
AN EFFICIENT INTERIOR-POINT DECOMPOSITION ALGORITHM FOR

PARALLEL SOLUTION OF LARGE-SCALE NONLINEAR PROBLEMS WITH

SIGNIFICANT VARIABLE COUPLING

A Dissertation

by

JIA KANG

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Arul Jayaraman
Co-Chair of Committee, Carl D. Laird
Committee Members, Mahmoud El-Halwagi

Vivek Sarin
Head of Department, M. Nazmul Karim

December 2015

Major Subject: Chemical Engineering

Copyright 2015 Jia Kang

ABSTRACT

In this dissertation we develop multiple algorithms for efficient parallel solution

of structured nonlinear programming problems by decomposition of the linear aug-

mented system solved at each iteration of a nonlinear interior-point approach. In

particular, we address large-scale, block-structured problems with a significant num-

ber of complicating, or coupling variables. This structure arises in many impor-

tant problem classes including multi-scenario optimization, parameter estimation,

two-stage stochastic programming, optimal control and power network problems.

The structure of these problems induces a block-angular structure in the augmented

system, and parallel solution is possible using a Schur-complement decomposition.

Three major variants are implemented: a serial, full-space interior-point method, se-

rial and parallel versions of an explicit Schur-complement decomposition, and serial

and parallel versions of an implicit PCG-based Schur-complement decomposition.

All of these algorithms have been implemented in C++ in an extensible software

framework for nonlinear optimization.

The explicit Schur-complement decomposition is typically effective for problems

with a few hundred coupling variables. We demonstrate the performance of our

implementation on an important problem in optimal power grid operation, the

contingency-constrained AC optimal power flow problem. In this dissertation, we

present a rectangular IV formulation for the contingency-constrained ACOPF prob-

lem and demonstrate that the explicit Schur-complement decomposition can dra-

matically reduce solution times for a problem with a large number of contingency

scenarios. Moreover, a comparison of the explicit Schur-complement decomposi-

tion implementation and the Progressive Hedging approach provided by Pyomo is

ii

provided, showing that the internal decomposition approach is computationally fa-

vorable to the external approach. However, the explicit Schur-complement decom-

position approach is not appropriate for problems with a large number of coupling

variables because of the high computational cost associated with forming and solving

the dense Schur-complement.

We show that this bottleneck can be overcome by solving the Schur-complement

equations implicitly using a quasi-Newton preconditioned conjugate gradient method.

This new algorithm avoids explicit formation and factorization of the Schur-complement.

The computational efficiency of the serial and parallel versions of this algorithm are

compared with the serial full-space approach, and the serial and parallel explicit

Schur-complement approach on a set of quadratic parameter estimation problems and

nonlinear optimization problems. These results show that the PCG implicit Schur-

complement approach dramatically reduces the computational expense for problems

with many coupling variables.

iii

DEDICATION

This dissertation is lovingly dedicated to my parents: father, Taishan Kang;

mother, Qingxia Hao. Their support, encouragement, and constant love have sus-

tained me throughout my life.

iv

ACKNOWLEDGEMENTS

I am so thankful that I am able to write this part of my dissertation now. Un-

doubtedly, I am a blessed person and I have learned so much and I have been ex-

perienced so much. I got my Bachelor Degree in Control Science and Engineering.

I have thoroughly pursued the basic knowledge of process control theory, applied

that knowledge in the process industries, and obtained extensive experience through

industrial projects and auxiliary training. During my six-year pursuing a Ph.D. de-

gree in Dr. Carl Laird’s group, I have learned the fundamentals of advanced process

modeling, optimization, and numerical computing, focusing on efficient algorithms

for nonlinear programming problems and stochastic programming addressing with

uncertainties. However, as it comes to real life, there are so many situations that are

uncontrollable, full of uncertainties, impossible to see clear and not even mention to

optimize. I feel that I have been in this uncomfortable zone for so long that I am

finally able to find some way to live with it peacefully. I am able to endeavor with

my limited ability and time to do something I think meaningful or right. In all, I

would like to thank life for making me a better person, truly.

I would like to thank my advisor, Dr. Carl Laird, for all his guidance and help over

the past six years. I miss the time when I was discussing algorithms and implemen-

tations with him. I have learned a lot from him and thanks to him, my presentation

skills have improved significantly. I also would like to thank Dr. Juergen Hahn for

his encouragement. He used to be my co-advisor, but I had to take his name off my

committee due to his transferring to Rensselaer Polytechnic Institute. Thanks are

also extended to Dr. Arul Jayaraman for his taking care of all the paperwork after

Dr. Laird transferred to Purdue University.

v

Thanks to Dr. Laird’s open-mindedness and I did three internships during my

PhD study. In summer 2011, I did an internship at the Mathematics and Computer

Science (MCS) Division of Argonne National Laboratory. I would like to thank

my supervisors, Sven Leyffer and Victor M. Zavala for their inspirational and timely

advice. From Oct. 2012 to Feb. 2013, I was invited to do research at Sandia National

Laboratories located at Albuquerque, NM. I would also like to thank Jean-Paul

Watson for his pleasurable hosting. From Jan. 2014 to May 2014, I did an internship

at Mitsubishi Electric Research Laboratories (MERL) in Cambridge, MA. I heartily

thank my mentor, Arvind U Raghunathan, for his timely advice and encouragement.

I was lucky to meet some fellow friends during those three internships. I would like

to thank them for their great companionship. Especially, thank Jiadong Wang for

his constant appreciation and support.

Six-years is not a short time. I am blessed to meet so many talented, friendly

and interesting people. Thank all the fellow members in Dr. Carl Laird and Dr.

Juergen Hahn’s group for their help and pleasurable companionship. Particularly,

thank Gabriel Hackebeil for his help with Pyomo and thank Yu Zhu for his always

comforting and encouraging words. Thank all my fellow graduate students and all

the people I met during those six years. I am honored and lucky to meet you all.

Thank you for building all my precious memories.

Finally, I would like to thank my parents. Their elaborative inculcation when

I was a child, their perpetual love and support helped me step out all the tough

situations.

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES . xi

1. INTRODUCTION . 1

1.1 Nonlinear Programming (NLP) Formulations 2
1.2 High-Performance Computing Platforms 5
1.3 Parallel Solution of Structured NLP Problems 7
1.4 Dissertation Outline . 12

2. INTERIOR-POINT ALGORITHM FOR NONLINEAR PROGRAMMING 13

2.1 First-order Optimality Conditions . 14
2.2 Step Direction and Line-Search . 15
2.3 Overall Algorithm Description . 18

3. PARALLEL ALGORITHMS FOR STRUCTURED NONLINEAR OPTI-
MIZATION PROBLEMS WITH INTERIOR-POINT METHODS 20

3.1 Explicit Schur-Complement Decomposition 23
3.2 Implicit PCG Schur-Complement Decomposition 29
3.3 Summary of Different Algorithms . 35

4. FRAMEWORK AND SOFTWARE IMPLEMENTATION FOR SERIAL
AND PARALLEL ALGORITHMS . 37

4.1 High-level Overview of Software Implementation 38
4.2 Detailed Software Implementation Description 40

vii

5. STOCHASTIC OPTIMAL POWER FLOW WITH EXPLICIT SCHUR-
COMPLEMENT APPROACH . 59

5.1 Contingency-constrained Alternating Current Optimal Power Flow
(ACOPF) . 59

5.2 Problem Formulation . 61
5.3 Parallel Timing Results . 64
5.4 Comparison of Explicit Schur-Complement Approach with Progressive

Hedging Algorithm in Pyomo . 66

6. NUMERICAL PERFORMANCE OF THE IMPLICIT PCGSC ALGO-
RITHM FOR PROBLEMS WITH SIGNIFICANT COUPLING 76

6.1 Scalable Test Problem (QP) . 77
6.2 Parallel Timing Results for ESC and PCGSC Approaches 78

7. OPTIMAL OPERATION OF A DISTILLATION COLUMN UNDER UN-
CERTAINTY WITH IMPLICIT PCG SCHUR-COMPLEMENT
APPROACH . 86

7.1 Dynamic Distillation Column Model 87
7.2 Parallel Timing Results for ESC and PCGSC Approaches 89

8. SUMMARY, CONCLUSIONS, AND FUTURE WORK 96

8.1 A Listing of the Major Contributions of this Dissertation Work 100

REFERENCES . 102

viii

LIST OF FIGURES

FIGURE Page

4.1 Flowchart of the interior-point algorithm. 38

4.2 High-level description of the software structure. 39

4.3 Class diagram for Vector . 46

4.4 Class diagram for Matrix . 47

4.5 Class diagram for KKTLinearSolver 48

4.6 Original KKT matrix structure for a 4-block problem 50

4.7 Permuted KKT matrix structure for a 4-block problem 50

4.8 Permuted KKT matrix structure for a 4-block problem with mathe-
matical denotation . 51

4.9 Representation of the permuted KKT system with blocks colored ac-
cording to process ownership . 52

4.10 Class diagram for NLP . 55

4.11 Parallel implementation with AMPL Solver Library (ASL) interfaced
NLP objects . 58

4.12 Custom parallel implementation with Pyomo 58

6.1 Weak scaling results for the explicit Schur-complement method on QP
test problems with different numbers of coupling variables 82

6.2 Time required to form and factor the Schur-complement as a function
of the number of coupling variables 83

6.3 Weak scaling results for the PCG Schur-complement method on QP
test problems with different numbers of coupling variables 84

6.4 Speedup comparison between explicit Schur-complement and PCG
Schur-complement approaches . 85

7.1 Flow diagram of the distillation column 87

ix

7.2 Setting values and actual trajectories of y1 for the distillation column
problem with coupling variables number 150, 450, 750, 1050 92

7.3 Wall clock time spent in specific components of the ESC-S and PCGSC-
S for the distillation column with 150 coupling variables 94

7.4 Weak and strong scaling results for the PCGSC-P approach on the
column example. 95

x

LIST OF TABLES

TABLE Page

4.1 Class Hierarchy . 41

5.1 Set, Parameter and Variable Description 63

5.2 Strong Scaling Results for 128 Scenarios (127 Contingencies) 66

5.3 List of Symbols for CCOPF Problem Formulation 68

5.4 Strong Scaling Comparison between ESC and PH 75

6.1 Timing Results for Quadratic Programming Problem 81

7.1 Parameter and Variable Description 90

7.2 Wall Time per Iteration for Distillation Column Optimization 93

xi

1. INTRODUCTION∗

Large-scale, rigorous, nonlinear models are used in many fields of science and

engineering to provide accurate simulation of complex systems. As these models

are increasingly used in decision making applications, there is new demand for effi-

cient solution approaches to large-scale optimization problems. Coinciding with this

need to solve larger nonlinear problems, there has been a change in typical desktop

computing hardware. CPU clock rates are no longer increasing significantly, and

hardware manufacturers are instead focusing on increasing the number of cores and

improving parallel architectures. As the capabilities of a single CPU or workstation

are often not enough to tackle emerging problems, it is imperative that we develop

effective parallel algorithms to solve these nonlinear optimization problems.

In this section, we will briefly discuss examples of structured nonlinear program-

ming problems (NLP), give an overview of parallel computing architectures, and

describe some opportunities for parallel solution of structured NLP problems.

∗Part of this section is reprinted with permission from “An interior-point method for efficient
solution of block-structured NLP problems using an implicit Schur-complement decomposition” by
Kang, J., Cao, Y., Word, D., and Laird, C.D., 2014. In: Computers and Chemical Engineering 71
(2014), pp 563-573, Copyright 2014 by Elsevier.

Part of this section is reprinted with permission from “Parallel solution of nonlinear contingency-
constrained network problems” by Kang, J., Siirola, J.D., Watson J. and Laird, C.D., 2014. In:
Proceedings of the 8th International Conference on Foundations of Computer-Aided Process Design
FOCAPD 2014, July 13-17, 2014, Cle Elum, Washington, USA, Copyright 2014 Elsevier B.V.

Part of this section is reprinted with permission from “Nonlinear programming strategies on
high-performance computers” by Kang, J., Chiang, N., Laird, C.D., and Zavala, V.M., 2015. In:
Proceedings of the 54th IEEE Conference on Decision and Control, 2015, Osaka, Japan, Copyright
2015 Elsevier B.V.

1

1.1 Nonlinear Programming (NLP) Formulations

First consider the general nonlinear programming problem (NLP) of the form

min f(x) (1.1a)

s.t. c(x) = 0 (λ) (1.1b)

x ≥ 0 (ν) (1.1c)

Here, x ∈ <n are the primal variables, λ ∈ <m are the dual variables for the equality

constraints, and ν ∈ <n+ are the dual variables for the bounds. The objective function

f(x) : <n → < and constraints c(x) : <n → <m are assumed to be twice continuously

differentiable and are allowed to be nonconvex (the linear algebra concepts presented

also hold for convex problems). General inequality constraints can be handled by

introducing slack variables.

This general problem formulation can be addressed by any number of algorithms,

and in this work, we have implemented a primal-dual interior-point framework. Non-

linear interior-point methods have proven to be among the most efficient and reliable

for this class of problems, and our algorithm is based on the successful open-source

project Ipopt (Wächter and Biegler, 2006).

There is an increasing need to address larger and more complex NLP formulations.

Examples of this occur as we strive to consider more of the system within a single

optimization problem, optimize over discretized systems, or seek to provide treatment

of uncertainty within rigorous optimization framework. Fortunately, as problem sizes

grow, they are almost always inherently structured, formed from a repeating set of

mathematical expressions.

Consider the following nonlinear programming problem, structured with primal

2

coupling,

min fd(d) +
∑
l∈N

fl(xl, d) (1.2a)

s.t. cd(d) = 0 (1.2b)

cl(xl, d) = 0, ∀ l ∈ N (1.2c)

xl ≤ xl ≤ x̄l ∀ l ∈ N (1.2d)

d ≤ d ≤ d̄ (1.2e)

where the vector xl contains all the variables corresponding to one particular block

l in the set of blocks N = {1, ..., N}. The vectors xl and x̄l are the lower and upper

variable bounds on xl. The vector d contains the common variables that induce

coupling between the blocks. Each block l ∈ N would be completely independent if

it were not for the coupling variables d (sometimes called common variables or com-

plicating variables). This structure arises in many situations, including optimization

under uncertainty, parameter estimation (Zavala et al., 2008; Word et al., 2012),

and in stochastic dynamic optimization (Huang and Biegler, 2009; Calafiore and Fa-

giano, 2013). This structure can also represent problems with spatial decomposition

and multi-stage dynamic optimization (where coupling variables for the connections

between stages).

Similar problem formulations can be developed for problems with dual coupling,

where instead of coupling caused by shared variables, coupling is induced by con-

straints that include variables from more than one block. This structure is common

in problems with constraints on shared resources. For example, if l ∈ N represents

a set of production facilities, and x
(i)
l refers to the amount of raw product needed for

production facility l, a common constraint might be to restrict the total amount of

3

raw product used (e.g.
∑

l∈N x
(i)
l ≤ r). The primal and dual coupling structures are

not completely exclusive, and many problems can be represented in either form. For

the purposes of this dissertation, we restrict our discussion to problems with primal

coupling only.

Given formulation 1.2, it is often more convenient to introduce dummy coupling

variables within each block l ∈ N , and rewriting the problem as,

min
xl,d

∑
l∈N

fl (xl) (1.3a)

s.t. cl (xl) = 0 ∀ l ∈ N (1.3b)

xl ≤ xl ≤ x̄l ∀ l ∈ N (1.3c)

Plxl − P d
l d = 0 ∀ l ∈ N , (1.3d)

where d still contains the common variables that induce coupling, however, the el-

ements of d impacting block l are replicated within xl, and then mapped to d via

Equation (1.3d). Pl and P d
l are mapping matrices. Each xl in problem 1.3 is now

larger than xl in 1.2 in that it now includes a copy of part or all of the coupling vari-

ables d. Furthermore, the interaction between block variables xl and the coupling

variables d occurs linearly, removing the need to compute derivative information for

the coupling variables. This is very important for the implementation since it allows

us to express the problem using existing modeling languages where each block can

be represented as an independent optimization problem (Laird and Biegler, 2008).

Problem 1.3 is remarkably general, and it is the structured NLP that is addressed

in the algorithms and applications of this dissertation. The primary goals of this

dissertation research are the development of efficient parallel algorithms for tackling

this problem, and demonstration of parallel scalability on important applications.

4

1.2 High-Performance Computing Platforms

Successful development of parallel algorithms to address problem 1.3 (and indeed

any problem), requires consideration of the strengths and limitations of the partic-

ular parallel computing architecture targeted. Parallel architectures are typically

classified according to Flynn’s taxonomy, where a key differentiator is whether the

architecture can perform different instructions simultaneously.

At one extreme, single-instruction-multiple-data (SIMD) architectures can per-

form parallel computations; however, each core must be executing the same fun-

damental instruction simultaneously (albeit on different data). These SIMD archi-

tectures are highly appropriate for iterative linear algebra (Cao et al., 2015b) (e.g.,

PCG, GMRES), but their limitations make it difficult to exploit these architectures

for general structural decomposition. Furthermore, while these architectures provide

massive parallelism at a relatively low price (e.g. the Tesla K80 provides almost 5,000

cores for a few thousand dollars), they are most effective when the algorithm can be

implemented by using a large number of threads to keep the cores loaded (e.g., while

waiting for memory operations to complete). Doing so may be difficult in structural

decomposition of many large-scale problems. Graphics processing units, commonly

used for parallel scientific computing, are a hybrid of the pure SIMD architecture.

They comprise a number of multiprocessors, each containing a number of streaming

processors or cores. The cores within a single multiprocessor share instructions (i.e.

they are true SIMD); and although each multiprocessor can support execution of

different kernels, these architectures still do not support parallel execution of differ-

ent instructions at the same granularity as the number of processing cores. Thus,

efficient utilization of these hybrid architectures demands the same considerations as

do pure SIMD architectures.

5

Multiple-instruction-multiple-data (MIMD) architectures are more typically uti-

lized for problems like those described in this section. These architectures have the

disadvantage of fewer cores than currently available SIMD architectures (at least for

the equivalent cost) but have the advantage that each core is more capable. Most no-

tably, MIMD architectures can execute different instructions simultaneously. Within

this class, we consider shared-memory and distributed-memory architectures. With

shared-memory architectures, all cores have access to the same physical memory.

With this architecture, communicating or sharing data between processes can be

very fast. However, one bottleneck that can arise is the total bandwidth available for

accessing memory. Shared-memory MIMD architectures include common consumer-

grade multi-core computers, and a typical shared-memory MIMD architecture has

access to far fewer cores than is possible with current distributed-memory machines.

Distributed-memory MIMD architectures can be scaled to significantly larger

numbers of cores. In distributed-memory architectures, individual machines are con-

nected with one another through standard or specialized networking interfaces, and

communication between processes occurs across this network. For many algorithms,

intercommunication becomes the bottleneck that can deteriorate parallel efficiency

as the number of cores for a particular problem increases. Each machine has its

own dedicated access to local memory, and these architectures are highly efficient for

problems with a high percentage of independent computation and less intensive com-

munication needs. Beowulf clusters are one implementation for distributed-memory

parallel computing, and access to computing resources like these is common for indus-

trial and academic researchers. Modern clusters are hybrid architectures, typically

composed of a large number of shared-memory, multicore machines (nodes) with fast

network access for communication between nodes.

The software tools available for developing parallel algorithms depend on the ar-

6

chitecture targeted. Distributed-memory and shared-memory MIMD architectures

benefit from the availability of a wide range of compiler tools. For shared-memory

machines, parallelism can be handled any number of ways, including the direct use

of threads or APIs such as OpenMP. For distributed-memory machines, the most

widely used paradigm for algorithms discussed here is the Message Passing Interface

(MPI), and several implementations exist for different architectures. MPI can also be

used in shared-memory environments, but care must be taken to ensure competitive

performance with dedicated shared-memory tools. For SIMD architectures, the soft-

ware tool used for development of parallel algorithms is often hardware specific. For

example, NVidia has released the Tesla series of graphics processing units for scien-

tific computing along with the platform-specific CUDA API and compiler extensions.

While work has been done on general parallel tools for use on different architectures

(e.g. OpenCL), these cannot compete with the performance of dedicated tools.

1.3 Parallel Solution of Structured NLP Problems

Parallel strategies for NLP problems can be separated into two broad categories,

those algorithms that are inherently parallel on problems of general structure, and

those algorithms that are made parallel by exploiting problem specific structure. In

this dissertation we focus on the algorithms that exploit problem structure. Within

this class of algorithms, there are two broad strategies. Decomposition can be done

at the problem formulation level (external partitioning), or it can be done internally,

at the linear algebra level of a particular NLP algorithm (internal partitioning).

External approaches (e.g. Bender’s decomposition, Lagrangian decomposition, pro-

gressive hedging) are far easier to implement, but convergence can be very slow on

nonlinear problems. Alternatively, internal partitioning techniques are more intru-

sive and much more difficult to implement since one must modify all scale-dependent

7

linear algebra operations in the host algorithm. However, this approach retains all

the convergence rates and robustness of the host NLP algorithm, and can be much

faster than external partitioning techniques.

In this dissertation, we focus on those strategies that achieve parallel speedup

by exploiting problem structure and decomposing the internal linear algebra oper-

ations performed by the NLP algorithm. While significant work has been done on

parallel algorithms for simulation and optimization of partial differential equations

with notable codes PETSc (Balay et al., 2014, 2015, 1997) and Trillinos (Heroux

et al., 2005), we restrict our discussion to the NLP problem with primal coupling

as presented earlier in this section. Furthermore, we focus on the use of nonlinear

interior-point methods as the host algorithm of choice. These methods have proven

to be among the most competitive serial algorithms for general nonlinear program-

ming problems, and our algorithm is based on the successful open-source project

Ipopt (Wächter and Biegler, 2006).

The dominant computational cost for the interior-point methods described in

this dissertation is the solution of the so-called augmented system to solve for the

step direction at each iteration of the algorithm. Interior-point methods are par-

ticularly attractive for development of parallel decomposition strategies because the

augmented system retains the same structure for each iteration. Two broad strategies

can be used for parallel solution of the augmented system: interface the NLP code

with an existing, off-the-shelf parallel linear solver, or write a parallel decomposition

approach specifically tailored to the structure of the problem. Several general paral-

lel linear solvers exist, including shared-memory parallel solvers such as PARDISO

(Kuzmin et al., 2013; Schenk et al., 2008a, 2007, 2008b) and MA86/MA97 (HSL,

2011) and shared/distributed-memory solvers such as MUMPS (Amestoy et al., 2000,

2001), WSMP (Gupta, 2000), and Elemental (Poulson et al., 2013). Many of these

8

solvers have been used with nonlinear interior-point methods, and Ipopt has existing

interfaces to MA86, MA97, MUMPS, PARDISO, and WSMP.

While ease of implementation is a major benefit of using an existing parallel

linear solver in one’s NLP code, truly scalable performance to hundreds of proces-

sors typically requires using a decomposition specifically tailored to the structure

of the problem. Amdahl’s law provides an estimate of the maximum achievable

speedup as the inverse of the fraction of the algorithm that must be executed serially

(S∞=1/φs) (Amdahl, 1967). Therefore, in order to achieve significant speedup on

large computing clusters, scale-dependent operations of the host algorithm must be

serialized. These include model evaluations (which can be parallelized at a block

level), and all vector, vector-vector, and matrix-vector operations. For the block

structures described in this section, parallel evaluation of the scale-dependent oper-

ations is relatively straightforward for all but the solution of the linear system used

to compute the step.

Utilizing the techniques outlined in Section 3, parallel decomposition algorithms

can be implemented to exploit the specialized block structure in the linear system.

At the core of this decomposition approach, the implementation makes parallel calls

to separate instances of a serial linear solver for individual blocks (which themselves

have the same structure as (2.7)). MA27 and MA57 from the Harwell Subroutine

Library (HSL, 2011) have been widely used in serial nonlinear interior-point algo-

rithms and for block decomposition in parallel interior-point methods (Zavala et al.,

2008; Kang et al., 2014; Word et al., 2014; Chiang et al., 2014). Of course, many of

the parallel linear solvers discussed above perform well in serial, and can be used in

this context as well.

