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ABSTRACT 

 

 In the first part of this study, we present results of fully self-consistent Hartree-

Fock based random phase approximation calculations of the strength functions S(E) and 

centroid energies ECEN of isoscalar (T = 0) and isovector (T = 1) giant resonances of 

multipolarities L = 0 - 3 in 
40

Ca, 
48

Ca, and 
208

Pb using a wide range of 34 commonly 

employed Skyrme type nucleon-nucleon effective interactions. We determined the 

sensitivities of ECEN and of the isotopic differences ECEN(
48

Ca) - ECEN(
40

Ca) to physical 

quantities, such as nuclear matter incompressibility coefficient, symmetry energy density 

and effective mass, associated with the Skyrme interactions and compare the results with 

the available experimental data.  

       In the second part of this study, we present a novel method, using the single particle 

Schrodinger equation, to determine the central potential directly from the single particle 

matter density and its first and second derivatives. As an example, we consider the 

experimental data for the charge density difference between the isotones 
206

Pb – 
205

Tl, 

deduced by analysis of elastic electron scattering measurements which corresponds to 

the shell model 3s1/2 proton orbit, and determine the corresponding single particle 

potential (mean-field). We also present results of least-square fits to parametrized single 

particle potentials. The 3s1/2 wave functions of the determined potentials reproduce fairly 

well the experimental data within the quoted errors. More accurate experimental data, 

with uncertainty smaller by a factor of two or more, may answer the question how well 

can the data be reproduced by a calculated 3s1/2 wave function. 
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NOMENCLATURE 

αD Electric polarizability 

A, Z, N Number of nucleons, protons, and neutrons 

CM Center of mass 

E/A Energy per nucleon at saturation density 

ECEN Centroid energy 

EDF Energy density functional 

EOS Equation of state 

EWSR, m1 Energy weighted sum rule 

GR Giant resonance 

HF Hartree-Fock 

HIC Heavy ion collision 

IEWSR, m-1 Inverse energy weighted sum rule 

ISGMR (E0) (T0L0) Isoscalar giant monopole resonance  

ISGDR (E1) (T0L1) Isoscalar giant dipole resonance  

ISGQR (E2) (T0L2) Isoscalar giant quadrupole resonance  

ISGOR (E3) (T0L3) Isoscalar giant octopole resonance  

IVGMR (T1L0) Isovector giant monopole resonance  

IVGDR (T1L1) Isovector giant dipole resonance  

IVGQR (T1L2) Isovector giant quadrupole resonance  

IVGOR (T1L3) Isovector giant octopole resonance 

J Symmetry energy at 𝜌0 
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κ NM value of the  enhancement factor of the EWSR of the IVGDR 

KNM Incompressibility of nuclear matter 

Ksym Related to second derivative of symmetry energy at 𝜌0 

L Related to first derivative of symmetry energy at 𝜌0  

m*/m Effective mass 

NM Nuclear matter 

𝜌0 saturation density of nuclear matter 

RPA Random Phase Approximation 

rn − rp Neutron skin of a nucleus 

WS Woods-Saxon 
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CHAPTER I 

 INTRODUCTION
*
 

 

Collective modes in nuclei, which are composed of two kinds of nucleons, 

protons (Z) and neutrons (N), have been the subject of extensive theoretical and 

experimental studies during several decades [1-3], since they contribute significantly to 

our understanding of bulk properties of nuclei, their non-equilibrium properties and 

properties of the nuclear force. Of particular interest is the equation of state (EOS), i.e. 

the binding energy per nucleon as a function of the neutron and proton number densities, 

of infinite nuclear matter (no Coulomb interaction). The EOS is an important ingredient 

in the study of properties of nuclei at and away from stability, the study of structure and 

evolution of compact astrophysical objects, such as neutron stars and core-collapse 

supernovae, and the study of heavy-ion collisions (HIC) [4,5]. The saturation point of 

the equation of state (EOS) for  symmetric (N=Z) nuclear matter (NM) is well 

determined from the measured  binding energies and central matter densities of nuclei, 

by extrapolation to infinite NM [1,2]. To extend our knowledge of the EOS beyond the 

saturation point of symmetric NM, an accurate value of the NM incompressibility 

coefficient KNM, which is directly related to the curvature of the EOS of symmetric NM, 

is needed. An accurate knowledge of the dependence of the symmetry energy, Esym(ρ), 

on the matter density ρ is needed for the EOS of asymmetric NM.  

                                                 
*
Part of this chapter is reprinted with permission from “Giant Resonances in 

40
Ca and 

48
Ca” by M. R. 

Anders et. al., 2013. Physical Review C, 87, 024303, Copyright [2013] by American Physical Society.  
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 There have been many attempts over the years to determine KNM and Esym(ρ) by 

considering physical quantities which are sensitive to the values of KNM and Esym(ρ) 

[3,4,6,7]. We investigate the sensitivity of the strength function distributions of the 

isoscalar and isovector giant resonances with multipolarities L = 0-3 of the isotopes 
40

Ca 

and 
48

Ca to bulk properties of NM, such as KNM, Esym and the effective mass m*. It is 

well known that the energies of the compression modes, the isoscalar giant monopole 

resonance (ISGMR) and isoscalar giant dipole resonance (ISGDR), are very sensitive to 

the value of KNM [1,3,8].  Also the energies of the isovector giant resonances, in 

particular, the isovector giant dipole resonance (IVGDR), are sensitive to the density 

dependence of Esym [9,10], commonly parameterized in terms of the quantities J, L and 

Ksym, which are the value of Esym(ρ) at saturation density (also known as symmetry 

energy coefficient), and the quantities directly related to the derivative and the curvature 

of Esym(ρ) at the saturation density, respectively. Furthermore, information on the density 

dependence of Esym can also be obtained by studying the isotopic dependence of strength 

functions, such as the difference between the isovector strength functions of 
40

Ca and 

48
Ca and between 

112
Sn and 

124
Sn. We note that the value of the neutron-proton 

asymmetry parameter δ = (N-Z)/A increases from 
40

Ca to 
48

Ca by a value of 0.167 which 

is significantly larger than the change of 0.087 between 
112

Sn and 
124

Sn. 

 In early analysis of the experimental data on the ISGMR [11,12], a semiclassical 

model was adopted in order to relate the energy of the ISGMR to an incompressibility 

coefficient KA of the nucleus and carry out a Leptodermous (A
-1/3

) expansion of KA, 

similar to a mass formula, to parameterize KA into volume (KNM), surface (KS), 
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symmetry (Kτ) and coulomb (KC) terms [11,13,14]. Shlomo and Youngblood [14] 

showed that this type of analysis could not provide a unique solution even including all 

available world data as of that time. More recently [15] a semiclassical analysis of the 

ISGMR data in the Sn isotopes demonstrated that the value obtained for Kτ is quite 

sensitive to the number of terms employed in the Leptodermous expansion. We adopt 

the microscopic approach of fully self-consistent Hartree-Fock (HF) based random phase 

approximation (RPA), employing an effective nucleon-nucleon interaction. In the HF-

RPA approach, the values of KNM and the density dependence of Esym are then deduced 

from the interaction that best reproduces the experimental data on the strength functions 

of the giant resonance. (see the review in Ref. [3]). It is important to note that ground 

state properties of nuclei are well described by the HF approximation, using an effective 

nucleon-nucleon interaction, such as the Skyrme type interaction [16-18], with 

parameters obtained by a fit to a selected set of experimental data on binding energies 

and radii of nuclei [1,2]. It has also been demonstrated that HF-based RPA nicely 

reproduces the properties of low lying collective states as well as of giant resonances 

[1,2].  

