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ABSTRACT 

Water is a major contributing factor for plant growth and development. 

Agricultural water management is a major concern for agriculturists, as fresh water 

resources are being depleted and research in the area of water optimization for agricultural 

irrigation is in its initial stages. The main goal of the agricultural systems is to supply 

water spatially according to the soil/land conditions such as water holding capacity of the 

soil, texture, drainage, texture and topography. While currently existing irrigation systems 

provide constant irrigation throughout the field, this may result in over irrigation in some 

areas and under irrigation in the other areas. The main goal of my research is to minimize 

the excess application of water in a specific location according to the daily conditions like 

temperature, solar radiation, rainfall from weather data website and soil water content 

reported by the sensors. 

The precision techniques that are presently being used are solely based on sensor 

data obtained from different sources and leverage supervised learning technique i.e. the 

system is provided with the solutions to all different environments initially. The main 

disadvantage of this approach is that, the actual scenario might differ widely from the 

programmed/provided cases. So the system needs to adapt for variable weather, soil and 

plant conditions and learn from the past experience as well as try new methods. In this 

thesis a novel technique to use reinforcement learning (an adaptive learning system) on 

crop system models to make the irrigation system adaptive is discussed. 

The main goal is to optimize the water consumption as much as possible without 

affecting the crop yield by using reinforcement learning algorithm on maize crop 
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simulation model. This is done by using the soil parameters, crop parameters, weather data 

(temperature, probability of rainfall and solar radiation) on DSSAT (Decision Support 

System for Agro-technology Transfer) maize crop simulation model. Then the water 

consumption is minimized adaptively by using Q-learning to optimize the daily irrigation. 

Using simple modular approach of DSSAT to calculate daily yield and leaf area index 

along with the proposed reinforcement learning controller, almost 40% decrease in water 

consumption is achieved in comparison to constant irrigation method of the DSSAT model 

without any significant decrease in yield and leaf area index. 
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1. INTRODUCTION

Water consumption for agricultural irrigation alone consumes around 70 percent 

of the available fresh water used per annum [Goodwin and O’Connell 2008]. In the present 

scenario, in spite of the widespread promotion, precision irrigation is still not widely 

accepted as the cost of the infrastructure required in the initial setup exceeds the profits. 

However, this might change in forth coming years, as it is imminent to conserve and 

optimize the consumption of water due to increase in population, climate change and 

depleting underground water resources. Another important factor towards adopting 

precision irrigation is the observed negative effects of over irrigation. Over irrigation 

causes drastic increase in total maximum daily loads of temperature, salinity of water and 

nitrates [Chapman 1994]. Total maximum daily load is a maximum value of the pollutant 

that can be received by a water resource and still meet the water quality standards. Water 

quality parameters which include pH, dissolved oxygen and total suspended solids are 

affected by run off due to over irrigation. All the above causes of over irrigation in turn 

affects the crop yield along with water and energy wastage. Hence the precision irrigation 

system, which takes into consideration all these parameters and utilizes the water 

optimally without having marginal impact on the crop yield is necessary. My research 

work focuses on maximizing yield with minimized water consumption using 

reinforcement learning techniques. Daily irrigation is minimized using Q-learning 

technique keeping the yield constant in comparison to traditionally followed precision 

irrigation techniques. 
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2.  BACKGROUND 

2.1 Precision Irrigation 

According to [Raine, Meyer et al. 2007], precision irrigation is a method of 

applying the right amount of irrigation/water as per the requirements of the individual 

plants with less impact on the environment. The precise meaning of precision irrigation is 

application of right and optimal amount of water at different locations at different times 

taking into account the spatial, temporal and sensor data. Presently this task is performed 

by variable rate sprinklers with capability of position determination to apply water at 

variable rates at different locations. Process involved in the precision irrigation cycle is 

shown in Figure 1. 

2.1.1 Precision Irrigation Definition 

Precision irrigation is an irrigation system that have knowledge of [Smith et al. 

2010]: 

1) what action to take next 

2) how to do it 

3) the previous actions 

4) and learns from its previous actions 

Precision irrigation is a system that is able to adjust to the existing weather and 

soil conditions. The main goal of the precision irrigation system is to maximize water use 

efficiency and yield. Major losses in agriculture is due to the wrong weather prediction 

and wrong irrigation methods. So there is an imminent need for the improvement of the 
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irrigation systems so that that farmers would be able to irrigate the crops only when 

required and misuse of water is minimized. 

2.1.2   Benefits of Precision Irrigation  

Previous reported work show that the precision irrigation may be used to decrease 

the water use efficiency up to 80-90% in comparison to the surface irrigation methods 

where only 40-45% of water can be conserved [Dukes, 2004]. 

1) Water Usage Efficiency [Shah, Das 2012] 

Site specific irrigation is one of the major contributing factors for decrease in water 

consumption of precision irrigation methods. Previous reports show that around 25% of 

the water savings can be achieved by efficient application of site specific irrigation models 

[Hedley, Yule 2009]. Although a maximum of 80-90% water use efficiency is predicted, 

only up to 25% is able to be achieved till now due to  

 Weather data (rainfall) prediction not fully accurate 

 Soil conditions are not same at all places, so making a unified model that considers 

soil conditions in different regions as well as nutrients in the soil for yield 

prediction is still in initial stages. 

2) Crop Yield and Cost Reduction [Shah, Das 2012] 

Use of the precision irrigation for agriculture has shown that the yields have been 

improved over the span of two consecutive years. It has been reported that the potato yield 

has been improved after following the uniform irrigation methods [King et al. 2006]. The 

soil erosion has reduced due to decrease in runoff due to usage of precision irrigation 

techniques. These techniques allowed the use of water efficiently and conservatively 
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without decrease in the yield and cost of growing the crops, which in turn increased the 

profits. 

2.1.3 Major Steps in Precision Irrigation 

Precision Irrigation Cycle [Smith, Bailie et al. 2010]: 

 Data Gathering/Acquisition 

 Data Interpretation 

 Irrigation Control and 

 System Evaluation 

 

Figure 1: Precision Irrigation Cycle  
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3. REINFORCEMENT LEARNING 

Reinforcement learning is a popular artificial intelligence/machine learning 

approach, it learns by interacting with the environment. Reinforcement learning model 

adaptively learns by trial and error method to find out which action to take to yield 

maximum reward in a particular state. It tries to maximize the reward/performance of a 

process by choosing an action for a certain state based on experience as well as 

exploration. Q-learning is an important reinforcement learning approach and is studied in 

many different disciplines, which includes game theory, multi-agent systems, genetic 

algorithms, operations research, statistics, control theory and swarm intelligence [RL]. 

State space, action space and reward/penalty function are the governing factors of a 

reinforcement learning system. State space is the set of all available states of the 

environment, whereas action space is a set of all possible actions for each state and reward 

function is a function that evaluates the reward for each action taken in any state.  

Reinforcement learning does not require a model and is used to find an optimal 

action for any state. The reinforcement learning agent learns the control policy 

dynamically at runtime and issues an action based on the current state, then the state 

transition occurs in the environment after the action is taken. Each action results in 

reward/penalty. The best action for any state gives high reward in comparison to other 

actions. Now the algorithm remembers the state-action pair and the Q-value (cumulative 

reward) associated with it. Each time the system visits a state, it compares the rewards of 

all possible state-action pairs and chooses the action so that the cumulative reward is 

maximized in the long run. The Q-value matrix is initialized to a constant and is updated 
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every time the system takes a certain action and gets the reward. Whenever the system 

visits a certain state it decides to take a particular action based on the Q-value function so 

that the long term cumulative reward is maximized. Reinforcement learning model does 

not require any prior knowledge of the system but if any prior data is available, then it will 

use the available data to speed up the convergence. Leaf area index and irrigation are the 

only major objectives and time is not the major constraint for the system for the proposed 

controller. The controller uses the offline trained data to get maximum leaf area index and 

minimum irrigation objectives. 