Several nonlinear interior-point algorithms have been developed based on struc-

tural decomposition of the linear algebra, including OOPS (Gondzio and Grothey,

9

2007, 2009), PIPS-NLP (Lubin et al., 2011; Chiang et al., 2014), PRBLOCK IP

(Castro, 2007) and Schur-IPOPT (Zavala et al., 2008; Kang et al., 2014). In Castro

(2007), structured convex QP problems with constraint coupling are solved through

a method that performs Cholesky factorizations on the diagonal blocks and a PCG

method for the linking constraints. An explicit Schur-complement approach based

on the Ipopt algorithm is implemented in Zavala et al. (2008). This algorithm is

appropriate for problems with mild primal coupling; however, the performance de-

teriorates significantly as the number of coupling variables increases. This is due

to the explicit formation of the Schur complement through repeated backsolves and

the direct factorization of the dense Schur complement. This work is extended by

Kang et al. (2014), using a PCG approach on the implicit equation for the Schur

complement. This approach avoids the need to form and factorize the Schur comple-

ment, however, it is not appropriate for all the structures described in this section.

The PIPS and PIPS-NLP codes implement a number of improvements over standard

algorithms, including the use of factorizations of Schur matrix in place of repeated

backsolves with columns from BT
p (Petra et al., 2014), support for recursive block

structures, parallel dense factorization of the Schur complement (Lubin et al., 2012),

and iterative methods on the Schur complement (Petra and Anitescu, 2012). An-

other recent code, IPCLUSTER (Cao et al., 2015a), implements an interior-point

method for stochastic programming problems that improves the computational time

by constructing a sparse, compressed representation of the structured KKT system

to compute the step in the coupling variables.

While parallel computing architectures are becoming ubiquitous, a major barrier

to the widespread adoption of parallel NLP codes has been the lack of appropriate

modeling languages. While many modeling languages exist, the parallel implemen-

tations described above have unique requirements. For efficient scale-up to many

10

processors, the model must be evaluated in parallel, and few languages support this

directly.

Furthermore, for many large-scale problems, construction of the entire model on

a serial machine is not possible because of memory and time limitations. Therefore,

these languages must support parallel instantiation of partial models along with

appropriate metadata to describe this structure to the solver. For many problems, the

modeler is aware of the structure and can provide guidance on the construction and

labeling. Several languages support suffixes as a mechanism for assigning metadata

to variables and constraints, including AMPL (Fourer et al., 1993). This mechanism

was used in Zavala et al. (2008) and Kang et al. (2014) to describe coupling where

each block in the problem was coded as a separate AMPL model and several instances

of the AMPL Solver Library (ASL) were used to support parallel evaluation of the

NLP residuals and gradients. Recent work has sought to simplify this effort through

the development of modeling languages that provide native support for interfacing

with parallel solvers.

Pyomo (Hart et al., 2011) is a python-based open-source algebraic modeling lan-

guage that supports the definition and solution of optimization applications using

the Python scripting language. It is portable and can be used on most platforms.

Pyomo supports the general concept of model blocks and allows for custom modeling

extensions. The PySP framework (based on Pyomo) provides a high-level interface

for parallel instantiation and evaluation of block-structured stochastic programming

problems, including interfaces to parallel decomposition algorithms. The structure-

conveying modeling language (SML) proposed by Colombo et al. (2009) provides

an extension to the AMPL modeling language to support the concept of blocks. A

model generation package has been developed for SML that supports parallel in-

stantiation of models described by the block structure in SML (Grothey and Qiang,

11

2013). Based on the Julia programming language, JuMP (Lubin and Dunning, 2015)

provides a mathematical programming modeling language that has compilation and

execution speeds similar to those of AMPL, while retaining much of the flexibility of

traditional scripting languages. StochJuMP (Huchette et al., 2014) provides an ex-

tension to JuMP to support parallel model construction and evaluation for stochastic

programming problems. These new developments in modeling languages open the

door for mainstream use of specialized parallel solvers.

1.4 Dissertation Outline

In this dissertation work, we have implemented five variations of the nonlinear

interior-point method with different strategies for solution of the structured linear

system at each iteration. We have chosen to organize the dissertation with the neces-

sary algorithm descriptions and theory first, followed by a discussion of the software

implementation, and finally a treatment of the numerical timing results. This disser-

tation is organized as follows. The nonlinear interior-point method that serves as the

base algorithm for the decomposition approaches is shown in Section 2. Different

parallel solution strategies will be discussed in Section 3, focusing on the explicit

Schur-complement decomposition and our new implicit PCG Schur-complement ap-

proach. Section 4 describes the software implementation of the nonlinear interior-

point framework and these parallel algorithms. Providing numerical results, parallel

solution of the contingency constrained ACOPF Problem will be shown in Section

5 . Sections 6 and 7 demonstrate the performance of our new implicit approach on

large-scale problems with significant coupling. Finally, in Section 8 we discuss the

significance of our research and propose some future work.

12

2. INTERIOR-POINT ALGORITHM FOR NONLINEAR PROGRAMMING∗

In this section, we discuss the theory and algorithm details for the nonlinear

interior-point method implemented in our work. This algorithm and the C++ im-

plementation formed the base algorithm (also called the host algorithm) for the

parallel decomposition strategies developed in this dissertation. Section 3 describes

the parallel decomposition algorithms described as part of this work, and Section 4

describes the software implementation details for all the algorithms.

First, we will describe the necessary algorithm theory for nonlinear interior-point

methods. Consider the general form of an NLP problem with n variables and m

nonlinear equality constraints,

min f(x)

s.t. c(x) = 0

x ≤ x ≤ x̄,

(2.1)

where f : Rn→R and c : Rn→Rm are assumed to have continuous first and second

derivatives, and x ∈ Rn. The vectors x and x̄ are the set of lower and upper variable

bounds for x. We solve this problem using an interior-point method with a filter-

based line-search based on that described in Wächter and Biegler (2006), and a

detailed description of the algorithm and its derivation can be found there. Here,

we reiterate only the basic steps necessary to describe our parallel decomposition

approach. The barrier subproblem is formed by removing the variable bounds and

∗Part of this section is reprinted with permission from “An interior-point method for efficient
solution of block-structured NLP problems using an implicit Schur-complement decomposition” by
Kang, J., Cao, Y., Word, D., and Laird, C.D., 2014. In: Computers and Chemical Engineering 71
(2014), pp 563-573, Copyright 2014 by Elsevier.

13

adding a log penalty to the objective,

min f(x)− µ
n∑
i=1

ln(x̄(i) − x(i))− µ
n∑
i=1

ln(x(i) − x(i))

s.t. c(x) = 0,

(2.2)

where µ is the barrier parameter for a single barrier iteration, and (i) denotes the ith

element of the vectors of length n.

2.1 First-order Optimality Conditions

The Lagrangian of the optimization formulation (2.2) can then be written as,

L = f(x)− µ
n∑
i=1

ln(x̄(i) − x(i))− µ
n∑
j=1

ln(x(j) − x(j)) + λT c(x), (2.3)

where λ is the vector of equality constraint multipliers. The general optimality

conditions are then,

∇xL = ∇xf(x) + µ(Ḡ)
−1
e− µ(G

¯
)−1e+∇xc(x)λ = 0

c(x) = 0,

(2.4)

with Ḡ=diag(x̄−x) and G
¯

=diag(x−x). The primal-dual formulation is formed by

introducing new variables, z̄=µ[Ḡ]−1e and z=µ[G
¯

]−1e. Since the algorithm must

maintain x̄−x ≥ 0 and x−x ≥ 0 (i.e. the points must remain in the interior), it

follows that the new variables z̄, z ≥ 0. The addition of these new variables gives

14

the following system of equations:

∇xL = ∇xf(x) + z̄ − z +∇xc(x)λ = 0

c(x) = 0

G
¯
z − µe = 0

Ḡz̄ − µe = 0.

(2.5)

It should be noted that these new equations are the same as the first-order optimality

conditions of the original problem (2.1), except with the complementarity conditions

now relaxed by µ. A modified Newton’s method is used to solve these equations for

a particular value of the barrier parameter µ.

2.2 Step Direction and Line-Search

The linear system that must be solved for each iteration k of Newton’s method

is



∇2
xxLk Ck −I I

(Ck)T 0 0 0

Z
¯
k 0 G

¯
k 0

−Z̄k 0 0 Ḡk





∆xk

∆λk

∆zk

∆z̄k


= −



∇xf
k + z̄k − zk + Ckλ

ck

G
¯
kzk − µe

Ḡkz̄k − µe


, (2.6)

where ∆xk, ∆λk, ∆zk, and ∆z̄k are the full steps for each of the respective vari-

ables, Z
¯
k = diag(zk), Z̄k = diag(z̄k), ck = c(xk), Ck=∇xc(x

k), ∇xf
k=∇xf(xk), and

∇2
xxLk=∇2

xxL(xk).

A symmetric system, often called the augmented form, is obtained by multiplying

the third block row by (G
¯
k)−1, the fourth block row by (−Ḡk)−1, and adding these

15

rows to the first block row, giving

 Hk Ck

(Ck)T 0


∆xk

∆λk

 = −

r̃kx
ck

 , (2.7)

where,

Hk = ∇2
xxLk + (G

¯
k)−1Z

¯
k + (Ḡk)−1Z̄k (2.8)

r̃kx = ∇xf
k + Ckλ− (G

¯
k)−1µe+ (Ḡk)−1µe. (2.9)

This linear system is significantly smaller than (2.6), and it is symmetric, allowing

the use of efficient sparse symmetric linear solvers.

The line-search strategy employed in the interior-point algorithm requires that

the generated step be a descent direction. This is ensured if the following inertia

condition is satisfied on (2.7) (Forsgren et al., 2002),

In(K) = (n,m, 0) (2.10)

where

K =

 Hk Ck

(Ck)T 0

 . (2.11)

Here, n is the number of variables, and m is the number of equality constraints.

For a strictly convex problem under suitable constraint qualifications, this inertia

condition is always satisfied. However, we wish to use this algorithm for general

non-convex NLPs, and we will make use of inertia correction to ensure descent. The

16

modified linear system is,

Hk + δHI Ck

(Ck)T −δcI


∆xk

∆λk

 = −

r̃kx
ck

 , (2.12)

where, as described later, δH and δc are chosen to ensure the inertia condition is

satisfied. This system is solved at each iteration of the interior-point algorithm to

calculate the full step in x and λ. The steps ∆z̄ and ∆z must also be calculated at

each iteration. Algebraic manipulation of the third and fourth rows of the original,

unpivoted linear system (2.6) gives,

∆zk = −(G
¯
k)−1Z

¯
k∆xk − zk + µ(G

¯
k)−1e (2.13)

∆z̄k = (Ḡk)−1Z̄k∆xk − z̄k + µ(Ḡk)−1e. (2.14)

The variable values for the next iteration are determined by,

xk+1 = xk + αk∆xk (2.15)

λk+1 = λk + αk∆λk, (2.16)

where αk is the step size determined by an appropriate line-search. Using these steps,

the variable values can be updated for the next iteration using,

zk+1 = zk + αk∆zk (2.17)

z̄k+1 = z̄k + ᾱk∆z̄k, (2.18)

where αk and ᾱk are step sizes determined using a fraction to the boundary rule

(Wächter and Biegler, 2006; Nocedal and Wright, 2006).

17

Equations (2.12–2.18) describe how the step is calculated at each iteration of the

barrier subproblem.

2.3 Overall Algorithm Description

The complete interior-point algorithm is described in Algorithm 1. Our algorithm

is a primal-dual interior-point method with a filter-based line-search based on that

described in Wächter and Biegler (2006), and only a high-level description is provided

here. The error term in the convergence check performed in steps 2 and 3 is calculated

Algorithm 1 : Interior-point Method

1. Initialize the algorithm
Given starting point (x0, λ0, z0, z̄0) with λ0, z0, z̄0 > 0; an initial barrier param-
eter µ0 > 0; tolerance constants εtol, κε > 0; maximum number of iterations
kmax
Set the iteration index k ← 0

2. Check convergence of the overall NLP
if E(xk, λk, zk, z̄k; 0) ≤ εtol then exit, solution found.

3. Check convergence of barrier subproblem
if E(xk, λk, zk, z̄k;µk) ≤ κεµ

k then
Update µk according to equation (7) in Wächter and Biegler (2006)
Return to step 2

end if
4. Calculate functions and gradients

Evaluate f(xk), c(xk), ∇xf(xk), ∇xc(x
k), and ∇2

xxL(xk, λk)
5. Compute the search direction (full-step)

5.1 Solve Equation (2.12) for ∆xk and ∆λk, correcting the inertia if necessary
5.2 Compute ∆z

¯
k and ∆z̄k from Equations (2.13) and (2.14)

5.3 Compute values for αk, α
¯
k, and ᾱk using fraction-to-the-boundary rule

6. Update αk using the line-search filter method from Wächter and
Biegler (2006)

7. Update iteration variables and continue to next iteration
Compute (xk+1, λk+1, zk+1, z̄k+1) using (2.15–2.18)
Let µk+1 ← µk and k ← k + 1
if k < kmax then exit with error.
Return to step 3

18

using,

E(xk, λk, zk, z̄k;µk) = max{ ‖ ∇xf
k + z̄k − zk + Ckλk ‖∞, ‖ ck ‖∞,

‖ G
¯
kzk − µke ‖∞, ‖ Ḡkz̄k − µke ‖∞}

(2.19)

In this algorithm, the two most computationally expensive steps are 4 and 5.1. In

step 4, the residuals, gradients, and Hessian are calculated. Fortunately, for struc-

tured problems like that shown in Equation (1.3), efficient parallel evaluation of these

quantities is readily possible. In step 5.1, the augmented system is solved. If the

original NLP is structured, then structure is induced in the augmented system. For

the problem described in Equation (1.3), the augmented system has a block-angular

form and parallel solution is possible through a Schur-complement decomposition.

In the next section, we describe different strategies for solving the augmented system

in parallel.

19

3. PARALLEL ALGORITHMS FOR STRUCTURED NONLINEAR

OPTIMIZATION PROBLEMS WITH INTERIOR-POINT METHODS∗

In the previous section, we described the base nonlinear interior-point algorithm.

Interior-point algorithms have been highly effective for solving large-scale nonlinear

programming (NLP) problems and are currently considered among the most powerful

methods available to tackle these problems (Nocedal and Wright, 2006). However, as

problem sizes continue to grow, standard serial algorithms may not be able to solve

these problems. Fortunately, large-scale problems are almost always inherently struc-

tured, and these structures enable the development and use of parallel decomposition

techniques that can accelerate solutions and avoid memory limitations. Partitioning

of the problem can be done externally at the problem formulation level or internally

at the linear algebra level. While the external approach is less intrusive and easier

to implement, convergence rates and robustness are less favorable. On the other

hand, the internal approach is more intrusive and harder to implement, but retains

favorable convergence properties of the host algorithm employed. In this section,

we will discuss two parallel decomposition approaches implemented based on the

interior-point algorithm described earlier.

The dominant computational expense in an interior-point based algorithm like

that described in Section 2 is the solution of (2.7), the linear set of equations known as

the augmented system, arising from the application of a modified Newton’s method

∗Part of this section is reprinted with permission from “An interior-point method for efficient
solution of block-structured NLP problems using an implicit Schur-complement decomposition” by
Kang, J., Cao, Y., Word, D., and Laird, C.D., 2014. In: Computers and Chemical Engineering 71
(2014), pp 563-573, Copyright 2014 by Elsevier.

Part of this section is reprinted with permission from “Nonlinear programming strategies on
high-performance computers” by Kang, J., Chiang, N., Laird, C.D., and Zavala, V.M., 2015. In:
Proceedings of the 54th IEEE Conference on Decision and Control, 2015, Osaka, Japan, Copyright
2015 Elsevier B.V.

20

to the optimality conditions. One promising approach for parallel solution of large-

scale NLPs is to parallelize the solution of the augmented system along with other

linear algebra operations in the algorithm. Parallel solution of linear systems is

typically accomplished in one of two ways: parallel iterative solution or structural

decomposition.

Interior-point algorithms are possible utilizing iterative linear solvers with the so-

called normal equations, the augmented system, and the doubly augmented system

(Forsgren et al., 2007; Dollar, 2007). Efficient solution requires suitable precondition-

ers, and significant research has been conducted in this field (Oliveira and Sorensen,

2005; Dollar, 2007; Bergamaschi et al., 2004). While a truly effective general precon-

ditioner for use in interior-point methods has been elusive, promising results exist

for specific problem classes. For example, Biros and Ghattas (2005) propose the

Lagrange-Newton-Krylov-Schur (LNKS) method for steady-state PDE-constrained

optimization. This method uses Krylov iterations to solve the full space linearized

augmented system utilizing an approximate reduced space quasi-Newton precondi-

tioner.

Effective parallelization of iterative linear solvers is possible, even for unstructured

systems. However, real, large-scale, nonlinear optimization problems often possess

inherent block structure. Example problem classes that exhibit block structure in-

clude optimization under uncertainty, parameter estimation, and spatially decom-

posable systems. Structure in the optimization problem induces inherent structure

in the augmented system solved at each iteration of the interior-point algorithm.

Several specialized decomposition-based interior-point algorithms have been devel-

oped that exploit block-angular or more general block-bordered structure in the

solution of the augmented system. Examples include OOPS (Gondzio and Grothey,

2009), PIPS (Petra and Anitescu, 2012; Lubin et al., 2011), Schur-Ipopt (Zavala

21

et al., 2008), and PRBLOCK IP (Castro, 2007). The work of Zavala et al. (2008)

utilizes an explicit Schur-complement decomposition approach to provide efficient

solutions to large-scale optimization problems. Built on the Ipopt algorithm, this

approach is appropriate for general NLP problems. This algorithm is appropriate

for block-structured problems with complicating variables like those arising in pa-

rameter estimation and multi-scenario optimization under uncertainty. In this ap-

proach, the Schur-complement is formed explicitly, requiring one backsolve of the

system for each complicating variables. As the number of complicating variable in-

creases, forming and solving the Schur-complement explicitly is computationally pro-

hibitive. To overcome the factorization cost, the preconditioned Schur-complement

method in PIPS solves the Schur-complement system using a Krylov subspace itera-

tive method with a stochastic preconditioner. The algorithm requires the formation

of the Schur-complement system and factorization of the preconditioner (Petra and

Anitescu, 2012). Castro (2007) solves the primal block-angular problem by per-

forming Cholesky factorizations on the diagonal blocks of the system and using a

preconditioned conjugate gradient method with a truncating power series precondi-

tioner for the linking constraints. This algorithm solves convex QP problems with

constraint coupling by exploiting structure in the normal equations.

In this section, we describe two decomposition methods that we have imple-

mented as part of this work. The first, the Explicit Schur Complement approach is

based on the work of Zavala et al. (2008) to solve large-scale nonlinear block-angular

problems using a parallel interior-point method with a Schur-complement decom-

position. This approach is known, and has been used in optimization for about

10 years, however, no available, open-source software implementations exist. The

second approach we have implemented is the Implicit PCG Schur-Complement de-

composition is a new algorithm developed as part of this dissertation. As indicated

22

above, the explicit Schur-complement algorithm suffers when the number of coupling

variables increases because of the cost of forming and solving the Schur-complement.

To avoid this computational expense we have developed a new approach that solves

the Schur-complement system using an iterative method that only requires matrix

vector products across the equation that describes the Schur-complement. This algo-

rithm solves the Schur-complement system using a preconditioned conjugate gradient

method with a limited memory quasi-Newton preconditioner generated using infor-

mation from the previous CG iterations (Morales and Nocedal, 2000). For example

problems with a large number of coupling variables, this algorithm gives an order of

magnitude decrease in solution time over methods that explicitly form and solve the

Schur-complement.

3.1 Explicit Schur-Complement Decomposition

The algorithm description given in the Section 2 was derived based on the general

problem from Equation (2.1). While the problem described in Equation (1.3) fits

this form, it provides additional structure that can be exploited to allow for parallel

solution techniques. Given the problem shown in Equation (1.3), the augmented

system from Equation (2.12), can be rearranged into the block-bordered structure

(Zavala et al., 2008),



W k
1 A1

W k
2 A2

W k
3 A3

. . .
...

W k
N AN

AT1 AT2 AT3 · · · ATN δkHI


·



∆vk1

∆vk2

∆vk3
...

∆vkN

∆dk


=



rk1

rk2

rk3
...

rkN

rkd


, (3.1)

23

where,

(rkl)
T = −

[(
∇xlLkl

)T
,
(
ckl
)T
,
(
Plx

k
l − P d

l d
k
)T] ∀ l ∈ N ,

(∆vkl)T =
[
(∆xkl)

T (∆λkl)
T (∆σkl)T

]
∀ l ∈ N ,

ATl =

[
0 0 −(P d

l)T
]

∀ l ∈ N ,

W k
l =


Hk
l + δkHI Ck

l P T
l(

Ck
l

)T −δkc I 0

Pl 0 −δkc I

 ∀ l ∈ N ,

rkd =
∑
l∈N

(P d
l)Tσkl ∀ l ∈ N .

Here λl and σl are the multipliers for the equality constraints given in Equations

(1.3b) and (1.3d), ckl =c(x
k
l), C

k
l =∇xlc(x

k
l), ∇xlLkl =∇xlf(xkl) + z̄kl − zkl + Ck

l λ
k
l , and

Hk
l =∇2

xlxl
Lkl + (Gk

l)
−1Zk

l + (Ḡk
l)
−1Z̄k

l .

Assuming invertibility of the W k
l matrices, we can eliminate each of the ATl

matrices from the bottom block row. The resulting Schur-complement system is

given by,

Sk∆dk = rkd −
∑
l∈N

ATl
(
W k
l

)−1
rkl , (3.2)

where

Sk = δkHI −
∑
l∈N

ATl
(
W k
l

)−1
Al. (3.3)

This system can be solved to find the step in the coupling variables ∆dk, and then the

24

steps for the remaining variables ∆vkl can be found by solving the following systems:

W k
l ∆vkl = rkl − Al∆dk ∀ l ∈ N . (3.4)

As discussed earlier, inertia correction may be necessary for non-convex problems

to ensure that the calculated step be a descent direction, and we need to provide an

inertia condition equivalent to Equation (2.10) for the decomposed system. To aid

this discussion, let

Kk
full =



W k
1 A1

W k
2 A2

W k
3 A3

. . .
...

W k
N AN

AT1 AT2 AT3 · · · ATN δkHI


, (3.5)

and

Kk
‡ =



(W k
1)−1

(W k
2)−1

(W k
3)−1

. . .

(W k
N)−1

Sk


. (3.6)

Additionally, let nl be the number of variables in block l, that is nl=dim(xl), and let

ml be the number of equality constraints in block l, given by Equations (1.3b) and

(1.3d). Also, let nd be the number of coupling variables, that is nd=dim(d). The

25

total number of variables and equality constraints in the problem is then given by

the following expressions,

n = nd +
∑
l∈N

nl (3.7)

m =
∑
l∈N

ml. (3.8)

In the decomposition approach we want to ensure that the inertia condition is sat-

isfied for the full augmented system (3.5) using only information available from the

individual blocks W k
l , and the Schur-complement Sk.

Lemma 1. If every individual block W k
l satisfies the inertia condition In(W k

l)=(nl,ml, 0),

then the full space augmented system matrix Kk
full satisfies the inertia condition

In(Kk
full)=(n,m, 0) if and only if the Schur-complement Sk is positive definite.

Proof. Given that each W k
l is symmetric and satisfies the given inertia condition,

W k
l is invertible and has the same inertia as [W k

l]−1. Given the following invertible

matrix,

Q =



W k
1 0

W k
2 0

W k
3 0

. . .
...

W k
N 0

AT1 AT2 AT3 · · · ATN I


, (3.9)

we can write

QKk
‡Q

T = Kk
full, (3.10)

26

and according to Sylvester’s law of inertia (Sylvester, 1952), Kk
‡ and Kk

full have the

same inertia. Therefore,

In(Kk
full) = In(Kk

‡) =
∑
l∈N

In(W k
l) + In(Sk). (3.11)

Given the inertia of each W k
l and Equations (3.7), (3.8), and (3.11), the inertia

condition on Kk
full is satisfied if In(Sk)=(nd, 0, 0) (i.e. Sk is positive definite). Al-

ternatively, if we assume that the full-space augmented matrix, Kk
full has the correct

inertia, then the Schur-complement must be positive definite.

