Dive Into Morning Report with Information Resources Training: the *Library Minute*

Sheila Green, MSLS
Houston Academy of Medicine – Texas Medical Center Library
sheila.green@exch.library.tmc.edu
What is a *Library Minute*?

One to three minute “quick hit” PowerPoint presentation about some information resource or feature of a resource or tool

– Given in any meeting environment – Morning Report, staff meeting, etc.

– Components

 • Who I am and how to contact me
 • High level example
 • Focus on a feature helpful to clinicians
 • So what? slide
A Clinical What?

New clinical informationist service launched to Internal Medicine

And then a new month began - 8 Internal Medicine teams changed attendings, upper levels, interns and medical students

Now who are you and why are you here??
Saw an Opportunity...
And now for a ...

LIBRARY MINUTE

http://www.flickr.com/photos/aeireono/467200342/
PubMed Views:
Adjust the Display / Use the MeSH

Sheila Green, MSLS
HAM-TMC Library
ci@exch.library.tmc.edu
Pager: 713.406.0599
Prediction of first events of coronary heart disease and stroke with consideration of adiposity.

Wilson PW, Rozeman SR, Burton TM, Hoaglin DC, Ben-Joseph B, Pashos CL.

EPICORE, Emory University School of Medicine, Atlanta, GA 30305, USA. peter.wilson@emory.edu

BACKGROUND: Prediction of coronary heart disease (CHD) and cerebrovascular disease (CVD) can aid healthcare providers and prevention programs. Previous reports have focused on traditional cardiovascular risk factors; less information has been available on the role of overweight and obesity. METHODS AND RESULTS: Baseline data from 4780 Framingham Offspring Study adults with up to 24 years of follow-up were used to assess risk for a first CHD event (angina pectoris, myocardial infarction, or cardiac death) alone, first CVD event (acute brain infarction, transient ischemic attack, and stroke-related death) alone, and CHD and CVD events combined. Accelerated failure time models were developed for the time of first event to age, sex, cholesterol, high-density lipoprotein cholesterol, diabetes mellitus (DM), systolic blood pressure, smoking status, and body mass index (BMI). Likelihood ratio tests of statistical significance were used to identify the best-fitting predictive functions. Age, sex, smoking status, systolic blood pressure, ratio of cholesterol to high-density lipoprotein cholesterol, and presence of DM were highly related (P<0.01 for all) to the development of first CHD events, and all of the above except sex and DM were highly related to the first CVD event. BMI also significantly predicted the occurrence of CHD (P=0.05) and CVD (P=0.03) in multivariable models adjusting for traditional risk factors. The magnitude of the BMI effect was reduced but remained statistically significant when traditional variables were included in the prediction models. CONCLUSIONS: Greater BMI, higher systolic blood pressure, higher ratio of cholesterol to high-density lipoprotein cholesterol, and presence of DM were all predictive of first CHD events, and all but the presence of DM were predictive of first CVD events. These results suggest that common pathophysiological mechanisms underlie the roles of BMI, DM, and systolic blood pressure as predictors for first CHD and CVD events.
heart disease and stroke with consideration of adiposity.

TM, Hoaglin DC, Ben-Joseph R, Pashos CL.

Tobacco use, smoking status, systolic blood pressure, ratio of cholesterol to high-density lipoprotein cholesterol, diabetes mellitus (DM), dyslipidemia, and body mass index (BMI). Likelihood-ratio tests of statistical significance were used to identify predictors of first CHD event, sex, cholesterol, high-density lipoprotein cholesterol, diabetes mellitus (DM), obesity, and body mass index (BMI). The magnitude of the BMI effect was reduced but remained statistically significant in the prediction models. CONCLUSIONS: Greater BMI, higher systolic blood pressure, higher ratio of cholesterol to high-density lipoprotein cholesterol, and presence of DM were all predictive of first CHD events, and all but the presence of diabetes were strongly predictive of first CHD events.
Prediction of first events of coronary heart disease and stroke with consideration of adiposity.

Wilson PW, Bozeman SR, Barton TM, Hoaglin DC, Ben-Joseph R, Pashos CL

EPICORE, Emory University School of Medicine, Atlanta, GA 30306, USA. peter.wilson@emory.edu

BACKGROUND: Prediction of coronary heart disease (CHD) and cerebrovascular disease (CVD) can aid healthcare providers and prevention programs. Previous reports have shown that obesity has an important role in the development of CHD and CVD. METHODS AND RESULTS: Baseline data from 4780 Framingham Offspring Study adults with first CHD event (myocardial infarction, myocardial infarction, or cardiac death) alone, first CVD event (acute brain infarction, transient ischemic attack, and stroke-related death) alone, or combined CHD and CVD events were analyzed. Accelerated failure time models were developed for the time of first event to age, sex, cholesterol, high-density lipoprotein cholesterol, diabetes mellitus (DM), systolic blood pressure, and a likelihood-ratio test of statistical significance was used to determine the best-fitting predictive function. Age, sex, smoking status, systolic blood pressure, ratio of cholesterol to high-density lipoprotein cholesterol, and presence of DM were all predictive of CHD events. All of the above except sex and DM were all predictive of CVD events. CONCLUSIONS: Greater BMI, higher systolic blood pressure, higher ratio of cholesterol to high-density lipoprotein cholesterol, and presence of DM were all predictive of first CVD events. These results suggest that common pathophysiological mechanisms underlie the roles of BMI, DM, and systolic blood pressure in the development of CHD and CVD.
Citation – Work with the MeSH