 Recently the giant resonance region from 9.5 MeV < Ex < 40 MeV in 
48

Ca was 

studied with inelastic scattering of 240 MeV α particles at small angles, including 0º. 

Close to 100% of the ISGMR (E0), ISGDR (E1) and isoscalar giant quadrupole 

resonance (E2)  strengths have been located between 9.5 and 40 MeV in 
48

Ca [19].  To 

study the effect of neutron-proton asymmetry, a comparison with the available data for 

40
Ca [20-22], as well as with the results obtained within the HF-based RPA, was carried 
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out in Ref. [19]. The ISGMR has been found at somewhat higher energy in 
48

Ca than in 

40
Ca, whereas self-consistent HF-RPA calculations obtained using the SGII [23], KDE0 

[24], SKM* [25] and SK255 [26] Skyrme interactions predict a centroid energy in this 

neutron rich Ca isotope lower than in 
40

Ca.  

 We extend our theoretical investigation by considering the isoscalar and 

isovector giant resonances of multipolarities L = 0 - 3 in 
40

Ca and 
48

Ca. In chapter II we 

review the basic elements of the self-consistent HF-based RPA theory for the strength 

functions of isoscalar (T = 0) and isovector (T = 1) giant resonances and the EOS of NM 

and asymmetric NM. In chapter III we present results of our calculations for the strength 

functions S(E) and centroid energies ECEN obtained for giant resonances of T = 0, 1 and 

multipolarities L = 0 - 3 in 
40

Ca and 
48

Ca, using a wide range of 18 commonly used 

Skyrme type nucleon-nucleon effective interactions. We pay attention to the issue of 

self-consistency and investigate the sensitivities of ECEN and of the isotopic differences 

ECEN(
48

Ca) - ECEN(
40

Ca) to physical quantities, such as nuclear matter incompressibility 

coefficient, symmetry energy density and effective mass, associated with the effective 

nucleon-nucleon interactions, and compare the results with available experimental data. 

In chapter IV we present results of our calculations for the strength functions S(E) and 

centroid energies ECEN obtained for giant resonances of T = 0, 1 and multipolarities L = 

0 - 3 in 
208

Pb, using a wide range of 34 commonly used Skyrme type nucleon-nucleon 

effective interactions. In particular we are looking at the correlation between the electric 

polarizability and the neutron skin of 
208

Pb as there has been recent work that suggests a 
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strong correlation between two and thus an indirect method of extracting the neutron 

skin. 

In chapter V we describe our investigation to see if we can glean any information 

about the 3s1/2 mean field from the charge and proton densities of 
206

Pb and 
205

Tl. Thus 

to review,  the shell model, which is based on the assumption that nucleons in the atomic 

nucleus move independently in single particle orbits associated with a single particle 

potential, has been very successful in explaining many features of nuclei [27]. In 

determining the nuclear mean-field potential, it is common to: (i) parametrize the central 

potential, using for example the Woods-Saxon (WS) form,  and determine the 

parameters by a fit of calculated properties, such as single particle energy and reaction 

cross-sections, to the corresponding experimental data [1]; and (ii) carry out HF 

calculations using a parametrized effective two-body interaction and determine the 

parameters by a fit to experimental data and deduce the mean-field potential [28]. We 

present a novel method, using the single particle Schrödinger equation for a wave 

function 𝛹(𝑟) with eigenenergy E, to determine the central potential 𝑉(𝑟)  directly from 

the measured single particle matter density, 𝜌(𝑟)  = [𝛹(𝑟)]2 and its first and second 

derivatives, assuming these are known for all 𝑟. 

A well-known important test of the shell model is the experimental measurement 

of the charge distribution of the proton 3s1/2 orbit given by the charge density difference, 

𝛥𝜌𝑐(𝑟), between charge density distributions of the isotones 
206

Pb – 
205

Tl, determined by 

analysis of elastic electron scattering measurements [29,30]. The experimental data for 

the 3s1/2 charge density shows a clear maximum at the center of 
206

Pb with two 
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additional maxima, which nicely corresponds to the shape of the shell model 3s1/2 proton 

orbit, in agreement with the simple shell model. It was pointed out [31] that commonly 

used central potentials, such as the WS potential, lead to a 3s1/2 charge density in 

disagreement with experimental data. In particular, the central density obtained from the 

WS potential is too large by 40%.  

This difference between data and the WS results was attributed in Ref. [31] to be 

due to the effects of two-body short range correlations. Using our new method, we look 

for the single particle nuclear potential that corresponds to the experimental charge 

density associated with the proton 3s1/2 orbit in 
206

Pb. We point out that the resulting 

single particle potential, if found, will provide a stringent limit on the effects of short 

correlations on the expected values of long-range operators, an important test for the 

shell model. The potential can also be used as an additional experimental constraint in 

determining a modern energy density functional (EDF) for more reliable prediction of 

properties of nuclei and nuclear matter [28,32].  

In the second section of chapter V we consider the single particle Schrödinger 

equation and describe the method for determining the single particle potential 𝑉(𝑟)  

from a given single particle wave function  𝛹(𝑟) or matter density, 𝜌(𝑟)  = [𝛹(𝑟)]2, 

assuming it is known for all 𝑟 [27]. In particular, we consider the case of spherical 

symmetry. We also describe the method of deducing the point proton density from the 

charge distribution determined in electron scattering measurements. In the third section 

of chapter V we present results for the case of the experimental data [29,30] for the 

charge density difference between the close (∆𝑍 = 1)  isotones 
206

Pb – 
205

Tl, associated 
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with the 3s1/2 proton single particle orbit, and determine the corresponding single particle 

potential. In the last section of chapter V we present our conclusions. 
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CHAPTER II 

SELF-CONSISTENT HARTREE-FOCK BASED RANDOM PHASE 

APPROXIMATION APPROACH TO CALCULATION OF GIANT RESONANCES 

AND EQUATION OF STATE OF NUCLEAR MATTER
*
 

 

Introduction 

In numerical calculations of the properties of giant resonances in nuclei within 

the HF-based RPA theory, one starts by adopting an effective nucleon-nucleon 

interaction 𝑉12, such as the Skyrme interaction, with parameters determined by a fit of 

the HF predictions to experimental data on ground state properties, such as binding 

energies and radii, of a selected set of a wide range of nuclei. Then, the RPA equations 

are solved using the particle-hole interaction deduced from 𝑉12, by employing a certain 

numerical method [33-35], and the physical quantities of interest, such as the  strength 

functions  S(E) and transition densities, are calculated. We point out that in fully self-

consistent HF-based RPA calculations; one should include all the components of 𝑉12 in 

the RPA calculations and use a sufficiently large particle-hole configuration space to 

insure convergence. Necessary conditions for fully self-consistent calculations are; (i) 

The spurious isoscalar dipole state (due to center of mass motion) is obtained at zero 

energy; and (ii) The energy weighted sum rules (EWSRs) are fulfilled.   

 

 

                                                 
*
 Part of this chapter is reprinted with permission from “Giant Resonances in 

40
Ca and 

48
Ca” by M. R. 

Anders et. al., 2013. Physical Review C, 87, 024303, Copyright [2013] by American Physical Society. 
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Skyrme Energy Density Functional 

The total wave function Φ of the nucleus with A nucleons in the HF 

approximation is a Slater determinant made up of single-particle wave functions 

𝜙𝑖(𝑟𝑖, 𝜎𝑖, 𝜏𝑖) where 𝑟𝑖, 𝜎𝑖, and 𝜏𝑖 are the spatial, spin, and isospin coordinates of the i-th 

nucleon. 𝜏𝑖 = 1 2⁄  for protons and 𝜏𝑖 = − 1 2⁄  for neutrons. 