In Wächter and Biegler (2006), the inertia of the full-space system is ensured

through an inertia correction algorithm. The basic approach is outlined as follows.

Initially, δH and δc are set to zero, and the inertia of the augmented system is cal-

culated during the factorization step. If the inertia indicates the presence of zero

eigenvalues, then δc is set to a small positive number and the system is factorized

again. If the number of positive and negative eigenvalues is not correct, δH is in-

creased and the system is factorized again. This is repeated until the inertia condition

is satisfied, or a maximum allowable value for δH is exceeded, exiting with an error.

In the Schur-complement decomposition, the inertia of each block W k
l is calcu-

lated during factorization. If the inertia of any block W k
l is not satisfied, then the

entire system is corrected by adjusting δH and δc as above. (Note: it may be possible

to locally correct each block independently, however, this is not explored here.) If the

inertia of each of the W k
l blocks is correct, but Sk is found to not be positive definite,

then δH is increased for the entire system and the procedure repeats. This approach

mimics the inertia correction algorithm used when the structure is not exploited.

The Schur-complement decomposition described in Equations (3.2–3.4) decouples

the individual W k
l blocks and allows for parallel solution of the augmented system.

27

In previous work, we implemented an approach that solved this system in three steps

(Zhu and Laird, 2008; Zhu et al., 2011). First, the Schur-complement Sk is explicitly

formed using Equation (3.3). Second, the (potentially dense) Schur-complement

system in Equation (3.2) is solved to find the step in the coupling variables ∆dk.

Finally, the steps for the remaining primal-dual variables are found by solving the

systems in Equation (3.4). We call this the Explicit Schur-complement approach.

In the Explicit Schur-complement approach, shown in Algorithm 2, the Schur-

complement from Equation (3.2) is explicitly computed. To avoid calculating (W k
l)−1,

we instead form the Schur-complement column by column for each block l. Using this

Algorithm 2 Explicit Schur-Complement (Explicit-SC)

1. Form the Schur-complement and the right hand side
1.1 For each block l ∈ N :

Factor Wl and correct inertia if necessary
1.2 Let S = [δHI] and rsc = rd
1.3 For each block l ∈ N :

For each jth column Al
<j> in Al:

Solve the system Wlβ = Al
<j> for β

Update S<j> = S<j> − ATl β
1.4 For each l ∈ N :

Solve the system Wlpl = rl for pl
Update rsc = rsc − ATl pl

2. Solve the Schur-complement for the steps in the coupling variables
Solve S ∆d = rsc for ∆d (e.g. using a dense linear solver from LAPACK)

3. Solve for the steps in the remaining variables
For each block l ∈ N :

Solve Wl∆vl = rl − Al∆d for ∆vl

approach, a total of N factorizations and N · nd backsolves are required to form the

Schur-complement with another N backsolves required to form the right-hand-side

of Equation (3.2).

28

The Schur-complement decomposition decouples individual blocks in the linear

solve and allows solution in parallel. In particular, the for loops in steps 1.1, 1.3,

1.4, and 3 can all be executed in parallel instead of sequentially. Given N pro-

cessors, these steps can be computed efficiently in parallel, using one processor for

each block l ∈ N . Further parallelization is possible in step 1.3 by introducing

additional processors and solving individual columns A<j>l in parallel, however, this

requires significantly more processors that cannot be easily utilized in other steps.

Therefore, in this work, only the aforementioned steps are computed in parallel.

Forming the Schur-complement is linear in nd, and, if nd is large, this step can still

be computationally expensive due to the large number of backsolves required. Once

formed, solving the (potentially dense) Schur-complement using a direct factoriza-

tion approach has computational complexity that it typically cubic in nd. While the

explicit Schur-complement approach is effective when nd is sufficiently small (e.g. a

few hundred in our experience), the computational cost can become prohibitively

expensive as the number of coupling variables increases. If the number of coupling

variables is large, we propose the use of a preconditioned conjugate gradient approach

to solve the system in Equation (3.2) avoiding both the formation and factorization

of this Schur-complement. This approach is described in detail in Section 3.2.

3.2 Implicit PCG Schur-Complement Decomposition

The preconditioned conjugate gradient (PCG) method is an effective technique

for the solution of a linear system Ax=b, where A is a symmetric, semi-positive

definite matrix. Several excellent references exist for this approach (Shewchuk, 1994;

Saad, 2003). When using the PCG approach to solve the Schur-complement system

in Equation (3.2), the greatest computational expense is the matrix-vector product

with the Schur-complement. This operation can be performed without ever forming

29

the Schur-complement explicitly. To illustrate this, consider the following product

of the Schur-complement with a vector u.

[
δHI −

∑
l∈N

ATl (W k
l)−1Al

]
u (3.12)

Before the PCG procedure begins, each of theW k
l blocks are factorized (and corrected

to match the inertia condition outlined previously). Then, the matrix-vector product

with u can be performed as follows. For each term in the summation, multiply the

vector u by the matrix Al, perform a backsolve with the block matrix W k
l using

Alu as the right hand side, and finally, multiply this result by ATl . Contributions

are summed over each of the blocks l ∈ N and subtracted from δHu. Note that

each iteration of the PCG approach requires a single backsolve with the factors of

W k
l . With the explicit Schur-complement approach we require a backsolve of W k

l

for each column in Al and each block l (i.e. nd × N backsolves). In the PCG

approach, we require a backsolve of W k
l for each PCG iteration and each block l.

Therefore, if the number of PCG iterations is smaller than nd, then we can solve the

linear system with fewer backsolves than that required by the explicit approach. The

(unpreconditioned) conjugate gradient method requires at most nd steps (in exact

arithmetic) for convergence, and in practice the preconditioned conjugate gradient

can require significantly fewer steps, making this approach particularly promising.

Furthermore, this approach does not require a dense factorization (cubic in nd) of

the Schur-complement.

The PCG approach could be used to converge the Schur-complement system to a

tight tolerance, thereby mimicking the interior-point steps produced by the Explicit

Schur-complement approach. However, further reduction in computational cost is

possible by solving this system only approximately at early iterations when far from

30

the solution. In our implementation, the CG tolerance for the kth interior-point

iteration is obtained from

εkcg = max{ε0cgµk, εmincg }. (3.13)

Efficient solution using the PCG method requires a suitable preconditioner. Since

the Schur-complement is symmetric and positive-definite (or modified to ensure pos-

itive definiteness), an obvious choice for a preconditioner might be a modified BFGS

update on the Schur-complement. In a typical BFGS approach for nonlinear opti-

mization, the update would occur once per interior-point iteration. This has several

drawbacks. First, the BFGS update is a Rank-2 update and it may take many

interior-point iterations to produce a sufficient approximation. Furthermore, the

Schur-complement changes as the interior-point iterations proceed, and the informa-

tion in the BFGS update may become outdated. Finally, storing and operating on

the full-memory BFGS update may become prohibitively expensive if the number of

coupling variables is large.

On the other hand, the automatic preconditioning technique proposed by Morales

and Nocedal (2000, 2001), based on a limited-memory BFGS (L-BFGS) update is

appropriate. This approach uses information from the CG iterations performed in

the previous interior-point iteration, allowing for extra updates with more current

information. At interior-point iteration k, the set of correction pairs {sk,j, yk,j} are

generated for each CG iteration j using,

sk,j = ∆dk,j+1 −∆dk,j (3.14)

yk,j = Sk∆dk,j+1 − Sk∆dk,j = Sksk,j. (3.15)

31

In the next interior-point iteration, these correction pairs are used with the standard

L-BFGS approach to provide the matrix-vector product across the preconditioner.

We implemented the preconditioner in C++ based on the algorithm described in

Morales and Nocedal (2000) and Morales and Nocedal (2001). Typically, the best

number of correction pairs to store is problem (or even iteration) dependent, and

Morales and Nocedal (2000) provide a strategy to determine an appropriate number

of correction pairs to store between 4 and 20. In the initial interior-point iteration,

we solve the Schur-complement system using the CG procedure without a precon-

ditioner, storing some or all of the correction pairs generated in the CG iterations.

Since the computational cost of the application of the L-BFGS preconditioner is sig-

nificantly less than the matrix-vector product across the Schur-complement, we store

all the pairs, or 50, whichever is smaller.

The complete PCG Schur-complement (PCGSC) algorithm is shown in Algorithm

3 and the related L-BFGS Preconditioning calculation is shown in Algorithm 4.

32

Algorithm 3 PCG Schur-Complement (PCGSC)

1. Form the right hand side of the Schur-complement system

1.1 For each l in N :

Factor Wl and correct the inertia if necessary

1.2 Let rsc = rd

1.3 For each l in N :

Solve the system Wlpl = rl for pl

Update rsc = rsc − ATl pl

2. Solve for the steps in the coupling variables using PCG

Solve S∆d = rsc for ∆d using the iterative PCG procedure with the L-BFGS pre-

conditioner, where correction pairs are stored according to Algorithm SAMPLE

in paper Morales and Nocedal (2000)

3. Solve for the steps in the remaining variables

For each l in N : solve Wl∆vl = rl − Al∆d for ∆vl

33

Algorithm 4 L-BFGS Preconditioning Step

Given M correction pairs (si, yi), ρi = 1
sTi yi

, to calculate the preconditioner multi-

plying the current CG residual r.

γ0 =
sTMyM
yTMyM

q ← r

for i = M,M−1, ..., 2, 1 do

αi ← ρis
T
i q

q ← q − αiyi

end for

ξ ← γ0q

for i = 1, 2, ...,M−1,M do

β ← ρiy
T
i ξ

ξ ← ξ + si(αi − β)

end for

stop with result ξ, the preconditioner multiplying the current CG residual r

Similar to the explicit approach, it is straightforward to perform Algorithm 3 in

parallel. Given N processors, the for loops in Steps 1.1, 1.3, and 3 can be done

in parallel. As well, the matrix-vector product required in step 2 and described in

Equation (3.12) can be completed in parallel by using one processor for each term in

the summation. If the individual blocks Wl are themselves of prohibitive size, further

parallelization is possible using a parallel linear solver for general sparse symmetric

matrices, although this hybrid approach is not tested here.

Both the Explicit Schur-Complement method and the Implicit PCG Schur-

Complement method have been implemented within the interior-point framework

34

developed in Section 2. Both these algorithms have been implemented in serial and

in parallel. This gives five different algorithms in total. A summary of these five

different algorithms is given in the next section.

3.3 Summary of Different Algorithms

Solution of the augmented system (step direction calculation in the flowchart)

is the dominant computational expense in every interior-point iteration, and as de-

scribed in the previous section, the major algorithm variations in our implementation

differ in their solution strategy for this linear system. This section describes the im-

plementation of five different algorithm variants, listed as follows:

Full-space Serial (FS-S): The full-space serial option solves the KKT system di-

rectly using the MA27 routine from the Harwell Subroutine Library (HSL,

2011). All linear algebra operations are performed in serial.

Explicit Schur-complement Serial/Parallel (ESC-S/ESC-P): This option im-

plements the explicit Schur-complement approach for the solution of the KKT

system. In this block decomposition, all W k
l blocks are factored using MA27

from the Harwell Subroutine Library, and the explicitly formed Schur-complement

is solved using the cholesky factorization routine from LAPACK.

PCG Schur-Complement Serial/Parallel (PCGSC-S/PCGSC-P): This op-

tion implements the Schur-complement decomposition strategy using the pre-

conditioned conjugate gradient method to solve the Schur-complement system.

In this block decomposition, all W k
l blocks are factored using MA27 from the

Harwell Subroutine Library. The Schur-complement is solved implicitly, avoid-

ing the need to form or factorize the Schur-complement directly.

35

The software implementation details for these algorithms is discussed in the next

section, followed by some numerical results comparing the explicit approach with

an external decomposition method (Progressive Hedging), and a comparison of the

explicit and the implicit approach on different problems.

36

4. FRAMEWORK AND SOFTWARE IMPLEMENTATION FOR SERIAL AND

PARALLEL ALGORITHMS∗

In this section, we describe the software implementation details of the different

algorithms that were developed as part of this dissertation. All the different algo-

rithms described in the previous section (i.e., FS, ESC-S, ESC-P, PCGSC-S, and

PCGSC-P) are implemented within the same software framework, but with different

main functions and executables. Here, we first describe the basic flowsheet of the al-

gorithm and then describe the software architecture (class hierarchy and inheritance

structure) used to support the different algorithms.

All algorithms are based off of the interior-point framework described in Section

2. Figure 4.1 shows the basic flowsheet of the implemented interior-point framework.

First, the optimality conditions of the original problem are checked for convergence.

If the original NLP problem is not converged, we proceed to check convergence of

the barrier NLP subproblem. If the barrier NLP subproblem is also not converged,

the derivatives, residuals, etc. are calculated and based on the current point, and

the step direction is computed by solving the augmented system (and updating the

multipliers). Once the step direction is obtained, the filter line search is used to

determine the appropriate step length, and the loop continues until the barrier NLP

subproblem converges or maximum iterations are reached. Once the barrier NLP

subproblem has converged, then barrier parameter µ is reduced and the whole process

is repeated until the original NLP problem converges. Of course, there are far more

details in the algorithm this short overview describes.

∗Part of this section is reprinted with permission from “An interior-point method for efficient
solution of block-structured NLP problems using an implicit Schur-complement decomposition” by
Kang, J., Cao, Y., Word, D., and Laird, C.D., 2014. In: Computers and Chemical Engineering 71
(2014), pp 563-573, Copyright 2014 by Elsevier.

37

[Wächter & Biegler 2004]

Initialize

Original NLP
Converged?

Barrier NLP
Converged?

Calculate Derivatives,
Residuals, etc.

Calculate Step
Direction

Perform Line Search

Reduce Barrier
Parameter

Done

Update Vars.

Figure 4.1: Flowchart of the interior-point algorithm.

4.1 High-level Overview of Software Implementation

All the algorithm development was done in C++, and the Message Passing In-

terface (MPI) used for all parallel communication. An object-oriented approach was

used to provide clean separation between the components of the code that were the

same across all algorithm variants, and those that were different. The algorithms

listed above differ in two fundamental aspects. First, the specific algorithm used to

solve the augmented system (2.7) is different across all five variants. As well, the

parallel and serial implementations differ for the same algorithm. In addition to the

parallel computation or operations within the algorithm, effective scaleup to many

38

processors requires parallel evaluation of the model as well. For this reason, the soft-

ware implementation for the problem representation (the NLP) has three variants,

the serial implementation of the full-space problem, and the serial and parallel ver-

sions of the structured problem with primal coupling. Note that the serial structured

representation is shared among ESC-S and PCGSC-S, while the parallel structured

representation is shared among ESC-P and PCGSC-P.

Although the linear algebra operations and the model evaluation differ across

the approaches, the same fundamental interior-point algorithm is used for all five

variants. Therefore, it is attractive to use an object-oriented structure that permits

re-use of the fundamental algorithm code (the interior-point method) while allowing

specialization of the model and linear algebra components. To support this behavior,

the interior-point algorithm code was implemented with very strict interfaces between

the algorithm, the model interface, and the linear algebra interface. A high-level

description of the implementation is shown in Figure 4.2 below.

Figure 4.2: High-level description of the software structure.

39

Here, the code for the interior-point algorithm is independent of the specific im-

plementation for the model representation and the linear algebra operations, and

it communicates with these components through well-defined interfaces. With this

structure, the interior-point algorithm is unaware of the underlying data structure

for the linear algebra objects (e.g. it does not have the ability to access individual

elements of the vectors and matrices). Rather, it performs all necessary operations

through the linear algebra interface (and the NLP interface). Therefore, we can im-

plement specialized NLP representations and specialized linear algebra routines that

are aware of the inherent structure of the problem, and both of these specializations

can be done without changes to the fundamental interior-point code. This software

structure has made it possible to implement several variants in a convenient object-

oriented framework. This design also eased the parallelization of these algorithms.

Since the individual elements in any matrix or vector are hidden from the fundamen-

tal algorithm and only the interfaces are exposed, the underlying algorithms operate

identically whether serial or parallel code is being used. Note that the algorithm

requires several vector, vector-vector, and matrix-vector linear algebra operations

(e.g. dot product, norms, matrix-vector multiplication), and these operations are

also parallelized in our implementation. The Message Passing Interface (MPI) is

used for all parallel communication.

4.2 Detailed Software Implementation Description

As indicated above, the implementation uses an object-oriented software design.

The NLP problem representation is separated from the fundamental algorithm code,

and the interior-point code communicates only through a well defined NLP base class.

Furthermore, while the solution of the augmented system is the dominant computa-

tional expense in the algorithm, achieving good parallel performance requires that

40

the NLP evaluations (e.g., residuals, gradients, Hessian) and the other operations

of the algorithm (i.e., vector, vector-vector, matrix-vector operations) also be per-

formed in parallel. The implementation details of these linear algebra operations are

hidden from the interior-point algorithm, and the algorithm performs these opera-

tions through well defined interfaces in the Matrix, Vector, and KKTLinearSolver

base classes. The major classes in the implementation are shown in the class hier-

archy given below where the base class are left aligned and further derived classes

indented (e.g. FullSpaceLinearSolver inherits from KKTLinearSolver).

Table 4.1: Class Hierarchy

• AmplInterface

• BlockSystem

• DirectedGraph

• InteriorPointSolver

• KKTLinearSolver

– FullSpaceLinearSolver

– MPISchurComplementLinearSolver

– MPIStrongSchurComplementLinearSolver

– SchurComplementLinearSolver

• MA27 LinearSolver

• MA48 LinearSolver

41

• MA57 LinearSolver

• Matrix

– BlockMatrix

– CoordMatrix

- SymCoordMatrix

– DenseMatrix

– DiagMatrix

– MPIBlockDiagMatrix

– MPIBlockMatrix

– MPISymBlockMatrix

– MPIVarCoupledHessian

– MPIVarCoupledJacobian

– SymBlockMatrix

– SymDenseMatrix

– SymFullDenseMatrix

• MPIWrapper

• NLP

– AmplNLP

– MPIVarCoupledBlockNLP

– MPIVarCoupledMultiBlockNLP

– VarCoupledBlockNLP

42

• PARDISO LinearSolver

• Preqn

• PreqnEntry

• PreqnSample

• PreqnSampleEntry

• SUPERLU LinearSolver

• TaskTimer

• UMFPACK LinearSolver

• UnreducedInteriorPointSolver

• Vector

– BlockVector

– DenseVector

– MPIBlockVector

There are many classes and over 12, 000 lines of C++ code within this imple-

mentation. In the following text, we will briefly describe the key classes used in the

implementation.

It should also be noted that some of this code is part of a set of common code

that is used by the Laird research group for different projects. Some of the com-

mon code was developed as part of this research dissertation work, and some was

43

developed as part of other research projects. Of course, classes specific to the paral-

lel decomposition algorithms and problem representations are from this dissertation

work.

4.2.1 InteriorPointSolver

The main workhorse of the algorithms is the interior-point implementation con-

tained in the InteriorPointSolver class. While this class implements the main

flowsheet for the interior-point algorithm discussed in Section 2, it makes use of

several other classes to perform the necessary computations. It performs all lin-

ear algebra operations through the Matrix and Vector base classes. This means

that the interior-point algorithm code does not have access to the specific derived

implementations of these classes. All necessary linear algebra operations must be

available on these base classes, or composable through multiple operations on these

base classes. Of course, specific derived implementations of these classes are given

to the InteriorPointSolver (through the NLP interface), but it does not know

about these further derived details. This allows the underlying operations to be

specialized without changes in the main solver code. In a similar fashion, when

the InteriorPointSolver requires a step computation, this is done through the

KKTLinearSolver base class, and any interactions with the problem representa-

tion (e.g. compute residuals, Jacobians, etc.) is done through the NLP base class.

The entire interaction is driven by main when the problem is to be solved, the

InteriorPointSolver::Solve method is called and passed a specific instantiation

of the NLP class and the KKTLinearSolver class.

4.2.2 Matrix and Vector and Derived Classes

As indicated above, the InteriorPointSolver class performs all required linear

algebra operations through a set of defined interfaces in a few base classes. Two

44

key base classes are the Matrix and Vector classes. These classes provide the basic

interface for working with Hessians, Jacobians, and other matrices and vectors. The

class diagram for the Vector class is shown in Figure 4.3

The class diagram for the Matrix class is shown in Figure 4.4. In both the

hierarchies, we have implemented several specialized classes for different structures.

Of particular note are the block matrices and MPI block matrices that implement a

general block structured matrix where other matrix subclasses can be pieced together

to form larger systems without the need for copying data (or even having data reside

within the same process).

4.2.3 KKTLinearSolver and Derived Classes

The KKTLinearSolver provides the base class interface for performing a step com-

putation. The class diagram showing the inheritance structure and class members for

KKTLinearSolver and derived classes is shown in Figure 4.5. The primary method

on this class is the pure virtual method KKTLinearSolver::Solve(Matrix &KKT,

Vector &diag, Vector &rhs, Vector &soln, const int inner iter, const

double mu) that must be overridden by the derived classes. Again, the

InteriorPointSolver class interacts directly with a KKTLinearSolver object that

is actually one of the further derived classes:

• FullSpaceLinearSolver: This class implements the standard full space non-

linear interior point approach that makes use of a symmetric indefinite linear

solver (typically based on a Bunch-Kaufman algorithm as to provide the inertia

evaluation inexpensively). In this implementation, MA27/MA57 has been used,

however, interfaces exist to other appropriate linear solvers.

