 to 11%, and 2 to 5% of the represented phyla respectively. Less 

than 10% of the microbial composition of each treatment was represented by the 

remaining 22 phyla (Figure 7). 

Of the Proteobacteria phylum, Gammaproteobacteria was the most represented 

class in the control, jujube, chestnut, and crabapple. Alphaproteobacteria dominated in 
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cassia, tea olive, and golden currant (Figure 8). Both of these classes of bacteria have been 

associated with PAH degradation (Sun et al., 2014 ). 

Neither Gammaproteobacteria nor Alphaproteobacteria, as a whole, experienced 

a significant increase or decrease in abundance in the presence of the plants when 

compared to the unplanted contaminated and the uncontaminated treatments. This does 

not mean, however, that families, genera, or species within the class were not affected by 

the presence of plants in the PAH-contaminated soils. This is especially true for 

Proteobacteria, a phylum with a high amount of physiological diversity.  

Previous studies have noted that Actinobacteria, Bacteroidetes, and 

Proteobacteria comprise the core rhizosphere microbiome for Arabidopsis thaliana. The 

plant is also able to select a subset of microbes at different stages of growth. (Lundberg 

et al., 2012; Bulgarelli et al., 2012; Chaparro et al., 2014). In this study, Proteobacteria 

dominated in all treatments with Acidobacteria and Bacteroidetes completing the core 

for these treatments. 

 Although AMOVA found significant differences (p = <0.001) globally in 

rhizosphere bacterial community composition of the different plant species, pairwise 

comparisons of the treatments were not significantly different (Table 12). Next, the 

plants were grouped according to hypothesized phenolic exudation (high or low) and the 

microbial communities were distinct enough to be statistically different. Therefore 

distinctions that were insignificant when analyzed individually were significant when 

pooled together. 
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 OTUs that were over-represented in either high-phenolic exuders or low-phenolic 

exuders are listed in Tables 13 and 14. These OTUs may have been responsible for the 

global differences between the high- and low-phenolic exuders because pairwise 

comparisons between treatments did not yield any significant differences in OTUs. 

However, when the treatments were grouped together as either high- or low-phenolic 

exuders, certain OTUs were shown to be over-represented in the treatments. 

The low-phenolic exuders have a larger population of Actinobacteria compared 

to high-phenolic exuders which were dominated by Proteobacteria. This was in line 

with a study that stated that Proteobacteria outcompete Actinobacteria in hydrocarbon-

contaminated environment (Mukherjee et al., 2014). Figures 9 and 10 highlight the ways 

the treatments clustered together based on their microbial communities. Overall, samples 

within the same treatment clustered together and a distinction between high-phenolic 

exuders and low-phenolic exuders was evident. This suggests that rhizosphere 

conditions, such as phenolic exudation within treatments were similar enough to select 

for microbial communities that were closely related. Plants are able to select a subset of 

microbes to perform functions not expressed by the traditional core microbiome.  The 

microbial community composition for these treatments may reflect a shift in functions 

specific to PAH degradation in the presence of increased carbon inputs. 
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Table 11 - Summary of bacterial (16S) sequence library sizes, operational taxonomic units (OTUs), and diversity and richness estimates. Green 

represents high-phenolic exuders, red represents low-phenolic exuders, and blue represents controls. 

 Sequence 

Library Size 

Number of 

OTUs 

Simpson-1 Chao1 Shannon (H’) 

