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ABSTRACT 

Since injection falloff fracture calibration test is generally accepted as a reliable 

way to obtain several key formation parameters, it is one of the essential parts of 

hydraulic fracturing design. While several abnormal behaviors have been described 

qualitatively and are frequently observed in an injection falloff fracture calibration test, 

the only quantitative model for before-closure behavior accounts only for normal 

leakoff which usually seldom happens in practice. This paper describes several new 

analytical and semi-analytical models to simulate and quantify abnormal leakoff 

behaviors such as tip extension, pressure dependent leakoff (PDL), multiple apparent 

closures and transverse storage. 

Based on material balance, we model pressure change with time considering the 

fracture geometry and leakoff volume under various leakoff mechanisms. Then, we 

show that the appearance of the modeled mechanisms both on the standard Nolte plot 

and on the log-log diagnostic Bourdet derivative presentation qualitatively matches 

behavior seen in previously published field data examples. 

Results suggest that the early ½-slope occasionally observed on the log-log 

diagnostic plot is probably fracture linear flow. When present it can mask all or part of a 

wellbore storage effect. Natural fractures have a significant impact on the pressure 

falloff behavior when they are opened during treatment. Depending on the properties of 

the natural fracture system, the pressure response can behave as pressure-dependent 

leakoff (PDL), transverse storage, multiple closures or even normal leakoff in some 
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cases. In addition, if tip extension or PDL behavior are observed, propagation pressure 

or natural fissures opening pressure can be estimated respectively. 

The flow regime models are combined to provide a global model for the closure 

behavior. When shown on the log-log diagnostic plot, the various model features can be 

identified and used to estimate parameters to which each model is sensitive. Sensitivity 

analyses with the new model show relative importance with time of the various model 

features. This work promotes a complete understanding of the pressure response from 

various leakoff physics and provides a method to quantify parameters needed for more 

effective hydraulic fracture design. 
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NOMENCLATURE 

AC After Closure 

Af Fracture surface area, ft2 

Afo Fracture surface area at end of pumping, ft2 

Af1 Fracture surface area at end of fracture tip-extension, ft2 

Afm Surface area of main fracture, ft2 

Afn Surface area of natural fracture, ft2 

Afr Ratio of main fracture surface area over natural fracture surface 

area, dimensionless 

BC Before Closure 

C wellbore storage coefficient, ft3/psi 

cf Fracture compliance, ft/psi 

cfm Compliance of main fracture, ft/psi 

cfn Compliance of natural fracture, ft/psi 

cfn0 Compliance of natural fracture at end of pumping, ft/psi 

cw Water compressibility, psi-1 

Cfbc Before-closure fracture storage, bbl/psi 

ct Total compressibility, psi-1 

CL Leakoff coefficient, ft/min0.5 

CLm Leakoff coefficient from main fracture into matrix, ft/min0.5 

CLn Leakoff coefficient from natural fracture into matrix, ft/min0.5 
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CLn1 Leakoff coefficient from natural fracture into matrix before shut- 

 in, ft/min0.5 

CLn2 Leakoff coefficient from natural fracture into matrix after its 

closure, ft/min0.5 

erfc Error-function, dimensionless 

E’ Plane-strain modulus, psi 

f f-function, dimensionless 

g g-function, dimensionless 

G g-function, dimensionless 

hf Fracture height, ft 

h Formation height, ft 

kfil Relative permeability to the filtrate of frac fluid, md 

k or kr Formation permeability, md 

Lw Wellbore length, ft 

p Pressure, psi 

pc Final closure pressure, psi 

pci Start pressure of normal closure behavior ending with the final 

closure, psi 

pfo Opening pressure of natural fissures, psi 

pi Initial formation pressure, psi 

pnet Net Pressure on fracture face, psi 

pw Hydraulic pressure in the fracture or at bottomhole, psi 
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pws Bottomhole pressure at end of injection, psi 

PDL Pressure Dependent Leakoff 

Rf Fracture radius in radial fracture model, ft 

rp Ratio of permeable fracture surface area to the gross fracture area, 

dimensionless 

rw Wellbore radius, ft. 

Sf Fracture stiffness, psi/ft 

t Time, s 

tfc Time when natural fissures closes, s 

ter Equivalent time function in radial flow, dimensionless 

tp Pumping time, s 

tp1 Fracture propagation time, s 

xf Fracture half-length, ft 

v Leakoff rate, ft/s 

VAF After-flow volume, bbl 

Vfrac Fracture volume, ft3

Vl Total leakoff volume into formation through fracture face, ft3 

Vp Total pumping volume into fracture before shut-in, ft3 

Vw Wellbore volume, ft3 

w Fracture width, in 

WBS Wellbore storage effect, bbl 
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Subscript 

D Dimensionless 

f Fracture 

face Fracture face 

j time step 

mf Main fracture 

nf Natural fracture 

r Formation 

te Tip extension 

v Filtrate zone from fracture into formation 

Greek 

α Area exponent, dimensionless 

α0 Area exponent before shut-in, dimensionless 

αcp Power law coefficient for pressure dependent leakoff (PDL) into 

matrix, dimensionless 

φ Formation porosity, dimensionless 

∆ Difference, dimensionless 

μfil Viscosity of filtrate of frac fluid, cp 

μ or μr Formation  fluid viscosity, cp 

τ Superposition time, dimensionless 

σresistant Confining stress on the fracture face, psi 



x 

σmin Minimum horizontal stress, psi 

θ Fluid-loss exponent, dimensionless 

ξ Variable, dimensionless 

η Fluid efficiency, % 



xi 

TABLE OF CONTENTS 

Page 

ABSTRACT ......................................................................................................................ii

DEDICATION .................................................................................................................iv

ACKNOWLEDGEMENTS ..............................................................................................v

NOMENCLATURE ........................................................................................................ vi

TABLE OF CONTENTS ................................................................................................ xi

LIST OF FIGURES .......................................................................................................  xiii

LIST OF TABLES ......................................................................................................... xxi

CHAPTER I  INTRODUCTION AND LITERATURE REVIEW .................................. 1 

1.1 Introduction to the Fracture Calibration Test ................................................... 1 

1.2 Overview of Current Before-Closure analysis models ..................................... 3 
1.2.1 Nolte G time function (NGTF) method ................................................... 3 
1.2.2 Mayerhofer model.................................................................................. 14 
1.2.3 Hagoort model ....................................................................................... 17 

1.3 Abnormal leakoff ............................................................................................ 19 
1.3.1 Pressure dependent leakoff (PDL) ......................................................... 20 
1.3.2 Tip extension.......................................................................................... 24 

1.3.3 Transverse storage and height recession ................................................ 24 

1.3.4 Multiple apparent closures ..................................................................... 27 

1.3.5 Multiple leakoff mechanisms................................................................. 27 

1.4 Problem definition and objectives .................................................................. 29 
1.5 Research summary .......................................................................................... 29 

CHAPTER II ABNORMAL LEAKOFF BEHAVIOR MODELLING .......................... 31 

2.1 Wellbore storage effect (WBS)....................................................................... 31 
2.2 Fracture linear flow ......................................................................................... 35 

2.2.1 High leakoff rate at tip area ................................................................... 35 

2.2.2 Dry fracture tips and tip extension ......................................................... 36 

2.2.3 Model for fracture linear and fracture radial flow ................................. 43 

2.3 Tip extension................................................................................................... 45 



xii 

Page 

2.3.1 Tip extension without wellbore storage effect ....................................... 46 

2.3.2 Tip extension with wellbore storage effect ............................................ 55 

2.3.3 Tip extension with variable area exponent (𝛼) ...................................... 64 

2.4 Pressure dependent leakoff (PDL) .................................................................. 80 
2.4.1 Natural fissure related PDL with a constant leakoff coefficient when 

pw > pfo ............................................................................................... 80 

2.4.2 Natural fissure related PDL with a variable leakoff coefficient when 

pw > pfo ............................................................................................... 85 

2.5 The decoupled fracture model ........................................................................ 99 

2.5.1 Natural fractures with constant leakoff coefficient and fracture 

compliance ........................................................................................... 99 
2.5.2 Natural fissures with pressure-dependent leakoff (PDL) coefficient 

and constant fracture compliance ....................................................... 109 
2.5.3 Natural fractures with pressure-dependent fracture compliance and 

leakoff coefficient .............................................................................. 113 
2.5.4 Natural fractures with pressure-dependent natural fracture extension 129 

2.6 Summary of Chapter II ................................................................................... 142 

CHAPTER III  FIELD CASE STUDY ......................................................................... 144 

3.1 Fracture calibration test (FCT) analysis for Well A ..................................... 147 

3.2 Fracture calibration test (FCT) analysis for Well I ....................................... 163 
3.3 Fracture calibration test (FCT) analysis for Well L ...................................... 175 
3.4 Fracture calibration test (FCT) analysis for Well Z ...................................... 182 
3.5 Summary of case studies............................................................................... 190 
3.6 Summary of the Chapter III .......................................................................... 196 

CHAPTER IV  CONCLUSIONS AND RECOMMENDATIONS .............................. 198 

4.1 Conclusions ................................................................................................... 198 

4.2 Recommendations ......................................................................................... 199 

REFERENCES .............................................................................................................. 201 



xiii 

LIST OF FIGURES 

Page 

Figure 1-1 Schematic sequence of events in fracture calibration test ............................... 3 

Figure 1-2 Linear relation between pressure drop and G-function time ........................... 9 

Figure 1-3 G-function characteristics for different leakoff mechanisms ........................ 11 

Figure 1-4 Representation of log-log diagnostic plot ...................................................... 12 

Figure 1-5. Normal leakoff indicated by Hagoort square root time method ................... 18 

Figure 1-6 PDL behavior on the log-log diagnostic Bourdet derivative ......................... 21 

Figure 1-7 Transverse storage/height recession on the log-log diagnostic Bourdet 

derivative ..................................................................................................... 26 

Figure 1-8 Multiple-closure behavior on both 𝐺𝑑𝑝/𝑑𝐺 and the log-log diagnostic 

Bourdet derivative........................................................................................ 27 

Figure 1-9 Both PDL and transverse storage behavior exist in one FCT ....................... 28 

Figure 2-1 Representation of Carter leakoff model......................................................... 36 

Figure 2-2. Description of process zone and the fluid lag zone ...................................... 37 

Figure 2-3 Coordinate of fracture in Sneddon model...................................................... 38 

Figure 2-4 𝜎𝑥 and 𝜎𝑦 change around the created crack ................................................... 40 

Figure 2-5 Local 𝜎𝑚𝑎𝑥, 𝜎𝑚𝑖𝑛 change around the created crack ...................................... 40 

Figure 2-6 Local 𝜎𝑚𝑎𝑥, 𝜎𝑚𝑖𝑛 change around the created crack without strain  

restriction in tips .......................................................................................... 42

Figure 2-7 Bottomhole pressure for tip extension without WBS .................................... 52 

Figure 2-8 Log-log Bourdet derivative diagnostic plot for tip extension without WBS . 52 

Figure 2-9 Composite G-function plot for tip extension without WBS .......................... 53 

Figure 2-10 Pressure falloff for tip extension with and without WBS  

(Inj. Vol.=30 bbl) ........................................................................................ 60



xiv 

Page 

Figure 2-11 Log-log diagnostic Bourdet derivative plot for tip extension with and 

without WBS (Inj. Vol.=30 bbl) .................................................................. 61 

Figure 2-12 G-function plot for tip extension with and without WBS (Inj. Vol.=30 

bbl) ............................................................................................................... 61 

Figure 2-13 Wellbore storage effect on FCTs with small injection volume and tip-

extension (Inj. Vol.=12 bbl) ......................................................................... 62 

Figure 2-14 WBS effect on 𝜏𝑑𝑝/𝑑𝜏 for FCTs with small injection volume and tip-

extension (Inj. Vol.=12 bbl) ......................................................................... 63 

Figure 2-15 WBS effect on 𝐺𝑑𝑝/𝑑𝐺 for FCTs with small injection volume and tip-

extension (Inj. Vol.=12 bbl) ......................................................................... 63 

Figure 2-16 Different decline models of area exponent .................................................. 67 

Figure 2-17 Dynamic fracture half-length after shut-in for all 𝛼 decline behaviors ....... 67 

Figure 2-18 Bottomhole pressure for each propagation-rate decline models during tip 

extension ...................................................................................................... 69 

Figure 2-19 G-Derivative plot for different propagation-rate decline models during tip 

extension ...................................................................................................... 69 

Figure 2-20 Bourdet Derivative plot for different propagation-rate decline models 

during tip extension ..................................................................................... 70 

Figure 2-21 Bottomhole pressure for cases with same tip-extension behavior but 

different leakoff coefficients ........................................................................ 72 

Figure 2-22 Effect of leakoff coefficient on Bourdet derivative curve with tip-   

extension ...................................................................................................... 73 

Figure 2-23 Effect of leakoff coefficient on Gdp/dG with tip-extension ........................ 73 

Figure 2-24 Dynamic fracture length and pressure decline after shut-in with different 

tip-extension durations ................................................................................. 74 

Figure 2-25 𝜏𝑑𝑝/𝑑𝜏 diagnostic plot for tip-extension with different duration 

(exponential decline behavior with 𝑐 = −0.01) .......................................... 75 



xv 

Page 

Figure 2-26 Gdp/dG diagnostic plot for tip-extension with different duration 

(exponential decline behavior with c = -0.01) ............................................ 76 

Figure 2-27 Bottomhole pressure profile and fracture length after shut-in for different 

injection sizes ............................................................................................... 77 

Figure 2-28 𝐺𝑑𝑝/𝑑𝐺 curves for different inje ction sizes .............................................. 78

Figure 2-29 𝜏𝑑𝑝/𝑑𝜏  curves for different injection sizes  ............................................... 79

Figure 2-30 Bottomhole pressure for PDL with 2 constant leakoff coefficients ............ 83 

Figure 2-31 Log-log diagnostic Bourdet derivative plot of PDL with two constant 

leakoff coefficients ...................................................................................... 84 

Figure 2-32 G-function plot of PDL with two constant leakoff coefficients .................. 85 

Figure 2-33 Bottomhole pressure profile ........................................................................ 89 

Figure 2-34 Leakoff coefficient changes with elapsed time and pressure ...................... 89 

Figure 2-35 𝜏𝑑𝑝/𝑑𝜏 diagnostic plot for PDL with variable leakoff coefficient ............. 91 

Figure 2-36 𝐺𝑑𝑝/𝑑𝐺 diagnostic plot for PDL with variable leakoff coefficient ............ 91 

Figure 2-37 Bottomhole pressure profile of PDL with different initial leakoff 

coefficients ................................................................................................... 93 

Figure 2-38 𝜏𝑑𝑝/𝑑𝜏 diagnostic plot for PDL with variable leakoff coefficient ............. 93 

Figure 2-39 𝐺𝑑𝑝/𝑑𝐺 diagnostic plot for PDL with variable leakoff coefficient ............ 94 

Figure 2-40 𝜏𝑑𝑝/𝑑𝜏 plot for PDL with variable leakoff coefficient (CL2 = 1×10-4   

ft/√min) ........................................................................................................ 95 

Figure 2-41 Bottomhole pressure falloff curve of PDL and tip-extensions .................... 96 

Figure 2-42 𝐺𝑑𝑝/𝑑𝐺 plot for PDL and tip-extensions ................................................... 97 

Figure 2-43 𝜏𝑑𝑝/𝑑𝜏 plot for PDL and tip-extensions ..................................................... 97 

Figure 2-44 The sketch of decoupled natural and main fracture system....................... 100 



xvi 

Page 

Figure 2-46 G-function plot for the Decoupled Fracture Model with 2 constant leakoff 

coefficients (CLm=1/2CLn) .......................................................................... 105 

Figure 2-47 G-function plot for the Decoupled Fracture Model with 2 constant leakoff 

coefficients (CLm= CLn) .............................................................................. 106 

Figure 2-48 Log-log diagnostic Bourdet derivative plot for the Decoupled Fracture 

Model with 2 constant leakoff coefficients (CLm= CLn) ............................. 107 

Figure 2-49 G-function plot for the Decoupled Fracture Model with 2 constant leakoff 

coefficients (CLm= 2CLn) ............................................................................ 108 

Figure 2-50 Log-log diagnostic Bourdet derivative plot for the Decoupled Fracture 

Model with 2 constant leakoff coefficients (CLm= 2CLn) ........................... 108 

Figure 2-51 G-function plot for the Decoupled Fracture Model with variable CLn ...... 112 

Figure 2-52 Log-log diagnostic plot for the Decoupled Fracture Model with variable  

CLn .............................................................................................................. 112 

Figure 2-53 𝐺𝑑𝑝/𝑑𝐺 plot for the decoupled fracture model (CLn > CLm) .................... 118 

Figure 2-54 Pressure-dependent natural fracture compliance with different decline 

behaviors .................................................................................................... 120 

Figure 2-55 𝐺𝑑𝑝/𝑑𝐺 plot for the decoupled fracture model with different decline 

behaviors of Cfn (Exponential decline model) ........................................... 121 

Figure 2-56 𝐺𝑑𝑝/𝑑𝐺 plot for the decoupled fracture model with different decline 

behaviors of Cfn (Barton and Bandis model) ............................................. 122 

Figure 2-57 Log-log diagnostic plot for decoupled fracture model with different   

decline behaviors of Cfn ............................................................................. 123 

Figure 2-58 𝐺𝑑𝑝/𝑑𝐺 plot for decoupled fracture model with pressure-dependent 

compliance and leakoff coefficient of natural fractures ............................ 125 

Figure 2-59 Log-log diagnostic plot for decoupled fracture model with pressure-

dependent compliance and leakoff coefficient of natural fractures ........... 126 

Figure 2-45 Log-log diagnostic Bourdet derivative plot for the Decoupled Fracture
        Model with 2 constant leakoff coefficients................................................104



xvii 

Page 

Figure 2-61 Log-log diagnostic plot for decoupled fracture model with variable 

natural fracture extension........................................................................... 128 

Figure 2-62 Exponential decline of natural fracture surface area with variable decline 

rates ............................................................................................................ 131 

Figure 2-63 𝐺𝑑𝑝/𝑑𝐺 plot for decoupled fracture model with variable decline    

behaviors of natural fractures surface area ................................................ 132 

Figure 2-64 Log-log diagnostic plot for decoupled fracture model with variable 

decline behaviors of natural fractures surface area .................................... 133 

Figure 2-65 𝐺𝑑𝑝/𝑑𝐺 plot for decoupled fracture model with a declining surface area 

of natural fractures ..................................................................................... 134 

Figure 2-66 Log-log plot for decoupled fracture model with a declining surface area 

of natural fractures ..................................................................................... 135 

Figure 2-67 𝐺𝑑𝑝/𝑑𝐺 plot for decoupled fracture model with a declining surface area   

of natural fractures and variable fracture compliance ratios (d=-30, 

Clm/Cln=2/3, Ar=0.5) ................................................................................. 137 

Figure 2-68 Log-log diagnostic plot for decoupled fracture model with a declining 

surface area of natural fractures and variable fracture compliance ratios 

(d=-30, Clm/Cln=2/3, Ar=0.5) .................................................................... 138 

Figure 2-69 𝐺𝑑𝑝/𝑑𝐺 plot for decoupled fracture model variable natural fracture 

extension (d=-30, Clm/Cln=5) .................................................................... 139 

Figure 2-70 Log-log diagnostic plot for decoupled fracture model variable natural 

fracture extension (d=-30, Clm/Cln=5) ....................................................... 140 

Figure 3-1 Schematic of Horn River horizontal well pad ............................................. 145 

Figure 3-2 Zones of interest in Horn River formation .................................................. 146 

Figure 3-3 Bottomhole pressure change and injection profile for Well A .................... 148 

Figure 2-60 𝐺𝑑𝑝/𝑑𝐺 plot for decoupled fracture model with variable natural fracture 

extension .................................................................................................... 127 



xviii 

Page 

Figure 3-6 History match of the bottomhole pressure of Well A with constant PDL 

model ......................................................................................................... 153 

Figure 3-7 History match of the log-log Bourdet derivative of Well A with PDL 

model ......................................................................................................... 153 

Figure 3-8 History match of the semilog G-function of Well A with PDL model ....... 154 

Figure 3-9 History match of the bottomhole pressure of Well A with Variable PDL 

model ......................................................................................................... 155 

Figure 3-10 History match of the log-log Bourdet derivative of Well A with variable 

PDL model ................................................................................................. 155 

Figure 3-11 History match of the log-log Bourdet derivative of Well A with variable 

PDL model ................................................................................................. 156 

Figure 3-12 Variable leakoff coefficient during pressure falloff with time and 

pressure ...................................................................................................... 156 

Figure 3-13 Linear relationship between Afm/Afn and CLn/CLm of Well A.................... 159 

Figure 3-14 History match of the bottomhole pressure with DFM (CLn/CLm=10) ........ 160 

Figure 3-15 History match of the log-log Bourdet derivative with DFM 

(CLn/CLm=10) ............................................................................................. 160 

Figure 3-16 History match of the semilog G-function with DFM (CLn/CLm=10) ......... 161 

Figure 3-17 History match of the bottomhole pressure of Well A with DFM 

(CLn/CLm=30) ............................................................................................. 161 

Figure 3-18 History match of the log-log Bourdet derivative with DFM 

(CLn/CLm=30) ............................................................................................. 162 

Figure 3-19 History match of the semilog G-function of Well A with DFM 

(CLn/CLm=30) ............................................................................................. 162 

Figure 3-20 Bottomhole pressure change and injection profile for Well I ................... 163 

Figure 3-4 Log-log diagnostic plot for Well A ............................................................. 149 

Figure 3-5 Composite G-function diagnostic plot for Well A ...................................... 150 



xix 

Page 

Figure 3-23 Semilog G-function diagnostic plot of the first closure process in Well I 166 

Figure 3-24 𝐺𝑑𝑝/𝑑𝐺 plot of the first closure process after adjusting tip-extension ..... 166 

Figure 3-25 Log-log diagnostic plot after tip-extension for Well I with real time ....... 168 

Figure 3-26 Log-log diagnostic plot after tip-extension for Well I with adjusted time 

function ...................................................................................................... 169 

Figure 3-27 𝐺𝑑𝑝/𝑑𝐺 diagnostic plot after adjusting tip-extension ............................... 170 

Figure 3-28 Leakoff coefficients during falloff in Well I ............................................. 172 

Figure 3-29 History match of the recorded bottomhole pressure of Well I .................. 173 

Figure 3-30 History match of the log-log Bourdet derivative of Well I ....................... 174 

Figure 3-31 History match of the semilog G-function of Well I .................................. 174 

Figure 3-32 Bottomhole pressure change and injection profile for Well L .................. 175 

Figure 3-33 Log-log diagnostic plot for Well L ............................................................ 176 

Figure 3-34 Composite G-function diagnostic plot for Well L ..................................... 177 

Figure 3-35 Linear relationship between Afm/Afn and CLn/CLm in Well L .................... 179 

Figure 3-36 Relationship between natural fracture leakoff coefficient with its 

extension .................................................................................................... 180 

Figure 3-37 History match of the recorded bottomhole pressure of Well L ................. 181 

Figure 3-38 History match of the log-log Bourdet derivative of Well L with DFM 

(CLn=0) ....................................................................................................... 181 

Figure 3-39 History match of the semilog G-function of Well L with DFM  (CLn=0) . 182 

Figure 3-40 Bottomhole pressure change and injection profile for Well Z .................. 183 

Figure 3-21 Log-log diagnostic plot for Well I ............................................................. 164 

Figure 3-22 Composite G-function diagnostic plot for Well I ...................................... 165 



xx 

Page 

Figure 3-43 Linear relationship between Afm/Afn and CLn/CLm in Well Z .................... 187 

Figure 3-44 Relationship between natural fracture leakoff coefficient with its  

extension for Well Z................................................................................... 187 

Figure 3-45 History match of the bottomhole pressure of Well Z with DFM (CLn=0) . 188 

Figure 3-46 History match of the log-log Bourdet derivative of Well Z with DFM  

(CLn=0)  ...................................................................................................... 189 

Figure 3-47 History match of the semilog G-function of Well Z with DFM  (CLn=0) . 189 

Figure 3-48 Cumulative gas and water production of wells in the pad ......................... 191 

Figure 3-49 Pressure response at early time after shut-in ............................................. 194 

Figure 3-41 Log-log diagnostic plot for Well Z ............................................................ 184 

Figure 3-42 Composite G-function diagnostic plot for Well Z ..................................... 185 



xxi 

LIST OF TABLES 

Page 

Table 1-1 Fracture compliance for 2D fracture geometry models .................................... 5 

Table 1-2 Area exponents factor (𝛼) for PKN, KGD and Radial model .......................... 7 

Table 2-1 Input data for the simulation of tip-extension without WBS .......................... 51 

Table 2-2 Input parameters and their values for simulations of tip-extension with 

WBS ................................................................................................................ 59 

Table 2-3 Input data for simulations of tip-extension with declining α .......................... 66 

Table 2-4 Tip-extension distance for different pumping volumes .................................. 77 

Table 2-5 Input data for the simulation of PDL with two costant leakoff coefficients ... 83 

Table 2-6 Input data for both PDL and Tip-extension case ............................................ 96 

Table 2-7 Input data for simulations of decoupled fracture model with variable CLn .. 111 

Table 2-8 Input data for for sensitivity study on te decline behavior of cfn .................. 118 

Table 2-9 Input data for simulations of decoupled fracture model with variable CLn    

and cfn ............................................................................................................ 124 

Table 2-10 Input data for simulations of decoupled fracture model with variable Afn . 131 

Table 2-11 Input data for the sensitivity study of cfr with decoupled fracture model ... 136 

Table 3-1 Results from before-closure analysis with traditional Nolte G-function    

model for Well A .......................................................................................... 151 

Table 3-2 Results from before-closure analysis with PDL model for Well A .............. 152 

Table 3-3 Results from before-closure analysis with decoupled fracture model for 

Well A ........................................................................................................... 158 

Table 3-4 Results from before-closure analysis with traditional Nolte G-function 

model for Well I ............................................................................................ 171 

Table 3-5 Results from before-closure analysis with PDL model for Well I ............... 172 



 

xxii 

 

 

 Page 

Table 3-6 Results from before-closure analysis with traditional Nolte G-function     

model for Well L........................................................................................... 178 

Table 3-7 Results from before-closure analysis with decoupled fracture model for     

Well L ........................................................................................................... 179 

Table 3-8 Results of before-closure analysis with traditional Nolte G-function model   

for Well Z...................................................................................................... 185 

Table 3-9 Results from before-closure analysis with decoupled fracture model for     

Well Z ........................................................................................................... 186 

Table 3-10 Summary of before-closure analysis ........................................................... 190 

Table 3-11 Well storage effect (WBS) for three studied wells ..................................... 194 

 

 

 

  



 

1 

 

CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

Chapter 1  

The fracture calibration test (FCT), also known as mini-frac, injection/falloff test 

and diagnostic fracture injection test (DFIT), is widely used to extract several essential 

input parameters for the following main fracturing treatment design. These parameters 

usually include leakoff coefficient, fracture closure pressure, fluid efficiency, formation 

permeability, etc. 

Due to distinct fluid flow mechanisms, FCT analysis can be divided into two 

sections: before- and after-closure analysis. This work is mainly on before-closure 

analysis. In normal leakoff condition, which will be discussed later in detail, three 

factors can be quantified from before-closure analysis: fracture closure pressure, fluid 

efficiency, and leakoff coefficient. 

Several models currently available for FCT analysis are based on the normal 

leakoff, which in practice seldom happens (Craig et al. 2000; Craig  et al. 2000). This 

thesis tends to expand the application of FCT analysis to several commonly observed 

abnormal leakoff behavior, tip-extension, pressure-dependent leakoff (PDL), transverse 

storage, etc.  

 

1.1 Introduction to the Fracture Calibration Test 

A typical fracture-injection and falloff test is graphed in Figure 1-1. To obtain 

representative pressure decline data, it is recommended to inject same type of fluid with 



 

2 

 

that in following main treatment, but without proppant. The injection volume for tight 

formation usually is very limited (Marongiu-Porcu 2014; Nguyen and Cramer 2013), in 

the range of 1-12 bbl in some cases. Although the volume could be more than 20 bbl 

(Bachman et al. 2012; Barree et al. 2014; Xue and Ehlig-Economides 2013), it is still 

much less than that of a main fracturing job. After the breakdown of formation, fracture 

continues propagating at a stable pressure level until the pump is shut in. Then the 

pressure falloff can be recorded at the bottomhole, which is recommended, or at the 

surface. To calculate the pressure change along elapsed time, instantaneous shut-in 

pressure (ISIP) is usually picked as the pressure reference to get rid of the friction in the 

string and near wellbore. When the fracture pressure decreases to a level less than the 

confining pressure, the fracture is supposed to freely close on its face. The closure event 

is required to be identified to calculate the closure pressure. Besides closure pressure, 

leakoff coefficient and fluid efficiency can also be quantified if the closure can be picked 

out from the before-closure analysis. After-closure section is typically used to extract 

formation permeability and initial pressure if corresponding flow regime is observed. 
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Figure 1-1 Schematic sequence of events in fracture calibration test (Marongiu-Porcu et al. 
2011) 

 

1.2 Overview of Current Before-Closure analysis models  

Since the publication of pioneered work by Nolte (Gulrajani and Nolte 2000; 

Nolte 1979, 1990; Nolte et al. 1993; Nolte et al. 1997), several analytical models has 

been developed and are available now for the before-closure analysis.   

 

1.2.1 Nolte G time function (NGTF) method 

In last few decades before the kickoff of unconventional, hydraulic fracturing 

was mainly used in conventional reservoir typically with relatively high permeability. To 

reduce leakoff and create an efficient fracture with high conductivity, crosslinked gel is 

the primary choice as the treatment fluid with high load of proppant. For most of these 

treatments with crosslinked fluid, filter cake will deposit in the fracture face shortly after 

the start of leakoff, and then, the leakoff rate will be greatly reduced. The dominant 
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leakoff factor in these cases is the filter cake, which can be expressed by the Carter 

leakoff model (Carter 1957).  

 𝑣 =
𝐶L

√𝑡
 

(1.1) 

where, 𝑣 is the leakoff rate through unit area of fracture face from hydraulic fracture into 

formation; 𝐶L is the leakoff coefficient controlled by filter cake, which is usually 

believed to be constant and independent of pressure change; 𝑡 is the length of time since 

the point of fracture has been exposed to the fracturing fluid. 