MeSH Terms:
- Adiposity*
- Adult
- Body Mass Index
- Cholesterol/blood
- Coronary Disease/diagnosis
- Coronary Disease/epidemiology*
- Diabetes Mellitus
- Humans
- Hypertension
- Male
- Middle Aged
- Predictive Value of Tests*
- Risk Assessment
- Risk Factors
- Stroke/diagnosis
- Stroke/epidemiology*

Substances:
- Cholesterol

The * means it’s a major topic of the article
Click on a term to get more options
Use the MeSH terms from a “good” entry as a springboard to similar ones.
Citation – More So What?

MeSH Terms:
- Adiposity*
- Adult
- Body Mass Index
- Cholesterol/blood
- Coronary Disease/diagnosis
- Coronary Disease/epidemiology*
- Diabetes Mellitus
- Humans
- Hypertension
- Male
- Middle Aged
- Predictive Value of Tests*
- Risk Assessment
- Risk Factors
- Stroke/diagnosis
- Stroke/epidemiology*

Substances:
- Cholesterol

PMID: 18591432 [PubMed - indexed for MEDLINE]

MeSH Terms:
- Adiposity*
- Adult
- Body Mass Index
- Cholesterol/blood
- Coronary Disease/diagnosis
- Coronary Disease/epidemiology*
- Diabetes Mellitus
- Humans
- Hypertension
- Male
- Middle Aged
- Predictive Value of Tests*
- Risk Assessment
- Risk Factors
- Stroke/diagnosis
- Stroke/epidemiology*

Substances:
- Cholesterol
Build a Search

search PubMed for "Stroke/epidemiology"[MAJR] AND "Risk Factors"

Limits: Humans, English

Display Summary Show 20 Sort By Send to

All: 1407 English: 1407 Review: 129

Items 1 - 20 of 1407

Risk of stroke, heart attack, and diabetes complications among veterans with spinal cord injury.
PMID: 18674979 [PubMed - indexed for MEDLINE]

2: Ovbiagele B.
Impairment in glomerular filtration rate or glomerular filtration barrier and occurrence of stroke.
PMID: 18623861 [PubMed - indexed for MEDLINE]

Prediction of first events of coronary heart disease and stroke with consideration of adiposity.
PMID: 18591432 [PubMed - indexed for MEDLINE]
Citation - So What?

- What type of article is this?
- What is it about?
- What are the Main Topics (or stars *) of the article?
- What MeSH terms can I use from this view to build other searches that will help me?
The Big Finish

• Announce
 – office hours that day
 – anything of interest from the Library

http://www.flickr.com/photos/aeireono/467200346/
Examples

PubMed

– Search building blocks (History)
– Why your best search term for info on that tumor probably isn’t “brain mass” (Details)
– Limits
– MeSH (about three different Minutes)
– Citation View
– Subsets
More Examples

ClinicalTrials.gov (two Minutes)
MedlinePlus
 – Five Features for County Hospital Patients
Theme Month Resources
 – Oncology – NCI Cancer Database
 – Infectious Disease – CDC, IDSA
Point of Care Tools
Remote Access
Unconventional Examples

Just how far back can I get full text?
Wikipedia (discernment)
Google Translator
What questions do people ask a clinical informationist anyway?
Shameless Promotion of Library Services
Evolution

• More 3-5 minute *Minutes* than before
 – recent chief residents happy to have me handle the “filler” between cases
• Questions and comments generate new *Library Minutes* or small group training
• Cycling back around to attach specific learning objectives, refine the examples
Points to Consider

- Represent the library, resources and services 3x/week to 50+ clinicians
- The effect on the overall meeting time is minimal
- Those who know the tool might pick up something new, those who don’t, learn something without “standing out”
- Twelve *Library Minutes* per month avg.
- *If* I know the resource well, it takes approx. 30 minutes to prepare one *Minute*
- Reuse and repeat – suggest a “library” of at least 20 *Minutes* that are refreshed regularly
- Can get “bumped” from the agenda (Hurricane Ike prep)
Conclusion

Time consuming for you BUT…

The *Library Minute* has been a good way to present resources to a relatively captive audience WHERE they use the information …

(And stay around afterwards for questions, consults, and feedback)
Dive Right In!

Questions?

http://www.flickr.com/photos/kaptainkobold/2738334040/