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ABSTRACT

Warehouses are a vital link in the global supply chain, and play a critical role in

inventory flow by providing points of storage and coordination. While much work has

been done on individual parts of the warehousing process, only a handful of studies have

analyzed the technical efficiency of the warehouse as a whole.  As a subset of this

industry, refrigerated warehouses provide a much needed role in the distribution of

agricultural, food, and pharmaceutical products. As such, they have unique parameters

that set them apart from other warehousing operations. There has been little formal

analysis on refrigerated warehousing. Here, a production model for refrigerated

warehouses is reported, and firm-specific technical efficiency estimates obtained through

stochastic frontier analysis are provided. In addition, factors affecting efficiency were

identified. This study found the mean efficiency estimated for the refrigerated warehouse

industry in 2012 was 0.72. Additionally, the number of inventory turns was found to

correlate with increased efficiency while order error percentage and occupancy of

warehouse space were correlated with inefficiency.



iii

DEDICATION

To Marissa, Phoebe, and Colton—for your undying support and unquestionable love.



iv

ACKNOWLEDGEMENTS

First of all, I would like to thank my committee chair, Dr. Salin, for her guidance,

patience, and help in completing this project. I would also like to thank my committee

members, Dr. Capps, Dr. Leatham, and Dr. Johnson for their help and feedback in

completing my thesis.

Next, a special thanks to the IARW for providing the data used to conduct this

research.

I want to acknowledge the faculty and staff in the Agricultural Economics

Department—especially Dr. Leatham, Dr. Peacock, and Brandi Blankenship—for the

help that they have provided along the way.

I also acknowledge my wife and children for their unwavering support while

accomplishing this degree. Finally, I want to thank Uncle David, for planting this idea in

my head in the first place.



v

NOMENCLATURE

DEA Data Envelopment Analysis

IARW International Association of Refrigerated Warehouses

MLE Maximum likelihood estimation

SFA Stochastic Frontier Analysis

SKU Stock Keeping Unit



vi

TABLE OF CONTENTS

Page

ABSTRACT .......................................................................................................................ii

DEDICATION ................................................................................................................. iii

ACKNOWLEDGEMENTS ..............................................................................................iv

NOMENCLATURE...........................................................................................................v

TABLE OF CONTENTS ..................................................................................................vi

LIST OF FIGURES........................................................................................................ viii

LIST OF TABLES ............................................................................................................ix

CHAPTER I  INTRODUCTION .......................................................................................1

Justification ............................................................................................................1
Thesis Organization................................................................................................2

CHAPTER II BACKGROUND AND LITERATURE REVIEW.....................................4

Background ............................................................................................................4
Literature Review...................................................................................................9

CHAPTER III THEORY .................................................................................................24

Representing Technology with Sets .....................................................................24
Production Frontiers .............................................................................................26
Distance Functions ...............................................................................................28
Technical Efficiency ............................................................................................31
Methods of Efficiency Measurement ...................................................................36
Stochastic Frontier Analysis.................................................................................38
Distributional Assumptions..................................................................................41

CHAPTER IV DATA AND METHODOLOGY.............................................................50

Data ......................................................................................................................50
Methodology ........................................................................................................51



vii

CHAPTER V RESULTS AND DISCUSSION ...............................................................60

Results ..................................................................................................................60
Discussion ............................................................................................................64

CHAPTER VI CONCLUSION........................................................................................70

REFERENCES.................................................................................................................71



viii

LIST OF FIGURES

Page

Figure 3.1 Representing Technology with Sets ...............................................................26

Figure 3.2 Input Distance Function..................................................................................29

Figure 3.3 Output Distance Function ...............................................................................30

Figure 3.4 Input Oriented Technical and Allocative Efficiency ......................................33

Figure 3.5 Output Oriented Technical and Allocative Efficiency....................................34

Figure 3.6 The Normal-Half Normal Model.....................................................................43

Figure 3.7 The Normal-Truncated Normal Model...........................................................47

Figure 5.1 Frequency of Efficiency Estimates .................................................................64



ix

LIST OF TABLES

Page

Table 2.1 Summary of Previous Warehousing Efficiency Studies ..................................22

Table 4.1 Descriptive Statistics of Variables Included in Production Function ..............53

Table 4.2 Descriptive Statistics ofVariables Included in Contextual Factors..................54

Table 5.1 Results OLS Estimation ...................................................................................61

Table 5.2 Results Log-likelihood Estimation...................................................................62

Table 5.3 Tests of Inefficiency Parameters in the Stochastic Production Model.............63

Table 5.4 Summary Statistics for Individual Technical Efficiency Estimates.................63



1

CHAPTER I

INTRODUCTION

Warehouses are a vital link in the global supply chain; however, it is only

recently that assessing warehouse performance has been addressed in the literature

(Johnson and McGinnis, 2011). As a subset of the warehouse industry, refrigerated

warehouses provide a much needed role in the distribution of agricultural, food, and

pharmaceutical products. As such, they have unique parameters that set them apart from

other warehousing operations. There is very little formal analysis on refrigerated

warehousing and its specific production technology.

The purpose of this project is to assess the production frontier of the refrigerated

warehousing industry and provide both industry mean and firm specific technical

efficiency estimates. In addition, performance attributes that correlate with greater

technical efficiency are identified, and the relationship to overall production efficiency is

measured. As a result, warehouse managers will have information to assist in

implementing changes to improve their overall efficiency and utility.

Justification

It is estimated that, globally, only 10% of perishable foodstuffs are properly

refrigerated, and that gaps in refrigeration may account for much of the 30% post-

harvest loss of total production (Coulomb, 2008). This problem comes against the

backdrop of world population growth and the increasing concern and attention toward
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climate change and the energy required to maintain an efficient and effective cold supply

chain (James and James, 2010). It is in this context that increasing refrigerated

warehousing efficiency must be viewed. Although warehousing is only a component of

the global supply chain, it is a key component. Warehouses play a critical role in

inventory flow control and buffer stock management, and switching points for efficient

transportation (Kuglin and Hood, 2009). With the growth of the global supply chain and

the introduction of lean manufacturing and just-in-time production, warehouses are

expected to increase efficiency. An increase in efficiency at this important control point

can increase the overall efficiency of the supply chain. Estimating technical efficiency

and identifying factors that contribute to efficiency will lead to greater understanding of

refrigerated warehouses and will help identify best practices. Implementation of best

practices can lead to increased efficiency. Increased efficiency not only benefits

warehouses, but contributes to the overall efficiency of the global cold supply chain.

Thesis Organization

This thesis begins in Chapter II by presenting a brief background of warehousing

and the refrigerated warehousing industry, followed by a literature review on efficiency

measurement in warehousing. Chapter III presents the theory behind efficiency

measurement and develops the stochastic frontier analysis model that is employed in this

study. In Chapter IV, the data will be presented, and the specific methods employed in

the study will be reported, including the specification of the production function and the

stochastic model employed in the analysis. The results and discussion of the research
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findings are presented in Chapter V. The summary and concluding comments are

contained in Chapter VI.
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CHAPTER II

BACKGROUND AND LITERATURE REVIEW

This chapter begins by providing background information on warehousing, its

place in the supply chain, and the different functions warehouses fulfill. It also outlines

basic strategies employed to fulfill different warehouse functions. This section concludes

by outlining the contrast between refrigerated warehousing and conventional

warehousing. Following the presentation of warehouse background information, a

literature review is presented that gives a very brief history of applied production

economics and a more thorough review of measurement of efficiency in the warehousing

industry.

Background

Warehousing is an indispensable part of the supply chain. The supply chain can

be described as all the steps, resources, and operations involved in the process starting

with procurement of raw materials to the delivery of final goods and services to the

customer. Warehouses have traditionally been a place for the storage of goods; from the

raw materials and work-in-process, to finished goods awaiting delivery to customers.

Warehousing was viewed as having little or no added value, and was often considered an

unwanted, but necessary cost-center (Manzini, 2012).

With the growth of the global market place, and subsequently the global supply

chain, as well as improved managerial paradigms, such as just-in-time and lean
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production, warehousing has changed and adapted, and is now viewed as a vital hub in

the supply chain. Warehouses still perform an essential storage role, but they have also

become service and information centers. The roles of warehouses include: (1) raw

material and component storage; (2) work-in-process storage; (3) finished goods storage;

(4) distribution centers; (5) fulfillment centers; (6) local warehouses; and (7) value added

service providers (Frazelle, 2002). A warehouse may have only one dedicated role, or

may carry out many roles, concurrently. The number of roles depends on the specific

warehouse design, location, and intended function.

The warehouse storage role, for finished goods, is vital in the supply chain

because it acts as a buffer against variability in material flows resulting from seasonality

and batching in production and transportation (Gu, et al., 2007). Distribution centers

consolidate products from one or several firms, and combine them for shipments to

common customers. Fulfillment centers function like distribution centers, but receive,

consolidate, and ship small orders for individual customers. Local warehouses are

widely distributed in the effort to reduce transportation distance and response time, and

commonly ship single items to individual customers. Warehouses also have become

centers of value-added services such as packaging, pricing, labeling, product

customization, and returns processing.

The cross-docking strategy also utilizes warehouses. With cross-docking

warehouses function as product coordination points (Simchi-Levi, et al., 2008). Cross-

docking involves receiving goods from the manufacturer that are consolidated and

shipped without the need for storage. Most products involved in cross-docking remain in
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the warehouse for less than 24 hours. Although employed in the 1980s, most notably by

Wal-Mart, cross-docking has only recently grown in use. Cross-docking applies well to

products that have a stable demand rate (e.g. grocery and perishable food items). To be

effective, cross-docking requires a high degree of coordinated information between

warehouses, retailers, and suppliers; a responsive transportation system; and a large

distribution network with a large fleet of vehicles that are simultaneously present at the

same facilities (Simchi-Levi, et al., 2008).

All warehouses handle product. How warehouses handle product varies by role.

However, there are several functions common to warehouses in general. These functions

can be classified into four general processes; receiving, storage, order picking, and

shipping. Each process will be briefly described below.

The receiving process includes all of the activities associated with the arrival of

product to the warehouse and its subsequent preparation for storage or shipment. The

specific activities associated with receiving vary according to the nature of the product.

