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ABSTRACT 

 

Induction Motor Bearing Fault Detection Using a 

Fractal Approach. (December 2010) 

Jianxi Fu, B.S., Tsinghua University, Beijing, China 

Chair of Advisory Committee: Dr. Alexander G. Parlos 

 

Fault detection is an important research area in mechanical engineering. Literature 

surveys indicate that bearing failures are considered the most common failure modes in 

motors. Various faults related to bearings can be categorized into single-point defects or 

generalized roughness defects. In many research studies, monitoring methods based on 

vibration signals are used to detect single-point bearing failures. Depending on which 

bearing surface contains the fault, the characteristic vibration frequencies can be 

calculated from the rotor speed and the bearing geometry. It also has been demonstrated 

that stator current monitoring can provide the same indication without requiring access 

to the motor. 

The combination of phase space reconstruction and fractal theory may provide an 

effective approach to detect bearing generalized roughness faults in induction motors by 

assembling the estimation of dynamic invariant properties of a nonlinear system. In 

mathematics, a delay embedding theorem gives the conditions under which a chaotic 

dynamical system can be reconstructed from a sequence of observations of the state of a 

dynamical system by lagging the time series to embed it in more dimensions. One can 
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determine the delay time by calculating mutual information with equality distant space 

cells. False nearest neighbors provides a robust way to determine necessary embedding 

dimensions. Almost all chaotic systems have a quantifying measurement known as a 

fractal dimension which is extracted from the original or reconstructed phase space. 

There are many specific forms of fractal dimension. In this research, correlation 

dimension is used to estimate the dimension of attractors in nonlinear dynamical 

systems. 

Taking the result of Fourier based analysis as a reference for fault detection, 

experimental results show that the proposed method is as effective in detecting bearing 

generalized roughness faults in induction motors. 
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CHAPTER I 

INTRODUCTION 

 

A. Research Motivation 

Induction motors are often in a critical role in industrial processes and are the most 

popular because of their simplicity of construction. Like all rotating machinery, 

reliability of induction motors is not 100%. Arranging a schedule for motor maintenance 

plays a very important role in modern industry. An inadequate maintenance plan may 

lead to significant losses as a result of shutdown times or an accidental breakdown of 

motors that result in bigger losses. The condition based maintenance (CBM) strategy is 

assessed as the most effective technology that moves the maintenance effort from a 

scheduled, preventative format to a more flexible and accurate condition based 

predictive format [1]. 

Fault detection, which is a very important research area in mechanical engineering, 

has significant role within a CBM system. By spotting fault sources and making 

maintenance proactive before any failure occurs, a CBM system keeps operators up to 

date on how motors are performing, helping avoid any loss from deviations from 

expected normal performance. Therefore a CBM system can access and estimate 

machine condition, enabling maintenance to be performed proactively, rather than 

reactively.  The main aims of machine fault detection are to minimize unplanned down- 
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time while enabling safe, and to optimize motor performance under all operating 

conditions. 
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Figure 1. Reasons for induction motor failure. 

 

Typical failures of an induction motor can be classified into bearing, stator, rotor, 

and other failures. Figure 1 presents a summary of the main reasons for induction motor 

failures. According to O’Donnell [2] and Albrecht [3] 41% all failures of electric motors 

in 1985 and 1986 were related to bearings. Furthermore, some similar studies on the 

major component failure of motors has been conducted by Thorsen [4] and IEEEIGA [5] 

in 1995 and 2003, bearing faults also have been shown to be the most frequent faults in 

induction motors. Based on these studies, bearing failures can thus be considered the 

most common failures of induction motors. Therefore there is a strong motivation to 
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study bearing faults and develop a method for detecting faults in induction motor, in 

general. 

 

B. Literature Review 

There are many reasons for bearing failures: wrong or aged lubricant, bearing dirt, 

inadequate or too much grease, wrong alignment, bearing currents and so on. All faults 

related to bearing can be categorized into single-point defects or generalized roughness 

as shown in Figure 2[6]. The convenience of this classification is that it is easy to design 

different fault detection schemes for such special faults. 

 

 

Figure 2. Bearing faults categorization. 

 

A single-point defect is a pit or spall on a bearing surface. Depending on which 

bearing surface contains the fault, the characteristic vibration frequencies can be 

calculated from the rotor speed and the bearing geometry [7], as detailed below. 

The single-point defect on outer race frequency is given by: 
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Figure 3. Rolling element bearing geometry. 

 

where pitchD is the bearing pitch diameter, ballD is the ball diameter, n is the ball number, 
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 is the contact angle of the balls on the races in Figure 3, and shaftf is the mechanical 

rotor speed in Hertz. 

In many studies monitoring methods based on vibration signals are used to detect 

the single-point bearing failure. Accelerometers are the most common vibration sensors. 

However, they are expensive and their installations are critical and not justified for every 

electric machine. It has been shown by Schoen and Habetler that stator current 

monitoring can provide the same indications without requiring access to the motor [7]. 

Current-based monitoring techniques usually do not require additional sensors 

(sensorless) and have great economic benefit for low-cost implementations. 

Current-based bearing fault detection is to extract fault signature from the motor 

stator current. The basic idea of the relationship of bearing vibration to stator current 

spectrum is the fact that dynamic eccentricity varies with rotor position, and the 

oscillation in the air gap length causes variations in the air gap flux density. This, in turns, 

affects the inductances of the motor produced stator current harmonics.  

The characteristic current frequencies, cff , due to the bearing characteristic vibration 

frequencies, vf , are calculated by [7] 

 cf e vf f m f   , (1. 5)

where 1,2,3...m  and ef  is the power line frequency. As a result, this equation 

represents that the predictable frequency components typically appear in the machine 

vibration and are reflected in the stator current. 

In fact, there is a lot of literature focusing on the detection of single-point bearing 
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faults. Conventionally, the Fourier transform gives a good analysis for stationary signals. 

However, it is well known that Fourier transform analysis exhibits several weaknesses 

when it is applied to non-stationary signals, since the frequency content of a response 

varies with time, and ‘averaging’ over a large number of data windows smears the 

response characteristics. Moreover, the input signals must contain a frequency spectrum 

rich enough to contain the structural frequency components of interest. Especially when 

the feature components are weak in magnitude, the desired feature components needed 

for analysis are difficult to be identified. 

To overcome this, the Short Time Fourier Transform (STFT) and Wigner-Ville 

distribution (WVD) have become popular methods for non-stationary signal analysis. 

Yazici and Kliman used an adaptive statistical time-frequency method for detection of 

broken bars and bearing faults in motors using stator current [8]. More recently, the 

wavelet analysis is also increasingly applied to this problem. Eren and Devaney have 

successfully detected bearing damage via wavelet packet decomposition of the stator 

current in [9]. 

In contrast to single-point defect, generalized roughness is defined when bearing 

surface has degraded over a large area and has become rough or deformed. The 

generalized roughness is difficult to predict, because these faults are not observable at 

the early stages. Such faults may cause broadband changes in the stator current and may 

increase machine eccentricity level. In single point defect of bearing faults, the fault 

related frequencies can be detected according to the bearing geometry dimensions, while 

the characteristic fault frequencies for the current or vibration associated with this type 
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of generalized roughness bearing faults are residing in wide frequency bands and are not 

easily detectable or predictable. 

Most single-point bearing fault detection techniques mentioned above are based on 

locating and processing the characteristic fault frequencies in vibration and stator current. 

They are not suitable for detecting generalized roughness faults. The mean spectral 

deviation (MSD) method in [10] is used to detect generalized roughness faults, but it has 

some disadvantages. First, it requires thorough knowledge of stator current spectrum 

distribution to design a set of notch filters used to eliminate non-bearing fault 

components. Second, it assumes that the components at the frequencies to be eliminated 

do not contain fault information, which may not be true in practice. Third, machine 

speed must be measured or estimated. And L. Wang has successfully demonstrated that 

both bispectrum estimation and Amplitude Modulation Detector (AMD) can be used for 

generalized roughness fault detection in his research [11]. However, these analysis are be 

done in traditional frequency domain. 