 Φ =
1

√𝐴!
det [

𝜙1(𝑟1, 𝜎1, 𝜏1) ⋯ 𝜙𝐴(𝑟1, 𝜎1, 𝜏1)
⋮ ⋱ ⋮

𝜙1(𝑟𝐴, 𝜎𝐴, 𝜏𝐴) ⋯ 𝜙𝐴(𝑟𝐴, 𝜎𝐴, 𝜏𝐴)
] (2.1) 

 In a spherical nucleus, the single-particle wave function is composed of three 

parts, the radial function 𝑅𝛼(𝑟), the spherical harmonic function 𝑌𝑗𝑙𝑚(𝑟, 𝜎) and the 

isospin function 𝜒𝑚𝜏
(𝜏). 

 𝜙𝑖(𝑟𝑖, 𝜎𝑖, 𝜏𝑖) =
𝑅𝛼(𝑟𝑖)

𝑟𝑖
𝑌𝑗𝑙𝑚(𝑟𝑖, 𝜎𝑖)𝜒𝑚𝜏

(𝜏𝑖) (2.2) 

The total Hamiltonian H of the nucleus for A nucleons is 

 H = 𝑇 + ∑ 𝑉(𝑟𝑖, 𝑟𝑗)
𝐴
𝑖<𝑗 = 𝑇 + ∑ 𝑉𝑖𝑗

𝐴
𝑖<𝑗 + 𝑉𝐶𝑜𝑢𝑙, (2.3) 

where the kinetic energy operator 𝑇 is given by 

 𝑇 = −
ℏ2

2
∑

∇𝑖
2

𝑚𝜏𝑖

𝐴
𝑖=1  , (2.4) 

and the Coulomb potential 𝑉𝐶𝑜𝑢𝑙 is given by 

 𝑉𝐶𝑜𝑢𝑙 = 𝑒2 ∑
1

|𝑟𝑖𝑗|

𝑍
𝑖<𝑗  , (2.5) 

where the sum is over the Z protons. We adopt the Skyrme type effective nucleon-

nucleon interaction for the two-body potential 𝑉𝑖𝑗 [36]: 
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𝑉𝑖𝑗 = 𝑡0(1 + 𝑥0𝑃𝑖𝑗
𝜎)𝛿(𝑟𝑖 − 𝑟𝑗)  + 

1

2
𝑡1(1 + 𝑥1𝑃𝑖𝑗

𝜎)[𝑘⃖ 𝑖𝑗
2 𝛿(𝑟𝑖 − 𝑟𝑗) + 𝛿(𝑟𝑖 − 𝑟𝑗)𝑘 ⃗ 𝑖𝑗

2 ] 

+ 𝑡2(1 + 𝑥2𝑃𝑖𝑗
𝜎)𝑘⃖ 𝑖𝑗𝛿(𝑟𝑖 − 𝑟𝑗)𝑘 ⃗ 𝑖𝑗  +  

1

6
𝑡3(1 + 𝑥3𝑃𝑖𝑗

𝜎)𝜌𝛼 (
𝑟𝑖+𝑟𝑗

2
) 𝛿(𝑟𝑖 − 𝑟𝑗) (2.6) 

+𝑖𝑊0𝑘⃖ 𝑖𝑗𝛿(𝑟𝑖 − 𝑟𝑗)(𝜎⃗1 + 𝜎⃗2) × 𝑘 ⃗ 𝑖𝑗  . 

 𝑘 ⃗ 𝑖𝑗 = −𝑖(∇  ⃗ 𝑖 − ∇  ⃗ 𝑗)/2 and 𝑘⃖ 𝑖𝑗 = −𝑖(∇⃖  𝑖 − ∇⃖  𝑗)/2, 𝜎⃗𝑖 is the Pauli spin operator, and 𝑃𝑖𝑗
𝜎 is 

the spin exchange operator . The Skyrme parameters 𝑡0 and 𝑡3 are associated with 

volume properties, 𝑥0 and 𝑥3 are associated with symmetry volume properties and α is 

associated with both. The parameters 𝑡1, 𝑡2, 𝑥1, and 𝑥2 are associated with the volume, 

surface, symmetry volume and symmetry surface properties, respectively, and 𝑊0 is 

associated with spin properties. The right and left arrows give the direction that the 

momentum operators act. 

 The total energy E is found from the expectation value of the total Hamiltonian, 

H, with Φ with 𝜎𝑖 and 𝜏𝑖 suppressed in the arguemnts of the 𝜙𝑖, 

 𝐸 = ⟨Φ|H|Φ⟩ =

−
ℏ2

2
∑

1

𝑚𝜏𝑖

∫ 𝜙𝑖
∗(𝑟)𝐴

𝑖=1 ∇2𝜙𝑖(𝑟)𝑑𝑟 + ∑ ∫ 𝜙𝑖
∗(𝑟)𝐴

𝑖<𝑗 𝜙𝑗
∗(𝑟′)𝑉(𝑟, 𝑟′)𝜙𝑖(𝑟)𝜙𝑗(𝑟′)𝑑𝑟𝑑𝑟′ 

 − ∑ ∫ 𝜙𝑖
∗(𝑟)𝐴

𝑖<𝑗 𝜙𝑗
∗(𝑟′)𝑉(𝑟, 𝑟′)𝜙𝑖(𝑟′)𝜙𝑗(𝑟)𝑑𝑟𝑑𝑟′. (2.7) 

The variational method is then used with the following requirement that 

 ⟨𝛿Φ|H|Φ⟩ = 0, (2.8) 

under the constraint, ⟨𝜙𝑖(𝑟𝑖, 𝜎𝑖 , 𝜏𝑖)|𝜙𝑖(𝑟𝑖, 𝜎𝑖, 𝜏𝑖)⟩ = 1 with 𝜀𝑖 as Lagrange multipliers 

 𝛿(𝐸 − ∑ 𝜀𝑖 ∫ 𝜙𝑖
∗(𝑟)𝜙𝑖(𝑟) 𝑑𝑟𝐴

𝑖 ) = 0, 𝛿 =
𝜕

𝜕𝜙𝑖
∗(𝑟)

𝛿𝜙𝑖
∗(𝑟), (2.9) 

thus obtaining the HF equations with the 𝜀𝑖 being single particle energies, 
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 −
ℏ2

2𝑚𝜏𝑖

∇2𝜙𝑖(𝑟) + ∑ ∫ 𝜙𝑗
∗(𝑟′)𝐴

𝑗 𝑉(𝑟, 𝑟′)𝜙𝑗(𝑟′)𝜙𝑖(𝑟)𝑑𝑟′ 

 − ∑ ∫ 𝜙𝑗
∗(𝑟′)𝐴

𝑗 𝑉(𝑟, 𝑟′)𝜙𝑖(𝑟′)𝜙𝑗(𝑟)𝑑𝑟′ = 𝜀𝑖𝜙𝑖(𝑟) (2.10) 

The first term is the kinetic energy term, the second term is related to the local direct 

potential, and the third term is related to the non-local exchange potential. Note for 

𝑟 = 𝑟′ the potential terms cancel each other. The HF equations are A coupled integro-

differential equations that cannot be solved analytically but only numerically through an 

iterative process of guessing the initial set of single particle orbits 𝜙𝑗(𝑟) and obtaining 

the new set of 𝜙𝑖(𝑟) until convergence is reached. This is also known as the self-

consistent field method. 