3.1   Temporal Difference Learning Methods 

Temporal difference learning is a value prediction method used in dealing with the 

reinforcement learning problems. These methods estimate the value functions using long 

term reward algorithms such as Q-learning, SARSA. Traditional methods calculate value 

function by updating the final estimation only after the final action is completed and final 

reward is received. Whereas the temporal difference methods update the estimated final 

reward using the intermediate results calculated for each state-action pair at each state in 

the process. 

There are two types of temporal difference methods: 

1) On-Policy Methods 

On-Policy methods follow a policy and learn the value of the policy for making  

decisions. The value functions which are long term reward functions, are updated using 

the followed policy. These methods usually include exploration as a part of the policy. 

Example of these type of methods is SARSA algorithm. 
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2) Off-Policy Methods 

Off-Policy methods learn a policy from one process and use the policy on another 

process i.e. different policies are used for behavior and estimation. During estimation, off-

policy method value functions are updated based on estimated/hypothetical actions and 

not actual actions. Even off-policy methods involve certain amount of exploration similar 

to on-policy methods. Off-Policy methods can follow and differentiate between 

exploration and behavior/control, which differs from on-policy methods as they cannot 

have different policies. Example of these kind of methods is Q-learning algorithm.  

3.2 Q-learning Algorithm 

The equation for Q-learning algorithm [Watkins and Dayan, 1989] is shown 

below: 

Q(st, at) = Q(st, at) + α(rt+1 +γ*max(Q(st+1, a)) – Q(st, at))     (3.1) 

where st, at are state and action at time t, and st+1, at+1, rt+1 are state, action and reward at 

time t+1. Q(st, at) is the old Q-value of the state-action pair and Q(st+1, a) is the maximum 

possible future value. α is the learning rate and is between 0 and 1. Learning rate of 0 

implies the Q-value of the state action-pair remains unchanged, whereas a value of 1 

implies the new Q-value replaces the old Q-value. γ is the discount factor and the value is 

in between 0 and 1. 0 discount factor implies the system is highly dependent on current 

state and discount factor of 1 implies it is highly dependent on future Q-value. Hence α 

and γ are chosen somewhere in the middle, so that equal importance is given to the current 

and future Q-values. The main aim of the algorithm is to maximize the long term reward 

by mapping of the available states and actions.  
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Pseudo code for Q-learning Algorithm 

Inputs: Set of actions A 

 Set of states S 

 Discount factor γ 

 Learning rate α 

For all pairs of state-action, the Q-value is initialized to 0 in Q-value 

matrix. 

Get the current state st 

Loop: 

      Select an action at for the present state st  

     Get the future state st+1 and reward value rt+1 

      Update the Q-value matrix using the equation 

      Q(st, at) = Q(st, at) + α(rt+1 +γ*max(Q(st+1, a) – Q(st, at))) 

Change present state to future state i.e. st = st+1 

Repeat loop 

3.2.1 Properties of Q-Learning 

The model does not have any prior knowledge/information regarding the action-

reward pair or the environment. The Q-learning algorithm needs to run for sufficient 

amount of time to explore all possible state-action pairs to converge to an optimal policy. 

Another way to improve convergence of Q-learning is by decreasing the learning rate 

slowly. In the end an optimal action is chosen, although some bad action choices might be 

made during learning through exploration. It is an off policy algorithm and does not give 
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importance to the policy being followed but only to the best Q-value. Policy is something 

that tells the controller how to behave in a certain state. 

3.2.2   Learning Rate 

Learning rate is the rate at which the new information needs to be learnt by the 

system and is set between 0 and 1. Learning rate of 0 implies that that the system is not 

learning anything at all and the value of Q is unchanged at all times. While a learning rate 

of 1 implies the old Q-value is replaced with the new Q-value, so the system is not learning 

anything from the past and is solely dependent on the present. 

3.2.3   Discount Factor 

Discount factor implies the importance of the future rewards in comparison to 

immediate/current rewards and is also between 0 and 1. A discount factor of 0 will make 

the system give importance only to current/immediate rewards, while a value of 1 makes 

the system to give very high importance to future rewards. So generally a value closer to 

1 is chosen so that high long term cumulative reward is obtained. 

3.2.4   Ɛ-Greedy Method 

An action with highest estimated immediate reward known as greedy action is 

chosen most of the time with probability (1- Ɛ) and an action is chosen randomly for the 

remaining time with probability Ɛ. The Ɛ-greedy method ensures that after sufficient 

amount of trials optimal action is discovered. The value of Ɛ is chosen to be 0.3 which is 

found out by trial and error. Initially Ɛ is chosen as 0.1, then experimented by slowly 

increasing the value of Ɛ. At Ɛ = 0.3 the empirically best water consumption values were 
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attained, as Ɛ is increased further the water consumption started increasing and so I fixed 

the value of Ɛ to be 0.3. 

3.3 Sarsa 

SARSA algorithm is similar to the Q-learning algorithm except for the future state 

Q-value calculation. SARSA simply reflects the variables required by the algorithm to 

update the Q-value matrix i.e. (st, at, rt+1, st+1, at+1). In Q-learning maximum value of all 

possible future states is considered whereas in SARSA there is randomness involved, 

which implies it is not always the state with high Q-value. SARSA follows a Ɛ-greedy 

method in which most of the time it chooses the maximum Q-value state (which accounts 

for experience) and the remaining time it chooses the state randomly to explore any other 

best state available.  

Equation governing SARSA algorithm [Sutton and Barto, 1998] is: 

Q(st, at) = Q(st, at) + α(rt+1 +γ(Q(st+1, at+1) – Q(st, at)))                         (3.2) 

where at+1 is the future action based on Ɛ–greedy method that will be taken by the agent. 

Using the SARSA algorithm for the controller improves the convergence in comparison 

to Q-learning algorithm. But SARSA is an on-policy algorithm that strictly updates the 

value functions on basis of experience gained by following some policy, which is not the 

case with our work. Our work requires the controller to be trained offline as the data for 

online learning is very less. So we chose Q-learning algorithm which is an off-policy 

algorithm for the precision irrigation controller. 
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3.4 Markov Property 

A process is said to have Markov property if the future states of the process is 

solely dependent on the present state and the past states have no impact on the decision 

making of the future state. A process which possesses the Markov property is said to be a 

Markov process. 

3.5 Markov Decision Process (MDP) 

A reinforcement learning or dynamic programming process that possesses the 

Markov property is said to be a Markov decision process [Sutton and Barto, 1998]. Also 

a process in which the number of actions and states are finite is known as finite Markov 

decision process. Most of the modern reinforcement learning is based on finite MDP 

models. Transition probabilities and rewards are the most important aspects of the Markov 

Decision Processes. 

Transition probability can be defined as the probability that the state goes from 

one state to another after taking an action. For a current state s and future possible state s’ 

the transition probability for an action a is defined as [Sutton and Barto, 1998]: 

𝑃𝑠𝑠′
𝑎  = P [St+1 = s’ | St = s]     (3.3) 

 State transition matrix Ƥ contains all transition probabilities from each state to all 

possible future states.  

Ƥ = [
𝑃11 ⋯ 𝑃1𝑛
⋮ ⋱ ⋮
𝑃𝑛1 ⋯ 𝑃𝑛𝑛

]     (3.4) 

where each row of the matrix sums up to 1, which implies the sum of the transition 

probabilities of a state is equal to 1. 
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Future reward is calculated using the current state, future predicted state and 

current action [Sutton and Barto, 1998]. 

   𝑅𝑠𝑠′
𝑎  = E [rt+1 | St+1= s’, St = s, at = a]   (3.5) 

Transition probabilities are used in the calculation of reward function during the 

offline training of the Q-learning controller. Future state is chosen according to the 

transition probabilities for an action. As we don’t have reward data explicitly for offline 

training we get the data from the reward matrices provided to the model initially. 