All treatments 2,156,177 863    

Cassia 98,732 ± 6,275 491 ± 10 16.36 ± 8.97 536.11 ± 5.35 3.70 ± 0.32 

Golden Currant 89,043 ± 5,552 523 ± 35 25.31 ± 1.82 519.97 ± 20.26 4.02 ± 0.09 

Jujube 85,113 ± 6,775 443 ± 10 16.43 ± 6.59 531.74 ± 1.32 3.76 ± 0.19 

Chestnut 74,248 ± 1,926 448 ± 10 16.37 ± 12.94 528.80 ± 18.56 3.70 ± 0.51 

Tea Olive 89,149 ± 11,809 474 ± 20 26.60 ± 4.51 588.87 ± 17.97 4.12 ± 0.12 

Crabapple 92,396 ± 2,644 459 ± 8 18.68 ± 12.15 501.75 ± 11.27 3.80 ± 0.25 

Uncontaminated 92,130 ± 1,112 526 ± 8 16.31 ± 1.74 581.00 ± 20.35 3.92 ± 0.08 

Unplanted Contaminated 97,911 ± 7,560 491 ± 24 15.41 ± 4.14 540.47 ± 26.74 3.65 ± 0.24 

 Mean ± s.e. Mean ± s.e. 
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Figure 7- Bacterial rhizosphere community composition of high- and low-phenolic exuding plants. 

Green boxes represent high-phenolic exuders, red boxes represent low-phenolic exuders and blue 

boxes represent controls. 

Figure 8- Rhizosphere Proteobacteria class composition of high- and low-phenolic exuding plants. 

Green boxes represent high-phenolic exuders, red boxes represent low-phenolic exuders, and blue 

boxes represent controls 
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Table 12 - Bacterial analysis of molecular variance (AMOVA) to determine pairwise differences between treatments. The values in the table are the p-

values of the pairwiese comparisons between treatments. Green represents high-phenolic exuders, red represents low 

AMOVA 

 Uncontaminated UpC 
Golden 
Currant Jujube Chestnut Cassia 

Tea 
Olive 

Unplanted 
Contaminated 
(UpC) 0.07       
Golden 
Currant 0.10 0.07      
Jujube 0.12 0.08 0.12     
Chestnut 0.10 0.11 0.11 0.09    
Cassia 0.10 0.10 0.10 0.20 0.06   
Tea Olive 0.10 0.08 0.10 0.10 0.08 0.05  
Crabapple 0.10 0.09 0.11 0.11 0.50 0.05 0.10 
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 Table 13 - List of OTUs responsible for the global difference in high-polyphenol bacterial rhizosphere community composition. The OTUs listed were 

over-represented in the high-phenolic exuders and are organized by ascending p-value. 

OTU Class pValue Phylum Class Order Family Genus 

Otu302 High 0.001 Proteobacteria Gammaproteobacteria Alteromonadales Alteromonadaceae  

Otu031 High 0.002 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae  

Otu193 High 0.006 Proteobacteria Alphaproteobacteria Sphingomonadales Sphingomonadaceae Sphingomonadaceae 

Otu005 High 0.008 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae  

Otu175 High 0.010 Proteobacteria Alphaproteobacteria Rhizobiales Methylobacteriaceae  

Otu164 High 0.016 Chloroflexi Anaerolineae Anaerolineales Anaerolineaceae  

Otu142 High 0.018 Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae  

Otu010 High 0.025 Proteobacteria Alphaproteobacteria Sphingomonadales   

Otu006 High 0.030 Proteobacteria Gammaproteobacteria    

Otu239 High 0.035 Proteobacteria Betaproteobacteria Burkholderiales Oxalobacteraceae Duganella 

Otu286 High 0.036 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Hydrogenophaga 

Otu039 High 0.037 Proteobacteria Deltaproteobacteria GR-WP33-30   

Otu151 High 0.039 Proteobacteria Gammaproteobacteria Legionellales Legionellaceae Legionella 

Otu041 High 0.040 Proteobacteria Alphaproteobacteria Caulobacterales Caulobacteraceae Phenylobacterium 

Otu199 High 0.042 Proteobacteria Gammaproteobacteria Pseudomonadales Moraxellaceae Perlucidibaca 

Otu075 High 0.043 Bacteroidetes Sphingobacteria Sphingobacteriales Chitinophagaceae Niastella 

Otu196 High 0.045 Proteobacteria Deltaproteobacteria Myxococcales Cystobacteraceae Hyalangiu 

Otu073 High 0.046 Proteobacteria Alphaproteobacteria Rhodospirillales   

Otu029 High 0.046 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Curvibacter 

Otu061 High 0.046 Proteobacteria Gammaproteobacteria Chromatiales Chromatiaceae  
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Table 14 - List of OTUs responsible for the global difference in low-polyphenol bacterial rhizosphere community composition. The OTUs listed were 

over-represented in the low-phenolic exuder and are organized by ascending p-value. 