Based on Carter leakoff model, G-function was derived by Nolte in his pioneered 

work (Nolte 1979), and it has been one of the most commonly used model for hydraulic 

design and post-frac analysis, including FCTs analysis. Widely application of G-function 

demonstrates the valid of Nolte G-function technique, and also Carter leakoff model. 

Nolte original model is based on the following assumptions, 

1) material balance between leakoff fluid volume and fracture volume; 

2) Carter leakoff model where leakoff coefficient is independent of pressure 

change; 

3) constant fracture surface area after shut-in; 

4) constant fracture compliance or stiffness, which guarantees the linear relationship 

between the change of fracture width and that of fracture pressure; 

5) constant fracture height; 

6) constant closure pressure; 
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With above assumptions, Nolte G time function (NGTF) model is developed as 

follows. 

Fracture compliance is the key parameter to connect the pressure behavior with 

the fracture geometry, and it is defined as Eq.(1.2). 

 𝑐𝑓 =
�̅�

𝑝𝑛𝑒𝑡
 

(1.2) 

where, 𝑐𝑓 is the fracture compliance, and it can be calculated for different types of 

fractures, as listed in Table 1-1; 𝐸′ and �̅� in the table are the plane strain modulus and 

the average fracture width; 𝑝𝑛𝑒𝑡 is the net pressure on fracture face, and it can be 

calculated with Eq. (1.3). 

 

Table 1-1 Fracture compliance for 2D fracture geometry models 

 PKN KGD Radial 

𝑐𝑓 
𝜋ℎ𝑓

2𝐸′
 

𝜋𝑥𝑓

𝐸′
 

16𝑅𝑓

3𝜋𝐸′
 

 

 𝑝𝑛𝑒𝑡 = 𝑝𝑓𝑟𝑎𝑐(𝑡) − 𝜎𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 = 𝑝𝑤(𝑡) − 𝜎𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 (1.3) 

where, 𝑝𝑤(𝑡) is the fluid pressure in the fracture, and it is usually assumed to be same as 

recorded or calibrated bottom hole pressure. 𝜎𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 is the confining stress on the 

fracture face, and can be assumed to be minimum horizontal principal stress (𝜎𝑚𝑖𝑛) if the 

fracture propagates in the direction perpendicular to it. Besides, the fracture is supposed 

to close when 𝑝𝑓𝑟𝑎𝑐(𝑡) < 𝜎𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡. For FCT analysis, ∆𝑝𝑤 is defined as Eq.(1.4). 
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 ∆𝑝𝑤 = 𝑝𝑤𝑠 − 𝑝𝑤(𝑡) (1.4) 

where, 𝑝𝑤𝑠 is the pressure at end of injection (EOJ), or the instantaneous shut-in pressure 

(ISIP) if no friction pressure loss at very early time after shut-in.  

Average fracture width is,  

 �̅� =
𝑉𝑓𝑟𝑎𝑐

𝐴𝑓
 (1.5) 

where, 𝑉𝑓𝑟𝑎𝑐 is fracture volume, and 𝐴𝑓 is the area of one-side fracture surface. 

Differentiating Eq.(1.3) with respect to time and substituting Eq. (1.4) and (1.5) 

into it, we can get, 

 
𝑑∆𝑝𝑤
𝑑𝑡

= −
𝑑𝑝𝑤(𝑡)

𝑑𝑡
= −

𝑑𝑝𝑛𝑒𝑡(𝑡)

𝑑𝑡
= −

𝑑

𝑑𝑡
(
�̅�

𝑐𝑓
) = −

𝑑

𝑑𝑡
(
𝑉𝑓𝑟𝑎𝑐

𝑐𝑓𝐴𝑓
) 

(1.6) 

According to material balance theory that the total fluid volume pumped into the 

fracture is the summation of fracture volume, which is filled by frac fluid, and the 

leakoff volume, the following governing equation can be derived. 

 𝑉𝑝 = 𝑉𝑓𝑟𝑎𝑐 + 𝑉𝑙 (1.7) 

where, 𝑉𝑝 is the total pumping volume, and 𝑉𝑙 is the leakoff volume. 

If there is no additional fluid flow into fracture after shut-in, which is the 

common assumption for almost all current FCT models, 𝑉𝑝 is a constant. After 

differentiation with respect to time, we can get, 

 
𝑑𝑉𝑓𝑟𝑎𝑐

𝑑𝑡
= −

𝑑𝑉𝑙
𝑑𝑡

 (1.8) 

And then, substitute Eq.(1.8) into Eq.(1.6), and assume that 𝑐𝑓 and 𝐴𝑓 are 

constant. Eq.(1.6) can be derived as,  
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𝑑∆𝑝𝑤
𝑑𝑡

= −
1

𝑐𝑓𝐴𝑓

𝑑𝑉𝑓𝑟𝑎𝑐

𝑑𝑡
=

1

𝑐𝑓𝐴𝑓

𝑑𝑉𝑙
𝑑𝑡

 
(1.9) 

The leakoff volume for Carter leakoff model has been derived by Nolte(Gulrajani 

and Nolte 2000; Nolte et al. 1993), which is given as, 

 𝑉𝑙 = 2𝑟𝑝𝐶𝐿𝑡𝑝
𝜃𝐴𝑓𝑔(∆𝑡𝐷 , 𝛼, 𝜃) (1.10) 

where, 𝑟𝑝 is the ratio of permeable fracture surface area to the gross fracture area; 𝐶𝐿 is 

the leakoff coefficient, and it is assumed to be constant during the derivation of 

Eq.(1.10); 𝑡𝑝 is the pumping time. 𝑔(∆𝑡𝐷 , 𝛼, 𝜃) is the g-function formulated by Nolte, 

and it is given as, 

 𝑔(∆𝑡𝐷, 𝛼, 𝜃) =
1

𝜃
∫ (1 + ∆𝑡𝐷 − 𝜉

1/𝛼)
𝜃

1

0

𝑑𝜉           ∆𝑡𝐷 ≥ 0 
(1.11) 

where, 𝜃 is referred to as the fluid-loss exponent, and for Newtonian filtrate, 𝜃 = 1/2. 𝛼 

is defined as the area exponent; it has a value between ½ and 1 for typical treatments. 

The value of 𝛼 for PKN, KGD and Radial fracture model during injection is listed in  

Table 1-2. ∆𝑡𝐷 is defined as Eq.(1.12).  

 

Table 1-2 Area exponents factor (𝜶) for PKN, KGD and Radial model 

Model PKN KGD Radial 

𝛼 4/5 2/3 8/9 

 

 ∆𝑡𝐷 =
𝑡 − 𝑡𝑝 

𝑡𝑝 
 

(1.12) 
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It should be noted that the cumulative leakoff volume for Newtonian filtrate 

before shut-in is,  

 𝑉𝑙,𝑝 = 2𝑟𝑝𝐶𝐿√𝑡𝑝𝐴𝑓𝑔(0, 𝛼) (1.13) 

By substituting Eq. (1.10) into (1.9), we can get the material balance in the 

differentiation form,  

 
𝑑∆𝑝𝑤
𝑑𝑡

=
2𝑟𝑝𝐶𝐿

𝑐𝑓√𝑡𝑝
𝑓(∆𝑡𝐷, 𝛼) 

(1.14) 

where, 𝑓(∆𝑡𝐷 , 𝛼) is the derivative of g-function with respect to ∆𝑡𝐷 and expressed as 

following with 𝜃 = 1/2. 

 𝑓(∆𝑡𝐷, 𝛼) =
𝑑𝑔(∆𝑡𝐷 , 𝛼)

𝑑∆𝑡𝐷
= ∫

𝑑𝜉

√1 + ∆𝑡𝐷 − 𝜉1/𝛼

1

0

               ∆𝑡𝐷 ≥ 0  
(1.15) 

and, 

 𝑔(∆𝑡𝐷, 𝛼) = ∫𝑓(∆𝑡𝐷 , 𝛼) 𝑑∆𝑡𝐷 
(1.16) 

Both g-function and 𝑓(∆𝑡𝐷 , 𝛼) can be approximated with following analytical 

solutions for the bounding values of 𝛼, 

 𝑓(∆𝑡𝐷) = {
sin−1(1 + ∆𝑡𝐷)

−1/2                                   𝛼 = 1/2

2((1 + ∆𝑡𝐷)
1/2 − ∆𝑡𝐷

1/2)                   𝛼 = 1
 

(1.17) 

 𝑔(∆𝑡𝐷) = {
(1 + ∆𝑡𝐷) sin

−1(1 + ∆𝑡𝐷)
−1/2 + ∆𝑡𝐷

1/2             𝛼 = 1/2
4

3
((1 + ∆𝑡𝐷)

3/2 − ∆𝑡𝐷
3/2)                                 𝛼 = 1

 
(1.18) 

Another significant fact is that Eq.(1.14) is still valid even when the leakoff 

coefficient, 𝐶𝐿, is not constant (Meyer and Jacot 2000), which greatly facilitates the 

modeling of Pressure Dependent Leakoff (PDL) behavior. 



 

9 

 

By integration both sides of Eq.(1.14), the pressure solution can be obtained, 

 𝑝𝑤𝑠 − 𝑝𝑤(Δ𝑡𝐷) = 𝑝
∗𝐺(Δ𝑡𝐷) (1.19) 

where,  

 
𝑝∗ =

𝜋𝑟𝑝𝐶𝐿√𝑡𝑝

2𝑐𝑓
 

(1.20) 

 
𝐺(Δ𝑡𝐷) =

4

𝜋
[𝑔(Δ𝑡𝐷) − 𝑔0] (1.21) 

 𝑔0 = 𝑔(Δ𝑡𝐷 = 0) (1.22) 

 

 

Figure 1-2 Linear relation between pressure drop and G-function time (Gulrajani and Nolte 
2000) 

 

It can be figured out from Eq.(1.19) that the pressure difference has a linear 

relationship with the G-function, which is given in Eq.(1.21). According to Nolte, for 
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normal leakoff, the deviation point from the straight line between pressure difference 

and the G-function time can be picked as fracture closure event, and the pressure at this 

point thus is the closure pressure, as shown in Figure 1-2.  

Then fluid efficiency, fracture geometry and the leakoff coefficient can be 

calculated out with the following equations. 

 𝜂 =
𝐺𝑐

𝐺𝑐 + 4𝑔0 𝜋⁄
 

(1.23) 

where, 𝐺𝑐 is the G-function at closure, or 𝐺𝑐 = 𝐺(Δ𝑡𝐷 = Δ𝑡𝑐𝐷). 

 
𝐿
𝐿2

𝑅3
} =

(1 − 𝜂)𝑉𝑝𝐸
′

2𝑔0𝑝∗
{

1 (2ℎ𝑓
2)⁄                                PKN

1 (4ℎ𝑓)⁄                                KGD

3𝜋 32⁄                               Radial

 
(1.24) 

 𝐶𝐿 =
𝑝∗

𝑟𝑝√𝑡𝑝𝐸′
{

ℎ𝑓                                PKN

2𝐿                               KGD
32𝑅𝑓 (3𝜋2)⁄                Radial

 
(1.25) 

In the following text, two most commonly used diagnostic methods will be 

covered. Based on Nolte G-function model as shown above, (Barree 1998; Barree et al. 

2009) proposed a diagnostic approach to help identify closure event. Instead of using 

linear relation between pressure drop and G-function time (Gulrajani and Nolte 2000), as 

shown in Figure 1-2 Linear relation between pressure drop and G-function time 

(Gulrajani and Nolte 2000) (Barree 1998; Barree et al. 2009) introduced the composite 

derivative of G-function, 𝐺𝑑𝑝/𝑑𝐺, to make the pressure change more obvious. As 

shown in top-left plot of Figure 1-3, for normal leakoff, there is a straight line through 

the origin between 𝐺𝑑𝑝/𝑑𝐺 with G-function. The deviation point in 𝐺𝑑𝑝/𝑑𝐺 curve from 

the straight line is taken as the closure point. Furthermore, distinct abnormal leakoff 
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behavior can be identified qualitatively from the curve, as shown in the other three plots 

in Figure 1-3. In the real practice, normal leakoff seldom happens, and the commonly 

observed abnormal leakoff includes tip extension, pressure dependent leakoff (PDL), 

height recession or transverse storage, multiple closure, etc. These phenomenon and 

their associated leakoff mechanisms will be discussed later in detail.  

 

 

Figure 1-3 G-function characteristics for different leakoff mechanisms (Craig et al. 2000) 

 

Besides the composite G-function diagnostic approach as discussed above, the 

other commonly used interpretation method is the Log-log Bourdet derivative method. 

Instead of using the G-function, the Log-log Bourdet derivative presentation takes 
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advantage of traditional pressure transient analysis (PTA) methods by employing 

superposition time function and its Bourdet derivative, as shown in Eq. (1.26) and 

(1.27). All flow regimes can be identified from this single plot, as shown in Figure 1-4. 

For before closure analysis, there is a 3/2-slope in the model, which indicates the closure 

process of normal leakoff. The finding was first proposed by (Mohamed et al. 2011) and 

further illustrated by (Marongiu-Porcu 2014; Marongiu-Porcu et al. 2011; Marongiu-

Porcu et al. 2014) and Bachman(Bachman et al. 2013; Bachman et al. 2012).  

 

 

Figure 1-4 Representation of log-log diagnostic plot (Mohamed et al. 2011) 

 

One should notice that different time functions have been used in the works of 

(Marongiu-Porcu 2014; Marongiu-Porcu et al. 2011; Marongiu-Porcu et al. 2014) and 

(Bachman et al. 2013; Bachman et al. 2012). The superposition time (𝜏) is employed to 



 

13 

 

build diagnostic curve by Marongiu-Porcu, while the equivalent time function is used by 

Bachman. The superposition time by Marongiu-Porcu model is given as,  

 𝜏 =
𝑡𝑝 + ∆𝑡

∆𝑡
= 1 +

1

∆𝑡𝐷
 

(1.26) 

and, its Bourdet derivative can be calculated as, 

 𝜏
𝑑∆𝑝𝑤
𝑑𝜏

= −(∆𝑡𝐷 + ∆𝑡𝐷
2)
𝑑∆𝑝𝑤
𝑑∆𝑡𝐷

 
(1.27) 

However, the equivalent time function  

 𝑡𝑒𝑟 =
𝑡𝑝∆𝑡

𝑡𝑝 + ∆𝑡
=

∆𝑡𝐷
1 + ∆𝑡𝐷

 
(1.28) 

and, its Bourdet derivative is, 

 𝑡𝑒𝑟
𝑑∆𝑝𝑤
𝑑𝑡𝑒𝑟

= (∆𝑡𝐷 + ∆𝑡𝐷
2)
𝑑∆𝑝𝑤
𝑑∆𝑡𝐷

 
(1.29) 

Compare Eq.(1.26) with (1.28) and Eq. (1.27) with (1.29), we can find that the 

superposition time is just the reciprocal of the equivalent time, and the only difference in 

their Bourdet derivative is a negative sign.  

Actually, Marongiu-Porcu shows that, the 3/2-slope in the log-log Bourdet 

derivative plot can be derived from Nolte G time function (NGTF) model (Marongiu-

Porcu 2014; Marongiu-Porcu et al. 2011; Marongiu-Porcu et al. 2014). This provides the 

inherent consistency between these two diagnostic approaches. The Bourdet derivative 

for normal leakoff can be derived by substituting Eq. (1.19) into Eq. (1.27),  

 𝜏
𝑑∆𝑝𝑤
𝑑𝜏

= −
2𝑟𝑝𝐶𝐿√𝑡𝑝

𝑐𝑓
(∆𝑡𝐷 + ∆𝑡𝐷

2)𝑓(∆𝑡𝐷) (1.30) 
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The definition of 𝑓(∆𝑡𝐷) can be found in Eq. (1.15), and its analytical 

approximation is listed in Eq. (1.17). The slope of Bourdet derivative curve in different 

time regions then can be calculated out from these equations. It has been proven that for 

normal leakoff on the log-log plot, the Bourdet derivative curve has a unit slop in the 

very early time and then transitions to the 3/2-slope (Marongiu-Porcu 2014). One should 

note that in Figure 1-4, the early time unit slope is masked by a ½ slope derivative trend, 

which will be discussed in Chapter II.  

 

1.2.2 Mayerhofer model 

Besides the Nolte G-function, the Mayerhofer method (Mayerhofer and 

Economides 1993, 1997; Mayerhofer et al. 1995) is another commonly used FCT 

analysis model. In this model, leakoff is decoupled into two major categories. One is 

fluid leaking though the fracture face, which is treated as the flow skin, and the other is 

linear flow of filtrate into formation. The total pressure drop should be the sum of 

pressure loss in these two parts.  

 ∆𝑝(𝑡𝑗) = ∆𝑝𝑟(𝑡𝑗) + ∆𝑝𝑓𝑎𝑐𝑒(𝑡𝑗) (1.31) 

where, ∆𝑝𝑓𝑎𝑐𝑒(𝑡𝑗) and ∆𝑝𝑟(𝑡𝑗) are pressure drop at any time point through filter cake 

and in the reservoir, respectively.  

The pressure drop in the reservoir can be computed with Eq. (1.32) 

 ∆𝑝𝑟 = (𝑎𝑝𝑞𝜇 𝑘ℎ⁄ )√𝑎𝑡𝜋𝑡/𝜇𝜙𝑐𝑡𝑥𝑓
2 

(1.32) 
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where, 𝑎𝑝 and 𝑎𝑡 are constants, and 𝑎𝑝 = 141.2, 𝑎𝑡 = 0.000264 in oilfield units; 𝑞 is 

the flow rate; 𝜇 is the fluid viscosity; 𝑘, 𝜙 and ℎ are formation permeability, porosity 

and height; 𝑐𝑡 is the total compressibility; 𝑥𝑓 is the fracture half-length.  

The varying fracture-face skin factor is, 

 𝑠 = [𝜋𝑘𝑅0𝑅𝐷(𝑡)]/2𝑥𝑓 
(1.33) 

where, 

 𝑅𝐷(𝑡) =
𝑅𝑠
𝑅0
= √

𝑡𝑛
𝑡𝑚

 
(1.34) 

and 𝑡𝑚 is total pumping time, and 𝑡𝑛 is the total time from the start of pumping.  

With all formulations above from Eq. (1.31) to (1.34), the pressure gradient 

during pumping (𝑅𝐷(𝑡) = 1) can be derived as, 

 

Δ𝑝(𝑡𝑚) = 4𝑎𝑝√
𝑎𝑡𝜋𝑡

𝜇𝜙𝑐𝑡
[∑(

𝑞𝐼𝑗

𝐴𝑝,𝑗
−
𝑞𝐼𝑗−1

𝐴𝑝,𝑗−1
)√𝑡𝑛 − 𝑡𝑗−1

𝑚

𝑗=1

]

+ (2𝑎𝑝𝜇𝑓𝜋𝑅0/𝐴𝑝,𝑚)𝑅𝐷,𝑚𝑞𝐼𝑚 

(1.35) 

where, 𝑞𝐼𝑗 is the leakoff rate at any time point during pumping; 𝐴𝑝 is the permeable 

fracture area.  

By subtracting the pressure loss during pumping from the total pressure change, 

the pressure drop during fracture closing can be written as, 
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Δ𝑝(𝑡𝑛) = [𝑝𝑖 − 𝑝(𝑡𝑛)] − [𝑝𝑖 − 𝑝(𝑡𝑚)]

= 4𝑎𝑝√
𝑎𝑡𝜋𝑡

𝜇𝜙𝑐𝑡
[∑(

𝑞𝐼𝑗

𝐴𝑝,𝑗
−
𝑞𝐼𝑗−1

𝐴𝑝,𝑗−1
)√𝑡𝑛 − 𝑡𝑗−1

𝑚

𝑗=1

]

+ [∑ (
𝑞𝐹𝑗

𝐴𝑝,𝑗
−
𝑞𝐹𝑗−1

𝐴𝑝,𝑗−1
)√𝑡𝑛 − 𝑡𝑗−1

𝑛

𝑗=𝑚

]

− [∑(
𝑞𝐼𝑗

𝐴𝑝,𝑗
−
𝑞𝐼𝑗−1

𝐴𝑝,𝑗−1
)√𝑡𝑚 − 𝑡𝑗−1

𝑚

𝑗=1

]

+ (2𝑎𝑝𝜇𝑓𝜋𝑅0/𝐴𝑝,𝑚)(𝑅𝐷,𝑛𝑞𝐹𝑚 − 𝑅𝐷,𝑚𝑞𝐼𝑚) 

(1.36) 

where, 𝑞𝐹𝑗 is the leakoff rate during closing, and given as,  

 𝑞𝐹𝑗 = −𝑐𝑓𝐴𝑓
𝑑Δ𝑝(𝑡𝑗)

𝑑Δ𝑡𝑗
 

(1.37) 

Assumption of an initial value of fracture area (𝐴𝑓), fracture face resistant (𝑅0) 

and reservoir permeability (𝑘) is required for iterative computation. According to 

Mayerhofer, Eq. (1.36) not only satisfies the physics of filtration and linear elastic 

mechanics, but also preserves the material balance function. A modified Mayerhofer 

model is proposed by Valko and Economides (Valko and Economides 1997), in which 

the initial assumption of these factors is not required, and the complicated derivation will 

not be represented in this context.  

Usually in conventional reservoir treated with crosslinked fluid, a significant 

pressure drop could occur when the fluid leaks though the filter cake due to its ultra-low 

permeability. As anticipated, the effect of fracture surface resistance will be much 

reduced for fracturing in a tight formation (Mayerhofer et al. 1995).  
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1.2.3 Hagoort model 

(Hagoort 1981) assumed the pressure transient was a result of the superposition 

of two pressure transients: one associated with the imaginary continuing injection, and 

the other with the imaginary production starting from the end of injection. Furthermore, 

the model focused on the early-time pressure decline immediately after shut-in, when 

Hagoort believed that the production transient is the dominant factor in comparison with 

the injection transient. Therefore, the problem is reduced to solve the pressure response 

of a linear flow from a formation with an initial pressure at ISIP, into a hydraulic 

fracture with infinite conductivity, and producing at a constant rate (injection rate). 

Besides, fracture storage effect was included in the model by material balance 

function and linear elastic theory. This solution therefore can be designated as the model 

for leakoff dominated by formation flow. (Koning and Niko 1985) and (Barree et al. 

2009) used the Hagoort solution in their work and rewrote it as Eq.(1.38). It is clear that 

the first term in the right of Eq.(1.38) is exactly same with traditional linear flow from 

formation into an infinite-conductivity hydraulic fracture; the second term is associated 

with the fracture storage effect. 

𝑝𝑤𝐷 = √𝜋∆𝑡𝐷 − 𝐶𝑓𝑏𝑐𝐷 (
𝜋

2
)
2

(1 − 𝑒𝜀
2∆𝑡𝐷erfc(휀√∆𝑡𝐷)) (1.38) 

where, 

𝑝𝑤𝐷(∆𝑡𝐷) =
𝑘ℎ

141.2𝑞𝐵𝜇
 [𝑝𝑤(𝑡𝑝) − 𝑝𝑤(𝑡𝑝 + Δ𝑡)] (1.39) 

∆𝑡𝐷 =
0.0002637𝑘 Δ𝑡

𝜙𝜇𝑐𝑡𝑥𝑓2 (1.40) 
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휀 =
2

𝜋𝐶𝑓𝑏𝑐𝐷 (1.41) 

𝐶𝑓𝑏𝑐𝐷 =
5.615 𝐶𝑓𝑏𝑐

2𝜋𝜙𝑐𝑡ℎ𝑥𝑓2
=
0.8936𝐶𝑓𝑏𝑐

𝜙𝑐𝑡ℎ𝑥𝑓2 (1.42) 

Here, 𝐶𝑓𝑏𝑐 is the before closure fracture storage constant, and it is defined as, 

𝐶𝑓𝑏𝑐 = 0.3562 𝑐𝑓𝐴𝑓 
(1.43) 

The above pressure solution described in Eq. (1.38) will result in a straight line 

on a graph of 𝑝𝑤(𝑡𝑝 + Δ𝑡) versus √Δ𝑡 for formation linear flow before closure, as 

shown in Figure 1-5. Different with G-function plot, the closure events in the square root 

plot should be picked at the inflection point on the pressure vs. sqrt(t) curve. Suggested 

by Barree(Barree et al. 2009), the inflection point should be the point with maximum 

amplitude of first derivative. This method is therefore used as an alternative way to 

determine fracture closure event. 

Figure 1-5. Normal leakoff indicated by Hagoort square root time method (Barree et al. 2009) 
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From its derivation, we can find that Hagoort model can only be used for the 

analysis in a very short period immediately after shut-in. The duration of the time is 

dependent on the injection time. In other words, the validity of the model could last long 

for the injection in a long time. If the injection time is short, and it takes a much longer 

time to close, which happens very often for FCT in tight formation, the linear flow 

system cannot be reduced to a producing well with a constant rate from a formation with 

an initial reservoir pressure at ISIP. This is the major reason why long-lasting ½-slope in 

log-log plot, which is sometimes interpreted as fracture linear flow, is rarely observed 

during closing in practice. 

1.3 Abnormal leakoff 

Although all above models are based on ideal/normal leakoff situation, (Craig et 

al. 2000; Craig  et al. 2000) observed only a few instances of normal leakoff in low 

permeability sandstones. In a statistical study over a large database, they found that 

normal leakoff behavior was observed in only 8.9% of the FCTs in Piceance Basin 

Mesaverde sandstones, while pressure-dependent leakoff (50.5%) is the most common 

leakoff behavior, followed by fracture tip extension (34.7%). (McGowen et al. 2007; 

Stegent et al. 2004) reported similar findings. In this section, the features of diagnostic 

plot for each of the abnormal leakoff behaviors will be elaborated. 
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1.3.1 Pressure dependent leakoff (PDL) 

As suggested by many researchers (Barree 1998; Fan and Chen 1997; Gulrajani 

and Nolte 2000), a high leakoff rate at early time is probably caused by the creation of 

new fracture surfaces. Referring to Carter leakoff model (Carter 1957) in Eq. (1.1), the 

initial leakoff rate at this new surface is much higher because the rate is inversely 

proportional to the square root of contacting time with the fluid. There two most likely 

scenarios accounting for the new created surface: natural fissures related pressure 

dependent leakoff (PDL) and tip extension. In tight fissured formation, where natural 

fractures can be connected during fracturing, pressure dependent leakoff behavior in 

FCTs is commonly observed (Craig  et al. 2000; Warpinski 1985).  

As shown in the top-right plot in Figure 1-3, when PDL occurs, the diagnostic 

plot by 𝐺𝑑𝑝/𝑑𝐺 is a concave down curve. The finish of the downward derivation from 

linearity, or the start point of straight line through the origin, is believed to be the closure 

event of these reopened natural fractures. The bottomhole pressure at this time point 

therefore can be picked as their opening/closure pressure. After that, leakoff from the 

main fracture into matrix is the dominant factor for the pressure response (Barree et al. 

2009). On the log-log diagnostic Bourdet derivative, it seems that the PDL behavior has 

a smaller apparent slope compared with the typical 3/2-slope in normal leakoff, as 

shown in Figure 1-6. 
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Figure 1-6 PDL behavior on the log-log diagnostic Bourdet derivative (Xue and 
Ehlig-Economides 2013) 

There are several models have been proposed to simulate PDL behavior in last 

couple decades. (Walsh 1981) provides a model to calculate fracture permeability under 

variable confining pressure. 

𝑘 = 𝑘0 [𝐽 In (
𝜎∗

𝜎 − 𝑝
)]
3

(1.44) 

where, 𝑘0 is reservoir permeability under in-situ conditions; 𝜎 is normal stress on the 

fissure; 𝜎∗ is the reference stress state; and 𝐽 is a constant. Both 𝜎∗and 𝐽 are required to

be determined from field data. 
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For each leakoff mechanisms introduced by (Howard and Fast 1957), (Castillo 

1987) conclude a model to account for PDL with different coefficients. 

Warpinski (Warpinski 1985) adding net pressure into Walsh model. 

𝑣 = √
𝑘𝑜𝜙𝐶3

2𝜇𝑡𝑔
((𝜎 − 𝑝𝑖) {[ln

𝜎∗

𝜎 − 𝑝𝑖
]
3

+ 3 [ln
𝜎∗

𝜎 − 𝑝𝑖
]
2

+ 6 [ln
𝜎∗

𝜎 − 𝑝𝑖
] + 6}

− (𝜎 − 𝑝0) {[ln
𝜎∗

𝜎 − 𝑝𝑖
]
3

+ 3 [ln
𝜎∗

𝜎 − 𝑝0
]
2

+ 6 [ln
𝜎∗

𝜎 − 𝑝0
] + 6})

1/2

(1.45) 

where, 𝑝𝑖 and 𝑝0 are initial reservoir pressure and treatment pressure, respectively. 

According to Meyer and Jacot (Meyer and Jacot 2000), there are two most 

commonly used models for natural fracture related pressure dependent leakoff. For the 

first one, the created fracture has two different but constant leakoff coefficients, as 

expressed in Eq. (1.46). When fracture pressure is above the closure pressure of natural 

fissures (𝑝𝑓𝑜), the fracture system has a larger leakoff coefficient, 𝐶𝐿1; while, when 

fracture pressure is below 𝑝𝑓𝑜, 𝑝𝑤 < 𝑝𝑓𝑜, it has a smaller value, 𝐶𝐿2. For the second 

model represented in Eq. (1.47), fracture has a variable leakoff coefficient when fracture 

pressure is above 𝑝𝑓𝑜; and a constant leakoff coefficient after the closure of natural 

fractures, same with previous model. 
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 𝐶𝐿(𝑝𝑤) = {
  𝐶𝐿1                𝑝𝑤 ≥ 𝑝𝑓𝑜  

𝐶𝐿2                𝑝𝑤 < 𝑝𝑓𝑜
 

(1.46) 

From the definition, it can be figured out that typically 𝐶𝐿1 > 𝐶𝐿2.  

 𝐶𝐿(𝑝𝑤) = {
𝐶𝐿1 exp(−𝛽

𝑝𝑤𝑠 − 𝑝𝑤
𝑝𝑤𝑠 − 𝑝𝑓𝑜

)                      𝑝𝑤 ≥ 𝑝𝑓𝑜  

𝐶𝐿2                                                            𝑝𝑤 < 𝑝𝑓𝑜

 
(1.47) 

where, 

 𝐶𝐿1 = 𝐶𝐿(𝑝𝑤 = 𝑝𝑤𝑠) (1.48) 

 𝐶𝐿2 = 𝐶𝐿(𝑝𝑤 < 𝑝𝑓𝑜) (1.49) 

 𝛽 = ln (
𝐶𝐿1
𝐶𝐿2

) 
(1.50) 

From above equation we can figure out that the decline manner of the leakoff 

coefficient is fixed for a certain case when 𝐶𝐿1, 𝐶𝐿2, 𝑝𝑤𝑠 and 𝑝𝑓𝑜 are constant. Another 

model proposed by Barree (Barree 1998; Barree and Mukherjee 1996) has a similar form 

with Eq. (1.47), but has a free variable (𝐶𝑑𝑝) which controls the decline manner of the 

leakoff coefficient, as expressed in Eq. (1.51). 