• SchurComplementLinearSolver: This class implements the serial explicit Schur-

complement approach (ESC-S) and the serial implicit PCG Schur-complement

45

Vector

+ Vector()

+ ~Vector()

+ N()

+ MakeNew()

+ MakeNewCopy()

+ CopyFrom()

+ SetAllValues()

+ DotProduct()

+ Norm2()

+ Axpy()

+ AddScalar()

+ Scal()

+ Sum()

+ AbsoluteSum()

+ Max()

+ AbsoluteMax()

+ Min()

+ AbsoluteMin()

+ ElementWiseDivide()

+ ElementWiseMultiply()

+ ElementWiseMax()

+ ElementWiseMin()

+ ElementWiseReciprocal()

+ ElementWiseAbs()

+ ElementWiseSqrt()

+ ElementWiseSgn()

+ ElementWiseLog()

+ RelaxBounds()

+ PushWithinBounds()

+ FracToBoundary()

+ GetValues()

+ SetValues()

+ Print()

+ WriteMatlabInput()

- Vector()

- operator=()

BlockVector

- n_

- block_sizes_

- vec_ptrs_

- vec_owned_

+ BlockVector()

+ ~BlockVector()

+ NBlocks()

+ GetBlockVector()

+ GetBlockVector()

+ SetBlockVector()

+ ClearBlocks()

+ N()

+ MakeNew()

+ MakeNewCopy()

+ CopyFrom()

+ SetAllValues()

+ DotProduct()

+ Norm2()

+ Axpy()

+ AddScalar()

+ Scal()

+ Sum()

+ AbsoluteSum()

+ Max()

+ AbsoluteMax()

+ Min()

+ AbsoluteMin()

+ ElementWiseDivide()

+ ElementWiseMultiply()

+ ElementWiseMax()

+ ElementWiseMin()

+ ElementWiseReciprocal()

+ ElementWiseAbs()

+ ElementWiseSqrt()

+ ElementWiseSgn()

+ ElementWiseLog()

+ RelaxBounds()

+ PushWithinBounds()

+ FracToBoundary()

+ GetValues()

+ SetValues()

+ Print()

+ WriteMatlabInput()

+ ConvertToDenseVector()

DenseVector

- n_

- values_

+ DenseVector()

+ DenseVector()

+ DenseVector()

+ ~DenseVector()

+ N()

+ MakeNew()

+ MakeNewDenseVector()

+ CopyFrom()

+ SetAllValues()

+ DotProduct()

+ Norm2()

+ Axpy()

+ AddScalar()

+ Scal()

+ Sum()

+ AbsoluteSum()

+ Max()

+ AbsoluteMax()

+ Min()

+ AbsoluteMin()

+ ElementWiseDivide()

+ ElementWiseMultiply()

+ ElementWiseMax()

+ ElementWiseMin()

+ ElementWiseReciprocal()

+ ElementWiseAbs()

+ ElementWiseSqrt()

+ ElementWiseSgn()

+ ElementWiseLog()

+ RelaxBounds()

+ PushWithinBounds()

+ FracToBoundary()

+ GetValues()

+ SetValues()

+ Print()

+ WriteMatlabInput()

+ SetN()

+ CopyValues()

+ Values()

+ Values()

+ WriteVector()

+ ReadVector()

+ ElementWisePow()

+ ElementWiseExp()

- delete_values()

- allocate_values()

MPIBlockVector

- block_sizes_

- owner_rank_

- mpiw_

- block_vector_

+ MPIBlockVector()

+ ~MPIBlockVector()

+ ClearBlocks()

+ NBlocks()

+ OwnerRank()

+ GetBlockVector()

+ GetBlockVector()

+ SetBlockVector()

+ N()

+ MakeNew()

+ MakeNewCopy()

+ CopyFrom()

+ SetAllValues()

+ DotProduct()

+ Norm2()

+ Axpy()

+ AddScalar()

+ Scal()

+ Sum()

+ AbsoluteSum()

+ Max()

+ AbsoluteMax()

+ Min()

+ AbsoluteMin()

+ ElementWiseDivide()

+ ElementWiseMultiply()

+ ElementWiseMax()

+ ElementWiseMin()

+ ElementWiseReciprocal()

+ ElementWiseAbs()

+ ElementWiseSqrt()

+ ElementWiseSgn()

+ ElementWiseLog()

+ RelaxBounds()

+ PushWithinBounds()

+ FracToBoundary()

+ GetValues()

+ SetValues()

+ Print()

+ WriteMatlabInput()

Figure 4.3: Class diagram for Vector

46

M
a
t
r
i
x

+

M
a
t
r
i
x
(
)

+

~
M
a
t
r
i
x
(
)

+

N
R
o
w
s
(
)

+

N
C
o
l
s
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

N
N
o
n
z
e
r
o
s
(
)

+

F
i
l
l
S
p
a
r
s
e
S
t
r
u
c
t
u
r
e
(
)

+

F
i
l
l
S
p
a
r
s
e
V
a
l
u
e
s
(
)

+

M
x
p
y
(
)

+

M
T
x
p
y
(
)

+

E
x
t
r
a
c
t
C
o
l
u
m
n
(
)

+

E
x
t
r
a
c
t
R
o
w
(
)

+

P
r
i
n
t
(
)

+

W
r
i
t
e
M
a
t
l
a
b
I
n
p
u
t
(
)

+

A
d
d
T
o
C
o
l
u
m
n
(
)

+

S
c
h
u
r
C
o
l
u
m
n
U
p
d
a
t
e
(
)

-

M
a
t
r
i
x
(
)

-

o
p
e
r
a
t
o
r
=
(
)

B
l
o
c
k
M
a
t
r
i
x

-

n
R
o
w
s
_

-

n
C
o
l
s
_

-

r
o
w
_
s
i
z
e
s
_

-

c
o
l
_
s
i
z
e
s
_

-

n
B
l
o
c
k
R
o
w
s
_

-

n
B
l
o
c
k
C
o
l
s
_

-

m
a
t
_
b
l
o
c
k
s
_

-

m
a
t
_
o
w
n
e
d
_

+

B
l
o
c
k
M
a
t
r
i
x
(
)

+

~
B
l
o
c
k
M
a
t
r
i
x
(
)

+

N
R
o
w
s
(
)

+

N
C
o
l
s
(
)

+

N
B
l
o
c
k
s
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

N
N
o
n
z
e
r
o
s
(
)

+

F
i
l
l
S
p
a
r
s
e
S
t
r
u
c
t
u
r
e
(
)

+

F
i
l
l
S
p
a
r
s
e
V
a
l
u
e
s
(
)

+

M
x
p
y
(
)

+

M
T
x
p
y
(
)

+

N
B
l
o
c
k
R
o
w
s
(
)

+

N
B
l
o
c
k
C
o
l
s
(
)

+

S
e
t
B
l
o
c
k
(
)

+

G
e
t
B
l
o
c
k
(
)

+

G
e
t
B
l
o
c
k
(
)

+

E
x
t
r
a
c
t
C
o
l
u
m
n
(
)

+

E
x
t
r
a
c
t
R
o
w
(
)

+

P
r
i
n
t
(
)

+

W
r
i
t
e
M
a
t
l
a
b
I
n
p
u
t
(
)

+

A
d
d
T
o
C
o
l
u
m
n
(
)

+

G
e
t
R
o
w
S
i
z
e
s
(
)

+

G
e
t
C
o
l
S
i
z
e
s
(
)

-

B
l
o
c
k
M
a
t
r
i
x
(
)

C
o
o
r
d
M
a
t
r
i
x

#

n
R
o
w
s
_

#

n
C
o
l
s
_

#

n
n
z
_

#

i
R
o
w
s
_

#

j
C
o
l
s
_

#

v
a
l
u
e
s
_

+

C
o
o
r
d
M
a
t
r
i
x
(
)

+

C
o
o
r
d
M
a
t
r
i
x
(
)

+

C
o
o
r
d
M
a
t
r
i
x
(
)

+

~
C
o
o
r
d
M
a
t
r
i
x
(
)

+

N
R
o
w
s
(
)

+

N
C
o
l
s
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

N
N
o
n
z
e
r
o
s
(
)

+

F
i
l
l
S
p
a
r
s
e
S
t
r
u
c
t
u
r
e
(
)

+

F
i
l
l
S
p
a
r
s
e
V
a
l
u
e
s
(
)

+

M
x
p
y
(
)

+

M
T
x
p
y
(
)

+

S
e
t
D
i
m
e
n
s
i
o
n
s
(
)

+

i
R
o
w
s
(
)

+

i
R
o
w
s
(
)

+

j
C
o
l
s
(
)

+

j
C
o
l
s
(
)

+

V
a
l
u
e
s
(
)

+

V
a
l
u
e
s
(
)

+

S
e
t
E
n
t
r
i
e
s
(
)

+

S
e
t
D
i
a
g
F
r
o
m
V
e
c
t
o
r
(
)

+

R
e
a
d
M
a
t
r
i
x
(
)

+

W
r
i
t
e
M
a
t
r
i
x
(
)

+

E
x
t
r
a
c
t
C
o
l
u
m
n
(
)

+

E
x
t
r
a
c
t
R
o
w
(
)

+

S
e
t
F
r
o
m
D
e
n
s
e
M
a
t
r
i
x
(
)

+

P
r
i
n
t
(
)

+

W
r
i
t
e
M
a
t
l
a
b
I
n
p
u
t
(
)

+

P
r
i
n
t
S
t
a
t
s
(
)

#

C
o
o
r
d
M
a
t
r
i
x
(
)

#

d
e
l
e
t
e
_
e
n
t
r
i
e
s
(
)

#

a
l
l
o
c
a
t
e
_
e
n
t
r
i
e
s
(
)

D
e
n
s
e
M
a
t
r
i
x

-

n
R
o
w
s
_

-

n
C
o
l
s
_

-

v
a
l
u
e
s
_

+

D
e
n
s
e
M
a
t
r
i
x
(
)

+

D
e
n
s
e
M
a
t
r
i
x
(
)

+

~
D
e
n
s
e
M
a
t
r
i
x
(
)

+

N
R
o
w
s
(
)

+

N
C
o
l
s
(
)

+

N
N
o
n
z
e
r
o
s
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

M
a
k
e
N
e
w
C
o
p
y
(
)

+

C
o
p
y
F
r
o
m
(
)

+

M
a
k
e
C
o
p
y
(
)

+

F
i
l
l
S
p
a
r
s
e
S
t
r
u
c
t
u
r
e
(
)

+

F
i
l
l
S
p
a
r
s
e
V
a
l
u
e
s
(
)

+

V
a
l
u
e
s
(
)

+

V
a
l
u
e
s
(
)

+

N
V
a
l
u
e
s
(
)

+

S
e
t
A
l
l
E
n
t
r
i
e
s
(
)

+

S
e
t
T
o
R
o
w
(
)

+

A
d
d
T
o
C
o
l
u
m
n
(
)

+

A
d
d
T
o
E
n
t
r
y
(
)

+

F
a
c
t
o
r
A
n
d
S
o
l
v
e
(
)

+

E
x
t
r
a
c
t
C
o
l
u
m
n
(
)

+

E
x
t
r
a
c
t
R
o
w
(
)

+

S
c
a
l
(
)

+

A
d
d
S
c
a
l
a
r
(
)

+

E
l
e
m
e
n
t
W
i
s
e
M
u
l
t
i
p
l
y
(
)

+

E
l
e
m
e
n
t
W
i
s
e
D
i
v
i
d
e
(
)

+

E
l
e
m
e
n
t
W
i
s
e
P
o
w
(
)

+

M
a
t
T
r
a
n
s
p
o
s
e
(
)

+

M
x
p
y
(
)

+

M
T
x
p
y
(
)

+

E
l
e
m
e
n
t
W
i
s
e
T
D
i
v
i
d
e
(
)

+

P
r
i
n
t
(
)

+

P
r
i
n
t
S
t
a
t
s
(
)

+

W
r
i
t
e
M
a
t
l
a
b
I
n
p
u
t
(
)

-

D
e
n
s
e
M
a
t
r
i
x
(
)

D
i
a
g
M
a
t
r
i
x

-

d
i
a
g
_
v
e
c
t
o
r
_

+

D
i
a
g
M
a
t
r
i
x
(
)

+

~
D
i
a
g
M
a
t
r
i
x
(
)

+

N
R
o
w
s
(
)

+

N
C
o
l
s
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

M
x
p
y
(
)

+

M
T
x
p
y
(
)

+

S
e
t
D
i
a
g
V
e
c
t
o
r
(
)

+

G
e
t
D
i
a
g
V
e
c
t
o
r
(
)

+

G
e
t
D
i
a
g
V
e
c
t
o
r
(
)

+

P
r
i
n
t
(
)

+

E
x
t
r
a
c
t
C
o
l
u
m
n
(
)

-

D
i
a
g
M
a
t
r
i
x
(
)

M
P
I
B
l
o
c
k
D
i
a
g
M
a
t
r
i
x

-

n
r
o
w
s
_

-

n
c
o
l
s
_

-

n
b
l
o
c
k
s
_

-

b
l
o
c
k
_
i
d
x
_

-

s
y
m
m
e
t
r
i
c
_

-

m
a
t
_

-

m
p
i
w
_

+

M
P
I
B
l
o
c
k
D
i
a
g
M
a
t
r
i
x
(
)

+

~
M
P
I
B
l
o
c
k
D
i
a
g
M
a
t
r
i
x
(
)

+

N
R
o
w
s
(
)

+

N
C
o
l
s
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

G
e
t
M
a
t
(
)

+

G
e
t
M
a
t
(
)

+

S
e
t
M
a
t
(
)

+

M
x
p
y
(
)

+

M
T
x
p
y
(
)

+

P
r
i
n
t
(
)

M
P
I
B
l
o
c
k
M
a
t
r
i
x

-

n
R
o
w
s
_

-

n
C
o
l
s
_

-

r
o
w
_
s
i
z
e
s
_

-

c
o
l
_
s
i
z
e
s
_

-

o
w
n
e
r
_
r
a
n
k
_

-

n
B
l
o
c
k
R
o
w
s
_

-

n
B
l
o
c
k
C
o
l
s
_

-

u
n
i
q
u
e
_
r
o
w
_
r
a
n
k
_

-

u
n
i
q
u
e
_
c
o
l
_
r
a
n
k
_

-

m
a
t
_
b
l
o
c
k
s
_

-

m
p
i
w
_

+

M
P
I
B
l
o
c
k
M
a
t
r
i
x
(
)

+

~
M
P
I
B
l
o
c
k
M
a
t
r
i
x
(
)

+

N
R
o
w
s
(
)

+

N
C
o
l
s
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

N
N
o
n
z
e
r
o
s
(
)

+

F
i
l
l
S
p
a
r
s
e
S
t
r
u
c
t
u
r
e
(
)

+

F
i
l
l
S
p
a
r
s
e
V
a
l
u
e
s
(
)

+

M
x
p
y
(
)

+

M
T
x
p
y
(
)

+

N
B
l
o
c
k
R
o
w
s
(
)

+

N
B
l
o
c
k
C
o
l
s
(
)

+

S
e
t
B
l
o
c
k
(
)

+

G
e
t
B
l
o
c
k
(
)

+

G
e
t
B
l
o
c
k
(
)

+

E
x
t
r
a
c
t
C
o
l
u
m
n
(
)

+

P
r
i
n
t
(
)

-

M
P
I
B
l
o
c
k
M
a
t
r
i
x
(
)

M
P
I
S
y
m
B
l
o
c
k
M
a
t
r
i
x

-

n
R
o
w
C
o
l
s
_

-

r
o
w
c
o
l
_
s
i
z
e
s
_

-

n
B
l
o
c
k
R
o
w
C
o
l
s
_

-

m
p
i
w
_

-

o
w
n
e
r
_
r
a
n
k
_

-

m
a
t
_
b
l
o
c
k
s
_

+

M
P
I
S
y
m
B
l
o
c
k
M
a
t
r
i
x
(
)

+

~
M
P
I
S
y
m
B
l
o
c
k
M
a
t
r
i
x
(
)

+

N
R
o
w
s
(
)

+

N
C
o
l
s
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

N
N
o
n
z
e
r
o
s
(
)

+

F
i
l
l
S
p
a
r
s
e
S
t
r
u
c
t
u
r
e
(
)

+

F
i
l
l
S
p
a
r
s
e
V
a
l
u
e
s
(
)

+

M
x
p
y
(
)

+

M
T
x
p
y
(
)

+

N
B
l
o
c
k
R
o
w
C
o
l
s
(
)

+

S
e
t
B
l
o
c
k
(
)

+

G
e
t
B
l
o
c
k
(
)

+

G
e
t
B
l
o
c
k
(
)

+

P
r
i
n
t
(
)

-

M
P
I
S
y
m
B
l
o
c
k
M
a
t
r
i
x
(
)

M
P
I
V
a
r
C
o
u
p
l
e
d
H
e
s
s
i
a
n

-

n
r
o
w
s
_

-

n
c
o
l
s
_

-

n
b
l
o
c
k
s
_

-

b
l
o
c
k
_
i
d
x
_

-

m
a
t
_

-

m
p
i
w
_

+

M
P
I
V
a
r
C
o
u
p
l
e
d
H
e
s
s
i
a
n
(
)

+

~
M
P
I
V
a
r
C
o
u
p
l
e
d
H
e
s
s
i
a
n
(
)

+

N
R
o
w
s
(
)

+

N
C
o
l
s
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

N
B
l
o
c
k
R
o
w
C
o
l
s
(
)

+

G
e
t
M
a
t
r
i
x
(
)

+

G
e
t
M
a
t
r
i
x
(
)

+

S
e
t
M
a
t
r
i
x
(
)

+

M
x
p
y
(
)

+

M
T
x
p
y
(
)

+

P
r
i
n
t
(
)

M
P
I
V
a
r
C
o
u
p
l
e
d
J
a
c
o
b
i
a
n

-

n
r
o
w
s
_

-

n
c
o
l
s
_

-

n
b
l
o
c
k
s
_

-

b
l
o
c
k
_
i
d
x
_

-

J
c
i
_

-

L
i
_

-

Q
i
_

-

m
p
i
w
_

+

M
P
I
V
a
r
C
o
u
p
l
e
d
J
a
c
o
b
i
a
n
(
)

+

~
M
P
I
V
a
r
C
o
u
p
l
e
d
J
a
c
o
b
i
a
n
(
)

+

N
R
o
w
s
(
)

+

N
C
o
l
s
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

G
e
t
J
c
(
)

+

G
e
t
J
c
(
)

+

S
e
t
J
c
(
)

+

G
e
t
L
(
)

+

G
e
t
Q
(
)

+

M
x
p
y
(
)

+

M
T
x
p
y
(
)

+

P
r
i
n
t
(
)

S
y
m
B
l
o
c
k
M
a
t
r
i
x

-

n
R
o
w
C
o
l
s
_

-

r
o
w
c
o
l
_
s
i
z
e
s
_

-

n
B
l
o
c
k
R
o
w
C
o
l
s
_

-

m
a
t
_
b
l
o
c
k
s
_

-

m
a
t
_
o
w
n
e
d
_

+

S
y
m
B
l
o
c
k
M
a
t
r
i
x
(
)

+

~
S
y
m
B
l
o
c
k
M
a
t
r
i
x
(
)

+

N
R
o
w
s
(
)

+

N
C
o
l
s
(
)

+

N
B
l
o
c
k
s
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

N
N
o
n
z
e
r
o
s
(
)

+

F
i
l
l
S
p
a
r
s
e
S
t
r
u
c
t
u
r
e
(
)

+

F
i
l
l
S
p
a
r
s
e
V
a
l
u
e
s
(
)

+

M
x
p
y
(
)

+

N
B
l
o
c
k
R
o
w
C
o
l
s
(
)

+

S
e
t
B
l
o
c
k
(
)

+

G
e
t
B
l
o
c
k
(
)

+

G
e
t
B
l
o
c
k
(
)

+

E
x
t
r
a
c
t
C
o
l
u
m
n
(
)

+

E
x
t
r
a
c
t
R
o
w
(
)

+

P
r
i
n
t
(
)

+

W
r
i
t
e
M
a
t
l
a
b
I
n
p
u
t
(
)

+

S
c
h
u
r
C
o
l
u
m
n
U
p
d
a
t
e
(
)

+

G
e
t
R
o
w
C
o
l
S
i
z
e
s
(
)

-

S
y
m
B
l
o
c
k
M
a
t
r
i
x
(
)

S
y
m
D
e
n
s
e
M
a
t
r
i
x

-

n
R
o
w
s
C
o
l
s
_

-

v
a
l
u
e
s
_

+

S
y
m
D
e
n
s
e
M
a
t
r
i
x
(
)

+

~
S
y
m
D
e
n
s
e
M
a
t
r
i
x
(
)

+

N
R
o
w
s
(
)

+

N
C
o
l
s
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

N
N
o
n
z
e
r
o
s
(
)

+

F
i
l
l
S
p
a
r
s
e
S
t
r
u
c
t
u
r
e
(
)

+

F
i
l
l
S
p
a
r
s
e
V
a
l
u
e
s
(
)

+

V
a
l
u
e
s
(
)

+

V
a
l
u
e
s
(
)

+

N
V
a
l
u
e
s
(
)

+

S
e
t
A
l
l
E
n
t
r
i
e
s
(
)

+

S
e
t
D
i
a
g
E
n
t
r
i
e
s
(
)

+

A
d
d
D
i
a
g
E
n
t
r
i
e
s
(
)

+

A
d
d
D
i
a
g
E
n
t
r
i
e
s
(
)

+

E
x
t
r
a
c
t
C
o
l
u
m
n
(
)

+

S
c
h
u
r
C
o
l
u
m
n
U
p
d
a
t
e
(
)

+

A
d
d
T
o
C
o
l
u
m
n
(
)

+

M
x
p
y
(
)

+

C
h
o
l
e
s
k
y
F
a
c
t
o
r
A
n
d
S
o
l
v
e
(
)

+

C
h
o
l
e
s
k
y
F
a
c
t
o
r
A
n
d
S
o
l
v
e
(
)

+

P
r
i
n
t
(
)

+

W
r
i
t
e
M
a
t
l
a
b
I
n
p
u
t
(
)

+

R
e
a
d
M
a
t
r
i
x
(
)

+

P
r
i
n
t
S
t
a
t
s
(
)

-

a
l
l
o
c
a
t
e
_
e
n
t
r
i
e
s
(
)

-

d
e
l
e
t
e
_
e
n
t
r
i
e
s
(
)

S
y
m
F
u
l
l
D
e
n
s
e
M
a
t
r
i
x

-

n
R
o
w
s
C
o
l
s
_

-

v
a
l
u
e
s
_

+

S
y
m
F
u
l
l
D
e
n
s
e
M
a
t
r
i
x
(
)

+

~
S
y
m
F
u
l
l
D
e
n
s
e
M
a
t
r
i
x
(
)

+

N
R
o
w
s
(
)

+

N
C
o
l
s
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

N
N
o
n
z
e
r
o
s
(
)

+

V
a
l
u
e
s
(
)

+

S
e
t
A
l
l
E
n
t
r
i
e
s
(
)

+

S
e
t
D
i
a
g
E
n
t
r
i
e
s
(
)

+

A
d
d
D
i
a
g
E
n
t
r
i
e
s
(
)

+

M
x
p
y
(
)

+

M
p
x
x
T
(
)

+

M
p
x
y
T
p
y
x
T
(
)

+

P
r
i
n
t
(
)

-

S
y
m
F
u
l
l
D
e
n
s
e
M
a
t
r
i
x
(
)

S
y
m
C
o
o
r
d
M
a
t
r
i
x

+

S
y
m
C
o
o
r
d
M
a
t
r
i
x
(
)

+

S
y
m
C
o
o
r
d
M
a
t
r
i
x
(
)

+

S
y
m
C
o
o
r
d
M
a
t
r
i
x
(
)

+

I
s
S
y
m
m
e
t
r
i
c
(
)

+

M
x
p
y
(
)

+

M
T
x
p
y
(
)

+

S
e
t
D
i
m
e
n
s
i
o
n
s
(
)

+

S
e
t
E
n
t
r
i
e
s
(
)

+

R
e
a
d
M
a
t
r
i
x
(
)

+

E
x
t
r
a
c
t
C
o
l
u
m
n
(
)

+

E
x
t
r
a
c
t
R
o
w
(
)

+

S
e
t
F
r
o
m
D
e
n
s
e
M
a
t
r
i
x
(
)

+

P
r
i
n
t
(
)

+

W
r
i
t
e
M
a
t
l
a
b
I
n
p
u
t
(
)

+

P
r
i
n
t
S
t
a
t
s
(
)

-

S
y
m
C
o
o
r
d
M
a
t
r
i
x
(
)

F
ig

u
re

4.
4:

C
la

ss
d
ia

gr
am

fo
r
M
a
t
r
i
x

47

K
K
T
L
i
n
e
a
r
S
o
l
v
e
r

-

d
e
l
t
a
_
w
_
l
a
s
t
_

+

K
K
T
L
i
n
e
a
r
S
o
l
v
e
r
(
)

+

~
K
K
T
L
i
n
e
a
r
S
o
l
v
e
r
(
)

+

S
o
l
v
e
(
)

-

K
K
T
L
i
n
e
a
r
S
o
l
v
e
r
(
)

-

o
p
e
r
a
t
o
r
=
(
)

F
u
l
l
S
p
a
c
e
L
i
n
e
a
r
S
o
l
v
e
r

-

d
e
l
t
a
_
w
_
l
a
s
t
_

-

l
i
n
s
o
l
v
e
r

+

F
u
l
l
S
p
a
c
e
L
i
n
e
a
r
S
o
l
v
e
r
(
)

+

~
F
u
l
l
S
p
a
c
e
L
i
n
e
a
r
S
o
l
v
e
r
(
)

+

S
o
l
v
e
(
)

M
P
I
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
L
i
n
e
a
r
S
o
l
v
e
r

-

i
d
x
_

-

n
b
l
o
c
k
s
_

-

b
l
o
c
k
_
s
y
s
t
e
m
_

-

d
i
a
g
_
H
_
q
_

-

d
i
a
g
_
H
_
q
_
o
r
g
_

-

r
h
s
_
q
_

-

r
h
s
_
q
_
o
r
g
_

-

s
o
l
n
_
q
_

-

s
o
l
n
_
q
_
o
r
g
_

-

S
_

-

H
_

-

s
o
l
n
_
q
_
o
l
d
_

-

r
h
s
_
q
_
o
l
d
_

-

r
h
s
_
q
_
n
e
w
_

-

f
l
a
g
_

-

s
c
a
l
e
_

-

d
e
l
t
a
_
w
_
l
a
s
t
_

-

p
r
e
q
n
_

-

p
r
e
q
n
s
a
m
p
l
e
_

-

S
_
p
r
o
x
_
i
n
v
_

-

m
u
_
l
a
s
t
_

-

m
p
i
w
_

-

l
i
n
s
o
l
v
e
r
_

+

M
P
I
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
L
i
n
e
a
r
S
o
l
v
e
r
(
)