Fractal analysis has now become widely used to interpret variable and unpredictable 

physical phenomenon, and have obtained substantial results in image and signal 

processing. Chih-Hao Chen and Rong-Juin Shyu diagnose rotating machines using 

wavelet packets-fractal technology and neural networks in [12]. Logan and Mathew have 

used the correlation dimension for vibration fault diagnosis of rolling element bearing in 

[13]. The application of current- based fractal analysis to bearing fault diagnosis in 

induction motors is still in its early stages. Further work is needed to investigate exact 

effects. 



8 

C. Problem Definition and Research Objectives 

From the previous sections, it can be inferred that it would be desirable to develop a 

method for detecting induction motor and/or driven load faults while eliminating some 

of the drawbacks of the existing methods. The objectives of this research are as follows: 

 Develop a fault detection method based on the fractal analysis of an underlying 

dynamic system with unknown dynamic models; assume the availability of input and 

output measurements only; 

 The method must be insensitive to varying operating conditions while being 

sensitive to fault conditions; 

 The method must be applicable to both electrical and mechanical measurements, 

i.e. current and vibration signals. 

 

D. Proposed Approach 

Machine condition monitoring and fault detection present many challenges in the 

extant literatures, finding an excellent method of fault detection is the key to enable a 

CBM system to be more useful in practical applications. 

In mathematics, a delay embedding theorem gives the conditions under which a 

chaotic dynamical system can be reconstructed from a sequence of observations of the 

state of a dynamical system by lagging the time series to embed it in more dimensions. 

And the reconstructed attractor is the same as that of the real attractor since the spectra 

are invariant under a smooth coordinate change. 

It can be noted that there are two important parameters to reconstructing phase space 
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from a signal: embedding lag and embedding dimension. Therefore, the first two steps of 

this research are to find methods to determine values of these two parameters. 

Though phase space reconstruction provides a method how to extract the high 

dimensional feature vector from the measured data, there still one key question: how to 

indicate the state of reconstructed attractor in order to estimate and forecast the machine 

health condition. This thesis applies the fractal dimension as an indicator number in 

evaluating the states of machine health condition. Fractal dimension, developed by the 

non-linear dynamic and chaos theory, is a promising new tool to interpret observations 

of physical systems where the time trace of the measured quantities is irregular. Fractal 

dimension can extract some physically interesting and useful features from such signals, 

which are generic in non-linear dynamical systems. Fractal dimension has many specific 

forms, such as the similarity dimension, box-counting dimension, and correlation 

dimension. It should be taken in full consideration that which dimension is finally used 

to estimate the dimension of attractors of dynamical systems. 

In order to develop a bearing fault detection method, bearing fault data must be 

acquired before being applied in prognosis. This data is come from two experiments 

which were finished by other students in previous research. In these experiments, both 

the non-stationary mechanical (vibration) and electric (voltages/currents) signals for 

each motor were measured. Especially, the bearing fault data was not created off-line. 

That is, to disassemble the bearing, damage it, and then assemble the machine. It has 

been demonstrated in [14] that the act of this process significantly alters the current and 

vibration characteristics of the machine and corrupts the experimental data. In order to 
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make bearing fault data valid for use in condition monitoring scheme, shaft current 

bearing damage was conducted to induce and progress a bearing fault in an accelerated 

timeframe in the experiments. These faults are generated in situ without disrupting the 

operation of the electric machine. The overall method proposed for use in this thesis is 

shown in the Figure 4. 

 

 

Figure 4. Overall approach of proposed research. 
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E. Research Contributions 

The main contribution of this research is the development of a method for the 

detection of generalized roughness faults in induction motor bearings. The algorithm has 

the following characteristic attributes: 

 It can be used with electrical (voltages/currents) or mechanical (vibration) 

measurements; 

 Its analytical focus shifts from the frequency domain to a different processing 

space which is called reconstructed phase space where signal processing techniques are 

used to extract time-domain based features for signal recognition of faults. 

 It uses the correlation dimension as an indicator. The correlation dimension can 

provide intrinsic information of original dynamic systems from time-series 

measurements. 

 

F. Thesis Organization 

It is expected that this research will provide another method for bearing generalized 

roughness fault detection in induction motors by using phase space reconstruction and 

fractal theory. The remaining parts of this thesis are organized as follows. Chapter II 

presents the analysis in phase space which is different from other approaches in 

frequency domain. Mutual information and false nearest neighbor methods are used to 

determine important parameters for space reconstruction. Then some specific forms of 

fractal dimension are introduced. Correlation dimension is applied to speech detection 

finally due to its computational simplicity. In Chapter III, faults causes by bearing 
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current and effects are described. The experimental test bed where the data come from 

has been established by other students in their previous research. In-situ bearing damage 

was applied to generated fault data and sets of vibration and electric signal data 

acquisition are introduced. In Chapter IV, the results of analysis of mechanical and 

electrical signals from different test beds are presented. To justify the extended 

application of detecting other fault rather than bearing, the algorithm is also applied to a 

set of practical data. In Chapter V, a summary and conclusions of this research, and the 

directions for future work are briefly described. 
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 CHAPTER II 

PROPOSED BEARING FAULT DETECTION METHOD 

 

A. Phase Space Reconstruction 

Induction motor condition monitoring and health diagnosis present many methods in 

the extant literatures. Conventionally, motor current signature analysis (MCSA) has been 

used to estimate the condition of induction motors while the analysis is in the frequency 

domain [7]. In this thesis, phase space analysis is used as an alternative to these 

traditional techniques. The analytical focus shifts from the frequency domain to a 

different processing space where nonlinear/chaotic signal processing techniques are used 

to extract time-domain based phase space features for speech recognition [15].  

In mathematics and physics, a phase space is a space that represents all possible 

states of a dynamics system. The phase space of a dynamic system can be easily 

extracted from the equations of motion if this system can be modeled mathematically. 

The dimension of a system’s phase space is the number of degrees of freedom of this 

dynamic system. Every degree of freedom or parameter of the system is represented as 

an axis of its multidimensional phase space. With these variables, the system can be 

completely described. The instantaneous state of a dynamical system is characterized by 

one unique point in the phase space. A sequence of such states subsequent in time consist 

a geometric structure emerged in phase space. It is called the attractor of the system. 

The Lorenz system is defined by: 
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Figure 5. Time series and phase space for the Lorenz dynamical system. 

 

An example of phase space plot for a Lorenz dynamical system is illustrated in 

Figure 5, and its characteristic attractor is clearly revealed.  

Especially for mechanical systems, the phase space usually consists of all possible 

values of position and momentum variables. It means that the full dynamics of the 

system are accessible in this space. Because of this, a phase space and fractal dimension 

extracted from it, which can be found in next chapter for more detail, may potentially 

contain different information than representation comes from frequency domain. 

However, in many practical situations mathematical model of a dynamical system 

cannot be derived directly. Moreover, it is hard to measure all these variables of a system 

in most case so that it cannot offer a complete description of the system. Normally, at 
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least data from one of the system variables can be measured to generate one state time 

series. In this instance, phase space reconstruction is usually the first step in the analysis 

of a dynamical system. 

Takens' embedding theorem [16] proved that method of time delays provides a 

relatively simple way of constructing an attractor from a time series of a single 

component. A copy of the attractor of the system can be reconstructed by lagging the 

time series to embed it in more dimensions. The embedding theorem states that the 

dimension and of the reconstructed attractor is the same as that of the real attractor, since 

the spectra are invariant under a smooth coordinate change [17]. 
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Figure 6. Lorenz attractor and reconstruction of the attractor. 

 

The left panel Figure 6 is a single 5000 point trajectory of Lorenz attractor plotted in 

x, y and z co-ordinates, the right panel is a delay embedding in three dimensions 

(embedding lag of 3) of the x co-ordinate. Notice that both original attractor and 

reconstructed one exhibit two flat and a more complex central region. 

Take Rossler system as another example, which is defined by: 
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Figure 7. Rossler attractor and reconstruction of the attractor. 

 

The left panel Figure 7 is a single 5000 point trajectory of Rossler attractor plotted 

in x, y and z co-ordinates, the right panel is a delay embedding in three dimensions 

(embedding lag of 8) of the x co-ordinate. One can see from both original and embedded 

co-ordinates that chaos in this system is generated by a gradual stretching apart of 

trajectories over most of the attractors, combined with rapid folding and compressing at 

one point. 