 

 

 

 

 

 

 

  

 

 

 

 

 

 

 



4.    DSSAT-CSM 

Decision Support System for Agrotechnology Transfer (DSSAT) Crop System 

Model (CSM) is a software program that constitutes around 28 crop simulation models 

[DSSAT].The crop simulation models predict the yield and plant growth by taking soil 

conditions, water availability and weather conditions as inputs to the model. The DSSAT 

package contains the experimental data to simulate the crop models, so that the user can 

compare the simulated with the observed yield, growth data. The DSSAT model is being 

used in over more than 100 countries for research purposes, farmers, educators and policy 

/decision makers over a period of more than 20 years [Hoogenboom, Jones]. DSSAT CSM 

model is provided with the scenarios and solutions to the scenarios. For example, if 

100mm of water is supplied everyday by traditional irrigation methods, While DSSAT 

supplies only required amount of water i.e. 100mm – reported soil water content/rainfall. 

DSSAT contains separate modules for crop simulation, soil simulation, weather 

simulation and plant growth simulation data bases. It integrates all the simulation modules 

to accurately simulate/predict the yield and plant growth over a period of the crop 

development stage. 

International Benchmark Sites Network for Agrotechnology Transfer project with 

scientists from all over the world developed the decision support system for 

agrotechnology transfer which is used in agronomic research of crop models [IBSNAT, 

1993; Jones et al. 1998l; Uehara, 1998; Tsuji, 1998]. 

13 
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Figure 2: Diagram showing Databases, Models, Support Software and Applications of 

Crop System Models on DSSAT [Jones et al. 2003] 

 From the above Figure 2 we can see that DSSAT comprises of crop models and 

different independent modules that simulate together to produce the required outputs. 

Databases contain data regarding weather conditions, soil conditions, genetic information 

and experimental conditions. Models block contains the data specific to the crop models 

and support software is for the user to simulate and compare the results with the observed 

real time data. 

The main goals of DSSAT are [Jones et al. 2003] [Tsuji. 1998]: 

1) Simulation of crop system models irrespective of location and with 

minimum available inputs. 

2) Platform to incorporate the biotic and abiotic parameters which includes 

soil phosphorous amount along with different plant diseases.  
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3) Platform which can easily compare different crop system models and be 

easily able to evaluate, improve and document. 

4) Capability to implement the crop system model in new applications at 

modular level. 

The basic structure of the DSSAT CSM which includes Databases, Models,  

Support Software and Applications is shown in Figure 2. 

4.1 Ceres Maize Model 

It is one of the most used and widely recognized model since its release in 1986 

[Jones and Kinry, 1986] for comparing the developments in maize yield, and growth 

simulation. It is one of the first crop simulation model that was integrated into the initial 

version of DSSAT. Many new developments were proposed based on the CERES model 

and were incorporated into the DSSAT-CSM. Although leaf area is not predicted 

accurately but total plant biomass and grain yield are predicted/simulated very accurately 

by the CSM-CERES model [Anapalli et al., 2005; Mastrorilli et al., 2003; Tojo-Soler et 

al., 2007]. A modified version of CERES-Maize known as CSM-IXIM [Lizaso, et al., 

2011] which incorporates the recent developments in leaf area simulation, grain yield, 

plant ear growth and kernel number and was distributed for DSSAT 4.5v. The modified 

version of CERES-Maize model is used for the research to test the reinforcement learning 

controller for precision irrigation. 

Yield and Leaf Area Index are the important outputs concerning the model. Leaf 

Area Index is the ratio of the area covered by the leaves on the ground in a meter square 

area. The model takes minimum temperature of the day, maximum temperature of the day, 
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solar radiation, rainfall, plant density, field capacity, irrigation and soil water content as 

the inputs and provides Leaf Area Index and Plant yield as outputs. The plant density is 

the number of plants per m2 area in the field. Field capacity is the maximum water holding 

capacity of the field. The change in leaf area is calculated by the equation [Porter et al. 

1999] [Papajorgji and Beck, 2004]: 

dLAI = SWFAC*PT*PD*EMP1*dN*(
𝑎

1+𝑎
)    (4.1) 

where SWFAC is the soil water stress, PT and PD are the growth rate reduction factor and 

the plant density, EMP1 is the maximum leaf area expansion and dN is change in number 

of leaves. 

a=𝑒𝐸𝑀𝑃2(𝑁−𝑛𝑏)    (4.2) 

PT = 1-0.0025((0.25*tmin + 0.75*tmax)-26)2   (4.3) 

where tmin and tmax are minimum and maximum temperature, EMP2, nb are coefficients 

in the exponential equation and are constants and N is the number of leaves. 

Grain Yield is simulated using the equation [Lizaso, et al., 2011]: 

     FE = 
𝑃𝐸∗𝑃𝐺𝑅

1+exp⁡[−0.02(𝑡𝑡−225)]
     (4.4) 

where FE is the weight of ear that is subtracted from total dry mass daily, PGR is the daily 

plant growth rate, PE is an ear partition parameter, tt is thermal time. Thermal time is the 

sum of the average temperatures of the day from the beginning of ear growth which is 

assumed to be after 60 days in our experiment. 
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4.2 Major Types of Precision Irrigation 

There are two major types of precision irrigation techniques currently followed,  

which are 1) Center Pivot Irrigation and 2) Lateral/Linear Move Irrigation. 

4.2.1 Center Pivot Irrigation (Water Wheel and Circular Irrigation) 

For this method of irrigation the crop lands are designed to be in circular form and 

the equipment used for irrigation moves around a pivot along the radius of the circular 

field and the crops are irrigated using sprinklers [Mader, Shelli 2010][USDA NAL].  

Central Pivot Irrigation systems are powered using electric motors which replaced 

the water powered motors. It is highly efficient and helps conserve water efficiently. They 

use less water in comparison to the other follower surface irrigation and furrow irrigation 

techniques [FNR]. It also helps in reducing soil tillage, soil erosion and human effort as 

most of the ground irrigation techniques require channels for the flow of water and soil 

erosion occurs due to water runoff [FNR]. 

Center pivot irrigation is currently being used in many countries worldwide and is 

majorly supplied by Valley, Zimmatic and Reinike manufacturers. Due to heavy initial 

costs involved in setting up of the irrigation system, it is only followed by a few hundreds 

of farmers. An example of center pivot system by Rainfine Irrigation Co. LTD is shown 

in Figure 3. 
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Figure 3: Center Pivot Farm Irrigation System [Rainfine Irrigation Co. LTD] 

4.2.2   Lateral/Linear Move Irrigation 

The fields for this type of irrigation are either rectangular or square fields. The 

irrigation equipment with water sprinklers move in a straight line/linearly. That’s why 

they are called linear move, lateral move and side-roll irrigation systems [Evans, 1997]. 

They are less common as they need complex management and guidance system compared 

to center pivot systems and are being followed only by the farmers who do not want to 

change the rectangular fields to circular fields [Irrigation Models]. An example of the 

lateral move system by Valley Irrigation is shown in Figure 4. 
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Figure 4: Valley Two Wheeled Linear Irrigation System [Valley Irrigation] 
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5    RELATED WORK 

The research into irrigation techniques, most importantly precision irrigation in 

USA began in early 1990’s [Smith et al., 2010]. Most of the research at that time was on 

center pivot and lateral/linear move systems for spatially variable application of water and 

fertilizers with databases of spatially referenced data being used for system control [King 

et al., 1996] [Evans et al., 1996] [Duke et al., 1997] [Camp et al., 1998] [Sadler et al., 

2000]. A comprehensive review of research that has happened in the area of precision 

irrigation is reviewed in [Camp et al., 2006]. Variable rate sprinklers for time proportional 

pulsing and time proportional control has been introduced in [Kincaid and Bulchleiter, 

2004] [King and Kincaid, 2004]. More recent works in the area of precision irrigation is 

comprised of usage of infrared thermometers to develop automatic scheduling of irrigation 

and control [O’Shaughnessy et al., 2008] [Peters & Evett, 2004, 2005, 2007, 2008]. 