For example, product may be inspected to insure correct quantity and quality are being

delivered. In addition, some repackaging and reassembling may occur to increase

efficiency of downstream processes. Product storage may also considered part of the

receiving process. These steps are skipped when product is intended to be transshipped

as part of a cross-docking strategy.

Storage may be categorized into two parts: a reserve area and a forward area. The

reserve area is for bulk storage. Product may include pallet stacks or employ a system of

pallet racks. The forward area is where product is stored for efficient removal by an
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order picker. Here, products are usually stored in smaller, more easily manageable

amounts. The transfer of goods from the reserve area to the forward area is referred to as

replenishment.

Order picking is the process of retrieving product from its storage location to

fulfill customer orders.  In general, product is received in full pallet quantities. These

pallets are made up several cases, and each case will contain a specific number of SKUs.

Product may be picked in pallet quantities, or broken down into full-case, or broken-case

amounts (i.e. individual SKUs). Orders may contain many different items, thus

individual items must be picked and consolidated before shipment. Picking strategies

include pick to order, batch picking, zone picking, and wave picking.

The pick to order strategy involves the picker taking one order and retrieving

items line-by-line from their storage location. This strategy requires the least amount of

product handling; however, it may take the most time depending on order-items and

warehouse design. Pick to order is the most frequently employed picking method.

Batch picking occurs when multiple orders are batched together to be picked

simultaneously. Pickers may fill batched orders by going to the storage location to

retrieve items. After picking these batches are sorted into their respective individual

orders. Another variation of batch picking occurs when bulk items are brought to the

sorting area where pickers fill individual orders. This batch picking method is often

referred to as pick by line. The advantage of bulk picking is that it allows more lines to

be picked per hour. In addition, accuracy may improve due to multiple people reviewing
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an order. However, bulk picking requires more handling and thus is more labor

intensive.

Zone picking divides the storage/picking area into zones and assigns the picker to

one or more specific zones. The picker only picks items from his/her assigned zones.

When all lines from one order are picked in a zone the order is handed off to the next

zone, until the order is completed. Zone picking has obvious similarities to production

on an assembly line. Zone picking reduces travel and offers increased speed over the

pick to order method. Generally, this method is most effective in operations with a large

number of SKUs, a large number of orders, and low picks per order. In addition, it is an

appropriate strategy for warehouses with different storage areas for products such as

pharmaceuticals, hazardous items, and perishables (Richards, 2011).

Wave picking is when all zones are picked at once and then sorted. Orders are

released at specific times, and are usually coordinated with scheduled events such as

vehicle departures and shift changes. As with batch picking and zone picking, wave

picking reduces travel and time, however sorting the picked items to complete individual

orders requires extra labor and/or equipment.

The refrigerated warehouse presents a unique application of the principles stated

above. The refrigerated warehouse fulfills many roles, such as production warehouse and

distribution warehouse. In addition, many are involved with cross-docking activities and

many offer value added services, such as blast freezing. While sharing many of the

features of the conventional warehouse, refrigerated warehouses have several unique

requirements. Facility costs are typically higher for refrigerated warehouses. It has been
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estimated that a freezer warehouse will typically cost two to three times as much as a

conventional warehouse, and that energy costs are as much as five times greater per

square foot (Ackerman, 1997).

In addition to higher energy costs, refrigerated warehouses require specialized

equipment designed to withstand the low temperatures. Specialized equipment includes

heavy duty batteries, enclosed lift trucks with heated contact points, and insulated

clothing for workers. Another issue faced by refrigerated warehouses is the need for

constant monitoring of temperature. As the majority of product handled is perishable,

product expiration and spoilage must be monitored (Richards, 2011).

The warehouse is a system of many different processes that can be categorized

into receiving, storage, order picking, and shipping. Analyzing the warehouse operation

as a whole can be challenges because of the variety of technologies and operational

procedures involved. The following section presents studies that have assessed

production efficiency and how these apply to the evaluation of warehousing.

Literature Review

The study of warehouse technical efficiency falls within the interdisciplinary

space between economics, engineering, food science, biotechnology, information

technology, and supply chain management. However, its core is firmly rooted in applied

production economics. The foundational principles of production economics can easily

be found in most microeconomics texts. A brief survey of the history of applied
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production economics is given and the recent work that has been done in the field of

warehousing technical efficiency is highlighted.

Agricultural economists did much of the early work in production economics.

Henry Moore pioneered using statistical techniques in economic analysis.  Around this

same time, Tolley, Black, and Ezekiel (1924) developed tools to help agricultural

producers make production decisions. These techniques were the first attempts to isolate

technology that would allow application of the marginal productivity principle

(Chambers, 1988). A short time later, Cobb and Douglas (1928) published their seminal

paper and production functions became common in the economic literature. The next

milestone in production economics came with the development of advanced methods for

solving mathematical programming problems.

The theoretical work in production efficiency began in the 1950s. Koopmans

(1951) provided a definition of technical efficiency. Debreu (1951) and Shephard

(1953) independently introduced distance functions, a useful way to model multiple-

input and multiple-output technologies. The work of Koopmans and Debreu was built

upon by Farrell (1957) who defined cost efficiency, decomposing it into its allocative

and technical components. This early work in production efficiency influenced the work

of Charnes, Cooper, and Rhodes (1978) who developed the non-parametric method of

data envelopment analysis (DEA). Farrell’s work also influenced several others,

including Aigner and Chu (1968), Afriat (1972), and Richmond (1974). These authors

each presented a variation of deterministic production frontier estimation. Stochastic

frontier estimation was proposed independently by Meeusen and van den Broeck (1977)
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and Aigner, et al. (1977). Both stochastic frontier analysis (SFA) and DEA are

frequently used to address question of technical efficiency. While DEA has been used to

characterize warehouse efficiency, SFA has yet to be utilized in this capacity.

Despite the importance of warehousing in the overall supply chain, the

availability of performance evaluation literature is relatively limited. Of the existing

literature, there are two major areas of emphasis. These are: (1) developing a structured

framework to analyze warehouse design and operations problems, and (2) directly

assessing performance through benchmarking. This section begins with a brief overview

of the literature under this first area; a more thorough review of the benchmarking

literature follows, as this topic is more relevant to the subject at hand.

Assessing the warehouse as a whole system presents challenges. Any framework

built to address warehouse design and operations problems must coordinate and

synthesize specific sub-problems (e.g. storage processes, order picking, etc.) into an

integrated process. The work done by Rouwenhorst, et al. (2000) is a good example of

this. They present a framework by which to analyze warehouse and design problems.

This framework consists of three axes along which warehouses can be examined; these

are processes, resources, and organization. Processes involve receiving, storage, order

picking, and shipping. Warehouse design methods are then evaluated along these lines,

and are further broken down at a strategic, tactical, or operational level. This framework

allows classification performance evaluation against a set of well-defined criteria.

The framework presented by Rouwenhorst, et al. (2000) is mainly descriptive

and does not provide a synthesis of models and/or techniques as a basis for warehouse
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design decisions. More recent work by Baker and Canessa (2009) sets forth a new

framework that does address specific tools and techniques that can be applied to each

step of the design process. This conceptual framework was established by an extensive

literature review and examining the design steps employed by warehouse design

companies. Thus, this framework attempts to synthesize the available models and

techniques that are used in warehouse design. Although useful, the framework does not

provide a comprehensive warehouse design methodology, as there is still much

variability in the steps of the process and the techniques available for use at each step.

The authors suggest that such a comprehensive model, if at all possible, is far from being

realized.

Other work in this area is represented by Gu, et al. (2007), and Gu, et al. (2010).

The first (Gu, et al., 2007) presents a framework to classify the existing research on

warehouse operation and planning problems. These problems are classified by the four

basic warehouse functions: receiving, storage, order picking, and shipping. The second

paper (Gu, et al., 2010) expands this evaluation and classifies the research on warehouse

design, performance evaluation, practical case studies and computational support tools.

The authors intend that these two papers be considered together as a comprehensive

review of the current research and a useful framework for classification.

These four papers represent an area of emphasis in warehouse performance

assessment. They address the coordination problems that arise in warehouse design

decisions. The work done in this area is largely descriptive and focuses on building
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frameworks to understand the decision process and options/techniques available at each

step.

The second area of emphasis reported in the literature on warehouse performance

evaluation is logistics benchmarking. Benchmarking is the practice of identifying best-

practices within a company, industry, or across industries, and then applying those

practice to improve performance. Benchmarking was popularized by Xerox Corporation

in the late 1980s and has been employed by many Fortune 1000 companies to increase

quality and productivity of business operations (Foster, 1992). Benchmarking can be

applied internally in a company, externally across industries or competitively across the

same industry (Frazelle, 2002). A goal of benchmarking studies is to identify top

performers, and then identify the key practices or attributes that distinguish the top

performers from others.

The work reported by Hackman, et al. (2001) may be the most important in the

field of warehouse logistics benchmarking. This represents the first study to employ a

production model and frontier analysis to assess overall warehouse production

efficiency. Prior to this study, only Stank, Rogers, and Daugherty (1994), and Cohen,

Zheng, and Agrawal (1997) report formal studies on warehouse benchmarking.

Stank, Rogers, and Daugherty (1994) conducted a survey of 154 warehousing

companies to determine if, and in what areas, external benchmarking is employed. They

report that a majority of warehouses did utilize benchmarking in areas of cost, customer

service, productivity, quality, and warehouse operations, although specific

benchmarking methods were not identified. Whether or not the use of benchmarking was
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correlated with increased efficiency of warehouse operations was subsequently

examined. They reported that there was no correlation between benchmarking and size.

However, it was found that firms that conducted benchmarking in the areas of order

processing, productivity, transportation operations, and warehousing operations offered a

greater variety of services than non-benchmarking counterparts. Additionally, all firms

which employed benchmarking relied more heavily on computer applications than firms

that did not benchmark.

Cohen, Zheng, and Agrawal (1997) directly evaluated service parts warehouses

using a variety of performance metrics. Parts availability, after-sales service revenue,

operating cost, inventory investment, and annual inventory turnover were found to be

important internal benchmarking metrics. A cost-service analysis was performed by

graphing inventory investment against level of service (represented as 24-hour parts fill

rate). The authors point to the results as the efficient frontier; however, they do not

support the frontier by a formal model or statistical analysis. Although this work

addressed the service parts industry as a whole, it fails to provide a consistent model that

can be applied to further industry analysis or to warehousing as a whole.