OTU Class p-value Phylum Class Order Family Genus 

Otu223 Low 0.000 Actinobacteria Actinobacteria Actinomycetales   
Otu213 Low 0.001 Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Kribbella 

Otu231 Low 0.001 Planctomycetes Planctomycetacia Planctomycetales Planctomycetaceae Singulisphaera 

Otu146 Low 0.001 Proteobacteria Deltaproteobacteria Myxococcales Nannocystaceae Nannocystis 
Otu033 Low 0.003 Actinobacteria Actinobacteria Actinomycetales   

Otu149 Low 0.003 Planctomycetes Planctomycetacia Planctomycetales Planctomycetaceae Isosphaera 
Otu105 Low 0.005 Bacteroidetes Sphingobacteria Sphingobacteriales Chitinophagaceae  

Otu115 Low 0.009 Actinobacteria Actinobacteria Actinobacteridae Actinomycetales Micrococcineae 

Otu182 Low 0.011 Actinobacteria Actinobacteria Actinomycetales Nocardioidaceae Nocardioides 
Otu294 Low 0.011 Proteobacteria Betaproteobacteria Burkholderiales Alcaligenaceae Achromobacter 

Otu109 Low 0.012 Firmicutes     
Otu266 Low 0.013 Deinococcus-

Thermus 
Deinococci Deinococcales Trueperaceae Trupera 

Otu328 Low 0.015 Bacteroidetes Sphingobacteria Sphingobacteriales   

Otu139 Low 0.018 Bacteroidetes Sphingobacteria Sphingobacteriales Sphingobacteriaceae  

Otu020 Low 0.022 Proteobacteria Gammaproteobacteria Xanthomonadales Xanthomonadaceae Luteimonas 
Otu060 Low 0.023 Firmicutes Bacilli Bacillales Planococcaceae  
Otu338 Low 0.025 Firmicutes Bacilli Bacillales Planococcaceae Lysinibacillus 

Otu183 Low 0.025 Proteobacteria Deltaproteobacteria Bdellovibrionales Bacteriovoraceae Peredibacter 

Otu234 Low 0.025 Proteobacteria Gammaproteobacteria Enterobacteriales Enterobacteriaceae  

Otu173 Low 0.029 Actinobacteria Actinobacteria Actinomycetales Pseudonocardiaceae Pseudonocardia 
Otu141 Low 0.037 Actinobacteria Actinobacteria Actinomycetales Mycobacteriaceae Mycobacterium 

Otu277 Low 0.039 Proteobacteria Alphaproteobacteria Rhizobiales Bradyrhizobiaceae Nitrobacter 
Otu206 Low 0.040 Actinobacteria Actinobacteria Actinomycetales Micrococcaceae Arthrobacter 
Otu076 Low 0.040 Proteobacteria Alphaproteobacteria Rhodospirillales Acetobacteraceae  

Otu079 Low 0.049 Actinobacteria Actinobacteria Solirubrobacterales Solirubrobacteraceae Solirubrobacter 

Otu082 Low 0.049 Proteobacteria Betaproteobacteria Burkholderiales Comamonadaceae Methylibium 
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Figure 9-Phylogenetic tree of treatments based on rhizosphere bacterial community composition. Theta-YC sample tree generated using MOTHUR. 