 Another important development in the area of precision irrigation is the usage of 

radio transmitters and installation of LEPA (Low Energy Precise Application) and sprays 

on the same irrigation system [Camp, et al., 2006]. Crop Yield patterns for the application 

of water using non-stationary irrigation systems is studied in New Zealand [Hedley and 

Yule, 2009] [Yule et al., 2008]. Limited work into the actual benefits of usage of precision 

irrigation for different crops is done on cotton crop [Clouse, 2006] [Bronson et al., 2006], 

soybean [Paz et al., 2001] and potatoes [King et al., 2006]. 

In microprocessor designs, dynamic power management of peripheral devices 

using reinforcement learning has been published recently in [Shen et al. 2013]. The Q-

learning controller proposed in the model does not require any previous knowledge of 
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system load and it learns adaptively from the incoming real time data. A two level 

performance control model was discussed in the paper which tries to achieve maximum 

performance at a given power constraint level. Q-learning controller was able to achieve 

better performance in terms of power in comparison to existing power management 

techniques. They also extended the Q-learning algorithm to CPU power management and 

were successfully able to achieve energy requirements along with the performance and 

temperature constraints.  

Although much work is done on precision irrigation techniques and reinforcement 

learning techniques separately in the past few years, none of them focuses making the 

precision irrigation control adaptive using reinforcement learning techniques. The 

controller discussed in this thesis is an attempt to make the precision irrigation control 

system adaptive using reinforcement learning techniques.  
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6.     PROPOSED Q-LEARNING BASED IRRIGATION CONTROL 

DSSAT crop simulation model for Maize is used to develop the reinforcement 

learning based controller for precision irrigation [Jones et al. 2003] [Porter et al. 1999]. 

DSSAT-CSM model is currently used for simulating over more than 18 crop models. 

Maize crop system model is used to implement and test the functionality of the 

reinforcement controller. Proposed irrigation system of the reinforcement learning 

controller for precision irrigation is shown below in figure 5. 

Figure 5: Overview of the Q-learning based Irrigation Control System 

6.1   Overview 

As we don’t have enough data to train the controller on real time data, the 

controller is trained offline initially using the transition probability and reward matrices 

which are provided as inputs. After the offline training we get a Q-matrix with all set of 

state-action pair reward values. As soon as we receive the weather data, crop model inputs, 

soil data and plant data we get the current state, an action is chosen based on Ɛ-greedy 
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algorithm using the offline trained Q-value matrix. Action implies the amount of irrigation 

to be supplied to the crop on that day. It is supplied as input to the DSSAT crop simulation 

model and we get leaf area index and yield as its outputs. These outputs along with the 

soil water content are fed back to the Q-learning online controller for calculation of next 

state and reward function. Then the Q-value matrix is updated once we get the next state 

and reward function. This process is continued till the end of the season.  

Center Pivot Irrigation method is assumed for my research and this method takes 

approximately 48-72 hours to complete each rotation i.e. it takes almost 3 days for the 

center pivot sprinkler arm to reach the starting point again. So time interval between 

irrigation is taken to be 3 days. The simulation is run over a period of three months and 

the crop is irrigated once in every three days. All the parameters of the maize crop and the 

sensor data regarding the soil, plant and weather conditions are provided to the model. 

Temperature and Precipitation input for the model is obtained from US Weather Data 

website [US Climate Data]. The leaf area index and water consumption are set as the major 

objectives for the model. The complete overview of the proposed controller is shown in 

Figure 5. 

6.2   Leaf Area Index and Plant Yield 

Leaf Area Index is the proportion of the area covered by the leaves on the ground 

in meter square area. It is a dimensionless quantity and is used on a scale of 0 to10. Scale 

of 0 implies no part of the ground is covered with leaves and a scale of 10 implies ground 

is fully covered with leaves. Plant yield is the yield (weight) of the plants in a square meter 

area in grams. Leaf area index and plant yield are the major objectives that govern the 
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proposed reinforcement learning irrigation system along with the water consumption for 

irrigation. These are obtained as outputs of the DSSAT model when all the required inputs 

are provided for each time interval. 

6.3   States and Actions 

State of a system is comprised of three parameters rainfall probability, plant 

condition (leaf area index) and soil water content. Each parameter has three possible states 

which is a set of conditions {Good (H), Average (M), and Bad (L)}. So total number of 

possible states is 33=27. Now take states MHH and LHH, plant condition and soil water 

content in both the cases is high so medium or low probability of rainfall are similar states 

as field is almost at its full capacity, so we merge these two states. So merging the 

cases/states that are very similar i.e., (HHL, HHM, MHH and LHH) = HHM, (HMM, 

HML, MMH and LMH) = HMM, (HLL, HLM, LLH and MLH) = HLL, (MHM, MHL 

and LHM) = MHM, (MMM, MML and LMM) = MMM, (MLL, MLM and LLM) = MLL, 

we get a consolidated set of 12 states.  

Possible States = [HHH, HHM, HMH, HMM, HLH, HLL, MHM, MMM, MLL, 

LHL, LML, LLL] 

 

For each state there are 9 possible actions on basis of which the system goes from 

one state to another state. Number of actions in the action space is chosen by trial and error 

method. Even if we increase the number of actions more than 9 there was no significant 

improvement in the yield. So the maximum possible number of actions is set be 9. Action 

taken is the amount of irrigation to be supplied to the field on that day. Action 1 provides 

0%, action 2 provides 12.5%, action 3 provides 25%… action 9 provides 100% of the 

maximum irrigation. 
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For example, assume the state 1 to be {bad, bad, bad} by taking an action 1 (no 

irrigation is supplied) it stays in {bad, bad, bad} condition and does not change the state 

and the final state of the system is in overall bad condition. This yields a very less reward 

as it is not preferred for the system to stay in very bad state, so the system tries to avoid 

this state next time as it yields very less reward. Similarly assume system has taken action 

2 (12.5% irrigation required is supplied) and goes from state 1{bad, bad, bad} to state 

5{average, average, average}, then there is a significant improvement in the condition of 

the crop and this yields a high reward value. The reward value is incorporated into the Q-

matrix using the Q-learning algorithm (equation 3.1). Now there is a good probability that 

the system goes to state 5 state from state 1 in future. 

6.4   Transition Probability Matrix 

It contains the probabilities of a system going from its present state at any time t 

to next state at time t+1 based on the action taken. We have 12 possible states and 9 

possible actions for each state. So we need to have 9 different transition tables each of 

12x12 size for 9 different actions, so that all possible scenarios are covered. Sum of the 

probabilities of any row is equal to 1, implies each state has a finite probability to go to 

another state and the sum of the transition probabilities is equal to 1.  Pss’ is the probability 

of transition from a state at time t to next state at time t+1. The matrices are used for offline 

training of the controller. The transition probability is used to find the next state of the 

controller for offline training. 
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6.5   Reward Function Calculation 

The reward of each action taken for real time data is based on the Leaf Area Index, 

Plant Weight benefitted by that action and water consumption every three days is given 

by: 

 Rt+1 =
𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑⁡𝑌𝑖𝑒𝑙𝑑⁡/⁡𝑒𝑎𝑐ℎ⁡𝑡𝑖𝑚𝑒⁡𝑠𝑡𝑒𝑝

0.1+(𝑁𝑜𝑟𝑚𝑎𝑙𝑖𝑧𝑒𝑑⁡𝑊𝑎𝑡𝑒𝑟⁡𝐶𝑜𝑛𝑠𝑢𝑚𝑝𝑡𝑖𝑜𝑛/𝑒𝑎𝑐ℎ⁡𝑡𝑖𝑚𝑒⁡𝑠𝑡𝑒𝑝)λ
∗ 100;     (6.1) 

 Normalized yield = 
𝐿𝑒𝑎𝑓⁡𝐴𝑟𝑒𝑎⁡𝐼𝑛𝑑𝑒𝑥⁡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑⁡𝑏𝑦⁡𝑡ℎ𝑒⁡𝑄−𝑙𝑒𝑎𝑟𝑛𝑖𝑛𝑔⁡𝐶𝑜𝑛𝑡𝑟𝑜𝑙𝑙𝑒𝑟

