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ABSTRACT

Adaptive cruise control (ACC) testing requires minimum of two cars and a plat-

form where the two cars can be tested for a continuous time. Here a custom-built

platform and software are presented for testing various ACC algorithms on scaled

model cars. There are multiple techniques being studied for driver convenience and

safety automation systems for production vehicles: electronic stability control, adap-

tive cruise control, lane keeping, and obstacle avoidance. Presented here are some

novel control framework that gives formal guarantees of correctness that go beyond

traditional PID-based controllers for ACC that do not, inherently, have proofs that

satisfy. In the first approach, safety constraints – maintaining a valid following

distance from a lead car are represented by control barrier functions (CBFs), and

control objectives – achieve a desired speed – are encoded through control Lyapunov

functions (CLFs). While the same safety constraints are formulated using Linear

Temporal Logic (LTL) for synthesizing the control software module using abstrac-

tion based controllers in the second approach. In the longer run, each interacting

software module is endowed with specifications, under certain environment assump-

tions, the module is guaranteed to meet its specifications.

For the CBF-CLF approach, the different objectives can be unified through a

quadratic program (QP), with constraints dictated by CBFs and CLFs that balance

safety and control objectives in an optimal fashion. Similarly for the abstraction con-

trollers, PESSOA and Polyhedral Control Invariant Set approaches are correct-by-

construction. The end result was the experimental demonstration of these method-

ologies on scale-model cars, for which the CBF-CLF and abstraction based controllers

were implemented in real-time.
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NOMENCLATURE

ACC Adaptive Cruise Control

CPS Cyber Physical System

NHTSA National Highway and Traffic System Administration

CCC Conventional Cruise Control

ICC Intelligent Cruise Control

CLF Control Lyapunov Functions

CBF Control Barrier Functions

RCBF Reciprocal Control Barrier Functions

ZCBF Zeroing Control Barrier Functions

PCIS Polyhedral Controlled Invariant Set

PATH Program of Advanced Technology for the Highway

QP Quadratic Program

ABS Anit-lock Braking System

MPC Model Predictive Control

ROBDD Reduced Ordered Binary Decision Diagram

BLDC Brush Less Direct Current

LIPO Lithium Ion-Polymer

PWM Pulse Width Modulations

ROS Robotic Operating System

ECU Electronic Control Unit

PID Proportional Integrator Differential
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1. INTRODUCTION *

Automobiles are good examples of complex Cyber-Physical Systems (CPS) due

to the tight coupling between the physical world (car/road dynamics) and the sev-

eral layers of hardware and software used for control purposes. Recent efforts by

automakers to increase the level of automation in cars bring a new sense of urgency

to the difficult problem of formally verifying these systems. Adaptive cruise control

(ACC) is being developed and deployed on passenger vehicles [17] due to its promise

to enhance driver convenience, safety, traffic flow, and fuel economy [26], [27], [40].

ACC is a multifaceted control problem because it involves asymptotic performance

objectives (driving at a desired speed) is, subject to safety constraints (maintaining

a safe distance from the lead car), and has constraints based on the physical charac-

teristics of the car and road surface (maximum acceleration and deceleration). This

control problem is made more challenging by the fact that the various objectives

can often be in conflict, such as when the desired speed is faster than the speed of

the leading car. Provably satisfying the safety-oriented constraints is of paramount

importance.

According to a 2008 survey conducted by the National Highway Traffic Safety

Administration [13], there were 10.2 million car crashes, out of which 9.48 million

were due to human error, i.e., 93% of all the car crashes in the U.S. are caused

by mistakes made by the driver. Although these numbers recently have decreased

(possibly due to stricter laws), technology has yet to find satisfactory solutions to

preventing accidents. These numbers have motivated a significant amount of research

*Portions of this thesis have been reprinted with permission from Adaptive Cruise Control:
Experimental Validation of Advanced Controllers on Scale-Model Cars by A. Mehra, W.L. Ma, P.
Tabuada, J. Grizzle and A. D. Ames.
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in utilizing onboard sensing, computation and control to assist human drivers; some

examples include: cruise control, Anti-lock Braking Systems (ABS), traction control,

obstacle avoidance, improved traffic flow and fuel economy [26], [27].

Conventional cruise control [39] (CCC) has been successfully implemented in

almost all cars in the United States, yet it does not actively take into account col-

lision avoidance. Adaptive cruise control (ACC), which aims to unify CCC with

safety-related constraints [31], is being actively studied from a variety of perspec-

tives [25],[30], [34]. Mitsubishi was the first company to start the concept of ACC in

1995, designing the Preview Distance Control, a laser-based approach, to match the

velocity of the vehicle to its immediate predecessor.

A variety of solutions have been proposed since then (see the survey paper [41]).

The most relevant to the approach taken here is based on Model Predictive Control,

which is natural in the ACC setting due to the existence of multiple control objectives

[25], [30]. As a means to experimentally validate advanced automotive controllers like

ACC, previous research by the Program of Advanced Technology for the Highway

(PATH) focused on creating platooning between vehicles on the highways. Intelligent

cruise control (ICC) is a variant of ACC which prioritizes autonomous driving by

designing controllers with braking systems that require minimal manual interference

explored by a lot of literature, such as [21], [17]. Controlled braking systems that

allow a vehicle to perform emergency stops when necessary, then return to the set

point velocity was investigated by [15].

Even though the use of barrier functions unified with Lyapunov functions pro-

vides a novel approach to ACC using quadratic programs [29], they have been used

in a other fields of study, [32], [20], [12] and [24]. A recent approach to handle the

verification problem is to synthesize control software using correct-by-design meth-

ods. These are techniques that synthesize both, the control software as well as a

2



proof of its correctness, so that a-posteriori verification is not required. All these

techniques were implemented on the custom-built platform for this thesis.

1.1 Control Techniques

Two major approaches were analyzed experimentally to solve the ACC problem,

Lyapunov-like controllers using barrier certificates and correct-by-design control us-

ing formal methods. In the following sections, each approach is introduced along

with multiple techniques used in each method. It is important to realize that both

the approaches have not been implemented on an actual physical system in any

literature and was the first time that these algorithms were practically verified.

1.1.1 Control Lyapunov Function and Control Barrier Functions

The simulated and experimental validation of an optimized controller mathemat-

ically accounts for both the safety and the comfort of the driver. The safety-critical

nature of the problem necessitates controllers that are formally correct, i.e., give

guarantees of safety. As a means to address the issue of multiple constraints, [6],

[31], controllers were presented that give proofs of safety while simultaneously achiev-

ing speed related control objectives. In particular, safety constraints were formulated

as CBFs and speed regulation related control objectives were encoded as CLFs; these

representations allowed for the formulation of a quadratic program (QP) that dy-

namically balanced these potentially conflicting specifications.

Two different types of CBFs were analyzed experimentally. Reciprocal control

barrier function (RCBF) uses an inequality that satisfied the safety constraints. The

inequality was converted into a barrier function, B = 1
h(x)

, which allowed the function

to grow to infinity as it approached the boundary. Based on a similar concept,

a Zeroing control barrier function is also derived from the same inequality. This

function is of the form B = h(x) and was restricted to stay positive for all time.