 𝐶𝐿(𝑝𝑤) = {
𝐶𝐿1 exp[𝐶𝑑𝑝 (𝑝𝑤 − 𝑝𝑓𝑜)]                      𝑝𝑤 ≥ 𝑝𝑓𝑜  

𝐶𝐿2                                                            𝑝𝑤 < 𝑝𝑓𝑜
 

(1.51) 

The difference between fissure opening pressure and main fracture closure 

pressure, 𝑝𝑓𝑜 − 𝑝𝑐, could have a significant impact on the production. According to 

Mullen and Enderlin (Mullen and Enderlin 2010), if the difference is relatively large, 

flow capacity of these fissures will be deprived by the overwhelming confining pressure. 

Fissures therefore might have little contribution to the production. If the difference is 
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small, these “closed natural fissures” could be more permeable than the formation matrix 

(Branagan et al. 1996), and they could be the major contributor to the production. 

For the formation where natural fissure related PDL happens, proppant screenout 

could be a potential problem during following main stimulation (Rollins and Hyden 

1998). To avoid premature screenout, pad with larger volume is usually required. 

1.3.2 Tip extension 

Tip-extension phenomenon means that fracture continue propagating even after 

the shut-in, which conflicts with the pre-assumption of Nolte G-function model. 

Generally, tip-extension is typically caused by the ultra-low permeability or leakoff rate 

in tight formations (Barree et al. 2009; Craig et al. 2000). Furthermore, formations where 

tip extension happen usually have a poor production and limited economic potential 

(Craig  et al. 2000; Rollins and Hyden 1998). 

The typical feature of tip-extension on 𝐺𝑑𝑝/𝑑𝐺 is shown in the bottom-left plot 

in Figure 1-3. There is a straight line before closure. The line is not through the origin, 

but has a positive intercept with the composite derivative axis (Barree and Mukherjee 

1996). 

Currently, there is no model to simulate the tip-extension phenomenon. 

1.3.3 Transverse storage and height recession 

Transverse storage and height recession are two distinct concepts, but are 

believed to have similar pressure response when they happen. Transverse storage is 
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associated with a secondary fracture system. If the natural fracture system is connected 

during treatment, it can take and store an amount of fluid from the main fracture. Since 

the natural fissure usually suffer a higher confining pressure than the main fracture, part 

of the stored fluid in natural fissures could be squeezed back into the main fracture, 

which will resupply the main fracture and reduce the pressure decline rete in the whole 

fracture system. 

One should note that the natural fracture system is involved in both pressure 

dependent leakoff (PDL) and transverse storage. That which of them could be the 

dominant factor is determined by the leakoff rate from the natural fissures and the 

decline rate of natural fracture width. If the former is much larger, enhanced leakoff rate, 

or PDL behavior can be expected; while if the leakoff rate from natural fissures is small, 

and they close in a rapid manner, transverse storage effect can be observed. 

As to height recession, it usually happens when the fracture extends out of the 

target zone into overlying or underlying layers, where leakoff rate is relatively small and 

local formation stress is higher than that in target zone. Similar to natural fracture related 

transverse storage, fluid in the fracture beyond the target zone leaks into formation at a 

slower rate than the decline rate of fracture width at this section. Part of fluid in this 

section thus will be expelled back into the fracture in target layer, and height recession 

occurs. 

As shown in the bottom-left plot in Figure 1-3, transverse storage or height 

recession typically has a “belly” below the linearity through the origin on 𝐺𝑑𝑝/𝑑𝐺 curve 

(Barree 1998; Barree et al. 2009; Barree and Mukherjee 1996). In many cases, after the 
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end of transverse storage/height recession, normal leakoff behavior, which is 

characteristic by constant fracture surface area and constant leakoff coefficient 

dominated by matrix, will occur (Barree et al. 2009). On the log-log diagnostic Bourdet 

derivative, transverse storage/height recession seems to have a steeper slope compared 

with the typical 3/2-slope in normal leakoff, or a belly-shape curve under the 3/2-slope 

line, as shown in Figure 1-7. 

Figure 1-7 Transverse storage/height recession on the log-log diagnostic Bourdet derivative 
(Xue and Ehlig-Economides 2013) 

Currently, no model has been proposed to illustrate transverse storage/height 

recession behavior for the FCT analysis. 
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1.3.4 Multiple apparent closures 

According to Barree (Barree 1998), multiply apparent closures are frequently 

observed from field data. One field example has been discussed by Xue and Ehlig-

Economides (Xue and Ehlig-Economides 2013), as shown in Figure 1-8. We can find 

that several straight lines through the origin can be drawn on 𝐺𝑑𝑝/𝑑𝐺 curve, and 

correspondingly, several 3/2-slope lines on the log-log Bourdet derivative plot. 

Figure 1-8 Multiple-closure behavior on both 𝑮𝒅𝒑/𝒅𝑮 and the log-log diagnostic Bourdet 
derivative (Xue and Ehlig-Economides 2013) 

1.3.5 Multiple leakoff mechanisms 

In some cases, more than one above leakoff mechanisms happen at same or 

different time at FCTs, as shown in Figure 1-9 (Mullen and Enderlin 2010). Both PDL 

(or tip extension) and transverse storage feature are observed in the same diagnostic 

curve. 
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Figure 1-9 Both PDL and transverse storage behavior exist in one FCT (Mullen and Enderlin 
2010) 
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1.4 Problem definition and objectives 

From the previous discussion, it is apparent that existing models for commonly 

observed abnormal leakoff behaviors are only qualitative and do not provide quantitative 

parameters. The major objective of this research is to build a model to simulate these 

abnormal leakoff behaviors and the physics behind them to quantify all factors that 

govern these behaviors. The following commonly observed flow regimes and non-ideal 

leakoff behavior will be covered: wellbore storage, early fracture linear flow, pressure-

dependent leakoff (PDL), transverse storage, tip-extension and multiple-closure 

behavior. Finally, we will try to build a comprehensive model that could simulate all 

these listed normal and abnormal leakoff mechanisms. 

1.5 Research summary 

Chapter I starts from the introduction of fracture calibration test (FCT), and then 

several most commonly used before-closure models and diagnostic methods are 

discussed. For those often observed abnormal leakoff behavior, their potential physics 

and diagnostic curve feature are provided. The major research problem is defined and 

the objective specified. 

In Chapter II, several commonly observed flow regimes and abnormal leakoff 

behaviors are modeled, including wellbore storage effect, early linear flow, tip 

extension, pressure dependent-leakoff (PDL), multiple-closure behavior, and transverse 

storage effect. Pressure solutions for those flow regimes and leakoff mechanisms are 
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derived, and more parameters are able to be quantified, including natural fracture leakoff 

coefficient and its possible extension. 

Several field examples from Horn River Shale are interpreted in Chapter III. 

Compared with traditional diagnostic model, the new derived PDL model and the 

decoupled fracture model are able to explore more information of natural fracture system 

if they are opened during treatment. Mostly, the interpretation result provides a good 

explanation of the production performance. 

In Chapter IV, several primary conclusions from this research are listed. 
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CHAPTER II 

ABNORMAL LEAKOFF BEHAVIOR MODELLING 

Chapter 2 

Chapter I illustrates three major existing before-closure models: Nolte G-function 

model, Mayerhofer and Hagoort model. All these model are based on ideal leakoff 

condition and they are so oversimplified that none of them are able to quantify any 

abnormal leakoff mechanisms, whose potential physics and representation in diagnostic 

plots are presented previously. A series of new model will be developed in this chapter 

pertinent to these abnormal leakoff behaviors. 

Based on traditional Nolte G-function, which is to calculate leakoff fluid volume 

during and after injection, pressure solution is derived in this chapter for each specific 

abnormal leakoff mechanism by considering their unique leakoff physics. All the 

following flow regimes and leakoff behavior will be modeled: wellbore storage effect, 

early linear flow, tip extension, pressure dependent-leakoff (PDL), multiple-closure 

behavior, and transverse storage effect. 

2.1 Wellbore storage effect (WBS) 

WBS is usually the first behavior we expect to see in traditional build-up and 

drawdown tests in conventional reservoir. Due to the compressibility, fluid stored in 

wellbore will expand when pressure is reduced, or shrink when pressure is building up. 

Because of huge difference in compressibility, wells producing or injected with gas 

typically has a much longer and more dominant WBS effect than those with liquid. 
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As to FCT, water-based fracturing fluids are the major treatment fluid used in the 

field. Among them, fresh water, with or without friction reducer, is the most widely used 

fluid in unconventional reservoir, like gas-shale, tight sand, etc. Since water is slightly 

compressible, the stored fluid in the wellbore will keep expanding after shut-in with the 

declining pressure. Because wellbore string volume is supposed to be constant, the 

expansion of water in it will force the incremental volume into the fracture, which is 

sometimes called “after-flow” effect (McClure et al. 2014; Nguyen and Cramer 2013). 

Theoretically, the fluid expansion, or “after-flow” phenomenon, will not stop until the 

bottomhole pressure drops to a constant value. In other words, WBS effect always exists 

during the whole pressure falloff after shut-in. However, except for that in the very early 

time immediately after shut-in, the pressure drop rate is so slow that WBS effect is 

usually negligible. Therefore, WBS is traditionally believed to happen only at very early 

time after shut-in, which is reasonable. To find its potential mechanisms, the early WBS 

will be elaborated in this section, and the long-lasting WBS behavior will be discussed 

together with tip-extension behavior in Section 2.3.2. 

 As well-known in well testing community, when WBS occurs, there will a unit-

slope in both log-log Bourdet derivative and pressure difference curve. Mathematically, 

the pressure solution can be written as, 

𝐶 =
𝑞𝑝𝐵

24
∆𝑝
∆𝑡

(2.1) 
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where, 𝐶 is the WBS coefficient, bbl/psi; 𝑞𝑝 is the pumping rate in the unit of bbl/day, 

not bbl/minute. ∆𝑝 is the pressure difference after shut-in, psi; ∆𝑡 is the elapsed time 

after shut-in in hour.  

From above equation, we can find that the pressure solution is very simple and 

no formation or fracture properties are involved. The reason is because the early WBS 

occurs in a very short time immediately after shut-in, before fracture or formation flow 

become the dominant flow mechanism. Another important point with WBS is that the 

pressure decline rate is almost constant in a relatively high level during this time, as 

indicated in Eq. (2.1). Now, the question will be what happens behind the fast decline 

pressure at early beginning of falloff? 

If the pressure is recorded in the surface, the wellhead treating pressure (WHTP) 

can be expressed as (Mack and Warpinski 2000),  

𝑊𝐻𝑇𝑃 = 𝑝𝑐 + 𝑝𝑛𝑒𝑡 + (∆𝑃𝑝𝑖𝑝𝑒 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + ∆𝑃𝑛𝑒𝑎𝑟 𝑤𝑒𝑙𝑙𝑏𝑜𝑟𝑒 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛) − 𝑝ℎ𝑦𝑑 
(2.2) 

where, 𝑝𝑐 is the closure pressure and assumed to be constant, psi; ∆𝑃𝑝𝑖𝑝𝑒 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 is the 

pressure loss in wellbore due to friction; 𝑝ℎ𝑦𝑑 is the hydrostatic pressure of the fluid in 

the string; ∆𝑃𝑛𝑒𝑎𝑟 𝑤𝑒𝑙𝑙𝑏𝑜𝑟𝑒 is the pressure loss near wellbore, and it consists of friction 

components through perforation, fracture tortuosity and perforation misalignment 

friction.  

Since 𝑝ℎ𝑦𝑑 and 𝑝𝑐 are constant in the left side of Eq. (2.2), the decline of 

recorded pressure, WHTP, could be caused by the decline of one or all of these three 

terms: 𝑝𝑛𝑒𝑡, ∆𝑃𝑝𝑖𝑝𝑒 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 and ∆𝑃𝑛𝑒𝑎𝑟 𝑤𝑒𝑙𝑙𝑏𝑜𝑟𝑒. In other words, that whether early WBS 

effect is strong or weak, and the duration of WBS, is mainly dependent on the falloff rate 
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of net pressure (𝑝𝑛𝑒𝑡), and the dissipation of friction along the wellbore string and at 

near-wellbore area (∆𝑃𝑝𝑖𝑝𝑒 𝑓𝑟𝑖𝑐𝑡𝑖𝑜𝑛 + ∆𝑃𝑛𝑒𝑎𝑟 𝑤𝑒𝑙𝑙𝑏𝑜𝑟𝑒). Therefore, we can conclude that 

early WBS behavior would be strong at following scenarios. 

1) Rapid decline of net pressure at early time immediately after shut-in. It could

happen when the treated formation has a high leakoff rate, or some other 

permeable sub-layers are connected by natural fissures, or fracture continue 

growing after shut-in, which is also called tip-extension and will be 

elaborated later. 

2) Large amount of pressure loss associated with friction in the wellbore and

near-wellbore area. This part of pressure loss could be a result of many 

factors: injection rate, perforation number and diameter, fracture trajectory 

near the wellbore, the connection between perforation and created fracture. 

Unfortunately, it is almost impossible to calculate all of them out. Besides, 

this part of pressure loss will dissipate rapidly after shut-in, which is another 

important source of rapid pressure drop at early time after shut-in. Therefore, 

strong WBS behavior might be a sign of large pressure loss due to the friction 

in the wellbore string or at the near-wellbore vicinity.  

In summary, early WBS effect happens only when there is a big net pressure 

drop or a large amount of pressure dissipation associated with friction in the wellbore 

and near-wellbore area. The rapid net pressure decline could be caused by high leakoff 

rate, including pressure dependent leakoff (PDL), and tip-extension. 
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2.2 Fracture linear flow 

As occasionally observed in practice, there is an early ½-slope (before 3/2-slope) 

at the Bourdet derivative curve on log-log plot, as shown in Figure 1-4. Since ½-slope 

usually indicates linear flow in traditional pressure transient analysis, the early time ½-

slope might be the pressure response of fracture linear flow. As noted in the previous 

section, to see the ½ slope behavior without any evidence of wellbore storage highlights 

an important difference between the FCT response and standard pressure buildup 

behavior for a hydraulically fractured well. The following reasons may account for this 

flow regime: 

1) relatively high leakoff rate at tip area;

2) existence of “dry tips” or tip extension after shut-in;

In this section, all these factors will be illustrated in detail to explain the apparent 

fracture linear flow. 

2.2.1 High leakoff rate at tip area 

According to classic Carter leakoff model, fluid leakoff rate is inversely 

proportional with square root of contacting time, as illustrated in Eq. (1.1). It is clear that 

the new created fracture surface has a higher leakoff rate than in those sections where 

leakoff has started earlier. In other words, leakoff rate in the fracture tip area is much 

faster than that behind this section. Therefore, fluid tends to flow from wellbore or 

fracture near wellbore to the tip to supply the higher leakoff rate in this area. This factor 

therefore could be one of the reasons for fracture linear flow. 
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Figure 2-1 Representation of Carter leakoff model (Bachman et al. 2012) 

2.2.2 Dry fracture tips and tip extension 

As observed directly or indirectly by many researchers (Barree et al. 2013; 

Medlin and Masse 1984; Warpinski 1985; Yew and Liu 1993), there is a process zone in 

the tip area during fracture propagation. Two parts are included in this zone: the fluid lag 

region or dry fracture surface behind the tip, and a damage zone beyond it, as shown in 

Figure 2-2. Fluid pressure in the fluid lag region is less than closure pressure (i.e. 

minimum horizontal stress), and may even less than the pore pressure for some very 

tight formations. In other words, the net pressure in this area is negative. 
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Figure 2-2. Description of process zone and the fluid lag zone (Barree et al. 2013) 

According to Barree (Barree et al. 2013), the formation of the fluid lag zone is 

probably caused by the fact that fluid leakoff rate through the new created fracture is 

even higher than the rate that fluid can be delivered along the fracture. While, this 

explanation is probably unacceptable because hydraulic fracture is thought to have a 

much higher conductivity or flow capacity than formation matrix, not to mention in the 

tight formation like the gas-/oil-shale. Actually, the evidence of the fluid lag zone can be 

found from the linear elastic fracturing model (LEFM). The most commonly used 

mechanics model with LEFM in hydraulic fracturing community is derived by (Sneddon 

1946; Sneddon 1951; Sneddon and Elliott 1946). In the Sneddon model, following 

assumptions on the crack property and boundary conditions are made. 

1) The crack is in ellipse shape;
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2) The crack is very thin (−𝑐 ≤ 𝑦 ≤ 𝑐, 𝑥 = 0) in the interior of an infinite elastic

solid, as shown in Figure 2-3; 

3) The boundary conditions at 𝑥 = 0 are as follows.

a. There is no shear stress along 𝑦 − 𝑎𝑥𝑖𝑠: 𝜏𝑥𝑦 = 0,  for all values of 𝑦.

b. The Griffith crack is opened under the uniform internal pressure: 𝜎𝑥 =

−𝑝0, |𝑦| ≤ 𝑐.

c. The strain along 𝑦 − 𝑎𝑥𝑖𝑠 beyond crack tips is 0: 𝑢𝑥 = 0, |𝑦| ≥ 𝑐.

Figure 2-3 Coordinate of fracture in Sneddon model 

The derived pressure solution is, 

1

2
(𝜎𝑦 − 𝜎𝑥) = 𝑝0

𝑟

𝑐
(
𝑐2

𝑟1𝑟2
)

3/2

cos 𝜃  cos [
3

2
(𝜃1 + 𝜃2)]

(2.3) 

1

2
(𝜎𝑦 + 𝜎𝑥) = 𝑝0 [

𝑟

√𝑟1𝑟2
cos (𝜃 −

1

2
𝜃1 −

1

2
𝜃2) − 1] 

(2.4) 
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 𝜏𝑥𝑦 = −𝑝0
𝑟

𝑐
(
𝑐2

𝑟1𝑟2
)

3/2

cos 𝜃  sin [
3

2
(𝜃1 + 𝜃2)]  

(2.5) 

With above equations, stress change at any point around the crack can be 

calculated, and one simulation result is shown in Figure 2-4 and Figure 2-5. Figure 2-4 

describe the stress change of 𝜎𝑥 and 𝜎𝑦, respectively. Figure 2-5 exhibit the final stress 

status after the creation the crack. In this example, the fracture is lying at 𝑦 − 𝑎𝑥𝑖𝑠 

between −500ft ≤ 𝑦 ≤ 500ft. The negative value in these plots indicates that the local 

stress is at the reverse direction of the positive according to the sign convention. All 

those 4 plots show that stress field is changed dramatically around the created crack, 

especially at the small vicinity beyond tips. Unlike the compressive stress at the side of 

crack, stress around the tip is the tensile stress, and the magnitude of the tensile stress is 

so overwhelming that the crack cannot be arrested from continuing propagating. In other 

words, because of the tensile stress singularity beyond the tip, stress distribution from 

the Sneddon model is not stable.  
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Figure 2-4 𝝈𝒙 and 𝝈𝒚 change around the created crack  

 

 

Figure 2-5 Local 𝝈𝒎𝒂𝒙, 𝝈𝒎𝒊𝒏 change around the created crack  

 

Two major issues in the assumption are believed to be responsible for this 

unpractical stress singularity beyond the tip. One is that the internal pressure is uniform, 

which in hydraulic fracturing is probably not the fact. The friction related pressure 

gradient is thought to be much more than estimated from viscous theory (Warpinski 

1985). Unfortunately, there is currently no analytical model of the stress field for 
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variable internal pressure. Another factor accounting for the stress singularity is the 

assumption that the strain beyond the tip is zero, which is challenged because of the fluid 

lag zone or dry-tip. (Sneddon 1951) developed a distict model for the case in which 

restriction on the strain is released from the boundary condition. Its pressure solution is 

derived as shown in Eq.(2.6) - (2.8).  

 𝜎𝑥 = −
𝑝0
2𝜋
[2(𝜃1 − 𝜃2) − sin(2𝜃1) + sin(2𝜃2)]  

(2.6) 

 𝜎𝑦 = −
𝑝0
2𝜋
[2(𝜃1 − 𝜃2) + sin(2𝜃1) − sin(2𝜃2)]  

(2.7) 

 𝜏𝑥𝑦 =
𝑝0
2𝜋
[cos(2𝜃2) − cos(2𝜃1)]  

(2.8) 

The simulation result for this model is exhibited in Figure 2-6. From these two 

plots we can figure out that the stress singularity disappears in this model. One should 

note that, the internal pressure between two “hydraulic tips” (−500ft ≤ 𝑦 ≤ 500ft), are 

still uniform, but the real fracture tips, defined as zero strain, are beyond these hydraulic 

tips. As the only difference between these two models is the restriction on tip strain, we 

can conclude that the stress singularity can be removed if the crack is allowed to 

continue propagating freely. The second model therefore seems to be more practical than 

the first one.  
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Figure 2-6 Local 𝝈𝒎𝒂𝒙 and 𝝈𝒎𝒊𝒏 change around the created crack without strain restriction in 
tips  

 

Back to the discussion about the fluid lag zone as shown in Figure 2-2, the 

existence of a process zone can eliminate the stress singularity in the tip, as described in 

the second model. Since the fluid pressure close to the tip is much lower than that close 

to the wellbore during injection, fluid will continue flow into the tip area after shut-in. 

Fracture linear flow will happen when the fluid flows from the wellbore or near wellbore 

fracture area to the tip. And, if the fluid pressure is still relatively high as fluid reaches 

the tip, the tip can continue growing for some distance into the damage zone or even 

further, which is observed as the tip extension after shut-in. The existence of the fluid lag 

zone and the tip-extension are consistent with fracture linear flow after shut-in. 

In summary, several evidences show that part of fluid in the wellbore and 

fracture near wellbore can still be delivered to the tip area even after shut-in. If the flow 

rate through the fracture is more than the leakoff rate into the formation through the 

fracture face, the pressure response might be dominated by the fracture linear flow and 
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tip-extension. Therefore, fracture linear flow is possible to appear early after shut-in, and 

it is probably the physics of ½ slope in the diagnostic plot. Actually, tip-extension could 

also be the possible factor for the early flow regime with a slope less than 1, which will 

be discussed later.  

 

2.2.3 Model for fracture linear and fracture radial flow 

Followed the conclusion that fracture linear flow might happen during FCTs, its 

pressure solution and duration will be introduced in this section.  

(Al-Thawad and Jamiol Ahmady 2014) derived a model, which is in the 

integration form and in Laplace domain, on the early fracture linear flow and bilinear 

flow. (Pattay 1998) listed another model for fracture linear flow for vertical fracture in 

vertical wells, which is given as Eq. (2.9).  

 𝑝𝑤𝐷 =
2

𝐶𝑓𝐷
√𝜋𝜂𝑓𝐷𝑡𝐷𝑥𝑓 

(2.9) 

where, 𝐶𝑓𝐷 is the dimensionless fracture conductivity. The definition of 𝑝𝑤𝐷, 𝐶𝑓𝐷, 𝜂𝑓𝐷 

and 𝑡𝐷𝑥𝑓 are listed as follows. 

 𝑝𝑤𝐷 =
𝑘ℎ(𝑝𝑤𝑓 − 𝑝𝑖)

𝛿 𝑞𝐵𝜇
 

(2.10) 

 𝐶𝑓𝐷 =
𝑘𝑓𝑤𝑓

𝑘𝑥𝑓
 

(2.11) 

 𝜂𝑓𝐷 =
𝑘𝑓 𝜙 𝑐𝑡

𝑘 𝜙𝑓 𝑐𝑓𝑡
 

(2.12) 
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 𝑡𝐷𝑥𝑓 =
𝛿 𝑘 𝑡

𝜙 𝜇 𝑐𝑡 𝑥𝑓
2 

(2.13) 

where, 𝑥𝑓, 𝑘𝑓, 𝑤𝑓, 𝜙𝑓 and 𝑐𝑓𝑡 are fracture half-length, permeability, width, porosity and 

compressibility. 𝛿 is the unit conversion factor.  Actually, in combination with Eq. (1.2), 

𝑐𝑓𝑡 can be expressed with fracture compliance (𝑐𝑓) if there no tip-extension, 

 𝑐𝑓𝑡 = −
1

𝑉𝑓

𝑑𝑉𝑓

𝑑𝑝𝑤𝑓
= −

1

(𝐴𝑓𝑤𝑓)

𝐴𝑓𝑑𝑤𝑓

𝑑𝑝𝑤𝑓
=
𝑐𝑓

𝑤𝑓
 

(2.14) 

Substituting Eq. (2.14) into Eq. (2.12), we can get, 

 𝜂𝑓𝐷 =
𝑘𝑓 𝜙 𝑐𝑡 𝑤𝑓

𝑘 𝜙𝑓 𝑐𝑓
=
𝐶𝑓𝐷𝜙 𝑐𝑡 𝑤𝑓

𝑐𝑓
 

(2.15) 

Eq. (2.9) confirms that ½-slope would appear in the log-log diagnostic plot if 

fracture linear flow happens. One should note that, linear flow indicates that fracture is 

in the channel shape, which is likely the case in vertical well. While, in horizontal wells 

designed for multiple transverse fractures, radial fracture geometry might be created in 

the FCT which is typically treated with a small volume of fluid. Instead of linear flow, 

radial flow might happen in the fracture at early time. Then, we are likely to see a flat 

derivative trend in the log-log diagnostic plot.  

Although fracture linear or radial flow might happen, they are not frequently 

observed. The reason is that the duration of fracture linear or radial flow is very short, 

they are easily masked by the wellbore storage behavior and the following leakoff 

behaviors. The duration of the fracture linear flow can be estimated by Eq. (2.16) (Lee et 

al. 2003). 
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 𝑡𝐿𝑓𝐷 =
0.1 𝐶𝑟𝐷

2

𝜂𝑓𝐷
2  

(2.16) 

where, 𝜂𝑓𝐷 is the dimensionless hydraulic diffusivity defined same with Eq. (2.12); 𝑡𝐿𝑓𝐷 

is the dimensionless time, same as Eq. (2.15); 𝐶𝑟𝐷 is the dimensionless fracture 

conductivity, and is a little different with Eq. (2.11),  

 𝐶𝑟𝐷 =
𝑘𝑓𝑤𝑓

𝜋𝑘𝑥𝑓
 

(2.17) 

In summary, fracture linear or radial flow could be proven by several factors, like 

high leakoff rate at tip area, the existence of fracture process zone/dry tips, and tip-

extension. In the log-log derivative plot, fracture linear or radial flow will exhibit ½-

slope or flat trend, respectively. Besides, this flow regime is very short-lived, and could 

easily be masked by early wellbore storage behavior.  

 

2.3 Tip extension 

In the last section, tip extension is explained by the existence of a fluid lag zone 

and the theoretical linear elastic fracturing model (LEFM). As long as the fracture 

continues growing, the assumption of constant fracture area during closure is violated for 

both modified Mayerhofer method and the Nolte G-function method. The interpretation 

result from these models could result in unpredictable error. In this section, three models 

will be developed to quantify this commonly observed abnormal leakoff behavior.  
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2.3.1 Tip extension without wellbore storage effect  

To investigate the impact of tip extension on the pressure response, the leakoff is 

assumed to be same as normal leakoff except for it applies for a growing fracture. 

Although the pressure solution given by Eq. (1.19) from Nolte model is incorrect when 

tip extension occurs, the material balance function in Eq. (1.7), is still valid if there is no 

other deviation from the ideal leakoff model. If the treatment fluid is incompressible and 

no fluid enter into fracture from wellbore after shut-in, e.g. there is no wellbore storage 

effect, the material balance function given in Eq. (1.7) states that the reduction of 

fracture volume should be the same as the incremental volume of leakoff fluid from 

fracture into the formation. Based on these assumptions, the pressure transient function 

for a fracture with tip extension can be derived.  

Starting from the material balance function used in Nolte G-function model, we 

first assume that the fracture continues propagating at the same rate after shut-in as that 

during pumping, or the area exponent, 𝛼, is a constant before and after shut-in. During 

an elapsed time ∆𝑡𝑡𝑒 after shut-in at 𝑡𝑝, the fracture surface area grows from 𝐴𝑓𝑜 to 𝐴𝑓1. 

According to Nolte (Nolte et al. 1993), there is a power law relationship between 

fracture area and the elapsed time, as shown in Eq.(2.18). 

 
𝐴𝑓

𝐴𝑓𝑜
= (

𝑡 

𝑡𝑝 
)

𝛼

 
(2.18) 

where, 𝐴𝑓 is the fracture area at any time 𝑡 during its propagation; 𝐴𝑓𝑜 is the fracture 

surface area at end of pumping. Therefore, the final fracture surface area after tip-

extension can be calculated as, 
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𝐴𝑓1 = 𝐴𝑓𝑜 (
𝑡𝑝1 

𝑡𝑝 
)

𝛼

(2.19) 

where, 

𝑡𝑝1 = 𝑡𝑝 + ∆𝑡𝑡𝑒 
(2.20) 

Since the fracture propagates in the same way during tip-extension period after 

shut-in with that before, the cumulative leakoff volume at any time during tip-

extension(𝑡𝑝 ≤ 𝑡 ≤ 𝑡𝑝1) can be calculated with Eq. (1.10), but the pumping time 𝑡𝑝 

should be replaced with the elapsed time 𝑡. The leakoff volume during tip extension thus 

can be written as, 

𝑉𝑙,𝑝 = 2 𝑟𝑝𝐶𝐿√𝑡𝐴𝑓𝑔(0, 𝛼)  𝑡𝑝 ≤ 𝑡 ≤ 𝑡𝑝1 
(2.21) 

Substitute 𝐴𝑓 with Eq. (2.18) and (2.19), the cumulative leakoff volume function 

during fracture extension before and after shut-in can be written as, 

𝑉𝑙,𝑝 = 2 𝑟𝑝𝐶𝐿𝐴𝑓1𝑡𝑝1
−𝛼𝑔(0, 𝛼)𝑡𝛼+1 2⁄  𝑡𝑝 ≤ 𝑡 ≤ 𝑡𝑝1 

(2.22) 

Then, combine Eq. (2.21) and the material balance function as shown in Eq. 