𝑀𝑎𝑥𝑖𝑚𝑢𝑚⁡𝐿𝑒𝑎𝑓⁡𝐴𝑟𝑒𝑎⁡𝐼𝑛𝑑𝑒𝑥⁡𝑐𝑎𝑙𝑐𝑢𝑙𝑎𝑡𝑒𝑑⁡𝑏𝑦⁡𝐷𝑆𝑆𝐴𝑇⁡𝑚𝑜𝑑𝑒𝑙
    (6.2) 

 rt+1 = R’t+1 for offline training           (6.3) 

 rt+1 = Rt+1 for training on real time data.           (6.4) 

where Rt+1 is the actual reward function used for online learning on real time data and rt+1 

is the final reward function which is used in the Q-learning algorithm. R’t+1 is the reward 

for offline training obtained from the manually provided reward matrices. The 

denominator of the actual reward function contains a constant value 0.1, used to 

compensate for the action 1 i.e., when normalized water consumption is 0. Normalized 

Leaf Area Index is the ratio of leaf area index calculated by the reinforcement learning 

controller and leaf area index calculated by the DSSAT model alone with full amount of 

irrigation for each time interval. Normalized water consumption is the ratio of the 

irrigation provided for the day and maximum irrigation that can be supplied without over 

flow, which is maximum field capacity of the field. 
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6.6   Offline and Online Training 

The time interval between two irrigation periods is 3 days and growth interval of 

the crop is 90 days. So we have only 30 real time sensor readings to be used in the learning. 

But it is nowhere sufficient for the irrigation control system to learn from the experience 

and function properly as intended. So the learning needs to run on offline data. The offline 

learning is used to predict the correct action for a particular state when real time data is 

received. SARSA is an on-policy learning method which does not work well with offline 

training (different policy than online learning), so that’s why Q-learning based Monte 

Carlo sampling is chosen instead of SARSA for the research work. 

During offline training, after we get the state we chose an action based on Ɛ-greedy 

method similar to online learning. Then the next state is found out using the probability of 

the transition from the transition matrix for the action taken. The reward for offline training 

is chosen from the reward matrix provided as input to the controller. An action is chosen 

according to Ɛ -greedy method in both offline and online training. First time an action is 

chosen at random as Q-matrix is initialized to 0 and all values of Q-matrix are 0 and based 

on the action we get next state. Using the Ɛ-greedy algorithm we get the next action, from 

the obtained action, state, next state and next action we update the Q-matrix using Q-

learning algorithm. For example, if we choose action 5 in state 1 and if we get next state 

as 5 and the value of Q(1, 5) is updated using the Q-learning algorithm (equation 3.1). 

Similarly when the system goes to a state with all row values of Q-matrix equal to 0 then 

an action is chosen at random. If a state with row values in Q-matrix are non-zero then a 
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state action pair with high Q(s, a) is chosen from the nine possible action according to Ɛ -

greedy method. Q-matrix is updated every time an action is taken.  

During online learning, the state of the system is decided by the received sensor 

results on plant condition, soil moisture and the rainfall probability. After getting the state 

an action is chosen according to the Ɛ-greedy method. The next state is calculated from 

the leaf area index data obtained through the DSSAT model, next set of weather prediction 

and soil sensor data. And the reward is also calculated using the leaf area index predicted 

by the DSSAT model using the equation 6.1. Then the Q-matrix is updated using the Q-

learning algorithm.  

By the time the offline simulation completes, almost all state action pairs have 

been covered and converged to a range of values. Now as soon as real time sensor/weather 

inputs are received we use the already trained Q-value matrix for choosing an action. The 

action that yields high Q-value is chosen from the matrix using Ɛ-greedy method. Based 

on the action the amount of irrigation at the location is decided according to the rainfall 

that has happened and existing soil water content. 

For example, 100mm is the maximum water content that the field can hold. The 

soil water content sensor reported 40mm of water, then 100-40 = 60mm is the required 

amount of water if without using the reinforcement learning irrigation system. Now by 

reinforcement learning irrigation system, the controller decides how much water to be 

supplied based on the action taken. Feedback is received from the model on the basis of 

action in terms of yield and leaf area index. It is used in the calculation of reward function 
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and based on the reward, Q-matrix is updated and next action taken will be based on the 

updated Q-matrix. 
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7.    EVALUATION 

7.1   Experimental Setup 

The following transition matrices and reward matrices are used during the offline 

training of the Q-learning controller. Transition Probability1 implies the transition 

probability matrix to be used when action 1 is taken. Similarly Reward1 is the reward 

obtained by taking an action 1 with the specific state transition. 

Transition Probability1 [12] [12] =  

 0.3 0.1 0 0.1 0 0.1 0.1 0.1 0.05 0 0.1 0.05 

 0.2 0.15 0 0.1 0 0.05 0.1 0.1 0.1 0 0.1 0.1 

 0.2 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.05 0 0.05 0.05 

 0.1 0.2 0.1 0.1 0 0.1 0 0.1 0.1 0 0.1 0.1 

 0.1 0.05 0.2 0.05 0.2 0.05 0 0.1 0.1 0 0.1 0.05 

 0.15 0.15 0.1 0.1 0.05 0.1 0 0.1 0.1 0 0 0.15 

 0.2 0.2 0 0 0 0 0.2 0.1 0.05 0.1 0.1 0.05 

 0.2 0.1 0.05 0.05 0 0.05 0.1 0.15 0.1 0 0.1 0.1 

 0.1 0.05 0.1 0.1 0.05 0.15 0.1 0.1 0.1 0 0 0.15 

 0.05 0.1 0.1 0.1 0.15 0.1 0.1 0.1 0 0.1 0.1 0 

 0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

 0.1 0.1 0.1 0.1 0 0.05 0.1 0.1 0.1 0.05 0.05 0.15 

Transition Probabilities 2[12][12] = 

  0.2 0.2 0 0 0 0 0.2 0.1 0.05 0.1 0.1 0.05 

  0.2 0.1 0.05 0.05 0 0.05 0.1 0.15 0.1 0 0.1 0.1 

  0.1 0.05 0.1 0.1 0.05 0.15 0.1 0.1 0.1 0 0 0.15 

  0.05 0.1 0.1 0.1 0.15 0.1 0.1 0.1 0 0.1 0.1 0 

  0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

  0.1 0.1 0.1 0.1 0 0.05 0.1 0.1 0.1 0.05 0.05 0.15 

  0.3 0.1 0 0.1 0 0.1 0.1 0.1 0.05 0 0.1 0.05 

  0.2 0.15 0 0.1 0 0.05 0.1 0.1 0.1 0 0.1 0.1 

  0.2 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.05 0 0.05 0.05 

  0.1 0.2 0.1 0.1 0 0.1 0 0.1 0.1 0 0.1 0.1 

  0.1 0.05 0.2 0.05 0.2 0.05 0 0.1 0.1 0 0.1 0.05 

  0.15 0.15 0.1 0.1 0.05 0.1 0 0.1 0.1 0 0 0.15 
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Transition Probabilities 3[12][12] =  

  0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

  0.1 0.1 0.1 0.1 0 0.05 0.1 0.1 0.1 0.05 0.05 0.15 

  0.3 0.1 0 0.1 0 0.1 0.1 0.1 0.05 0 0.1 0.05 

  0.2 0.15 0 0.1 0 0.05 0.1 0.1 0.1 0 0.1 0.1 

  0.2 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.05 0 0.05 0.05 

  0.1 0.2 0.1 0.1 0 0.1 0 0.1 0.1 0 0.1 0.1 

  0.2 0.2 0 0 0 0 0.2 0.1 0.05 0.1 0.1 0.05 

  0.2 0.1 0.05 0.05 0 0.05 0.1 0.15 0.1 0 0.1 0.1 

  0.1 0.05 0.1 0.1 0.05 0.15 0.1 0.1 0.1 0 0 0.15 

  0.05 0.1 0.1 0.1 0.15 0.1 0.1 0.1 0 0.1 0.1 0 

  0.1 0.05 0.2 0.05 0.2 0.05 0 0.1 0.1 0 0.1 0.05 

  0.15 0.15 0.1 0.1 0.05 0.1 0 0.1 0.1 0 0 0.15 

 