The total energy E of the system and the corresponding mean-field 𝑉𝐻𝐹 are given 

by 

  𝐸 = ∫ 𝐻(𝜌𝑝(𝑟), 𝜌𝑛(𝑟)) 𝑑3𝑟, 𝑉𝐻𝐹 =
𝛿𝐻𝐼

𝛿𝜌
     (2.11) 

respectively, where 𝐻(𝜌𝑝(𝑟), 𝜌𝑛(𝑟)) is the total Skyrme energy-density functional [37], 

obtained using Eq. (2.6). 𝐻𝐼 is the energy-density functional associated with the Skyrme 

and Coulomb interactions excluding the kinetic part. It is given by [36], 

 𝐻 = 𝐾 + 𝐻𝐼 = 𝐾 + 𝐻0 + 𝐻3 + 𝐻𝑒𝑓𝑓 + 𝐻𝑓𝑖𝑛 + 𝐻𝑠𝑜 + 𝐻𝑠𝑔 + 𝐻𝐶𝑜𝑢𝑙 , (2.12) 

where, 

 𝐾 =
ℏ2

2𝑚𝑝
𝜏𝑝 +

ℏ2

2𝑚𝑛
𝜏𝑛 , (2.13) 

is the kinetic-energy term. For the Skyrme interaction of Eq. (2.6), we have 

𝐻0 =
1

4
𝑡0[(2 + 𝑥0)𝜌2 − (2𝑥0 + 1)(𝜌𝑝

2 + 𝜌𝑛
2)], (2.14) 
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𝐻3 =
1

24
𝑡3𝜌𝛼[(2 + 𝑥3)𝜌2 − (2𝑥3 + 1)(𝜌𝑝

2 + 𝜌𝑛
2)], (2.15) 

𝐻𝑒𝑓𝑓 =
1

8
[𝑡1(2 + 𝑥1) + 𝑡2(2 + 𝑥2)]𝜏𝜌 +

1

8
[𝑡2(2𝑥2 + 1) − 𝑡1(2𝑥1 + 1)](𝜏𝑝𝜌𝑝 + 𝜏𝑛𝜌𝑛),  

 (2.16) 

𝐻𝑓𝑖𝑛 =
1

32
[3𝑡1(2 + 𝑥1) − 𝑡2(2 + 𝑥2)](∇  ⃗ 𝜌)

2
 

              −
1

32
[3𝑡1(2𝑥1 + 1) + 𝑡2(2𝑥2 + 1)] [(∇  ⃗ 𝜌𝑝)

2
+ (∇  ⃗ 𝜌𝑛)

2
], (2.17) 

𝐻𝑠𝑜 =
𝑊0

2
[𝐽 ∙ ∇  ⃗ 𝜌 + 𝑥𝑤(𝐽𝑝   ⃗ ∙ ∇  ⃗ 𝜌𝑝 + 𝐽𝑛   ⃗ ∙ ∇  ⃗ 𝜌𝑛)] , (2.18) 

and 

𝐻𝑠𝑔 = −
1

16
(𝑡1𝑥1 + 𝑡2𝑥2)𝐽2 +

1

16
(𝑡1 − 𝑡2)(𝐽𝑝

2 + 𝐽𝑛
2) , (2.19) 

which are calculated in Ref [18]. 𝜌𝜏 is the nucleon density, 𝜏𝜏 is the kinetic energy 

density, and 𝐽𝜏  ⃗  is the spin current density with subscript 𝜏 = 𝑝 (𝑛) for protons 

(neutrons). Here, 𝐻0 is the zero-range term, 𝐻3 is the density dependent term, 𝐻𝑒𝑓𝑓 is an 

effective-mass term, 𝐻𝑓𝑖𝑛 is a finite-range term, 𝐻𝑠𝑜 is a spin-orbit term, 𝐻𝑠𝑔 is a term 

that is due to tensor coupling with spin and gradient and 𝐻𝐶𝑜𝑢𝑙 is the contribution to the 

energy-density that is due to the Coulomb interaction. In Eqs. (2.14) – (2.19) 𝜌 = 𝜌𝑝 +

𝜌𝑛,  𝜏 = 𝜏𝑝 + 𝜏𝑛, and  𝐽 = 𝐽𝑝   ⃗ + 𝐽𝑛   ⃗ , are the total particle number density, total kinetic 

energy-density and total spin-density with p and n denoting the protons and neutrons, 

respectively [36]. Note that the additional parameter 𝑥𝑤, introduced in Eq. (2.18), allows 

us to modify the isospin dependence of the spin-orbit term. 

The contribution to the energy-density, Eq. (2.12), from the Coulomb interaction 

can be written as a sum of a direct and an exchange terms: 
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 𝐻𝐶𝑜𝑢𝑙(𝑟) = 𝐻𝐶𝑜𝑢𝑙
𝑑𝑖𝑟 (𝑟) + 𝐻𝐶𝑜𝑢𝑙

𝑒𝑥 (𝑟). (2.20) 

For the direct term it is common to adopt the expression 

 𝐻𝐶𝑜𝑢𝑙
𝑑𝑖𝑟 (𝑟) =

1

2
𝑒2𝜌𝑝(𝑟) ∫

𝜌𝑝(𝑟′)

|𝑟−𝑟′|
𝑑3𝑟′ ,  (2.21) 

and for the corresponding exchange term to use the Slater approximation 

 𝐻𝐶𝑜𝑢𝑙
𝑒𝑥 (𝑟) = −

3

4
𝑒2𝜌𝑝(𝑟) [

3𝜌𝑝(𝑟)

𝜋
]
1 3⁄

 .  (2.22) 

It is very important to emphasize that the definitions of Eqs. (2.21) and (2.22) are not for 

the bona fide direct and exchange terms since each of them includes the contributions of 

the self-interaction term, which appear in opposite signs and cancel out in Eq. (2.20), see 

Ref. [38].  

 The HF approach applied to finite nuclei violates translational invariance, 

introducing a spurious center of mass (CM) motion. Thus, one must extract the 

contributions of the CM motion to the binding energy B, rms radii and other 

observables. To account for the CM correction to the total binding energy, one must 

subtract from it the so-called CM energy given as, 

 𝐸𝐶𝑀 =
1

2𝑚𝐴
〈𝑃̂2〉 ,  (2.23) 

where, 𝑃 = −𝑖ℏ ∑ ∇𝑖𝑖  is the total linear momentum operator.  

 During the last four decades, many Skyrme type effective nucleon-nucleon 

interactions of different forms were obtained by fitting the HF results to selected sets of 

experimental data [39,40]. We emphasize that we consider the specific form of Eq. (2.6) 

for the Skyrme type interaction. The values of the Skyrme parameters of the interactions 

adopted are listed in Table 1. 
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Table 1. Skyrme parameters. Values for the parameters for the following Skyrme 

interactions: SGII [23], KDE0 [24], KDE0v1 [24], SKM* [25], SK255 [26], SkI3 [41], 

SkI4 [41], SkI5 [41], SV-bas [42], SV-min [42], SV-sym32 [42], SV-m56-O [43], SV-

m64-O [43], SLy4 [36], SLy5 [36], SLy6 [36], SkMP [44], SkP [45], SkO’ [46], SkO 

[46], LNS [47], MSL0 [48], NRAPR [49] SQMC650 [50], SQMC700 [50], SkT1 [51], 

SkT2 [51], SkT3 [51], SkT8 [51], SkT9 [51], SkT1* [51], SkT3* [51], Skxs20 [52], and 

Z [53]. These parameters are given in the following units: t0 [MeV fm
3
], t1 [MeV fm

5
], 

t2 [MeV fm
5
], t3 [MeV fm

3(α+1)
], W0 [MeV], and the remaining parameters are 

dimensionless. 