(1.7). We can get, 

𝑉𝑓𝑟𝑎𝑐

𝐴𝑓
=
𝑉𝑝 − 𝑉𝑙,𝑝

𝐴𝑓
=
𝑉𝑝

𝐴𝑓
− 2 𝑟𝑝𝐶𝐿√𝑡𝑔(0, 𝛼)  𝑡𝑝 ≤ 𝑡 ≤ 𝑡𝑝1 

(2.23) 

By substituting Eq. (2.23) into Eq. (1.9), the pressure transient solution can be 

developed as follows. 
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𝑑∆𝑝𝑤
𝑑𝑡

= −
1

𝑐𝑓

𝑑

𝑑𝑡
(
𝑉𝑓𝑟𝑎𝑐

𝐴𝑓
) 

= −
1

𝑐𝑓
[𝑉𝑝

𝑑

𝑑𝑡
(
1

𝐴𝑓
) − 𝑟𝑝𝐶𝐿𝑔(0, 𝛼)

1

√𝑡
] 

=
1

𝑐𝑓
[−
𝛼𝑉𝑝𝑡𝑝1

𝛼

𝐴𝑓1𝑡𝛼+1
+
𝑟𝑝𝐶𝐿𝑔(0, 𝛼)

√𝑡
]  𝑡𝑝 ≤  𝑡 ≤ 𝑡𝑝1 

(2.24) 

Integrating both side of Eq. (2.24), we can get, 

𝑝𝑤𝑠 − 𝑝𝑤(𝑡) =
𝑉𝑝𝑡𝑝1

𝛼

𝑐𝑓𝐴𝑓1
(
1

𝑡𝑝
𝛼 −

1

𝑡𝛼
) +

2𝑟𝑝𝐶𝐿𝑔(0, 𝛼)

𝑐𝑓
(√𝑡 − √𝑡𝑝) 

𝑡𝑝 ≤  𝑡 ≤ 𝑡𝑝1 

(2.25) 

or, 

𝑝𝑤𝑠 − 𝑝𝑤(𝑡) =
𝑉𝑝

𝑐𝑓𝐴𝑓𝑜
(1 −

𝑡𝑝
𝛼

𝑡𝛼
) +

2𝑟𝑝𝐶𝐿𝑔(0, 𝛼)

𝑐𝑓
(√𝑡 − √𝑡𝑝) 

𝑡𝑝 ≤  𝑡 ≤ 𝑡𝑝 + ∆𝑡𝑡𝑒 

(2.26) 

With Eqs. (2.25) or (2.26), pressure at any time during tip extension can be 

calculated out if the fracture surface at the end of pumping or propagation can be 

determined. For Eqs. (2.25) and (2.26), we can find that the first term in its right, is the 

pressure transient associated only with tip growth, while the second term is that related 

with fluid leakoff during tip-extension. Since tip-extension is generally believed to 

happen in tight formations, pressure drop by leakoff process would be negligible 

compared with that by tip extension. It is the main reason that the first term would 

generally be the dominant factor for the pressure solution during tip-extension. 
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When the fracture stop propagating, the pressure behavior is similar to the 

normal leakoff except for the definition of pumping time, 𝑡𝑝. Similar to Eq. (1.19), the 

pressure solution for after tip-extension can be written as, 

 𝑝𝑤(∆𝑡𝐷
′ = 0) − 𝑝𝑤(∆𝑡𝐷

′) =
𝜋𝑟𝑝𝐶𝐿√𝑡𝑝1

2𝑐𝑓
𝐺(∆𝑡𝐷

′, 𝛼)       ∆𝑡𝐷
′ > 0 

(2.27) 

where,  

 𝐺(∆𝑡𝐷
′, 𝛼) =

4

𝜋
[𝑔(∆𝑡𝐷

′, 𝛼) − 𝑔(∆𝑡𝐷
′ = 0, 𝛼)] 

(2.28) 

 

  

∆𝑡𝐷
′ =

𝑡 − 𝑡𝑝1 

𝑡𝑝1 
=
𝑡 − 𝑡𝑝 − (𝑡𝑝1 − 𝑡𝑝) 

𝑡𝑝 + ∆𝑡𝑡𝑒
=
∆𝑡𝐷 − ∆𝑡𝑡𝑒𝐷
1 + ∆𝑡𝑡𝑒𝐷

 
(2.29) 

Here,  

 ∆𝑡𝑡𝑒𝐷 =
∆𝑡𝑡𝑒
𝑡𝑝

 
(2.30) 

Compared Eq. (2.27) with Eq. (1.19), we can find the pressure solution after end 

of tip-extension is very similar with that in normal leakoff. Therefore, by adjusting 

injection time from 𝑡𝑝 in Eq. (1.19) to 𝑡𝑝1 in Eq. (2.27), and definition of dimensionless 

time from Δ𝑡𝐷 in Eq. (1.12) to ∆𝑡𝐷
′
 in Eq. (2.29), pressure decline after the end of tip-

extension can be diagnosed and analyzed with same method as that in normal leakoff 

condition.  

Pressure transient behavior can be resolved with Eq. (2.26) and (2.27) if the 

following assumptions can be satisfied: 

1) Little fluid enters into fracture after shut-in. 

2) Frac fluid is incompressible. 
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3) Fracture compliance is constant.

4) Fracture propagates at the same rate after shut-in as that before.

5) Fracture surface area at end of pumping or propagating can be determined or

assumed. 

6) Normal leakoff except for the tip-extension.

The Bourdet pressure derivative can also be derived by substituting Eq. (2.26) 

and (2.27) into Eq. (1.27), 

𝜏
𝑑∆𝑝𝑤(∆𝑡𝐷)

𝑑𝜏
=

𝛼𝑉𝑝

𝑐𝑓𝐴𝑓𝑜

∆𝑡𝐷
(1 + ∆𝑡𝐷)𝛼

+
𝑟𝑝𝐶𝐿√𝑡𝑝𝑔(0, 𝛼)

𝑐𝑓
√1 + ∆𝑡𝐷 ∆𝑡𝐷

 0 ≤ ∆𝑡𝐷 ≤ ∆𝑡𝑡𝑒𝐷 

(2.31) 

𝜏
𝑑∆𝑝𝑤(∆𝑡𝐷)

𝑑𝜏
=

2𝑟𝑝𝐶𝐿√𝑡𝑝

(1 + ∆𝑡𝑡𝑒𝐷)𝑐𝑓
𝑓 (
∆𝑡𝐷 + ∆𝑡𝑡𝑒𝐷
1 + ∆𝑡𝑡𝑒𝐷

)  ∆𝑡𝐷 ≥ ∆𝑡𝑡𝑒𝐷 
(2.32) 

Again, for the two terms in the left of Eq. (2.31), the first one represents the 

pressure response related with tip-extension, while the second, related with leakoff 

process. For the cases when formation is tight enough that the leakoff mechanism is 

negligible compared with tip-extension, the curve trend of Bourdet derivative is 

dominated by the firm term. The curve will first show a unit slope at very early time, and 

then, it would bend to a more flat trend with a slope at (1 − 𝛼) when ∆𝑡𝐷 is growing

large, which can be demonstrated mathematically from Eq. (2.31). Therefore, depending 

on the value of 𝛼, which typically ranges between ½ to 1 during injection, the log-log 

Bourdet derivative of pressure might have a slope between 0 to ½. The early ½-slope or 
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flat curve immediately after shut-in, which is diagnosed as apparent fracture linear flow 

or radial flow in previous section, could be the feature of tip-extension.  

One should note that, if tip extension does not happen, ∆𝑡𝑡𝑒𝐷 is 0, and Eq. (2.32) 

can be reduced to Eq. (1.30), which is the Bourdet derivative for normal leakoff.  

Usually, if tip-extension is observed from diagnostic plots, the corresponding 

pressure or time at its end can be read out directly from these plots. If we assumes that 

the dimensionless time duration defined in Eq. (2.30) is known, we are able to 

investigate the effect of tip extension on the pressure transient. A simulations has been 

run with the input data in Table 2-1. Figure 2-7 shows the bottomhole pressure curve for 

tip-extension when ∆𝑡𝑡𝑒𝐷 = 1, which means that fracture continued propagating after 

shut-in until 𝑡 = 𝑡𝑝 + ∆𝑡𝑡𝑒𝐷𝑡𝑝 = 2𝑡𝑝. We can find from the pressure falloff plot that 

pressure dives much faster at early time during tip extension than the following period. 

 

Table 2-1 Input data for the simulation of tip-extension without WBS 

𝑟𝑝 1 

ℎ𝑓, ft. 50 

𝐸′, psi. 5 × 106 

𝑝𝑤𝑠 or ISIP, psi. 6000 

𝑡𝑝, minute 5 

𝑆𝑚𝑖𝑛, psi. 5000 

𝑞𝑝, bbl/minute 6 

∆𝑡𝑡𝑒𝐷 1 

𝛼 4/5 

𝐶𝐿, ft/√min 5 × 10−4 
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Figure 2-7 Bottomhole pressure for tip extension without WBS 

Figure 2-8 Log-log Bourdet derivative diagnostic plot for tip extension without WBS 
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Figure 2-8 and Figure 2-9 are diagnostic plots for tip extension. On the log-log 

diagnostic Bourdet derivative plot, the black dashed line indicates the pumping time 

before shut-in. The dramatic decline indicates the end of tip-extension, or the transition 

from tip-extension behavior to the normal leakoff. The dramatic transition in both plots 

is caused by the assumption that the fracture continues propagating at same rate after 

shut-in as before, and then is arrested immediately at ∆𝑡 = ∆𝑡𝑡𝑒𝐷 when the pressure 

reaches a critical propagation pressure, which is defined as the pressure below which 

propagation ceases. It is probably more reasonable to assume that the propagation rate 

should decline gradually to zero after shut-in, which will be discussed later in this 

section.  

 

 

Figure 2-9 Composite G-function plot for tip extension without WBS 
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In the G-function plot in Figure 2-9, the abrupt increase at very beginning time is 

caused by tip extension. After that, normal leakoff takes over. Two characteristic lines 

exhibited in Figure 2-9 are represented by two extrapolated straight lines in red and 

green. The green is the for the data points before 𝐺(∆𝑡𝑡𝑒𝐷) = 4, and the red is for the 

whole time range. If the fracture closes in a relatively short time after tip-extension, or 

the data is recorded for only a short time, the available pressure data after tip-extension 

could be limited, likes the case before 𝐺(∆𝑡𝑡𝑒𝐷) = 4 and represented by the green line in 

Figure 2-9. Similar to commonly observed feature as shown in Figure 1-3, the 

extrapolated green line lies above the origin and has a positive intercept on the pressure 

axis. However, if it takes a long time for the fracture to close and all pressure points 

during closing are recorded, we are likely to observe that 𝐺𝑑𝑝/𝑑𝐺 would approach to 

the asymptote which can be extrapolated through the origin. Both signatures indicated by 

the green and red lines can be explained mathematically by the pressure solution in Eq. 

(2.27). Since a practical dimensionless tip-extension duration is probably less than 10, 

when the τdp/dτ curve in log-log plot is undergoing the transition from unit slope to 3/2 

slope, more attention is required in the tip extension analysis with log-log diagnostic 

Bourdet derivative plot. 

Sensitivity analysis on more factors will be elaborated later in the section 2.3.3, 

where the dramatic changes in the diagnostic plots are diminished with a gradual decline 

manner of area exponent (𝜶) during tip-extension.  
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2.3.2 Tip extension with wellbore storage effect 

Since fluid expansion during pressure falloff potentially is one of the major fluid 

source of tip-extension, WBS in a long time duration after shut-in, will be modeled in 

this section. As has been discussed in 2.1 Wellbore storage effect (WBS), fluid will 

expand as long as the stored fluid pressure declines. In other words, the “after-flow” will 

not stop during the whole pressure falloff test. However, strong wellbore storage 

behavior typically only happens at very early time immediately after shut-in because of 

rapid pressure drop during this time. As discussed previously, the early short time WBS 

is mainly caused by dissipation of friction in the wellbore and near-wellbore area, or the 

fast decline of net pressure, which could be the result of PDL or tip-extension. Friction 

components during injection is difficult to quantify because of the complicated 

communication condition between wellbore and fracture. However, the rapid decline of 

net pressure caused by abnormal leakoff behaviors is able to be estimated. In this 

section, fluid expansion effect will be involved and modeled in the whole pressure 

falloff after shut-in.  

Besides the created fracture, the wellbore will be involved in the pressure 

transient system. Then, the after-flow volume is able to be included by the new material 

balance function, as shown in Eq. (2.33). 

 𝑉𝑝 + 𝑉𝐴𝐹 = 𝑉𝑓𝑟𝑎𝑐 + 𝑉𝑙,𝑝 
(2.33) 

where, 𝑉𝐴𝐹 is the after-flow volume caused by slightly compressibility of frac fluid after 

shut-in, which is the only difference with previous model without wellbore storage 

effect. 𝑉𝐴𝐹 at any time after shut-in can be calculated with Eq. (2.34),  
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 𝑉𝐴𝐹 = 𝑉𝑤 ∗ 𝑐𝑤 ∗ ∆𝑝𝑤(𝑡) (2.34) 

One should note that the volume incremental of the stored fluid in the fracture 

caused by pressure decline is not included into the material balance function. To study 

the pressure behavior for the case where tip extension happens, the fracture is assumed 

to propagate in the same manner as previous model. By substituting Eq. (2.33) into Eq. 

(1.6), the pressure resolution during tip extension after shut-in can be derived as follows. 

 

𝑑∆𝑝𝑤
𝑑𝑡

= −
1

𝑐𝑓

𝑑

𝑑𝑡
(
𝑉𝑓𝑟𝑎𝑐

𝐴𝑓
) 

= −
1

𝑐𝑓
[
1

𝐴𝑓

𝑑𝑉𝑓𝑟𝑎𝑐

𝑑𝑡
−
𝑉𝑓𝑟𝑎𝑐

𝐴𝑓
2

𝑑𝐴𝑓

𝑑𝑡
] 

= −
1

𝑐𝑓
[−

1

𝐴𝑓

𝑑𝑉𝑙,𝑝

𝑑𝑡
+
1

𝐴𝑓

𝑑𝑉𝐴𝐹
𝑑𝑡

−
𝑉𝑝 + 𝑉𝐴𝐹 − 𝑉𝑙,𝑝

𝐴𝑓
2

𝑑𝐴𝑓

𝑑𝑡
] 

=
1

𝑐𝑓
[
1

𝐴𝑓

𝑑𝑉𝑙,𝑝

𝑑𝑡
−
1

𝐴𝑓
𝐶𝑤𝑉𝑤

𝑑∆𝑝𝑤
𝑑𝑡

+
𝑉𝑝 + 𝑉𝐴𝐹 − 𝑉𝑙,𝑝

𝐴𝑓
2

𝑑𝐴𝑓

𝑑𝑡
] 

(2.35) 

As 
𝑑∆𝑝𝑤

𝑑𝑡
 shows up in both sides of the function, it can be solved by rearranging 

the equation as, 

 𝑑∆𝑝𝑤
𝑑𝑡

=

𝑑𝑉𝑙,𝑝
𝑑𝑡

+
𝑉𝑝 + 𝑉𝐴𝐹 − 𝑉𝑙,𝑝

𝐴𝑓

𝑑𝐴𝑓
𝑑𝑡

𝑐𝑓𝐴𝑓 + 𝑐𝑤𝑉𝑤
 (2.36) 

Substituting Eq. (2.18), (2.19), (2.22)and (2.34) into Eq. (2.36), we can get, 

𝑡
𝑑∆𝑝𝑤
𝑑𝑡

=
𝑟𝑝𝐶𝐿𝐴𝑓1𝑔(0, 𝛼)𝑡

𝛼+1/2 + 𝛼𝑉𝑝(𝑡𝑝 + ∆𝑡𝑡𝑒)
𝛼
+ 𝛼𝑐𝑤𝑉𝑤∆𝑝𝑤(𝑡𝑝 + ∆𝑡𝑡𝑒)

𝛼
 

𝑐𝑓𝐴𝑓𝑜𝑡𝛼 + 𝑐𝑤𝑉𝑤(𝑡𝑝 + ∆𝑡𝑡𝑒)
𝛼  

(2.37) 

By solving Eq. (2.37), the solution of pressure transient behavior during tip-

extension can be obtained as,  
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𝑝𝑤𝑠 − 𝑝𝑤(𝑡) =
2𝑟𝑝𝐶𝐿𝐴𝑓1𝑔(0, 𝛼)(√𝑡 − √𝑡𝑝 + ∆𝑡𝑡𝑒)𝑡

𝛼 + 𝑉𝑝[𝑡
𝛼 − (𝑡𝑝 + ∆𝑡𝑡𝑒)

𝛼
]

𝑐𝑓𝐴𝑓1𝑡𝛼 + 𝑐𝑤𝑉𝑤(𝑡𝑝 + ∆𝑡𝑡𝑒)
𝛼    

𝑡𝑝 ≤  𝑡 ≤ 𝑡𝑝 + ∆𝑡𝑡𝑒 

(2.38) 

Eq. (2.38) can be used to calculate the pressure at any time during tip extension. 

If 𝑐𝑤 = 0 or 𝑉𝑤 = 0, which means there is no wellbore storage effect, Eq. (2.38) can be 

reduced to Eq. (2.26). It proves the consistence of these two model. Furthermore, the 

difference between pressure drops in these two models is only caused by the wellbore 

storage effect, it therefore might be quantified by the difference. 

 𝐽𝑊𝐵𝑆 =
∆𝑝𝑤−𝑛𝑜 𝑊𝐵𝑆 − ∆𝑝𝑤−𝑊𝐵𝑆

∆𝑝𝑤−𝑛𝑜 𝑊𝐵𝑆
 

(2.39) 

where, 𝐽𝑊𝐵𝑆is the index of wellbore storage effect which is introduced to indicate the 

relative contribution of pressure drop from wellbore storage. ∆𝑝𝑤−𝑛𝑜 𝑊𝐵𝑆 and ∆𝑝𝑤−𝑊𝐵𝑆 

are pressure drop without and with wellbore storage respectively, and they can be 

calculated from Eq. (2.26) and (2.38). After substituting Eq. (2.26) and (2.38) into Eq. 

(2.39), the equation can be simplified as,  

 
𝐽𝑊𝐵𝑆 =

1

1 +
𝑉𝑓𝑟𝑎𝑐

𝑐𝑤𝑉𝑤𝑝𝑛𝑒𝑡
 (1 + ∆𝑡𝐷)𝛼

 
(2.40) 

From above equation, we can find that wellbore storage effect (𝐽𝑊𝐵𝑆) would be 

obvious if the after-flow volume is comparable to or even larger than the volume of 

created fracture, which more likely happens when the injection volume is limited and the 

wellbore has a large volume.  
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Because pressure decline much faster during tip extension than any later time, it 

is more likely that wellbore storage effect happens at very early time of falloff. Although 

the effect could be negligible for the falloff after tip-extension, where pressure decline is 

pretty flat, fluid compressibility is also coupled into material balance function to keep 

consistent with the pressure solution during tip extension. Similar to previous model, 

fluid leakoff during tip extension is treated as continuous pumping time. The pressure 

solution derivation is shown as follows. 

𝑑∆𝑝𝑤
𝑑𝑡

= −
1

𝑐𝑓

𝑑

𝑑𝑡
(
𝑉𝑓𝑟𝑎𝑐

𝐴𝑓
) 

= −
1

𝑐𝑓𝐴𝑓1

𝑑𝑉𝑓𝑟𝑎𝑐

𝑑𝑡

= −
1

𝑐𝑓𝐴𝑓1
[−
𝑑𝑉𝑙,𝑝

𝑑𝑡
+
𝑑𝑉𝐴𝐹
𝑑𝑡

] 

=
1

𝑐𝑓𝐴𝑓1
[
𝑑𝑉𝑙,𝑝

𝑑𝑡
−
𝑑𝑉𝐴𝐹
𝑑𝑡

] 

=
2𝑟𝑝𝐶𝐿𝐴𝑓1√𝑡𝑝1

𝑐𝑓𝐴𝑓1

𝑑𝑔(∆𝑡𝐷
′, 𝛼)

𝑑𝑡
−
𝑐𝑤𝑉𝑤
𝑐𝑓𝐴𝑓1

𝑑∆𝑝𝑤
𝑑𝑡

(2.41) 

Rearrange Eq. (2.41), and integrate both sides of the equation, we can get, 

𝑝𝑤(∆𝑡𝐷
′ = 0) − 𝑝𝑤(∆𝑡𝐷

′) =
𝜋𝑟𝑝𝐶𝐿𝐴𝑓1√𝑡𝑝1

2(𝑐𝑓𝐴𝑓1 + 𝑐𝑤𝑉𝑤)
𝐺(∆𝑡𝐷

′, 𝛼)  𝑡 ≥ 𝑡𝑝 + ∆𝑡𝑡𝑒 
(2.42) 

The definition of ∆𝑡𝐷
′
 and 𝐺(∆𝑡𝐷

′, 𝛼) is same as Eq. (2.29) and Eq. (2.28).

With Eq. (2.38) and (2.42), pressure transient solution can be simulated for the cases 

where both wellbore storage and tip extension are observed. The assumptions for this 

model are as following. 
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1) Fracture compliance is constant. 

2) Fracture propagates in the same rate after shut-in with that before. 

3) Fracture surface area at end of pumping or propagating can be determined or 

estimated. 

4) Normal leakoff except for the tip-extension and wellbore storage effect. 

Also, the Bourdet derivative for this case can be developed by substituting Eq. 

(2.38) and (2.42) into Eq. (1.27). The derivative is so complicated that the analytical 

solution is not listed here.  

A series of simulations are run to investigate the composite effect of WBS and 

tip extension in FCTs. For this discussion, the input data is similar to previous Section 

2.3.1 except for several additional parameters of wellbore, as shown in Table 2-2. Two 

different sizes of wellbore are taken as examples to illustrate the impact of wellbore 

storage effect on the pressure behavior after shut-in. The total injection volume for both 

wells are same with previous example, at 30 bbl.  

 

Table 2-2 Input parameters and their values for simulations of tip-extension with WBS 

𝑐𝑤, psi
−1 3 × 10−6 

Small wellbore volume 

𝑟𝑤, in. 4.8 

𝐿𝑤, ft. 5000 

Large wellbore volume 

𝑟𝑤, in. 8.4 

𝐿𝑤, ft. 15,000 
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Figure 2-10 shows that wellbore storage can buffer the decline of bottomhole 

pressure, and this effect is more apparent for the well with a larger wellbore. From both 

diagnostic plots shown in Figure 2-11 and Figure 2-12, we can find that WBS effect has 

a relatively weak impact on composite derivatives. Therefore, it can be concluded that, 

for the well injected through a medium or small size string, wellbore storage effect can 

be neglected if the pumping volume is not too small. Same to previous model, the 

dramatic drop in diagnostic curves indicates the end of tip-extension, and it is caused by 

the assumption that fracture continues growing in the same manner as that during 

injection, and then is arrested when its internal pressure drops to a critical value.  

 

 

Figure 2-10 Pressure falloff for tip extension with and without WBS (Inj. Vol.=30 bbl) 
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Figure 2-11 Log-log diagnostic Bourdet derivative plot for tip extension with and without WBS 
(Inj. Vol.=30 bbl) 

 

 

Figure 2-12 G-function plot for tip extension with and without WBS (Inj. Vol.=30 bbl) 
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Besides the volume of string, the injection size is another significant factor for 

WBS. As discussed previously, the wellbore storage will be more apparent if the 

pumping volume is very limited, which is the common practice for FCTs in tight 

formations. A series simulations are run with smaller injection volume at 12 bbl. For the 

FCT with small size injection, the wellbore storage effect on the pressure response is 

illustrated by Figure 2-13, and two diagnostic plots by Figure 2-14 and Figure 2-15. 

Compared with previous example with larger pumping volume, WBS effect is much 

more apparent, especially when the wellbore volume is relatively large.  

 

 

Figure 2-13 Wellbore storage effect on FCTs with small injection volume and tip-extension 
(Inj. Vol.=12 bbl) 
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Figure 2-14 WBS effect on 𝝉𝒅𝒑/𝒅𝝉 for FCTs with small injection volume and tip-extension 
(Inj. Vol.=12 bbl) 

Figure 2-15 WBS effect on 𝑮𝒅𝒑/𝒅𝑮 for FCTs with small injection volume and tip-extension 
(Inj. Vol.=12 bbl) 
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From previous two sets of examples with different injection sizes and wellbore 

volumes, we can conclude that the impact of wellbore storage effect (WBS) on pressure 

response depends on the ratio of wellbore volume over pumping volume. If the ratio is 

small, WBS can be negligible; otherwise, WBS should be taken into consideration when 

calculating leakoff coefficient and fluid efficiency from before-closure analysis.  

 

2.3.3 Tip extension with variable area exponent (𝜶) 

As we mentioned in previous two tip-extension models, the dramatic drop of 

diagnostic curve is caused by the assumption that the area exponent is constant during 

tip extension after shut-in until the decaying fracture pressure reaches a critical pressure 

level, which could be named as the minimum fracture propagation pressure. Then the 

fracture is arrested and the area exponent drops immediately to zero from the constant 

value close to 1. Although there is no model to quantify the decline behavior of the area 

exponent, intuitively, it is more likely to drop off from initial value to zero gradually. In 

this way, the fracture propagation rate is allowed to slow down to zero during tip-

extension. Several decline manners of the area exponent are modeled here to investigate 

their impact on pressure behavior and to obtain a smooth diagnostic curve. All studied 

decline manners are defined as follows, and 𝛼0 is the initial value of area exponent 

during pumping and at shut-in. 

1) Linear decline of area exponent (𝛼).  

 𝛼 =
𝑡𝑝1 − t

𝑡𝑝1 − 𝑡𝑝0
𝛼0 

(2.43) 
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2) Logarithm decline of area exponent (𝛼).

𝛼 =
Log(𝑡𝑝1) − Log(𝑡)

Log(𝑡𝑝1) − Log(𝑡𝑝0)
𝛼0 (2.44) 

3) Exponential decline of area exponent (𝛼).

𝛼 =
Exp(𝑐 𝑡𝑝1) − Exp(𝑐 𝑡)

Exp(𝑐 𝑡𝑝1) − Exp(𝑐 𝑡𝑝0)
𝛼0 (2.45) 

where, 𝑐 is the coefficient which can control the decline rate of 𝛼. Four series of 𝑐 are 

tested as 𝑐 = −1, −0.01, 0.01 and 1. Eq. (2.45) can be reduced to Eq. (2.43) when 𝑐 

approaches to zero. 

4) Square-root decline of area exponent (𝛼).

𝛼 =
√𝑡𝑝1 − √𝑡

√𝑡𝑝1 −√𝑡𝑝0
𝛼0 

(2.46) 

Besides area exponent described in Eq. (2.43) to (2.46) and wellbore storage 

effect discussed in previous model, several other parameters are involved in the pressure 

solution as shown in Eq. (2.26) and (2.27): injection size, pumping time, tip-extension 

duration, formation leakoff coefficient, etc. A series of sensitivity study have been done 

to investigate their impact on the pressure behavior on diagnostic plots when tip-

extension occurs. 

1) Sensitivity study on decline behavior of  the area exponent (𝛼)

The area exponent, 𝛼, is the factor controlling fracture propagation rate. To 

obtain a smooth curve of composite pressure derivative (𝜏𝑑𝑝/𝑑𝜏, 𝐺𝑑𝑝/𝑑𝐺), it should be 

assumed to diminish gradually from its initial value to zero. All decline behaviors of area 

exponent are plotted in Figure 2-16. Although to predetermine the decline behavior of 
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area exponent is difficult, it is likely close to one or lying between two of these manners. 

In this example, we arbitrarily assume that fracture in all cases continue growing for the 

same time as injection time, ∆𝑡𝑡𝑒𝐷 = 1. Therefore, fracture starting with a slower decline 

rate of area exponent tends to result in a longer tip-extension. For instance, in the case of 

exponential decline with 𝑐 = 1, fracture continue growing after shut-in almost in the 

same rate with that before, and then drops to zero sharply at end of tip-extension. It is 

pretty similar to two previously discussed models, and longer fracture growth is 

expected in this case. To the other extreme, fracture starting with a fast decline of area 

exponent, like in the case of exponential decline with 𝑐 = −1, fracture propagation is 

arrested effectively after shut-in. Tip-extension distance in this case will be so limited 

that it may be not able to be detected. Therefore, different decline models lead to 

different fracture length increments after shut-in. Fracture dynamic half-lengths for all 

decline behaviors are plotted in Figure 2-17 with the input data listed in Table 2-3. 

 

Table 2-3 Input data for simulations of tip-extension with declining α 

ℎ𝑓, ft. 50 

𝐸′, psi. 5 × 106 

𝑝𝑤𝑠 or ISIP, psi. 6000 

𝑡𝑝, minute 5 

𝑞𝑝, bbl/minute 6 

∆𝑡𝑡𝑒𝐷 1 

𝐶𝐿, ft/√minute 5 × 10−3 
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Figure 2-16 Different decline models of area exponent 

Figure 2-17 Dynamic fracture half-length after shut-in for all 𝜶 decline behaviors 
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For those decline behaviors, their impact on the pressure response after shut-in is 

plotted in Figure 2-18 to Figure 2-20. As mentioned previously, for the case with a fast 

early decline rate of α, like the exponential model with 𝑐 = −1, very limited tip-

extension is expected. Therefore, its pressure response will be very similar to normal 

leakoff, not only in the plot of bottomhole pressure (Figure 2-18), but also in diagnostic 

plots (Figure 2-19 and Figure 2-20). While for the opposite extreme, 𝛼 drops so slow at 

beginning that it almost can be viewed as constant until the pressure reaches a critical 

value. After that, it drops to zero dramatically. Pressure response in this case is pretty 

similar to two previously discussed models where 𝛼 is assumed to be constant after shut-

in and same as before. For each decline rate between these two limits, there is a smooth 

concave-down curve in the 𝐺𝑑𝑝/𝑑𝐺 curve during tip-extension, which is similar to the 

signature of pressure dependent leakoff (PDL) as shown in Figure 1-3. The major 

difference between these two abnormal leakoff behaviors is that the normal leakoff after 

PDL is a straight line, while that after tip-extension behavior is an asymptote. This 

signature could be confusing if more than one abnormal leakoff mechanisms happen at 

the same time, or the recorded data is not long-lasting enough, or the tip-extension 

distance is limited. Furthermore, the altitude of bump is directly related to its 

propagation decline rate. Faster decline rate at beginning, or longer new-created fracture 

during tip extension, result in faster bottomhole pressure decline and higher altitude of 

the bump in 𝐺𝑑𝑝/𝑑𝐺 curve.  
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Figure 2-18 Bottomhole pressure for each propagation-rate decline models during tip 
extension 

 

 

Figure 2-19 G-Derivative plot for different propagation-rate decline models during tip 
extension 
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Figure 2-20 Bourdet Derivative plot for different propagation-rate decline models during tip 
extension 

 

With the propagation rate slowing down during tip-extension, we can see there is 

a transition in both diagnostic plots shown Figure 2-19 and Figure 2-20. Since the end of 

hump in the semilog G-function plot indicates the finish of rapid net pressure decline, it 

thus can be taken as the end time of tip-extension, or ∆𝑡𝑡𝑒𝐷 in previously new derived 

model. As to the log-log diagnostic plot, if the transition happens before ∆𝑡𝐷 = 1, it will 

start with a unit slop and then switches to a more flat level until the end of tip-extension.  