Transition Probabilities 4[12][12] =  

  0.3 0.1 0 0.1 0 0.1 0.1 0.1 0.05 0 0.1 0.05 

  0.2 0.15 0 0.1 0 0.05 0.1 0.1 0.1 0 0.1 0.1 

  0.2 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.05 0 0.05 0.05 

  0.1 0.2 0.1 0.1 0 0.1 0 0.1 0.1 0 0.1 0.1 

  0.1 0.05 0.2 0.05 0.2 0.05 0 0.1 0.1 0 0.1 0.05 

  0.15 0.15 0.1 0.1 0.05 0.1 0 0.1 0.1 0 0 0.15 

  0.2 0.2 0 0 0 0 0.2 0.1 0.05 0.1 0.1 0.05 

  0.2 0.1 0.05 0.05 0 0.05 0.1 0.15 0.1 0 0.1 0.1 

  0.1 0.05 0.1 0.1 0.05 0.15 0.1 0.1 0.1 0 0 0.15 

  0.05 0.1 0.1 0.1 0.15 0.1 0.1 0.1 0 0.1 0.1 0 

  0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

  0.1 0.1 0.1 0.1 0 0.05 0.1 0.1 0.1 0.05 0.05 0.15 

 

Transition Probabilities 5[12][12] =  

  0.2 0.2 0 0 0 0 0.2 0.1 0.05 0.1 0.1 0.05 

  0.2 0.1 0.05 0.05 0 0.05 0.1 0.15 0.1 0 0.1 0.1 

  0.1 0.05 0.1 0.1 0.05 0.15 0.1 0.1 0.1 0 0 0.15 

  0.05 0.1 0.1 0.1 0.15 0.1 0.1 0.1 0 0.1 0.1 0 

  0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

  0.1 0.1 0.1 0.1 0 0.05 0.1 0.1 0.1 0.05 0.05 0.15 

  0.3 0.1 0 0.1 0 0.1 0.1 0.1 0.05 0 0.1 0.05 

  0.2 0.15 0 0.1 0 0.05 0.1 0.1 0.1 0 0.1 0.1 

  0.2 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.05 0 0.05 0.05 

  0.1 0.2 0.1 0.1 0 0.1 0 0.1 0.1 0 0.1 0.1 

  0.1 0.05 0.2 0.05 0.2 0.05 0 0.1 0.1 0 0.1 0.05 

  0.15 0.15 0.1 0.1 0.05 0.1 0 0.1 0.1 0 0 0.15 
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Transition Probabilities 6[12][12] =  

  0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

  0.1 0.1 0.1 0.1 0 0.05 0.1 0.1 0.1 0.05 0.05 0.15 

  0.3 0.1 0 0.1 0 0.1 0.1 0.1 0.05 0 0.1 0.05 

  0.2 0.15 0 0.1 0 0.05 0.1 0.1 0.1 0 0.1 0.1 

  0.2 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.05 0 0.05 0.05 

  0.1 0.2 0.1 0.1 0 0.1 0 0.1 0.1 0 0.1 0.1 

  0.2 0.2 0 0 0 0 0.2 0.1 0.05 0.1 0.1 0.05 

  0.2 0.1 0.05 0.05 0 0.05 0.1 0.15 0.1 0 0.1 0.1 

  0.1 0.05 0.1 0.1 0.05 0.15 0.1 0.1 0.1 0 0 0.15 

  0.05 0.1 0.1 0.1 0.15 0.1 0.1 0.1 0 0.1 0.1 0 

  0.1 0.05 0.2 0.05 0.2 0.05 0 0.1 0.1 0 0.1 0.05 

  0.15 0.15 0.1 0.1 0.05 0.1 0 0.1 0.1 0 0 0.15 

 

Transition Probabilities 7[12][12] =  

  0.3 0.1 0 0.1 0 0.1 0.1 0.1 0.05 0 0.1 0.05 

  0.2 0.15 0 0.1 0 0.05 0.1 0.1 0.1 0 0.1 0.1 

  0.2 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.05 0 0.05 0.05 

  0.1 0.2 0.1 0.1 0 0.1 0 0.1 0.1 0 0.1 0.1 

  0.1 0.05 0.2 0.05 0.2 0.05 0 0.1 0.1 0 0.1 0.05 

  0.15 0.15 0.1 0.1 0.05 0.1 0 0.1 0.1 0 0 0.15 

  0.2 0.2 0 0 0 0 0.2 0.1 0.05 0.1 0.1 0.05 

  0.2 0.1 0.05 0.05 0 0.05 0.1 0.15 0.1 0 0.1 0.1 

  0.1 0.05 0.1 0.1 0.05 0.15 0.1 0.1 0.1 0 0 0.15 

  0.05 0.1 0.1 0.1 0.15 0.1 0.1 0.1 0 0.1 0.1 0 

  0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

  0.1 0.1 0.1 0.1 0 0.05 0.1 0.1 0.1 0.05 0.05 0.15 

Transition Probabilities 8[12][12] =  

  0.2 0.2 0 0 0 0 0.2 0.1 0.05 0.1 0.1 0.05 

  0.2 0.1 0.05 0.05 0 0.05 0.1 0.15 0.1 0 0.1 0.1 

  0.1 0.05 0.1 0.1 0.05 0.15 0.1 0.1 0.1 0 0 0.15 

  0.05 0.1 0.1 0.1 0.15 0.1 0.1 0.1 0 0.1 0.1 0 

  0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

  0.1 0.1 0.1 0.1 0 0.05 0.1 0.1 0.1 0.05 0.05 0.15 

  0.3 0.1 0 0.1 0 0.1 0.1 0.1 0.05 0 0.1 0.05 

  0.2 0.15 0 0.1 0 0.05 0.1 0.1 0.1 0 0.1 0.1 

  0.2 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.05 0 0.05 0.05 

  0.1 0.2 0.1 0.1 0 0.1 0 0.1 0.1 0 0.1 0.1 

  0.1 0.05 0.2 0.05 0.2 0.05 0 0.1 0.1 0 0.1 0.05 

  0.15 0.15 0.1 0.1 0.05 0.1 0 0.1 0.1 0 0 0.15 
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Transition Probabilities 9[12][12] =  

  0.05 0.05 0.05 0.05 0.1 0.1 0.1 0.1 0.1 0.1 0.1 0.1 

  0.1 0.1 0.1 0.1 0 0.05 0.1 0.1 0.1 0.05 0.05 0.15 

  0.3 0.1 0 0.1 0 0.1 0.1 0.1 0.05 0 0.1 0.05 

  0.2 0.15 0 0.1 0 0.05 0.1 0.1 0.1 0 0.1 0.1 

  0.2 0.1 0.1 0.1 0.1 0.05 0.1 0.1 0.05 0 0.05 0.05 

  0.1 0.2 0.1 0.1 0 0.1 0 0.1 0.1 0 0.1 0.1 

  0.2 0.2 0 0 0 0 0.2 0.1 0.05 0.1 0.1 0.05 

  0.2 0.1 0.05 0.05 0 0.05 0.1 0.15 0.1 0 0.1 0.1 

  0.1 0.05 0.1 0.1 0.05 0.15 0.1 0.1 0.1 0 0 0.15 

  0.05 0.1 0.1 0.1 0.15 0.1 0.1 0.1 0 0.1 0.1 0 

  0.1 0.05 0.2 0.05 0.2 0.05 0 0.1 0.1 0 0.1 0.05 

  0.15 0.15 0.1 0.1 0.05 0.1 0 0.1 0.1 0 0 0.15 

Reward1 [12] [12] =  

  30  10 0  10  0  10  10  10  5  0  10  5 

  20  15 0  10  0  5  10  10  10  0  10  10 

  20  10 10  10  10  5  10  10  5  0  5  5 

  10  20 10  10  0  10  0  10  10  0  10  10 

  10  5 20   5  20  5  0  10  10  0  10  5 

  15  15 10  10  5  10  0  10  10  0  0  15 

  20  20 0  0  0  0  20  10  5  10  10  5 

  20  10 5  5  0  5  10  15  10  0  10  10 

  10  5 10  10  5  15  10  10  10  0  0  15 

  5  10 10  10  15  10  10  10  0  10  10  0 

  5  5 5  5  10  10  10  10  10  10  10  10 

  10  10 10  10  0  5  10  10  10  5  5  15 

 