3



1.1.2 Formal Methods

ACC systems have been designed using various methods such as MPC [30] and

sliding mode control. A comprehensive survey on ACC systems can be found in a

paper on research on ICC systems [41]. Although these techniques provide controllers

enforcing the specification, there is no guarantee that the actual implementation of

MPC based controllers is correct. Unlike MPC and Sliding mode control approaches,

a controller was synthesize as well as its software implementation in a correct-by-

design manner so that no verification was required.

In [31], a controller was synthesized using correct-by-design control software for

ACC while assuming a lead vehicle operating at a constant speed. Two different

methods for the synthesis of control software were used. The first method reformu-

lates the problem as the computation of reachable sets directly on the continuous

state space, while the second method used finite-state abstractions. The resulting

correct-by-design controllers were deployed on scale model cars.

1.2 Implementation Method

Mathematical simulation is not sufficient to provide proofs of real world behavior,

i.e. they must be experimentally verified to validate the theory. Therefore, a novel

experimental platform is introduced utilizing scale model cars (see Fig. 2.1) to test

the various ACC controllers. This platform was custom built for the purpose of

testing formal results before translating them to full scale realization. The controllers

were implemented in real-time on an autonomous following car while the lead car was

manually controlled so as to simulate realistic driving conditions. The end result was

the experimental validation of online optimization based controllers for ACC (videos

can be found at links [1],[1]).

4



2. SYSTEM DYNAMICS AND MODELLING

A physical system that gives an approximate model, if not completely accurate,

is required to develop control theories. Commercially available vehicle has multiple

degrees of freedom, therefore, modelling the complex Cyber-Physical system is ex-

tremely difficult. Even if an approximate model can be derived from the equations

of motion, the environmental factors (roads, wind, tire pressure etc) were inherent

hidden variables. To develop the proposed control theories, the system was simplified

to get an acceptable model for the required ACC problem.

The vehicle was modeled as a (lumped) point mass moving in a straight line with

the steering fixed in one position. A free body diagram is shown in Fig. 2.1 which

results in the following equations of motion.

m
dv

dt
= Fw − Fr (2.1)

Figure 2.1: Dynamics on a free body diagram of a vehicle.
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where m and v are the mass and velocity of the car, Fw is the force generated by the

contact of the wheels with the road, and

Fr = f0 − f1v − f2v2. (2.2)

is the total resistive force acting on the vehicle, in which f0, f1 and f2 are various

coefficients of friction forces that can be calculated empirically. For this specific

research all the constant were determined by analysis on actual cars and fitting the

data points using higher order polynomials equations. All parameters used are listed

in 2.1. These parameters were scaled according to the ratio of the scale model car

during implementation.

Furthermore, the distance D between the car and the lead car is specified by the

equation:

d

dt
D = v0 − v (2.3)

where v0 and v are the velocities of the lead and controlled car, respectively. In this

case the constant lead car velocity was assumed. In the future sections, this equation

is used for demonstration of the feasibility of controllers for the given model. Note

that the velocity of the lead car was considered both constant, v0, and time varying,

vl(t). Experimentally, vl(t) will governed by the user manually controlled the lead

car, and sensed through the boom encoder. The equation then merely changed to,

d

dt
D = vl(t)− v (2.4)

6



2.1 State Space Representation

Development of the control theory system required the simplistic state space

form. By defining x = (x1, x2) with x1 the position of the vehicle, x2 the velocity

and z = D to be the distance between the two cars, the governing equations was

converted to a nonlinear ODE:

ẋ =

 x2

−Fr/m


︸ ︷︷ ︸

f(x,z)

+

 0

1/m


︸ ︷︷ ︸
g(x,z)

u (2.5)

ż = vl − x2︸ ︷︷ ︸
q(x,z,t)

, (2.6)

where u = Fw, the control input. The state space equations now represent an affine

nonlinear system, with f(x, z) as the dynamics based only on states and g(x, z) as

the constant which was multiplied by the control input, u. The output of this affine

system was considered to be h(x) = x2.

Parameter value Unit
g 9.81 kg/s2

m 9.07 kg
f0 0.1 N
f1 5 N · s/m
f2 0.25 N · s2/m
v0 3 kg/s
ε 10 −
γ 10−4 −
ca 0.8 −
cd 1.2 −
psc 105 −
pcc 1010 −

Table 2.1: Parameters Used in Simulation and Experiments
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2.1.1 ACC Control Constraints

The goal was to validate the requirements of ACC, including: collision avoid-

ance, adaptive velocity control, and driving comfort constraints.Three classes of

constraints, hard soft and comfort, will form the basis for the development of an

advanced online-optimization based controller for the ACC problem.

Hard Constraints: The constraint with the highest priority prevented the following

vehicle from colliding with the lead car. This constraint should never be violated

under any circumstance. Considering the simple rule stated in [43]: the minimum

distance between two cars must be “half the speedometer”, which is represented

mathematically as:

D ≥ v

2
(HC1)

Soft Constraints: As the standard objective of cruise control, the controller should

be able to track a specified desired speed vd when adequate headway is assured. In

other words:

Drive v − vd → 0 (SC1)

Comfort Constraint: While satisfying hard and soft constraints, it is of necessity

to reduce the peak forces generated by the car in emergency situations. That is,

prevent sudden accelerations so that the driver can experience a comfortable ride

if at all possible. This can be achieved by constraining the acceleration and the

deceleration of the vehicle as an inequality constraint:

−cdg ≤
Fw
m
≤ cag. (CC1)

where cd and ca were the factors of g for deceleration and acceleration, respectively.

8



2.2 Hybrid Model Representation

The ACC problem was also represented as a hybrid system with two different

modes and reset maps switching between the two modes [31]. To include a lead

vehicle in the system description, we use a hybrid system model was used with two

discrete modes M1 and M2, called no lead car and lead car mode, respectively.

The lead car mode M2 has an additional continuous state h which measures the

headway to the lead car. The continuous dynamics of M1 are those of (2.1) while

the continuous dynamics in mode M2 contain an additional equation describing the

dynamics of the headway given by (2.1) and (2.4). The admissible velocity for the

controlled car is bounded by the set V = [vmin, vmax] with vmin ≥ 0.

The two modes have different state spaces, mode M1 has a state space V while

mode M2 has the state space V × H, where H = [0, hmax] is the bounded by the

maximum range of the radar. Along with the model for the following car, the lead

car was modeled in the following way,

v̇l = al (2.7)

Figure 2.2: Hybrid system model.
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Where al was the acceleration of the lead car, bounded by the set al ∈ [aminl , vmaxl ]

and the velocity by Vl = [0, vmaxl ].

In practice, the system was in M2 if there was a car within the radar range, and

in M1 otherwise. Switching between the two states was governed by lane changes of

lead cars, which were modeled using reset maps R1,2 : V → 2V×H, R2,1 : V ×H → V

and R2,2 : V ×H → 2V×H

R1,2(v, h) = {(v, h̄) : h̄ ∈ H},

R2,1(v, h) = {v},

R2,2(v, h) = {(v, h̄) : h̄ ∈ H}.