However, if the transition happens during ∆𝑡𝐷 = 1~10, which probably is the 
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with that of log-log Bourdet derivative transition from unit to 3/2 slope. In this case, 

more attention needs to be paid when picking the end time of tip-extension from the log-

log plot.  

As mentioned before, the G-function diagnostic curve after tip-extension tends to 

approach the asymptote which extrapolating through the origin. And, if only part of data 

after tip-extension is available, the extrapolated straight line is expected, which have a 

positive intercept on pressure-axis. This signature is valid for all tip-extension behavior, 

and can be found in Figure 2-19. Besides, fractures with longer tip-extension tends to 

have a bigger intercept on pressure axis.  

2) Sensitivity study on leakoff coefficient 

To investigate the impact of leakoff coefficient on the pressure falloff behavior 

when tip-extension occurs, exponential decline model of 𝛼 with 𝑐 = −0.01 is selected as 

an example. All the rest parameters are same with Table 2-3. Three leakoff coefficients 

are studied in this section: 𝐶𝐿 = 1 × 10
−4 ft/√min, 2 × 10−4 ft/√min, 4 ×

10−4 ft/√min. From the bottomhole pressure profile in Figure 2-21, we can find that 

these three curves almost coincide with each other. It suggests that during early time of 

tip-extension, when fracture continues growing in a fast rate, the pressure decline is 

mainly contributed by tip-extension, while the impact of leakoff process is negligible. 

After the fracture growth slows down, the leakoff through fracture surface will take over, 

which can be presented by the enhanced difference in pressure decline curve.  
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Figure 2-21 Bottomhole pressure for cases with same tip-extension behavior but different 
leakoff coefficients 

 

Log-log diagnostic plot in Figure 2-22 also exhibits that these curves are close 

with each other at very early time during tip-extension, and the leakoff process becomes 

the dominant factor when the tip growth slows down. The final position of 3/2-slope 

stands for different formation leakoff coefficients. 

Similar results can be concluded from G-function diagnostic plot, shown in 

Figure 2-23. We can find that fracture with larger leakoff coefficient lies above that with 

smaller one. The slope of the each extrapolated straight line is mainly controlled by the 

formation leakoff coefficient. 
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Figure 2-22 Effect of leakoff coefficient on Bourdet derivative curve with tip-extension  

 

 

Figure 2-23 Effect of leakoff coefficient on Gdp/dG with tip-extension  
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3) Sensitivity study on tip-extension duration

Tip-extension duration, or pressure difference between the shut-in pressure and 

the minimum propagation pressure, is another important factor for the tip-extension 

distance. Three dimensionless tip-extension durations are tested for sensitivity study, 

∆𝑡𝑡𝑒𝐷 = 0.5, 1 and 2. Assuming the area exponent decline exponentially with 𝑐 =

−0.01, 𝐶𝐿 = 1 × 10
−4 ft/√min, the rest input parameters are same with these in Table

2-3. 

Figure 2-24 Dynamic fracture length and pressure decline after shut-in with different tip-
extension durations 

Figure 2-24 exhibits fracture extension after shut-in and the pressure falloff 

behavior. In the same decline behavior of area exponent, longer tip-extension period, or 

longer new-created fracture length after shut-in, results in a larger pressure drop. It is 
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especially true in the tight formation, where the early time fast pressure drop is likely 

caused by tip-extension, rather than by leakoff process. 

Figure 2-25 and Figure 2-26 are diagnostic plots for these three different tip-

extension durations. The dashed lines in Figure 2-25 indicate the pumping times of all 

three cases in the real time. Firstly, we can find that, all G-function derivative curves, or 

log-log Bourdet derivative, coincide in the later time, which is the normal leakoff after 

tip-extension. During tip-extension, longer duration results in a longer fractures, larger 

pressure drop, and higher hump in altitude above the later extrapolated straight line in 

composite G-function plot. 

Figure 2-25 𝝉𝒅𝒑/𝒅𝝉 diagnostic plot for tip-extension with different duration (exponential 
decline behavior with 𝒄 = −𝟎. 𝟎𝟏) 
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Figure 2-26 𝑮𝒅𝒑/𝒅𝑮 diagnostic plot for tip-extension with different duration (exponential 
decline behavior with 𝒄 = −𝟎. 𝟎𝟏) 

4) Sensitivity study on injection size

In this case, four different injection times are tested with same pumping rate: 

𝑉𝑝 = 15bbl, 30bbl, 60bbl and 120bbl. The leakoff coeffcient is assumed to be 𝐶𝐿 = 5 ×
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tip-extension duration is same for all cases at ∆𝑡𝑡𝑒𝐷 = 1. All the rest parameters are 
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Figure 2-27 Bottomhole pressure profile and fracture length after shut-in for different 
injection sizes 

Table 2-4 Tip-extension distance for different pumping volumes 

Injection 
Volume, bbl 

Origianl Fracture 
Half-length,ft 

Final Fracture 
Half-length,ft 

Tip-extension 
Distance, ft 

Increment 
ratio, % 

15 46.93 59.79 12.86 27.4 

30 89.25 107.45 18.2 20.4 

60 166.92 187.25 20.33 12.2 

120 305.75 325.27 19.52 6.4 

Figure 2-28 𝑮𝒅𝒑/𝒅𝑮 curves for different injetion sizesexhibits the G-function 

derivative plots for different injection volumes. It is clear that long fracture created with 

large volume of fluid, tends to have a 𝐺𝑑𝑝/𝑑𝐺 curve close to the straight line through 
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that in small. Table 2-4 can be used to illustrate this phenomenon. Longer tip-extension 

is likely to be created when larger volume of fluid is injected. However, the incremental 

ratio of the fracture length during tip-extension is reduced with the increasing of 

pumping size. This is the direct reason for the decaying tip-extension feature in the 

larger injecting.  If the ratio decreases to zero, the tip-extension behavior will disappear, 

and the pressure response will be much same with that in normal leakoff. 

Figure 2-28 𝑮𝒅𝒑/𝒅𝑮 curves for different injection sizes 

Similar phenomenon can be observed in the log-log diagnostic plot in Figure 

2-29. With same pumping rate and different injection volumes, the injection times for all 

cases are different and indicated in in Figure 2-29. Vertical dashed lines in the plot 

indicate the injection time for each case. These parallel lines at later time with 3/2-slope 
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stands for different fracture surface areas, or fracture lengths created by different 

injection volumes. 

Figure 2-29 𝝉𝒅𝒑/𝒅𝝉  curves for different injection sizes 
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to be more transparent for the treatment with small injection. Furthermore, a smooth 

diagnostic curve is able to be drawn with a declining area exponent during tip-extension. 

2.4 Pressure dependent leakoff (PDL) 

Pressure dependent leakoff is one of most commonly observed abnormal leakoff 

behavior in the FCTs. Generally, it is believed to happen as a result of reopening the 

natural fracture system. Large amount of fluid flows into these natural fissures, so that a 

relatively large apparent leakoff coefficient can be obtained. After the closure of these 

natural fissures, normal leakoff will take over, which typically has a smaller leakoff 

coefficient. In this section, starting from two commonly used leakoff coefficient model 

for PDL (Meyer and Jacot 2000), pressure solution are derived for the FCT analysis. 

2.4.1 Natural fissure related PDL with a constant leakoff coefficient when pw > pfo 

In this case, existing closed natural fissures reopened during hydraulic fracturing 

have a constant leakoff coefficient when 𝑝𝑤 ≥ 𝑝𝑓𝑜, and then switch to a constant and 

smaller value when the fracture pressure declines below 𝑝𝑓𝑜. We assume there is no 

wellbore storage effect and no other abnormal leakoff mechanisms except for pressure 

dependent leakoff. Starting from material balance equation, the pressure transient 

behavior can be derived for these two periods with constant but different leakoff 

coefficients respectively. 

For 𝑝𝑤 ≥ 𝑝𝑓𝑜, the constant leakoff coefficient indicates that Nolte function can 

be employed for this section, as shown in Eq. (2.47), which is similar to Eq. (1.19). 
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𝑝𝑤𝑠 − 𝑝𝑤(∆𝑡𝐷) =
𝜋𝑟𝑝𝐶𝐿1√𝑡𝑝

2𝑐𝑓
 𝐺(∆𝑡𝐷 , 𝛼)  0 ≤ ∆𝑡𝐷 ≤ ∆𝑡𝑓𝑐𝐷 

(2.47) 

Where, 𝐶𝐿1 is the leakoff coefficient for 𝑝𝑤 ≥ 𝑝𝑓𝑜; 𝐺(∆𝑡𝐷 , 𝛼) is same as Eq. 

(1.21); ∆𝑡𝑓𝑐𝐷 is the dimensionless time when fissure closed, or when 𝑝𝑤 = 𝑝𝑓𝑜. 

For 𝑝𝑤 < 𝑝𝑓𝑜, natural fissures are assumed to totally closed and lose all 

conductivity. Therefore, leakoff into formation matrix is the dominant mechanism of 

fracture fluid loss, which can be described as normal leakoff. Assume the leakoff 

coefficient of matrix is 𝐶𝐿2. Since 𝐶𝐿2 is constant, Nolte function again can be used, as 

shown in Eq. (2.48). 

𝑝𝑓𝑜 − 𝑝𝑤(∆𝑡𝐷) =
𝜋𝑟𝑝𝐶𝐿2√𝑡𝑝

2𝑐𝑓
[ 𝐺(∆𝑡𝐷 , 𝛼) −  𝐺(∆𝑡𝑓𝑐𝐷, 𝛼)]  𝑡𝐷 ≥ ∆𝑡𝑓𝑐𝐷 

(2.48) 

𝑝𝑓𝑜 can be solved from Eq. (2.47) by substituting ∆𝑡𝐷 = ∆𝑡𝑓𝑐𝐷, 

𝑝𝑓𝑜 = 𝑝𝑤𝑠 −
𝜋𝑟𝑝𝐶𝐿1√𝑡𝑝

2𝑐𝑓
 𝐺(∆𝑡𝑓𝑐𝐷, 𝛼) 

(2.49) 

Substituting Eq. (2.49) into Eq. (2.48), we can get, 

𝑝𝑤𝑠 − 𝑝𝑤(∆𝑡𝐷) =
𝜋𝑟𝑝√𝑡𝑝

2𝑐𝑓
[𝐶𝐿2𝐺(∆𝑡𝐷, 𝛼) + (𝐶𝐿1 − 𝐶𝐿2)𝐺(∆𝑡𝑓𝑐𝐷, 𝛼)] 

∆𝑡𝐷 ≥ ∆𝑡𝑓𝑐𝐷 

(2.50) 

If the leakoff coefficient into matrix is 𝐶𝐿2, then that into natural fracture when it 

opens should be (𝐶𝐿1 − 𝐶𝐿2). From the right side of Eq. (2.50), we can find that the 

effect of each constant leakoff coefficient on the pressure drop can be expressed by the 

linear combination of the leakoff coefficient with its lasting duration expressed by G-

function. In other words, the leakoff system around the created hydraulic fracture can be 
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decoupled into two separated scenarios: matrix and natural fissures.  Furthermore, if 

there more than one set of natural fissures with different opening pressures, and each set 

has a constant leakoff coefficient as assumed in this model, multiple closure events 

could be observed from the diagnostic plot. This will be explain in more detail later in 

the simulation result analysis and the case study in next chapter. 

The Bourdet derivative can be developed by substituting Eq. (2.47) and (2.48) 

into Eq. (1.27). 

𝜏
𝑑∆𝑝𝑤
𝑑𝜏

= −
2𝑟𝑝𝐶𝐿1√𝑡𝑝

𝑐𝑓
(∆𝑡𝐷 + ∆𝑡𝐷

2) 𝑓(∆𝑡𝐷 , 𝛼)  0 ≤ ∆𝑡𝐷 ≤ ∆𝑡𝑓𝑐𝐷 
(2.51) 

𝜏
𝑑∆𝑝𝑤
𝑑𝜏

= −
2𝑟𝑝𝐶𝐿2√𝑡𝑝

𝑐𝑓
(∆𝑡𝐷 + ∆𝑡𝐷

2) 𝑓(∆𝑡𝐷 , 𝛼)  ∆𝑡𝐷 ≥ ∆𝑡𝑓𝑐𝐷 
(2.52) 

From above two equations, it can be concluded that the only difference between 

the Bourdet derivatives for these two sections is the leakoff coefficient. On log-log 

diagnostic Bourdet derivative plot, this difference could result in different position of 

these two parts of Bourdet derivative curve. The second part can be obtained by switch 

the first part downward by Log(𝐶𝐿2/𝐶𝐿1) on log-log diagnostic Bourdet derivative plot. 

In other words, the gap between these two parts of curve is determined by the ratio of 

these two constant leakoff coefficients. 

A simple simulation is performed to show the basic feature of PDL with two 

constant leakoff coefficients. The input data needed is listed in Table 2-5. Figure 2-30 

shows the pressure falloff after shut-in. It can be easily figured out that early time, when 

natural fissures are involved in the leakoff, has a much sharper pressure decline. 
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Table 2-5 Input data for the simulation of PDL with two costant leakoff coefficients 

𝑟𝑝 1 

ℎ𝑓, ft. 50 

𝐸′, psi. 5 × 106 

𝑝𝑤𝑠 or ISIP, psi. 6000 

𝑝𝑓𝑜, psi 5400 

𝑡𝑝, minute 5 

𝑆𝑚𝑖𝑛, psi. 5000 

𝑞𝑝, bbl/minute 6 

𝛼 4/5 

𝐶𝐿1, ft/√min 2.5 × 10−4 

𝐶𝐿2, ft/√min 1 × 10−4 

Figure 2-30 Bottomhole pressure for PDL with 2 constant leakoff coefficients 

The diagnostic plots presented by log-log diagnostic Bourdet derivative plot and 

G-function plots are shown in Figure 2-31 and Figure 2-32, respectively. For log-log 
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indication of closure of natural fissures, or the end of PDL. The pressure in this point is 

the closure stress of natural fractures. From each 3/2-slope, the adherent leakoff 

coefficient can be calculated out with the new derived pressure solution. Besides, it can 

be found that the second 3/2-slope line can be reached by switch the first downward by 

log(2.5), which is the leakoff coefficient ratio in the logarithm scale. 

Furthermore, if more than two sets of leakoff coefficient involved in the fracture 

system, which could happen if more than one set of natural fissures in different 

directions are connected during treatment, there will be more 3/2-slopes in the Bourdet 

derivative curve. Each 3/2-slope stands for a constant system leakoff coefficient. This 

phenomenon has been observed (Xue and Ehlig-Economides 2013), and usually named 

as “multiple closure events”, as shown in Figure 1-8. 

Figure 2-31 Log-log diagnostic Bourdet derivative plot of PDL with two constant leakoff 
coefficients 
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Similar finding in G-function plot has been noticed, as shown in Figure 2-32. 

There are two straight lines with different slopes and both can be extrapolated through 

the origin. Each of them stands for a distinct system leakoff coefficient. Similar to two 

3/2-slope straight lines in log-log diagnostic plot, each leakoff coefficient can be 

computed out. One should note that these two extrapolated straight lines in the G-

function plot correspond to the two 3/2-slope lines in the log-log Bourdet derivative plot. 

Same closure event, closure pressure can be picked and therefore, same leakoff 

coefficients and fracture geometry can be calculated from these two diagnostic plots. 

Figure 2-32 G-function plot of PDL with two constant leakoff coefficients 
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and (1.15) are still valid with the fact that 𝐶𝐿 is not constant but a function of pressure 

change, which is what we are trying to solve. The derivation of pressure falloff solution 

is based on the material balance function, as shown in Eq. (1.7). Similar to previous 

model, the pressure solution will be separated into two parts because there are two 

different leakoff mechanisms during pressure decline. 

For 𝑝𝑤 ≥ 𝑝𝑓𝑜, by substituting 𝐶𝐿(𝑝𝑤) in Eq. (1.47) into (1.15) with 𝜃 = 1/2, we

can get, 

𝑑∆𝑝𝑤
𝑑∆𝑡

=

2𝑟𝑝 𝐶𝐿1 𝑒𝑥𝑝 (−𝛽
∆𝑝𝑤

𝑝𝑤𝑠 − 𝑝𝑓𝑜
)

𝑐𝑓√𝑡𝑝

𝑑𝑔(∆𝑡𝐷 , 𝛼)

𝑑∆𝑡
 𝑝𝑤 ≥ 𝑝𝑓𝑜 (2.53) 

or, 

𝑒𝑥𝑝 (𝛽
∆𝑝𝑤

𝑝𝑤𝑠 − 𝑝𝑓𝑜
)
𝑑∆𝑝𝑤
𝑑∆𝑡

=
2𝑟𝑝 𝐶𝐿1

𝑐𝑓√𝑡𝑝

𝑑𝑔(∆𝑡𝐷, 𝛼)

𝑑∆𝑡
 𝑝𝑤 ≥ 𝑝𝑓𝑜 

(2.54) 

Integrate both sides of Eq. (2.54), we can get the pressure drop solution during 

PDL period as, 

𝑝𝑤𝑠 − 𝑝𝑤(∆𝑡𝐷)

=
𝑝𝑤𝑠 − 𝑝𝑓𝑜

ln (
𝐶𝐿1
𝐶𝐿2

)
ln {1 +

2𝑟𝑝 𝐶𝐿1√𝑡𝑝

𝑐𝑓

ln (
𝐶𝐿1
𝐶𝐿2

)

𝑝𝑤𝑠 − 𝑝𝑓𝑜
[𝑔(∆𝑡𝐷, 𝛼) −  𝑔(0, 𝛼)]} 

𝑝𝑤 ≥ 𝑝𝑓𝑜 

(2.55) 

Matrix leakoff with constant leakoff coefficient will take over after PDL, and the 

pressure solution is exactly same with previous model, as shown in Eq. (2.48). 

Similarly, the Bourdet derivative during PDL can be derived as follows. 



87 

𝜏
𝑑∆𝑝𝑤
𝑑𝜏

= −
(∆𝑡𝐷 + ∆𝑡𝐷

2) 𝑓(∆𝑡𝐷, 𝛼)

𝑐𝑓
2𝑟𝑝 𝐶𝐿1√𝑡𝑝 

 + 
ln (

𝐶𝐿1
𝐶𝐿2

)

𝑝𝑤𝑠 − 𝑝𝑓𝑜
[𝑔(∆𝑡𝐷, 𝛼) −  𝑔(0, 𝛼)]

0 ≤ ∆𝑡𝐷 ≤ ∆𝑡𝑓𝑐𝐷 

(2.56) 

One should note that if there is no PDL, or 𝐶𝐿1 = 𝐶𝐿2, Eq. (2.56) can be reduced 

to Eq. (1.30), which proves the consistence between these two PDL models. 

Back to the assumption of the newly derived PDL model, by using a variable 

leakoff coefficient before natural fracture closure, a smooth transition can be drawn to 

connect the two leakoff scenarios: one at very early time after shut-in with a relatively 

high leakoff coefficient at 𝐶𝐿1, the other happening after the closure of natural fracture 

with a constant leakoff coefficient. The resulting curve is more practical than previous 

model with two constant leakoff coefficients. However, the variable leakoff coefficient 

model, as expressed in Eq. (1.47), is not based on any physical model or laboratory 

work. Also, the decline manner of leakoff coefficient is fixed, so it does not have any 

freedom to change the curve shape during transition section. Therefore, the model is not 

able to match most of the real field data, Analog to Eq. (1.51), a new exponential 

transition function with a decline controlling factor (𝜔) is created to avoid the inherent 

problem of Eq. (1.47), and shown as following. 
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𝐶𝐿(𝑝𝑤)

=

{
 
 

 
 

 𝐶𝐿1  𝑝𝑤 > 𝑝𝑓𝑜

(𝐶𝐿1 − 𝐶𝐿2)
Exp (𝜔

𝑝𝑤
𝑝𝑤𝑠

) − Exp (𝜔
𝑝𝑓𝑜
𝑝𝑤𝑠

)

Exp(𝜔 ) − Exp (𝜔
𝑝𝑓𝑜
𝑝𝑤𝑠

)
+ 𝐶𝐿2  𝑝𝑐𝑖 >  𝑝𝑤 ≥ 𝑝𝑓𝑜 

 𝐶𝐿2  𝑝𝑐𝑖 > 𝑝𝑤 > 𝑝𝑐

(2.57) 

with pci at time tci defined as the start of normal closure behavior ending with the final 

closure pressure, pc at time tc. For 𝑝𝑐𝑖 > 𝑝𝑤 ≥ 𝑝𝑓𝑜, at least some of the natural fissures 

have closed, and the leakoff coefficient drops from 𝐶𝐿1 to 𝐶𝐿2 gradually with the 

pressure change and controlled by 𝜔. The decline controlling factor, 𝜔, can be adjusted 

to match the field data with different curve trend during transition in the real practice. 

A simulation is tested with the input data listed in Table 2-5 except 𝐶𝐿1 = 1 ×

10−4 ft/√min and 𝐶𝐿2 = 1 × 10
−5ft/√min. And, the system leakoff coefficient is

expressed by Eq. (1.47). Bottomhole pressure profile is shown in Figure 2-33. Figure 

2-34 shows the change of leakoff coefficient with pressure and elapsed time. We can 

find that, at early time, leakoff coefficient drops much faster than later time. Besides, 

when fracture pressure falls below natural fissure opening pressure, 𝑝𝑓𝑜, matrix leakoff 

will be the dominant mechanism, and then the leakoff coefficient is assumed to be 

constant. 
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Figure 2-33 Bottomhole pressure profile 

Figure 2-34 Leakoff coefficient changes with elapsed time and pressure 

Figure 2-35 and Figure 2-36 are diagnostic plots for this example. We can find 

that, in the log-log diagnostic plot, there is a straight line at very early time, followed by 

a transition section until the final straight line with 3/2-slope. Both the early unit slope 

line and the final line with 3/2-slope are indication of normal leakoff. They stand for the 
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initial and final condition of fracture system. The transition section occasionally has a 

straight line in the log-log diagnostic plot, which has a slope ranging between unit and 

3/2. The starting time of 3/2-slope thus can be taken as the end of PDL, and the pressure 

at this point can be picked as the natural fissure opening pressure. Besides, the end time 

of PDL and natural fracture closure pressure can also be picked from Gdp/dG diagnostic 

plot, as shown in Figure 2-36. The hump signature above the extrapolated straight line 

from data in the later time is the most direct characteristic for PDL behavior. After that, 

the curve will switch to the straight line. The start point of the curve back to the straight 

line can be taken as the end time of PDL, and the pressure at this point as closure or 

opening pressure of natural fissures. In some case, another extrapolated line could be 

drawn from the early time data, which is corresponding to the early unit slope in the log-

log diagnostic plot, and can be used to estimate the initial leakoff situation of fracture 

system. 
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Figure 2-35 𝝉𝒅𝒑/𝒅𝝉 diagnostic plot for PDL with variable leakoff coefficient  

 

 

Figure 2-36 𝑮𝒅𝒑/𝒅𝑮 diagnostic plot for PDL with variable leakoff coefficient 
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the initial leakoff coefficient, 𝐶𝐿1. Bottomhole pressure falloff profile is exhibited in 

Figure 2-37, and the diagnostic curves are shown in Figure 2-38 and Figure 2-39. We 

can find that the final 3/2-slope is easily be identified. Before that, the early unit or 3/2-

slope straight line also can be picked out, which stands for the initial leakoff condition. If 

the difference between the initial and final leakoff coefficient is relatively small, these 

two lines with 3/2-slope will be very close to each other. In the extreme situation, when 

these two leakoff coefficients are same, which means normal leakoff behavior rather 

than PDL behavior, these two 3/2-slope lines will coincide with each other. The larger 

the leakoff coefficient difference is, the bigger the distance between these two lines. 

After the end of PDL, all curves converge to one 3/2-slope lines which is the behavior of 

normal leakoff by formation matrix. In the semilog G-function plot in Figure 2-39, all 

curves with different original leakoff coefficients show the concave-down feature. And, 

the larger the original leakoff coefficient is, the faster it declines to the final level, and 

the shorter duration of PDL behavior in diagnostic plot. Also, the early extrapolated 

straight line could be drawn, and it corresponds to the early 3/2-slope or unit slope line 

in log-log diagnostic plot. This initial leakoff coefficient is possible to be calculated out 

from the early 3/2-slope in the log-log Bourdet derivative, or from the first extrapolated 

line in the G-function. 
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Figure 2-37 Bottomhole pressure profile of PDL with different initial leakoff coefficients 

 

 

Figure 2-38 𝝉𝒅𝒑/𝒅𝝉 diagnostic plot for PDL with variable leakoff coefficient 
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Figure 2-39 𝑮𝒅𝒑/𝒅𝑮 diagnostic plot for PDL with variable leakoff coefficient 

One should note that for ∆𝑡𝐷 = 1~10, there is a slope transition from unit to 3/2 

for poroelastic closure in normal leakoff.  While Figure 2-38 shows transitions from the 

early 3/2-slope to the later, with moderate to high permeability reopened fracture 

networks, the transition could be from unit to unit or unit to 3/2, and closure of natural 

fissures could occur at the end of unit slope behavior in these cases as shown in Figure 

2-40 with 𝐶𝐿2 = 1 × 10
−4 ft/√min. Compared with those in Figure 2-38, the transition

time to the final 3/2-slope in Figure 2-40 is much earlier, and most curves in this plot do 

not have early 3/2-slope straight line, unit slope line instead. 
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Figure 2-40 𝝉𝒅𝒑/𝒅𝝉 plot for PDL with variable leakoff coefficient (CL2 = 1×10-4 ft/√min)  

 

Because both tip extension and PDL can have an early unit slope trend and a 

hump above the extrapolated straight line, there might be interpretation ambiguities. 

Three simulations, one with PDL and two with tip-extensions, are tested with the input 

data listed in Table 2-6. For these two tip-extension, one is assumed to have a limited tip 

growth after shut-in, at about 20%, while the other have a large length incremental ratio, 

at about 182%. The pressure decline profiles are exhibited in Figure 2-41 Bottomhole 

pressure falloff curve and their diagnostic plots in Figure 2-42 and Figure 2-43.  
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Table 2-6 Input data for both PDL and Tip-extension case 

Fracture model PKN 

α 4/5 

𝑡𝑝, minute 5 

𝑞𝑝, bbl/minute 6 

𝑟𝑝 1 

𝑝𝑤𝑠 or ISIP, psi. 6000 

𝐸′, psi. 5 × 106 

𝐶𝐿2 or 𝐶𝐿𝑚, ft/√min 1 × 10−4 

ℎ𝑓, ft. 50 

PDL 

𝐶𝐿1, ft/√min 1 × 10−3 

𝑝𝑓𝑜, psi. 5800 

Tip extension – short extension 

𝑐 -0.01 

∆𝑡𝑡𝑒𝐷  1 

Tip extension - long extension 

𝑐 0.01 

∆𝑡𝑡𝑒𝐷 3 
 

 

Figure 2-41 Bottomhole pressure falloff curve of PDL and tip-extensions 

5000

5200

5400

5600

5800

6000

0 5 10 15 20 25

B
o

tt
o

m
eh

o
le

 p
re

ss
u

re
, 

p
si

∆t, hr

Tip Ext. (Short)

Tip Ext. (Long)

PDL



97 

Figure 2-42 𝑮𝒅𝒑/𝒅𝑮 plot for PDL and tip-extensions 

Figure 2-43 𝝉𝒅𝒑/𝒅𝝉 plot for PDL and tip-extensions 

0

100

200

300

400

0 2 4 6 8 10

G
d

P
/d

G
, p

si

G(∆tD)

Tip Ext. (Short)

Tip Ext. (Long)

PDL

10

100

1,000

10,000

100,000

0.001 0.01 0.1 1 10 100

τd
P

/d
τ,

 p
si

∆t, hr

Tip Ext. (Short)

Tip Ext. (Long)

PDL

tp



 

98 

 

We can find that curve shapes in both diagnostic plots are similar, it seems to be 

difficult to distinguish between these two leakoff mechanisms. Here, several points will 

be introduced to distinguish PDL with tip extension behavior. To begin with, the curve 

after the end of tip-extension should approach to its asymptote, which can be drawn 

through the origin and shown as the red dashed line in Figure 2-42. Or, an extrapolated 

line catching limited curve after the tip-extension lies above the origin, shown as the red 

line in Figure 2-42. This feature is especially obvious for the case with large tip-

extension. Besides, tip-extension typically has a much faster pressure decline at 

beginning than normal leakoff process, and it might be even faster than PDL 

phenomenon. Therefore, its pressure declines even more rapidly at early time after shut-

in, as illustrated in Figure 2-41. However, for the case with limited tip-extension, its 

behavior is so close to the characteristic of PDL that it might be difficult to tell them 

apart.  

In summary, pressure solution for PDL behavior has been developed in this 

section, and it can be used to estimate initial leakoff coefficient at early time after shut-in 

when natural fractures are reopened. Also, if there multiple sets of natural fissures are 

connected, which can be observed by multiple-closure events, the leakoff coefficient for 

each specific set of natural fractures are able to be calculated out. From the simulation 

result, it can be concluded that the start point of the later normal leakoff, indicated by 

3/2-slope in log-log diagnostic plot or the extrapolated straight line through the origin, 

could be picked as the closure natural fracture. Depending on the closure time of natural 

fissures, their closing process could have a unit slope in log-log diagnostic plot if it 
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closes before ∆𝑡𝐷 = 1, or a 3/2-slope after ∆𝑡𝐷 = 10. Another important issue is that it 

might be ambiguous between PDL and tip extension (with a limited fracture growth after 

shut-in). 