Traditionally, performance in the warehousing and distribution industries has

focused on measures such as cost as a percentage of sales, lines or cases handled per

person-hour, response time, and shipping accuracy (Forger, 1998, Hackman, et al.,

2001). The study presented by Cohen, Zheng, and Agrawal (1997) used metrics that fall

within these same lines. These ratio-based performance metrics are popular because they

are relatively easy to calculate, use, and understand. While useful in many respects, these
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metrics fail to capture the warehouse as a single system. In addition, they may represent

entities that are either outside the direct control of warehouse managers, or may be

interrelated and depend on multiple input factors (de Koster and Balk, 2008, Hackman,

et al., 2001).

Hackman, et al. (2001) address these issues by developing a model of a

warehouse system based on three specific input factors and five specific output factors.

The inputs into the warehouse system are labor, space, and equipment. The outputs are

broken-case lines, full-case lines, pallet lines, storage, and accumulation. In developing

this model the authors sought to capture the simultaneous interaction of several

dimensions in a generally applicable model.

On the input side of the model are labor, space, and equipment. An index was

used as a proxy for labor. This index consists of the sum of all labor hours expended in

performing the necessary receiving, storing, order picking, and shipping operations.

Space was accounted for by the square feet associated with receiving, storage, and

shipping operations. The authors noted that it was possible to use cubic feet for this

input. However, square footage was used because in warehouses vertical height is not

always effectively utilized, especially in dock areas where much of the receiving and

shipping operations occur. The third input, equipment, was reported as the investment in

storage and material handling equipment. Equipment investment was calculated as the

sum of the number of units of each type of equipment weighted by the average of the

1991 replacement cost. Replacement value was used instead of book value to eliminate

differences in bookkeeping and depreciation methods. Categories included vehicles,
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storage systems, and conveyor systems. Rental and depreciation costs for the building

were ignored. In addition, the cost of conventional storage systems (racks) was excluded,

as this cost was considered insignificant.

The output side of the warehouse model includes movement, storage, and

accumulation.  The movement output is counted as the number of orders and the number

of lines in those orders. The number of lines is further outlined as broken-case lines, full-

case lines, and pallet lines and each are considered separately. Accumulation was used to

measure the workload used to assemble a complete order from different product lines.

Because different products are stored in various locations in the warehouse, the more

varied the lines, the more labor and capital are involved to aggregate and ship the order.

In contrast to the industry standard average lines per order ratio, this accumulation index

was calculated as the difference between the annual lines picked and the annual orders

shipped. The storage output was used to capture the storage function of the warehouse,

and is intended to measure the cost to store inventory in the warehouse. This index was

constructed by assigning floor space to each item handled, and then weighting the

average of the square root of the broken case, pallet rack, and floor storage square

footage estimations. The weights were determined by the frequency of visits made to

each location.

Based on this model, efficiency was estimated using data envelopment analysis

(DEA). Data for Hackman’s analysis were collected between 1992 and 1996 for 57

warehouses. Warehouses included service parts, electronics assembly, health care,

photographic supplies, and food items. The majority of this sample was composed of
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finished goods consolidation facilities that ship to the final customer. The remaining

warehouses in the sample were distribution centers which collect, store, and re-ship

product from manufactures to smaller warehouse facilities serving local markets.

Using DEA, an efficiency score was estimated for each warehouse. The mean

efficiency for the sample was calculated as 0.70. This efficiency score was then

evaluated against variables that captured warehouse design and operations decisions. In

this analysis they sought to answer the following questions: (1) Do larger warehouses

perform more efficiently? (2) Do capital intensive warehouses perform more efficiently?

and (3) Do non-union facilities outperform their union counterparts? Based on this

analysis Hackman, et al. (2001) concluded that smaller, less capital intensive warehouses

are more efficient. Unionization appeared to have a neutral to slightly positive effect on

efficiency.

More recent work by de Koster and Warffemius (2005) reports an international

comparison of Asian, American, and European Distribution Centers (EDCs). EDCs are

defined as European warehouses that have the majority of inbound goods produced in

another country and that distribute goods to at least five countries in Europe, the Middle

East, and Africa. The study’s aims were 3-fold: (1) to determine if Asian EDCs

performed better than American EDCs; (2) to determine if management differed between

these two groups; and (3) to determine if third party and public warehouses performed

better than own-account warehouses.

To address these aims de Koster and Warffemius (2005) collected survey data on

65 warehousing operations. The data collected were evaluated on a variety of
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performance and operational aspects. Performance aspects included productivity,

flexibility, and quality of outbound shipments. Operational aspects included labor, value

added activities, and warehouse size, number of SKUs handled, industry sector,

automation, and complexity.  The sample was divided into subgroups based on the

regional origin of the manufacturer, own-account versus outsourced warehouses, and

warehouse industry sector. Basic statistical tests were used to ascertain the differences

and similarities between subgroups. Based on their analysis, the authors conclude that

although some differences in operations exist between American and Asian EDCs, there

are no significant differences in productivity and quality levels. In addition, outsourced

warehouse operations were found to have better accuracy and flexibility.

The study by (de Koster and Warffemius, 2005) was built on and expanded by de

Koster and Balk (2008). The authors were able to update information on 39 of the 65

warehouses surveyed in the previous study. An input-output model was formulated and

used to estimate the efficiency and efficiency change using DEA. Both cross-sectional

and time-series analyses were conducted to compare efficiency between American,

Asian, and European EDCs.

The input-output model differs from that of Hackman, et al. (2001), although

there are some similarities as both models include labor and size for inputs. Labor was

proxied as number of full-time equivalents (FTEs), and size was measured in square

meters. De Koster and Balk did not use an equipment input, but instead chose

automation and number of different SKUs, as these correlated better with outputs in their

model. Automation was measured on a 5-point ordinal scale: (1) being very low—
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meaning minimal automation, such as using a computer—to (5) very high—including

WMS, barcoding, automated guided vehicle, miniloaders, sorters, and/or robots.

Product mix was reported as number of SKUs handled on average in the facility. An

ordinal scale was also employed with the scale ranging from 1 to 8, with (1) being less

than 500 and (8) being greater than 100,000 SKUs.

On the output side of the model, five factors were selected. These include,

number of daily order lines picked, level of value added logistics (VAL) carried out on a

regular basis, the number of special processes carried out to optimize warehouse

performance, error-free orders shipped, and order flexibility. Of the above, the first,

daily order lines picked, is fairly self-explanatory. VAL activities were reported on using

a 3-point ordinal scale, low to high. Examples of low end VAL included adding labels or

kit assembly. High end VAL included repair, sterilization, and final product assembly.

The next output factor, special processes carried out to optimize warehouse performance,

included cross-docking, cycle counting, item repacking, return handling, and quality

inspection on inbound products. The rationale given for using this metric was that these

processes directly or indirectly contribute to the long term performance and customer

service success. The next output factor considered, error-free orders, was measured as a

percentage of orders shipped.

The last output factor, order flexibility, may require some explanation. Each

respondent was presented with three external and three internal changes and asked if

they could cope with these changes worse (0), equal (1), or better (2) than his/her

competitors. The sum of each response was then analyzed on a 6-point ordinal scale.
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Although a highly subjective measure, the authors report that this output provided

meaningful results. This metric had been included in the previous study by de Koster and

Warffemius (2005), and the authors report that these responses have a high degree of

objectivity. They concluded that due to the open culture and high turnover of managers

in the industry, respondents tend to have a fairly accurate view of how they compare to

their competitors.

In this warehouse model there are several variables measured on an ordinal, not

ratio scale. The authors gave the reasoning that this was to improve the speed and

accuracy of responses. Typically, managers do not know exact numbers, such as the size

of the warehouse in square meters. However, they do usually know in which category

their warehouse falls.

Based on the analysis of the model, mean efficiency for all warehouses was

calculated as 0.76. In addition, European warehouses were found to be more efficient in

both 2000 and 2004 than both Asian and American warehouses, and outsourced

warehouses, especially public warehouses, were more efficient than own-account

warehouses. The results of the longitudinal study showed a decline in efficiency of 6%,

and a corresponding 3% decline in productivity. This decline in efficiency came at the

same time as a 3% increase in technological progress. The authors suggested that this

decline may have been the result of economic decline, increased government regulation,

and/or a deterioration of the work environment.

Most recently, Johnson and McGinnis (2011) extended the model presented by

Hackman, et al. (2001) and tested for the statistical significance of each input and output.
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Johnson and McGinnis estimated technical efficiency for a group of 216 warehouses

across many industries. DEA was used to solve the linear program and obtain the

efficiency estimates. In addition, the technical efficiency estimate was used to identify

operational policy, design characteristics, and attributes of a warehouse that correlate

with greater efficiency.

To specify the most parsimonious model, Johnson and McGinnis (2011) used the

model specification test of Pastor, Ruiz, and Sirvent (2002). In brief, a linear program is

solved for the most detailed proposed model. Next, a second linear program is solved

with fewer inputs/output. Statistical analysis is then conducted to determine the impact

of the data lost. If performance distribution is not statistically significant, then the

simplified model is selected.

The initial model proposed by Johnson and McGinnis included labor, space,

equipment, and inventory as inputs. For outputs they proposed broken-case lines, full-

case lines, pallet lines, returns, storage, accumulation, and value added services. The

linear program was solved using the model specification test. Based on the results of

their analysis, the proposed model was simplified to contain labor, space, and investment

as input and broken-case, full-case, and pallet lines as output. Technical efficiency for

the warehouse sample was estimated at 0.66, with 23% operating at 100%.

In addition to the efficiency estimates, Johnson and McGinnis identified several

warehouse practices or attributes that correlated with the efficiency estimates. The input-

oriented technical efficiency estimation was regressed against several warehouse

practices and attributes to identify correlation between these and warehouse efficiency



22

estimates. Seasonality, SKU churn/span, inventory cost and temporary labor were found

to be negatively correlated with efficiency. Cross-docking and inventory turns were

positively correlated with efficiency.