 

Force t0 t1 t2 t3 W0 x0 x1 x2 x3 Xw α

SGII -2645.00 340.00 -41.90 15595.00 105.00 0.0900 -0.0588 1.4250 0.0604 1.0000 1/6

KDE0 -2526.51 430.94 -398.38 14235.52 128.96 0.7583 -0.3087 -0.9495 1.1445 1.0000 0.1676

KDE0v1 -2553.08 411.70 -419.87 14603.61 124.41 0.6483 -0.3472 -0.9268 0.9475 1.0000 0.1673

SKM* -2645.00 410.00 -135.00 15595.00 130.00 0.0900 0.0000 0.0000 0.0000 1.0000 1/6

SK255 -1689.35 389.30 -126.07 10989.60 95.39 -0.1461 0.1660 0.0012 -0.7449 1.0000 0.3563

SkI3 -1762.88 561.61 -227.09 8106.20 188.51 0.3083 -1.1722 -1.0907 1.2926 0.0000 1/4

SkI4 -1885.83 473.83 1006.86 9703.61 366.19 0.4051 -2.8891 -1.3252 1.1452 -0.9850 1/4

SkI5 -1772.91 550.84 -126.69 8206.25 123.63 -0.1171 -1.3088 -1.0487 0.3410 1.0000 1/4

SV-bas -1879.64 313.75 112.68 12527.38 124.63 0.2585 -0.3817 -2.8236 0.1232 0.5474 0.3000

SV-min -2112.25 295.78 142.27 13988.57 111.29 0.2439 -1.4349 -2.6259 0.2581 0.8255 0.2554

SV-sym32 -1883.28 319.18 197.33 12559.47 132.75 0.0077 -0.5943 -2.1692 -0.3095 0.4019 0.3

SV-m56-O -1905.40 571.19 1594.80 8439.04 133.27 0.6440 -2.9737 -1.2553 1.7966 0.7949 0.2000

SV-m64-O -2083.86 484.60 1134.35 10720.67 113.97 0.6198 -2.3327 -1.3059 1.2101 1.1042 0.2000

SLy4 -2488.91 486.82 -546.39 13777.00 123.00 0.8340 -0.3440 -1.0000 1.3540 1.0000 1/6

SLy5 -2484.88 483.13 -549.40 13763.00 126.00 0.7780 -0.3280 -1.0000 1.2670 1.0000 1/6

SLy6 -2479.50 462.18 -448.61 13673.00 122.00 0.8250 -0.4650 -1.0000 1.3550 1.0000 1/6

SkMP -2372.24 503.62 57.28 12585.30 160.00 -0.1576 -0.4029 -2.9557 -0.2679 1.0000 1/6

SkP -2931.70 320.62 -337.41 18708.97 100.00 0.2922 0.6532 -0.5373 0.1810 1.0000 1/6

SkO -2103.65 303.35 791.67 13553.25 353.16 -0.2107 -2.8108 -1.4616 -0.4299 -1.1256 1/4

SkO' -2099.42 301.53 154.78 13526.46 287.79 -0.0295 -1.3257 -2.3234 -0.1474 -0.5760 1/4

LNS -2484.97 266.74 -337.14 14588.20 96.00 0.0628 0.6585 -0.9538 -0.0341 1.0000 0.1667

MSL0 -2118.06 395.20 -63.95 12857.70 133.30 -0.0709 -0.3323 1.3583 -0.2282 1.0000 0.2359

NRAPR -2719.70 417.64 -66.69 15042.00 41.96 0.1615 -0.0480 0.0272 0.1361 1.0000 0.1442

SQMC650 -2462.70 436.10 -151.90 14154.50 110.50 0.1300 0.0000 0.0000 0.0000 1.3899 0.1667

SQMC700 -2429.10 371.00 -96.70 13773.60 104.60 0.1000 0.0000 0.0000 0.0000 1.3910 0.1667

SkT1 -1794.00 298.00 -298.00 12812.00 110.00 0.1540 -0.5000 -0.5000 0.0890 1.0000 1/3

SkT2 -1791.60 300.00 -300.00 12792.00 120.00 0.1540 -0.5000 -0.5000 0.0890 1.0000 1/3

SkT3 -1791.80 298.50 -99.50 12794.00 126.00 0.1380 -1.0000 1.0000 0.0750 1.0000 1/3

SkT8 -1892.50 367.00 -228.76 11983.00 109.00 0.4480 -0.5000 -0.5000 0.6950 1.0000 0.2850

SkT9 -1891.40 377.40 -239.16 11982.00 130.00 0.4410 -0.5000 -0.5000 0.6860 1.0000 0.2850

SkT1* -1800.50 296.00 -296.00 12884.00 95.00 0.1570 -0.5000 -0.5000 0.0920 1.0000 1/3

SkT3* -1800.50 296.00 -98.67 12884.00 95.00 0.1420 -1.0000 1.0000 0.0760 1.0000 1/3

Skxs20 -2885.24 302.73 -323.42 18237.49 162.73 0.1375 -0.2555 -0.6074 0.0543 0.0000 1/6

Zσ -1983.76 362.25 -104.27 11861.40 123.69 1.1717 0.0000 0.0000 1.7620 1.0000 1/4
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It is very important to note that in determining the parameters of the Skyrme 

interaction, Eq. (2.6), several approximations, concerning the terms of Eqs. (2.13), 

(2.19), (2.20) and (2.23), were made in the HF calculations. These approximations, 

which should be taken into account for a proper application of the specific interaction in 

fully self-consistent HF based RPA calculations, are: 

(i) The kinetic term, Eq. (2.13).  In some interactions the mass of the proton is 

taken to be equal to that of the neutron and a certain value for the nucleon 

mass is adopted. In other interactions the mass of the proton is taken to be 

different than that of the neutron. 

(ii) The spin-density terms, Eq. (2.19). In some interactions the contributions 

from the spin-density term as given by Eq. (2.19), are ignored. We note that 

contributions from Eq. (2.19) are crucial for the calculation of the Landau 

parameter .  

(iii) The Coulomb term, Eq. (2.20). In some interactions the Coulomb term of 

Eq. (2.22) is omitted. It is important to note that by neglecting the exchange 

Coulomb term of Eq. (2.22), one neglects the bona fide Coulomb exchange 

term together with the spurious contribution of the self-interaction term. This 

leads to a contribution to Coulomb displacement energies, obtained from Eq. 

(2.21), which is in better agreement with experimental data [54], since in the 

HF calculations with Skyrme interactions one neglects the contributions due 

to charge symmetry breaking in the nucleon-nucleon interaction and the 

contribution to Coulomb energy associated with long range correlations. 

'

0G
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Also, in some interactions the charge density is used in Eq. (2.20), instead of 

the point proton density. 

(iv) The center of mass correction, Eq. (2.23). Traditionally, one simplifies the 

computation of Eq. (2.23) by taking into account only the one-body parts of 

it, which can be easily achieved by replacing 
1

𝑚
→

1

𝑚
[1 −

1

𝐴
] in the kinetic-

energy term. In this case, the effects of neglecting the two-body part of Eq. 