(2.8)

Here R1,2 modeled a transition from the no lead car mode M1 to the lead car

mode M2, where the headway was initialized to some h̄ ∈ H. Similarly, R2,2 models

situations where the radar reading suddenly changes as a result of lane changes

undertaken by cars in front. The hybrid model can be visualized in the Fig. 2.2.

For reasons of comfort, the force Fw generated by the ACC software to the range

was limited

Fmin
w ≤ Fw ≤ Fmax

w (2.9)

10



Figure 2.3: A figure depicting the distance measurement by the sensors on the con-
trolled car. (Image Credits: Audi Motors)

2.2.1 ACC Formal Specification

In this section the adaptive cruise control requirements are formalized using Lin-

ear Temporal Logic (LTL). Introducing the time headway, defined as τ = h/v, the

requirements given by the International Organization of Standardization, [22, Chap-

ter 6], are summarized as follows.

1. The input constraint (2.9) needs to be satisfied at all times;

2. A lower bound on the time headway τmin needs to be satisfied at all times;

3. A desired lower bound on time headway τdes to the lead vehicle and a desired

upper bound vdes for the velocity should be eventually reached and maintained

henceforth.

The above requirements were then represented in the form of sets. First, the set SU

was introduced which defines the input constraint and S which defined the minimum

11



headway constraint as follows

SU := [Fmin
w , Fmax

w ], (2.10)

S := {(v, h, vL) ∈ V ×H× VL : h/v ≥ τmin} . (2.11)

The goal set G was then presented to express the last requirement of the standard.

The set G represented all states that satisfy the desired time headway and the desired

velocity upper bound. The system should reach this set eventually and stay in it

forever

G := {(v, h, vL) ∈ V ×H× VL : h/v ≥ τdes, v ≤ vdes}. (2.12)

The ACC specification was expressed using the atomic propositions SU , S and G,

the propositional logic conjunction “∧”, and the temporal operators always “�” and

eventually “♦”. The LTL formulas were interpreted over infinite sequences (ξ, ν)

where the signal ξ : N→ R3 is a sample-and-hold trajectory of (2.1), (2.2) and (2.7)

given the input signal ν : N→ R generated by the ACC. These sequences were the

behavior of the closed-loop system.

A behavior (ξ, ν) was said to satisfy �p or ♦p if the atomic proposition p is true

at all times or eventually at some time, respectively. A closed-loop system satisfies

an LTL formula ϕ if every behavior, i.e., (ξ, ν), satisfies ϕ. (Detailed explanation of

the syntax and semantics of LTL can be found in [42].)

The ACC specification can be described by the LTL formula ψ:

�SU ∧�S ∧ ♦�G. (2.13)

12



The first and second terms guarantee input and time headway τmin constraints are

satisfied all the time, while the third term ensures that the system will eventually

satisfy, and maintain, the lower bound on time headway τ des and the upper bound on

velocity vdes. While (2.13) does not describe all the requirements in [22], it already

illustrates some of the difficulties arising on the synthesis of controllers enforcing

multiple objectives and constraints.

2.3 Objectives Derived from the Specifications

Given correct-by-design controllers enforcing the LTL specification (2.13) on the

model (2.1), (2.2) and (2.7) and the state space based model, (2.5), the objectives

were:

1. To implement these controllers on the experimental platform described in the

following sections;

2. To compare the theoretical guarantees of these controllers against simulation

and experimental results;

3. To discuss the ease of implementing these controllers on the experimental plat-

form.
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3. PROPOSED CONTROL THEORIES

As presented in the previous chapters, this thesis takes four different control

methods in consideration for experimental testing. Before we get into the details of

implementation on the hardware, it is important to see the construction of each con-

troller individually. All the approaches have been presented, discussed and analyzed

using basic simulation results to show the feasibility of solutions.

The first two techniques use a combination of Lyapunov functions and barrier

functions to develop two advanced control methods for the ACC problem. Both

of them use the same Lyapunov function but they vary in the style of the barrier

function used, which allows the change in construction of the controllers. The last

two techniques use the formal methods approach using linear temporal logic. Each

of them uses the same goal set, while using two different ways to solve the problem.

Each of these control theories are discussed in detail in the following sections. At this

point it is also important to mention that this is an experimental based thesis and

not theory based, so while discussing the controllers, detailed mathematical proofs

will not be included here. Merely the results of the theorems will be used to show

the construction of the controllers.

3.1 Multiple Objective Optimizing using Quadratic Programs

This section will focus on the construction of a Lypanov-like controller using a

reciprocal barrier function. To design a controller that provably enforces the Hard

Constraint (HC1), it is natural to utilize control barrier functions (CBFs) to ensure

that this constraint is satisfied for all time, [4], [5]. In particular, by converting units
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to m and s, the hard constraint (HC1) can be restated as:

h(x, z) = z − 1.8x2 ≥ 0, (3.1)

which yields the admissible set C given by:

C = {(x, z) ∈ R3 : h(x, z) ≥ 0}, (3.2)

∂C = {(x, z) ∈ R3 : h(x, z) = 0}, (3.3)

Int(C) = {(x, z) ∈ R3 : h(x, z) > 0}. (3.4)

As previously stated, the Lyapunov function candidate, for tracking the desired

velocity is the same. The chosen control Lyapunov function candidate and the setup

of the quadratic program to balance between the multiple objectives in a unified

fashion is discussed. Before getting into experimental implementation and analysis,

verification of the feasibility of solution for both constant and time varying lead car

velocity is done by simulating the system in MATLAB.

3.1.1 Reciprocal Control Barrier Function

Barrier functions – first utilized in optimization [11] – are now common through-

out the control and verification literature due to their natural relationship with

Lyapunov-like functions [38], [44],[45]. This thesis uses a novel form of barrier func-

tion, B, which was introduced in [6], associated with a set, C, i.e., B(x) → ∞ as

x→ ∂C, and proves that if B satisfies Lyapunov-like conditions, then forward invari-

ance of C is guaranteed. Existing formulations of barrier functions assume invariant

level sets of B [23], i.e., Ḃ ≤ 0, whereas here B is allowed to grow when it is far way
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from the boundary of C, i.e., it is only require that

Ḃ ≤ γ

B
(3.5)

where γ can be positive. This inequality relaxes the set of solutions possible for B

contained within C with the relation that Ḃ will grow when the solutions are far

away from the boundary of C. And as the solution approaches the boundary, the

rate of growth slows.

Based on the motivation provided above, now there is a need to formulate a

barrier function that gives the same guarantees. Firstly, the basic definition of a

barrier function as used in [6],

Definition 1: For the dynamical system (2.5), a function B : C ⊂ Rn → R

is a reciprocal barrier function (BF) for he set C defined by (3.2)-(3.4) for a

continuously differentiable function h : Rn → R if there exist a locally Lipschitz class

K functions α1, α2, α3 such that, for all x ∈ Int(C),

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
(3.6)

Ḃ(x) ≤ 1

α3(h(x))
(3.7)

The condition (3.6) essentially shows that the barrier function will be bounded by

two functions of the form 1
α(h(x))

such that as the solutions reach the boundary, it

grows to infinity.