Green represents high-phenolic exuders, red represents low-phenolic exuders, and blue represents controls.
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Figure 10-Principal Coordinate Analysis graph (PCoA) detailing how the treatment clustered 

based on rhizosphere bacterial community composition. Green represents high-phenolic exuders, 

red represents low-phenolic exuders, and blue represents controls 
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A total of 2,676,382 ITS sequences were generated through Illumina sequencing 

(Table 15). Overall, a total of 1217 OTUs were identified. Shannon diversity index 

values (H’) suggest variation in diversity among the samples, but a discernible trend 

based on phenolic concentration was lacking. Chao 1 richness estimates suggest that at 

least a quarter of the estimated diversity present in these communities was identified by 

sequencing. While the inverse Simpson shows an increase in diversity in planted 

treatments compared to the uncontaminated and the unplanted contaminated, the 

increase in diversity is not significant and does not correlate with an increase in phenolic 

exudation. Figure 11 shows the fungal community composition of the rhizosphere of the 

various treatments. Ascomycota was the dominate phylum in all treatments.  

Although an AMOVA test found significant differences (p = <0.001) globally, 

pairwise comparisons of the treatments were not significantly different. Significant 

differences were found when the AMOVA test was run using a high-phenolic/low-

phenolic treatment design. While individual treatments were not distinct enough to be 

significant, statistically significant differences between the fungal communities of high-

phenolic exuders and that of low-phenolic exuders existed (p<0.001) (Table 16). Despite 

the observed increase in Basidiomycota it Figure 11, the lefse command in MOTHUR 

did not discern any fungal OTUs that were significantly different between treatments. 

Figures 12 and 13 depict the clustering of the treatments based on the fungal community 

composition. Compared to the clustering based on bacterial composition, the samples 

were more dispersed indicating that the different plant types did not have as great of an 
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impact on fungal community composition as they did on bacteria community 

composition. 

 

 

 

Figure 11-Fungal rhizosphere community composition of high- and low-phenolic exuding plants. 

Green boxes represent high-phenolic exuders, red boxes represent low-phenolic exuders, and blue 

boxes represent controls. 
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Table 15 - Summary of fungal (ITS) sequence library sizes, operational taxonomic units (OTUs), and diversity and richness estimates. Green represents 

high-phenolic exuders, red represents low-phenolic exuders, and blue represents controls. 

 Sequence Library 

Size 

Number of 

OTUs 

Simpson-1 Chao1 Shannon (H’) 

All treatments 2,676,832 1217    

Cassia 74,737 ± 6,765 459 ± 13 14.81 ± 4.79 463.40 ± 12.75 3.40 ± 0.34 

Golden Currant 71,309 ± 3,418 455 ± 34 13.00 ± 3.92 476.21 ± 11.05 3.33 ± 0.22 

Jujube 121,010 ± 84,030 523 ± 25 4.50 ± 2.81 348.46 ± 128.91 1.72 ± 0.90 

Chestnut 165,941 ± 65,708 429 ± 50 2.73 ± 0.86 288.24 ± 100.43 1.58 ± 0.57 

Tea Olive 100,440 ± 4,758 466 ± 20 12.73 ± 1.78 474.81 ± 5.45 3.45 ± 0.11 

Crabapple 93,907 ± 3,656 410 ± 75 8.57 ± 3.97 401.93 ± 25.18 2.81 ± 0.39 

Uncontaminated 105,252 ± 6,933 540 ± 37 18.99 ± 1.30 475.95 ± 12.20 3.64 ± 0.08 

Unplanted Contaminated 159,681 ± 81,949 469 ± 51 5.92 ± 2.72 317.57 ± 127.90 2.13 ± 1.05 

 Mean ± s.e. Mean ± s.e. 
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Table 16 - Fungal analysis of molecular variance (AMOVA) to determine pairwise differences between treatments. Values in table represent the p-value 

of the pairwise comparison between treatments. Green represents high-phenolic exuders, red represents low-phenolics 