(2.23) are compensated by renormalization of the force parameters. This may 

induce in the forces an incorrect trend with respect to the nucleon number A 

that becomes visible in the nuclear matter properties. A more appropriate 

approach, used in some interactions, is to take into account the contribution 

of the two body terms by using the HF single particle wavefunctions or by 

employing a simple scheme to evaluate Eq. (2.23). 

The approximations that were used to obtain the Skyrme interactions adopted are listed 

for each interaction in Table 2.  
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Table 2. Force Options. Same as Table 1 with the following conditions defining the 

interactions: HBTM, for proton and neutron ћ
2
/2m = 20.7525 MeV fm

2
 for 0, for proton 

ћ
2
/2m = 20.7213 MeV fm

2
 and neutron ћ

2
/2m = 20.7498 MeV fm

2
 for 1, and for proton 

and neutron ћ
2
/2m = 20.7355 MeV fm

2
 for 2, JTM, contribution to the spin-orbit 

potential from t1 and t2 is taken for 1 and not for 0, CEX, coulomb-exchange on for 1 

and off for 0, RHOC, proton-density is used for coulomb potential for 0 and charge-

density is used for coulomb potential for 1, and ZPE, center of mass correction is taken 

as (1-1/A) factor on the mass for 1 and is computed explicitly a posteriori as 𝐸𝐶𝑀 =
1

2𝑚𝐴
〈𝑃̂2〉 for 0. 

 

Force HBTM JTM CEX RHOC ZPE

SGII 0 0 1 0 0

KDE0 2 1 0 0 1

KDE0v1 2 1 0 0 1

SKM* 0 0 1 0 0

SK255 2 1 0 0 1

SkI3 0 0 1 0 1

SkI4 0 0 1 0 1

SkI5 0 0 1 0 1

SV-bas 1 0 1 0 1

SV-min 1 0 1 0 1

SV-sym32 1 0 1 0 1

SV-m56-O 1 0 1 0 1

SV-m64-O 1 0 1 0 1

SLy4 2 0 1 0 0

SLy5 2 1 1 0 0

SLy6 2 0 1 0 1

SkMP 0 0 1 0 0

SkP 2 1 1 0 0

SkO 2 0 1 0 1

SkO' 2 1 1 0 1

LNS 2 0 1 0 0

MSL0 2 1 0 0 1

NRAPR 2 1 1 0 1

SQMC650 2 0 1 0 0

SQMC700 2 0 1 0 0

SkT1 1 1 1 1 0

SkT2 1 1 1 1 0

SkT3 1 1 1 1 0

SkT8 1 1 1 1 0

SkT9 1 1 1 1 0

SkT1* 1 1 1 1 0

SkT3* 1 1 1 1 0

Skxs20 0 1 0 0 1

Zσ 0 1 1 0 1
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 The matter densities, 𝜌, kinetic energy densities, 𝜏, and spin current densities, 𝐽, are 

given by the following equations in terms of the single particle wave functions. 

 𝜌𝜏(𝑟) = ∑ ∑ 𝜙𝑖
∗(𝑟, 𝜎, 𝜏)𝜙𝑖(𝑟, 𝜎, 𝜏)𝜎

𝐴
𝑖=1  𝜌(𝑟) = ∑ 𝜌𝜏(𝑟)𝜏  (2.24) 

 𝜏𝜏(𝑟) = ∑ ∑ ∇  ⃗ 𝜙𝑖
∗(𝑟, 𝜎, 𝜏)∇  ⃗ 𝜙𝑖(𝑟, 𝜎, 𝜏)𝜎

𝐴
𝑖=1  𝜏(𝑟) = ∑ 𝜏𝜏(𝑟)𝜏  (2.25) 

 𝐽𝜏(𝑟) = −𝑖 ∑ ∑ 𝜙𝑖
∗(𝑟, 𝜎, 𝜏)[∇  ⃗ 𝜙𝑖(𝑟, 𝜎′, 𝜏) × ⟨𝜎|𝜎⃗|𝜎′⟩]𝜎𝜎′

𝐴
𝑖=1  𝐽(𝑟) = ∑ 𝐽𝜏(𝑟)𝜏  (2.26) 

 The variational method is then used with the following requirement that 

 ⟨𝛿Φ|𝐻|Φ⟩ = 0, (2.27) 

under the constraint, ∑ ∫ 𝜌𝜎,𝜏𝜎,𝜏 𝑑𝑟 = 𝐴, where 𝐴 is the number of nucleons in the 

nucleus. The Skyrme HF equations are then found [18] with 

 
𝛿

𝛿𝜌𝜎,𝜏
(𝐸 − ∑ 𝜀𝑖 ∫ 𝜌𝜎,𝜏𝜎,𝜏 𝑑𝑟) = 0 ; (2.28) 

 𝛿𝐸 = ∑ ∫ (
ℏ2

2𝑚𝜏
∗(𝑟)

𝛿𝜏𝜎,𝜏(𝑟) + 𝑈𝜏(𝑟)𝛿𝜌𝜎,𝜏(𝑟) + 𝑊𝜏(𝑟)𝛿𝐽𝜎,𝜏(𝑟))𝜎,𝜏 𝑑𝑟. (2.29) 

𝛿𝜏𝜎,𝜏(𝑟), 𝛿𝜌𝜎,𝜏(𝑟), and 𝛿𝐽𝜎,𝜏(𝑟) are the variations of the kinetic energy densities, matter 

densities, and spin current densities, respectively. 𝑚𝜏
∗(𝑟), 𝑈𝜏(𝑟), and 𝑊𝜏(𝑟) are the 

effective mass, the central potential, and the spin-orbit potential, respectively and given 

in terms of the current densities, charge density, matter densities, and the Skyrme 

parameters as the following, 

 
ℏ2

2𝑚𝜏
∗(𝑟)

=
ℏ2

2𝑚𝜏
+

1

8
[𝑡1(2 + 𝑥1) + 𝑡2(2 + 𝑥2)]𝜌(𝑟) 

 −
1

8
[𝑡1(1 + 2𝑥1) − 𝑡2(1 + 2𝑥2)]𝜌𝜏(𝑟), (2.30) 

𝑈𝜏(𝑟) = 𝑡0 (1 +
𝑥0

2
) 𝜌(𝑟) − 𝑡0 (

1

2
+ 𝑥0) 𝜌𝜏(𝑟) +

1

8
[𝑡1(2 + 𝑥1) + 𝑡2(2 + 𝑥2)]𝜏(𝑟) 
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 −
1

8
[𝑡1(1 + 2𝑥1) + 𝑡2(1 + 2𝑥2)]𝜏𝜏(𝑟) +

𝛼+2

24
𝑡3(2 + 𝑥3)𝜌𝛼+1(𝑟) 

 −
𝛼

24
𝑡3(1 + 2𝑥3)𝜌𝛼−1(𝑟)[𝜌𝑝

2(𝑟) + 𝜌𝑛
2(𝑟)] −

1

12
𝑡3(1 + 2𝑥3)𝜌𝛼(𝑟)𝜌𝜏(𝑟) 

 −
1

16
[3𝑡1(2 + 𝑥1) − 𝑡2(2 + 𝑥2)]∇  ⃗ 2𝜌(𝑟) +

1

16
[3𝑡1(1 + 2𝑥1) + 𝑡2(1 + 2𝑥2)]∇  ⃗ 2𝜌𝜏(𝑟) 

 −
1

2
𝑊0 (∇  ⃗ 𝐽(𝑟) + ∇  ⃗ 𝐽𝜏(𝑟)) + 𝛿1

2
,𝜏
𝑒2 ∫

𝜌𝑝(𝑟)

|𝑟−𝑟′|
𝑑𝑟′, (2.31) 

 𝑊𝜏(𝑟) =
1

2
𝑊0(∇  ⃗ 𝜌(𝑟) + ∇  ⃗ 𝜌𝜏(𝑟)) +

1

8
(𝑡1 − 𝑡2)𝐽𝜏(𝑟) −

1

8
(𝑡1𝑥1 − 𝑡2𝑥2)𝐽(𝑟) (2.32) 

Because time-reversal invariance is required, 𝛿𝜙𝑖̅(𝑟, 𝜎, 𝜏) = −2𝜎𝛿𝜙𝑖
∗(𝑟, −𝜎, 𝜏)[18]. 