Using the above definition and the notion of the construction of a CLF, as seen in

[7], a definition for reciprocal control barrier functions is constructed and presented

as,

Definition 2: Let C ⊂ Rn be defined as above for a continuously differentiable
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h : Rn → R, then a function B : C → R is a reciprocal control barrier function

(RCBF) if there exist class K functions α1, α2, γ > 0 such that,

1

α1(h(x))
≤ B(x) ≤ 1

α2(h(x))
(3.8)

inf
u∈U

[LfB(x) + LgB(x)u− γ

B(x)
] ≤ 0 (3.9)

for all x ∈ Int(C). Taking the problem at hand, lets choose the CBF candidate as:

B
(
h(x, z)

)
= B(x, z) =

1

z − 1.8x2
, (3.10)

with associated derivative:

Ḃ(x, z, t, u) = −1.8Fr +m(vl(t)− x2)
m(z − 1.8x2)2︸ ︷︷ ︸

LfB

+
1.8

m(z − 1.8x2)2︸ ︷︷ ︸
LgB

u. (3.11)

Based on the definition 2 given above along with the fact that (x, z) ∈ Int(C), the

provided B is a valid RCBF if it satisfies (3.5), which leads to

inf
u∈U

[
LfB(x, z) + LgB(x, z)u− γ

B(x, z)

]
≤ 0. (HC1-RCBF)

3.1.2 Zeroing Control Barrier Function

As the previous subsection defines the reciprocal barrier function, on similar

grounds and motivation, now a zeroing barrier function is defined. Considering the

same set C defined by (3.2)-(3.4) to provide the following definition, as seen in [46].

Definition 3: For the dynamical system (2.5) and the set C, a continuously

differentiable function h : Rn → R; if there exist a locally Lipschitz class K functions
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α1 and a set D with C ⊆ D ⊂ Rnsuch that,

Lfh(x) ≥ −α(h(x)), ∀x ∈ D (3.12)

then the function h is called a zeroing barrier function (ZBF) From this def-

inition, analogous to the control Lyapunov functions, the zeroing control barrier

functions can be defined.

Definition 4: Let C ⊂ Rn be defined as above for a continuously differentiable

h : Rn → R, the function h is called a zeroing control barrier function (ZCBF)

if there exist class K functions α such that,

inf
u∈U

[Lfh(x, z) + Lgh(x, z)u+ αh(x, z)] ≥ 0, ∀x ∈ D (HC1-ZCBF)

3.1.3 Control Lyapunov Function

This section used the mathematical methodology used in [6] to build the soft

constraints (see (SC1)) based on control Lyapunov functions [4], [8],[9], [16]. To

track a desired velocity the control law should drive

y(x, z) = x2 − vd → 0. (SC1)

For this relative 1 degree output, we choose the Lyapunov function candidate:

V (y) = y2 (3.13)

which yields

V̇ (y) = −2y

m
Fr︸ ︷︷ ︸

LfV

+
2y

m︸︷︷︸
LgV

u. (3.14)

18



According to definition 3 in [7], since V (y) satisfies c1‖y‖2 ≤ V (y) ≤ c2‖y‖2, V (y) is

a valid exponentially stabilizing control Lyapunov function (ES-CLF) if

inf
u∈U

[LfV (y) + LgV (y)u+ εV (y)] ≤ 0 (3.15)

is satisfied. In other words, with a proper choice of control input u, the output y(x, z)

will be exponentially driven to zero, thereby enforcing velocity tracking. However,

this function needs to be converted into constraints on the (x, z). By defining

ψ0(x, z) = −2(x2 − vd)
m

Fr + ε(x2 − vd)2

ψ1(x, z) =
2(x2 − vd)

m
(3.16)

we can then construct the CLF constraint:

ψ0 + ψ1u ≤ δsc, (SC1-CLF)

where δsc is a relaxation factor. Note that it is this relaxation factor that makes the

constraint a soft constraint.

Along with the soft constraint, the bounds on forces are also balanced in the

quadratic program. Note that since the comfort constraint is also a conditional

constraint and it directly acts on the control input, by modifying (CC1) by adding

the relaxation factor δcc:

u ≤ camg + δcc

−u ≤ cdmg + δcc (CC)
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3.1.4 Quadratic Programs

To unify all the constraints defined according to the ACC problem, an online

quadratic program (QP) based controller will provably satisfy the requirements, [8],

[29]. To construct a cost function To construct a cost function for the QP, notions

from feedback linearization [35] to develop a cost that will favor convergence to the

control objective (achieving a desired speed) are utilized. In particular, a control

input that satisfies (3.14) is given by:

u =
1

Lgy
(−Lfy + µ) = Fr +mµ (3.17)

where µ is the control input for the linearized output dynamics. To minimize the

control effort µ, the cost function of QP is chosen as:

µTµ =
1

m2
(uTu− 2uTFr + F 2

r ). (3.18)

By combing the above constraints the ACC CLF-CBF based QP control law is

given by:

u∗(x, z) = argmin

u=



u

δsc

δcc


∈R3

1

2
uTHaccu + F T

accu (ACC QP)

s.t. Aclfu ≤ Bclf (CLF)

Acbfu ≤ Bcbf (BCF)

Accu ≤ Bcc (CC)
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In which,

Hacc = 2


1
m2 0 0

0 psc 0

0 0 pcc

 , Facc = −2


Fr

m2

0

0

 (3.19)

andAclf , Bclf andAcbf , Bcbf are the inequality constraints obtained from (HC1-RCBF),

(SC1-CLF):

Aclf =

[
ψ1(x, z) −1 0

]
,

Bclf = −ψ0,

Acbf =

[
LgB(x, z) 0 0

]
,

Bcbf = −LfB(x, z) +
γ

B(x, z)
.

Acc =

 1 0 −1

−1 0 −1

 , Bcc =

camg
cdmg

 .
where pcc is the user-defined penalty for the relaxation. Importantly, because as

higher priority has to be given to comfortable driving experience over velocity reg-

ulation, it is necessary to set psc � pcc, where psc is the penalty for violating the

soft constraint. The matrices Acbf and Bcbf are constructed using the two different

barriers discussed in the previous subsections. This also shows the ease in inter-

changing the matrices from the two controllers Arcbf , Azcbf , Brcbf and Bzcbf , while

implementation.

Note that while the output of the control law is a direct input to the dynamic

system for the simulation, for the experimental setup the actual input to the system
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Figure 3.1: Simulation results for the case when the lead car has a constant velocity
using RCBF.

is the PWM pulse to the motor. To best mirror the control framework on physical

experiments, we integrate the output of the QP (ACC QP) one step forward by using

the dynamics of the system to find the internal velocity via:

vu = vprevious + (u− Fr)tloop (3.20)

where tloop is the control period (loop rate)in experiment. The end result is a control

input for the nonlinear dynamics that will guarantee the safety hard constraint and
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Figure 3.2: Simulation results for the case when the lead car has a sinusoidal velocity
profile using RCBF.

adaptively use minimum effort to adjust the velocity of the vehicle for both good

comfort and tracking performances. The results of the simulation verification are

shown in FIG. For the time varying simulation, the following sine wave is considered:

3 + 5sin(0.1πt). The constant velocity case is simulated for RCBF and the time

varying for the ZCBF to test both types of barrier function candidates.
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3.1.5 Simulation Results

To demonstrate the validity of this construction, the CLF-CBF QP controller

(ACC QP) was implemented in an ideal environment: simulation. First results are

for a constant velocity profile for the lead car and second for which the lead car is

moving at a sinusoid velocity as given by vl(t) = 3 + 5 sin(0.1πt).