 Reward 2[12][12] =  

  20  20  0  0  0  0  20  10  5  10  10  5 

  20  10  5  5  0  5  10  15  10  0  10  10 

  10  5  10  10  5  15  10  10  10  0  0  15 

  5  10  10  10  15  10  10  10  0  10  10  0 

  5  5  5  5  10  10  10  10  10  10  10  10 

  10  10  10  10  0  5  10  10  10  5  5  15 

  30  10  0  10  0  10  10  10  5  0  10  5 

  20  15  0  10  0  5  10  10  10  0  10  10 

  20  10  10  10  10  5  10  10  5  0  5  5 

  10  20  10  10  0  10  0  10  10  0  10  10 

  10  5  20  5  20  5  0  10  10  0  10  5 

  15  15  10  10  5  10  0  10  10  0  0  15 
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 Reward 3[12][12] =  

  5  5  5  5  10  10  10  10  10  10  10  10 

  10  10  10  10  0  5  10  10  10  5  5  15 

  30  10  0  10  0  10  10  10  5  0  10  5 

  20  15  0  10  0  5  10  10  10  0  10  10 

  20  10  10  10  10  5  10  10  5  0  5  5 

  10  20  10  10  0  10  0  10  10  0  10  10 

  20  20  0  0  0  0  20  10  5  10  10  5 

  20  10  5  5  0  5  10  15  10  0  10  10 

  10  5  10  10  5  15  10  10  10  0  0  15 

  5  10  10  10  15  10  10  10  0  10  10  0 

  10  5  20  5  20  5  0  10  10  0  10  5 

  15  15  10  10  5  10  0  10  10  0  0  15 

 

 Reward 4[12][12] =  

  30  10  0  10  0  10  10  10  5  0  10  5 

  20  15  0  10  0  5  10  10  10  0  10  10 

  20  10  10  10  10  5  10  10  5  0  5  5 

  10  20  10  10  0  10  0  10  10  0  10  10 

  10  5  20  5  20  5  0  10  10  0  10  5 

  15  15  10  10  5  10  0  10  10  0  0  15 

  20  20  0  0  0  0  20  10  5  10  10  5 

  20  10  5  5  0  5  10  15  10  0  10  10 

  10  5  10  10  5  15  10  10  10  0  0  15 

  5  10  10  10  15  10  10  10  0  10  10  0 

  5  5  5  5  10  10  10  10  10  10  10  10 

  10  10  10  10  0  5  10  10  10  5  5  15 

 

 Reward 5[12][12] =  

  20  20  0  0  0  0  20  10  5  10  10  5 

  20  10  5  5  0  5  10  15  10  0  10  10 

  10  5  10  10  5  15  10  10  10  0  0  15 

  5  10  10  10  15  10  10  10  0  10  10  0 

  5  5  5  5  10  10  10  10  10  10  10  10 

  10  10  10  10  0  5  10  10  10  5  5  15 

  30  10  0  10  0  10  10  10  5  0  10  5 

  20  15  0  10  0  5  10  10  10  0  10  10 

  20  10  10  10  10  5  10  10  5  0  5  5 

  10  20  10  10  0  10  0  10  10  0  10  10 

  10  5  20  5  20  5  0  10  10  0  10  5 

  15  15  10  10  5  10  0  10  10  0  0  15 
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 Reward 6[12][12] =  

  5  5  5  5  10  10  10  10  10  10  10  10 

  10  10  10  10  0  5  10  10  10  5  5  15 

  30  10  0  10  0  10  10  10  5  0  10  5 

  20  15  0  10  0  5  10  10  10  0  10  10 

  20  10  10  10  10  5  10  10  5  0  5  5 

  10  20  10  10  0  10  0  10  10  0  10  10 

  20  20  0  0  0  0  20  10  5  10  10  5 

  20  10  5  5  0  5  10  15  10  0  10  10 

  10  5  10  10  5  15  10  10  10  0  0  15 

  5  10  10  10  15  10  10  10  0  10  10  0 

  10  5  20  5  20  5  0  10  10  0  10  5 

  15  15  10  10  5  10  0  10  10  0  0  15 

 

 Reward 7[12][12] =  

  30  10  0  10  0  10  10  10  5  0  10  5 

  20  15  0  10  0  5  10  10  10  0  10  10 

  20  10  10  10  10  5  10  10  5  0  5  5 

  10  20  10  10  0  10  0  10  10  0  10  10 

  10  5  20  5  20  5  0  10  10  0  10  5 

  15  15  10  10  5  10  0  10  10  0  0  15 

  20  20  0  0  0  0  20  10  5  10  10  5 

  20  10  5  5  0  5  10  15  10  0  10  10 

  10  5  10  10  5  15  10  10  10  0  0  15 

  5  10  10  10  15  10  10  10  0  10  10  0 

  5  5  5  5  10  10  10  10  10  10  10  10 

  10  10  10  10  0  5  10  10  10  5  5  15 

 Reward 8[12][12] =  

  20  20  0  0  0  0  20  10  5  10  10  5 

  20  10  5  5  0  5  10  15  10  0  10  10 

  10  5  10  10  5  15  10  10  10  0  0  15 

  5  10  10  10  15  10  10  10  0  10  10  0 

  5  5  5  5  10  10  10  10  10  10  10  10 

  10  10  10  10  0  5  10  10  10  5  5  15 

  30  10  0  10  0  10  10  10  5  0  10  5 

  20  15  0  10  0  5  10  10  10  0  10  10 

  20  10  10  10  10  5  10  10  5  0  5  5 

  10  20  10  10  0  10  0  10  10  0  10  10 

  10  5  20  5  20  5  0  10  10  0  10  5 

  15  15  10  10  5  10  0  10  10  0  0  15 
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 Reward 9[12][12] =  

  5  5  5  5  10  10  10  10  10  10  10  10 

  10  10  10  10  0  5  10  10  10  5  5  15 

  30  10 0  10  0  10  10  10  5  0  10  5 

  20  15 0  10  0  5  10  10  10  0  10  10 

  20  10  10  10  10  5  10  10  5  0  5  5 

  10  20  10  10  0  10  0  10  10  0  10  10 

  20  20  0  0  0  0  20  10  5  10  10  5 

  20  10  5  5  0  5  10  15  10  0  10  10 

  10  5  10  10  5  15  10  10  10  0  0  15 

  5  10  10  10  15  10  10  10  0  10  10  0 

  10  5  20  5  20  5  0  10  10  0  10  5 

  15  15  10  10  5  10  0  10  10  0  0  15 

 

Initially the DSSAT-CSM model is run with the sensor inputs for constant 

irrigation values i.e. if 100mm of irrigation is required, then 10 different sets of irrigation 

{10mm, 20mm, 30mm, 40mm, 50mm, 60mm, 70mm, 80mm, 90mm, 100mm} is provided 

to the model, then the irrigation amount at which maximum leaf area index and maximum 

yield are obtained is noted down.  