Despite its importance in the supply chain, relatively few studies that have

proposed models to describe the warehouse operation as a whole. A few notable

exceptions are studies by Hackman et al. (2001), de Koster and Balk (2008), and

Johnson and McGinnis (2009). These studies are summarized in TABLE 2.1.

Table 2.1 Summary of Previous Warehousing Efficiency Studies.

Hackman Johnson/McGinnis de Koster/Balk

Model

Input Variables
Labor Labor Labor
Space Space Size
Equipment Equipment Automation

Number of SKUs

Output
Movement Broken-case lines Daily order lines picked
Storage Full-case lines Level of value-added logistics

Accumulation
Pallet lines

Number of Special
Processes
Error-free order percent
Order Flexibility

Method

DEA DEA DEA
Mean Efficiency Estimate

0.7 0.66 0.76

Each study presents a unique input-output model used to estimate technical efficiency

using DEA. These studies represent warehouses and distribution centers from various
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industries in several countries across the globe. Although these studies have been helpful

in describing the warehousing industry as a whole, little work has focused specifically

on the refrigerated warehousing industry. In addition, no reported warehouse studies

have employed the econometric estimation of a production frontier and corresponding

technical efficiency estimates. The present study addresses both of these issues and

provides information regarding this industry and the methods used in this analysis.
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CHAPTER III

THEORY

The purpose of this study is to develop a production model that effectively

characterizes the technical efficiency of the refrigerated warehouse industry. The

measurement of efficiency is based on the ability to estimate a production frontier and

then specific producer’s performance is measured with respect to that frontier. This

chapter presents the theory that defines technical efficiency measurement and develops

the stochastic frontier model used in this analysis.

Representing Technology with Sets

We assume that a producer uses a nonnegative vector of N inputs, denoted

 , , x N
Nx x R  , to produce a nonnegative vector of M outputs. This output vector is

denoted  , , M
My y y R  . Thus, the technology set, or the collection of all feasible

input and output vectors, is defined as

  , :  can produce M NT y x x y R 
  (3.1)

The production technology in the single-input, single-output case is illustrated in Figure

3.1. The following assumptions are made regarding the technology set:

1)    0,  and ,0 0.x T y T y   

2) It is a closed set.

3) T is bounded for each .Nx R
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4)    , λ ,  for 0 λ 1.y x T y x T    

5)    , ,λ  for λ 1.y x T y x T   

6)        , ,  , , .y x T y x T y x y x         

7) T is a convex set.

The first assumption states that producing nothing from a given set of inputs is possible,

and that no output is possible without any input. The second assumption ensures the

existence of technically efficient input and output vectors. The third property ensures

that finite input cannot produce infinite output. Assumptions four and five are weak

monotonicity (weak disposability) properties that ensure both radial contractions and

radial expansions are possible. These two assumptions are often replaced by strong

disposability property. Any increase of inputs and any decrease in output is not limited

to only radial movement. The convexity assumption is not generally required, but if

included commodities must be continuously divisible.

The production technology also can be represented using output or input sets.

The technology defined by set T can be equivalently defined using the output set. For

each input vector x, P(x) is defined as the set of feasible outputs. P(x) is expressed

formally as,

      :  can produce : , NP x y x y y y x T R    (3.2)

The output sets P(x) are defined in terms of T, and since T is assumed to satisfy certain

properties, it follows that P(x) can satisfy corresponding properties. Similar properties as

T are assumed for P(x). The reader is referred to Färe, Grosskopf, and Lovell (1994) or
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Kumbhakar and Lovell (2000) for a more thorough presentation of these assumptions.

The output set P(x) is illustrated in Figure 3.1.

A third characterization of the technology can be defined by the input set, L(y).

L(y) is represented as,

      :  can produce : , .ML y x x y y y x T R    (3.3)

This input set consists of all input vectors x that can produce a given output vector, y. As

with P(x), L(y) is assumed to satisfy similar properties corresponding to T. Figure 3.1

represents the input set L(y).

Production Frontiers

The single-output case of the production technology is useful in illustrating a

production function. The single-output specification can be used to describe a

technology that only produces a single output, or the more likely event that multiple

y

x

x2

x1

L(y)

y2

y1

P(x)

(a) Production technology (b) Output Set (M = 2) (c) Input Set (N = 2)

Figure 3.1 Representing Technology with Sets. Based on figures presented in
Färe, Grosskopf, and Lovell (1994).
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outputs are produced and then aggregated into a single composite output

 1 ., , My g y y  . Definitions 3.2 and 3.3 can be used to obtain the following

definition:

       max : max : ,f x y y P x y x L y   (3.4)

where x is a vector of inputs and y is a scalar quantity. The production frontier f(x)

describes the maximum output that can be produced with any given input vector, and as

such, describes the upper boundary of the possible output. Producers operate at or below

this boundary. The measurement of the distance from the input-output combination of

each producer to the production frontier characterizes the central problem in measuring

technical efficiency. Two approaches to measuring this distance are distance functions

and cost, revenue, and profit frontiers. Distance functions will be presented below.

Before moving on to the discussion of distance functions, it is important to

mention the case where multiple-inputs are used to produce multiple-outputs. In this case

a joint production frontier, or production possibilities frontier, is used to describe the

upper boundary of feasible production. This frontier involves defining the efficient

subset of both the input and output vectors in which are at an un-scalable maximum and

minimum, respectively. Joint production frontiers are seldom used in empirical analysis

because the upper boundary of the production function in the multiple-input and

multiple-output case is more easily obtained using distance functions.
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Distance Functions

Distance functions are a useful way to describe technology when multiple inputs

are used to produce multiple outputs. Introduced independently by Malmquist (1953)

and Shephard (1953), distance functions are related to production frontiers and

characterize the structure of the production technology.  In general, distance functions

allow the characterization of a production technology through radial expansions and

contractions depending on the input-output orientation. The input distance function looks

to characterize the production technology maximize the contracting of the input vector

and still remain feasible for the output vector. The output distance function characterizes

the maximum proportional expansion of the output vector, given the input vector.

Formal definitions of input and output distance functions will be provided below.

An input distance function involves the scaling of the input vector to measure

distance from the producer to the boundary of production possibilities. The input

distance function can be defined based on the input set L(y) as follows:

    , max ρ : ρ .ID x y x L y  (3.5)

Since L(y) satisfies certain properties, the input distance function will satisfy a

corresponding set of properties. The input distance function is illustrated in Figure 3.2

for  two inputs, x1 and x2, that are used to produce one output, y. The isoquant line, Iso-

L(y), represents the minimum combinations of inputs, x1 and x2, feasible to produce the

given output vector, and forms the lower bound for the input set, L(y). Point A in Figure

3.2 represents the production point where a firm, firm A, uses x1A and x2A to produce the
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output vector y. The value of the distance function at point A is defined as the ratio ρ =

OA/OB.

Conversely, the output distance function is based on the maximal proportional

expansion of the output given the input vector. The output distance function can be

defined based on the output set P(x) as follows:

    0 , min δ : δ ,D x y y P x  (3.6)

where δ = OA/OB as represented in Figure 3.3. This ratio equals the value of the

distance function for firm A, at Point A, where x input is used to produce the outputs y1A

Figure 3.2 Input Distance Function. Adapted from a
figure presented in Coelli, et al. (2005).
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and y2A. The production possibility frontier is denoted in Figure 3.3 by PPF-P(x), and

represents the upper boundary of feasible production for the technology represented by

the set, P(x).

The use of distance functions has gained popularity in empirical use as it is not

necessary to specify a behavioral objective (such as profit-maximization) to describe the

technology. In addition, distance functions play a major rule in duality theory. The input

distance function is dual to a cost frontier and the output distance function is dual to a

revenue frontier.

Figure 3.3 Output Distance Function. Adapted from a
figure presented in Coelli, et al. (2005).
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Technical Efficiency

Koopmans (1951) provided a definition of technical efficiency for a multiple-

input and multiple-output case: A producer is technically efficient if an increase in any

output is possible only by decreasing at least one other output or increasing at least one

input. Conversely, a reduction in any input is possible only by reducing at least one

output, or by increasing at least one other input. Based on this definition, a technically

inefficient producer could improve efficiency by using less of at least one input to

produce the same level of output, or could use the same inputs to produce more of at

least one output.

Koopmans’ definition of technical efficiency provides a way to differentiate

between efficient and inefficient production states. It does not, however, provide a

measure of the degree of inefficiency or the tools for comparison between inefficient and

efficient vectors. Debreu (1951) presented a radial measure of technical efficiency that

addressed these issues. Radial measures are convenient as they focus on the maximum

feasible equiproportionate reduction of variable inputs, or the converse maximum

feasible expansion of all outputs. Radial measures are also useful as they are

independent of a unit of measurement. There is, however, one major drawback to using

radial measures of efficiency. Technical efficiency as measured by radial contraction of

the input vector or expansion of the output vector may understate the degree of

inefficiency present given the technology due to slack in inputs or outputs. In other

words, it fails to take into account the reallocation of one input for another. Thus, a
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producer may be efficient based on Debreu’s measure, but can be inefficient based on

the definition of Koopmans.

Farrell (1957) expanded on the work of Debreu by proposing that efficiency is

made up of two components; technical efficiency and allocative, or price, efficiency.

Technical efficiency refers to the producer being able to achieve maximum output from

a given set of inputs. Allocative efficiency refers to the producer being able to select the

appropriate proportion of inputs based on price of those inputs and the available

technology. Note that implicit in the measure of allocative efficiency is a behavioral

assumption. Farrell’s work uses the assumption of cost minimization in a competitive

market. The product of these two efficiency terms gives a measure of overall, or

economic, efficiency.

A simple example based on Farrell (1957) illustrates this concept of technical

and allocative efficiency in the constant returns to scale case. The input-orientated two

input (x1 and x2) one output (y) case is illustrated in Figure 3.4. The efficient isoquant is

represented by SS′. Point P represents the two inputs per unit of output a given firm is

observed to utilize. Point Q represents an efficient firm using the same ratio of inputs as

P. Thus, the technical efficiency (TE) of firm P can be measured by the ratio

TE = OQ/OP (2.7)

where the perfectly efficient firm has the value of one. This allows technical efficiency

to be measured on a scale of zero to one, and allows it to be calculated as one minus

QP/OP.
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If the input price ratio is known, it can be represented by the isocost line AA′ and

allocative efficiency can be calculated. Points Q and Q′ have a technical efficiency of 1.