As shown in Fig. 3.1 the variables clearly show that when the following car

achieves the desired speed (23m/s) and it gets close to the lead car, as seen in the

hard constraint. This activates the barrier and we can see that the speed reduces

to that of the lead car which is fixed at 14m/s. More importantly, it is seen that

the barrier function always stays positive and the derivative of the barrier is always

negative.

Fig. 3.2 shows the control objectives have been achieved for a time varying

velocity, i.e., safety is always maintained while the desired speed is achieved whenever

possible. In particular, when the system starts from (x, z) ∈ C, since it is close to

∂C, the hard constraint (Fig. 3.2b) activates the CBF to take effect on the following

car and thereby modulate its speed. Therefore, with a high value of B(x, z) and

Ḃ(x, z, u, t), the following car moves much slower than the lead car to stay away from

the safety imposed barrier. When the hard constraint grows, i.e, the relative distance

is within a safe range, the CLF constraint will dominate the QP controller and yield

a desired cruise velocity regulation. Therefore, as the lead car was moving forward

and backward, which occasionally caused the CBF to slow down the following car,

the growing relative distance will eventually disable the hard constraint and leave the

CLF controlling the velocities with bounded accelerations. The simulation results

thereby verify the validity of the proposed controller in simulation.
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3.2 Formal Control Methods

This section provides a very brief discussion on the technique behind the controller

synthesis for two different formal methods. As this is an experimental thesis, the

details of the mathematical proofs are not provided here. The first technique that is

discussed here is based on finite-state abstraction using a tool called PESSOA. The

controller synthesis for this was done by students and professors at the University of

California Los Angeles. The second controller uses a linearized plant and solves the

ACC problem on a continuous state space using polyhedral controlled invariant sets

(PCIS). This theory was developed by the students and professors of University of

Michigan. The two approaches used to synthesize correct-by-design controllers for

the ACC problem are explained in the following subsection along with some graphical

analysis.

3.2.1 Solution by PCIS Computation

An outline of how the synthesis problem defined in the previous section can

be solved by PCIS computations. The problem is an example of a reach-stay-avoid

problem, in the sense that the specification dictates that a goal set should be reached

and kept invariant, while avoiding an unsafe set. To solve a single reach-stay-avoid

problem, the approach followed is initiated in [31]:

1. Linearize and integrate the dynamics to obtain a discrete-time affine system.

2. Employ reachability computations for discrete-time affine systems to reason

about polyhedral set invariance and reachability.

3. Implement a control strategy based on the polyhedral sets obtained in Step 2.

In this thesis the main focus is only on implementation issues.
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3.2.1.1 Linearization and Integration

To obtain a discrete-time affine system, the dynamics (2.5) of the following car

are linearized around a nominal velocity v̄. For the final closed-loop system to be

correct, correctness is required in the linearized system to imply correctness in the

original system (2.1) and (2.4). To achieve this, the inputs of the linearized system

are constrained by an amount corresponding to the maximal linearization error in the

domain. This allows the original system to mimic the performance of the linearized

system while still keeping the total control within the allowed bounds. For typical

vehicle parameters, the conservativeness introduced by the linear approximation is

small [31].

The second step is to integrate the linearized continuous-time dynamics for a

time step ∆T . Selecting an appropriate time step constitutes a trade-off between

performance and computational complexity. On one hand, the closed-loop system

will be provably correct only at discrete instants separated by ∆T . By bounding how

much the continuous-time system can deviate from its discrete-time counterpart as

in [18], correctness guarantees can be obtained also in continuous time at the cost of

conservativeness (which increases with ∆T ). On the other hand, a smaller ∆T will

increase the number of iterations needed for the controlled-invariant set algorithms

to converge (or be ε-close to its point of convergence).

3.2.1.2 Set Computation and Implementation

Given an affine discrete-time system and a reach-stay-avoid problem defined by

a goal set G and an unsafe set U (in this case U is the complement of the safe set

S), first a controlled-invariant set C0 ⊂ G contained inside the goal set is computed.

Essentially, employing polyhedron algorithms from [10, 14] modified with novel tech-

niques for addressing disturbances, with bounds both on the disturbance state itself
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and its rate of variation, to accommodate both Vl and al. Such assumptions make

the maximal controlled-invariant set non-convex in this application, so it cannot be

represented by a single convex polyhedron. Therefore the controlled-invariant set is

represented as the union of overlapping polyhedra.

Given a controlled-invariant set, subsets of the state space C1, C2, . . . are com-

puted with the property that Ci can be reached from Ci+1 in time ∆T while avoiding

the unsafe set U . These sets, together with the control policy, “when in Ci, go to

Cmax(0,i−1)” then constitute a solution to a reach-stay-avoid problem.

To implement this control strategy, the model predictive control (MPC) is used,

which allows us to pose set membership constraints as linear inequalities in a quadratic

program (QP) that is solved online. Basically, the choice of weights in the QP se-

lects a single correct control action among the infinite number of correct control

actions represented by the sets. Before running the controller, a collection of linear

inequalities representing the sets Ci must be loaded into memory. In this case, a

time discretization step ∆T = 0.1s was used which resulted in a controller consisting

of 11 sets, each represented by 14 convex polyhedra.

3.2.2 Solution via PESSOA

In this section, the synthesis of a controller that enforces the specification given

by (2.13) on system (2.1) and (2.4) is discussed using the MATLAB toolbox PESSOA

[23], based on the correct-by-design controller synthesis techniques described in [37].

Controller synthesis is performed on an abstraction Σ of system (2.1) and (2.4),

which is computed by discretizing the state space, input space and time. The dis-

cretization produces a finite-state transition system Σ = (Q,U, δ), where Q is the set

of states, U is the set of inputs, and δ : Q× U → 2Q is the transition function. The

abstraction is constructed so that there exists an approximate alternating simulation
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Figure 3.3: Simulation results for the case when the lead car has a constant velocity.

relation [33] from the abstraction to the continuous system. The existence of this

simulation relation ensures that controllers synthesized for the abstraction can be

refined to controllers enforcing the specification on the continuous system [37].

It is worth mentioning that PESSOA uses reduced ordered binary decision di-

agrams (ROBDD) [3], a memory-efficient data structure, to store the abstraction

as well as the synthesized controller. The implementation of such controllers on a

digital platform is straightforward since it amounts to querying the ROBDD at each

sampling time.
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3.2.3 Controller Synthesis via PCIS vs PESSOA

PESSOA and PCIS are two complementary approaches to synthesize correct-by-

design control software. PCIS exploits the linearity of the dynamics and of the atomic

propositions (semi-linear sets) to synthesize a control policy directly on the contin-

uous state space. It offers the advantage of not requiring the construct of a finite

abstraction, which is the main computational bottleneck in PESSOA. However, since

it exploits linearity, it requires the linearization of the nonlinear dynamics. PESSOA

can work directly with nonlinear models but it requires the construction of a finite

abstraction, a computationally demanding operation. Once such an abstraction is

available; however, controllers enforcing arbitrary LTL specifications can be handled

and termination of all the relevant algorithms is always guaranteed. When using

PCIS, only a smaller class of requirements can be handled and termination is forced

whenever the sets being computed do not change much from one iteration to the

next. Fig. 3.3 shows the constant lead car velocity results for both the controllers

in comparison. The plots prove that the force on the wheels is always bounded and

as the distance between the cars reduces, the speed of the controlled reduces as well.