Therefore, the expressions for 𝛿𝜏𝜎,𝜏(𝑟), 𝛿𝜌𝜎,𝜏(𝑟), and 𝛿𝐽𝜎,𝜏(𝑟) can be simplified [18] to 

 𝛿𝜏𝜎,𝜏(𝑟) = 2 ∑ ∇  ⃗ 𝛿𝜙𝑖
∗(𝑟, 𝜎, 𝜏) ∙ ∇  ⃗ 𝜙𝑖(𝑟, 𝜎, 𝜏)𝑖,𝜎  (2.33) 

 𝛿𝜌𝜎,𝜏(𝑟) = 2 ∑ 𝛿𝜙𝑖
∗(𝑟, 𝜎, 𝜏)𝜙𝑖(𝑟, 𝜎, 𝜏)𝑖,𝜎  (2.34) 

 𝛿𝐽𝜎,𝜏(𝑟) = −2𝑖 ∑ 𝛿𝜙𝑖
∗(𝑟, 𝜎1, 𝜏)∇  ⃗ 𝜙𝑖(𝑟, 𝜎2, 𝜏)𝑖,𝜎1,𝜎2

× ⟨𝜎1|𝜎⃗|𝜎2⟩ (2.35) 

We then substitute 𝛿𝜏𝜎,𝜏(𝑟), 𝛿𝜌𝜎,𝜏(𝑟), and 𝛿𝐽𝜎,𝜏(𝑟) into equation (2.18b): 

 ∑ ∫ 𝛿𝜙𝑖
∗(𝑟, 𝜎1, 𝜏) [

ℏ2

2𝑚𝜏
∗(𝑟)

∇  ⃗ 𝜙𝑖(𝑟, 𝜎1, 𝜏)∇  ⃗ + 𝑈𝜏(𝑟)𝑖,𝜎1
𝜙𝑖(𝑟, 𝜎1, 𝜏) 

 −𝑖𝑊𝜏(𝑟) ∑ ∇  ⃗ × ⟨𝜎1|𝜎⃗|𝜎2⟩𝜙𝑖(𝑟, 𝜎2, 𝜏) − 𝜀𝑖𝜙𝑖(𝑟, 𝜎1, 𝜏)]𝑑𝑟 = 0𝜎2
. (2.36) 

All coefficients of the variation 𝛿𝜙𝑖
∗(𝑟, 𝜎1, 𝜏) = 0, so we achieve the following 

 ∑ ∫ [
ℏ2

2𝑚𝜏
∗(𝑟)

∇  ⃗ 𝜙𝑖(𝑟, 𝜎1, 𝜏)∇  ⃗ + 𝑈𝜏(𝑟)𝑖,𝜎1
𝜙𝑖(𝑟, 𝜎1, 𝜏) 

 −𝑖𝑊𝜏(𝑟) ∑ ∇  ⃗ × ⟨𝜎1|𝜎⃗|𝜎2⟩𝜙𝑖(𝑟, 𝜎2, 𝜏) − 𝜀𝑖𝜙𝑖(𝑟, 𝜎1, 𝜏)]𝑑𝑟 = 0𝜎2
. (2.37) 

Finally, we derive the HF equations by integrating by parts [18]: 

 [−∇  ⃗
ℏ2

2𝑚𝜏
∗(𝑟)

∇  ⃗ + 𝑈𝜏(𝑟) − 𝑖𝑊𝜏(𝑟)∇  ⃗ × 𝜎⃗] 𝜙𝑖(𝑟, 𝜎, 𝜏) = 𝜀𝑖𝜙𝑖(𝑟, 𝜎, 𝜏) (2.38) 
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Assuming a closed-shell spherical nucleus, we use Eq. (2.5) to achieve the final form of 

the HF equations for spherical coordinates: 

ℏ2

2𝑚𝜏
∗(𝑟)

[−𝑅𝛼
′′(𝑟) +

𝑙𝜎(𝑙𝜎 + 1)

𝑟2
𝑅𝛼(𝑟)] −

𝑑

𝑑𝑟
(

ℏ2

2𝑚𝜏
∗(𝑟)

) 𝑅𝛼
′ (𝑟) 

 + [𝑈𝜏(𝑟) +
1

𝑟

𝑑

𝑑𝑟
(

ℏ2

2𝑚𝜏
∗(𝑟)

) +
[𝑗𝜎(𝑗𝜎+1)−𝑙𝜎(𝑙𝜎+1)−

3

4
]

𝑟
𝑊𝜏(𝑟)] 𝑅𝛼(𝑟) = 𝜀𝛼𝑅𝛼(𝑟), (2.39) 

where 𝑚𝜏
∗(𝑟), 𝑈𝜏(𝑟) and 𝑊𝜏(𝑟) are the effective mass, the potential and the spin orbit 

potential. They are given in terms of the Skyrme parameters and the nuclear densities. 

An initial guess is taken for the single-particle wave functions such as WS wave 

functions. The HF equations are then solved which produce a new set of wave functions 

which are then used until convergence is reached iteratively. 

RPA calculations of strength functions 

                  We have carried out fully self-consistent HF-based RPA calculations for 

electric giant resonances in 
40

Ca, 
48

Ca, and 
208

Pb and using the EDF given by Eqs. (2.4)  

to (2.19) with Tables 1 and 2 and employing the numerical method for RPA described in 

Ref. [34, 55, 56], 

 𝐶𝑛
+ = ∑ [𝑥𝑛

𝑝ℎ𝑎𝑝
+𝑎ℎ − 𝑦𝑛

𝑝ℎ𝑎ℎ
+𝑎𝑝]𝑝ℎ  ; (2.40) 

 |𝑛⟩ = 𝐶𝑛
+|𝑅𝑃𝐴⟩𝐺.𝑆. ; (2.41) 

 𝐶𝑛|𝑅𝑃𝐴⟩𝐺.𝑆. = 0 (2.42) 

 [𝐻, 𝐶𝑛
+]|𝑅𝑃𝐴⟩𝐺.𝑆. = (𝐸𝑛 − 𝐸0) 𝐶𝑛

+|𝑅𝑃𝐴⟩𝐺.𝑆. = (𝐸𝑛 − 𝐸0)|𝑛⟩ (2.43) 

  

where 𝐶𝑛
+ creates and annihilates HF particle-hole pairs in an 𝑁-dimensional particle-

hole (p-h)  space. |𝑅𝑃𝐴⟩𝐺.𝑆. is the RPA ground state. This is reformulated in terms of 
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coordinate like 𝑄𝑛 (time-even) and momentum like 𝑃𝑛 (time-odd) p-h operators and 

adapted for a given EDF. 