+

~
M
P
I
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
L
i
n
e
a
r
S
o
l
v
e
r
(
)

+

S
o
l
v
e
(
)

+

E
x
t
r
a
c
t
B
l
o
c
k
s
(
)

+

D
o
S
y
m
b
o
l
i
c
F
a
c
t
o
r
i
z
a
t
i
o
n
O
f
K
B
l
o
c
k
s
(
)

+

D
o
N
u
m
e
r
i
c
F
a
c
t
o
r
i
z
a
t
i
o
n
O
f
K
B
l
o
c
k
s
(
)

+

D
o
N
u
m
e
r
i
c
F
a
c
t
o
r
i
z
a
t
i
o
n
O
f
K
B
l
o
c
k
s
(
)

+

F
o
r
m
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
R
h
s
(
)

+

F
o
r
m
A
n
d
S
o
l
v
e
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
(
)

+

S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
D
o
t
X
(
)

+

B
f
g
s
U
p
d
a
t
e
(
)

+

P
c
g
S
o
l
v
e
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
(
)

+

S
o
l
v
e
B
l
o
c
k
V
a
r
i
a
b
l
e
s
(
)

+

D
e
l
e
t
e
E
x
t
r
a
c
t
e
d
P
i
e
c
e
s
(
)

+

U
p
d
a
t
e
S
C
D
e
l
t
a
W
(
)

+

D
a
m
p
e
d
B
F
G
S
U
p
d
a
t
e
(
)

+

R
e
a
d
S
p
r
o
x
I
n
v
(
)

M
P
I
S
t
r
o
n
g
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
L
i
n
e
a
r
S
o
l
v
e
r

-

i
d
x
_

-

n
t
a
s
k
s
_

-

f
l
a
g
_

-

n
b
l
o
c
k
s
_

-

s
o
l
v
e
r
s
_

-

b
l
o
c
k
_
s
y
s
t
e
m
s
_

-

d
i
a
g
_
H
_
q
_

-

d
i
a
g
_
H
_
q
_
o
r
g
_

-

r
h
s
_
q
_

-

r
h
s
_
q
_
o
r
g
_

-

s
o
l
n
_
q
_

-

s
o
l
n
_
q
_
o
r
g
_

-

S
_

-

H
_

-

s
o
l
n
_
q
_
o
l
d
_

-

r
h
s
_
q
_
o
l
d
_

-

r
h
s
_
q
_
n
e
w
_

-

s
c
a
l
e
_

-

d
e
l
t
a
_
w
_
l
a
s
t
_

-

p
r
e
q
n
_

-

p
r
e
q
n
s
a
m
p
l
e
_

-

S
_
p
r
o
x
_
i
n
v
_

-

m
u
_
l
a
s
t
_

-

t
o
t
a
l
_
c
g
_
i
t
e
r
_

-

m
p
i
w
_

+

M
P
I
S
t
r
o
n
g
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
L
i
n
e
a
r
S
o
l
v
e
r
(
)

+

~
M
P
I
S
t
r
o
n
g
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
L
i
n
e
a
r
S
o
l
v
e
r
(
)

+

S
o
l
v
e
(
)

+

E
x
t
r
a
c
t
B
l
o
c
k
s
(
)

+

D
o
S
y
m
b
o
l
i
c
F
a
c
t
o
r
i
z
a
t
i
o
n
O
f
K
B
l
o
c
k
s
(
)

+

D
o
N
u
m
e
r
i
c
F
a
c
t
o
r
i
z
a
t
i
o
n
O
f
K
B
l
o
c
k
s
(
)

+

F
o
r
m
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
R
h
s
(
)

+

F
o
r
m
A
n
d
S
o
l
v
e
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
(
)

+

S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
D
o
t
X
(
)

+

B
f
g
s
U
p
d
a
t
e
(
)

+

P
c
g
S
o
l
v
e
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
(
)

+

S
o
l
v
e
B
l
o
c
k
V
a
r
i
a
b
l
e
s
(
)

+

D
e
l
e
t
e
E
x
t
r
a
c
t
e
d
P
i
e
c
e
s
(
)

+

U
p
d
a
t
e
S
C
D
e
l
t
a
W
(
)

+

D
a
m
p
e
d
B
F
G
S
U
p
d
a
t
e
(
)

+

R
e
a
d
S
p
r
o
x
I
n
v
(
)

S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
L
i
n
e
a
r
S
o
l
v
e
r

-

f
l
a
g
_

-

n
b
l
o
c
k
s
_

-

s
o
l
v
e
r
s
_

-

b
l
o
c
k
_
s
y
s
t
e
m
s
_

-

d
i
a
g
_
H
_
q
_

-

d
i
a
g
_
H
_
q
_
o
r
g
_

-

r
h
s
_
q
_

-

r
h
s
_
q
_
o
r
g
_

-

s
o
l
n
_
q
_

-

s
o
l
n
_
q
_
o
r
g
_

-

S
_

-

H
_

-

s
o
l
n
_
q
_
o
l
d
_

-

r
h
s
_
q
_
o
l
d
_

-

r
h
s
_
q
_
n
e
w
_

-

s
c
a
l
e
_

-

d
e
l
t
a
_
w
_
l
a
s
t
_

-

p
r
e
q
n
_

-

p
r
e
q
n
s
a
m
p
l
e
_

-

S
_
p
r
o
x
_
i
n
v
_

-

m
u
_
l
a
s
t
_

-

t
o
t
a
l
_
c
g
_
i
t
e
r
_

+

S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
L
i
n
e
a
r
S
o
l
v
e
r
(
)

+

~
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
L
i
n
e
a
r
S
o
l
v
e
r
(
)

+

S
o
l
v
e
(
)

+

E
x
t
r
a
c
t
B
l
o
c
k
s
(
)

+

D
o
S
y
m
b
o
l
i
c
F
a
c
t
o
r
i
z
a
t
i
o
n
O
f
K
B
l
o
c
k
s
(
)

+

D
o
N
u
m
e
r
i
c
F
a
c
t
o
r
i
z
a
t
i
o
n
O
f
K
B
l
o
c
k
s
(
)

+

D
o
N
u
m
e
r
i
c
F
a
c
t
o
r
i
z
a
t
i
o
n
O
f
K
B
l
o
c
k
s
(
)

+

F
o
r
m
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
R
h
s
(
)

+

F
o
r
m
A
n
d
S
o
l
v
e
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
(
)

+

F
o
r
m
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
(
)

+

P
r
i
n
t
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
(
)

+

S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
D
o
t
X
(
)

+

B
f
g
s
U
p
d
a
t
e
(
)

+

P
c
g
S
o
l
v
e
S
c
h
u
r
C
o
m
p
l
e
m
e
n
t
(
)

+

S
o
l
v
e
B
l
o
c
k
V
a
r
i
a
b
l
e
s
(
)

+

D
e
l
e
t
e
E
x
t
r
a
c
t
e
d
P
i
e
c
e
s
(
)

+

U
p
d
a
t
e
S
C
D
e
l
t
a
W
(
)

+

D
a
m
p
e
d
B
F
G
S
U
p
d
a
t
e
(
)

+

Q
P
C
o
m
p
a
r
e
S
P
(
)

+

R
e
a
d
S
p
r
o
x
I
n
v
(
)

F
ig

u
re

4.
5:

C
la

ss
d
ia

gr
am

fo
r
K
K
T
L
i
n
e
a
r
S
o
l
v
e
r

48

approach (PCGSC-S). MA27/MA57 is used to solve each of the individual WL

blocks, and LAPACK is used to solve the Schur-complement.

• MPISchurComplementLinearSolver, MPIStrongSchurComplementLinearSolver:

These classes implement the parallel Schur-complement approaches (ESC-P)

and (PCGSC-P). These two classes differ in the way they handle the decom-

position when the number of processors is smaller than the number of blocks.

In one case, the blocks are aggregated, and the algorithm sees the same num-

ber of blocks as processors. In the other case, the blocks are still divided as

small as possible, and one process handles several blocks (much like the serial

approach).

Since these classes implement the primary parallel effort in this dissertation, further

discussion is given on their implementation. Figures 4.6 through 4.8, shows the

structure of the KKT matrix for a 4-block problem. The original structure is shown

in Figure 4.6, where its hessian is a diagonal block matrix and its Jacobian is also

block structured, where each block is coupled by the terms corresponding to the

common variables. This KKT matrix can be arranged using some row and column

permutation to generate an arrowhead structure, shown in Figure 4.7. Much of the

structure within the blocks is ignored in the mathematical representation, and the

system is usually written as shown in Figure 4.8. It should be noted, however, that

both the Wl and Al blocks have additional structure that can be seen in Figure 4.7

and is used in the implementations.

It should also be noted that each process only owns the portions of the block

structure that are necessary to perform their portion of the computations. No single

process owns the full KKT system. To see how this is done, consider the parallel

explicit Schur-complement approach (ESC-P). Recall the expression for the Schur-

49

Figure 4.6: Original KKT matrix structure for a 4-block problem

Figure 4.7: Permuted KKT matrix structure for a 4-block problem

complement,

Sk = δkHI −
∑
l∈N

ATl
(
W k
l

)−1
Al.

50

K1

K2

K3

K4

AT
1 AT

2 AT
3 AT

4

A4

A3

A2

A1W1

W2

W3

W4

Figure 4.8: Permuted KKT matrix structure for a 4-block problem with mathemat-
ical denotation

If we have the same number of processors as we do blocks, then each processor can

form one element of the summation. We can see then that each processor l only

needs access to Al and Wl. Thus, the KKT matrix can be stored distributed, as

shown in Figure 4.9. Although not shown in this diagram, we can, of course, assign

one or multiple blocks to one processor. This process ownership is both effective

and convenient, since individual NLP objects can be used to provide the hessian and

Jacobians for each of the blocks. More details on this are given below.

4.2.4 NLP and Derived Classes

The InteriorPointSolver interacts with the problem representation through

the NLP base class. This class has a number of pure virtual functions that must

be implemented in the derived classes to provide information and evaluation of the

model. The public methods of the NLP class are shown below.

51

W1

W2

Wn

�HI

�v1

�v2

�vn

�d

r1

r2

rn

rd

Figure 4.9: Representation of the permuted KKT system with blocks colored accord-
ing to process ownership

Public Member Functions

• NLP ()

Standard constructor

• virtual ∼NLP ()

Standard destructor

• virtual int Nx () const =0

Return the number of variables in the problem

• virtual int Nc () const =0

Return the number of constraints in the problem

• virtual Vector ∗ create new x vector () const =0

Return a new instance of the variable vector as a Vector base class. This

method is necessary since the InteriorPointSolver does not know about

specific derived classes. It will instead call this method when it needs a new x

52

vector, and the method will create the derived class, and return a pointer to

the base class.

• virtual Vector ∗ create new c vector () const =0

Return a new instance of the constraint vector as a Vector base class. This

method is necessary since the InteriorPointSolver does not know about

specific derived classes. It will instead call this method when it needs a new c

vector, and the method will create the derived class, and return a pointer to

the base class.

• virtual Matrix ∗ create new jc matrix () const =0

Return a new instance of the Jacobian matrix as a Matrix base class. This

method is necessary since the InteriorPointSolver does not know about

specific derived classes. It will instead call this method when it needs a new

Jacobian instance, and the method will create the derived class, and return a

pointer to the base class.

• virtual Matrix ∗ create new hes lag matrix () const =0

Return a new instance of the Hessian matrix as a Matrix base class. This

method is necessary since the InteriorPointSolver does not know about

specific derived classes. It will instead call this method when it needs a new

Hessian instance, and the method will create the derived class, and return a

pointer to the base class.

• virtual void get x l (Vector &xl) const =0

Return the lower bounds on x

• virtual void get x u (Vector &xu) const =0

Return the upper bounds on x

53

• virtual void get x init (Vector &x init) const =0

Return the initial values for x

• virtual void eval obj (const Vector &x, double &f)=0

Return the value of the objective function at the point x

• virtual void eval equal con (const Vector &x, Vector &c)=0

Return the residuals of the equality constraints at the point x

• virtual void eval all (const Vector &x, const Vector &lam c, double &f, Vector

&c, Vector &deriv f, Matrix &jac c, Matrix &hes lag)=0

Return the value of the all model quantities at the point x

• virtual void report solution (const Vector &x, const Vector &lam c)

Once the algorithm has solved, it will call this method to allow the NLP to

report the solution appropriately.

There are a number of specific implementations of the NLP class, as shown in the

class diagram given in Figure 4.10.

54

N
L
P

+

N
L
P
(
)

+

~
N
L
P
(
)

+

N
x
(
)

+

N
c
(
)

+

c
r
e
a
t
e
_
n
e
w
_
x
_
v
e
c
t
o
r
(
)

+

c
r
e
a
t
e
_
n
e
w
_
c
_
v
e
c
t
o
r
(
)

+

c
r
e
a
t
e
_
n
e
w
_
j
c
_
m
a
t
r
i
x
(
)

+

c
r
e
a
t
e
_
n
e
w
_
h
e
s
_
l
a
g
_
m
a
t
r
i
x
(
)

+

g
e
t
_
x
_
l
(
)

+

g
e
t
_
x
_
u
(
)

+

g
e
t
_
x
_
i
n
i
t
(
)

+

e
v
a
l
_
o
b
j
(
)

+

e
v
a
l
_
e
q
u
a
l
_
c
o
n
(
)

+

e
v
a
l
_
a
l
l
(
)

+

r
e
p
o
r
t
_
s
o
l
u
t
i
o
n
(
)

A
m
p
l
N
L
P

-

a
m
p
l
_

-

n
_
x
_

-

n
_
c
_

-

n
n
z
_
j
a
c
_
c
_

-

n
n
z
_
h
e
s
_
l
a
g
_

-

x
_
l
_

-

x
_
u
_

-

x
_
i
n
i
t
_

-

l
a
m
_
i
n
i
t
_

+

A
m
p
l
N
L
P
(
)

+

~
A
m
p
l
N
L
P
(
)

+

N
x
(
)

+

N
c
(
)

+

c
r
e
a
t
e
_
n
e
w
_
x
_
v
e
c
t
o
r
(
)

+

c
r
e
a
t
e
_
n
e
w
_
c
_
v
e
c
t
o
r
(
)

+

c
r
e
a
t
e
_
n
e
w
_
j
c
_
m
a
t
r
i
x
(
)

+

c
r
e
a
t
e
_
n
e
w
_
h
e
s
_
l
a
g
_
m
a
t
r
i
x
(
)

+

g
e
t
_
x
_
l
(
)

+

g
e
t
_
x
_
u
(
)

+

g
e
t
_
x
_
i
n
i
t
(
)

+

g
e
t
_
l
a
m
_
i
n
i
t
(
)

+

e
v
a
l
_
o
b
j
(
)

+

e
v
a
l
_
e
q
u
a
l
_
c
o
n
(
)

+

e
v
a
l
_
a
l
l
(
)

+

r
e
p
o
r
t
_
s
o
l
u
t
i
o
n
(
)

-

A
m
p
l
N
L
P
(
)

-

A
m
p
l
N
L
P
(
)

-

o
p
e
r
a
t
o
r
=
(
)

M
P
I
V
a
r
C
o
u
p
l
e
d
B
l
o
c
k
N
L
P

-

n
b
l
o
c
k
s
_

-

b
l
o
c
k
_
i
d
x
_

-

n
l
p
_

-

L
_

-

Q
_

-

l
_
t
e
m
p
l
a
t
e
_

-

q
_
t
e
m
p
l
a
t
e
_

-

o
w
n
e
r
_
r
a
n
k
_

-

m
p
i
w
_

-

n
_
x
_

-

n
_
c
_

-

b
l
o
c
k
_
s
i
z
e
s
_
x
_

-

o
w
n
e
r
_
r
a
n
k
_
x
_

-

b
l
o
c
k
_
s
i
z
e
s
_
c
_

-

o
w
n
e
r
_
r
a
n
k
_
c
_

+

M
P
I
V
a
r
C
o
u
p
l
e
d
B
l
o
c
k
N
L
P
(
)

+

~
M
P
I
V
a
r
C
o
u
p
l
e
d
B
l
o
c
k
N
L
P
(
)

+

N
x
(
)

+

N
c
(
)

+

c
r
e
a
t
e
_
n
e
w
_
x
_
v
e
c
t
o
r
(
)

+

c
r
e
a
t
e
_
n
e
w
_
c
_
v
e
c
t
o
r
(
)

+

c
r
e
a
t
e
_
n
e
w
_
j
c
_
m
a
t
r
i
x
(
)

+

c
r
e
a
t
e
_
n
e
w
_
h
e
s
_
l
a
g
_
m
a
t
r
i
x
(
)

+

g
e
t
_
x
_
l
(
)

+

g
e
t
_
x
_
u
(
)

+

g
e
t
_
x
_
i
n
i
t
(
)

+

e
v
a
l
_
o
b
j
(
)

+

e
v
a
l
_
e
q
u
a
l
_
c
o
n
(
)

+

e
v
a
l
_
a
l
l
(
)

-

M
P
I
V
a
r
C
o
u
p
l
e
d
B
l
o
c
k
N
L
P
(
)

-

M
P
I
V
a
r
C
o
u
p
l
e
d
B
l
o
c
k
N
L
P
(
)

-

o
p
e
r
a
t
o
r
=
(
)

M
P
I
V
a
r
C
o
u
p
l
e
d
M
u
l
t
i
B
l
o
c
k
N
L
P

-

n
p
r
o
c
e
s
s
o
r
s
_

-

n
b
l
o
c
k
s
_

-

n
t
a
s
k
s
_

-

i
d
x
_

-

n
l
p
s
_

-

L
s
_

-

Q
s
_

-

l
s
_

-

q
_

-

o
w
n
e
r
_
r
a
n
k
_

-

m
p
i
w
_

-

n
_
x
_

-

n
_
c
_

-

b
l
o
c
k
_
s
i
z
e
s
_
x
_

-

o
w
n
e
r
_
r
a
n
k
_
x
_

-

b
l
o
c
k
_
s
i
z
e
s
_
c
_

-

o
w
n
e
r
_
r
a
n
k
_
c
_

-

o
w
n
e
r
_
r
a
n
k
_
j
a
c
_

-

o
w
n
e
r
_
r
a
n
k
_
h
e
s
_

+

M
P
I
V
a
r
C
o
u
p
l
e
d
M
u
l
t
i
B
l
o
c
k
N
L
P
(
)

+

~
M
P
I
V
a
r
C
o
u
p
l
e
d
M
u
l
t
i
B
l
o
c
k
N
L
P
(
)

+

N
x
(
)

+

N
c
(
)

+

c
r
e
a
t
e
_
n
e
w
_
x
_
v
e
c
t
o
r
(
)

+

c
r
e
a
t
e
_
n
e
w
_
c
_
v
e
c
t
o
r
(
)

+

c
r
e
a
t
e
_
n
e
w
_
j
c
_
m
a
t
r
i
x
(
)

+

c
r
e
a
t
e
_
n
e
w
_
h
e
s
_
l
a
g
_
m
a
t
r
i
x
(
)

+

g
e
t
_
x
_
l
(
)

+

g
e
t
_
x
_
u
(
)

+

g
e
t
_
x
_
i
n
i
t
(
)

+

e
v
a
l
_
o
b
j
(
)

+

e
v
a
l
_
e
q
u
a
l
_
c
o
n
(
)

+

e
v
a
l
_
a
l
l
(
)

-

M
P
I
V
a
r
C
o
u
p
l
e
d
M
u
l
t
i
B
l
o
c
k
N
L
P
(
)

-

M
P
I
V
a
r
C
o
u
p
l
e
d
M
u
l
t
i
B
l
o
c
k
N
L
P
(
)

-

o
p
e
r
a
t
o
r
=
(
)

V
a
r
C
o
u
p
l
e
d
B
l
o
c
k
N
L
P

-

n
l
p
s
_

-

L
s
_

-

Q
s
_

-

l
s
_

-

q
_

-

n
_
x
_

-

n
_
c
_

+

V
a
r
C
o
u
p
l
e
d
B
l
o
c
k
N
L
P
(
)

+

~
V
a
r
C
o
u
p
l
e
d
B
l
o
c
k
N
L
P
(
)

+

N
x
(
)

+

N
c
(
)

+

c
r
e
a
t
e
_
n
e
w
_
x
_
v
e
c
t
o
r
(
)

+

c
r
e
a
t
e
_
n
e
w
_
c
_
v
e
c
t
o
r
(
)

+

c
r
e
a
t
e
_
n
e
w
_
j
c
_
m
a
t
r
i
x
(
)

+

c
r
e
a
t
e
_
n
e
w
_
h
e
s
_
l
a
g
_
m
a
t
r
i
x
(
)

+

g
e
t
_
x
_
l
(
)

+

g
e
t
_
x
_
u
(
)

+

g
e
t
_
x
_
i
n
i
t
(
)

+

e
v
a
l
_
o
b
j
(
)

+

e
v
a
l
_
e
q
u
a
l
_
c
o
n
(
)

+

e
v
a
l
_
a
l
l
(
)

-

V
a
r
C
o
u
p
l
e
d
B
l
o
c
k
N
L
P
(
)

-

V
a
r
C
o
u
p
l
e
d
B
l
o
c
k
N
L
P
(
)

-

o
p
e
r
a
t
o
r
=
(
)

F
ig

u
re

4.
10

:
C

la
ss

d
ia

gr
am

fo
r
N
L
P

55

To understand how the derived NLP classes are used, we first consider again the

structured nonlinear programming problem,

min
xl,d

∑
l∈N

fl (xl)

s.t. cl (xl) = 0 ∀ l ∈ N

xl ≤ xl ≤ x̄l ∀ l ∈ N

Plxl − P d
l d = 0 ∀ l ∈ N .

As indicated in Section 3 the structured NLP, can be easily reconstructed from

separate instances of a nonlinear programming problem for each block and some

description of the indices of the dummy coupling variables within each block. The

objective function is simply a sum over the different blocks, and the coupling can be

easily described by defining the permutation matrices. Therefore, in this software

implementation, the decomposition algorithms are actually given a list of NLP repre-

sentations. They can then build the full problem (in serial, or distributed in parallel)

to send to the InteriorPointSolver. In this fashion, the VarCoupledBlockNLP

takes in a list of NLP objects (in the constructor, and implements the serial rep-

resentation of structured problem shown above. Likewise, the parallel versions,

MPIVarCoupledBlockNLP, and MPIVarCoupledMultiBlockNLP take in a list of NLP

objects (where NULL values are present if a particular block is not owned by this

process), and aggregate these objects into a parallel distributed representation of the

structured problem. This is a common composite software design pattern.

Our implementation also includes AmplNLP, an interface to the Ampl Solver Li-

brary (ASL) (Fourer et al., 1993), that allows solution of problems formulated in .nl

format. This is the format used in the common modeling environment, AMPL, and

56

other modeling languages, like Pyomo. The decomposition implementations make

use of a separate .nl file for each block in the problem with separate instances of

the AMPL Solver Library for each block, allowing parallel evaluation of the NLP

quantities. As shown in Figure 4.11, each block has its own NLP object, which is

actually an instance of an AmplNLP. Through the AMPL solver library, each NLP

object provides the evaluation of objectives, constraints, gradients, hessians, etc, and

the higher-level NLP performs any necessary aggregation.

In order to generate nl files, we can use g prefixing in AMPL or AMPL Problem

Writer Plugin in Pyomo (Hart et al., 2012). There are several advantages in using

Pyomo. First, since it is a modeling language built upon python, it supports the

definition and solution of optimization applications using the rich Python scripting

environment. It is portable, can be used on most platforms. Moreover, it can produce

nl files for NLP problems, thus can be interfaced with any AMPL solvers. Finally,

it has flexible, extensible modeling and optimization capabilities. It allows custom

extensions for parallel construction and solution. It also allows the modelers to

leverage the high-level programming constructs for specific problem classes.

Figure 4.12 shows how we use Pyomo to build our custom parallel formulation.

First, based on the mathematical algebra of problem formulation, we build the related

Pyomo model, and generate the corresponding nl file for each block (process) using

the AMPL Problem Writer Plugin. Then for each nl file, we generate one AMPL

Solver Library (ASL) Object. Each ASL Object belongs to one process.