2.5 The decoupled fracture model 

For both fissures related PDL models discussed above, the fluid flow into natural 

fractures are treated as leakoff from main fracture. Although it is a simple way to 

investigate the non-ideal leakoff behavior before natural fracture close, some physical 

process is ignored in both models, like the leakoff process from natural fractures into 

formation matrix. Therefore, it is necessary to decouple the leakoff process into two 

parts: one is the matrix leakoff from main fracture, and the other is that from natural 

fractures. In this way, the role of both natural fracture and main fracture properties in 

fluid leakoff and pressure transient can be investigated separately. Besides pressure 

dependent leakoff, this model can also be extended to analyze the behavior of transverse 

storage effect, which will be discussed in the later context. 

2.5.1 Natural fractures with constant leakoff coefficient and fracture compliance 

In this model, natural fissures and main fracture are treated separately, but they 

share the same pressure system and material balance function, as depicted in Figure 

2-44. We first assume that all properties of natural and main fractures listed in Figure 

2-44 are constant. Besides, natural fractures will totally close and lose its volume at or 

below its opening/closure pressure, 𝑝𝑓𝑜, and also no more fluid can leak into it when it 
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closes. The fracture compliances for main fracture and natural fissures could be different 

but both are constant. 

Figure 2-44 The sketch of decoupled natural and main fracture system 

The material balance function for this model can be written as, 

𝑉𝑙,𝑚𝑓 + 𝑉𝑓𝑟𝑎𝑐,𝑚𝑓 + 𝑉𝑙,𝑛𝑓 + 𝑉𝑓𝑟𝑎𝑐,𝑛𝑓 = 𝑉𝑝 
(2.58) 

where, 

𝑉𝑙,𝑚𝑓 is the cumulative leakoff volume from main fracture; 

𝑉𝑓𝑟𝑎𝑐,𝑚𝑓 is the volume of main fracture; 

𝑉𝑙,𝑛𝑓 is the cumulative leakoff volume from all natural fissures; 

 𝑉𝑓𝑟𝑎𝑐,𝑛𝑓 is the total volume of all natural fissures; 

For simplicity, all natural fissures are treated as one single fracture which initiate 

at the same time as the main fracture. Then, before the closure of natural fissures, 𝑉𝑙,𝑚𝑓, 

𝑉𝑙,𝑛𝑓 can be related with pressure change by Eq. (1.14), and 𝑉𝑓𝑟𝑎𝑐,𝑚𝑓, 𝑉𝑓𝑟𝑎𝑐,𝑛𝑓 can be 

Main Frac: 𝐴𝑓𝑚, 𝑐𝑓𝑚, 𝐶𝐿𝑚

Natural Fissures: 𝐴𝑓𝑛, 𝑐𝑓𝑛 , 𝐶𝐿𝑛
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expressed as a relationship with pressure with Eq. (1.6). After differentiation with 

respect to time, Eq. (2.58) can be written as, 

𝑑∆𝑝𝑤
𝑑∆𝑡𝐷

=
2𝑟𝑝√𝑡𝑝(𝐶𝐿𝑚𝐴𝑓𝑚 + 𝐶𝐿𝑛𝐴𝑓𝑛)

𝑐𝑓𝑚𝐴𝑓𝑚 + 𝑐𝑓𝑛𝐴𝑓𝑛

𝑑𝑔(∆𝑡𝐷 , 𝛼)

𝑑∆𝑡
 0 ≤ ∆𝑡𝐷 ≤ ∆𝑡𝑓𝑐𝐷 

(2.59) 

where, ∆𝑡𝑓𝑐𝐷 is the dimensionless time when natural fissures close or 𝑝𝑤 = 𝑝𝑓𝑜. The 

pressure solution can then be developed as, 

𝑝𝑤𝑠 − 𝑝𝑤(∆𝑡𝐷) =
𝜋𝑟𝑝√𝑡𝑝(𝐶𝐿𝑚𝐴𝑓𝑟 + 𝐶𝐿𝑛)

2(𝑐𝑓𝑚𝐴𝑓𝑟 + 𝑐𝑓𝑛)
𝐺(∆𝑡𝐷 , 𝛼)  0 ≤ ∆𝑡𝐷 ≤ ∆𝑡𝑓𝑐𝐷 

(2.60) 

where, 𝐴𝑓𝑟 is the surface area ratio between main fracture and total natural fracture, 

𝐴𝑓𝑟 =
𝐴𝑓𝑚

𝐴𝑓𝑛 (2.61) 

After fracture pressure decreasing below 𝑝𝑓𝑜, natural fissures totally close on 

their faces and will not take any fluid from main fracture, so for 𝑝𝑤 < 𝑝𝑓𝑜, 𝑉𝑙,𝑛𝑓 = 0 and 

𝑉𝑓𝑟𝑎𝑐,𝑛𝑓 = 0. Then, similar to the derivation of Eq. (2.60), the pressure solution for 𝑝𝑤 ≤

𝑝𝑓𝑜 can be written as, 

𝑝𝑓𝑜 − 𝑝𝑤(∆𝑡𝐷) =
𝜋𝑟𝑝√𝑡𝑝𝐶𝐿𝑚

2𝑐𝑓𝑚
[𝐺(∆𝑡𝐷 , 𝛼) − 𝐺(∆𝑡𝑓𝑐𝐷, 𝛼)]  ∆𝑡𝐷 ≥ ∆𝑡𝑓𝑐𝐷 

(2.62) 

∆𝑡𝑓𝑐𝐷 in Eq. (2.62) can be calculated out from Eq. (2.60). Bourdet derivative then 

can be calculated as follows. 
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𝜏
𝑑∆𝑝𝑤
𝑑𝜏

= −2𝑟𝑝√𝑡𝑝 (
𝐶𝐿𝑚𝐴𝑓𝑟 + 𝐶𝐿𝑛

𝑐𝑓𝑚𝐴𝑓𝑟 + 𝑐𝑓𝑛
) (∆𝑡𝐷 + ∆𝑡𝐷

2) 𝑓(∆𝑡𝐷, 𝛼)

 0 ≤ ∆𝑡𝐷 ≤ ∆𝑡𝑓𝑐𝐷 

(2.63) 

𝜏
𝑑∆𝑝𝑤
𝑑𝜏

= −2𝑟𝑝√𝑡𝑝 (
𝐶𝐿𝑚
𝑐𝑓𝑚

) (∆𝑡𝐷 + ∆𝑡𝐷
2) 𝑓(∆𝑡𝐷, 𝛼)  ∆𝑡𝐷 ≥ ∆𝑡𝑓𝑐𝐷 

(2.64) 

Comparing the Bourdet derivative with that of normal leakoff in Eq. (1.30), we 

can find that the only difference for Eq. (2.63) is the term in the first parentheses. This 

term includes the properties of both natural and main fracture. Eq. (2.63) can be reduced 

to Eq. (1.30) if the volume of natural fractures is assumed to be zero. 

It is obviously that the only difference between Eq. (2.63) and Eq. (2.64) is the 

term in their first parentheses in the left, 
𝐶𝐿𝑚𝐴𝑓𝑟+𝐶𝐿𝑛

𝑐𝑓𝑚𝐴𝑓𝑟+𝑐𝑓𝑛
 and 

𝐶𝐿𝑚

𝑐𝑓𝑚
, which is the essential

reason for the shape of the diagnostic plots. In other words, the hump, belly shape or 

straight line curve of the semi-log G-function is determined by the ratio of leakoff rate 

over the reduction rate of fracture volume. Mathematically, the ratio in decoupled 

fracture model can be expressed as, 

𝑟(𝐴𝑓𝑟 , 𝐶𝐿𝑚, 𝐶𝐿𝑛, 𝑐𝑓𝑚, 𝑐𝑓𝑛) =
𝐶𝐿
𝑐𝑓
=

{
 
 

 
 (
𝐴𝑓𝑟 + 𝐶𝐿𝑛 𝐶𝐿𝑚⁄

𝐴𝑓𝑟 + 𝑐𝑓𝑛 𝑐𝑓𝑚⁄
 )
𝐶𝐿𝑚
𝑐𝑓𝑚

 𝑝𝑤 ≥ 𝑝𝑓𝑜

𝐶𝐿𝑚
𝑐𝑓𝑚

 𝑝𝑤 < 𝑝𝑓𝑜
(2.65) 

where, 𝐶𝐿 and 𝑐𝑓 are leakoff coefficient and fracture compliance for the whole fracture 

system. Natural fracture is included in the system before its closure. The ratio is 

weighted by fracture surface area by adding 𝐴𝑓𝑟 into the function. 

To simplify Eq. (2.65), the following ratios are defined. 
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𝐶𝐿𝑟 =
𝐶𝐿𝑚
𝐶𝐿𝑛 (2.66) 

𝑐𝑓𝑟 =
𝑐𝑓𝑚

𝑐𝑓𝑛 (2.67) 

Then, Eq. (2.65) can be written as, 

𝑟(𝐴𝑓𝑟 , 𝐶𝐿𝑟 , 𝑐𝑓𝑟) =
𝐶𝐿
𝑐𝑓
=

{
 
 

 
 (
𝐴𝑓𝑟 + 1/𝐶𝐿𝑟

𝐴𝑓𝑟 + 1/𝑐𝑓𝑟
 )
𝐶𝐿𝑚
𝑐𝑓𝑚

 𝑝𝑤 ≥ 𝑝𝑓𝑜

𝐶𝐿𝑚
𝑐𝑓𝑚

 𝑝𝑤 < 𝑝𝑓𝑜
(2.68) 

From Eq. (2.68), we can conclude that the signature of diagnostic plots depends 

on the relative amplitude of these three ratios, 𝐴𝑓𝑟, 𝐶𝐿𝑟 and 𝑐𝑓𝑟. 

If occasionally, 
𝐴𝑓𝑟+1/𝐶𝐿𝑟

𝐴𝑓𝑟+1/𝑐𝑓𝑟
> 1, or 𝑐𝑓𝑟 > 𝐶𝐿𝑟, high leakoff rate through natural 

fracture will result in PDL or multiple-closure behavior; if 
𝐴𝑓𝑟+1/𝐶𝐿𝑟

𝐴𝑓𝑟+1/𝑐𝑓𝑟
 = 1, or 𝑐𝑓𝑟 = 𝐶𝐿𝑟, 

Eq. (2.63) and Eq. (2.64) will be identical, and the diagnostic curve will be exactly same 

with that in normal leakoff; if 
𝐴𝑓𝑟+1/𝐶𝐿𝑟

𝐴𝑓𝑟+1/𝑐𝑓𝑟
< 1, or 𝑐𝑓𝑟 < 𝐶𝐿𝑟, the storage effect of natural 

fissures, or transverse storage effect, indicated by the belly shape curve below 

extrapolated straight line through the origin, will be observed. The following simulation 

result will demonstrate this finding. 

A simple simulation here is to show the effect of leakoff from natural fissures on 

the pressure transient behavior. For the following 3 cases in this section, the only 

different input factor is the leakoff coefficient from natural fractures into matrix. 

Besides, for all 3 cases, the fracture compliance and surface area of natural fracture 

equals to these of main fracture. 
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Figure 2-45 Log-log diagnostic Bourdet derivative plot for the Decoupled Fracture Model with 
2 constant leakoff coefficients (CLm=1/2CLn) 

For the first case, the leakoff coefficient of natural fissures is 2 times of that of 

main fracture, which means that fluid leaks off faster from natural fissures into matrix 

than that from main fracture. A multiple-closure signature shows up in both log-log 

diagnostic plot and G-function plot, as shown in Figure 2-45 and Figure 2-46, respectively. 

The dramatic drop at these two plots indicate the closure event of natural fissures, and 

the bottomhole pressure at this point could be picked as opening/closure pressure of 

nature fractures. The inconsistency of two parts before and after the dramatic drop is 

caused by the assumptions that natural fracture has a constant fracture compliance, 

leakoff coefficient and fracture surface area before its closure, and all drop to zero 

1

10

100

1000

10000

100000

0.1 1 10 100 1000

τd
p

/d
τ,

 p
si

∆t, min



105 

immediately after that. To smoothen the curve, the transient behavior of these three 

parameters should be taken into consideration during closing of natural fractures. In the 

following sections, more detail will be discussed for different decline behaviors of 

fracture compliance, leakoff coefficient (PDL) and fracture surface area. 

Figure 2-46 G-function plot for the Decoupled Fracture Model with 2 constant 
leakoff coefficients (CLm=1/2CLn) 

For the second case, the leakoff coefficient of natural fractures is same as that of 

main fracture, which indicates that fluid in natural fissure leaks off into formation at the 

same rate with that in main fracture. The diagnostic plots in Figure 2-47 and Figure 2-48 

show that, the pressure behavior of this case is exactly same as that in normal leakoff 

where no natural fractures are involved in the leakoff system. In other words, natural 
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fractures could be connected during the treatment even when the apparent normal 

leakoff behavior is observed. 

Figure 2-47 G-function plot for the Decoupled Fracture Model with 2 constant 

leakoff coefficients (CLm= CLn) 
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Figure 2-48 Log-log diagnostic Bourdet derivative plot for the Decoupled Fracture Model 

with 2 constant leakoff coefficients (CLm= CLn) 

For the third case, the leakoff coefficient of natural fissures is half of that of main 

fracture. It indicates that natural fissures has a lower leakoff rate, which is supposed to 

be the main factor for the transverse storage effect, as discussed before. Again, the 

dramatic drop in the diagnostic plots is the indication of closure event of natural 

fractures. The inconsistency is caused by the assumption of inconsistency of nature 

fracture compliance, leakoff coefficient and total fracture surface area. If the broken 

curve can be smoothen, the concave-up curve in both log-log diagnostic plot and G-

function plot can be interpreted as transverse storage behavior. 
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Figure 2-49 G-function plot for the Decoupled Fracture Model with 2 constant 

leakoff coefficients (CLm= 2CLn) 

Figure 2-50 Log-log diagnostic Bourdet derivative plot for the Decoupled Fracture Model 

with 2 constant leakoff coefficients (CLm= 2CLn) 
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From these 3 cases, we can conclude that, depending on properties of natural 

fissures, they could behavior as PDL, transverse storage or even normal leakoff. Besides 

the leakoff coefficient discussed in this section, fracture compliance and fracture surface 

ratio could also have similar effect on the pressure transient. 

2.5.2 Natural fissures with pressure-dependent leakoff (PDL) coefficient and 

constant fracture compliance 

As has been proposed by many researchers, the reopened natural fissures could 

reserve a part of flow capacity even when they close on their surfaces after their internal 

pressure drops below closure pressure. These “closed” natural fractures could be 

propped open in a small scale by unconformable contact between surfaces or by 

formation fines (Ehlig-Economides and Economides 2011; McClure et al. 2014). 

Although the residual aperture and conductivity is fairly limited, those “closed” natural 

fractures still could be much more permeable than the formation matrix (Branagan et al. 

1996), especially in tight formation. Therefore, in this model, a residual natural fracture 

leakoff coefficient, 𝐶𝐿𝑛2 in Eq. (2.69), is assigned for the “closed” natural fissures. Since 

these natural fissures typically suffers larger confining stress and have poorer flow 

capacity than main fractures, the residual leakoff coefficient, 𝐶𝐿𝑛2, is supposed to be 

much smaller than that of main fractures. Besides, the storage volume of natural fissures, 

is neglected after closure with the assumption that void volume between two natural 

fracture faces is very limited and does not change much with the declining pressure. 

Before closure, the leakoff coefficient of natural fissures is pressure dependent. 
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Meanwhile, the matrix leakoff coefficient from main fracture is assumed to be constant 

during pressure falloff. Similar to variable leakoff coefficient model in Eq. (1.47), the 

leakoff coefficient model of natural fracture can be expressed as, 

𝐶𝐿𝑛(𝑝𝑤) = {
𝐶𝐿𝑛1 exp(−𝛽

𝑝𝑤𝑠 − 𝑝𝑤
𝑝𝑤𝑠 − 𝑝𝑓𝑜

)  𝑝𝑤 > 𝑝𝑓𝑜 

𝐶𝐿𝑛2  𝑝𝑤 ≤ 𝑝𝑓𝑜
(2.69) 

where, 

𝐶𝐿𝑛1 = 𝐶𝐿𝑛(𝑝𝑤 = 𝑝𝑤𝑠) (2.70) 

Starting from the material balance function as shown in Eq. (2.58), the pressure 

solution can be derived as following, 

𝑝𝑤𝑠 − 𝑝𝑤(𝑡)

=
(𝑝𝑤𝑠 − 𝑝𝑓𝑜)

ln (
𝐶𝐿𝑛1
𝐶𝐿𝑛2

)
ln {(1 +

𝐶𝐿𝑛1
𝐴𝑓𝑟 𝐶𝐿𝑚

) (
𝐶𝐿𝑛1
𝐶𝐿𝑛2

)

2𝐴𝑓𝑟 𝐶𝐿𝑚 𝑟𝑝√𝑡𝑝 [𝑔(∆𝑡𝐷,𝛼)−𝑔(0,𝛼)]

(𝑝𝑤𝑠−𝑝𝑓𝑜)(𝐴𝑓𝑟 𝑐𝑓𝑚+𝑐𝑓𝑛)

−
𝐶𝐿𝑛1

𝐴𝑓𝑟 𝐶𝐿𝑚
}   0 ≤ ∆𝑡𝐷 ≤ ∆𝑡𝑓𝑐𝐷 

(2.71) 

𝑝𝑤𝑠 − 𝑝𝑤(𝑡) =
𝜋𝑟𝑝√𝑡𝑝(𝐶𝐿𝑚𝐴𝑓𝑟 + 𝐶𝐿𝑛2)

2𝑐𝑓𝑚𝐴𝑓𝑟
[𝐺(∆𝑡𝐷 , 𝛼) − 𝐺(∆𝑡𝑓𝑐𝐷 , 𝛼)] 

∆𝑡𝐷 ≥ ∆𝑡𝑓𝑐𝐷 

(2.72) 

Eq. (2.71) can be reduced to Eq. (2.60) by assuming that the leakoff coefficient 

of natural fractures is constant, or 𝐶𝐿𝑛1 = 𝐶𝐿𝑛2, and can also be reduced to Eq. (2.55) if 

the leakoff only happens at main fractures with same leakoff model described in Eq. 
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(2.69) or Eq. (1.47). Therefore, mutual corroboration of these models proves their 

consistence. 

The Bourdet derivatives for this case are so complicated that they will not written 

in an analytical form in this context. 

One simulation assuming 𝐶𝐿𝑚 = 𝐶𝐿𝑛1 = 10𝐶𝐿𝑛2 is taken as an example, and the 

rest input parameters are listed in Table 2-7. Figure 2-51 and Figure 2-52 are its 

diagnostic plots. We can find that transverse storage behavior shows up because 𝐶𝐿𝑚 ≥

𝐶𝐿𝑛, and PDL feature can also be observed from the concave-down curve in the first part 

of G-function. 

Table 2-7 Input data for simulations of decoupled fracture model with variable CLn 

𝑡𝑝, minute 5 

𝑞𝑝, bbl/minute 6 

𝑟𝑝 1 

𝑝𝑤𝑠 or ISIP, psi. 6000 

𝐴𝑓𝑟 1 

𝐸′, psi. 5 × 106 

Main fracture 

Fracture model PKN 

ℎ𝑚𝑓, ft. 50 

𝑆𝑚𝑖𝑛, psi. 5000 

𝐶𝐿𝑚, ft/√min 2 × 10−4 

Nature fracture 

Fracture model PKN 

ℎ𝑛𝑓, ft. 50 

𝑝𝑓𝑜, psi. 5400 

𝐶𝐿𝑛1, ft/√min 2 × 10−4 

𝐶𝐿𝑛2, ft/√min 2 × 10−5 
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Figure 2-51 G-function plot for the Decoupled Fracture Model with variable CLn 

Figure 2-52 Log-log diagnostic plot for the Decoupled Fracture Model with variable CLn 

0

200

400

600

800

1000

1200

1400

1600

0 5 10 15 20 25 30 35

G
d

P
/d

G
, p

si

G(∆t𝐷)

1

10

100

1000

10000

100000

0.1 1 10 100 1000

τd
p

/d
τ,

 p
si

∆t, min



113 

Although the inconsistency of system leakoff coefficient during and after natural 

fracture closure has been removed by introducing a variable leakoff coefficient before 

closure and a residual value after that, as expressed by Eq. (2.69), curves in both 

diagnostic curves are not consistent in the connection. Two separated straight behavior 

can be picked, and each is controlled by one distinct leakoff behavior. It indicates that 

adjusting leakoff mechanism is not enough to smooth the curve, and the other factors 

that should be responsible to the broken diagnostic curve are compliance and total 

surface area of natural fracture. Since both factors are assumed to be constant before 

closure, and assigned to be zero after that without any gradual transition. To develop a 

model that can match field data with a smooth curve, a declining fracture compliance or 

surface area should be assigned to the natural fissure system. 

2.5.3 Natural fractures with pressure-dependent fracture compliance and leakoff 

coefficient 

As discussed in previous model, the discontinuity in diagnostic plots is resulted 

from the assumption that the natural fracture compliance and surface area are constant 

during closure, and both jump to zero immediately when pressure drops below the 

closure pressure. It is an ideal free closing process. Since the possible existence of 

fracture surface unconformity, the closing process could be more complicated. With the 

declining of internal pressure in the natural fracture, two opposite fracture surfaces will 

approach to each other. These unconformable asperities, or toughness in both sides of 

fractures, are supposed to first contact each other before other part. Then more and more 
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stress, which originally is loaded on the liquid in the fracture, will be transferred onto 

these contacted asperities. Fracture closing rate will be much slowed even when the 

leakoff rate is almost same with before. Mathematically, natural fracture compliance is 

reduced from its original value all the way to zero. 

As described in last paragraph, many factors are involved during the closing 

process, like altitude, strength and number of asperities. Currently there is few 

theoretical or experienced models available on this issue. McClure and Ribeiro have 

proposed a similar model for this phenomenon (McClure et al. 2014; Ribeiro and Horne 

2013). In their models, fracture is assumed to close freely when fracture aperture larger 

than a certain width.  Below it, asperities will contact with each other and take more and 

more loading. An experienced function proposed by Barton and Bandis (Bandis et al. 

1983; Barton et al. 1985) is employed to describe the relationship between stress and 

strain during the closure of joints. Barton and Bandis model is based on plenty of 

laboratory tests on dry rock joints. According to McClure (McClure et al. 2014), the 

relationship between the “in contact” fracture width with the applied effective stress can 

be written as, 

𝑤𝑓𝑛 =
𝑤𝑓𝑟0

1 + 9𝜎𝑛′ 𝜎𝑛,𝑟𝑒𝑓⁄ (2.73) 

When asperities start to touch each other, fracture has a width at 𝑤𝑓𝑟0, which is 

named as residual void aperture by McClure (McClure et al. 2014), and the fracture 

pressure at this time is same to closure pressure, and the effective pressure (𝜎𝑛
′ ) at this 
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pressure point equals to zero. 𝜎𝑛,𝑟𝑒𝑓 is the effective stresses applied to reduce the “in 

contact” joint width by 90% of residual void aperture. 

Since Eq. (2.73) should be consistent with Eq.(1.2) at the pressure point when the 

effective pressure (𝜎𝑛
′ ) is zero. By combining these equations, the relationship between 

𝑤𝑛𝑓0 and 𝜎𝑛,𝑟𝑒𝑓 in Eq. (2.73) with 𝑐𝑓 in Eq.(1.2) is, 

𝜎𝑛,𝑟𝑒𝑓 =
9𝑤𝑓𝑟0

𝑐𝑓𝑛0 (2.74) 

where, 𝑐𝑛𝑓0 is the natural fracture compliance when the fracture is open and is closing 

freely. 

Then the “in contact” fracture compliance can be derived as, 

𝑐𝑓𝑛 = 𝑐𝑛𝑓0 (
𝑤𝑓𝑟0

𝑤𝑓𝑟0 + 𝑐𝑛𝑓0 𝜎𝑛′
)

2

(2.75) 

where the effective pressure,  𝜎𝑛
′ , can be written as, 

𝜎𝑛
′ = 𝜎𝑟𝑒𝑠𝑖𝑠𝑡𝑎𝑛𝑡 − 𝑝𝑤(𝑡) (2.76) 

Although this model has been tried in some issues on hydraulic fracturing 

mechanics, several fatal defects need to be pointed out, which probably the main reason 

for the disagreement of its simulation result with the real data. First of all, Barton and 

Bandis model is based on the statistic data of experimental tests on dry rock joint. With 

the increasing loading, deformation at early time only happens on the contact roughness. 

While, hydraulic fractures are more like to be an undrained porous media. The 

pressurized liquid is able to support the fracture, redistribute pressure and stress around 

the fracture, and also able to soften strength of the saturated rock asperities in some 
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cases.  Poroelastic effect cannot be excluded by just taking effective normal stress as 

shown in Eq. (2.76). Besides, it is difficult to determine residual void aperture (𝑤𝑛𝑓0), 

and the result is pretty sensitive to this parameter. Moreover, it is arbitrary to pick 

closure pressure at the point when asperities start to contact. Since there is still a residual 

aperture at this pressure point, fluid pressure should be higher than the closure pressure 

for the majority part of fracture except for limited toughness area. And this error will be 

enlarged for the cases with big residual void aperture (𝑤𝑛𝑓0). Therefore, Barton and 

Bandis model is far from adequate to simulate the closing process of a “in contact” 

hydraulic fracture. 

Due to so many uncertainties associated with Barton and Bandis model, a more 

comprehensive and practical model on decline behavior of natural fracture compliance is 

hypothesized as Eq. (2.77). In this model, natural fracture compliance decreases from its 

initial value at ISIP to zero at closure pressure. After that, natural fracture is assumed to 

be totally closed on its surface. 

𝑐𝑓𝑛(𝑝𝑤) =
Exp(𝑏 𝑝𝑤/𝑝𝑤𝑠) − Exp(𝑏 𝑝𝑓𝑜/𝑝𝑤𝑠)

Exp(𝑏 ) − Exp(𝑏 𝑝𝑓𝑜/𝑝𝑤𝑠)
𝑐𝑓𝑛0 

(2.77) 

where, 𝑐𝑓𝑛0 is the natural fracture compliance at end of pumping. 𝑏 is the coefficient 

which controls the decline rate of 𝑐𝑓𝑛. Several sets of 𝑏 are tested. Actually, almost all 

monotone decline behaviors can be simulated with different controlling coefficient, 𝑏. 

Besides, it assumes that the leakoff coefficient from natural fractures into matrix 

follows the exponential decline model described as Eq. (2.69), same with that in last 

section. 
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Based on the material balance function, a semi-analytical model is built to 

calculate pressure decline curves in different decline behaviors of natural fracture 

compliance. 

As has been mentioned, if natural fractures are believed to be connected during 

injection, to preserve properties of natural fractures in the model, it is better to decouple 

the fracture system into natural and main fracture. Then, all of their properties can be 

studied separately or combined as a whole. With many more factors involved in the 

model than previous models, it is better to start with the sensitivity study on their impact 

on pressure response during pressure falloff. 

1) Diagnostic plots for variable natural fracture compliance

The dilated natural fracture can not only increase fluid leakoff from main 

fracture, but can also enhance fracture storage volume. As suggested by Barree (Barree 

et al. 2009), transverse storage effect could be much more overwhelming than PDL even 

when the latter is pretty large. Similar result can be observed in our model. Figure 2-53 

is semilog G-function diagnostic plot for the case that natural fracture has a higher 

leakoff rate than main fracture. It demonstrates that the belly shape of the diagnostic plot 

for transverse storage behavior could be caused by the reduction of natural fracture 

compliance, rather than by the relative small leakoff coefficient of natural fractures. 
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Figure 2-53 𝑮𝒅𝒑/𝒅𝑮 plot for the decoupled fracture model (CLn > CLm) 

2) Sensitivity study on decline behavior of natural fracture compliance (𝑐𝑓𝑛)

Table 2-8 Input data for sensitivity study on te decline behavior of cfn 
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First of all, the natural fracture is assumed to have an initial fracture compliance 

(𝑐𝑛𝑓0) at 1.571 × 10−5 ft psi⁄ , which is pre-required by Barton and Bandis model in Eq.

(2.73). The rest of input data is listed in Table 2-8. To see the impact of decline behavior 

of both models, the pressure-dependent leakoff behavior is excluded by assuming that 

natural fracture has a constant leakoff coefficient all the time. 

For both Barton and Bandis model with different residual fracture widths (𝑤𝑓𝑟0) 

and exponential model with several decline coefficients (𝑏), the pressure-dependent 

natural fracture compliance is plotted in Figure 2-54. The scattering lines consisting of 

dots are exponential model with different 𝑏s, while the other lines consisting of 

triangular are Barton and Bandis model with different 𝑤𝑓𝑟0s. We can find that these 

decline behaviors generally follow similar trend. The major difference for two models is 

that the natural fracture compliance after closure is zero for exponential decline model, 

while it is not for Barton and Bandis model, and continues dissipating even when the 

internal pressure is lower than closure stress. Depending on the scale of asperities, 

different decline rates of fracture compliance are observed for Barton and Bandis model. 

Wider residual fracture aperture is more likely to take larger pressure drop before 

approaching to a relatively small and stable width. The variable compliance in this 

pressure range would have a great impact on the shape of diagnostic curve and the way 

to determine closure pressure, which will covered in detail in the following discussion. 
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Figure 2-54 Pressure-dependent natural fracture compliance with different decline behaviors 

Figure 2-55, Figure 2-57 are semilog G-function diagnostic plots for different 

decline behaviors in exponential and Barton and Bandis model, respectively. And, 

Figure 2-57 exhibits all the corresponding curve in log-log diagnostic plot. Generally 

speaking, the difference among all cases with different decline behaviors of 𝐶𝑓𝑛 is more 

transparent in semilog G-function plot, as shown in Figure 2-55 and Figure 2-56. 

Another finding is that in cases with a faster decline of 𝐶𝑓𝑛 at later time, like 𝑏 =

−1000 and − 100 in exponential model and 𝑤𝑓𝑟0 ≤ 0.1 mm in Barton and Bandis 

model, their concave-up semilog G-function curve tend to be deeper, and surge more 

rapidly to the final level at later time. As a comparison, cases with moderate decline 

rates, or with wide residual fracture apertures, are more likely to have shallow “belly” 
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curves. In practice, variable shapes of diagnostic plots has been observed frequently. The 

decline behavior of fracture compliance could be one of reasons. 

Figure 2-55 𝑮𝒅𝒑/𝒅𝑮 plot for the decoupled fracture model with different decline 
behaviors of Cfn (Exponential decline model) 

Another significant point can be found from Figure 2-55 and Figure 2-56 is that, 

two extrapolated straight lines can be drawn from each specific curve. As has been 

discussed before, the straight line indicates normal leakoff condition. Since fracture 

compliance does not change much at early time for both fracture compliance models, the 

leakoff at this time thus can be treated as normal leakoff, and it is the first extrapolated 

straight line.  Furthermore, this part of curve can be taken advantage to estimate some 

natural fracture properties, like total natural fracture length. The second extrapolated 
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straight line happens at later time. After closure of natural fracture, fracture compliance 

will be a constant in exponential model, and will approach to a constant in Barton and 

Bandis model. Therefore, the situation is close to normal leakoff dominated by main 

fracture. 