Therefore, from the previous examples, it can be noted that there are two steps to 

reconstructing phase space from a signal: first step is choosing a time delay; second step 

is choosing an embedding dimension.  
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1. Embedding Lag 

Choosing optimum time delay is not trivial and the dynamical properties of the 

reconstructed attractor are to be amenable for subsequent analysis. The shape of the 

embedded time series will depend critically on the choice of  . For smaller values of 

 , ( )s t  and ( )s t  will be too closed to each other, so that it cannot supply two 

independent coordinate or independent variables in dynamic system. It is wise to select a 

value of   which separates the data as much as possible. However, for larger values of 

 , ( )s t  and ( )s t   will be  completely independent of each other, and any 

connection between them in the case of chaotic attractor is random. Based on analysis 

above, a criterion is required for intermediate choice that is large enough so that ( )s t  

and ( )s t   are independent but not so large that ( )s t  and ( )s t  are completely 

independent in statistical sense [18]. 

A competing criterion relies on the information theoretic concept of mutual 

information, the mutual information criterion (MIC). Determine of delay time by 

calculating mutual information with equality distant space cells [19]. That means space 

cells are divided by equal distance step for calculating mutual information, and delay 

time. This approach is simpler than that of equal probability method [20]. 

There are two discrete systems 1 2, { , , , }nS s s s and 1 2,  { , , , }nQ q q q . The mutual 

information of two discrete random variables S andQ can be defined as:  

 2

( , )
( , ) ( , ) log

( ) ( )
sq i j

sq i j
i j s i q j

P s q
I S Q P s q

P s P q
 , (2. 3)

where ( , )sq i jP s q  is the joint probability distribution function of is  and jq , ( )s iP s  
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and ( )q jP q  are the marginal probability distribution functions of is  and jq  

respectively. 

Let [ , ] [ ( ), ( )]S Q X k X k   , determine of delay time by calculating mutual 

information with equally distance space cells, use provided  to reconstruction 

( ( ), ( ))x k x k   in ( , )s q  space, the 2D reconstruction of an attractor is partitioned into 

a grid of n n  cells, so the size of each cell in s direction max min
s

s s

n
 

 , the size of 

each cell in q direction max min
q

q q

n
 

 . For every point ( , )s q  If 

min( 1) s si s s i     and min( 1) q qj q q j      are satisfied, that means this point 

is in the cell ij .  

The joint probability of occurrence ( , )sq i jP s q  of the attractor in any particular box 

is calculated by counting the number of discrete points ( , )sqN i j in the cell ij and 

dividing by the total number of points on the attractor trajectory. 

 
( , )

( , ) sq
sq i j

N i j
P s q

total number
 . (2. 4)

Discrete probability density functions for ( ), ( )X k X k   are generated by 

summing the data points in each row and column of the grid respectively and dividing by 

the total number of attractor points. 

 
( , )

( )
 
sq

s i
j

N i j
P s

total number
 , (2. 5)
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( , )

( )
 
sq

q i
i

N i j
P q

total number
 . (2. 6)

Then calculate the mutual information based on different time delay value. Normally, 

it is changed from one to some finite number. When the mutual information is minimum, 

the attractor is as spread out as much as possible. The value of  which gives the first 

minimum is the attractor reconstruction delay [18]. This condition for the choice of delay 

time is known as minimum mutual information criterion. 
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Figure 8. Mutual information value versus time delay . 

 

Figure 8 shows the determination time delay for a Lorenz dynamical system using 

mutual information algorithm. According to minimum mutual information criterion, 3 

can be seen as the optimized time delay value for this system. 
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Figure 9. Reconstructed phase space for   value 1, 2, 3, and 4. 

 

Figure 9 shows distribution of 2D reconstructions of Lorenz attractor for different 

 .As can be seen from the plots above, the attractor looks clean and opened up at   = 

3 on the bottom left panel. At   = 1 or 2, the attractor is quite unrecognizable which 

are shown on the up two plots. This result is consistent to that from mutual information 

algorithm which is shown in Figure 8. Numerical results indicate that this method can 

determine the correct delay time. Moreover, for an infinite amount of noise free data, we 

are free to choose arbitrarily, the time delay.  
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2. Embedding Dimension 

The next parameter need to be estimated after embedding lag is the embedding 

dimension ed to achieve a good embedding. According to the Takens' embedding 

theorem [16], if ed  is sufficiently large, the evolution of ( )X i , which is 

{ ( ),  ( ),  ( 2 ),  ...,  ( ( 1) )}ex i x i x i x i d      , will be the same as original state change. 

Based on this theory, as long as one picks a ed  high enough, it is fine but there are 

other considerations. One is that computational cost increases quickly with increasing 

ed . Moreover, the conditions under this theorem are very difficult to achieve in practice. 

At the very least, sampled data represents a breach of the differentiability [21]. 

False Nearest Neighbors provides a robust way to determine necessary embedding 

dimensions. The basic idea of False nearest neighbor is: “two points which are close in 

the reconstructed state space stay close under forward iteration.” [22] That means two 

points close to each other should be property of the set, not of an artifact of using too 

low an embedding. Any property of the system that is dependent on the distance between 

two points will stop changing when we reach a sufficient dimension. 

In ed dimension state space, every point 

( ) { ( ),  ( ),  ...,  ( ( 1) )}eX i x i x i x i d     , 

has a nearest neighbor called  

( ) { ( ),  ( ),  ...,  ( ( 1) )}NN NN NN NN
eX i x i x i x i d     . 

Therefore measure the distances between this point and its nearest neighbor use a 

Euclidean distance: 



22 

 
2 2 2

2

( ) [ ( ) ( )] [ ( ) ( )]

            [ ( ( 1) ) ( ( 1) )] ,

e

NN NN
d

NN
e e

R i x i x i x i x i

x i d x i d

 

 

      

     


 (2. 7)

and the change in distance by adding one more dimension is 

 2 2 2
1( ) ( ) [ ( ) ( )]

e e

NN
d d e eR i R i x i d x i d       . (2. 8)
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Figure 10. False nearest neighbor. 
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Figure 11. Real nearest neighbor. 

 

As mentioned above, Figure 10 shows a green point and its nearest neighbor in one 
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dimension phase space on the left panel. The distance between them change much by 

adding one more dimension on the right panel. Figure 11 also shows a pair of the points 

that are really nearest neighbors because this value should not change too much as 

embedding dimension increases. The relative change in the distance can be calculated as 

a way to see whether these points were really close together or not [23]. Using a 

threshold a criterion for false nearest neighbors is shown following: 

 
( ) ( )

( )
e

NN
e e

d

x i d x i d
R

R i 

   
 . (2. 9)

In practice values of R  in the range 10 50R  works well for most situations. 

By this criterion one can then test sequence of points and, as ed  increases, find where 

the percentage of nearest neighbors goes to 0. 

However, the false nearest neighbor algorithm is not robust to a data from a 

random-number generator [24]. Embedding dimension value will be too small when the 

criterion is applied. Additional criterion is taken into account the distances as measured 

with respect to the size of the attractor AR  

 
1( )

2.ed

A

R i

R
   (2. 10)

A common way to estimate AR  is by using the root mean square value of the data. 

 2

1 1

1 1
( ( ) ( ))

N N

A
i i

R x i x i
N N 

   . (2. 11)

If noise is present in our signal, the higher ed  will be populated by this extra noise 

instead of the meaningful dynamics of the system. One can also use the false nearest 
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neighbors test to find the relative contamination of noise in the signal. 
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Figure 12. Percentage of false nearest neighbor for the Lorenz system. 

 

Figure 12 shows percentage of false nearest neighbor under different embedding 

dimension from 1 to 8. According to the criterion mentioned previous, 3 can be seen as 

the suitable embedding dimension value for this system. This result is consistent to 

number of variables in equations (2. 1). Therefore the false nearest neigh can be assessed 

as an effective method to determine embedding dimension.  

 

B. Fractal Dimension 

The fractal theory is an important and active field in the nonlinear dynamic system 

study. Almost all chaotic systems have a quantifying measurement known as a fractal 

dimension which is extracted from the original or reconstructed phase space and applied 
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to speech recognition or classification. The state variety in a complicated mechanism 

could be represented by its attractor. Fractal dimension describes how an attractor takes 

up in phase space. Fractal dimension is a dynamic invariant does not depend on the 

coordinate system and different initial conditions. In other words, the value of a dynamic 

invariant obtained directly from the original system and they are invariant in both the 

original and reconstructed phase space. 