However, the costs of production at Q′ will be a fraction OR/OQ of those at Q. Thus,

allocative efficiency (AE) can be measured by the ratio

AE = OR/OQ. (2.8)

The distance RQ can be interpreted as the cost reduction that occurs when the producer

moves to the point of allocative and technical efficiency, Q′, from Q.

If both technical efficiency and allocative efficiency can be measured, overall

cost efficiency, or economic efficiency (EE) can be determined. It is simply the product

of technical efficiency and allocative efficiency:

EE = TE ∙ AE = (OQ/OP) ∙ (OR/OQ) = (OR/OP). (2.9)

As seen above, economic efficiency can also be defined as the ratio of OR/OP.

O

x
2

x
1

A

A′

R

Q

P

S′

S

Q′

L(y)

Figure 3.4 Input Oriented Technical and Allocative Efficiency.
Based on Farrell (1957).
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It may also be convenient to measure the technical efficiency of the firm in terms

of the input-distance function, DI(x,y), defined above in equation (2.5). Technical

efficiency can be expressed as

TE = 1/ DI(x,y) (2.10)

where the fully efficient firm operates on the production frontier, and technical

efficiency is unity.

This simple example of the input-oriented efficiency measure can be adapted to

illustrate the output-oriented measure.  The two output (y1 and y2) and single input (x)

case is depicted in Figure 3.5. The curve FF′ represents the efficient production frontier.

Point A represents the inefficient firm as it lies below the efficient boundary. Technical

inefficiency is represented by the distance AB. Thus, the firm producing at point A could

y
2

y
1

P(x)

O

A

B

C

B′

D′

F

D

F′

Figure 3.5 Output Oriented Technical and Allocative Efficiency.
Based on Farrell (1957).
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increase output to point B without requiring any additional input. The technical

efficiency is measured by the ratio

TE = OA/OB. (2.11)

This is the ratio as described by the output distance function DO(x, y) in equation (2.6).

In the output-oriented case, it is assumed that the firm’s behavioral goal is to

maximize revenue. Price information is represented by the isorevenue line DD′.

The distance BC can be interpreted as the increase of revenue when moving from point B

to B′, and this can be used to define allocative efficiency. This is given as

AE = OB/OC. (2.12)

With both technical and allocative efficiency measured, economic efficiency can be

calculated as

EE = TE ∙ AE = (OA/OB) ∙ (OB/OC) = (OA/OC). (2.13)

Note that the product of technical efficiency and allocative efficiency is the ratio

OA/OC.

These two examples show the radial input-oriented and output-oriented

efficiency measurements introduced by Farrell. In the constant returns to scale case these

measures are equivalent. However, in the decreasing and increasing returns to scale

cases, the orientation must be selected based on the technology employed. In these

examples the production technology is known and the efficient isoquant is identified.

However, in practice the production frontier may be difficult to identify. The following

section will review the two major methods of efficiency measurement that are currently

employed.
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Methods of Efficiency Measurement

Measurement of productive efficiency requires the empirical approximation of

the true production frontier. Once the frontier has been estimated, the measurement of

efficiency based on distance from the frontier is straight-forward. The challenge lies in

estimating the frontier. Two major contrasting techniques have been frequently

employed to estimate production frontiers; one based on mathematical programming and

the other based on econometrics.

Data envelopment analysis (DEA) is a mathematical programming approach that

seeks to define a piecewise linear, quasi-convex hull over the data. To be technically

efficient, production must occur on the frontier. In the case of DEA, the frontier is

defined by best practice based on comparison of observed producers. Each producer’s

inputs and outputs are weighted, and the program is solved to minimize the weighted

input-output ratio subject to the constraint that all weights are non-negative and that the

weighted sample is bounded below by one. The first DEA model was presented by

Charnes, Cooper, and Rhodes (1978), and is frequently referred to as the CCR model.

This model takes an input orientation and assumes constant returns to scale. A variable

returns to scale model, referred to as the BCC model, was popularized by Banker, et al.

(1984). DEA is popular among practitioners because it does not require the specification

of a functional form for the production technology or make behavioral assumptions for

the producer. In addition, if prices are known, economic efficiency can be estimated and

decomposed into its technical and allocative components. The basic DEA model is

deterministic; however, more advanced models incorporate stochastic characteristics.
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The econometric approach, typified by stochastic frontier analysis (SFA), seeks

to estimate the production frontier, and to distinguish the effects of noise from

inefficiency. This form requires the specification of a production function and estimation

of the distributional form of the inefficiency term. In a simple multiple input and single

output case, the functional relationship is given as yi = f(xi,β) + εi, where yi is the scalar

output of the producer, i is the producer being evaluated, and β is a vector of parameters

to be estimated. The residual εi is decomposed into a random error component vi and an

inefficiency component ui. This approach allows the estimation of the production

frontier. In addition, if price data are available a cost frontier can be estimated. An

advantage of this approach is that it allows conventional statistical tests to be used in

data analysis.

The programming and econometric approaches to measure technical efficiency

each have strengths and weaknesses. The programming approach is non-stochastic, and

does not distinguish between noise and inefficiency; the econometric approach is

stochastic, and attempts to distinguish between noise and inefficiency. Conversely, the

programming approach is nonparametric and is thus able to avoid the confounding

effects caused by the misspecification of the functional form. While both methods have

advantages and disadvantages, both have proven to be robust in efficiency estimation as

well, and there appears to be some consistency in analyzing the same data using both

methods (Fried, et al., 2008). Since the econometric approach is employed in this study,

the following section will present a more in depth review of SFA. For a more
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comprehensive treatment of DEA, the reader is referred to Färe, et al. (1994) and

Charnes, et al. (1994).

Stochastic Frontier Analysis

This section sets forth basic theory behind the econometric estimation of

technical efficiency and develops the basic SFA model. In this section it is assumed that

the producers are confined to a single output—either due to the constraints of the

production technology—or that multiple inputs have been aggregated into a single-

output index. It is also assumed that cross-sectional data are used for the analysis. The

discussion is limited to estimating a stochastic production function, so no price or

behavioral assumptions are set forth. The panel data and cost function model can be

easily adapted from this basic model. However, these will not be presented here due to

the scope of the research involved. If interested in these topics, the reader is referred to

Kumbhakar and Lovell (2000).

The presentation in this section follows Kumbhakar and Lovell (2000). As stated

above we assume access to cross-sectional data on quantities of K inputs used to produce

a single output for each N producer. Without any stochastic elements, a production

frontier model can be written as

yi = f(xi; β) ∙ TEi (3.14)

where yi is the scaler output of producer i, i = 1,…N, xi is a vector of K inputs used by

the producer, β is a vector of technology parameters to be estimated, f(xi; β) is the

production frontier, and TEi is the output-oriented technical efficiency of producer i.
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We can rewrite equation (3.14) to express technical efficiency as the ratio of

observed output to the maximum feasible output. Thus,

 ;

i
i

i

y
TE

f x



(3.15)

where yi reaches it maximal value of f(xi; β) if, and only if, TEi =1. The amount by which

TEi < 1 describes the firm’s inefficiency.

Thus far, the case we described in equation (3.14) the production frontier f(xi; β)

is a deterministic frontier. A deterministic frontier is defined by the way that inefficiency

is defined. As seen in equation (3.15) the entire gap that exists between yi and the

observed frontier f(xi; β) is attributed to technical efficiency. Thus, in this case the

econometrically determined deterministic frontier is not unlike the frontier assed by

DEA. Such specifications do not account for the fact that output can be affected by

factors outside the control of the producer. These may include uncertainties in the

market, equipment breakdown, or natural disasters. The stochastic production frontier

takes this into account by introducing a producer specific part that captures the effect of

random shocks on each producer. Thus, we rewrite equation (3.14) as

   ; ·exp ·i i i iy f x v TE  (3.16)

where    ; ·expi if x v   represents the stochastic production frontier. The deterministic

part, common to all producers, is  ;if x  , and the producer specific part  exp iv , which

captures the random shocks to the producer. With the production frontier now being

specified as stochastic, technical efficiency as defined in equation (3.15) can be

redefined as
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   ; ·exp

i
i

ii

y
TE

f x v



, (3.17)

where the ratio of observed output to maximum feasible output is characterized by

 exp iv . Again, TEi = 1 when yi is produced at    ; ·expi if x v   , otherwise technical

inefficiency is present, represented by TEi < 1, which can vary by  exp iv .

Technical efficiency can be estimated using either the deterministic production

frontier or by the stochastic production frontier. The stochastic model is preferred as it

can account for random shocks on the production environment. We will now consider

the stochastic frontier model.

The stochastic production frontier model was introduced simultaneously by

Aigner, Lovell, and Schmidt (1977) and Meeusen and van den Broeck (1977).  If we

assume that the production technology takes the log-linear Cobb-Douglas form, the

stochastic model given in equation (3.16) is given as

0ln ln εi n ni i
n

y x     , (3.18)

where εi = i iv u . Thus, the error term is decomposed into vi, which represents

symmetric disturbance, or noise, and ui which accounts for technical inefficiency. The

noise component vi is assumed to be independently and identically distributed (iid) as

 20,σ vN , and independent of ui. The inefficiency component ui is restricted to be a

positive number, so that 0iu  , and the error term εi i iv u  is asymmetric. Assuming

that vi and ui are distributed independently of xi, estimation of equation (3.18) by OLS



41

provides consistent estimates of all the parameters except 0β . This result is due to the fact

that    εi iE E u   0. In addition, OLS fails to provide producer-specific estimates of

technical efficiency. As producer-specific estimates of technical efficiency are desired—

and OLS does not provide them—different estimation techniques are required.

Maximum likelihood estimation (MLE) provides a robust method to estimate both the

intercept and the inefficiency term.

The concept of MLE is founded on the idea that a given sample of observations

is more likely to favor certain distributions over others. The maximum likelihood

estimate of an unknown parameter is often defined as the value of the parameter that

increases the probability of randomly drawing a particular sample of observations. Thus,

the estimation of the likelihood function requires that we make certain assumptions

about the distribution of the error. The next section presents methods for the estimation

of MLE for two stochastic models and the distributional assumptions made.