Table 1: DSSAT Model Parameters and Constants [Porter et al. 1999] 

Parameter/Constant Value 

PD 9.5/m2 

EMP1 0.104 

EMP2 0.1 

nb 10 

dN 0-2 

PE 0.35 
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Table 1 contains the values of the constants and crop parameters used in DSSAT 

crop simulation model. The reinforcement learning irrigation control system tries to 

achieve the maximum yield and leaf area index with less amount of irrigation than the 

existing constant irrigation DSSAT model. Initially the controller is trained offline with 

the above provided transition matrix and reward matrix data, then uses the offline trained 

knowledge on real time data. The controller is run offline 1000000 times and it takes 126 

seconds to complete simulation. The simulations are run for different values of λ {0.1, 0.2, 

0.4, 0.5, 0.6, 0.8, 0.9, 1, 1.5, 2} for a set of weather data inputs of each region, then 

compared with the plots obtained using the different set of learning rate and discount factor 

values. Three sets of learning rate and discount factor values {[0.6, 0.8], [0.6, 0.6], [0.8, 

0.6]} are taken for comparing the functioning of the irrigation control system. Our method 

is tested with the weather inputs from three different regions over United States.  

Due to the randomness associated with the proposed irrigation system, I ran the 

irrigation system for 100 times and averaged the obtained yield and leaf area index. In the 

below shown Figures 6, 7, 8, 9, 10 and 11, blue curve is plotted with learning rate of 0.6 

and discount factor of 0.8, cyan curve is plotted with learning rate of 0.6 and discount 

factor of 0.6, green curve is plotted with learning rate of 0.8 and discount factor of 0.6 and 

the red curve is plotted using constant irrigation system. 

In the case with λ=1, the leaf area index of the crop is slightly lower but water 

consumption is noticeably decreased. If the value of λ is chosen to be less than 1, then 

there is a reasonable increase in the water consumption for irrigation with slight increase 
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in leaf area index and yield. If we take λ > 1, then there is a slight decrease in water 

consumption and output leaf area index in comparison to the case with λ = 1. 

The value of λ < 1 implies the reward function is more dependent on normalized 

yield in comparison to normalized water consumption, this is preferred when we need to 

achieve maximum leaf area index constraint with loosened water consumption constraint. 

And if λ=1 equal importance is given to both normalized yield and normalized water 

consumption, this is the case where yield and water costs are in similar range. In the case 

where λ goes to 0, the importance of water consumption in calculating the reward function 

decreases, which implies the irrigation system tries to decrease the impact of water 

consumption as low as possible so that the reward value of the Q-learning is dependent 

solely on yield and not water constraint.  

7.2   Experiment Results 

 Plots containing plant yield vs water consumption for the weather data of College 

station, TX with three different sets of learning rate and discount factor on our irrigation 

control system along with constant irrigation system is shown in Figure 6. 

 

Figure 6: Plant Yield vs Water Consumption Plots for College Station, Texas. 
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Plots containing plant yield vs water consumption for the weather data of 

Cambridge, Nebraska with three different sets of learning rate and discount factor on our 

irrigation control system along with constant irrigation system is shown in Figure 7. 

 

Figure 7: Plant Yield vs Water Consumption Plots for Cambridge, Nebraska. 

Plots containing plant yield vs water consumption for the weather data of Iowa 

Falls, IOWA with three different sets of learning rate and discount factor on our irrigation 

control system along with constant irrigation system is shown in Figure 8. 

 

Figure 8: Plant Yield vs Water Consumption Plots for Iowa Falls, IOWA. 
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Table 2: Plant Weight Comparison Table for Different Regions 

Region Constraint 

 

Constant 

Irrigation 

Q-learning  

(λ=0.1) 

α = 0.6, γ=0.8 

Q-learning 

(λ=0.1) 

α = 0.6, γ=0.6 

Q-learning 

(λ=0.1) 

α = 0.8, γ=0.6 

College 

Station 

Maximum 

Plant Yield 

 

8067 8066 8060  8051 

 Total 

Irrigation 
2400 1800  1897  1832  

Cambridge Plant Yield 8032 8031  8026  8022  
 Total 

Irrigation 
2400 1860  1920  1964  

Iowa Falls Plant Yield 8164 8162  8151  8147  
 Total 

Irrigation 
2400 1868  1897  1980  

 

From the above Figures 6, 7 and 8 and Table 2 shown above we can see that the 

proposed method works best when learning rate is 0.6 and discount factor is 0.8 and 

consumes less water in comparison to other sets of learning rate and discount factor values 

for all the three regions. For all three sets of learning rate and discount factor λ =0.1 gives 

the best results i.e. the reinforcement learning irrigation system which is highly dependent 

on leaf area index and not on water consumption gave the best results. As the value of λ 

is increased, there is slight decrease in water consumption as well as leaf area index. So 

the value to λ to be chosen for the system depends on the cost of irrigation vs the increment 

in the leaf area index. In areas with high cost of irrigation, higher value of λ is chosen in 

comparison the areas with less cost of irrigation. The proposed reinforcement learning 

irrigation system correctly finds the estimated maximum plant yield with more than 40% 

water savings in comparison to traditional methods.  
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Plots containing LAI vs water consumption for weather data of College station, 

TX with three different sets of learning rate and discount factor on our irrigation control 

system along with constant irrigation system is shown in Figure 9. 

 

Figure 9: Leaf Area Index vs Water Consumption Plots for College Station, Texas. 

 

Figure 10: Leaf Area Index vs Water Consumption Plots for Cambridge, Nebraska. 

Plots containing LAI vs water consumption for weather data of Cambridge, 

Nebraska with three different sets of learning rate and discount factor on our irrigation  

control system along with constant irrigation system is shown in Figure 10. 
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Plots containing LAI vs water consumption for the weather data of Iowa Falls, 

IOWA with three different sets of learning rate and discount factor on our irrigation 

control system along with constant irrigation system is shown in Figure 11. 

 

 

Figure 11: Leaf Area Index vs Water Consumption Plots for Iowa Falls, IOWA. 

 

Table 3: Leaf Area Index Comparison Table for Different Regions 

Region Constraint 

 

Constant 

Irrigation 

Q-learning 

(λ=0.1) 

α= 0.6, γ=0.8 

Q-learning  

(λ=0.1) 

α= 0.6, γ=0.6 

Q-learning  

(λ=0.1) 

α= 0.8, γ=0.6 

College 

Station 

Leaf Area 

Index 
9.16 9.15 9.12  9.08  

 Total 

Irrigation 
2400 1800 1897  1932  

Cambridge Leaf Area 

Index 
8.70  8.68  8.64  8.49  

 Total 

Irrigation 
2400 1860  1920  1964  

Iowa Falls Leaf Area 

Index 
9.21 9.19  9.16  9.09  

 Total 

Irrigation 
2400 1868  1897  1980  
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From the above Table 3 and Figures 9, 10 and 11 we can confer that the proposed 

Q-learning method is very efficient in terms of water consumption. All the weather data 

for the three regions in Figures 6 to 11 are taken from US Climate Data Website [US 

Climate Data]. In Figure 6/Figure 9 weather data for College Station is taken from April 

to June and the data for Cambridge in Figure 7/Figure 10 is taken from months May to 

July and the data for Iowa falls in Figure 8/Figure 11 is taken from months June to August. 

The controller is able to achieve the maximum leaf area index constraint with less water 

consumption for the growth period. Similar to the plant yield from Table 1, Q-learning 

irrigation system with learning rate (α) = 0.6 and discount factor (γ) = 0.8 yields the best 

possible outcome with all three regions.  

 

 

 

 

 

 

 

 

 

 

 

 



8.   CONCLUSION 

Water plays an important role in plant growth and development. With the depleting 

underground water resources and other fresh water resources available for irrigation, water 

management techniques such as precision irrigation is very necessary. In this thesis a fully 

functional reinforcement learning controller compatible with the DSSAT model is 

developed. The proposed controller leads to crop yield similar to constant rate irrigation 

with almost 40% decrease in water consumption. It is evident from the data shown in 

tables 1 and 2 that the Q-learning irrigation system works best with learning rate of 0.6 

and discount factor of 0.8. Reward function introduced in the work which depends on leaf 

area index as well as water consumption works as expected which helped the 

reinforcement learning controller achieve desired yield and leaf area index with minimum 

possible water consumption. 
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