In mathematics and geometry, the dimension of an object or space is defined as the 

minimum number of coordinates that used to specify every point in it. For example, the 

dimension of a line is one, the dimension of a surface is two, and a cube has a dimension 

of three. 

The term “fractal” was coined by Benoit Mandelbort in 1975 [25] and was derived 

from the Latin fractus meaning "broken" or "fractured." A fractal is an object or shape 

that appears self-similar no matter what size it is viewed at. More clearly, each small part 

of a fractal object or shape will look almost the same with the structure of the whole. 

Fractal possesses symmetry across scale. 

 

 

Figure 13. Sierpinski Triangle. 
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Sierpinski's Triangle is one of the most interesting and one of the simplest fractal 

shapes in existence. As shown in Figure 13, vary the magnitude of picture and zoom in 

on the top of these three sub-triangles, and it will look exactly the same with the entire 

Sierpinski Triangle itself. In fact, the previous process can be repeated as many times as 

possible, and each sub-triangle is an exact replica of the whole Sierpinski Triangle. It is 

similar to itself at different scales.  

 

 

Figure 14. Segmental coast of Britain. 

 

Fractal not only can be a mathematical or geometrical construct, but also it exists in 

nature. Mandelbrot began his treatise on fractal geometry by considering the question: 

"How long is the coast of Britain?" Figure 14 shows one segment of the coastline, the 

border between the land and the sea, has bays and peninsulas [26]. Ever smaller bays and 

peninsulas can be seen if coastline is magnified. The structure at a small scale is also 

similar to the structure at a large scale.  

Put one map of Britain on a very large-scale. Because of irregularity of the coastline, 

a measure with a straight ruler, as shown in Figure 15, provides an approximation [27]. 

The estimated length of coastline L  equals the length of the ruler R  multiplied by N , 
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the number of rulers used. On the left panel 1 unit length rules are chosen, 1/2 unit 

length rules are used for measurement on the middle panel, while more smaller rules, 1/4 

unit length, on the right panel. 

 

 

Figure 15. Measuring the length of a coastline using rulers of varying lengths. 

 

However, the results that come from three panels using different rules are totally 

different. Circumference is 12 (12 1 ) units on the left, 14( 28 1/ 2 ) units in the middle, 

15( 60 1/ 4 ) units on the right side. Each time the size of rules decreases, the perimeter 

increases. Moreover, there is no shapes can be used to define the coastline of Britain, 

because exactly circumscribing the coast of Britain would entail encircling every rock, 

every tide pool, every pebble which happens to lie on the edge of Britain. The smaller 

rules there are, the closer the circumscribing line will be able to conform to the dips and 

the protrusions of Britain's rugged coast. In general, as the length of a ruler becomes 
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diminishingly small, the length of coastline will reach infinitely large. The concept of 

length begins to make little sense. 

In fractal geometry, Mandelbrot used the fractal dimension as a statistical quantity 

that gives an indication of how completely a fractal appears to fill space, as one zooms 

down to finer and finer scales. Then one can use fractal dimension to describe the 

coastline of Britain instead of length. There are many specific forms of fractal dimension, 

such as similarity dimension, compass dimension, box-counting dimension, Hausdorff 

dimension, information dimension, correlation dimension, generalized Dimension. 

Practically, the box-counting dimension and correlation dimension are widely used, 

partly due to their ease of implementation. 

 

1. Similarity Dimension 

Similarity dimension directly comes from the definition of fractal dimension, it is 

easiest to be understood and computed. An object or shape resides in Euclidean 

dimension D  space and its linear size is reduced by 1/ r  in each spatial direction, its 

measure (length for a line, area for a square, or volume for a cube) would increase to 

DN r  times the original. Solve for D  in mathematics: 

 

,

log( ) log( ),

log / log .

DN r

N D r

D N r







 (2. 12)

Similarity dimension emphasizes this common pattern and provides a way how to 

computing the dimension of a self-similar shape. For a self-similar object or shape, each 
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time it is scaled by a similarity with magnification factor r , it makes of N  copies of 

itself, the similarity dimension is 

 
0

log(number of self-similar pieces,  )
lim

log(magnification factor,  1/ )s
r

N
D

r
 . (2. 13)

 

Table 1. Computed similarity dimension of objects. 

A line: A square: A cube: 
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1/ 3,

9,

log(9) / log(1/ (1/ 3))
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N
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1/ 3,

27,

log(27) / log(1/ (1/ 3))
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s

r

N

D






 

 

As Table 1 shown above, similarity dimensions of a line, a square, and a cube are 

consistance with their Euclidean dimensions. This formula can be generally used to 

compute for the number of pieces that are scaled by similarities with different 

magnification factors. Examined this way, sD need not be an integer, as it is in 

Euclidean geometry. It could be a fraction, as it is in fractal geometry. 



30 

Figure 16 shows the conceptual and simply way of generating the Sierpinski 

Triangle that mentioned in previous section. Begin with a triangle, separate it into four 

small triangles by connecting the midpoints of three sides, then cut out the small triangle 

in the center. Perform this same action for each of the three remaining sub-triangles. 

Iterate infinitely and final figure will be finished. Also, similarity dimension of a 

Sierpinski triangle can be calculated as following 

 log3 / log[1/ (1/ 2)] 1.5849sD   . (2. 14)

 

 

Figure 16. Geometric construction of the Sierpinski triangle. 

 

Take Koch curve for another example, which have inspired many artists who 

produced amazing pieces of art. Moreover, for Benoit Mandelbrot’s pioneering work on 

fractals, the Koch curves is one of the most important objects used by him. 

The Koch curve allows numerous variations and Figure 17 introduces a fair simple 

way to construct it. Divide a straight line into three equal segments and replace the 

center segment by two segments having the same length to generate an equilateral 

triangle. Now each of the four resulting segments can be seen as a single straight line 

mentioned in the first step, process is then repeated for these 4 segments, leading to the 
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top right panel of Figure 17 in the second iteration of the constructional process. Iterate 

infinitely and final figure will be finished. Also, similarity dimension of a Koch curve 

can be calculated as following 

 log 4 / log[1/ (1/ 3)] 1.2618sD   . (2. 15)

 

 

Figure 17. How the curve is recursively constructed. 

 

Similarity dimensions are not limited to being between one and two. An object 

between a point and a line such as Cantor set has similarity dimension between zero and 

one. Further, take Menger Sponge as an example, a similarity dimension of between two 

and three would represent an object which occupies more space than a plane, but less 

than a sphere. 

 

2. Box-Counting Dimension 

Besides similarity dimension, the box-counting dimension “ bD ” is also one kind of 
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fractal dimensions. Generally none real-world object or shape has clearly repeating 

self-similar structure as Sierpinski triangle and Koch curve. It means that the similarity 

dimension algorithm will not work because real-world objects have less regular shapes 

and cannot be divided into equal segments. Therefore, there will be a problem when 

measuring the fractal dimension of real-world shape as a coastline or part of it which 

mentioned at the beginning of this chapter. In such cases box-counting dimension is 

more widely used, which is often based on calculating occupied boxes algorithm [28]. 

The algorithm of box counting dimensions assumes a set S  contained in n 

dimension Euclidean space. For any 0r  , divide this n  dimension Euclidean space 

into a very fine grid with n-dimensional cubes of side-length r , and ( )rN S  be the 

minimum number of small cubes needed to cover S . If there is a number bD  so that 

 ( ) ~ 1 /  as 0Db
rN S r r  . (2. 16)

The number bD  is defined as the box-counting dimension if and only if there is 

some positive constant k so that 

 
0

( )
lim

1/
r

Dbr

N S
k

r
 . (2. 17)

Solving for bD  gives 

 0
lim(log ( ) log ) logr br

N S D r k


  , 

 
0 0

log log ( ) log ( )
lim lim

log log(1/ )
r r

b r r

k N S N S
D

r r 


  . (2. 18)

Note that the log( )k  term drops out when r becomes infinitely small. Moreover, 

n-dimensional small cubes are not necessary if some other shape is more convenient. 
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Disks of diameter, or even stars of diameter can be used to cover set S  instead of cubes 

and the answer bD  will not change [29]. 