An important thing to note is that the time headway (τ) is always positive and does

not violate the constraints put on it. These results have been shown only to visually

realize the guarantee that the controller is working; they were simulated by students

at University of Michigan and University of California Los Angeles.
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4. EXPERIMENTAL REALIZATION

As the main result of this thesis, the control theories proposed in the previous

chapter have to implemented on a physical experimental platform to verify their

feasibility on the hardware. For the implementation, a novel platform was custom-

designed specifically to solve the requirements of the ACC problem in Fig. 3.4. In

this chapter, the details of the hardware setup along with the electronic setup is

discussed, giving details on the software-hardware interfacing.

Figure 4.1: Experimental Setup. The boom restricts motion to a circle. As shown in
figure: (1) Electric motor, (2) On-board UDOO (3) Battery for the UDOO board,
(4) Hall sensor and magnets, (5) Boom attachment plate, (6) Magnetic encoder on
the central shaft to measure the relative distance.
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4.1 Experimental Hardware Setup

This section begins by discussing the experimental platform that will be used to

evaluate formal constructions. This setup is shown in Fig. 3.4 and detailed in Fig.

4.1.

In order to maintain an appropriate balance between realism and complexity,

two electric, remote controlled cars powered by brushless DC (BLDC) motors were

chosen as the test vehicles for the experiments (see Fig. 4.1). The following car is

a all wheel drive, 1/5th scaled model and the lead car is a rear wheel drive, 1/8th

scaled model. The chassis was machined out of aluminum and came equipped with

hydraulic shocks. The damping from the shocks was not taken into account in order

to keep the simplicity of the overall dynamics. This is an important point to realize

as this will create bias in the results due to the lack of proper modeling of the

system. The vehicle is powered by a 22.2 V , 5000 mAh Lithium Ion-Polymer(LIPO)

battery allowing the vehicle to achieve speeds of more than 10 m/s . The control

algorithms running online on the autonomous car, are coded at an embedded level

on an electrical development board.

To eliminate lateral motion, both cars are rigidly attached to a central shaft via a

boom; see Fig. 3.4. A similar two dimensional setup has already been implemented

in several robotic experiments, e.g., in the context of bipedal locomotion [28]. Note

that the two cars are attached to their respective booms with a universal ball joint

mounted near the front axle in order to ensure self-correction of lateral disturbances.

Additionally, the location of the ball joint serves as a steering mechanism, further

supporting the assumption of 2D motion of the cars.
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4.2 Electronic Setup

In order to validate the proposed CLF-CBF QP, PESSOA and PCIS controllers

on the test bed discussed above, hardware-software interface, along with a high level

controller running the software that mathematically calculates the control algorithm

in real time, is required. In other words, three major requirements for the experi-

mental realization are: sensing, actuation and the feedback system

Sensing. At each control cycle, the current values of the speed of the two cars

and the distance between them are read from various sensors. The velocity of the

following car is obtained using a Hall effect sensor, which has been mounted on the

wheel hub of the front wheel with two small magnets placed 180 degrees apart on

the inside of the wheel; see Fig. 4.1. While Lidar and radar are two common devices

used for estimating the headway in production cars [43], the special mechanical setup

in this case allows us to measure the relative distance between the two cars using a

magnetic incremental encoder mounted on the central shaft.

Actuation. The electronics of the cars are designed such that speed is set via

a Pulse Width Modulation (PWM) signal to the onboard Electronic Control Unit

(ECU), which converts it into a three phase voltage command to the motor. Because

direct actuation of wheel torque is not possible, the PWM signal is generated using

the velocity command described later in (3.20). The electric car does not have a

separate actuator for braking, hence velocity is regulated using only positive wheel

force and the combination of rolling resistance and aerodynamic drag forces.

Embedded Computing. The software implementation of the proposed con-

trollers has been divided into two stages: a high-level controller — running on the

Robotic Operating System (ROS) in a Linux environment, and a low-level controller

running on an Arduino DUE board combined with the ECU on the car.
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Algorithm 1 UDOO Module, High Level Controller

Input: Current velocity of controlled car;
Input: Relative distance between the two cars;
Input: Current velocity of the lead car;
1: Enable ROS Master;
2: Run ROSSERIAL to communicate with low level;
3: Connect to remote laptop through SSH;
4: Enable Electronic Speed Control (ESC) for the car;
5: repeat
6: Wait till all communication is established
7: until ( ESC == Enable )
8: Set up parameters for the model;
9: while ( ROSSERIAL == Running ) do

10: Define loop rate for high level controller;
11: Read ROS messages, Current Velocity and Relative Distance;
12: Calculate actual time for the loop using loop rate;
13: if Error in Calculation then
14: Report Errors and Stop QP / ROBDD calculation;
15: else
16: if Data recieved from any sensor then
17: Initialize the commanded velocity for the QP / ROBDD;
18: Convert relative distance value into relative velocity (m/s);
19: Calculate lead car velocity by finite differencing;
20: Set up parameters for QP / ROBDD;
21: Calculate torque via CBF / PCIS / PESSOA.
22: if Solution on boundary of safe set then
23: Take vcomm = 0 to simulate braking on the car;
24: else
25: Calculate vcomm via one-step forward integration;
26: end if
27: Send velocity data to low level controller
28: end if
29: Log data onto board via remote laptop over SSH;
30: end if
31: end while
32: Disable ROS Master;

High-Level Controller: The UDOO board runs Ubuntu 12.10 LTS and ROS

Groovy at a sampling rate of 200 Hz. The controllers have been coded in C++

for efficient execution as a ROS node that is also used to record data at all time.