Distributional Assumptions

To use the maximum likelihood principle to estimate the parameters of a

stochastic model, we have to make assumptions concerning the distributions of the error

terms. Typically, the noise term is assumed to be normally distributed. The inefficiency

term has been evaluated using differing distributions including half-normal, exponential,

truncated normal, and gamma. The section will present the half normal model, as this

model is frequently used in practice. In addition, due to its use in this analysis, the

truncated normal model will be presented.
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The Normal-Half Normal Model

Given the stochastic frontier production model given is equation (3.18) we begin

with three assumptions. First, the noise error component is normally distributed as

 2~ idd 0,i vv N  . Second, the inefficiency term is distributed as nonnegative half

normal,  2~ iid 0,i uu N  . Third, both error components are distributed independently

of each other and the regressors.

We now must construct the joint density function for the error terms. The density

function for 0iu  is given as

 
2

2

2
·exp

22 uu

u
f u
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and the density function given for v is given as
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Since ε v u  , we can calculate the joint density function for u and ε as
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. (3.21)

We can now obtain the marginal density function of ε by integrating u out of  ,εf u ,

which yields
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where  1/22 2σ ,u v   λ / ,u v  Φ(∙) is the standard normal cumulative distribution

(cdf), and (∙) is the standard normal probability density function (pdf). Figure 3.6 shows

three different normal-half normal distributions for three different combinations of σu

and σv. Since σ 0u  ,  all three distributions are negatively skewed, with negative modes

and means.
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Figure 3.6 The Normal-Half Normal Model. Based on
distributions shown in Kumbhakar and Lovell (2000).
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The log likelihood function based on equation (3.22) for a sample of N producers

is calculated as

2
2

2
1 1

σ ε λ 1
ln ln lnΦ ε .
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N N
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i i
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  (3.23)

We can maximize the log likelihood equation with respect to the parameters to obtain

maximum likelihood estimates of each.

The firm-specific technical efficiency estimate depends on ui. Based on Jondrow,

et al. (1982), if  2~ 0,σ ,i uu N  the conditional distribution of u given ε is calculated as
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where 2 2
*μ εσ / σu  and 2 2 2 2

*σ σ σ / σ .u v Since  |εf u is distributed as  2
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mean of this distribution is a convenient point estimator for ui. This is given as
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Thus, firm specific estimates of technical efficiency can now be obtained by

 ˆexp ,i iTE u  (3.26)

where  ˆ  is |ε .i i iu E u However, Battese and Coelli (1988) have proposed the

following alternative estimator for TEi:
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This predictor can be shown to be optimal in that it minimizes the mean square

prediction error.

To this point the normal-half normal model has been presented. It is widely

employed in empirical work. However, other distributional assumptions are frequently

used. The following section sets forth the analysis of the stochastic production frontier

based on the assumption of a truncated normal distribution for ui.

Normal-Truncated Normal Model

The normal-truncated normal model is a generalization of the normal-half normal

model. In this model ui is assumed to fit a normal distribution, truncated below at zero,

with a non-zero mode. Thus, the truncated normal distribution adds an additional

parameter μ that represents the mode. This parameter is estimated along with the other

parameters of the model and provides more flexibility in representing patterns in the

data.

We will now derive the marginal density function for this distributional model,

beginning with the density function of 0u  for the truncated normal distribution. This

is given as

 
 
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2
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u
f u


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(3.28)

where μ is the mode of the normal distribution truncated below zero, and Φ(∙) is the

standard normal cdf. Because  f u is the normal density function truncated at zero, if
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μ 0 then the density function given in equation (3.28) becomes the half normal

density function discussed in the previous section.

The density function for  f v is the same used for the normal-half normal

model and is given by equation (3.20). We can multiply the individual density functions

of u and v to arrive at the joint density function given by
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(3.29)

This can be easily adapted to derive the joint density function of u and ε, which is given

as
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The marginal density of ε can be derived as

   

 
 

0

2

2

1

ε ,ε

ε μ1 μ ελ
·Φ ·exp

σλ σ 2σσ 2 ·Φ μ / σ

1 ε μ μ ελ μ
· ·Φ · Φ ,

σ σ σλ σ σ

u

u

f f u









            

             
      



(3.31)

where  1/2σ σ σu v  and λ σ / σu v as given in the half normal model, Φ(∙) is the

standard normal cdf, and (∙) is the standard normal pdf.

The normal-truncated normal distribution has three parameters; μ, a placement

parameter, and two spread parameters σu and σv. Figure 3.7 provides a graph of three
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different distributions with the placement μ parameter negative, positive, or zero. Note

that all three distributions are negatively skewed and have a negative mean.

With the marginal density function for ε defined we can now give the log likelihood

function. The log likelihood function for a sample of N producers is

2
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(3.32)
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Figure 3.7 The Normal-Truncated Normal Model. Based
on distributions shown in Kumbhakar and Lovell (2000).
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where 2σ λσ 1 λ .u   This log likelihood function can be maximized to obtain

estimates of all the parameters in the stochastic frontier function.

The conditional distribution of  |εf u is given by
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This is distributed as  2
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Point estimates of the technical efficiency can be obtained as follows:
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which becomes the ˆ
iTE estimator of Battese and Coelli (1988) when μ 0.

This chapter has provided an overview of the theory underpinning the

measurement of technical efficiency. It began with how technology is defined using sets,

moved on through the use of sets to define a production frontier, and demonstrated how

frontiers can be used to estimate efficiency through distance functions. We then defined

efficiency and its component parts. Methods of efficiency measurements were

introduced, and the stochastic frontier model was given as a way to estimate the
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production frontier and firm specific efficiency estimates. Lastly, two different

distributional assumptions were explored to see how efficiency estimates can vary as we

change distributional assumptions for the inefficiency error term. This chapter also

concludes the introductory and background material that provides the context for the

current analysis. The following chapters will present the model employed and associated

analysis in the evaluation of the refrigerated warehousing industry.
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CHAPTER IV

DATA AND METHODOLOGY

This chapter marks the beginning of the empirical analysis for this study. It

begins with a description of the data and the variables utilized in the production model.

It then sets forth the production model to be utilized. Finally, it outlines the one-step

maximum likelihood estimation (MLE) method employed for analyzing the proposed

model. The results of the MLE, including the industry technical efficiency estimate, are

reported in the following chapter.

Data

Data used for this study are kindly provided by the International Association of

Refrigerated Warehouses (IARW). This trade association is a partner in the Global Cold

Chain Alliance (GCCA) which currently represents 1,300 member companies in over 65

countries (www.gcca.org). The IARW represents the global temperature-controlled third

party warehousing and logistics industry and promotes best practices through research,

and industry benchmarking (www.gcca.org/partners/iarw). As part of its benchmarking

function, the IARW conducts a bi-nnual Productivity and Benchmarking Survey.

Surveys are made available to members to be used in conjunction with their annual

evaluation processes.

The data collected include information on company size and financial results, as

well as warehouse operating statistics, labor, and wage and benefit information.
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Completed surveys are collected by and analyzed by an independent CPA firm.  Basic

ratio and financial benchmarking analyses are conducted with these data, and are made

available to members of the association. Part of the motivation for this study is to

develop more effective benchmarking tools and results for the industry.

Currently, we have access to the 2012 Productivity and Benchmarking Survey.

These data include responses to 69 surveys, covering 198 warehouses throughout the

United States and Canada. Twenty-six surveys include aggregated data on more than one

warehouse. These observations are divided by the number of warehouses in the financial

statement to get average data per warehouse. Observations with missing values were

discarded leaving N=39.

Methodology

This section reports the methodology employed to conduct the current efficiency

analysis. The stochastic frontier method employed is based on the early models of

Aigner, et al. (1977) and Meeusen and van den Broeck (1977). These early models

depended on a one-sided error term that was assumed to be identically and

independently distributed. More recently, models have allowed the error component to

be heterogeneous and depend on different firm characteristics (Battese and Coelli, 1995,

Wang and Schmidt, 2002). These one-step models allow the estimation of firm-specific

technical efficiency and identify factors outside the production function that affect these

efficiency estimates. A one-step technical efficiency effects model will be employed for

this analysis of the refrigerated warehouse industry.
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The following subsections outline the proposed production model, beginning

with specifying variables in the production frontier. Next, contextual variables affecting

efficiency are identified, following which the proposed production function will be

presented. The section concludes with presenting the maximum likelihood estimation

method used to estimate efficiency and efficiency effects.

Variables in the Production Frontier

For the production frontier part of the model, the output variable is pounds

handled per year, and the inputs are direct labor hours, investment in equipment, and

space in cubic feet. Previous warehouse efficiency studies have used broken case, full

case, and pallet lines as output variable in a multiple output model (Hackman, et al.,

2001, Johnson and McGinnis, 2011). The refrigerated warehouse industry’s output is

largely pallet orders, although some full case and broken case shipping does occur. The

output variable, pounds handled per year (pounds), is an aggregate that attempts to

standardize output into one variable accounting for the differences in size of broken

case, full case, and pallet lines shipped.

On the input side, direct labor hours (labor) are measured as labor hours

expended in direct inventory processing per year. This value is obtained by multiplying

direct labor hours per week by 52. The next input, investment in equipment (invest), is

proxied as fixed assets at cost. This variable is meant to capture the amount invested in

material handling equipment and storage systems. It is used in place of directly reported
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cost of handling equipment, as fixed assists performs better in the proposed model, and it

attempts to account for storage systems in addition to handling equipment.

Space is also included as an input variable. Warehouse space was used as an

input in previous warehouse models (de Koster and Balk, 2008, Hackman, et al., 2001,

Johnson and McGinnis, 2011). In these studies space was proxied by floor space, and did

not include height. The rationale being, vertical height is not always used—especially in

dock areas (Hackman, et al., 2001). Information provided in the warehousing survey is

reported in cubic feet, and as vertical heights are not available, warehouse space (space)

is applied in cubic feet. Table 4.1 presents the summary of variables included in the

frontier production function.