However, the data used for computer calculation is discrete time series rather than 

continuous. That means the sampling interval of r  is unable to approach infinitely 

small even the data is sampled at very high rate. In the actual calculation it will use an 

approximate algorithm which works very well for any object or shape provided as a 

monochrome image. 

 

   

Figure 18. Covering the Sierpinski triangle with smaller and smaller boxes. 

 

As shown in Figure 18 left panel, a grid is put over the Sierpinski triangle image. 

Then calculate the number of boxes which contain part Sierpinski triangle. At the next 

step shown on center panel in Figure 18 a lower grid is chosen and again those boxes, 

which contain a relevant part of the image, are calculated. Then repeat. That means be 

different from similarity dimension by dividing image into segments, box-counting 

method just change the grid. 
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Table 2. Calculate the occupied boxes of each grid-size. 

Box Size Count No.   

r Nr log2(1/r) log2(Nr)

21x21 470 -4.3923 8.8765

27x27 304 -4.7549 8.2479

29x29 271 -4.858 8.0821

35x35 196 -5.1293 7.6147

41x41 153 -5.3576 7.2574

51x51 113 -5.6724 6.8202

61x61 88 -5.9307 6.4594

65x65 78 -6.0224 6.2854

73x73 65 -6.1898 6.0224

87x87 48 -6.4429 5.585 

101x101 36 -6.6582 5.1699

 

 

When computing box dimension, some simplifications can be made [29]. To make 

the calculations much easier, not every possible r  need to be considered. Choosing a 

convenient sequence where ir  is a sequence converging to zero is enough to consider 

the limit of log / logrN r . Table 2 shows some r  that be chosen. Calculate the 

occupied boxes of each grid-size.  
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Figure 19. Log-Log plot to estimate the box-counting dimension. 

 

The number of boxes rN  and the grid width r  can produce a dual logarithm 

curve that should fulfill the following linear regression model [12] 

 2 2log ( ) log (1/ )r bN D r b   . (2. 19)

Figure 19 plots the points in the Table 2 (the graph shows a greater range, and more 

widely spaced, points than table), then the least square method is applied to obtain the 

slope of the straight line and the box counting dimension is the value of slope. So the 

box-counting dimension of the Sierpinski triangle is about 1.60. 

Then this procedure is used for Koch Curve which mentioned in previous section. 

The points are plotted that lie on a straight line of slope about 1.29 in Figure 20. So the 

box-counting dimension of the Koch curve is about 1.29. 
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Figure 20. Box-counting dimension estimation of the Koch Curve. 

 

From the results above and previous chapter, the box-counting dimension of 

Sierpinski triangle is 1.6033, and from the fractal definition its similarity dimension is 

1.5849; the box-counting dimension of Koch curve is 1.2923, and from the fractal 

definition its similarity dimension is 1.2618; These errors, 1.16% and 2.42% respectively, 

are acceptable, Therefore, it is concluded that the box-counting dimension can provide 

an effective method to calculate fractal dimension. 

One must use the same dimension ruler to measure the same dimension quantity. For 

example, use a ruler to measure a line. If one measures a square by using a line or a point, 

the answer will be infinite. Go back to the question "How long is the coast of Britain?" 

As shown in Figure 21, the box-counting dimension of coastline of Britain is 1.39. That 

means exactly right answer can be got if and only if the coastline is measured by using a 

1.39 dimension “ruler”. 
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Figure 21. Box-counting dimension of coastline of Britain. 
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Figure 22. Box-counting dimension of Barnsley Fern. 

 

The Barnsley Fern is a fractal named after the American mathematician Michael 

Barnsley who first described it in his book Fractals Everywhere. Like the Sierpinski 

triangle, the Barnsley fern shows how graphically beautiful structures can be built from 
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repetitive uses of mathematical formulas with computers in Figure 22. The Box-counting 

dimension of a Barnsley Fern is 1.75. 

 

3. Correlation Dimension 

Similarity dimension and box-counting dimension are simpler and more easily 

understood than the others. Such as those described in the previous sections, similarity 

dimension is very suitable to calculate for fractals generated from simple iterative rules 

while box-counting dimension is useful for monochrome images. However, the phase 

spaces are usually high dimension Euclidean space. When dimension goes higher and 

higher, the algorithmic complexity grows exponentially with the set dimension [30], 

calculating box counting dimension require a prohibitive amount of computation time. 

Thus, the box-counting dimension can be computed only for low-dimensional sets. 

Correlation dimension is a good substitute for the box-counting dimension due to its 

computational simplicity. It is successfully used to estimate the dimension of attractors 

of dynamical systems. 

Being one of the characteristic invariants of nonlinear system dynamics, the 

correlation dimension can measure the complexity for the attractor of the system in 

phase space, it is given by 

 
( ) 2

1

0
lim

log

M r

ii
c r

P
D

r



 

. (2. 20)

Like algorithm of box-counting dimension, divide n  dimension Euclidean phase 

space into a very fine grid with n -dimensional cubes of side-length r . iP  is the 
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probability to find a point of the attractor in the thi sub-cube of phase space. ( )M r  is 

the total number of sub-cubes that contain attractor points 

 
1

( ) ~ ( )DcM r
r

. (2. 21)

After time delay and embedding dimension are decided, the attractor of the dynamic 

system can be reconstructed. Then the Grassberger and Procaccia (G-P) algorithm which 

allows an accurate and efficient numerical computation of the attractor's dimension can 

be directly applied to the reconstructed phase space to calculate the correlation 

dimension. 

The correlation dimension is closely related to the correlation integral ( )deC r  

which is defined in the ed -dimensional reconstructed space as the probability of finding 

a pair of vectors whose distance is not larger than r . It is given by Grassberger and 

Procaccia as follows : 

 2

1
( ) lim [number of pairs of i,j whose distance ]de i j

n
C r X X r

n
    , (2.22)

where 

{ ( ),  ( ),  ( 2 ),  ...,  ( ( 1) )}i eX x i x i x i x i d       . 

More formally correlation dimension is defined using Heaviside function: 

 ,
1 1

2
( ) ( )

( 1)

N N

de i j
i j i

C r H r r
N N   

 
   , (2.23)

where ( )H x  is the Heaviside Step function: 



40 
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( )
0,   1

x
H x

x


  

, (2.24)

r  is the distance parameter, ijr  is the distance between two vectors in reconstructed 

phase space, which is computed using the Euclidean norm 

 
1/21

0

( ( ) ( ))
de

ij i j
m

r X X x i m x j m 



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The correlation dimension cD  based on G-P algorithm is defined as 
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To be the same with the algorithm of box-counting dimension, the value of r  is unable 

to approach infinitely small because of discrete time series. In practice, one usually 

locates a linear scaling region from the plot of 2log ( ( ))deC r  versus 2log ( )r , and 

estimates the slope of the curve over the linear region. This slope is an estimation of the 

correlation dimension ( )c eD d  of the original attractor in the ed -dimensional 

reconstructed phase space.  

As shown in Figure 23, the correlation integral of Lorenz system is plotted 

logarithmically against 2log ( )r  on the up panel. The slope of line is plotted as a 

function of 2log ( )r  on the bottom panel. When it reaches a plateau for a range of large 

enough values, then the value (about 2.06 in this case) is taken to be an estimation of the 

true correlation dimension cD  for the system. 
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Figure 23. Correlation dimension of Lorenz system. 

 

As shown in Figure 24, the correlation integral of Rossler system is plotted 

logarithmically against 2log ( )r  on the up panel. The slope of line is plotted as a 

function of 2log ( )r  on the bottom panel. When it reaches a plateau for a range of large 

enough values, then the value (about 1.90 in this case) is taken to be an estimation of the 

true correlation dimension cD  for the system. 
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Figure 24. Correlation dimension of Rossler system. 

 

4. Influencing Factors on the Correlation Dimension 

Not only the embedding dimension and the lag time but also the data length and the 

noise level are important factor that influences the computational precision significantly 

[31].  

The computational results of correlation dimension for the Lorenz and Rossler 

attractors are listed in Table 3 in detail. Comparison of the values for the two models 

with different data lengths, the expected value is 2.02 and 1.89 respectively [32], [33]. 