57

!"#"$$%$&'(!&

)*!(&
+,%$&)!(&)*!(&

+,%$&)!(& -&)*!(&
*+,%$&

)*!(&
*+,%$&

-&'(!&./0%12&
&
&

'(!&./0%12&
&
&

'(!&./0%12&
&
&

'(!&./0%12&
&
&

345& 346& 347& 348&

Figure 4.11: Parallel implementation with AMPL Solver Library (ASL) interfaced
NLP objects

Proc 1 Proc 2 Proc 3

Problem
Formulation

NL file 1 NL file 2 NL file 3

Pyomo

MPI Enabled
Interior-Point Method

ASL
Object

(Block 1)

ASL
Object

(Block 2)

ASL
Object

(Block 3)

Figure 4.12: Custom parallel implementation with Pyomo

58

5. STOCHASTIC OPTIMAL POWER FLOW WITH EXPLICIT

SCHUR-COMPLEMENT APPROACH∗

The parallel explicit Schur-complement approach based on nonlinear interior-

point methods is described in the previous few sections. This approach has been

demonstrated to have excellent scalability properties on several structured, large-

scale nonlinear programming problems from a variety of application areas (Word

et al., 2014; Laird and Biegler, 2008; Zavala et al., 2008; Zhu et al., 2011). In

this section, we test the performance of our implementation of the serial and parallel

explicit Schur-complement approach (ESC-S, and ESC-P) against the serial full-space

approach (FS-S) on an important problem in the area of optimal power management.

5.1 Contingency-constrained Alternating Current Optimal Power Flow (ACOPF)

In the traditional alternating current optimal power flow (ACOPF) problem we

seek to find the optimal generator setpoints that minimize operational costs while

satisfying load demands across an electrical transmission network. The ACOPF is

an important problem that has been studied for five decades, but solution of this

optimization problem is still challenging because of the large size of the system and

the nonlinearities of the model. The Federal Energy Regulatory Commission (FERC)

website lists several papers (Cain et al., 2012; O’Neill et al., 2012b,a; Castillo and

O’Neill, 2013b,a; Schecter and O’Neill, 2013; Lipka et al., 2013; Pirnia et al., 2013;

Campaigne et al., 2013) about the history, formulation, approximation, and solution

∗Part of this section is reprinted with permission from “Parallel solution of nonlinear
contingency-constrained network problems” by Kang, J., Siirola, J.D., Watson J. and Laird, C.D.,
2014. In: Proceedings of the 8th International Conference on Foundations of Computer-Aided
Process Design FOCAPD 2014, July 13-17, 2014, Cle Elum, Washington, USA, Copyright 2014
Elsevier B.V.

59

of the ACOPF problem. In their studies, they conclude that the rectangular IV

formulation performs better than the polar formulation for larger problems.

The electrical grid is a critical infrastructure, and in addition to reducing oper-

ational costs, one would like to guarantee that the system is resilient to failure. In

this section, we consider an extension to the traditional ACOPF problem, called the

contingency-constrained ACOPF problem. Using a rectangular IV formulation to

model AC power flow in the transmission network, we construct a nonlinear, multi-

scenario optimization formulation that minimizes the operating cost for the nominal

case while including a large number of contingency scenarios, where each scenario

considers failure of an individual transmission element. We solve the corrective form

of the problem, with terms added to the objective function to penalize deviations in

the control variables between the nominal case and the contingency case. Given the

number of potential failures in the network, these problems can become very large;

yet we need to solve them efficiently to rapidly determine new optimal operating

conditions over changing network demands.

For a realistic power network, with numerous contingencies considered, the over-

all problem size will increase dramatically, quickly exhausting the capabilities of

a single workstation. Fortunately, the structure of these multi-scenario problems

can be exploited to allow solution in parallel (Borges and Alves, 2007; Phan and

Kalagnanam, 2012). This problem is nonlinear (and non-convex), and interior-point

methods provide a powerful tool for local solution of these formulations (Capitanescu

et al., 2006; Phan and Kalagnanam, 2012). The dominant computational expense

in an interior-point method is the solution a linear system at each iteration arising

from a modified Newtons method, and a number of researchers have investigated

structure-exploiting approaches to allow parallel solution of this structured linear

system (Qiu et al., 2005; Lubin et al., 2011; Chiang et al., 2014; Kang et al., 2014).

60

In this section, we show that fast solution of the contingency-constrained ACOPF

problem is possible with our parallel implementation of the explicit Schur-complement

approach. The remainder of this section is organized as follows. Section 5.2 describes

the contingency-constrained ACOPF formulation. Numerical solution and timing

results are shown and discussed in Section 5.3. Finally, we present a numerical

comparison of our approach with an external partitioning approach, the progressive

hedging algorithm (Rockafellar and Wets, 1991) available in PySP as part of the

Pyomo modeling package.

5.2 Problem Formulation

When modelling the transmission network, we consider a rectangular IV formu-

lation. This model, shown below in equations (1a-1q), is based on the traditional

model for transmission lines as derived in the Matpower Users Manual (Zimmerman

and Murillo-S’anchez, 2011). All sets, parameters, and variables used in the model

are given in Table 1. The model includes relationships between voltages and current

as defined by the transmission network, bus current balances, constraints on required

61

power for all loads, and bounds that constrain operation within reasonable limits.

s.t.



ilfr

ilfj

iltr

iltj


= Ybr



vlfr

vlfj

vltr

vltj


ilSr
ilSj

 = Ysh

vbr
vbj


P l
t = (vb(t)r · iltr + v

b(t)
j · iltj)

Ql
t = (v

b(t)
j · iltr − vb(t)r · iltj)

P l
f = (vb(f)r · ilfr + v

b(f)
j · ilfj)

Ql
f = (v

b(f)
j · ilfr − vb(f)r · ilfj)

Slt = (P l
t)

2 + (Ql
t)

2

Slf = (P l
f)

2 + (Ql
f)

2

0 =
∑
l∈Bbin

iltr +
∑
l∈Bbout

ilfr + ibSr + idLr −
∑
g∈Gb

igGr

0 =
∑
l∈Bbin

iltj +
∑
l∈Bbout

ilfj + ibSj + idLj −
∑
g∈Gb

igGj

P d
L = (vdr · idLr + vdj · idLj)

Qd
L = (vdj · idLr − vdr · idLj)

P g
G = (vgr · i

g
Gr + vgj · i

g
Gj)

Qg
G = (vgj · i

g
Gr − v

g
r · i

g
Gj)

vbm = (vbr)
2 + (vbj)

2

v
b(ref)
j = 0

bounds on vbm, P
g
G, Q

g
G, S

l
f , S

l
t



l ∈ L

b ∈ B

g ∈ G

d ∈ D

(5.1)

62

Table 5.1: Set, Parameter and Variable Description

L set of all branches (transmission lines)
B set of all bus nodes
G set of all generators
D set of all buses that are loads (a subset of B)
Bbin all inlet branches to bus b
Bbout all outlet branches from bus b
Gb all generators at bus b
vbr, v

b
j real and complex components of the voltages (at each bus b)

vbm square of voltage magnitude (at each bus b)
P d
L, Q

d
L P and Q for each load d

P g
G, Q

g
G P and Q for each generator g

P l
f , Q

l
f P and Q at the from end of each branch (transmission line l)

P l
t , Q

l
t P and Q at the to end of each branch (transmission line l)

Slf S at the from end of each branch (transmission line l)
Slt S at the to end of each branch (transmission line l)

ilfr, i
l
fj real and complex components of the current at the from end of each

branch l
iltr, i

l
tj real and complex components of the current at the to end of each branch l

idLr, i
d
Lj real and complex components of the current for each load d

ibSr, i
b
Sj real and complex components of the current for the shunts

igGr, i
g
Gj real and complex components of the current for generators

When formulating the multi-scenario contingency-constrained model, we repeat

these equations for each contingency case, except we assume a single line failure

(modifying the corresponding entries in the transmission matrix) for each scenario.

The full multi-scenario optimization formulation is shown in equations (5.2) below,

where x0 and xc represent the state variables for normal operation (i.e., no failure

occurs) and the contingency cases, respectively. Vectors u0 and uc represent the

control variables for normal operation and the contingency cases (active generator

power in our studies).

63

min
x0,u0,xc,uc

f(u0) + ρ
∑
c∈C

fc (uc, u0) (5.2a)

s.t. g0 (x0, u0) = 0 (5.2b)

gc (xc, uc) = 0 ∀ c ∈ C (5.2c)

x0 ≤ x0 ≤ x̄0, u0 ≤ u0 ≤ ū0 (5.2d)

xc ≤ xc ≤ x̄c, uc ≤ uc ≤ ūc ∀ c ∈ C (5.2e)

Equations (5.2b) represent the complete network model corresponding to normal

operation, while equations (5.2c) represent the network models for each of the con-

tingency. The function f(u0) is a polynomial describing the generator operating cost.

The penalty function fc (uc, u0) is the sum of the square of the 2-norm of the devi-

ation between each vector uc and u0. However, other measures could be considered

instead, such as ramp rate constraints.

5.3 Parallel Timing Results

Problem (5.2) represents a large-scale nonlinear, non-convex optimization prob-

lem where each scenario is independent except for the coupling in the penalty term

between the normal case and the contingency cases. This multi-scenario problem is

formulated using Pyomo (Hart et al., 2012), a Python-based, mathematical program-

ming language. Pyomo allows formulation of the problem in parallel and produces

nl files that can be processed by our implementation to allow model evaluation and

solution in parallel.

For numerical timing, we consider the problem case118 distributed with Mat-

power 4.1. This test problem has 118 buses, 54 active generators, and 186 branches.

We first test our model by solving the single-scenario ACOPF problem with no con-

64

tingencies using our interior-point solver and comparing this with the optimal results

produced with Matpower. Both codes can solve the single-scenario ACOPF problem

quickly (less than a second on a 2.3 GHz Intel Core i5 MacBook Pro), obtaining the

same objective function value (129660.69 $/hr) and generator setpoints.

Next, we report timing on the multi-scenario problem with 128 scenarios in total.

We consider the normal operating scenario and 127 contingencies. The extensive form

of this problem contains approximately 400, 000 variables and 385, 000 constraints.

All timing results are wall-clock times obtained from the Red Mesa supercomputing

cluster at Sandia National Laboratories in Albuquerque, NM. This cluster is made up

of computing nodes each with two, 2.93 GHz quad-core, Nehalem X5570 processors

(giving 8 computing cores per node). Each node has 12 GB of DDR3 RAM. To

compute parallel speedup, we first solve the problem with two serial options in our

interior-point algorithm. The FS-S algorithm solves the full-space KKT system using

a direct linear solver, while the ESC-S algorithm solves the KKT system with the

explicit Schur-complement decomposition approach. FS-S solves the problem in 199

seconds and, as expected, the ESC-S algorithm is slower, solving the problem in

412 seconds. Next, we compare these timing results with the ESC-P algorithm, the

parallel explicit Schur-complement approach. Table (5.2) lists the timing results for

this problem as we increase the number of processors.

The total wall-clock time for solving this problem can be decreased dramatically

to less than 5 seconds with 128 processors. This represents an overall speedup of

approximately 90 times when compared to the ESC-S approach, and over 40 times

when compared with the FS-S approach.

65

Table 5.2: Strong Scaling Results for 128 Scenarios (127 Contingencies)

processors ESC-P Time(s)
Speedup Speedup

(based on ESC-S) (based on FS-S)
1 412.18 1.00 0.48
2 215.35 1.91 0.92
4 110.21 3.74 1.80
8 60.99 6.76 3.26
16 31.72 13.00 6.26
32 16.05 25.68 12.37
64 8.63 47.75 23.01
128 4.55 90.54 43.63

5.4 Comparison of Explicit Schur-Complement Approach with Progressive

Hedging Algorithm in Pyomo

In Sections 1 and 3 we discussed two broad classes of algorithms for parallel

decomposition in nonlinear programming: approaches that perform external parti-

tioning and approaches that perform internal partitioning. The class of algorithms

developed as part of this dissertation all employ internal partitioning. Recall that

while the external partitioning approach is less intrusive and easier to implement,

convergence rates and robustness are less favorable. In fact, many of these strategies

do not have convergence guarantees on general nonlinear problems. On the other

hand, the internal approach is more intrusive and harder to implement, but retains

favorable convergence properties of the host algorithm employed.

In this section, we compare parallel solution times of an external partitioning ap-

proach, the progressive hedging (PH) algorithm, with the explicit Schur-complement

approach on a variation of the contingency-constrained ACOPF problem described

earlier in this section. The PH approach is selected since Pyomo already includes an

interface between PySP (a stochastic programming extension) and the PH algorithm.

66

The progressive hedging algorithm is a special case of the alternating direction

method of multipliers (ADMM). Here, the basic idea behind progressive hedging is

described in the context of two-stage stochastic programming. The PH approach

allows for decoupling of scenarios by relaxing the non-anticipativity constraints to

produce independent subproblems. This approach then penalizes the deviation of

the first-stage variables with respect to estimates of the anticipative value for the

first-stage variables (selected as a weighted average between all scenarios from the

last iteration). This approach can be made parallel by solving the independent sub-

problems in parallel, while an outer loop serves to converge the first-stage variables.

Further details of this approach can be found in Rockafellar and Wets (1991); Feng

et al. (2015) and Gade et al. (2014).

5.4.1 Modified CCOPF Model†

This section describes the two-stage stochastic programming formulation for the

contingency-constrained ACOPF (CCOPF) that was modified to suite the PySP

framework. The first stage contains an optimal AC power flow formulation that

considers the generator costs subject to meeting the desired load specifications and

transmission constraints. The second stage considers a large number of potential con-

tingencies, including the high-probability event that normal operation will continue,

along with lower-probability events that consider breakage of one of the transmis-

sion elements. For each of these scenarios, we consider ramping constraints for the

generator power between stage 1 and stage 2. We consider all N−1 contingencies

except those that produced a standalone island with a single bus and a generator.

This restriction removes very few potential contingencies from consideration.

†The model described in this section was taken from work done by Dr. Laird in conjunction
with researchers at Sandia National Laboratories, and was not developed as part of this dissertation.
All numerical timing runs were conducted as part of this dissertation.

67

The complete extensive form of the problem formulation is given below, along

with a description of all the symbols in Table 5.3.

Table 5.3: List of Symbols for CCOPF Problem Formulation

Symbol Description

S Set of all scenarios

T Set of all stages (two stages considered here)

L Set of all transmission lines (branches)

B Set of all buses

G Set of all generators

H Set of all buses with a shunt

D Set of all buses with a specified load

Ib Set of all transmission lines going into bus b

Ob Set of all transmission lines going out of bus b

vrb,t,s, v
j
b,t,s Variables for real and complex voltage at bus b, stage t, and scenario s

PG
g,t,s, Q

G
g,t,s Variables for true (P) and reactive (Q) power for generator g, stage t,

and scenario s

PL
b,t,s, Q

L
b,t,s Variables for true (P) and reactive (Q) power delivered as load at bus

b, stage t, and scenario s

P̄L
b,t,s, Q̄

L
b,t,s Variables for the absolute value of the difference between desired and

delivered true (P) and reactive (Q) power at bus b, stage t, and scenario

s

P S
b,t,s, Q

S
b,t,s Variables for true (P) and reactive (Q) power through a shunt at bus

b, stage t, and scenario s

P f
l,t,s, Q

f
l,t,s Variables for true (P) and reactive (Q) power on the ‘from’ side of line

l for stage t and scenario s

68

Symbol Description

P t
l,t,s, Q

t
l,t,s Variables for true (P) and reactive (Q) power on the ‘to’ side of line l

for stage t and scenario s

ifrl,t,s, i
fj
l,t,s Variables for real and complex current on the ‘from’ side of line l for

stage t and scenario s

itrl,t,s, i
tj
l,t,s Variables for real and complex current on the ‘to’ side of line l for stage

t and scenario s

P ?L
b , Q?L

b Parameters for real (P) and reactive (Q) power desired as load at bus

b

P ?G
g,t,s, Q

?G
g,t,s Parameters for typical true (P) and reactive (Q) power for generator

g, stage t, and scenario s

ps Parameter values for the probability of scenario s

CG
g (·) Cost function for generator g dependent on true and reactive power.

CL Parameter for the value of lost load (incremental cost of not meeting

demand)

Yl,t,s Parameter matrix describing IV relationships for branch l, stage t, and

scenario s

Y S
b Parameter for shunt equation for bus b

SU Parameter for the upper bound on apparent power

PGL
g , PGU

g Parameters for the lower and upper bound on true (P) power for gen-

erator g

QGL
g , QGU

g Parameters for the lower and upper bound on reactive (Q) power for

generator g

PGR
g Parameters specifying the maximum ramp rate between stage 1 and 2

for generator g

69

Symbol Description

V L
b , V U

b Parameter for the lower and upper bound on voltage magnitude for bus

b

rb Index of reference bus

bf(l), bt(l) Function for the index of bus connected to the ‘from’ and ‘to’ side of

branch l

The stochastic programming formulation seeks to minimize the expected value

of operating cost across all the scenarios, indicated by S. Here, scenario index 0

refers to the scenario with continued normal operation, and the remaining indices

refer to contingencies. We consider a two-stage problem. Therefore the set of stages

T contains indices for the first-stage (1) and second-stage (2) only. Each stage

includes a full ACOPF formulation, therefore, each scenario contains two ACOPF

formulations, one for stage 1, and one for stage 2. For each stage and each scenario,

we consider a full nonlinear AC model for the transmission, and for large networks,

the extensive form is an extremely large, nonlinear stochastic programming problem

that is not tractable with standard desktop computing resources.

min
∑
s∈S

ps
∑
t∈T

[∑
g∈G

CG
g (PG

g,t,s, Q
G
g,t,s) + ρ1

∑
g∈G

[(
PG
g,t,s − P ?G

g,t,s

)2
+
(
QG
g,t,s −Q?G

g,t,s

)2]
+ρ2

∑
b∈D

[(
PL
b,t,s − P ?L

b

)2
+
(
QL
b,t,s −Q?L

b

)2]]
(5.3)

70

s.t.



ifrl,t,s

ifjl,t,s

itrl,t,s

itjl,t,s


= Yl,t,s



vrbf(l),t,s

vjbf(l),t,s

vrbt(l),t,s

vjbt(l),t,s


∀ l ∈ L, t ∈ T , s ∈ S (5.4)

P S
b,t,s = Y S

b

[
(vrb,t,s)

2 + (vjb,t,s)
2
]

∀ b ∈ H, t ∈ T , s ∈ S (5.5)

QS
b,t,s = −Y S

b

[
(vrb,t,s)

2 + (vjb,t,s)
2
]

∀ b ∈ H, t ∈ T , s ∈ S (5.6)

0 =
∑
l∈Ib

P t
l,t,s+

∑
l∈Ob

P f
l,t,s+P

S
b,t,s+P

L
b,t,s−PG

b,t,s ∀ b ∈ B, t ∈ T , s ∈ S (5.7)

0 =
∑
l∈Ib

Qt
l,t,s+

∑
l∈Ob

Qf
l,t,s+Q

S
b,t,s+Q

L
b,t,s−QG

b,t,s ∀ b ∈ B, t ∈ T , s ∈ S (5.8)

P f
l,t,s = vrbf(l),t,s · i

fr
l,t,s + vjbf(l),t,s · i

fj
l,t,s ∀ l ∈ L, t ∈ T , s ∈ S (5.9)

Qf
l,t,s = vjbf(l),t,s · i

fr
l,t,s − v

r
bf(l),t,s · i

fj
l,t,s ∀ l ∈ L, t ∈ T , s ∈ S (5.10)

P t
l,t,s = vrbt(l),t,s · itrl,t,s + vjbt(l),t,s · i

tj
l,t,s ∀ l ∈ L, t ∈ T , s ∈ S (5.11)

Qt
l,t,s = vjbt(l),t,s · i

tr
l,t,s − vrbt(l),t,s · i

tj
l,t,s ∀ l ∈ L, t ∈ T , s ∈ S (5.12)

vjrb,t,s = 0 ∀ t ∈ T , s ∈ S (5.13)

PL
b,1,s = P ?L

b ∀ b ∈ D, s ∈ S (5.14)

QL
b,1,s = Q?L

b ∀ b ∈ D, s ∈ S (5.15)

(SU)2 ≥ (P f
l,t,s)

2 + (Qf
l,t,s)

2 ∀ l ∈ L, t ∈ T , s ∈ S (5.16)

(SU)2 ≥ (P t
l,t,s)

2 + (Qt
l,t,s)

2 ∀ l ∈ L, t ∈ T , s ∈ S (5.17)

(V L
b)2 ≤ (vrb,t,s)

2 + (vjb,t,s)
2 ≤ (V U

b)2 ∀ b ∈ B, t ∈ T , s ∈ S (5.18)

PGL
g ≤ PG

g,t,s ≤ PGU
g ∀ g ∈ G, t ∈ T , s ∈ S (5.19)

QGL
g ≤ QG

g,t,s ≤ QGU
g ∀ g ∈ G, t ∈ T , s ∈ S (5.20)

−PGR
g ≤ PG

g,1,s − PG
g,2,s ≤ PGR

g ∀ g ∈ G, s ∈ S (5.21)

71

PG
g,1,0 = PG

g,2,0 ∀ g ∈ G (5.22)

QG
g,1,0 = QG

g,2,0 ∀ g ∈ G (5.23)

PG
g,1,0 = PG

g,1,s ∀ g ∈ G, s ∈ S/{0} (5.24)

QG
g,1,0 = QG

g,1,s ∀ g ∈ G, s ∈ S/{0} (5.25)

The objective function, shown in equation (5.3) is the expected value of the

operating costs across all scenarios. The parameter ps provides the probability of

scenario s, CG
g (PG

g,t,s, Q
G
g,t,s) is the cost function for generator g, which is typically

represented as a low-order polynomial function of the generator power output. This

function also includes a penalty term for not meeting the desired load at the buses.

Equations 5.4-5.13 give the physical model for the grid for every stage and sce-

nario. Equation (5.4) are the IV relationships for the transmission lines based on the

traditional π transmission model. The functions bf(l) and bt(l) return the indices

of the bus connected to the ‘from’ and ‘to’ side of branch l respectively. Equations

(5.5,5.6) model the shunts at all buses in H. Equations (5.7, 5.8) are power balances

around the bus. These expressions replace the traditional current balances and, in

our test problems, provide improved nonlinear convergence. In this formulation,

power values are positive if they are providing power to the bus, while negative if

they are drawing power from the bus, with the exception of the generator power

which is always listed as positive (explaining the negative sign in the balance). Also,

the shunt power, load power, and generator power terms do not exist on every bus,

and are only included when the buses contain those individual elements. Equations

(5.9-5.12) provide expressions for the power in the ‘from’ and ‘to’ sides of the trans-

mission element as a function of the corresponding voltages and currents. These are

necessary since there are bounds on the power allowed in individual transmission

72

lines. Equation (5.13) sets the voltage angle for the reference bus to zero.

We want to ensure that all loads are satisfied during normal operation, and

equations (5.14, 5.15) require that the loads in the first stage of each scenario match

the specified loads from the case definition. Equations (5.16-5.18) provide bounds on

power and voltage in the transmission elements, and equations (5.19, 5.20) provide

operating limits for the generators.

Ramping limits are provided in the case description for the generators and en-

forced in equation (5.21). These constraints enforce a bound on the rate of change

allowed in generator setpoint. Equations (5.22, 5.23) ensure that the optimal op-

erating condition is the same in the first and second stage for the single scenario

representing continued normal operation (scenario 0). Finally, equations (5.24, 5.25)

are the non-anticipativity constraints linking the first-stage variables across all the

scenarios.

5.4.2 Timing Results

The test problem case118 is used again with 128 total scenarios (127 contingen-

cies plus the continued nominal operation). Table 5.4 shows strong scaling results for

both the explicit Schur-complement approach and the progressive hedging approach.

The results of the explicit Schur-complement approach are not surprising, and match

very closely with those of the previous section. The explicit Schur-complement ap-

proach outperforms the progressive hedging approach in terms of overall solution for

all processor counts. Furthermore, the actual speedup value of the progressive hedg-

ing approach (based on the solution time for the full-space method) is quite poor,

and lower than the explicit Schur-complement approach by about a factor of three.