AMOVA 

Uncontaminated UpC 

Golden 

Currant Jujube Chestnut Cassia 

Tea 

Olive 

Unplanted 
Contaminated 
(UpC) 0.10 
Golden Currant 0.10 0.19 
Jujube 0.10 0.09 0.11 
Chestnut 0.11 0.23 0.12 0.22 
Cassia 0.10 0.30 0.09 0.11 0.10 

Tea Olive 0.10 0.10 0.10 0.12 0.21 0.10 
Crabapple 0.10 0.70 0.09 0.09 0.20 0.11 0.09 
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Figure 12-Phylogenetic tree of treatments based on fungal community composition. Theta-YC sample tree generated using MOTHUR. Green 

represents high-phenolic exuders, red represents low-phenolic exuders, and blue represents controls. 
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Figure 13-Principal Coordinate Analysis graph (PCoA) detailing how the treatment clustered 

based on fungal community composition. Green represents high-phenolic exuders, red represents 

low-phenolic exuders, and blue represents controls. 
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CONCLUSION 

  

 While many experiments have looked at how phenolic exudates impact microbial 

communities, this is the first to compare this suite of low- and high-phenolic exuding 

plants’ impact on bacterial and fungal community composition in the presence of 

phenanthrene, pyrene, and benzo[a]pyrene. 

 While many experiments are able to see significant differences in the fungal and 

bacterial communities after the addition of phenolic exudates, in the presence of the 

hydrocarbons, those differences can be lost if the correct measurements are not taken. 

Compared to the unplanted contaminated and golden currant treatments, crabapple and tea 

olive exuded significantly more phenolics. This result was partially in line with hypothesis 

1 which also proposed Castanea pumila would exude significantly higher phenolic than 

the low-exuders. However, this did not translate to significantly greater 16S rRNA or ITS 

gene copies or statistically significant differences in microbial community composition in 

pairwise comparisons. Therefore, hypothesis 2 was not supported.  

Folin-Ciocalteu colorimetric method used for phenol determination can detect the 

presence of any reducing compound in a sample and ascorbic acid often can interfere with 

measurements, so this may have potentially impacted the phenolic exudation results 

(Sánchez-Rangel et al., 2013). However results are within the range of fruit phenolic 

content. The phenolic content of various fruits quantified using the Folin-Ciocalteu 

method range from 11.88 to 582.52 mg GAE/100 g of wet weight. Certain apple cultivars 
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have shown values such as 68.29, 73.96, and 70.57 mg GAE/100g (Francini and 

Sebastiani, 2013). 

Monitoring specific PAH-related genes may be necessary to identify shifts in the 

community. Proteobacteria have been shown to out-compete Actinobacteria in a highly 

PAH-polluted area of a soil in Finland. Specifically, Deltaproteobacteria decreased in 

abundance as pollution increased and Betaproteobacteria abundance matched the patterns 

of PAH contaminant distribution (Mukherjee et al., 2014). The dominant microbial 

population did not shift in any treatment and did not offer support for hypothesis 3. Despite 

not seeing significant shifts in microbial composition among treatments, there is evidence 

that the microbial composition is similar to those recorded in field remediation studies. 

This could be indicative of a shift in functional capabilities similar to what occurs in situ 

in petroleum contaminated soils and indicate the occurrence of remediation. In addition, 

Acidobacteria, Actinobacteria, Bacteroidetes, and Cyanobacteria all correlate with 

phenolics both positively and negatively (Chaparro et al., 2014). The abundance of 

bacteria in these phyla can both increase and decrease as a result of phenolic exudation. 

Therefore, an overall increase in bacterial abundance may not be observable due to the 

community’s contradictory reaction to phenolics. Bacteria within the same class can have 

opposing responses to phenolic inputs and can cause no significant changes in the global 

community. However, this phenomenon also means that bacteria with the ability to 

degrade PAHs can increase in abundance while other bacteria decrease in abundance. 