One can see that when data length larger than 4096, the related error for the Lorenz 
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attractor is less than 2%. While for small size data, when N = 2048, the related error is 

higher than 6%. Generally, for the data sampled at same rate, the computational 

precision increases as the data size increases, large data sets tend to produce a better 

estimation of correlation dimension than small data sets. 

 

Table 3. Computational results of correlation dimensions with different sample size. 

Attractor  
Data Length

1024 2048 4096 8192 

Lorenz 

(2.02) 

Result 2.224 2.152 2.042 2.014 

Error (%) 10.095 6.510 1.073 -0.278 

Rossler 

(1.89) 

Result 1.870 1.712 1.924 1.859 

Error(%) -1.079 -9.434 1.784 -1.635 

 

 

In practical application the measured time series are inevitably contain noise. A low 

correlation dimension indicates a deterministic system. A high correlation dimension is 

indicative of randomness. Noise or random system fills its phase space uniformly and 

the correlation dimension is proportional to the embedding dimension [13]. 

Figure 25 shows the correlation integrals and the correlation dimension of a Lorenz 

and Rossler systems signal imposed with different levels of white noise. If the noise 

level is low, SNR > 55 (defined as energy ratio of signal to noise), the relative error is 

smaller than 10%. The numerical results indicate that the presence of noise leads to an 

increase of the correlation dimension. Therefore, it is necessary to preprocess the data 
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using noise reduction methods if non-linear time series analysis is used to analyze 

experimental or practical signals. 
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Figure 25. Correlation dimension imposed with different levels of white noise. 

 

C. Summary of Faulty Detection Algorithm 

 Before collected data being applied in fault detection algorithm directly, some 

digital signal processing need to be finished firstly. For vibration signal, because 

presence of noise leads to an increase of the correlation dimension, threshold de-noising 

method is used for filtering background noise. For electric signal, to reduce 

computational time, resample the signal from 8kHz to 1.92kHz. Based on the 

assumption that components at integer harmonic frequencies do not contain fault 

information, filters are used for filtering harmonic frequencies. This procedure can make 

change of correlation dimension significant. Only current signal is used for phase space 

reconstruction and fractal dimension analysis. 

The basic processes of the fractal analysis model and its procedures for estimating 
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and forecasting health condition of the induction motors are explained in Figure 26. 
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Figure 26. Summary of faulty detection algorithm. 
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CHAPTER III 

EXPERIMENTAL SETUPS FOR IN-SITU BEARING DAMAGE 

 

A. In-situ Bearing Fault 

One of the reasons for a bearing damage and eventually a bearing failure is bearing 

currents. Modern AC Converters have a high /du dt combined with a high switching 

frequency. This results in the sum of the 3 phase voltages not being zero anymore. This 

nonzero and high-frequency common-mode voltage can be considered to be the root 

cause for different kinds of bearing currents. Basically the damage is always caused by 

partial discharge. The so called Electrical Discharge Machining (EDM). This film of 

lubricant serves as a dielectric and allows the bearing to behave as a capacitor. Figure 27 

shows the created capacitor within a bearing between inner /outer race and the ball. This 

capacitor will be charged by the bearing currents. As soon as the voltage level is high 

enough it will be discharged by short circuit. Such periodically discharging will lead to 

an eroding of the metal.  

In order to develop a bearing fault detection method, bearing fault data must be 

acquired before being applied in prognosis. Such data can be created off-line. That is, to 

disassemble the bearing, damage it, and then assemble the machine in order to collect 

fault data. It has been demonstrated in [14] the act of this process significantly alters the 

current and vibration characteristics of the machine and corrupts the experimental data. 

It is invalid for use in bearing condition monitoring scheme. Therefore, there is a 

necessary to facilitate an online, in situ failure process to conduct bearing failure 
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research.  

 

capacitor

 

Figure 27. Created capacitor within a bearing. 

 

The experimental method employed in the previous research where the data came 

from utilized a shaft current to generate online, in situ bearing faults. EDM currents flew 

from the shaft through the bearings to the frame and finally to the grounding point. A 

healthy bearing possesses a film of lubrication ranging from 0.2 to 2.0 um thick at 

normal operating speeds. Given this thickness of lubrication, EDM currents can be 

caused by 60-Hz shaft voltages as low as 0.2–2 V peak. The current path is illustrated 

with the dashed line in Figure 28. Shaft current bearing damage experiments are 

conducted to induce and progress a bearing fault in an accelerated timeframe. These 

faults were generated in situ without disrupting the operation of the electric machine. 

This also contributes to the authenticity of the test data. 



48 

Frame

Stator

Rotor

Shaft

Bearing

 

Figure 28. Use a shaft current to generate online, in situ bearing faults. 

 

B. Shaft Current Experimental Setup 

In research, two test beds were used for experimental purposes. In the first test bed, 

1HP, 3 Phase, 208V induction motor G563 from Marathon Electric Company was loaded 

by a blower. In the second test bed, 7.5HP, 3 Phase, 208V induction motor 3KX07G 

manufactured by DAYTON was tested. A synchronous generator was used to load the 

induction motor. 

Figure 29 shows a photograph a schematic diagram of these test beds. The motor 

used for test is powered by a three phases, 208V AC power. In this setup, an external 

voltage source is applied to the shaft of the motor via a carbon brush. Because of 

convenience and availability, a single-phase, 120V 60Hz AC power is used for providing 

the shaft voltage. This causes a current to flow from the shaft through the bearing. An 

aluminum disk is mounted on the shaft to provide a smooth contact surface for the brush. 

Therefore, the high bearing damage current does not affect the proper operation of the 

power supply. 
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Figure 29. Experimental setup of the motor test-bed. 

 

In vibration data acquisition system, an accelerometer 352C33 is used as motor 

vibration sensor, which is mounted on the top of the induction motor bearing that is 

damaged during the experiment. This accelerometer is capable of measuring -50G to 

+50G with the sensitivity of 100mV/G from 0.2Hz up to 5000Hz. NI USB-9234 is ideal 

for a wide variety of mobile/portable applications such as industrial machine condition 

monitoring and in-vehicle noise, vibration, and harshness testing. It is a USB-based 

four-channel C Series dynamic signal acquisition module for making high-accuracy 

audio frequency measurements from sensors. The NI cDAQ-9174 is a four-slot NI 

Compact DAQ chassis designed for small, portable, mixed-measurement test systems. 
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Combine the cDAQ-9174 with up to USB-9234 module for a custom digital I/O 

measurement system which is shown in Figure 30. A Virtual Instrument (VI) program 

that runs under the NI LabView on PC saves the experimental measurements into data 

files. 

 

 

Figure 30. Vibration signal data acquisition system. 

 

In electric data acquisition system which is shown in Figure 31, the motor line 

voltages and phase currents are measured by using potential transducers (PT) and current 

transducers (CT), respectively. The AD73360 is a six-input channel analog front-end 

processor. It is particularly suitable for industrial power metering as each channel 

samples synchronously. With this one can sample 3 channels voltage signals and 3 

channels current signals. Sampling rate is set at 8 kHz. A serial port (SPORT) allows 

easy interfacing of single or cascaded devices to industry standard DSP engines. The 
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endpoint software is built around the Analog Devices VDK kernel. This is a 

multi-threaded kernel that provides the necessary support for the Ethernet interface. This 

support comes in the form of driver software and a TCP/IP stack. The data transfer 

algorithm is based on winsocket programming. 

 

 

Figure 31. Electric signal data acquisition system. 

 

Figure 32 shows an example of socket APIs used for iterative server design. The 

socket API specifies a socket descriptor that creates an endpoint. After the socket 

descriptor is created, a bind function gets a unique name for the socket. The listen 

function allows the server to accept incoming client connections. The server uses the 

accept function to accept an incoming connection request. The accept call will block 

indefinitely waiting for the incoming connection to arrive from an IPv4 or IPv6 client. 

PC uses the connect function to establish a connection to the server. The send function 
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sends the data request to the server. The recv function receives data from the server 

application. The close function closes any open socket descriptors. 