Table 4.1 Descriptive Statistics of Variables Included in Production Function.
POUNDS LABOR INVEST SPACE

(per year) (hours/year) ($) (cu. ft.)

Mean 364,736,168 54,777 18,791,274 4,999,583

Std. Dev. 277,818,920 35,919 28,652,299 2,760,890

Min. 37,442,062 4,992 168,670 734,847

Max. 1,109,600,385 158,860 141,516,105 12,584,199

Contextual Factors Affecting Efficiency

Inventory turns has been identified as being highly correlated with warehouse

efficiency (Johnson and McGinnis, 2011). This is most likely due to a reduction in the

amount of storage space required. The smaller the storage space, the less space, labor

and equipment is required, thus reducing the amount of inputs required. In this analysis
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inventory turnover is labeled as turns per year (turns), and is calculated as the number of

pounds handled during the year divided by two times the average pounds stored.

The percentage of error-free orders has been used as an output variable (de

Koster and Balk, 2008). However, orders with errors percentage is included as a

contextual factor in the present analysis. Errors may be caused by poorly designed

production technologies or operational procedures.  Additionally, errors may be caused

by inefficient implementation of sound technologies and operational procedures. The

percentage of orders with errors (errors) is given as a fraction of error-free order

percentage over 100.

In the warehouse, as utilization of storage spaces approach 90 percent

productivity falls off dramatically (Frazelle, 2002). This is due, in large part, to the lack

of flexibility available for efficient put away and retrieval of goods. Storage space

utilization is reported as the amount storage space occupied (occupancy). It is given as a

fraction over 100. Table 4.2 presents the summary statistics for contextual factors

applied in this study.

Table 4.2 Descriptive Statistics of Variables Included in Contextual Factors.
turns

Errors (%) Occupancy (%)
(per year)

Mean 9.62 0.98861 0.76
Std. Dev. 4.46 0.01251 0.15

Min. 3.59 0.95 0.38
Max. 21.26 1 0.97
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Production Function

The stochastic frontier model first requires the estimation of a production

function. The specification of the functional form is of great import, as it can have

significant impact on the results. A number of functional forms are used in the literature;

however, the Cobb-Douglas and translog forms are by far the most common as both can

be made linear in parameters and be estimated using least squares methods. In general, it

is preferred that the functional form chosen for analysis be second-order flexible. This is

to prevent general restrictions, such as constant production and substitution elasticities,

that are present with first-order flexible forms such as Cobb-Douglas (Coelli, et al.,

2005). The translog function is a generalization of the Cobb-Douglas function and

provides the flexibility of a second order approximation. This increased flexibility,

however, comes with a price; it is more difficult to interpret and can suffer from

curvature violations. The translog function can be converted to Cobb-Douglas by setting

the second-order parameters to zero. The flexible translog production function is

       

     

       
   

0 1 3 4

2 2 2

11 22 33

12 13

23

ln ln ln ln

1 1 1
ln ln ln

2 2 2
ln ·ln ln ·ln

ln ·ln ,

i i i i

i i i

i i i i

i i i i

pounds labor invest space

labor invest space

labor invest labor space

invest space v u

    

     

 

  

(4.1)

where restriction of the second order terms yields

       0 1 3 4ln ln ln ln .i i i i i ipounds labor invest space v u       (4.2)

This is easily recognizable as the log-linear Cobb-Douglas functional form. This

functional relationship makes it possible to choose between these two models using the
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likelihood ratio (LR) test1.  Both Cobb-Douglas and translog functional forms will be

estimated and the most parsimonious model will be chosen for this analysis. For the sake

of simplicity, the Cobb-Douglas representation will be used in the following section.

Log-likelihood Model Specification

A frequently used method for empirical analysis utilizes two steps. In the first

step, the stochastic frontier model and the firm specific efficiency levels are estimated.

These efficiency estimates are then used to regress against contextual variables (zis) that

may account for observed differences between firms in the industry. This two-step

approach has long been recognized to be problematic. In the first stage the inefficiency

effects are assumed to be identically distributed, but then this assumption is contradicted

in the second stage as estimated efficiencies are assumed to have a functional

relationship with zi.

An alternative methodology was introduced by Kumbhakar, et al. (1991) and

Reifschneider and Stevenson (1991). They each propose stochastic frontier models in

which the inefficiency component of the error term ui is expressed as an explicit function

of specific variables and random error. These models take the general from

 ,δ ,i i i i iy x v u z     (4.3)

where z′ is a vector of contextual variables that may affect the efficiency of the firm, and

δ is a vector of variables to be estimated. It is usually assumed ui is distributed as

1 The LR test statistic,       
0 1

λ 2 log loglikelihood H likelihood H   , has approximately 2χ
distribution with degrees of freedom equal to the number of restricted parameters in H0, if H0 is true.
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 2,σi iN u


with differing specification for 2 and σ
i iu . The frontier function and the

inefficiency part are generally estimated in one step using MLE.

Battese and Coelli (1995) propose a one-step maximum likelihood model based

on this general form. This model assumes a truncated normal distribution. This model

differs from Kumbhakar, et al. (1991) in that it is amenable to panel data. The technical

inefficiency effect can be defined as

δ + w ,i i iu z (4.4)

where the error term wi is assumed to be a normal distribution truncated at δiz .

Technical efficiency of production for the i-th firm can be estimated as

   exp exp δ .
i i iTE U z W     (4.5)

In this model σv and σu are replaced with 2 2 2σ σ σv u  . The parameter

 2 2 2γ σ σ σu v u  is introduced in the model and allows for evaluation of the inefficiency

term ui by testing for its significance. If we fail to reject the null hypothesis, H0: γ = 0,

this indicates that 2σu is zero, and that there are inefficiency effects present in the model.

Under the technical efficiency effects model proposed byBattese and Coelli

(1995), the stochastic production function to be estimated for the current study is given

in equation (4.3), and the technical inefficiency effects are assumed to be defined by

1 2 3 1δ δ δ δ .i o i i iu turns errors occupancy w     (4.6)

MLE is employed to simultaneously estimate the stochastic production frontier and the

technical inefficiency effects.
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The MLE estimation of the proposed model is conduction in the software

program FRONTIER 4.1 kindly provided by Tim Coelli2. The program follows a three-

step procedure for estimating the maximum likelihood estimates and parameters of the

stochastic production frontier. These three steps are as follows:

1) Ordinary Least Squares (OLS) estimates are calculated for the production

function. All β estimators with the exception of the intercept are unbiased.

2) A two phase grid search is conducted across the parameter space of γ.

Values of γ from 0.1 to 0.9 in increments of size 0.1 are considered. The

search is conducted for β parameters (excepting 0 ) at their OLS values

and 0 and 2σ parameters adjusted according to the corrected least

squares formula in Coelli (1995). Other parameters (e.g. μ and δ ) are set

to zero in this search.

3) The values derived in the grid search are then used as starting values in an

iterative Davidon-Fletcher-Powell Quasi-Newton procedure to obtain the

final maximum likelihood estimates. Standard errors are approximated

from the direction matrix used in the final iteration of the Davidon-

Fletcher-Powell procedure.

For more information on this computer program the user is referred to Coelli (1996).

2 Available for free downloads from the Center for Efficiency and Productivity Analysis (CEPA) website:
www.uq.edu.au/economics/cepa.
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This concludes this chapter on data used and the methods employed in the

present analysis. A stochastic frontier production model was set forth and the methods of

the maximum likelihood estimation procedure outlined. The following chapter reports

the results of this analysis.
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CHAPTER V

RESULTS AND DISCUSSION

We have presented a model to assess the technical efficiency in the refrigerated

warehousing industry. This chapter presents the results of the analysis of the stochastic

frontier production model set forth in the previous chapter. The results are then

discussed in the following section along with suggestions for future work.

Results

The first step in the analysis was to identify the most parsimonious production

function. The results of the OLS estimation of the stochastic production frontier model

are provided in Table 5.1. The likelihood ratio test indicates that we fail to reject the

null hypothesis, 0 11 22 23: 0H        . Thus, we conclude that the Cobb-Douglas

model is the most parsimonious, implying the assumption that constant elasticities holds

for this technology. A Breusch-Pagan-Godfrey test confirmed the absence of

heteroscedasticity.

The next part of the analysis was to estimate the complete Cobb-Douglas

stochastic production model taking into account inefficiency effects. These estimates are

reported in Table 5.2, along with the standard errors of the maximum-likelihood

estimators.

The estimated coefficients for the production model are all positive, with the

coefficients of labor and space, 0.444 and 0.399 respectively, being highly significant.
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Table 5.1 Results OLS Estimation. Dependent variable: ln(pounds).

Variables
Cobb-Douglas Translog

Coefficient
Standard

Error
T-ratio Coefficient

Standard
Error

T-ratio

β intercept 6.931 2.000 3.4655 -4.1757 50.0807 -0.0834
ln(labor) 0.533 0.148 3.6142 1.8244 5.4992 0.3318
ln(invest) 0.059 0.072 0.8186 0.5947 1.9884 0.2991
ln(space) 0.384 0.194 1.9875 0.2515 9.2436 0.0272
ln(labor)2 -0.4726 0.5451 -0.8669
ln(invest)2 0.0152 0.0750 0.2021
ln(space)2 0.6819 0.9597 0.7105

ln(labor)·ln(invest) 0.5380 0.2924 1.8430
ln(labor)·ln(space) -0.3164 0.5530 -0.5721
ln(invest)· ln(space) -0.4264 0.2839 -1.5020

R2 0.663 0.7013
σ2 0.2471 0.2643

log-likelihood -25.9652 -23.6097

The coefficient on invest, 0.146, is small and moderately significant. The coefficients of

the log-linear Cobb-Douglas model can be interpreted as the elasticities of substitution

for the production inputs.  These coefficients sum to 0.99 implying that the technology

represents constant returns to scale.

The estimated coefficients for the efficiency model for turns and occupancy are

both significant. The negative sign on turns, as expected, indicates that the number of

turns is negatively correlated with inefficiency. This result is similar to what has been

reported previously (Johnson and McGinnis, 2011). The estimated coefficient for errors

has a positive sign, implying that warehouses with a higher percentage of errors have

greater inefficiency; however, this relationship is very weak.
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Table 5.2 Results Log-likelihood Estimation. Dependent Variable: ln(pounds).