Therefore, degradation can still occur in the presence of no significant changes in the 

global community. 
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 Gammaproteobacteria and Alphaproteobacteria are both associated with PAH 

degradation when phenolics are involved. In the presence of Orychophragmus violaceus 

and Rhodococcus ruber Em1, a positive correlation was observed between PAH 

degradation and the abundance of Gammaproteobacteria. The same study noted an 

inverse relationship existed between PAH degradation and Alphaproteobacteria 

abundance (Sun et al., 2014). Therefore the increase in Proteobacteria, specifically the 

Alphaproteobacteria in Table 13 can hint towards similar results and partially support 

hypothesis 4. 

 Also depicted in Table 13 is an over-representation of a variety of Burkholderiales 

compared to the two in Table 14. Burkholderiales, Actinomycetales, and Rhizobiales were 

the most active microorganisms in a groundwater remediation study (Herbst et al., 2013). 

The presence of these microorganisms in low-phenolic exuders’ soils may indicate PAH 

degradation similar to that of natural attenuation, but the significant increase of those 

populations in the presence of the high-phenolic exuders is worth noting.  

Generally, bacteria are considered more important than fungi in bioremediation 

efforts. However, fungi do have their place. Two species belonging to Ascomycota were 

able to degrade 32.9% of PAHs in a contaminated soil microcosm (Li et al., 2012). 

However, alfalfa acted as an antagonist to its degradation efforts. Ascomycota was the 

dominant fungal phyla among all treatments, but differences were absent between fungal 

communities between treatments while bacteria showed some significant differences 

between the low- and high-phenolic exuders. This could be due to the differences in 

growth rates between fungi and bacteria and their ability to respond to disturbances such 
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as the addition of PAHs and phenolics. Phanerochaete is a genus in the Basidiomycota 

division of fungus and has been implicated in the degradation of PAHs. The microbial 

community is able to degrade PAHs that are sorbed to Phanerochaete more easily than 

PAHs that are sorbed to soil particles (Ding et al., 2012). The high-phenolic exuders, 

crabapple, chestnut, and tea olive, had more Basidiomycota in their community than all 

of the low-phenolic exuders. This could suggest that the high-phenolic exuders are 

selecting for fungal populations that are functionally more capable of degrading PAHs. 

Still, the difference in statistically significant results can corroborate the fact that, in this 

context, bacteria are the major players and thus warrant further and greater attention. 

 The phylogeny of the treatments based on the bacterial communities indicates that 

phenolic outputs may have noticeable results on the community. Considering the lack of 

significant results in all but two treatments, the clustering in the tree and the PCoA are 

considerably tight. Based on those diagrams, the plants do seem to differentially impact 

the microbial community in the presence of PAHs. However, it may be by something other 

than the phenolic exudates. Furthermore, culture-independent methods for determining 

microbial community composition, while thorough, are not without their drawbacks. 

Changes in experimental conditions like repeated PCR or differences in annealing 

temperatures can alter the OTUs recovered in a microbial community (Schmidt et al., 

2013). In addition, the primer pair-barcode combinations can impact the richness and 

resolution of OTUs (Tedersoo et al., 2015). Template concentration can also impact the 

microbial community identified (Kennedy et al., 2014). Still, the results of the bacterial 

PCoA offers partial support for hypothesis 5. The lack of similar results in the fungal data 
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may be due to decreased diversity identified by sequencing (25% for fungi compared to 

60% for bacteria). 

 As previously indicated, a myriad of factors that contribute to the changes in a 

rhizosphere community. Therefore, a major objective of microbial ecology is to 

understand how microbial communities relate to these factors. This experiment 

investigated a select group of plants, and it is evident that more research is needed to 

broaden the scope of potential phytoremediators. As more information is gleaned from 

experiments and technology advances, the objectives of microbial ecology become easier 

to accomplish. 
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