Figure 2-56 𝑮𝒅𝒑/𝒅𝑮 plot for the decoupled fracture model with different decline 
behaviors of Cfn (Barton and Bandis model) 

By comparing Figure 2-55 and Figure 2-56, we can find several differences 

between these two decline models of natural fracture compliance: exponential and 

Barton and Bandis model. First, the start point of the latter extrapolated straight line 

could be picked as the closure event according to exponential decline model. However, 

in Barton and Bandis model, it lies in the transition section between two extrapolated 
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straight lines, as denoted as the pink solid square in curves in Figure 2-56. Besides, 

because of the residual fracture aperture, fracture compliance will continue decreasing at 

later time when internal pressure is even lower than closure stress. In the semilog G-

function plot in Figure 2-56, we can find that in the later time, it takes some time for the 

curve to approach to the final extrapolated straight line. And, more time is required for 

the fractures with wider residual fracture aperture. 

Figure 2-57 Log-log diagnostic plot for decoupled fracture model with different 
decline behaviors of Cfn 
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The log-log diagnostic plot for all decline behaviors of both fracture compliance 

models is shown in Figure 2-57. First of all, two straight lines with 3/2-slope can be 

found for each specific curve. These two straight lines are corresponding to these two 

extrapolated lines through the origin in semilog G-function plot in Figure 2-55 and 

Figure 2-56. Similarly, the first 3/2-slope line can be used to estimate total extension and 

closure stress of natural fracture, and the later to calculate these of main fracture. 

3) Both leakoff coefficient and compliance of natural fractures are pressure-

dependent 

Table 2-9 Input data for simulations of decoupled fracture model with variable CLn and cfn 

𝑟𝑝 1 

ℎ𝑓, ft. 50 

𝐸′, psi. 5 × 106 

𝑝𝑤𝑠 or ISIP, psi. 6000 

𝑡𝑝, minute 5 

𝑝𝑓𝑜, psi. 5400 

𝑆𝑚𝑖𝑛, psi. 5000 

𝑞𝑝, bbl/minute 6 

𝛼 4/5 

𝐴𝑓𝑟 0.5 

𝐶𝐿𝑚, ft/√min 1 × 10−4 

𝐶𝐿𝑛1, ft/√min 1 × 10−4 

𝐶𝐿𝑛2, ft/√min 1 × 10−5 

Decline behavior of natural 

fracture compliance 

Exponential decline model 
with 𝑏 = −100 

In this section, leakoff coefficient from natural fracture into matrix is assumed to 

decease with the shrinking fracture width, and approaches to a constant residual value, as 
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described in Eq. (2.69). One simulation is run with the input data listed in Table 2-9, and 

its diagnostic plots are shown in Figure 2-58 and Figure 2-59. 

Figure 2-58 𝑮𝒅𝒑/𝒅𝑮 plot for decoupled fracture model with pressure-dependent 
compliance and leakoff coefficient of natural fractures 
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semilog G-function plot and log-log diagnostic plot, as shown in Figure 2-58 and Figure 

2-59. The straight line in the semilog G-function plot at the very beginning time of 

falloff, or the straight line with unit slope in log-log plot, is the indication of high initial 

leakoff rate with almost constant fracture compliance in the natural fractures. The second 

extrapolated straight line through the origin in the semilog G-function plot, or the first 

straight line with 3/2-slope in log-log diagnostic plot, happens close to the end of PDL 

0

200

400

600

800

1000

1200

1400

1600

1800

0 10 20 30 40 50 60 70

G
d

P
/d

G
, p

si

G(∆t𝐷)



126 

and before the dramatically decline of natural fracture compliance. At this time, natural 

fracture has lost majority of its leakoff coefficient. Final leakoff coefficient and initial 

fracture compliance therefore could be estimated from data in this part. The last straight 

line in the semilog G-function plot, or the second straight line with 3/2-slope in log-log 

diagnostic plot, shows up when natural fractures have almost closed. Properties of main 

fracture, like closure pressure, fracture length and leakoff coefficient from main fracture, 

thus could be estimated from data in this section. 

Figure 2-59 Log-log diagnostic plot for decoupled fracture model with pressure-
dependent compliance and leakoff coefficient of natural fractures  
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4) Sensitivity study on natural fracture extension

The effect of natural fracture extension on the feature of diagnostic curve is 

tested in this section. All the input parameters are same with these in Table 2-9 except 

for 𝐴𝑓𝑟, which is the surface area ratio of main fracture with natural fracture. A wide 

range of 𝐴𝑓𝑟 is examined from 0.1 to 10. Small value of 𝐴𝑓𝑟 indicates the large extension 

of natural fractures. 

Figure 2-60 𝑮𝒅𝒑/𝒅𝑮 plot for decoupled fracture model with variable natural 
fracture extension  

From semilog G-function plot in Figure 2-60, we can find that cases with larger 
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for the case with a big 𝐴𝑓𝑟, such as when 𝐴𝑓𝑟 = 10, the main fracture is dominant in the 

fracture system. The diagnostic plot has a very shallow belly and a minimum hump, 

which is pretty close to that in normal leakoff. Similar conclusion can be drawn from the 

log-log diagnostic plot in Figure 2-61. Therefore, the behavior of PDL and/or transverse 

storage would be weighted by the connected natural fracture extension in the diagnostic 

plots. Larger extension of natural fractures tends to boost the signature of hump when 

PDL happens, and the belly shape when transverse storage is observed. 

Figure 2-61 Log-log diagnostic plot for decoupled fracture model with variable 
natural fracture extension 
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As has been discussed above, the inconsistency of diagnostic curves can be 

avoided by assuming that natural fractures have a declining fracture compliance and a 

declining leakoff coefficient during closing. It could be the fact only if the new-created 

natural fracture faces are unconformable contact with each other. However, since the 

majority length of natural fractures is created by the tensile stress applied by the internal 

hydraulic pressure, it is a doubt that whether the fresh fracture surfaces are 

unconformable or not. In the next section, we will explore another more likely scenario 

for the closing of natural fractures. 

2.5.4 Natural fractures with pressure-dependent natural fracture extension 

Since the impact of unconformable contact would be minimum in the fresh 

tensile failure crack, the changing of fracture compliance probably is not the main factor 

for the signature of transverse storage effect. The declining fracture area during closing 

is more likely to be the major factor for the transverse storage behavior than fracture 

compliance and leakoff coefficient. In this section, we assume that the leakoff area is the 

only variable during closing of natural fracture, and its fracture compliance and leakoff 

efficient are constant. Similar to the declining model of fracture compliance in Eq. 

(2.77), the natural fracture surface area is also assumed to decline exponentially with a 

controlling factor, 𝑑. 

𝐴𝑓𝑛(𝑝𝑤) =
Exp(𝑑 𝑝𝑤/𝑝𝑤𝑠) − Exp(𝑑 𝑝𝑓𝑜/𝑝𝑤𝑠)

Exp(𝑑 ) − Exp(𝑑 𝑝𝑓𝑜/𝑝𝑤𝑠)
𝐴𝑓𝑛0 

(2.78) 

where, 𝐴𝑓𝑛0 is the fracture area at the end of injection. 
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A series of sensitivity study has been done on the coefficient 𝑑 in Eq. (2.78), and 

three ratios in Eq. (2.68): 𝐴𝑓𝑟, 𝐶𝐿𝑟 and 𝑐𝑓𝑟. 

1) Sensitivity study on the decline rate of natural fracture surface area

With a wide range of 𝑑 from -1000 to 1000, we can find that all the possible 

decline manners could be included within this range, as shown in Figure 2-62. When 𝑑 is 

very small, like 𝑑 = −1000 and -100, natural fracture surface area does not change 

much at early time, and then jumps to zero rapidly at later time. For the other extreme, 

when 𝑑 = 1000 or 100, the surface area recedes in a fast rate immediately after 

injection. The most direct impact of decline rate of natural fracture surface area on 

pressure response is mainly on the leakoff rate from natural fractures. Fast decline rate at 

early time diminishes the leakoff area and also leakoff rate, and fluid in natural fractures 

would be squeezed back into main fracture, which will retard its closure. Transverse 

storage behavior therefore could be observed in this case. 

With the input parameters listed in Table 2-10, cases with different decline rates 

of natural surface area are tested and their diagnostic plots are shown in Figure 2-63 and 

Figure 2-64. 
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Figure 2-62 Exponential decline of natural fracture surface area with variable decline rates 

Table 2-10 Input data for simulations of decoupled fracture model with variable Afn 

𝑟𝑝 1 

ℎ𝑓, ft. 50 

𝐸′, psi. 5 × 106 

𝑝𝑤𝑠 or ISIP, psi. 6000 

𝑡𝑝, minute 5 

𝑝𝑓𝑜, psi. 5400 

𝑆𝑚𝑖𝑛, psi. 5000 

𝑞𝑝, bbl/minute 6 

𝛼 4/5 

Main fracture model PKN 

Natural fracture model PKN 

𝐶𝐿𝑚, ft/√min 1 × 10−4 

𝐶𝐿𝑛, ft/√min 2 × 10−5 

𝐴𝑓𝑟 0.5 

𝑐𝑓𝑟 1 
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Figure 2-63 𝑮𝒅𝒑/𝒅𝑮 plot for decoupled fracture model with variable decline behaviors 
of natural fractures surface area  

For each diagnostic curves in semilog G-function plot shown in Figure 2-63, two 

extrapolated straight line could be drawn through the origin. The early one happens 

before the rapid decline of natural fracture surface area. This period is relatively long for 

the cases with small decline rate at beginning, like when 𝑑 = −100 and -1000. While 

for the cases with fast decline rate at early time, such as when 𝑑 = 100 and 1000, the 

belly shape curve below the extrapolated line could be so shallow and the time duration 

is so limited that the transverse storage behavior may be undetectable. The situation 

would be even worse if wellbore storage or other factors happen at early time. Anyway, 

if the first extrapolated straight line can be drawn at the case when transverse storage 

happens, it is possible to estimate the total extension of natural fractures. 
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Figure 2-64 Log-log diagnostic plot for decoupled fracture model with variable 
decline behaviors of natural fractures surface area 

For the other extrapolated straight line in semilog G-function, it occurs after the 

closure of natural fractures, and fluid leaks off mostly through the main fracture. The 

geometry of main fracture and its closure stress therefore could be calculated through the 

data in this section. 

Similar findings could be figured out from the log-log diagnostic plot in Figure 

2-64. Two straight lines with 3/2-slope could be found, and each is corresponding to the 

extrapolated straight line in semilog G-function plot. Together with G-function plot, it 

can be used to determine the data section that could be taken to calculate fracture lengths 

of both natural and main fracture. 
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2) Sensitivity study on leakoff coefficient ratio, 𝐶𝐿𝑟

In this section, the impact of natural fracture leakoff capacity on the pressure 

response of the whole fracture system will be discussed. The pumping and formation 

parameters are assumed to be same with these in Table 2-10 except the leakoff 

coefficient of natural fractures, 𝐶𝐿𝑛, which will the variable for the sensitivity study. 

Five sets of 𝐶𝐿𝑟s are tested, 𝐶𝐿𝑟 = 5, 1.5, 1, 2/3 and 0.2. Besides, the closure of natural 

fractures follows the exponential decline model of fracture surface area with 𝑑 = 30.  

Figure 2-65 𝑮𝒅𝒑/𝒅𝑮 plot for decoupled fracture model with a declining surface area 

of natural fractures 

Actually, the shape of the diagnostic curve can be roughly pre-determined by Eq. 

(2.68). When 𝐶𝐿𝑟 is smaller than 𝑐𝑓𝑟, which is 1 in this case, PDL behavior is expected. 

Transverse storage signature is supposed to happen when 𝐶𝐿𝑟 > 𝑐𝑓𝑟. If by accident, 
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𝐶𝐿𝑟 = 𝑐𝑓𝑟, two expressions in Eq. (2.68) are identical, and the pressure response will be 

exactly same with that with normal leakoff. 

All diagnostic plots in semilog G-function are exhibited in Figure 2-65. Same 

with the conclusion drawn from Eq. (2.68), we can find that PDL happens when 𝐶𝐿𝑟 <

𝑐𝑓𝑟 = 1, and transverse storage behavior when 𝐶𝐿𝑟 > 𝑐𝑓𝑟 = 1. Besides, high leakoff rate 

from natural fracture tends to boost the PDL effect, so that the first extrapolated straight 

line will have a large slope, and also a high hump above the final extrapolated line. In 

the other end, natural fractures with low leakoff rate will have a deep belly curve. 

Figure 2-66 Log-log plot for decoupled fracture model with a declining surface area of 
natural fractures 
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Similarly, two straight lines with 3/2-slope can be drawn in log-log diagnostic 

plot, and they are corresponding to these two extrapolated lines in semilog G-function 

plot. For the cases with PDL, the first straight line lies in the left of the second, while for 

cases with transverse storage behavior, the first in the right. These two line will merge 

into one when normal leakoff occurs. 

3) Sensitivity study on fracture compliance ratio, 𝑐𝑓𝑟

Table 2-11 Input data for the sensitivity study of cfr with decoupled fracture model 

𝑟𝑝 1 

ℎ𝑓, ft. 50 

𝐸′, psi. 5 × 106 

𝑝𝑤𝑠 or ISIP, psi. 6000 

𝑡𝑝, minute 5 

𝑝𝑓𝑜, psi. 5400 

𝑆𝑚𝑖𝑛, psi. 5000 

𝑞𝑝, bbl/minute 6 

𝛼 4/5 

Main fracture model PKN 

Natural fracture model PKN 

𝐶𝐿𝑚, ft/√min 1 × 10−4 

𝐶𝐿𝑟 2/3 
𝐴𝑓𝑟 0.5 

Natural fracture surface area decline behavior 
Exponential decline 

with 𝑑 = −30 

In previous section, it assumes that compliance of natural fracture is same with 

that of main fracture. However, because of the geometric difference and formation 

isotropic, these two fracture compliances are probably not same to each other. In this 

section, several sets of fracture compliance ratios are tested to examine its impact on the 
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pressure response. The input data is listed in Table 2-11, and the diagnostic curves are 

shown in Figure 2-67 and Figure 2-68. 

Figure 2-67 𝑮𝒅𝒑/𝒅𝑮 plot for decoupled fracture model with a declining surface area 
of natural fractures and variable fracture compliance ratios (d=-30, Clm/Cln=2/3, 

Ar=0.5) 

The result again demonstrates the conclusion we made in last section based on 

the Eq. (2.68). PDL behavior, indicated by a hump above the extrapolated straight line 

through the origin in semilog G-function plot, will show up when 𝑐𝑓𝑟 is bigger than 𝐶𝐿𝑟, 

which is 2/3 in this case. When 𝑐𝑓𝑟 < 𝐶𝐿𝑟 = 2/3, such as 𝑐𝑓𝑟 = 0.5 in Figure 2-67, the 

belly shape below the extrapolated line usually interpreted as transverse storage effect. 

Besides, two extrapolated straight lines can be drawn in the semilog G-function curve. 
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The latter one should be used to estimate parameters of main fracture, and then, natural 

fracture surface area could be estimated with the data in the first extrapolated line. 

Figure 2-68 Log-log diagnostic plot for decoupled fracture model with a declining 

surface area of natural fractures and variable fracture compliance ratios (d=-30, Clm/

Cln=2/3, Ar=0.5) 

Similarly, two straight lines with 3/2-slope in the log-log diagnostic plot in 

Figure 2-68 correspond to these two extrapolated lines in the semilog G-function plot. 

And they also could be taken as the helpful reference to pick the closure events of both 

types of fractures, and the data range of two extrapolated lines in G-function plot. 
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4) Sensitivity study on fracture surface area ratio, 𝐴𝑓𝑟

During treatment in tight formation or naturally fractured reservoir, natural 

fractures are likely to be connected. The wide spread microseismic cloud is usually taken 

as the well-developed natural fracture networking. Therefore, it is necessary to 

investigate the impact of total extension of the natural fracture on the pressure response 

during fracture injection test. In this section, the fracture leakoff coefficient ratio (𝐶𝐿𝑟) is 

assumed to be 5, which means that natural fracture has a poor leakoff capacity. The rest 

input data is same with that in Table 2-11, and the resulting diagnostic curves are plotted 

in Figure 2-69.

Figure 2-69 𝑮𝒅𝒑/𝒅𝑮 plot for decoupled fracture model variable natural fracture
extension (d=-30, Clm/Cln=5) 
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Figure 2-70 Log-log diagnostic plot for decoupled fracture model variable natural
fracture extension (d=-30, Clm/Cln=5) 

For the case when 𝐴𝑓𝑟 = 0.1, which means that the total fracture surface of 

natural fracture is 10 times of that of main fracture, natural fracture is very well 

developed and it is the dominant in the whole fracture system. For the sake of poor 

leakoff capacity through natural fractures, transverse storage effect is observed, and 

large extension of natural fracture network tends to exaggerate the behavior. A deep 

belly curve therefore can be found below the final extrapolated straight line. While for 

the other extreme when 𝐴𝑓𝑟 = 10, main fracture dominates the fracture system and the 

impact from natural fracture is minimum. The transverse storage effect is not that 

obvious and the belly is pretty shallow below the extrapolated line. 
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In the log-log diagnostic plot, two straight line with 3/2-slope could be picked 

from each curve. Same to previous discussion, the first one stands for the fracture system 

with both main and natural fractures, while the second only for the main fracture. In this 

sensitivity study, we can find that the distance between these two lines will be minimum 

if the natural fracture extension is limited. The leakoff from the fracture system changes 

little before and after closure of natural fractures. However, for the case with large 

natural surface area over main fracture, more fluid will flow back into main fracture 

during natural fracture closing, and the supplement will result in obvious transvers 

storage behavior in diagnostic plots. 

Again, by analyzing these two extrapolated straight lines in semilog G-function 

plot or these two 3/2-slope lines in log-log diagnostic plot, it is possible to estimate the 

extension of both main fracture and natural fractures. 

In summary, decoupled fracture model can be used to estimate more properties 

from FCTs than traditional Nolte G-function model and the PDL model in last section. 

Depending on properties of natural fracture, it can behave as PDL, transverse storage or 

even normal leakoff. To obtain a realistic smooth curve from the decoupled fracture 

model, one of or both these two parameters, fracture compliance or surface area of 

natural fracture, is required to decline gradually to zero during the closure of natural 

fissures. Since fractures are mainly created by tensile failure, fracture compliance might 

not change much, and the fracture length recession could happen during natural fracture 

closing. 
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2.6 Summary of Chapter II 

In this chapter, most of the potential leakoff regimes, or leakoff behaviors are 

discussed, including wellbore storage effect (WBS), early fracture linear flow which 

indicated by the ½-slope before elastic closing process, fracture tip-extension, pressure 

dependent-leakoff (PDL), multiple apparent closure events and transverse storage 

behavior. Several important points should be concluded from the discussion and 

modeling work. 

1. Early WBS behavior mainly caused by two factors: the pressure loss

associated with friction in the wellbore and near-wellbore vicinity, and the 

rapid decline of net pressure, which might result from tip-extension and PDL. 

2. There are several factors accounting for the early fracture linear or radial

flow, such as high leakoff rate at tip area, the existence of dry tips and tip 

extension. A ½-slope or flat trend in log-log diagnostic plot might be 

observed if fracture linear or radial flow happen. However, this flow regime 

is very likely masked by the early wellbore storage effect. 

3. If tip-extension takes place, its composite G-function curve tends to approach

an asymptote, which is extrapolated through the origin. If the fracture closes 

shortly after tip-extension, or the recorded data is not long enough, the 

extrapolated straight line would lies above the origin and have a positive 

intercept, which however is the common practice to identify tip extension by 

Barree method.  
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4. In the newly developed PDL model, the leakoff contributed by natural

fissures is able to be estimated, e.g. the initial leakoff coefficient of the whole 

fracture system can be calculated out. 

5. Besides leakoff coefficient of natural fracture, its extension is included in the

decoupled fracture model. Both PDL and transverse storage mechanisms can 

be analyzed in the model. 

6. In some cases, it might be ambiguous between PDL and tip extension (with a

limited fracture growth after shut-in) because they are sharing similar 

diagnostic curves. 
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CHAPTER III 

FIELD CASE STUDY 

Chapter 3 

Several commonly observed abnormal leakoff mechanisms, including tip-

extension, PDL and transverse storage, are modeled in Chapter II. Besides, the WBS 

behavior and early linear flow are also covered. The application in really field FCT 

analysis will be demonstrated to show the advantage of the new-derivated models.  

In this chapter, four fracture calibration tests (FCTs) from different horizontal 

wells will be taken as examples for the discussion. All wells were drilled in the same 

well pad (as shown in Figure 3-1) in Horn River Basin (HRB), which is the largest shale 

gas field and located in the northeastern corner of British Columbia in west Canada. 

According to published papers (Johnson et al. 2011; Reynolds and Munn 2010), the GIP 

of shale gas in HRB is estimated at around 500 TCF, and the marketable resources at 

about 78 TCF. 
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Figure 3-1 Schematic of Horn River horizontal well pad(Ehlig-Economides et al. 2012) 

In this well pad, wells in the northwest side of the pad were drilled through a 

fault, as mapped in Figure 3-1. This fault has a great influence on the completion and 

production performance (Ehlig-Economides et al. 2012), which will be discussed later. 

Horn River Group (HRG) is comprised of several layers of interest, including the 

Muskwa, Otter Park, Klua (sometimes known as Evie), and sometimes a Middle 

Devonian Carbonate (MDDC) layer between Klua and Otter Park, as shown in the 

schematic chart in Figure 3-2. Ft. Simpson shales, which overlays above the HRG, is 

thick and clay rich; Keg River Formation is the tight limestone zone and underlays 

below the HRG. These two layers are acting as the outer barrier to terminate the 

potential fracture propagation in HRG (Beaudoin et al. 2011). According to Beaudoin et 

al. (Beaudoin et al. 2011), several other factors could be the potential barrier, such as the 
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observed strong horizontal stress difference for different lateral layers, which is caused 

by tectonic stress, the exist of clay-rich layer and MDDC formation between Otter Park 

and Klua, and also the highly laminated rock fabric in the zone of interest. Generally, the 

primarily pay zones are Muskwa and Otter Park members, where the deposit can be 

described as grey to black organic-rich shales. In additional to these two main targets, 

the Klua/Evie member is likely to be next active pay zone. 

Figure 3-2 Zones of interest in Horn River formation(Beaudoin et al. 2011) 
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For four tested horizontal wells in our dataset, three of them (Well A, Z and L) 

were drilled in Otter Park formation, and the rest one (Well I) in Klua/Evie. Since the 

average thickness of HRG could be up to 400ft (Ehlig-Economides et al. 2012; Reynolds 

and Munn 2010), and the injection volume for these four fracture calibration tests are 

very limited, ranging from 31 to 126 bbl, it is likely that fracture will not reach the 

overlain and underlain barriers. The fracture geometry could be in radial shape, and the 

radial fracture model will be employed for the following analysis. 

 

3.1 Fracture calibration test (FCT) analysis for Well A 

The FCT was performed in the toe stage of Well A with a single preformation at 

8932.2 ft TVD in Otter Park member. About 31.45 bbl fresh water was injected into the 

well in 6.67 minutes with a rate at 4.72 bbl/min, as shown in Figure 3-3. The bottomhole 

pressure was monitored for about 350 hours after shut-in. 

Figure 3-4 and Figure 3-5 exhibit the diagnostic plots with log-log Bourdet 

derivative and composite G-function, respectively. From both plots, we can find that 

PDL behavior happens. Two 3/2-slope lines can be drawn in the log-log diagnostic plot. 

The first line is likely to happen when natural fractures are reopened during treatment, 

and they have a higher leakoff coefficient than main fracture. The deviation point from 

the first 3/2-slope line could be taken as the start point of natural fracture closure (∆𝑡 =

0.52 hr), and the whole closure process finishes when the curve switch to the second 

extrapolated straight line at ∆𝑡 = 5.39 hr. The closure process of natural fracture may 

happen in the way of fracture length recession. In other words, the surface area change 
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of natural fissures with time is likely to be the reason for the transition from the first 3/2-

slope line to the second. Then, the closure pressure at start and at end of closure could be 

picked at 7211 psi and 6426 psi, respectively.  

 

 

Figure 3-3 Bottomhole pressure change and injection profile for Well A 

 

Same closure events and closing process can be picked from the composite G-

function plot. Two extrapolated straight lines drawn from the origin in G-function 

diagnostic curve, are corresponding to these two 3/2-slope lines in the log-log diagnostic 

plot.  
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Figure 3-4 Log-log diagnostic plot for Well A 

 

Before the end of natural fracture closure, fluid can leak off into formation 

through both main fracture and the residual natural fracture faces. While after that, 

natural fissures are supposed to be totally closed and have no contribution either to fluid 

storage or to leakoff process. Then, the leakoff through main fracture will be the 

dominant leakoff mechanism. The deviation point from the second 3/2-slope line in the 

log-log diagnostic plot, or correspondingly, the second extrapolated line in the G-

function plot, therefore could be picked as he closure event of main fracture. The closure 

pressure and closure time can be read out directly from the log-log diagnostic plot. In 

this case, main fracture closes at ∆𝑡 = 11.47 hr, and the closure pressure is 6266 psi, 

which probably is the local minimum horizontal stress. 
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Figure 3-5 Composite G-function diagnostic plot for Well A 

 

Another important parameter to be determined with before-closure analysis is the 

leakoff coefficient. For this case, results of 3 different diagnostic models will be 

discussed and compared.  

 

1) Traditional Nolte G-function model 

First, with the traditional Nolte G-function model as given in Chapter I, fluid 

efficiency, fracture extension and leakoff coefficient are able to be determined, as listed 

in the following table. One should note that, in the traditional Nolte G-function model, 
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interpretation is exactly same with that in normal leakoff case even when the PDL or any 

other abnormal leakoff behavior is observed.  

 

Table 3-1 Results from before-closure analysis with traditional Nolte G-function model for 
Well A 

𝜂 0.932 

𝑅𝑓, ft 73.58 

𝐶𝐿, ft/√min 9.87 × 10−5 

Closure pressure, psi 6266 

Closure stress gradient, psi/ft 0.702 

 

2) PDL model 

In this model, natural fracture is treated as part of matrix, but with a higher 

leakoff coefficient when it is opened, as described in Eq. (1.46) or (1.47). However, 

except for higher leakoff coefficient, natural fractures do not have any other properties, 

like fracture with, extension, etc. Another issue with the model is on the closure time of 

natural fracture. As has been discussed, it is physically more convincing that natural 

fracture should has a fracture extension recession before closure. There will be some 

differences in the interpretation result on that whether the start time point or the end time 

should be picked as the closure event. Clearly, the natural fracture leakoff coefficient 

will be overestimated if the start time is taken as its closure, and underestimated if the 

end time is taken. In this dissertation, to simplify the analysis without reducing accuracy 

of the result, the geometric mean value of both times are taken as the closure event of 

natural fissures. The interpretation results are shown as following.  
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Table 3-2 Results from before-closure analysis with PDL model for Well A 

𝑅𝑓, ft 46.48 

𝐶𝐿𝑚, ft/√min 6.83 × 10−5 

Closure pressure of main fracture, psi 6266 

𝐶𝐿𝑛, ft/√min 5.23 × 10−4 

Closure pressure of natural fracture at 
start of closure, psi 

7211 

Closure pressure of natural fracture at 
end of closure, psi 

6504 

𝐶𝐿𝑛/𝐶𝐿𝑚 7.65 

𝜂 0.814 

 

From above results, we can find that natural fracture has a much higher leakoff 

coefficient than main fracture, which accounts for the PDL feature in diagnostic plots. 

The relatively low fluid efficiency is the result from high leakoff rate of natural fracture. 

Compared the result with that by traditional Nolte G-function model, we can find that 

the fracture extension is much overestimated previously with Nolte G-function model; 

and the leakoff coefficient from Nolte G-function model lies between those of two types 

of fractures from PDL model.  

Using the calculated parameters listed in above table as the input in PDL 

simulator, the generated curve is able to find the characteristic slopes in the recorded 

data, as shown in Figure 3-6 to Figure 3-8. These characteristic slopes are exactly the 

ones used for closure identification.  
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Figure 3-6 History match of the bottomhole pressure of Well A with constant PDL model 

 

 

Figure 3-7 History match of the log-log Bourdet derivative of Well A with PDL model 
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Figure 3-8 History match of the semilog G-function of Well A with PDL model 

 

Although the lines are able to catch all the characteristic trend in the diagnostic 

plots, the simulation result with a couple straight lines does not match the transition 

curve very well. Therefore, variable PDL model with a declining leakoff coefficient 

before natural fracture closure, described by Eq. (2.57), is used. And, the history match 

with recorded pressure, diagnostic plots are shown as follows.  
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Figure 3-9 History match of the bottomhole pressure of Well A with Variable PDL model 

 

 

Figure 3-10 History match of the log-log Bourdet derivative of Well A with variable PDL model 
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Figure 3-11 History match of the log-log Bourdet derivative of Well A with variable PDL model 

 

The variable pressure-dependent leakoff coefficient used for above history match 

is plotted as following. 

 

Figure 3-12 Variable leakoff coefficient during pressure falloff with time and pressure  
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One should understand that, natural fracture extension is not included in above 

PDL model. In the following interpretation, decoupled fracture model will be used to 

interpret the data and match the recorded curve with the integrated result.   

3) Decoupled fracture model (DFM) 

In decoupled fracture model, fracture system is divided into main and natural 

fractures. They are sharing the same pressure system and material balance, but have 

properties of their own, like fracture extension, width, leakoff coefficient, etc. As has 

been discussed in Chapter II, due to the synthetic behavior of natural fracture extension 

and its leakoff coefficient, it is currently impossible to determine these two parameters 

from only one data source. However, the corresponding natural fracture extension can be 

estimated with a pre-assumed leakoff coefficient. Actually, there is a linear relationship 

between 𝐴𝑓𝑚/𝐴𝑓𝑛 and 𝐶𝐿𝑛/𝐶𝐿𝑚, as shown in Eq. (3.1), which can be derived 

theoretically and proven with the simulation result.  