For this test problem, it should also be noted that the first-stage solution for all of

the independent sub-problems was very close, and PH only required a few iterations

73

for convergence. Given a more challenging problem, we expect significantly more

iterations for PH and worse overall performance. More interesting is the speedup of

the progressive hedging approach based on its own serial timing. This column of the

table appears to show superlinear speedup, but this should be considered carefully.

The overall solution time is worse than ESC-P, and the apparent superlinear speedup

is actually due to inefficiencies in the subproblem distribution code when the number

of processors is low (giving falsely high times for the serial code).

The results of this section show that the explicit Schur-complement approach is

an effective technique for optimization of these challenging stochastic optimization

problems on the power grid. Furthermore, these methods can be significantly faster

than external partitioning approaches. Nevertheless, these problems have relatively

few coupling variables (on the order of one hundred). For problems with significantly

more coupling, alternative algorithms need to be developed for efficient solution. The

numerical performance of the PCGSC approach on problems with more coupling

variables is discussed in detail in the next section.

74

T
ab

le
5.

4:
S
tr

on
g

S
ca

li
n
g

C
om

p
ar

is
on

b
et

w
ee

n
E

S
C

an
d

P
H

F
u

ll
-S

p
ac

e
E

x
p

li
ci

t
S

ch
u

r-
C

om
p

le
m

en
t

P
ro

gr
es

si
ve

H
ed

gi
n

g
S

p
ee

d
u

p
S

p
ee

d
u

p
S

p
ee

d
u

p
S

p
ee

d
u

p
#

p
ro

ce
ss

or
s

T
im

e(
s)

T
im

e(
s)

(b
as

ed
on

E
S

C
-S

)
(b

as
ed

on
F

S
-S

)
T

im
e(

s)
(b

as
ed

on
P

H
-S

)
(b

as
ed

on
F

S
-S

)
1.

00
49

.8
2

10
9.

11
1.

00
0.

46
37

8.
77

1.
00

0.
13

4.
00

-
27

.7
4

3.
93

1.
80

78
.4

1
4.

83
0.

64
8.

00
-

14
.7

8
7.

38
3.

37
37

.0
8

10
.2

1
1.

34
16

.0
0

-
8.

53
12

.8
0

5.
84

19
.9

7
18

.9
7

2.
49

75

6. NUMERICAL PERFORMANCE OF THE IMPLICIT PCGSC ALGORITHM

FOR PROBLEMS WITH SIGNIFICANT COUPLING∗

In the previous section, the explicit Schur-complement (ESC) approach was used

to achieve parallel speedup for a problem with relatively few coupling variables.

As the number of coupling variables increase, however, the cost of forming and

factorizing the Schur-complement becomes prohibitive. The implicit PCG Schur-

complement (PCSSC) approach has been developed to overcome this bottleneck. In

this section, we compare the numerical performance of the ESC and the PCGSC

approaches on a test problem where the degree of coupling can be readily varied

while keeping other problem characteristics constant.

The computational performance of these methods is compared using both strong

scaling and weak scaling metrics. Strong scaling refers to the ability of a parallel

implementation to provide speedup. Here, the problem size is kept constant while

the number of processors used in parallel computation is increased. If the approach

scales perfectly, the observed speedup will be the same as the number of processors

used. Weak scaling, on the other hand, measures the ability of an implementation to

tackle larger problems. Here, the problem size is increased proportionally with the

number of processors. If the implementation scales perfectly, then the computation

time will remain constant as the size of the problem and the number of processors is

increased. Two case studies are considered. The first is a set of quadratic program-

ming problems constructed to illustrate the effect of increased variable coupling, and

weak scaling results are shown for this example. The second is an multi-scenario

∗Part of this section is reprinted with permission from “An interior-point method for efficient
solution of block-structured NLP problems using an implicit Schur-complement decomposition” by
Kang, J., Cao, Y., Word, D., and Laird, C.D., 2014. In: Computers and Chemical Engineering 71
(2014), pp 563-573, Copyright 2014 by Elsevier.

76

dynamic optimization problem that solves for the operating profile of a distillation

column where the model is governed by a set of differential equations (numerical

results of this case study are presented in the next section). Both strong and weak

scaling metrics are shown for this case study.

6.1 Scalable Test Problem (QP)

Initial performance analysis is based on the following quadratic programming

problem based on minimum least-squares parameter estimation,

min
y,q,θ

∑
l∈N

‖yl − y?l ‖22

s.t. yl − Aql = 0 ∀ l ∈ N

Pl

yl
ql

− P d
l θ = 0 ∀ l ∈ N

yl ≤ yl ≤ ȳl ∀ l ∈ N

ql ≤ ql ≤ q̄l ∀ l ∈ N

(6.1)

where yl and ql are vectors of variables local to each block l. The vector θ is the set

of variables that must be the same across all blocks (i.e. the common or coupling

variables), and the number of coupling variables is nd. The vectors y?l correspond to

the known measurements for yl in each block l. A is a constant matrix composed of

a stack of tri-diagonal matrices, and the matrices Pl and P d
l specify the relationship

between the variables corresponding to each individual block and the common vari-

ables θ. In each block l, the dimension of yl is 10000 and the dimension of ql is 5000.

Noisy measurement data, y?l , are obtained by specifying θ and the remaining entries

in each ql, calculating yl, and adding normally distributed noise with a standard

deviation of 5%. We specify Pl such that it relates the first nd entries in ql to the

77

common variables θ.

This problem formulation allows us to easily test the performance of these al-

gorithms as nd (the number of coupling variables) is increased, while keeping the

remaining problem structure and size the same.

6.2 Parallel Timing Results for ESC and PCGSC Approaches

In this section, we present timing results where the number of blocks (or data

sets) are set to 2, 4, 8, and 16, and the number of coupling variables are varied

from 10 to 3200. Table 6.1 shows the wall clock time required for the solution of

these problems. All timing was performed on the Red Mesa supercomputing cluster

at Sandia National Laboratories in Albuquerque, NM. This cluster is made up of

computing nodes each with two, 2.93 GHz quad-core, Nehalem X5570 processors

(giving 8 computing cores per node). Each node has 12 GB of DDR3 RAM. All

5 techniques obtained the same solution on these problems, and all the problems

required 8 interior-point iterations to converge.

The parallel timing results in Table 6.1 for ESC-P and PCGSC-P represent weak

scaling results where the number of processors used is the same as the number of

blocks in the problem. In this way, these results provide the expected performance as

the size of the problem and the number of processors used are both increased. These

weak scaling results are shown as a function of the number of coupling variables.

Comparing the FS-S method with the ESC-S method, one can see that the ex-

plicit Schur-complement technique is outperformed by the standard full-space ap-

proach when these problems are solved in serial. Nevertheless, when the number of

coupling variables is small, the parallel version (ESC-P) still has benefit with reason-

able speedup possible on larger problems with up to 100 coupling variables. Figure

6.1a shows the timing results for the explicit Schur-complement algorithm with only

78

10 coupling variables. Weak scaling results for ESC-P are good (very little increase

in the solution time as the number of blocks and processors are increased), and rea-

sonable speedup is obtained when using ESC-P. Figure 6.1b shows the timing results

for the same algorithms with 3200 coupling variables. Here again, weak scaling re-

sults for the ESC-P algorithm are good with little increase in solution time as the

number of blocks and processors are increased. However, the solution time itself is

significantly longer than the standard FS-S approach.

Table 6.1 and Figure 6.1 clearly show the overall performance deterioration of

the explicit Schur-complement approach compared with the full-space method as the

number of coupling variables increases. This performance deterioration is directly

attributable to the explicit formation and factorization of the Schur-complement

itself. The computational effort required to form the Schur-complement is linear

in the number of coupling variables, while the dense factorization of the Schur-

complement is cubic in the number of coupling variables. Figure 6.2 shows the

average time required to factor and solve the Schur-complement as a function of the

number of coupling variables along with a cubic trendline. In addition, this figure

shows the average time required to form the contribution of a single block to the

Schur-complement along with a linear trendline. As expected, the time required to

solve the dense Schur-complement increases dramatically as we increase the number

of coupling variables. In particular, for 3200 coupling variables the total time spent

in factorization of the Schur-complement (summed over all 8 iterations) is over 150

seconds, or approximately 82% of the entire time spent when solving in parallel. It

is exactly this result that drove the development of the implicit Schur-complement

approach.

The PCGSC approach solves the Schur-complement system iteratively and re-

moves the need for forming and factorizing the Schur-complement. Figures 6.3a and

79

6.3b show the weak-scaling results for the PCG Schur-complement method with 10

and 3200 coupling variables. As with the ESC-P algorithm, the weak-scaling results

for the PCGSC-P approach are very good (there is little increase in execution time

as we increase the number of blocks and processors). More importantly, however,

these results do not display the significant performance degradation observed in the

ESC-P approach for the case with 3200 coupling variables. In fact, the timing results

in Table 6.1 show that the PCGSC-S and PCGSC-P approaches scale much more

favorably than ESC-S and ESC-P as the number of coupling variables is increased.

Furthermore, the PCGSC-P approach outperforms the FS-S approach in every case

study with more than 2 blocks.

A direct comparison of the speedup and efficiency of the explicit Schur-complement

and the PCG Schur-complement algorithms is shown in Figure 6.4. In these figures,

we see that the efficiency of the explicit Schur-complement approach decreases much

more dramatically than the PCG Schur-complement approach as the number of cou-

pling variables increases. Compared with the explicit Schur-complement method, the

computational cost of the PCG Schur-complement approach is almost two orders of

magnitude better in the serial case, and over two orders of magnitude better in the

parallel case for the problem with 3200 coupling variables. These results clearly

demonstrate the benefit of this approach on problems with significant coupling.

80

Table 6.1: Timing Results for Quadratic Programming Problem

Coupling Vars. # Blocks
FS-S ESC-S ESC-P PCGSC-S PCGSC-P

time(s) time(s) time(s) time(s) time(s)

10

2 0.31 0.45 0.23 0.41 0.21
4 0.61 0.89 0.23 0.83 0.22
8 1.29 1.79 0.23 1.74 0.22
16 2.66 3.63 0.24 3.53 0.23

25

2 0.33 0.64 0.32 0.49 0.25
4 0.61 1.27 0.32 0.99 0.25
8 1.32 2.54 0.33 2.09 0.27
16 2.67 5.20 0.34 4.34 0.27

50

2 0.31 0.95 0.48 0.59 0.30
4 0.61 1.90 0.49 1.19 0.30
8 1.30 3.81 0.50 2.52 0.32
16 2.72 7.71 0.52 5.26 0.35

100

2 0.30 1.59 0.80 0.64 0.32
4 0.62 3.20 0.81 1.29 0.33
8 1.30 6.41 0.82 2.75 0.35
16 2.73 12.78 0.84 5.66 0.36

200

2 0.32 2.93 1.47 0.65 0.33
4 0.61 5.85 1.49 1.29 0.35
8 1.32 11.59 1.50 2.74 0.34
16 2.76 23.23 1.52 5.70 0.36

400

2 0.31 5.69 2.89 0.66 0.33
4 0.63 11.11 2.93 1.29 0.33
8 1.33 22.35 2.95 2.82 0.35
16 2.85 44.47 3.00 5.89 0.37

800

2 0.32 11.90 6.54 0.68 0.35
4 0.65 23.04 6.54 1.35 0.36
8 1.40 44.51 6.60 2.92 0.37
16 3.00 87.91 6.63 5.99 0.38

1600

2 0.34 34.04 22.68 0.70 0.38
4 0.69 56.58 23.22 1.43 0.39
8 1.55 102.47 23.42 3.15 0.40
16 3.30 192.36 23.50 6.47 0.44

3200

2 0.37 207.47 184.01 0.80 0.45
4 0.80 256.93 184.58 1.66 0.46
8 1.78 354.99 186.67 3.69 0.47
16 3.94 553.31 189.44 7.39 0.50

81

2 4 8 16
0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 (

s
)

Number of blocks / processors

FS−S

ESC−S

ESC−P

(a) 10 Coupling Variables

2 4 8 16
0

100

200

300

400

500

600

T
im

e
 (

s
)

Number of blocks / processors

FS−S

ESC−S

ESC−P

(b) 3200 Coupling Variables

Figure 6.1: Weak scaling results for the explicit Schur-complement method on QP
test problems with different numbers of coupling variables

82

0 500 1000 1500 2000 2500 3000

0

5

10

15

20

T
im

e
 (

s
)

Number of Coupling Variables

Factorize/Solve SC

Form SC

Figure 6.2: Time required to form and factor the Schur-complement as a function of
the number of coupling variables

83

2 4 8 16
0

0.5

1

1.5

2

2.5

3

3.5

4

T
im

e
 (

s
)

Number of blocks / processors

FS−S

PCGSC−S

PCGSC−P

(a) 10 Coupling Variables

2 4 8 16
0

1

2

3

4

5

6

7

8

T
im

e
 (

s
)

Number of blocks / processors

FS−S

PCGSC−S

PCGSC−P

(b) 3200 Coupling Variables

Figure 6.3: Weak scaling results for the PCG Schur-complement method on QP test
problems with different numbers of coupling variables

84

!"

#"

$"

%&"

%'"

&!"

%!" &(" (!" %!!" &!!" #!!" $!!" %'!!")&!!"

!"
##
$%

"&

'%()#*&+,&-+%"./01&23*/3).#4&

*+,-./.0123"

435123"

(a) Speedup

!"!#

!"$#

!"%#

!"&#

!"'#

("!#

("$#

(!# $)#)!# (!!# $!!# %!!# '!!# (&!!# *$!!#

!"
#$
%&

#'
(

)*+,%-(./(0.*12$&3(45-$5,2%6(

+,-./0/1234#

546234#

(b) Efficiency

Figure 6.4: Speedup comparison between explicit Schur-complement and PCG Schur-
complement approaches

85

7. OPTIMAL OPERATION OF A DISTILLATION COLUMN UNDER

UNCERTAINTY WITH IMPLICIT PCG SCHUR-COMPLEMENT

APPROACH∗

In the previous section, we showed that significant performance improvements

were possible using the implicit PCG Schur-Complement (PCGSC) approach for

problems with an increased number of coupling variables. This problem structure

occurs in many different problem classes. In this section, we investigate the perfor-

mance of the PCGSC algorithm on a realistic dynamic optimization problem. In

dynamic optimization, there can be a large number of degrees of freedom associ-

ated with the control variables due to the need to discretize in time. In stochastic

dynamic optimization, one wishes to perform a dynamic optimization while consider-

ing uncertainty in model parameters or system inputs. This class of problem fits the

structure of nonlinear stochastic programming problem with significant coupling due

to the large number of discretized first-stage variables. To further demonstrate the

effectiveness of this approach, we also include timing results for a complex nonlin-

ear optimization problem arising from dynamic optimization of a distillation process

under uncertainty. In particular, we use this case study to evaluate the performance

of the parallel algorithms ESC-P and PCGSC-P as the number of coupling vari-

ables is increased, and to demonstrate the weak and strong scaling properties of the

PCGSC-P approach on a realistic nonlinear optimization problem.

∗Part of this section is reprinted with permission from “An interior-point method for efficient
solution of block-structured NLP problems using an implicit Schur-complement decomposition” by
Kang, J., Cao, Y., Word, D., and Laird, C.D., 2014. In: Computers and Chemical Engineering 71
(2014), pp 563-573, Copyright 2014 by Elsevier.

86

7.1 Dynamic Distillation Column Model

The original model for the distillation unit is described in Hahn and Edgar (2002).

This distillation column uses 30 trays to separate a binary mixture. Including the

condenser and reboiler, it has 32 stages that are indexed from top to bottom, as shown

in Figure 7.1. The feed stream is added at the 17th stage. The complete model

Feed

2

31

Reboiler

Condenser

Reflux

1

32

17

Figure 7.1: Flow diagram of the distillation column

87

contains 32 differential equations, 1 input, and 35 algebraic variables. The reflux

ratio is defined as the control or input variable. Using the simultaneous approach

(Biegler, 2010), we apply collocation on finite elements to discretize the differential

equations, and write the complete time-discretized model as a large set of algebraic

equations. The purity of the distillate, denoted as y1, provides the measure of product

quality. We assume that consumer demands change with time and seek an optimal

trajectory for transition between the different operating points (specifications for

y1). We consider uncertainty in the mole fraction of the feed stream, and generate a

multi-scenario problem formulation. The problem formulation (7.1) is shown below,

where the parameter and variable descriptions are shown in Table 7.1. The symbols

αA,B, F , ACond, ATray and AReboiler are all constant physical parameters, whose values

are set the same as in Column 1 of Table 4.2 in Horton (1987). Xk is the vector of

all the variables in each block, uc is the vector of coupling variables across all the

blocks, and the matrices Pk and P d
k specify the linking equations between the control

variables in each block k and the common variables uc. This notation is selected so

that the matrices Pk and P d
k match those used in Equation (1.3d).

min

N∑
k=1

Nk∑
l=1

nf∑
i=1

nc∑
j=1

hi,l,kΩj,nc

[
α
(
y1,i,j,l,k − yset1,i,j,l,k

)2
+ ρ

(
ui,j,k − useti,j,k

)2]
(7.1)

88

s.t. L1i,j,l,k − ui,j,kDl,k = 0

Vi,j,l,k − L1i,j,l,k −Dl,k = 0

L2i,j,l,k − F − L1i,j,l,k = 0

yn,i,j,l,k −
xn,i,j,l,kαA,B

1 + (αA,B − 1)xn,i,j,l,k
= 0,

n = 1, ..., 32

z1,i,j,l,k −
1

Acond
Vi,j,l,k(y2,i,j,l,k − x1,i,j,l,k) = 0

zn,i,j,l,k −
1

ATray
[L1i,j,l,k(xn−1,i,j,l,k − xn,i,j,l,k)− Vi,j,l,k(yn,i,j,l,k − yn+1,i,j,l,k)] = 0,

n = 2, ..., 16

z17,i,j,l,k −
1

ATray
[FxFeed,l,k + L1i,j,l,kx16,i,j,l,k

−L2i,j,l,kx17,i,j,l,k − Vi,j,l,k(y17,i,j,l,k − y18,i,j,l,k)] = 0

zn,i,j,l,k −
1

ATray
[L2i,j,l,k(xn−1i,j,l,k − xn,i,j,l,k)− Vi,j,l,k(yn,i,j,l,k − yn+1,i,j,l,k)] = 0,

n = 18, ..., 31

z32,i,j,l,k −
1

AReboiler
[L2i,j,l,kx31,i,j,l,k − (F −Dl,k)x32,i,j,l,k − Vi,j,l,ky32,i,j,l,k] = 0

xn,i,j,l,k − xn,i−1,nc,l,k − hi,l,k
nc∑

m=1

Ωm,jzn,i,m,l,k = 0,

n = 1, ..., 32

xn,1,j,l,k − x0n − hi,l,k
nc∑

m=1

Ωm,jzn,1,m,l,k = 0,

n = 1, ..., 32

1 ≤ ui,j,k ≤ 5

PkXk − P d
k uc = 0



i = 1, ..., nf

j = 1, ..., nc

l = 1, ..., Nk

k = 1, ..., N

7.2 Parallel Timing Results for ESC and PCGSC Approaches

In order to show how the algorithms perform as the number of coupling vari-

ables increase, we generate 8 different problems, each containing 96 scenarios with

89

Table 7.1: Parameter and Variable Description

N number of blocks
Nk number of scenarios in each block
nf number of finite elements
nc number of collocation points in each finite element
Xk vector of all the variables in each block
xFeed feed composition
uc vector of coupling variables across all the blocks
yset1 distillate measurements set points
uset control variables set points
α weight for the distillate measurements
ρ weight for the control variables
h time step between two finite elements
yn vapor composition at the nth stage.
xn liquid composition at the nth stage.
zn derivative of xn
u vector of control variables
Ω collocation coefficient matrix
L1 flow-rate of the liquid in the rectification section
V vapor flow-rate in the column
L2 flow-rate of the liquid in the stripping section.
αA,B relative volatility
F feed flowrate
D distillate flowrate

ACond total molar holdup in the condenser
ATray total molar holdup on each tray
AReboiler total molar holdup in the reboiler

90

3 scenarios per block, for a total of 32 blocks. This format shows that the algo-

rithm supports multiple scenarios on a single processor. Each scenario is created by

selecting a random composition for the feed stream between 0.4 and 0.6.

To vary the number of coupling variables, we formulate the problem with a se-

quence of setpoint transitions. Fifty finite elements are assigned to a single transition,

and the total number of transitions is varied from one to eight, producing problem

formulations with coupling variables number 150 to 1200. Figure 7.2 shows the set-

ting values and actual trajectories of y1 for the distillation column problem with

coupling variables number 150, 450, 750, 1050. The input and output set-points for

each transition are determined by simulation of the original model to guarantee that

they are consistent with the desired steady-state behavior. In contrast with the QP

problem from the previous section, in these studies, the overall problem size increases

along with the number of coupling variables. Because the problem is different for

each of the cases, the number of interior-point iterations required to solve the prob-

lems is different. In order to see the scalability of the algorithms independent of this

effect, Table 7.2 shows the problem size and the average wall time per interior-point

iteration for each of the case studies. For the parallel timing results, 32 processors

were used.

For problems with more than 150 coupling variables, the memory requirements

for the serial algorithms exceeded the hardware limitation of 12GB. Therefore, it

was only possible to compute the speedup for the first entry in Table 7.2. As ex-

pected from the timing results for the previous example, the PCGSC-P algorithm

scales much more favorably than the ESC-P algorithm as we increase the number of

coupling variables.

Figure 7.3 shows the time spent in the specific components of the serial algorithms

ESC-S and PCGSC-S for Case 1. In the serial Explicit-SC algorithm, the majority of

91

0 5 10 15 20 25 30 35 40 45 50
0.88

0.9

0.92

0.94

0.96

time/min

c
a

s
e

 1

y1

y1
set

0 50 100 150
0.88

0.9

0.92

0.94

0.96

time/min

c
a

s
e

 2

y1

y1
set

0 50 100 150 200 250
0.92

0.94

0.96

0.98

time/min

c
a

s
e

 3

y1

y1
set

0 50 100 150 200 250 300 350
0.85

0.9

0.95

1

time/min

c
a

s
e

 4

y1

y1
set

Figure 7.2: Setting values and actual trajectories of y1 for the distillation column
problem with coupling variables number 150, 450, 750, 1050

92

Table 7.2: Wall Time per Iteration for Distillation Column Optimization

Case
Coupling FS-S ESC-S ESC-P PCGSC-S PCGSC-P

Vars. Vars. time(s) time(s) time(s) time(s) time(s)
1 1430550 150 10.3 79.1 2.6 17.9 0.6
2 2861100 300 - - 10.8 - 1.1
3 4291650 450 - - 32.1 - 2.4
4 5722200 600 - - 70.3 - 3.2
5 7152750 750 - - 90.5 - 4.3
6 8583300 900 - - 160.5 - 5.3
7 10013850 1050 - - 218.0 - 6.3
8 11444400 1200 - - 286.6 - 8.1

the time is spent in forming the Schur-complement. In the PCGSC-S algorithm, the

computational time is significantly less because fewer backsolves are required to solve

the Schur-complement. The wall clock time can be significantly reduced using parallel

implementations since forming the Schur-complement and using PCG to solve the

Schur-complement are highly parallelizable. The total time spent factorizing the

block augmented matrix is slightly longer using the PCGSC algorithm than the

Explicit-SC algorithm because 2 additional interior-point iterations were necessary

using the PCGSC algorithm.

It is also important to investigate both the weak and strong scaling properties of

our implementation of the algorithm for a fixed number of coupling variables. Here,

we investigate four different cases, all with 1200 coupling variables. The number of

scenarios in each case is 16, 32, 64, and 128 scenarios, respectively, and we assign

one scenario to a block. Figure 7.4a shows weak-scaling results for the PCGCS-

P approach. In these results, the abscissa shows the number of blocks and the

number of processors used, while the ordinate shows the wall-clock time scaled by

the time required for 16 blocks with 16 processors. Again, we see very little change

93

!" #!!" $!!" %!!" &!!" '!!" (!!")!!" *!!" +!!" #!!!"

!
"#$%!$&'()*!

 !!!+%,#$%!$&'()*!

-)**!%*./0!1(2&!345!