 

socket ()

Server (Box)

bind ()

listen ()

accept ()

send (); recv ();

close ()

socket ()

Client (Pc)

connect ()

send (); recv ();

closesocket ()  

Figure 32. An example of socket APIs used for iterative server design. 
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CHAPTER IV 

EXPERIMENTAL RESULTS 

 

The results based on fractal analysis of two previous experimental are presented in 

this chapter. The set of data com from each experiment is grouped into two parts. The 

first part of data mechanical (vibration) signal; the second part of data is electrical 

(voltage/current) signal. At last, to justify the extended application of detecting other 

fault rather than bearing, the algorithm is also applied to a set of practical data. Though 

only current signal is used for phase space reconstruction and fractal dimension analysis, 

voltage signal can be applied to check power quality. Therefore the power input can be 

kept the same during experiment to eliminate correlation dimension rising caused by 

voltage change. 

 

A. Induction Motor G563 Loaded by a Blower 

In this experiment which is shown in Figure 33, a 1HP, 3 Phase, 208V small 

induction motor G563 from Marathon Electric Company was used for test. It was loaded 

by a “healthy” blower. To testify the algorithm mentioned in Chapter III, both health and 

fault signal data are needed. Firstly, the test-bed was run for about 1 day to collect 

healthy vibration and electric data. Then inject the shaft current, around 5 to 10 A, for 

around 12 hours so that the bearing is damaged. This procedure is to generate roughness 

bearing fault so that the performance of load side bearing deviate from the healthy range. 

Last, remove the shaft current and collect 1 day fault data. 
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Figure 33. Experimental setup for G563 induction motor loaded by a blower. 

 

1. Vibration Signal Analysis 

The sampling rate of vibration signal is set at 12.8 kHz. Each data file is recorded 

by LabView on PC every minute. It contains one minute length signal. Before data being 

applied in fault detection, threshold de-noising method based on wavelet is used for 

filtering background noise. The detail setting for de-noising is shown as follows. Select 

the db30 wavelet, level 8, entropy type sure, and threshold parameter 1.0 based on soft 

threshold algorithm. However, it is very time consuming if all the sampled data is used 

for correlation dimension calculation. Thus, 10K points (about 9 seconds) data is applied 

to the algorithm to represent whole minute. 

To reconstruct the phase space, two important parameters, time delay and 

embedding dimension need to be determined. Referring to Figure 34, a time lag of 4 is 

appropriate and an embedding dimension of 12 is sufficient. 
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Figure 34. Average mutual information and embedding dimension. 
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Figure 35. Correlation dimension based on vibration data analysis. 

 

The result of first experiment based on vibration signal analysis is shown in Figure 

35. In this experiment, the values of correlation dimension never go higher than 3.5 in 
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first 26 hours where the bearing of motor can be seen as health. The shaft current is 

injected at about 26th hour after the experiment started. The correlation dimension is 

rising because the bearing is damaged. The value of threshold is set at 3.5. The bearing 

fault can be detected at 36th hour. In the last 20 hours where the motor bearing is in fault 

state, the correlation dimension goes around 5.1. And the related deviation is 60%. 

 

2. Current Signal Analysis 

The sampling rate of electric signal is set at 8 kHz. It is sampled by AD converter 

and then transferred by BF537 to PC every 30 seconds. To reduce computational time, 

resample the signal from 8kHz to 19.2kHz and just use one data file set to the algorithm 

to represent ten minutes. Moreover, before current data is applied in fault detection, filter 

bank based on wavelet is used for filtering harmonic frequencies. 
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Figure 36. Average mutual information and embedding dimension. 

 

To reconstruct the phase space, two important parameters, time delay and 
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embedding dimension need to be determined. Referring to Figure 36, a time lag of 8 is 

appropriate and an embedding dimension of 12 is sufficient. 
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Figure 37. Correlation dimension based on current data analysis. 

 

The result of first experiment based on current signal analysis is shown in Figure 37. 

In this experiment, the values of correlation dimension never go higher than 2.41 in first 

26 hours where the bearing of motor can be seen as health. The shaft current is injected 

at about 26th hour after the experiment started. The correlation dimension is rising 

because the bearing is damaged. The value of threshold is set at 2.41. The bearing fault 

can be detected at 33th hour. In the last 20 hours where the motor bearing is in fault state, 
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the correlation dimension goes around 2.44. And the related deviation is 3%. 

Observations from this experiment can be summarized as follows: The shaft current 

has effect on the correlation dimension of dynamic system. Experiments both based on 

vibration and current signal analysis cannot detect fault immediately after current 

injected. That’s because bearing fault is not significant. The algorithm works after some 

hours when the fault becomes significant. Moreover, the result comes from current 

signal analysis is less significant than that from vibration signal analysis. 

 

B. Induction Motor 3KX07G Loaded by a Generator 

In this experiment, a 7.5HP, 3 Phase, 208V bigger induction motor 3KX07G 

manufactured by DAYTON was used for test. A synchronous generator was used to load 

the induction motor. To testify the algorithm mentioned in Chapter III, both health and 

fault signal data are needed. To be different from the G563 motor experiment where 

bearing was damaged continuously, in this experiment bearing is damaged by step by 

step. It is conducted as follows: (1) the test-bed is run for about 60 hours over a period of 

2.5 days to collect healthy vibration and electric data; (2) inject the shaft current, around 

12 A, for around 5 hours in order to damage bearing. This procedure is to generate 

roughness bearing fault so that the performance of load side bearing deviate from the 

healthy range; (3) remove the shaft current and collect some hours fault data; (4) repeat 

step 2 and step 3 to generate the 2nd section of fault data; (5) repeat step 4 to generate the 

3rd section of fault data. 
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1. Vibration Signal Analysis 

The sampling rate of vibration signal is set at 12.8 kHz. Each data file is recorded 

by LabView on PC every minute. It contains one minute length signal. Before data being 

applied in fault detection, threshold de-noising method based on wavelet is used for 

filtering background noise. The detail setting for de-noising is shown as follows. Select 

the db30 wavelet, level 8, entropy type sure, and threshold parameter 2.0 based on soft 

threshold algorithm. However, it is very time consuming if all the sampled data is used 

for correlation dimension calculation. Thus, 10K points (about 9 seconds) data is applied 

to the algorithm to represent whole minute. 
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Figure 38. Average mutual information and embedding dimension. 

 

To reconstruct the phase space, two important parameters, time delay and 

embedding dimension need to be determined. Referring to Figure 38, a time lag of 4 is 

appropriate and an embedding dimension of 12 is sufficient. 
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Figure 39. Correlation dimension based on vibration data analysis. 

 

The result of second experiment based on vibration signal analysis is shown in 

Figure 39. In this experiment, the values of correlation dimension never go higher than 

2.2 in first 60 hours where the bearing of motor can be seen as health. The shaft current 

is injected at about 60th hour after the experiment started. The correlation dimension is 

rising because the bearing is damaged. The value of threshold is set at 2.2. The bearing 

fault can be detected at 65th hour. Moreover, three sections can be clearly seen in figure. 

The correlation dimensions of three different fault sections are distributed in three 

separately range. In the last 50 hours where the motor bearing is in fault state, the 

correlation dimension goes around 5. And the related deviation is 150%. 
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2. Current Signal Analysis 

The sampling rate of electric signal is set at 8 kHz. It is sampled by AD converter 

and then transferred by BF537 to PC every 30 seconds. To reduce computational time, 

resample the signal from 8kHz to 19.2kHz and just use one data file set to the algorithm 

to represent ten minutes. Moreover, before current data is applied in fault detection, filter 

bank based on wavelet is used for filtering harmonic frequencies. 
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Figure 40. Average mutual information and embedding dimension. 

 

To reconstruct the phase space, two important parameters, time delay and 

embedding dimension need to be determined. Referring to Figure 40, a time lag of 8 is 

appropriate and an embedding dimension of 10 is sufficient. 

The result of second experiment based on current signal analysis is shown in Figure 

41. In this experiment, the values of correlation dimension never go higher than 1.75 in 

first 60 hours where the bearing of motor can be seen as health. The shaft current is 

injected at about 60th hour after the experiment started. The value of threshold can be set 
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at 1.75. The correlation dimension is rising a little in 1st section because the bearing is 

slightly damaged. The correlation dimension in the 2nd section changes significantly. The 

bearing fault can be detected at about 80th hour. In the last 50 hours where the motor 

bearing is in 3rd fault state, the correlation dimension goes around 1.82. And the related 

deviation is 6%. 