 𝐴𝑓𝑟 =
𝐴𝑓𝑚

𝐴𝑓𝑛
=

𝑝1
∗

𝑝1
∗ + 𝑝2

∗ (
𝐶𝐿𝑛
𝐶𝐿𝑚

− 1) + 1 
(3.1) 

where, 𝑝1
∗ and 𝑝2

∗ are the slope of straight lines before closure of natural and main 

fracture in the bottomhole pressure curve with G-function, similar with 𝑝∗ in Figure 

1-2. They can be read out from 𝑑𝑝/𝑑𝐺 curve at each closure time point in the 

composite G-function plot. 

For each 𝐶𝐿𝑛, from 10 to 200 times of 𝐶𝐿𝑚, the corresponding leakoff 

coefficients, fracture extensions and fluid efficiency are calculated and listed in the 

following table.  The linear relationship between 𝐴𝑓𝑚/𝐴𝑓𝑛 and 𝐶𝐿𝑛/𝐶𝐿𝑚 are plotted in 
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the Figure 3-13. Generally speaking, to achieve the same signature of PDL in diagnostic 

plots, smaller natural fracture leakoff coefficient requires larger fracture surface area, 

vice versa. Therefore, we can conclude that in this example, natural fractures likely 

contact some much more permeable layers. And their extension is dependent on the 

relative altitude of leakoff coefficient through natural fractures into permeable 

formation with that though main fracture into less permeable zones. For instance, if the 

permeable formation stimulated by the natural fissures, has a leakoff coefficient 50 

times as high as that through main fracture, 𝐶𝐿𝑛/𝐶𝐿𝑚 = 50, the surface area of main 

fracture will be 5.4 time of that of natural fracture. And if 𝐶𝐿𝑛/𝐶𝐿𝑚 = 20, the surface 

area ratio, 𝐴𝑓𝑟, will be reduced to 1.48.  

 

 Table 3-3 Results from before-closure analysis with decoupled fracture model for Well A 

𝐶𝐿𝑚/𝐶𝐿𝑛 0.01 0.02 0.033 0.05 0.1 

𝐶𝐿𝑛/𝐶𝐿𝑚 100 50 30 20 10 

𝐶𝐿𝑚, × 10−5ft/√min 6.39 6.23 5.99 5.64 3.67 

𝐴𝑓𝑚, ft
2 6820 6489 6006 5319 2247 

𝑅𝑓, ft 46.59 45.45 43.72 41.15 26.75 

𝐶𝐿𝑛, × 10−3ft/√min 6.39 3.12 1.80 1.13 0.367 

𝐴𝑓𝑛, ft
2 571 1201 2154 3389 12785 

𝐴𝑓𝑟 11.93 5.40 2.79 1.48 0.176 

𝜂 0.835 0.833 0.830 0.825 0.808 
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Figure 3-13 Linear relationship between Afm/Afn and CLn/CLm of Well A 

 

Two combinations of interpreted result with decoupled fracture model (DFM) 
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results in bottomhole pressure, log-log Bourdet derivative and semilog G-function are 

shown in the Figure 3-14 to Figure 3-16 and Figure 3-17 to Figure 3-19, respectively. 

We can find that both combinations are able to match the recorded data in a good way. 
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Figure 3-14 History match of the bottomhole pressure with DFM (CLn/CLm=10) 

 

 

Figure 3-15 History match of the log-log Bourdet derivative with DFM (CLn/CLm=10) 
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Figure 3-16 History match of the semilog G-function with DFM (CLn/CLm=10) 

 

 

Figure 3-17 History match of the bottomhole pressure of Well A with DFM (CLn/CLm=30) 
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Figure 3-18 History match of the log-log Bourdet derivative with DFM (CLn/CLm=30) 

 

 

Figure 3-19 History match of the semilog G-function of Well A with DFM (CLn/CLm=30) 
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3.2 Fracture calibration test (FCT) analysis for Well I 

Different from other three wells which drilled in Otter Park formation, the target 

layer of Well I is the Klua/Evie member. The FCT was tested in its toe stage with a 

single perforation at 9266.21 ft TVD. A total 31.45 bbl fresh water was pumped into the 

well in 7.13 minutes with a rate at 4.41bbl/min, as shown in Figure 3-20.  

 

 

Figure 3-20 Bottomhole pressure change and injection profile for Well I 

 

Figure 3-21 Log-log diagnostic plot for Well I Figure 3-22 are diagnostic plots of 

well I. The dashed line in the log-log diagnostic plot is the indication of injection time, 

before which elastic normal closing process has and unit slope. Multiple line with 3/2-

slope or unit slope can be picked from the log-log diagnostic plot; and also in the 
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origin. The phenomenon is usually named as multiple-closure behavior. If we zoom in 

on the first closure process in the G-function plot, shown in Figure 3-23, an extrapolated 

line (the pink dashed line) can be drawn, which lies above the origin and has a positive 

intercept with the derivative axis. Besides, the calculated semilog G-function derivative 

seems to approach the asymptote through the origin. Typically, the signature can be 

interpreted as tip-extension, as discussed in Chapter II.  

 

 

Figure 3-21 Log-log diagnostic plot for Well I 

 

 

100

1,000

10,000

100,000

1,000,000

0.001 0.01 0.1 1 10 100 1000

∆
p

 a
n

d
 τ

d
p

/d
τ,

 p
si

∆t, hr

τdp/dτ

∆p

Fracture Closure



 

165 

 

 

Figure 3-22 Composite G-function diagnostic plot for Well I 

 

First, the finish time of tip-extension can be read out from the semilog G-

function plot, at 𝐺𝐸𝑛𝑑 𝑜𝑓 𝑇𝐸 = 0.764 or ∆𝑡𝐸𝑛𝑑 𝑜𝑓 𝑇𝐸 = 0.056 hr. The pressure at this 

point, which might be taken as the minimum propagation pressure, is 6640.4 psi. After 

adjusting tip extension with the dimensionless time function defined in Eq. (2.29), the 

new G-function diagnostic plot could be created and shown in Figure 3-24. It is clear 

that the new curve has an extrapolated straight line through the origin, same as that in 

normal leakoff.  

 

0

200

400

600

800

1000

0

2,000

4,000

6,000

8,000

10,000

0 5 10 15 20 25 30

d
p

/d
G

 a
n

d
 G

d
p

/d
G

, p
si

p
w

, p
si

G(∆tD)

BHP

dp/dG

Gdp/dG

Fracture Closure



 

166 

 

 

Figure 3-23 Semilog G-function diagnostic plot of the first closure process in Well I 

 

 

Figure 3-24 𝑮𝒅𝒑/𝒅𝑮 plot of the first closure process after adjusting tip-extension 
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The log-log diagnostic plot after tip-extension with real time and adjusted time 

function are shown in Figure 3-25 and Figure 3-26, respectively. Different from the 

dimensionless time function (∆𝑡𝐷), the linear relationship between the adjusted time 

with the real time does not exist anymore, as defined in Eq. (2.29). The non-linear 

relationship is more transparent at early time after tip-extension, which is exhibited by 

the distinct curve shapes at early time in Figure 3-25 and Figure 3-26.  One should note 

that the curve during tip-extension is removed by using the adjusted time function. In the 

diagnostic curves, four straight lines with 3/2-slope and another one with unit slop at 

very early time before ∆t = 𝑡𝑝 (indicated by the black dashed line), can be picked out. 

Since each stands for a closure process, multiple apparent closures happen. It indicates 

that the fracture system potentially has several pressure-dependent leakoff coefficient 

during falloff. Physically, one possible scenario is that, several sets of natural fissures, as 

well as laminated rock fabric, are stimulated during injection. Fluid can penetrate into 

these fissures, and then leaks off into their surrounded formation. Since each set of 

natural fissures are suffering different local stress resistances, they are likely to close one 

by one after shut-in. A part of fracture surface area, or leakoff coefficient, will lose with 

each closure of natural cracks. Multiple-closure with several system leakoff coefficients 

therefore could be observed. 
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Figure 3-25 Log-log diagnostic plot after tip-extension for Well I with real time 
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Figure 3-26 Log-log diagnostic plot after tip-extension for Well I with adjusted time function 

 

The composite G-function plot with adjusted time function for the whole 

pressure falloff are exhibited in the Figure 3-27. Generally, it is pretty similar with the 

original G-function plot in Figure 3-22. Multiple apparent closures can still be observed. 

These fives extrapolated lines are corresponding to those five 3/2-sloe lines in the log-

log diagnostic plot in Figure 3-26. Same closure events could be identified in both 
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Figure 3-27 𝑮𝒅𝒑/𝒅𝑮 diagnostic plot after adjusting tip-extension 
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will be involved by adding one natural fracture into the system, but only one equation 

could be constituted. In last case in Well A, one set of natural fracture is identified, and 

there is only one free variable, as shown in Eq. (3.1). Back to this example, 3 sets of 

natural fracture indicates that there will be 3 undefined variable, which will much 

complicated for the analysis.  
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1) Traditional Nolte G-function model 

As mentioned before, this model treat the fracture system as normal leakoff, and 

only the final closure is taken as the closure event. The interpretation result is listed in 

Table 3-4.  

 

Table 3-4 Results from before-closure analysis with traditional Nolte G-function model for 
Well I 

𝜂 0.934 

𝑅𝑓, ft 70.86 

𝐶𝐿, ft/√min 1.00 × 10−4 

Closure pressure, psi 4784 

Closure stress gradient, psi/ft 0.516 

 

2) PDL model 

After identifying all the possible closure events from diagnostic plots, the start 

and end closure pressure for each event can be directly read out. Then, fracture geometry 

and leakoff coefficient can be calculated out with material balance function. All the 

result are listed in the following table. And, the change of leakoff coefficient is plotted in 

Figure 3-28.  
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Table 3-5 Results from before-closure analysis with PDL model for Well I 

𝑅𝑓, ft 38.6 

𝐶𝐿1, ft/√min 1.40 × 10−3 

First closure pressure (Start),  psi 6199 

First closure pressure (End),  psi 5559 

𝐶𝐿2, ft/√min 2.38 × 10−4 

Second closure pressure (Start),  psi 5474 

Second closure pressure (End),  psi 5427 

𝐶𝐿3, ft/√min 1.52 × 10−4 

Third closure pressure (Start), psi 5358 

Third closure pressure (End), psi 5291 

𝐶𝐿4, ft/√min 1.34 × 10−4 

Third closure pressure (Start), psi 5121 

Third closure pressure (End), psi 4972 

𝐶𝐿5, ft/√min 5.90 × 10−5 

Fourth closure pressure, psi 4784 

𝜂 0.687 

 

 

Figure 3-28 Leakoff coefficients during falloff in Well I 
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With the calculated parameters listed in the above table, PDL simulator is able to 

generate a curve to generally fit the pressure decline curve (Figure 3-29), and the 

diagnostic plots (Figure 3-30 and Figure 3-31). 

 

Figure 3-29 History match of the recorded bottomhole pressure of Well I 
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Figure 3-30 History match of the log-log Bourdet derivative of Well I 

 

 

Figure 3-31 History match of the semilog G-function of Well I 
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Besides, a weak wellbore storage phenomenon is observed at very early time 

after shut-in (Figure 3-21). Wellbore storage (WBS) coefficient could be quantified as 

0.0665 bbl/psi. 

 

3.3 Fracture calibration test (FCT) analysis for Well L 

Well L was drilled in Otter Park member. The fracture calibration test was 

performed in its toe stage at 8979.8 ft TVD. A total volume of 125.8 bbl fresh water was 

injected into the well in 13.0 minutes with a pumping rate at 9.68bbl/min. The pressure 

profile during and after injection is monitored and exhibited in Figure 3-32. 

 

 

Figure 3-32 Bottomhole pressure change and injection profile for Well L 
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The diagnostic plots are shown in Figure 3-33 and Figure 3-34. From the both 

curve, we can see the transverse storage leakoff mechanism. It happens when the leakoff 

coefficient of natural fracture is so low that the stored fluid in them is squeezed back into 

main fracture. However, as has been discussed in Chapter II, fracture properties could be 

estimated from the first 3/2-slope line. Furthermore, more other pressure transient 

behaviors could also be observed in log-log diagnostic plot.  The earliest unit slow 

should be wellbore storage effect; fracture linear flow, indicated by the first half-slope 

line, might occurs, which has been discussed in detail in Chapter II; after closure of main 

fracture, the second half-slope line is likely to be formation linear flow, which could be 

taken advantage to estimate fracture extension if formation permeability is known.  

 

 
Figure 3-33 Log-log diagnostic plot for Well L 
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In G-function plot, the belly shape feature under the extrapolated straight line 

indicates the transverse storage mechanism. Again, these two extrapolated straight lines 

in the G-function plot correspond to these two line with 3/2-slope in log-log diagnostic 

plot in Figure 3-33. Same closure events can be picked. 

 

 

Figure 3-34 Composite G-function diagnostic plot for Well L 

 

1) Traditional Nolte G-function model 
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Table 3-6 Results from before-closure analysis with traditional Nolte G-function model for 
Well L 

𝜂 0.893 

𝑅𝑓, ft 92.28 

𝐶𝐿, ft/√min 2.85 × 10−4 

Closure pressure, psi 6280 

Closure stress gradient, psi/ft 0.699 

 

2) Decoupled fracture model 

Similar with the situation in the analysis of Well A, except one of these four 

parameters is known, leakoff coefficients and fracture extensions of both main and 

natural fractures, it is currently not able to determine all of them. Therefore, by pre-

assuming a leakoff coefficient ratio between these two types of fracture, their extension 

could be calculated out, as listed in Table 3-7. Again, the linear relationship between 

𝐴𝑓𝑚/𝐴𝑓𝑛 and 𝐶𝐿𝑛/𝐶𝐿𝑚 also exist in Figure 3-35. Figure 3-36 is to show that, generally, 

natural fracture extension will be limited if its leakoff coefficient is ultra-low, vice versa. 
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 Table 3-7 Results from before-closure analysis with decoupled fracture model for Well L 

𝐶𝐿𝑚/𝐶𝐿𝑛 2.50 3.33 5 10 100 -- 

𝐶𝐿𝑛/𝐶𝐿𝑚 0.4 0.3 0.2 0.1 0.01 0 

𝐶𝐿𝑚, × 10−4ft/√min 1.957 2.425 2.639 2.765 2.842 2.849 

𝐴𝑓𝑚, ft
2 12617 19375 22945 25196 26620 26753 

𝑅𝑓, ft 63.37 78.53 85.46 89.56 92.05 92.28 

𝐶𝐿𝑛, × 10−5ft/√min 7.826 7.274 5.277 2.765 0.284 0 

𝐴𝑓𝑛, ft
2 102,050 62,316 46,057 36,758 31,170 30,655 

𝐴𝑓𝑟 0.124 0.311 0.498 0.685 0.854 0.873 

𝜂 0.853 0.870 0.881 0.888 0.892 0.893 

 

 

Figure 3-35 Linear relationship between Afm/Afn and CLn/CLm in Well L 
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Figure 3-36 Relationship between natural fracture leakoff coefficient with its extension 

 

As shown in the history match for Well A, with all the calculated results shown 

in Table 3-7, the decouple fracture model (DFM) is able to generate a set of bottomhole 

pressure, which is able to match the pressure decline curve and also the diagnostic plots. 

In this case, 𝐶𝐿𝑛 = 0 is taken for instance, which suggests that fluid in the fracture 

system is not capable leaks off through the natural fracture surface. The generated data 

by the DFM simulator has a fairly good match with the recorded data in bottomhole 

pressure (Figure 3-37), and the diagnostic plots (Figure 3-38 and Figure 3-39). 
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Figure 3-37 History match of the recorded bottomhole pressure of Well L 

 

 

Figure 3-38 History match of the log-log Bourdet derivative of Well L with DFM (CLn=0) 
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Figure 3-39 History match of the semilog G-function of Well L with DFM (CLn=0) 

 

Another factor that could be quantified is the wellbore storage effect (WBS), as 

has been observed in Figure 3-33. The WBS coefficient is calculated as 0.215 bbl/psi. 

 

3.4 Fracture calibration test (FCT) analysis for Well Z 

The target layer of the well is the Otter Park member. FCT was tested in its toe 

stage at 9088.65 ft TVD. Its location in the pad can be found from Figure 3-1. A total 

volume of 57.87 bbl fresh water was injected into the well in 9.1 minutes with a 

pumping rate at 6.36bbl/min. The pressure profile during and after injection is monitored 

and exhibited in Figure 3-40. 
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Figure 3-40 Bottomhole pressure change and injection profile for Well Z 

 

The diagnostic plots are shown in Figure 3-41 and Figure 3-42. Similar with 

Well L, transverse storage behavior is observed before closure. Two 3/2-slope lines can 

be drawn in the log-log diagnostic plot. These two lines indicate close process of natural 

and main fracture, respectively. Besides, similar with the FCT in Well L, the early 

wellbore storage effect (WBS), as well as formation linear flow after closure, are 

exhibited in the log-log diagnostic plot. 
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Figure 3-41 Log-log diagnostic plot for Well Z 

 

Two extrapolated straight lines in the G-function plot can be drawn to identify 

closure events of natural and main fractures. Then their leakoff coefficient and closure 

pressure can be estimated, respectively.  
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Figure 3-42 Composite G-function diagnostic plot for Well Z 

 

1) Traditional Nolte G-function model 

By assuming that no abnormal leakoff mechanisms occurs, the traditional Nolte 

G-function model is tried to estimated fracture leakoff coefficient. The interpretation 

result is listed in Table 3-8.  

 

Table 3-8 Results of before-closure analysis with traditional Nolte G-function model for Well Z 

𝜂 0.879 

𝑅𝑓, ft 61.26 

𝐶𝐿, ft/√min 4.02 × 10−4 

Closure pressure, psi 5732 

Closure stress gradient, psi/ft 0.631 
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2) Decoupled fracture model 

Again, for each assumed 𝐶𝐿𝑛/𝐶𝐿𝑚, leakoff coefficients and fracture surface areas 

for both types of fractures are computed, as listed in the following table. The linear 

relationship between 𝐴𝑓𝑚/𝐴𝑓𝑛 and 𝐶𝐿𝑛/𝐶𝐿𝑚 is still valid (Figure 3-43). And, natural 

fracture with lower leakoff coefficient tends to have a smaller extension, as shown in 

Figure 3-44.  

 

Table 3-9 Results from before-closure analysis with decoupled fracture model for Well Z 

𝐶𝐿𝑚/𝐶𝐿𝑛 Infinity 10 5 3.33 2.5 2 

𝐶𝐿𝑛/𝐶𝐿𝑚 0 0.1 0.2 0.3 0.4 0.5 

𝐶𝐿𝑚, × 10−4ft/√min 4.015 4.004 3.884 3.773 3.591 3.239 

𝐴𝑓𝑚, ft
2 11,791 11,344 11,033 10,407 9,430 7,669 

𝑅𝑓, ft 61.26 60.09 59.26 57.56 54.79 49.41 

𝐶𝐿𝑛, × 10−5ft/√min 0 0.4 0.777 1.132 1.436 1.619 

𝐴𝑓𝑛, ft
2 7,170 8,220 9,890 12,228 16,072 23,800 

𝐴𝑓𝑟 1.644 1.380 1.116 0.851 0.587 0.322 

𝜂 0.879 0.875 0.871 0.864 0.854 0.838 
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Figure 3-43 Linear relationship between Afm/Afn and CLn/CLm in Well Z 

 

 

Figure 3-44 Relationship between natural fracture leakoff coefficient with its extension for 
Well Z 
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𝐶𝐿𝑛 = 0 is taken as the instance for history match. The simulation result has a 

pretty good fit for the bottomhole pressure (Figure 3-45) and diagnostic plots (Figure 

3-46 and Figure 3-47). 

 

 

Figure 3-45 History match of the bottomhole pressure of Well Z with DFM (CLn=0) 
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Figure 3-46 History match of the log-log Bourdet derivative of Well Z with DFM  (CLn=0) 

 

 

Figure 3-47 History match of the semilog G-function of Well Z with DFM  (CLn=0) 
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3.5 Summary of case studies 

The summary of FCT interpretation result is listed in Table 3-10. It can be 

figured out that formation properties could be in great difference among these four wells 

even they drilled in the same pad. Together with the post-frac gas production rate, as 

shown in Figure 3-48, the interpretation result for each well will be compared and 

analyzed. Then, the formation properties could be better described and understood. One 

should note that in Table 3-10, except for the first and last closure events, three other 

possible events, as well as their closure pressures and leakoff coefficients, are not listed.  

 

Table 3-10 Summary of before-closure analysis  

 Well A Well I Well L Well Z 

Formation Otter Park Klua Otter Park Otter Park 

Pumping Vol., bbl 31.45 31.45 125.8 57.87 

Pumping time, min 6.666 7.13 13.0 9.1 

TVD, ft 8932.2 9266.2 8979.8 9088.6 

Closure pressure, psi 6266 4784 6280 5732 

Closure stress gradient, psi/ft 0.702 0.516 0.699 0.631 

 

Model Nolte Nolte Nolte Nolte 

𝐶𝐿, × 10−4ft/√min 0.987 1.00 2.85 4.02 

𝑅𝑓, ft 73.58 70.86 92.28 61.26 

Fluid efficiency, 𝜂 0.932 0.934 0.893 0.879 

 

Model PDL PDL Decoupled Decoupled 

𝐶𝐿𝑛, × 10−4ft/√min 5.23 1.34 (CL4) 0 0 

𝐶𝐿𝑚, × 10−4ft/√min 0.683 0.590 2.849 4.015 

𝑅𝑓, ft 46.48 38.6 92.28 61.26 

Afr 0 0 0.872 1.644 

Fluid efficiency, 𝜂 0.814 0.687 0.893 0.879 
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Figure 3-48 Cumulative gas and water production of wells in the pad(Ehlig-Economides et al. 
2012) 

 

The first impression on the production profile of all wells in the pad, is that 

almost all wells located on the fault side have a lower productivity than those on the 

other side. In other words, the existence of fault could greatly change the mechanical 

property of the formation. For these four wells with FCT, Well I and Z were drilled on 

the fault side, we can find that these two wells has a much lower closure stress than the 

other two on the side without fault. Therefore, fault is one of major factors on well 

productivity.  
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Well I, which is the only well located in Klua/ Evie, has a lowest closure 

gradient, and almost smallest leakoff coefficient as well. It can be expected that the 

formation is distinct from the overlain Otter Park/Muskwa, and is less permeable than 

the latter. The lowest production rate confirms the expectation.  In its FCT analysis, 

multiple-closure behavior was observed. Several sets of natural fissures, laminated rock 

fabric could be activated during treatment, which also can be referred as high uncertainty 

and complexity. Therefore, it can be concluded that Klua/ Evie might have a smaller 

permeability, and more complicated rock fabric than the Otter Park/Muskwa members, 

which is probably the main reason for the low productivity of Well I.  

For another well on the side of fault, Well Z, its main fracture has high leakoff 

coefficients. One possible reason for its low formation stress is that the tested location is 

very close to the fault, where tectonic stress likely has been released during the 

formation of fault. Furthermore, natural fractures might be well developed in the vicinity 

area of the fault. It could be the reason for the observed high fracture leakoff rate. On the 

other hand, the high flow capacity of these well-developed natural fissures provide an 

express way for the gas migration. After its generation from kerogen, gas would be 

likely transported to other layers through the connected natural fissures around the fault. 

This could be one possible reason for the low production rate of wells on the side of fault 

even when they were drilled in a permeable formation, like Well Z.  

The interpretation result of FCT shows that Well L has a relatively high leakoff 

coefficient, which indicates that the formation has a relatively high flow capacity. And 

the well turns out to be the most productive well among these four tested wells.  
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As to Well A, high leakoff coefficient through natural fractures could be taken as 

an indication that the hydraulic fracture is able to contact the permeable formation by 

activated natural fissures. It could be one possible scenario for the relatively high 

productivity of the well. 

In summary, the interpretation result from the FCT with the novel developed 

models in this dissertation can be used in formation description, especially when 

abnormal leakoff mechanisms are observed. The properties of natural fractures can be 

estimated by the PDL and the decoupled fracture model. When these models are 

involved, FCT could be one of the most beneficial and powerful tools in formation 

description.  

Since early wellbore storage (WBS) behavior has been observed in three of four 

studied wells. As has been discussed, the early unit-slop curve on log-log derivative or 

pressure difference are indication of WBS effect. Its effect fades off gradually after the 

curve departs from the early unit-slope line. Here, we takes the departure point as the 

end of WBS dominant period. For these three wells with WBS, their durations and 

calculated coefficients of WBS is listed in Table 3-11. It can be figure out that Well Z 

has the largest WBS coefficient and longest duration, while WBS is relatively weak in 

Well I. Together with the pressure response of all wells after shut-in, as shown in Figure 

3-49, we might be able to explain the possible scenarios behind the difference WBS 

behaviors for each well. 
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Table 3-11 Well storage effect (WBS) for three studied wells 

Wells Duration, s WBS coefficient, bbl/psi 

Well I 20.2 0.0665 

Well L 19.1 0.215 

Well Z 55.1 0.272 

Figure 3-49 Pressure response at early time after shut-in 

First, it is clear that Well A has the slowest pressure falloff after shut-in, which is 

the direct reason for the missing of WBS in its log-log diagnostic plot. As been 
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friction in the wellbore and near-wellbore vicinity. Several following possible scenarios 

could be presumed and estimated.  

1) Although the leakoff coefficient into matrix is relatively low, high leakoff rate 

into natural fissures has been presented by the PDL behavior. Therefore, the 

missing of WBS, or the low decline rate of pressure after shut-in, is probably not 

the result of slow dissipation rate of net pressure.  

2) More likely, the missing of WBS is due to the small pressure loss associated with 

friction during injection, which probably an indication of good connection 

between wellbore and fracture. 

For those three wells with observed WBS phenomenon, Well I has the smallest 

WBS coefficient. Correspondingly, compared with other two wells, pressure decline rate 

of Well I is the lowest, as shown in Figure 3-49. In combination with its interpretation 

results, we can find that the existing of WBS might be the result of very high leakoff rate 

at early time after shut-in. While, the impact of pressure loss by friction, is difficult to 

determine.  

Well L has a similar leakoff coefficient with Well Z, but its WBS duration is 

much shorter than the later. In the pressure difference plot, we can find that their 

pressure decline curve is close to each other in the early time. Since the injection rate in 

Well L is much higher than the rest, one possible reason for the rapid decline of recorded 

pressure at early time is because of the dissipation of friction pressure. According to the 

interpretation result in Table 3-7, large extension of natural fractures is likely connected, 
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but they have a lower leakoff coefficient, and probably have little contribution to the 

rapid pressure decline at beginning.  

Well Z has a strong WBS behavior, represented by the longest duration and 

largest leakoff coefficient. Correspondingly, the rapid pressure decline at early time is 

relatively steep and lasts for a long duration. Since the early system leakoff coefficient is 

limited, the strong WBS might be the result of friction dissipation.  

 

3.6 Summary of the Chapter III 

In this chapter, four wells drilled in the same pad in Horn River Shale are taken 

as examples for FCT analysis. As a comparison with tradition Nolte method, which can 

only be used to determine the closure pressure of main fracture, leakoff coefficient and 

fluid efficiency, the new-derived PDL model and decoupled fracture model are 

employed to interpret the pressure falloff data. By adding natural fractures into the 

fracture system, more parameters are available to describe the leakoff system. These two 

new model, PDL model and decoupled fracture model, not only can be used to precisely 

estimate the closure pressure and leakoff coefficient of main fracture, fluid efficiency, 

but also provide a chance to estimate the extension, leakoff coefficient of connected 

natural fractures. More parameters therefore are able to be quantified, such as closure 

pressure, leakoff coefficient and extension of natural fractures. The curve generated by 

both PDL and decoupled fracture model are able to match the recorded field data, which 

proves the validation of the new derived models in this dissertation.  
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Together with geological background, the interpreted result can be used to 

explain their difference in production performance.  Besides, WBS effect is proven to be 

directly dependent on the pressure decline rate at early time immediately after shut-in. 

Strong WBS is usually the result of two major mechanisms: rapid decline of net 

pressure, when the leakoff coefficient is relatively high or PDL/tip-extension occurs; and 

the dissipation of friction along the wellbore and at the near-wellbore vicinity. 

Therefore, WBS behavior in some cases might be used to justify the initial leakoff 

coefficient, or estimate the connection condition between wellbore and fracture.   
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CHAPTER IV  

CONCLUSIONS AND RECOMMENDATIONS 

Chapter 4  

In this chapter, several significant conclusions will be listed as a summary. And, 

based this dissertation, there are also some other aspects are recommended for the future 

work.  

4.1 Conclusions 

This research provides new analytical models for all of the known fracture 

calibration leakoff behaviors, including wellbore storage (WBS), tip-extension, pressure 

dependent leakoff (PDL), multiple apparent closure events and transverse storage 

behavior. The new models provide matches for abnormal leakoff behavior found in field 

data from Horn River Shale. Several key conclusions are the following. 

1. WBS may be an indication of the communication condition between the 

wellbore and the hydraulic fracture. Dissipation of friction in the wellbore 

and near-wellbore area looks like classic WBS behavior. Because of fluid 

expansion, the after-flow effect cannot be neglected for the FCT with small 

injection volume.  

2. The new model for tip-extension shows a composite G-function derivative 

curve approaching zero at the origin. If the fracture closes shortly after tip-

extension, or the recorded data is not long enough for the fracture to close, 

the extrapolated straight line would have a positive intercept in the pressure 

axis, which is the commonly accepted indication of tip extension.   
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3. Poroelastic closure with normal leakoff should always correspond to unit 

slope if the closure time is less than the injection time or 3/2-slope if the 

closure time exceeds ten times the injection time on the Bourdet log-log 

diagnostic derivative plot. Closure process of a natural fracture network can 

be picked in the same way as that of main fracture.  

4. The decoupled fracture model provides a match for PDL and transverse 

storage behavior. The contribution of fluid leakoff through natural fractures, 

whether in PDL or transverse storage, can be estimated both by the PDL 

model and the decoupled fracture model. The decoupled fracture model 

includes leakoff coefficient and surface area for both the main fracture and 

the natural fracture network, but the set of parameters for a given behavior is 

not unique. 

 

4.2 Recommendations 

The following works might be done in the future. 

1. Since the dissertation has developed the pressure solutions for the most 

commonly observed leakoff mechanisms before closure, a comprehensive 

FCT interpretation tool could be constructed. It could include all the flow 

regimes and before-closure leakoff mechanisms as developed in the 

dissertation, as well as after-closure analysis.  
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2. For the FCT in the naturally fracture formation, some other data source, like 

microseismic map, could be used to calibrate the interpretation result from 

PDL model or decoupled fracture model.  
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