The resistive force as mentioned in (2.2) uses average coefficients derived by testing

on production cars, so when implementing on scale model cars, the equation is scaled

by the same factor as the scale of the car. Considering the RCBF and ZCBF type
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Algorithm 2 Arduino Module- Low level

1: Compile Arduino code using IDE;
2: Communicate with ROSSERIAL node on ROS Master;
3: Enable Electronic Speed Control (ESC) for the car;
4: repeat
5: Set parameters for low level controller;
6: until All communication is established
7: while ( ROSSERIAL == Running ) do
8: Initialize all GPIO pins;
9: Define pins for Motor, Hall Sensor and Magnetic Encoder;

10: if ESC == Enabled then
11: Send initialization sequence for ESC;
12: end if
13: Calibrate the relative distance;
14: Wait for messages from high level controller;
15: if PWM Signal == Active then
16: Send respective pulse value to motor;
17: Read data from hall sensor for wheel velocity;
18: Read data from magnetic encoder on central shaft;
19: Convert hall data into velocity (m/s);
20: Convert encoder data into relative distance (m);
21: Publish calculated data on ROS Master;
22: Subscribe for current v and vcomm data on the Master;
23: Calculate error between v and vcomm;
24: if error > 0 then
25: Proportional gain as Kpa;
26: else
27: Proportional gain as Kpd;
28: end if
29: Calculate new PWM signal using P-controller;
30: Send the PWM signal to the motor;
31: Log data onto board via remote laptop over SSH;
32: end if
33: end while
34: Disable Electronic Speed Control;
35: Kill the Arduino code;

control, when the two cars are started from rest at a minimal distance apart, it is in-

terpreted by the controller as a violation of the barrier. As a result, in the simulation

it is seen that the barrier is breached. Therefore, a limit on the vqp is set to make

it zero whenever the B goes negative. Pseudo-code of the high-level implementation

for the controller based on Barriers (Green font), PCIS (Red font) and via PESSOA

(Blue font) can be seen in Algorithm 1.
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Low-Level Controller: To establish communication with the hardware, a low-level

controller is setup that reads data from the sensors and actuates the motors. The

high- and low-level controllers share data across a ROS server, acting as a hardware-

software interface. With less computation than the high-level controller, the low-level

controller can run at a rate of 57600 Hz. The pseudo-code of this controller is given

in Algorithm 2.
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5. CONCLUSION: VALIDATION OF EXPERIMENTAL AND SIMULATION

RESULTS

In this section, the simulated performance and the experimental performance of

the RCBF, ZCBF, PESSOA and PCIS controllers are analyzed side by side. Im-

portantly, the successful experimental implementation of all the proposed controllers

was establish as exhibited in [1], [2].

The barrier function controllers are realized first and the results are discussed

in the section below. The PESSOA and PCIS controllers are implemented on the

physical hardware next and their results follow the barrier function section. Some of

the plots that provide correctness of the controllers are given in Appendix A. One

important point to note is that these results have been published by the author in

two different conferences as mentioned on the first page.

5.1 Barrier Function Methods

As mentioned in the previous chapters, two types of control barrier functions

(CBFs) are constructed, which are unified with a control Lyapunov function (CLF)

and optimized using quadratic programs. First, the RCBF type function is real-

ized on the hardware and the results are discussed using the relevant mathematical

variables of the controllers.

As can be observed in Fig. 5.1 and Fig. 5.2a, the velocity of the following car

is consistent between simulation and experiment. Fig. 5.1a and Fig 5.2a both show

all the experimental velocities recorded during the tests; here, vexpqp is the desired

velocity calculated from (ACC QP) using the one step forward integration method

(3.20), vexpfollow is the actual velocity of the car, vexplead is the velocity of the lead car and

vd is the velocity of the following car. As can be observed by comparing Fig.5.1c
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(a) Experimental velocity tracking
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(b) Simulated velocity tracking
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Figure 5.1: Tracking of a desired velocity (on the following car) subject to variable
speed on the lead car, both in simulation and experiment. The velocity in both cases
is modulated based upon the relative distance between the two cars car.

with Fig. 5.1a, the experiment was successful in that the velocity of the following car

is directly modulated by the relative distance, hence the RCBF. Similarly, Fig.5.2c

and Fig. 5.2a can be compared to show velocities are in accordance with the relative

distance. Similar results can be seen when considering the simulation results obtained

by using the experimental lead car data as shown in Fig. 5.1b and Fig. 5.2b; here, the

simulation results, vsimfollow, are directly compared with the experimentally observed

values vexpfollow. As expected, the simulation results achieve better velocity tracking,

yet these results still accurately predict the behavior seen in simulation.

In Fig. A.3, all of the relevant mathematical quantities from both the simulation
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and experimental results are shown for RCBF (with experimental results in the left

column and simulation results in the right). Overall, good agreement is shown be-

tween the two cases, subject to some notable differences between the two cases. As

expected, at the level of force input, there are notable differences between simulation

and experiment, probably due to unmodeled phenomena—yet the force input mag-

nitudes are similar in both cases. Differences in the hard constraint behavior, and

thus the barrier function, can also be seen. This is likely due to factors related to

delays in sensing that propagate through the system; yet, ev en with these practical

issues, the hard constraint is always positive (modulo calibration, which introduced

a slight bias) indicating the the control law properly enforces the safety constraints.

Finally, good agreement is seen between the behavior of the control Lyapunov func-

tion, V , and its derivative, V̇ , indicating the ability to accurately capture the speed

regulation-related aspects of the problem.

Similarly in Fig. A.4, all of the relevant mathematical quantities from both the

simulation and experimental results are shown for ZCBF (with experimental results

in the left column and simulation results in the right). The force input has minute

differences between simulation and experiment, but in general good agreement is seen

between the two. The differences are again probably due to unmodeled phenomena.

The hard constraint and barrier functions look similar as they are exactly the same

in theory, but in experiment they are calculated by different sensors, thereby show-

ing certain differences. The important point to note here is that the barrier stays

positive at all times and shows that the vehicle maintains a safe distance from the

lead vehicle. Finally, good agreement is seen between the behavior of the control

Lyapunov function, V , and its derivative, V̇ , indicating the ability to accurately

capture the speed regulation related aspects of the problem.
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Figure 5.2: Tracking of a desired velocity (on the following car) subject to variable
speed on the lead car, both in simulation and experiment. The velocity in both cases
is modulated based upon the relative distance between the two cars car.

5.2 Results for Formal Methods

The experimental setup was utilized to implement the two correct-by-design con-

trollers.

Using this substitution for commanded torque, the controllers presented in 3.2.1

and 3.2.2 were successfully implemented as demonstrated in the video [1].

The controllers on the processor board (UDOO Quad), required only 20 MB of

memory space. Each controller uses a set of libraries that are included in the main

executable file. The PCIS based controller calls upon the Eigen and the Quadratic
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Figure 5.3: Experimental and simulation results for the PCIS controller.

Program libraries [19] wirtten by Ben Stevens, for all the mathematical calculations

required to produce the control input. The controller synthesized by PESSOA is

stored in a ROBDD, which is queried in the main control loop by a standard BDD

package, CUDD ([36]). Once the controller is compiled on ROS, it can be activated

using ROS commands, to execute at a frequency of 200 Hz displaying the current

data on a terminal window. Note that correctness of the implementation depends

on the correctness of all the used third party components such as ROS, Arduino.

Although it is possible to implement the synthesized controllers without third party

modules and thus provide stronger guarantees on the implemented software, we de-

cided not to do so in order to reduce the time and effort dedicated to implementation.

To validate both controllers, the experimental results are presented side by side

and discussed in comparison to the respective simulation results. For the sake of

comparison, the simulations use the lead car velocity and headway data recorded

during the experiments. Moreover, since the lead car was remotely operated by a

human, it was not possible to perform experiments for both controllers where the

lead car velocity and headway were the same. In order to facilitate the interpretation
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Figure 5.4: Experimental and simulation results for the controller via PESSOA.

of the results, we plot the desired time headway and velocity as dashed lines. The

specification is met whenever experimental or simulation results are below the dashed

line for vdes and above the dashed line representing τdes.