,-./012.34456-/789"

,27:;<=>.?;21@A;<"

;21@A;<"B9C18.8/1D"

;21@A012.3E-7"

F/GA7"

Figure 7.3: Wall clock time spent in specific components of the ESC-S and PCGSC-S
for the distillation column with 150 coupling variables

in the solution time as we increase the number of blocks and processors up to 128.

Figure 7.4b shows the strong scaling results for PCGSC-P. Here, the problem itself

is fixed (128) scenarios, and the abscissa shows the number of processors used to

solve the problem. The ordinate shows the speedup of the approach, scaled against

the time required for 16 processors. Ideal, or perfect linear, scaling would produce

speedups that lie on the dashed line. The PCGSC-P approach shows very little

parallel performance deterioration on the column problem up to 128 processors.

94

16 32 64 128
0

0.5

1

1.5

T
im

e
 (

1
6

 p
ro

c
e

s
s
o

rs
 a

s
 b

a
s
e

)

Number of blocks / processors

Time

Ideal Time

(a) Weak Scaling

16 32 64 128
16

32

64

128

S
p
e
e
d
u
p
 (

1
6
 p

ro
c
e
s
s
o
rs

 a
s
 b

a
s
e
)

Number of processors

Speedup

Ideal Speedup

(b) Strong Scaling

Figure 7.4: Weak and strong scaling results for the PCGSC-P approach on the
column example.

95

8. SUMMARY, CONCLUSIONS, AND FUTURE WORK∗

Given the demand for efficient optimization of large nonlinear systems, coupled

with the change in focus of hardware manufacturers towards multi-core and parallel

architectures, there is a distinct need for development of effective parallel algorithms

for solution of NLP problems. Fortunately, large-scale problems frequently possess

inherent structure arising from distinct problem classes, and this structure can often

be exploited in developing parallel solution strategies.

In this dissertation, we address parallel solution of block-structured NLP prob-

lems with complicating or coupling variables. We base our solution strategy on non-

linear interior-point methods, and develop parallel techniques for the linear algebra

operations required by the algorithm. The dominant computational expense is the

solution of the augmented system at each iteration of the interior-point algorithm.

The explicit Schur-complement decomposition is a well-known strategy for exploiting

the structure of these block angular problems and allowing for solution in parallel.

However, as the number of coupling variables is increased, the computational time

required to form and factorize the Schur-complement becomes high, eroding parallel

performance.

While it is possible to solve the dense Schur-complement in parallel, using either

∗Part of this section is reprinted with permission from “An interior-point method for efficient
solution of block-structured NLP problems using an implicit Schur-complement decomposition” by
Kang, J., Cao, Y., Word, D., and Laird, C.D., 2014. In: Computers and Chemical Engineering 71
(2014), pp 563-573, Copyright 2014 by Elsevier.

Part of this section is reprinted with permission from “Parallel solution of nonlinear contingency-
constrained network problems” by Kang, J., Siirola, J.D., Watson J. and Laird, C.D., 2014. In:
Proceedings of the 8th International Conference on Foundations of Computer-Aided Process Design
FOCAPD 2014, July 13-17, 2014, Cle Elum, Washington, USA, Copyright 2014 Elsevier B.V.

Part of this section is reprinted with permission from “Nonlinear programming strategies on
high-performance computers” by Kang, J., Chiang, N., Laird, C.D., and Zavala, V.M., 2015. In:
Proceedings of the 54th IEEE Conference on Decision and Control, 2015, Osaka, Japan, Copyright
2015 Elsevier B.V.

96

direct or iterative approaches, for large systems, even the memory requirement for

the Schur-complement alone can become prohibitive. We seek instead to avoid the

need to form the Schur-complement at all. The implicit Schur-complement approach

developed in this work uses a preconditioned conjugate gradient method to solve

the Schur-complement system where only matrix-vector products across the Schur-

complement are required. The range of available preconditioners is limited since the

Schur-complement is never explicitly formed. Here, we use the automatic precondi-

tioning technique of Morales and Nocedal (2000), which is based on a limited-memory

BFGS (L-BFGS) update.

We first demonstrate the performance of explicit Schur-complement decomposi-

tion on the contingency-constrained ACOPF problems. Section 5 presents a rectan-

gular IV formulation for the contingency-constrained ACOPF problem and demon-

strates that the parallel Schur-complement based, nonlinear interior-point method

described in Kang et al. (2014) can dramatically reduce solution times for this prob-

lem. Moreover, a comparison of explicit Schur-complement decomposition and Pro-

gressive Hedging approach on the same problem is executed to show the performance

difference between external and internal partitioning methods. Our results show that

the explicit Schur-complement decomposition approach is effective for problems with

a small number (∼100) of coupling variables.

We then demonstrate the performance of the PCG implicit Schur-complement

decomposition approach on a set of parameter estimation problems and a set of non-

linear dynamic distillation column problems. The PCG implicit Schur-complement

decomposition approach developed in this dissertation outperformed the explicit

Schur-complement approach on every test case studied, providing significantly im-

proved solution times over the explicit approach as the number of coupling variables

is increased. Furthermore, the algorithm showed excellent weak and strong scaling

97

properties in studies up to 128 processors.

These results show significant promise, and future work for this project is focused

on producing a reliable implementation to release for other scientists and engineers.

We plan to investigate the performance of different preconditioners (e.g., under vary-

ing condition number), and to explore the algorithm performance and tuning on ad-

ditional problems. (E.g., how many update pairs should be stored in the L-BFGS

update?)

For future work on the power grid problems, we will also address a much larger

transmission network from the Matpower test suite (with approximately 3000 buses).

With a larger number of generators, we suspect that the implicit PCG approach

introduced in (Kang et al., 2014) will be much more effective. Finally, while the

explicit Schur-complement approach yields significant speedup, the parallel efficiency

is much lower than we have seen in other problems. This can be explained by the

difference in factorization time for individual scenarios based on which transmission

element was removed. We will also seek to address this load balancing issue and

increase parallel efficiency.

A broad list of recommended research topics in this area is given below:

• These methods have seen little use outside the expert research community.

Improvements are still necessary in modeling languages and implementation

details such as ease of installation on high-performance computing software.

• Emerging architectures like the GPU provide potential for massively parallel

computations at relatively low cost. However, the SIMD nature of these archi-

tectures makes it significantly more challenging to implement effective parallel

algorithms. More research is necessary to determine effective ways of utilizing

these architectures for parallel solution of general and block-structured NLP

98

problems.

• Iterative linear solvers provide a natural framework for parallel algorithms, and

they are highly appropriate for SIMD architectures. While there has been sig-

nificant work on the use of iterative methods for the augmented system, for

problems of general structure (or general structure within blocks), effective pre-

conditioners are difficult to find. These methods have not been as successful as

direct factorization methods based on block decomposition, and more research

in this area is required.

• The majority of research in this area has focused on block-bordered diagonal

structures like those arising with primal and dual coupling. More research

is necessary for other common structures, including those arising from time-

discretized systems and network-structured problems.

99

8.1 A Listing of the Major Contributions of this Dissertation Work

• Implementation of an interior-point framework that provides an ex-

tensive foundation for new decomposition algorithms: In this work,

we have implemented a set of foundational classes for building decomposition

algorithms for linear algebra. This framework has been extended to include

several important classes for nonlinear programming. The several variants im-

plemented based on this framework serve as excellent extension examples, and

current and former graduate students have used this framework to develop new

decomposition algorithms without the need to develop their own interior-point

method (Word et al., 2014).

• Formalizing the inertia requirement for Schur-complement decompo-

sition algorithms in the context of nonlinear interior-point methods:

Although many scholars have worked on similar decomposition approaches, the

majority of research in this area focus on linear and quadratic problems and

do not address nonlinear problems. The inertia requirement is an essential

part for solving nonlinear, nonconvex optimization problems, and this disser-

tation formalizes the inertia requirement in the context of the decomposition

approaches.

• Development of the necessary theory and implementation for im-

plicit solution of the Schur-complement system with an iterative

linear solver: There has been extensive work on methods to try to reduce

the cost of forming and factorizing (or solving) the Schur-complement. In this

research, we demonstrate that this system can be solved implicitly, avoiding

the need to form and factorize all-together. This approach brings significant

performance benefits.

100

• Development of a highly efficient (in terms of strong and weak scal-

ing) decomposition approach for structured nonlinear programming

problems with primal coupling: In addition to the theoretical develop-

ment of new algorithms, this dissertation work provides an efficient parallel

implementation written in C++ that demonstrates highly efficient execution.

• Efficient and reliable solution of nonlinear contingency constrained

ACOPF problems: This work addresses an important problem in the area

of optimal power grid management. While existing techniques typically solve

a linearized model and then test the solution for feasibility in the nonlinear

case, this work shows that optimization of this important optimization under

uncertainty problem is possible in a real-time context.

101

REFERENCES

Amdahl, G. M. (1967). Validity of the single processor approach to achieving large

scale computing capabilities. In Proceedings of the April 18-20, 1967, Spring Joint

Computer Conference, pages 483–485. ACM.

Amestoy, P. R., Duff, I. S., and L’Excellent, J.-Y. (2000). Multifrontal parallel

distributed symmetric and unsymmetric solvers. Computer Methods in Applied

Mechanics and Engineering, 184(2):501–520.

Amestoy, P. R., Duff, I. S., LExcellent, J.-Y., and Koster, J. (2001). MUMPS: a

general purpose distributed memory sparse solver. In Applied Parallel Computing.

New Paradigms for HPC in Industry and Academia, pages 121–130. Springer.

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K.,

Dalcin, L., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes,

L. C., Rupp, K., Smith, B. F., Zampini, S., and Zhang, H. (2014). PETSc Web

page. http://www.mcs.anl.gov/petsc.

Balay, S., Abhyankar, S., Adams, M. F., Brown, J., Brune, P., Buschelman, K., Dal-

cin, L., Eijkhout, V., Gropp, W. D., Kaushik, D., Knepley, M. G., McInnes, L. C.,

Rupp, K., Smith, B. F., Zampini, S., and Zhang, H. (2015). PETSc Users Manual.

Technical Report ANL-95/11 - Revision 3.6, Argonne National Laboratory.

Balay, S., Gropp, W. D., McInnes, L. C., and Smith, B. F. (1997). Efficient man-

agement of parallelism in object oriented numerical software libraries. In Arge,

E., Bruaset, A. M., and Langtangen, H. P., editors, Modern Software Tools in

Scientific Computing, pages 163–202. Birkhäuser Press.

Bergamaschi, L., Gondzio, J., and Zilli, G. (2004). Preconditioning indefinite sys-

tems in interior point methods for optimization. Computational Optimization and

102

Applications, 28:149–171.

Biegler, L. T. (2010). Nonlinear programming: concepts, algorithms, and applications

to chemical processes, volume 10. Society for Industrial and Applied Mathematics.

Biros, G. and Ghattas, O. (2005). Parallel Lagrange-Newton-Krylov-Schur methods

for PDE-constrained optimization. Part I: The Krylov-Schur solver. SIAM J. Sci.

Comput., 27:687–713.

Borges, C. and Alves, J. (2007). Power system real time operation based on security

constrained optimal power flow and distributed processing. In Power Tech, 2007

IEEE Lausanne, pages 960 – 965.

Cain, M. B., O’Neill, R. P., and Castillo, A. (2012). History of op-

timal power flow and formulations. FERC Staff Technical Paper.

http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-

papers/acopf-1-history-formulation-testing.pdf.

Calafiore, G. C. and Fagiano, L. (2013). Stochastic model predictive control of lpv

systems via scenario optimization. Automatica, 49(6):1861–1866.

Campaigne, C., Lipka, P. A., Pirnia, M., O’Neill, R. P., and Oren, S. (2013). Test-

ing stepsize limits for solving the linearized current voltage AC optimal power

flow. FERC Staff Technical Paper. http://www.ferc.gov/industries/electric/indus-

act/market-planning/opf-papers/acopf-9-stepsizelimits-iliv-acopf.pdf.

Cao, Y., Laird, C. D., and Zavala, V. M. (2015a). Clustering-based preconditioning

for stochastic programs. submitted to Computational Optimization and Applica-

tions.

Cao, Y., Seth, A., and Laird, C. D. (2015b). A parallel augmented lagrangian

interior-point approach for large-scale NLP problems on graphics processing units.

submitted to Computers and Chemical Engineering.

Capitanescu, F., Glavic, M., Ernst, D., and Wehenkel, L. (2006). Applications of

103

security-constrained optimal power flows. In Proceedings of Modern Electric Power

Systems Symposium, MEPS06.

Castillo, A. and O’Neill, R. P. (2013a). Computational performance of so-

lution techniques applied to the ACOPF. FERC Staff Technical Pa-

per. http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-

papers/acopf-5-computational-testing.pdf.

Castillo, A. and O’Neill, R. P. (2013b). Survey of approaches to solving the ACOPF.

FERC Staff Technical Paper. http://www.ferc.gov/industries/electric/indus-

act/market-planning/opf-papers/acopf-4-solution-techniques-survey.pdf.

Castro, J. (2007). An interior-point approach for primal block-angular problems.

Computational Optimization and Applications, 36(2-3):195–219.

Chiang, N., Petra, C. G., and Zavala, V. M. (2014). Structured nonconvex optimiza-

tion of large-scale energy systems using PIPS-NLP. In Proc. of the 18th Power

Systems Computation Conference (PSCC), Wroclaw, Poland.

Colombo, M., Grothey, A., Hogg, J., Woodsend, K., and Gondzio, J. (2009). A

structure-conveying modelling language for mathematical and stochastic program-

ming. Mathematical Programming Computation, 1(4):223–247.

Dollar, H. S. (2007). Constraint-style preconditioners for regularized saddle point

problems. SIAM Journal on Matrix Analysis & Applications, 29(2):672–684.

Feng, Y., Rios, I., Ryan, S. M., Spürkel, K., Watson, J.-P., Wets, R. J.-B., and

Woodruff, D. L. (2015). Toward scalable stochastic unit commitment. Part 1:

load scenario generation. Energy Systems, pages 1–21.

Forsgren, A., Gill, P., and Wright, M. (2002). Interior methods for nonlinear opti-

mization. SIAM Review, 44(4):525–597.

Forsgren, A., Gill, P. E., and Griffin, J. D. (2007). Iterative solution of augmented

systems arising in interior methods. SIAM Journal on Optimization, 18:666–690.

104

Fourer, R., Gay, D. M., and Kernighan, B. W. (1993). AMPL: A Modeling Language

for Mathematical Programming. The Scientific Press (now an imprint of Boyd &

Fraser Publishing Co.), Danvers, MA, USA.

Gade, D., Hackebeil, G., Ryan, S., Watson, J., Wets, R., and Woodruff, D. (2014).

Obtaining lower bounds from the progressive hedging algorithm for stochastic

mixed-integer programs. Under review.

Gondzio, J. and Grothey, A. (2007). Parallel interior-point solver for structured

quadratic programs: application to financial planning problems. Annals of Oper-

ations Research, 152(1):319–339.

Gondzio, J. and Grothey, A. (2009). Exploiting structure in parallel implementation

of interior point methods for optimization. Computational Management Science,

6(2):135–160.

Grothey, A. and Qiang, F. (2013). PSMG: A parallel problem generator for structure

conveying modelling language for mathematical programming. presentation at

ICCOPT, 2009.

Gupta, A. (2000). WSMP: Watson sparse matrix package (Part-I: direct solution of

symmetric sparse systems). IBM TJ Watson Research Center, Yorktown Heights,

NY, Tech. Rep. RC, 21886.

Hahn, J. and Edgar, T. F. (2002). An improved method for nonlinear model reduction

using balancing of empirical gramians. Computers and Chemical Engineering,

26(10):1379–1397.

Hart, W., Laird, C., Watson, J., and Woodruff, D. (2012). Pyomo: Optimization

Modeling in Python, volume 67. Springer-Verlag New York.

Hart, W. E., Watson, J.-P., and Woodruff, D. L. (2011). Pyomo: modeling and solv-

ing mathematical programs in python. Mathematical Programming Computation,

3(3):219–260.

105

Heroux, M. A., Bartlett, R. A., Howle, V. E., Hoekstra, R. J., Hu, J. J., Kolda,

T. G., Lehoucq, R. B., Long, K. R., Pawlowski, R. P., Phipps, E. T., et al. (2005).

An overview of the trilinos project. ACM Transactions on Mathematical Software

(TOMS), 31(3):397–423.

Horton, R. R. (1987). Multivariable control of an energy-integrated distillation col-

umn. PhD thesis, Univ. of Texas at Austin.

HSL (2011). A collection of Fortran codes for large scale scientific computation.

http://www.hsl.rl.ac.uk.

Huang, R. and Biegler, L. T. (2009). Robust nonlinear model predictive controller

design based on multi-scenario formulation. In Proc. of the American Control

Conference, pages 2341–2342.

Huchette, J., Lubin, M., and Petra, C. (2014). Parallel algebraic modeling for

stochastic optimization. In Proceedings of the First Workshop for High Perfor-

mance Technical Computing in Dynamic Languages, pages 29–35. IEEE Press.

Kang, J., Cao, Y., Word, D. P., and Laird, C. (2014). An interior-point method

for efficient solution of block-structured NLP problems using an implicit Schur-

complement decomposition. Computers & Chemical Engineering, 71:563–573.

Kuzmin, A., Luisier, M., and Schenk, O. (2013). Fast methods for computing se-

lected elements of the greens function in massively parallel nanoelectronic device

simulations. In Wolf, F., Mohr, B., and Mey, D., editors, Euro-Par 2013 Parallel

Processing, volume 8097 of Lecture Notes in Computer Science, pages 533–544.

Springer Berlin Heidelberg.

Laird, C. D. and Biegler, L. T. (2008). Large-scale nonlinear programming for multi-

scenario optimization. In Modeling, Simulation and Optimization of Complex Pro-

cesses, pages 323–336. Springer.

Lipka, P. A., O’Neill, R. P., and Oren, S. (2013). Developing line cur-

106

rent magnitude constraints for IEEE test problems. FERC Staff Technical

Paper. http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-

papers/acopf-7-line-constraints.pdf.

Lubin, M. and Dunning, I. (2015). Computing in operations research using Julia.

INFORMS Journal on Computing, 27(2):238–248.

Lubin, M., Petra, C. G., and Anitescu, M. (2012). The parallel solution of dense

saddle-point linear systems arising in stochastic programming. Optimization Meth-

ods and Software, 27(4-5):845–864.

Lubin, M., Petra, C. G., Anitescu, M., and Zavala, V. (2011). Scalable stochas-

tic optimization of complex energy systems. In High Performance Computing,

Networking, Storage and Analysis (SC), 2011 International Conference for, pages

1–10. IEEE.

Morales, J. L. and Nocedal, J. (2000). Automatic preconditioning by limited memory

Quasi-Newton updating. SIAM J. OPTIM., 10:1079–1096.

Morales, J. L. and Nocedal, J. (2001). Algorithm 809: PREQN: Fortran 77 subrou-

tines for preconditioning the conjugate gradient method. ACM Transactions on

Mathematical Software, 27(1):83–91.

Nocedal, J. and Wright, S. J. (2006). Numerical Optimization. New York: Springer.

Oliveira, A. and Sorensen, D. (2005). A new class of preconditioners for large-scale

linear systems from interior point methods for linear programming. Linear Algebra

and its Applications, 394:1–24.

O’Neill, R. P., Castillo, A., and Cain, M. (2012a). The computational testing of AC

optimal power flow using the current voltage formulations. FERC Staff Technical

Paper. http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-

papers/acopf-3-iv-linearization-testing.pdf.

O’Neill, R. P., Castillo, A., and Cain, M. (2012b). The IV formulation and linear

107

approximations of the AC optimal power flow problem. FERC Staff Technical

Paper. http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-

papers/acopf-2-iv-linearization.pdf.

Petra, C. G. and Anitescu, M. (June 2012). A preconditioning technique for Schur

complement systems arising in stochastic optimization. Computational Optimiza-

tion and Applications, 52:315–344.

Petra, C. G., Schenk, O., Lubin, M., and Gertner, K. (2014). An augmented incom-

plete factorization approach for computing the Schur complement in stochastic

optimization. SIAM Journal on Scientific Computing, 36(2):C139–C162.

Phan, D. and Kalagnanam, J. (2012). Distributed methods for solving the security-

constrained optimal power flow problem. In Innovative Smart Grid Technologies

(ISGT), 2012 IEEE PES, pages 1 – 7.

Pirnia, M., O’Neill, R. P., Lipka, P. A., and Campaigne, C. (2013). A com-

putational study of LP approximation to the IV ACOPF formulation. FERC

Staff Technical Paper. http://www.ferc.gov/industries/electric/indus-act/market-

planning/opf-papers/acopf-8-preprocessed-constraints-iliv-acopf.pdf.

Poulson, J., Marker, B., Van de Geijn, R. A., Hammond, J. R., and Romero, N. A.

(2013). Elemental: a new framework for distributed memory dense matrix com-

putations. ACM Transactions on Mathematical Software (TOMS), 39(2):13.

Qiu, W., Flueck, A., and Tu, F. (2005). A new parallel algorithm for security

constrained optimal power flow with a nonlinear interior point method. In Power

Engineering Society General Meeting, 2005. IEEE, volume 1, pages 447 – 453.

Rockafellar, R. T. and Wets, R. J.-B. (1991). Scenarios and policy aggregation in

optimization under uncertainty. Mathematics of Operations Research, 16(1):119–

147.

Saad, Y. (2003). Iterative Methods for Sparse Linear Systems. SIAM, Philadelphia,

108

PA.

Schecter, A. and O’Neill, R. P. (2013). Exploration of the ACOPF fea-

sible region for the standard IEEE test set. FERC Staff Technical

Paper. http://www.ferc.gov/industries/electric/indus-act/market-planning/opf-

papers/acopf-6-test-problem-properties.pdf.

Schenk, O., Bollhöfer, M., and Römer, R. A. (2008a). On large-scale diagonalization

techniques for the anderson model of localization. SIAM Rev., 50(1):91–112.

Schenk, O., Wächter, A., and Hagemann, M. (2007). Matching-based preprocess-

ing algorithms to the solution of saddle-point problems in large-scale nonconvex

interior-point optimization. Computational Optimization and Applications, 36(2-

3):321–341.

Schenk, O., Wächter, A., and Weiser, M. (2008b). Inertia-revealing preconditioning

for large-scale nonconvex constrained optimization. SIAM Journal on Scientific

Computing, 31(2):939–960.

Shewchuk, J. R. (1994). An introduction to the conjugate gradient method with-

out the agonizing pain. http://www.cs.cmu.edu/ quakepapers/painless-conjugate-

gradient.ps.

Sylvester, J. J. (1952). A demonstration of the theorem that every homogeneous

quadratic polynomial is reducible by real orthogonal substitutions to the form of a

sum of positive and negative squares. Philosophical Magazine IV, pages 138–142.

Wächter, A. and Biegler, L. T. (2006). On the implementation of an interior-point

filter line-search algorithm for large-scale nonlinear programming. Mathematical

programming, 106(1):25–57.

Word, D. P., Cummings, D. A., Burke, D. S., Iamsirithaworn, S., and Laird, C. D.

(2012). A nonlinear programming approach for estimation of transmission param-

eters in childhood infectious disease using a continuous time model. Journal of

109

The Royal Society Interface, 9(73):1983–1997.

Word, D. P., Kang, J., Akesson, J., and Laird, C. D. (2014). Efficient parallel

solution of large-scale nonlinear dynamic optimization problems. Computational

Optimization and Applications, 59(3):667–688.

Zavala, V. M., Laird, C. D., and Biegler, L. T. (2008). Interior-point decomposi-

tion approaches for parallel solution of large-scale nonlinear parameter estimation

problems. Chemical Engineering Science, 63(19):4834–4845.

Zhu, Y. and Laird, C. (2008). A parallel algorithm for structured nonlinear program-

ming. In Proceeding of 5th International Conference on Foundations of Computer-

Aided Process Operation, FOCAPO, pages 345–348.

Zhu, Y., Legg, S., and Laird, C. (2011). Optimal operation of cryogenic air sep-

aration systems with demand uncertainty and contractual obligations. Chemical

Engineering Science, 66(5):953–963.

Zimmerman, R. D. and Murillo-S’anchez, C. E. (2011). Matpower 4.1 User’s Manual.

Power Systems Engineering Research Center (Pserc).

110