The estimate of γ, which can be interpreted as the ratio of the variance of

technical efficiency to the total variance of output, is 0.694, indicating the presence of

inefficiency in the model. This would mean that roughly 70 percent of the variation in

warehouse output is due to technical efficiency. Likelihood ratio tests3 were used to

evaluate the significance of inefficiency in the model and are presented in Table 5.3. The

first test is to see if inefficiency effects are present in the model. The null hypothesis that

no inefficiency effects are present is strongly rejected. Thus, we concluded that a

stochastic frontier model is justified. We next test to see if the joint effects of the

contextual variables effects efficiency. The null hypothesis that inefficiency effects are

not a linear function of age is also strongly rejected. Thus, we concluded that the

3 The likelihood ratio test statistic has been shown to have a mixed 2χ distribution (Coelli, 1995) and test

statistics are taken from Table 1 in Kodde and Palm (1986).

Variables Coefficient Standard Error T-ratio

β intercept 6.686 1.115 5.997

ln(labor) 0.444 0.111 4.012

ln(invest) 0.146 0.060 2.417

ln(space) 0.399 0.116 3.424

δ intercept 1.142 0.823 1.387

TURNS -0.280 0.042 -6.644

ERRORS 0.121 1.001 0.121

OCCUPANCY 1.346 0.724 1.859

σ2 0.266 0.147 1.813

γ 0.694 0.115 6.051

log-likelihood -13.326
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combination of these three variables do effect efficiency. However, the individual effects

of these variables cannot be determined.

Table 5.3 Tests of Inefficiency Parameters in the Stochastic Production Model.
# Null Hypothesis Log(Likelihood) 2

0.99
χ -value Test statistic

1 H0: γ = 2σu = 0 -25.965 14.325 25.279

2 H0:  δ1 = δ2 = δ3 = 0 -25.708 10.501 24.765

Now that it has been determined that technical inefficiency effects are present in

the model, we examine the technical efficiency estimates generated by the model. The

average technical efficiency for the sample is 0.72. Summary statistics for the firm

specific technical efficiency estimates are given in Table 5.4. These efficiency results are

similar to those obtained in previous warehouse efficiency studies (de Koster and Balk,

2008, Hackman, et al., 2001, Johnson and McGinnis, 2011).

Table 5.4 Summary Statistics for Individual Technical Efficiency Estimates.
Mean Median Standard Deviation Minimum Maximum

TEi 0.715 0.753 0.210 0.214 0.960

While the average technical efficiency estimate for the group is 0.72, there is a

wide distribution. The TEi estimation for each warehouse in the sample was ordered and

the distribution frequency is shown in Figure 5.1.  The warehouses in the sample cluster

into three distinct groups. These three groups may relate to the role each warehouse

fulfills, such as distribution center in contrast to a storage provider.
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Figure 5.1 Frequency of Efficiency Estimates.

Discussion

To our knowledge, this is the first study to employ stochastic frontier analysis in

measuring technical efficiency in the warehousing industry. The choice of SFA was

motivated by several reasons. First, survey data are prone to reporting error, and

econometric estimation takes account of some of this error in the noise component of the

error term vi. In addition, the model specifications are easily amenable to modeling cost

efficiency and panel data if these become available. Finally, no studies in the current

literature employ a stochastic approach to estimating efficiency for the warehousing
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industry. SFA requires the specification of a production function. By specifying a

production technology, this study has provided further insights into the functional

relationships between inputs and outputs in the refrigerated warehouse industry. The

mean technical efficiency for the refrigerated industry was estimated by SFA at 0.72.

This is in line with the previous warehousing studies using DEA to survey the industry

as a whole (see Table 2.1). That the technical efficiency estimates from this study line up

with efficiency estimates from those other studies, it suggests that SFA is similarly

robust to DEA in addressing efficiency questions within the warehousing industry.

This study employs the Cobb-Douglas production function to model technology in

the industry. The production technology described by the model is characterized by

constant elasticities and constant returns to scale. Using a production function in

efficiency estimation allows for functional relationships to be explored.  The inputs

associated with pounds handled are positive and labor and size are strongly significant.

Investment in equipment is small, and appears to have modest significance.

It is interesting to note that warehouse size appears to have a greater impact on

output than does investment in equipment. This could be for several reasons. Available

space is important to the efficient operation of a warehouse. This study found that

occupancy percent of total positions filled was positively correlated with inefficiency.

As the amount of total storage positions decrease it often requires more effort for storage

and retrieval of items. In addition, less space implies higher storage density and narrower

aisles requiring more time and labor for item put away and retrieval.
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Another reason that warehouse space appears to be more important than

equipment is based on the choice of proxy used for handling equipment. Using a

financial proxy for warehouse handling equipment may be problematic because it cannot

capture the actual value of the equipment, and value reporting techniques may vary from

warehouse to warehouse. In addition, it also fails to take into account age of equipment

or depreciation. Reporting book value of equipment may also be confounded by the cost

versus benefit effects of that equipment. A forklift and a movable storage rack not only

have differing book value, but each has a unique role, and thus may affect the movement

of product differently. This difficulty is compounded by the fact that we may not reflect

the true value of the equipment; we cannot distinguish the effects of different equipment

on either the productivity or the efficiency of the warehouse.

Going forward, we suggest that dividing equipment into respective categories

would improve this study. For instance, categories could include item such as lift trucks,

racks, conveyors, and robotics. Ideally, numbers of each type of equipment in selected

categories would be used. However, aggregating numbers within categories would

suffice. Price information could be estimated by aggregating the current replacement

cost for each of the items in the categories. These could then be included as terms in the

production function, similar to the investment variable of Hackman, et al. (2001). Thus,

it would more closely reflect the differences in production technologies, and provide a

more accurate measure for the effects of equipment on warehouse productivity and

efficiency. A recommendation will be given to include this strategy in the IARW

benchmarking surveys.
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This study also examined the effects that specific variables have on firm

efficiency. It was reported that both number of inventory turns and percent occupancy

were significant. The percentage of errors appears to have a negative effect on

efficiency, albeit an insignificant one. It was suggested that this variable may reflect bad

technology or inefficient process. In other words, it may be a structural problem, or it

may be simply an application issue. Based on the results of the analysis, the

insignificance of this effect suggests the latter. If errors are a structural problem we

would expect them to occur more often, and be more influential in the efficiency

estimate. This may prove to be a fruitful area for further research.

An area of active research in the productivity community is the point of impact

for these efficiency effects. Do they influence technical efficiency, the production

function, or both? For this study, it was assumed that the contextual variables influenced

the technical efficiency; however, further work in this area is encouraged. In addition,

recent work has been done in identifying the best model to fit industry data (Alvarez, et

al., 2006), and in measuring the amount of sample variation that is attributed to firm

specific characteristics (Liu and Myers, 2009). Further work on the present model in

these areas is recommended.

An obvious concern about this analysis is the small sample size. With small

sample sizes much of the utilized methods lose robustness, such as statistical testing of

the β parameters. In addition, there is the risk of model misspecification. Another issue is

measuring skewness in the OLS residuals. The residuals may not show any skewness in

small samples, however this does not mean that inefficiency effects are not present
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(Greene, 2008). This is evidenced in the present study, as the OLS residuals showed no

significant negative skewness, yet the estimated model showed significant effects

compared to the restricted model (where γ = 0). Only with a larger sample would these

issues be able to be resolved.

There are several variables of interest that could not be included in either the

production or the inefficiency model because the available data set is missing values.

Kilowatt hours used per warehouse, information technology expense, and pounds blast

frozen are examples of these variables with missing observations. Adding kilowatt

hours used to the warehouse production function would enable us to evaluate energy

used as an input. As contextual variables, information technology and blast freezing

would provide information on the effects of technology and value added services,

respectively.

Having a larger sample size would help resolve some of the issues discussed

herein. An ideal solution would be to obtain existing panel data from the last several

years. This would not only allow for aggregation of variables in a cross section to obtain

better parameter estimates, but would allow us to explore how technology and efficiency

changes with time. In addition, going forward, obtaining cost information would allow

us to test a cost model which would shed further light on the refrigerated warehousing

industry. These suggestions will be made to the IARW for implementation in future

benchmarking surveys.

Calculating a productivity frontier and TEi allows us to conduct benchmarking

analysis. Individual TEi estimates allow identification of where each warehouse falls on
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the efficiency spectrum. In addition, we can evaluate warehouse efficiency compared to

the industry as a whole. When evaluating the distribution of TEi in this study there are

three distinct groupings. These grouping may correspond with the primary role of each

particular warehouse. For instance, the three warehouses that group on the low end of

the efficiency scale may be primarily storage warehouses, while those on the opposite

side of the spectrum may be distribution centers. This clustering may indicate the

relationship between efficiency and the flow of goods in and out of the warehouse. We

suggest that the TEi of each individual warehouse may reflect the primary role that each

plays, and as such, there may be strong association between technical efficiency and

pounds in and out. This association warrants additional investigation in this area.
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CHAPTER VI

CONCLUSION

In conclusion, this thesis presents a production model for the refrigerated

warehouse industry and estimates a stochastic frontier used to generate technical

efficiency estimates for the individual firms and the industry as a whole. This study is

the first of its kind to address the refrigerated warehouse industry specifically. It is also

the first study to use stochastic frontier analysis to evaluate technical efficiency in the

warehousing industry in general. We found that the mean efficiency for the refrigerated

warehouse industry is 0.72, which falls within the same range as other warehouse

efficiency studies, and as such, recommend this method as a valid approach to address

efficiency questions in this industry. In addition, three attributes related to production

were included in the analysis to see what effect they had on efficiency. Number of turns

was found to correlate with increased efficiency, and order error percentage and

occupancy of warehouse space correlated with inefficiency.

Going forward, we suggest that this model be applied to a larger data set. This

will help verify the conclusions presented herein. This data may be aggregated from past

Benchmarking Surveys conducted by the IARW. Additionally, the model can easily be

adjusted for panel data. We also suggested that future survey by the IARW collect data

on categories and numbers of equipment information. Analyzing these data would allow

us to explore the interaction of equipment on warehouse output and to analyze cost

models of the technology.
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