In Fig. 5.3 and A.1, experimental results for the PCIS controller are compared

against simulated results. Fig. A.1a shows that the commanded wheel force from

the experiments, as well as from the simulation, always stays within the upper and

lower bounds set by the specification. For this experiment we used Fmin
w = −0.07mg

and Fmax
w = 0.05mg, where m and g are the mass of the car and the gravity due to

acceleration, respectively. In Figures A.1b and 5.3b, it can be seen that specifications

are enforced during the experiments as well as during the simulations, i.e., the time

headway was always above the desired value of 1 while the velocity was always below

the desired value of 2. Also a reasonable agreement can be seen between experiment

and simulation. Hence all the ACC specifications are met; i.e., the input constraint

is satisfied at all times, a lower bound on time headway and an upper bound on the

velocity are achieved and maintained.
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The performance of the controller presented in Section 3.2.2 is also evaluated

by comparing the experimental results against the simulated results; see Fig. 5.4

and Fig. A.2. As shown in Fig. A.2a the input force satisfies the constraints in

the simulations. For this experiment the specification bounds were Fmin
w = −0.3mg

and Fmax
w = 0.2mg. In Figures A.2b and 5.4a, we can see that the time headway

and velocity specifications are met during simulations and experiments, i.e., the time

headway was always above 1 and the velocity was always below the desired value

vdes = 6. Moreover, a good agreement between simulation and experimental results

can be appreciated in Figures A.2b and 5.4a.

Finally, to demonstrate the successful implementation of the two controllers, we

show the controller domain for both methods. Fig. 5.5b shows a 3D trajectory

(vexpfollow, h, and vexplead) of the controlled car plotted along with the PICS controller

domain. The specification is guaranteed to be satisfied as long as the trajectory

remains in the controller domain. Similarly, for the PESSOA-based controller, the

controller domain and the experimental 3D trajectory are plotted in Fig. 5.5a. In

each case, the trajectories remain in the domain, thereby experimentally validating

the synthesized correct-by-design controllers.

The overall hardware-software experiments proved successful for both controllers.

Although the implementation of correct-by-design controllers required more effort

than a traditional PID controller, the authors felt that such effort is more than

worth it given the guaranteed correctness and performance, especially when dealing

with complex specifications. We also concluded that the computational requirements

to execute both controllers in real-time are within reach of most modern platforms.
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Figure 5.5: Plots showing the Controller Domains for the two controllers with the
experimental trajectory plotted with it.

5.3 Comparative Analysis

The four controllers implemented, as seen in the previous sections and chapters,

have different theories behind the construction of each. It is obvious that the objec-

tives behind all of them are the same. So, to compare the four together, a metric

is required such that the controllers can be compared for safety along with tracking
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various velocities.

In this section, a formal way is developed to achieve this comparison to see

which controller works better in which specific situation. Four different comparative

metrics chosen are : Time Headway Margins, Force Gradients, Tracking Error v/s

vl and Tracking Error v/s vd. The idea behind choosing these certain metrics is to

analyze the safety (time headway), comfort (force gradients) and tracking velocities

accordingly. Each of these metrics are plotted as bar graphs for all four methods

with experimental and simulation results.

In Fig. 5.6a, the time headway margin is plotted. It is important to note that

the minimum time headway (τmin) for all the controllers is set at 1s. To construct

these plots, the minimum normalized value of te experimental and simulated time

headways data was taken. In general it is seen that the experimental values are lower

than the simulation headways. This is due to the fact that the controllers work better

in an ideal environment. All the experimental values for each of them are above 1s,

proving that all the methods show safety and do not ever violate the time headway

barrier. It is clearly seen that the ZCBF approach shows the best results and with

PCIS and PESSOA following closely.

Fig 5.6b shows the force gradients for the various techniques. This plot proves the

comfort features of the controllers. The numerical gradient is calculated for the force

data collected during the tests. For each controller, the minimum and maximum

values is taken to compare which method proves to be the most comfortable. Lower

the value, smoother the ride for the passengers. This validates that the forces on the

PESSOA controller has the least gradient, while the RCBF approach shows higher

forces gradients. This can be easily validated against the theory, as the abstractions

for the PESSOA are done on force inputs hence keeping them in bounds. The RCBF

approach on the other hand has no formal force constraints acting during the tests.
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(a) Time Headway Margin

(b) Force Gradient

Figure 5.6: Plots showing the safety comparisons and the force gradient to compare
comfort of riders.
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The Fig. 5.7a and Fig. 5.7b show the tracking results for the following car

velocity against lead car and the desired velocities, respectively. These values are

calculated by taking the normalized errors between the two velocities. It is easily

notable that lower the tracking errors better the tracking for of the velocities. In

the case of the tracking of the lead car, it is seen that the PESSOA controller again

shows really good agreement. The simulation results of course are lower than the

experiment as there are always hardware delays and sensors noise. PCIS and RCBF

both show poor tracking, which is not an issue with the working of the controllers

but is due to the hardware problems.

The next sub-figure shows the tracking error against the desired velocity, this is

calculated using the normalizing the errors between the two velocities. Similar to

the previous graphs, lower the value better is the performance. It is to be kept in

mind that these results are on custom built hardware so the data is not as consistent

in experiment as we expect in theory. The results of the ZCBF controller is seen to

be the best and PCIS approach still has issues with tracking the desired velocity.
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(a) Tracking Error v/s vlead

(b) Tracking Error v/s vdes

Figure 5.7: Plots showing the tracking errors while there is a lead car and when there
is not car in front.
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APPENDIX A

EXPERIMENTAL RESULTS : RELEVANT VARIABLES

This appendix provides all the relevant mathematical variables from the experi-

ments tested during this thesis.
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Figure A.1: Experimental and simulation results for the PCIS controller.

Controller Actual Simulated
PESSOA 1.538 2.206

PCIS 2.489 2.369
RCBF 1.171 2.099
ZCBF 2.619 2.691

Table A.1: Time Headway
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Controller Max Min
PESSOA 1.4 -1.13

PCIS 5.338 -4.878
RCBF 6.07 -3.8
ZCBF 1.876 -2.819

Table A.2: Force Gradient

Controller ||vd − x2|| ||vd − vsim||
PESSOA 43.995 38.110

PCIS 54.645 54.65
RCBF 37.625 33.850
ZCBF 26.540 17.6

Table A.3: Tracking Errors on desired velocities.

0 10 20 30 40 50 60 70
−30

−20

−10

0

10

20

Time (s)

F
w

 (
N

)

 

 

Inputexp Inputsim Input
max

Input
min

(a) Force (N)

0 20 40 60
0

1

2

3

4

5

Time (s)

m
in

(τ
,5

)

 

 

τexp τsim τ
des

(b) Time Headway (s)

Figure A.2: Experimental and simulation results for the controller via PESSOA.

Controller ||vl − x2|| ||vl − vsim||
PESSOA 5.90 1.903

PCIS 32.971 17.944
RCBF 29.255 23.387
ZCBF 12.489 4.729

Table A.4: Tracking Errors on Lead car velocities.
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Figure A.3: Experimental results (left column) and simulation results (right column)
for all of the relevant variables for RCBF controller.
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Figure A.4: Experimental results (left column) and simulation results (right column)
for all of the relevant variables.
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