 

0 20 40 60 80 100 120 140 160 180 200
1.7

1.72

1.74

1.76

1.78

1.8

1.82

1.84

1.86

1.88
Correlation Dimension based on Current Data Analysis

Hours (h)

C
or

re
la

tio
n 

D
im

en
si

on

 Fault Detected  

Health

Section1

Section2 Section3

 

Figure 41. Correlation dimension based on current data analysis. 

 

Observations from this experiment can be summarized as follows: The shaft current 

has effect on the correlation dimension of dynamic system. Experiments both based on 

vibration and current signal analysis cannot detect fault immediately after current 

injected. That’s because bearing fault is not significant. The algorithm based on vibration 
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data analysis is more sensitive than that based on current signal, and three sections can 

be clearly seen in Figure 39. Thus it is more applicable for slight bearing fault detection. 

Moreover, the result comes from vibration signal analysis is more significant. However, 

it has been proved that stator current monitoring can detect bearing fault successfully 

without requiring access to the motor. Though the result from current-based monitoring 

technique is not sensitive as vibration signal, it usually does not require additional 

sensors (sensorless) so that it is inexpensive and has great economic benefit for low-cost 

implementations. 

 

C. An Extended Application 

 To justify the extended application of detecting other than bearing faults, the 

algorithm is also applied to a set of field data. An application of motor pump system 

undergoing a pump seal failure (leak) is considered. In this test which is shown in Figure 

42, the values of correlation dimension never go higher than 1.61 in the first 45 days 

when the motor can be seen as health. The correlation dimension starts rising at the 

about 45th day after the monitoring period started. The value of threshold is set at 1.61. 

The fault can be first detected on the 50th day as shown in the following figure. After 

60th day, the correlation dimension significantly deviates from the range of health state. 

Therefore, this algorithm has the potential to detect other faults beyond bearing faults. 



64 

   

0 10 20 30 40 50 60 70 80
1.5

1.55

1.6

1.65

1.7

1.75

1.8
Correlation Dimension based on Feild Analysis

Days (D)

C
or

re
la

tio
n 

D
im

en
si

on

 Fault Detected  

 

Figure 42. Correlation dimension based on field analysis. 
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CHAPTER V 

SUMMARY AND CONCLUSIONS 

 

In this chapter, the work of this research is summarized. The main objective of this 

thesis was to study the induction motor bearing faults and find out a new method for 

detecting roughness faults. The result of research is discussed and some suggestions for 

future work are given. 

 

A. Summary of Research 

Fault detection is a very important research area in mechanical engineering 

studying. Because bearing failures can be considered the most common failures of 

motors, there is a strong motivation to study bearing faults and develop a method for 

detecting faults in induction motor. 

All faults related to bearing can be categorized into single-point defects or 

generalized roughness defects. In many research, monitoring methods based on vibration 

signals are used to detect the single-point bearing failure. Depending on which bearing 

surface contains the fault, the characteristic vibration frequencies, can be calculated from 

the rotor speed and the bearing geometry. It also has been proved by Schoen and 

Habetler that stator current monitoring can provide the same indications without 

requiring access to the motor. In the contrast to single-point defect, generalized 

roughness work is needed to investigate exact effects. 

The combination of phase space reconstruction technology and fractal theory can 
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provide an effective method to detect bearing generalized roughness faults in induction 

motor. 

In mathematics, a delay embedding theorem gives the conditions under which a 

chaotic dynamical system can be reconstructed from a sequence of observations of the 

state of a dynamical system by lagging the time series to embed it in more dimensions. 

There are two steps to reconstructing phase space from a signal: first step is choosing a 

time delay; second step is choosing an embedding dimension. One can determine of 

delay time by calculating mutual information with equality distant space cells. That 

means space cells are divided by equal distance step for calculating mutual information, 

and delay time. This approach is simpler than that of equal probability method. False 

nearest neighbors provides a robust way to determine necessary embedding dimensions. 

The basic idea of False nearest neighbor is: “two points which are close in the 

reconstructed state space stay close under forward iteration.” 

Almost all chaotic systems have a quantifying measurement known as a fractal 

dimension which is extracted from the original or reconstructed phase space and applied 

to speech recognition or classification. There are many specific forms of fractal 

dimension. Similarity dimension directly comes from the definition of fractal dimension, 

it is easiest to be understood and computed. Generally none real-world object or shape 

has clearly repeating self-similar structure as Sierpinski triangle and Koch curve. It 

means that the similarity dimension algorithm will not work because real-world objects 

have less regular shapes and cannot be divided into equal segments. In such cases 

box-counting dimension is more widely used, which is often based on calculating 
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occupied boxes algorithm. However, the phase spaces are usually high dimension 

Euclidean space. When dimension goes higher and higher, the algorithmic complexity 

grows exponentially with the set dimension, calculating box-counting dimension require 

a prohibitive amount of computation time. Thus, the box-counting dimension can be 

computed only for low-dimensional sets. Therefore, correlation dimension is a good 

substitute for the box-counting dimension due to its computational simplicity. It can be 

successfully used to estimate the dimension of attractors of dynamical systems. 

Not only the embedding dimension and the lag time but also the data length and the 

noise level are important factor that influences the computational precision significantly. 

As is well-known, signals are inevitably corrupted with various types of noise. So it is 

necessary to eliminate noise before using G-P algorithm to calculate the correlation 

dimension. 

In order to justify this bearing fault detection method, not only bearing health data 

but also fault data must be acquired before being applied in prognosis. Moreover, it is 

demonstrated in that the act of this process significantly alters the current and vibration 

characteristics of the machine and corrupts the experimental data. It is invalid for use in 

bearing condition monitoring scheme. In the research where data came from, shaft 

current bearing damage experiments was conducted to induce and progress a bearing 

fault in an accelerated timeframe. These faults were generated in situ without disrupting 

the operation of the electric machine. 
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B. Conclusions 

The conclusions drawn from this research are summarized as follows: 

1. The algorithm based on vibration and current signal analysis can both detect 

bearing roughness faults successfully, then experimental and practical results show that 

the bearing fault detection rate is 100% and there are no false alarms. 

2. Experiments both based on vibration and current signal analysis cannot detect 

fault immediately after current injected. That’s because bearing fault is not significant. 

The algorithm works after some hours when the bearing becomes worse. Moreover, the 

result comes from current signal analysis is less significant than that from vibration 

signal analysis. 

3. Though the result from current-based monitoring technique is not sensitive as 

vibration signal, it usually does not require additional sensors (sensorless) so that it is 

inexpensive and has great economic benefit for low-cost implementations. 

4. In the contrast to the existing sensorless techniques, the phase space 

reconstruction technology and fractal theory do not require thorough knowledge of stator 

current spectrum distribution as well as the frequencies of non-bearing fault component. 

 

C. Suggestions for Future Work 

The fault detection method developed in this research has proven to be a viable tool 

to detect rolling element bearing generalized roughness faults. Based on the research 

reported in this thesis, there are some important questions regarding to these issues that 

remain unanswered and are given as suggestions for future work. These questions that 
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require more research are listed below: 

1. Irregular embeddings - The methods to estimate ed  and r  described in the 

previous sections assume that a single embedding lag is sufficient. Often, one encounters 

dynamical system where the important variables are different in different parts of phase 

space. Another way of describing this is to say that the embedding is not constant. It has 

been demonstrated that variable embeddings behave quantitatively better than uniform 

embeddings. These problems can be considered in more detail in future. 

2. Lyapunov exponents - The thesis have been discussing the estimation of dynamic 

invariants and have introduced the fractal dimension. There is another type of dynamic 

invariant: invariants related to the dynamic evolution of attractor. These invariants are 

typically measure of Lyapunov exponents that also can be applied to fault detection. 

3. Other phases signal - Based on phase space reconstruction technology, just one 

phase current signal is used for analysis to get the correlation dimension of system. 

However, the electric data acquisition can get three phases signal. How to use the other 

two channels data is needed to investigate more effects. 

4. Load independence – The experiments in this research did not change the load of 

all motors. An ideal method should be load independent so that it will be more 

applicable for practical analysis. To justify the load effects of the bearing fault detection 

method is one of the topics for future research. 

5. Other types of motor faults – Though bearing failures are considered the most 

common failures of electric motors. Stator, rotor, and other failures cannot be ignored. 

Further research on other types of motor fault detection is needed in order to distinguish 
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the bearing faults from other types of motor faults. 
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