 𝑄𝑛 =
1

√2ℏ𝜔𝑛
(𝐶𝑛

+ + 𝐶𝑛)        𝑃𝑛 = √
ℏ𝜔𝑛

2
(𝐶𝑛

+ − 𝐶𝑛) (2.44) 

𝑥𝑛
𝑝ℎ

 and 𝑦𝑛
𝑝ℎ

 are the eigenvectors belonging to the RPA secular matrix: 

 (
𝐴 𝐵

−𝐵 𝐴
) (

𝑥𝑛
𝑝ℎ

𝑦𝑛
𝑝ℎ) = 𝐸𝑛 (

𝑥𝑛
𝑝ℎ

𝑦𝑛
𝑝ℎ) , (2.45) 

where A and B are symmetric 𝑁 × 𝑁 matrices and 𝐸𝑛 are the RPA mode excitation 

energy eigenvalues of the RPA secular matrix. The values of 𝐴𝑚𝑖,𝑛𝑗 and 𝐵𝑚𝑖,𝑛𝑗 are given 

by the following expressions [57]: 

 𝐴𝑚𝑖,𝑛𝑗 = (𝜖𝑚 − 𝜖𝑖)𝛿𝑚𝑛𝛿𝑖𝑗 + ⟨𝑚𝑗|𝑉𝑟𝑒𝑠|𝑖𝑛⟩ ; (2.46) 

 𝐵𝑚𝑖,𝑛𝑗 = ⟨𝑚𝑛|𝑉𝑟𝑒𝑠|𝑖𝑗⟩ ; (2.47) 

 𝑉𝑟𝑒𝑠 =
𝛿2𝐻

𝛿𝜌𝜏𝛿𝜌𝜏
′ ; (2.48) 

where 𝑉𝑟𝑒𝑠 is the residual interaction and 𝐻 is the Skyrme-HF EDF given by Eq. (2.12) 

and 𝜖𝑚 and  𝜖𝑖 are single-particle energies of HF p-h states. 

We point out that in order to insure self-consistency we have carried out  the 

calculations using a large p-h space and included all the terms of the p-h residual 

interaction (time-even and time-odd) which are associated with the EDF used in the HF 

calculations. No additional time-odd residual interactions were added.  For a given 

scattering operator FL, we have calculated the strength function 

 𝑆(𝐸) = ∑ |⟨0|𝐹𝐿|𝑗⟩|2𝛿(𝐸𝑗 − 𝐸0)𝑗 . (2.49) 
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Here, |0〉 is the RPA ground state, |𝑅𝑃𝐴⟩𝐺.𝑆., and the sum is over all RPA excited states 

|𝑗〉 with the corresponding excitation energies Ej. We adopt the single particle scattering 

operator 

 𝐹𝐿 = ∑ 𝑓(𝑟𝑖)𝑌𝐿0(𝑖)𝑖  , (2.50) 

for isocalar (T = 0) excitations and 

 𝐹𝐿 =
𝑍

𝐴
∑ 𝑓(𝑟𝑛)𝑌𝐿0(𝑛)𝑛 −

𝑁

𝐴
∑ 𝑓(𝑟𝑝)𝑌𝐿0(𝑝)𝑝  , (2.51) 

for isovector excitations (T = 1). In Eqs. (2.50) and (2.51) we use the operator 𝑓(𝑟) = 𝑟, 

for the isovector dipole (T = 1, L = 1) and  𝑓(𝑟) = 𝑟3 − (5 3⁄ )〈𝑟2〉𝑟  for the isoscalar 

dipole (T = 0, L = 1), to eliminate possible contribution of the spurious state mixing 

[58,59]. For the isoscalar and isovector monopole (L = 0), quadrupole (L = 2) and 

octopole (L=3) excitations we use the operators 𝑟2, 𝑟2, and 𝑟3, respectively. The nucleus 

is excited by a virtual photon. These operators are determined by the long wavelength 

limit, q is the photon momentum, (qr << 1) of the Bessel functions 𝑗𝑙(𝑞𝑟) which 

correspond to the multipole decomposition of the photon plane wave involved in 

electromagnetic excitation of the giant resonance modes of the nucleus [57]. We then 

determine the energy moments of the strength function, 

 𝑚𝑘 = ∫ 𝐸𝑘𝑆(𝐸)
∞

0
𝑑𝐸 . (2.52) 

The centroid energy, ECEN, is then obtained from 

 ECEN =
𝑚1

𝑚0
  . (2.53) 
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The energy moment 𝑚1 can also be calculated using the HF ground state wave function, 

thereby leading to an energy weighted sum rule (EWSR) [1, 10]. For the isoscalar 𝐹𝐿 in 

Eq. (2.50), the EWSR is given by,  

 𝑚1(𝐿, 𝑇 = 0) =
1

4𝜋

ћ2

2𝑚
∫ 𝑔𝐿(𝑟) 𝜌(𝑟)4𝜋𝑟2𝑑𝑟 , (2.54) 

where 𝜌(𝑟) is the HF ground-state matter density distribution and 

 𝑔𝐿(𝑟) = (
𝑑𝑓

𝑑𝑟
)

2

+ 𝐿(𝐿 + 1) (
𝑓

𝑟
)

2

 . (2.55) 

For the isovector (T=1) operator 𝐹𝐿 of Eq. (2.51), the EWSR is given by 

 𝑚1(𝐿, 𝑇 = 1) =
𝑁𝑍

𝐴2 𝑚1(𝐿, 𝑇 = 0)[1 + 𝜅 − 𝜅𝑛𝑝] , (2.56) 

where κ is the enhancement factor which is due to the momentum dependence of the 

effective nucleon-nucleon interaction and is given by 

 𝜅 =
(1 2⁄ )[𝑡1(1+𝑥1 2⁄ )+𝑡2(1+𝑥1 2⁄ )]

(ћ2 2𝑚⁄ )(4𝑁𝑍 𝐴2⁄ )
 
2 ∫ 𝑔𝐿(𝑟)𝜌𝑝(𝑟)𝜌𝑛(𝑟)4𝜋𝑟2𝑑𝑟

∫ 𝑔𝐿(𝑟)𝜌(𝑟)4𝜋𝑟2𝑑𝑟
  , (2.57) 

where 𝑡𝑖 and 𝑥𝑖 are the parameters of the Skyrme interaction. The correction 𝜅𝑛𝑝, which 

arises because of the difference in the profiles of the neutron and proton density 

distributions [i.e., because 𝜌𝑛(𝑟) − 𝜌𝑝(𝑟) ≠
𝑁−𝑍

𝐴
𝜌(𝑟)], is given by 

 𝜅𝑛𝑝 =
(𝑁−𝑍)

𝐴

𝐴

𝑁𝑍

∫ 𝑔𝐿(𝑟)[𝑍𝜌𝑛(𝑟)−𝑁𝜌𝑝(𝑟)]4𝜋𝑟2𝑑𝑟

∫ 𝑔𝐿(𝑟)𝜌(𝑟)4𝜋𝑟2𝑑𝑟
 . (2.58) 

 We have carried out fully self-consistent Hartree-Fock (HF) based RPA 

calculations of the isoscalar giant monopole resonance (ISGMR), dipole (ISGDR), 

quadrupole (ISGQR), and  the octopole (ISGOR) strength functions, adopting the 

scattering operator of Eq. (2.50), and for the isovector giant monopole resonance 

(IVGMR), dipole (IVGDR), quadrupole (IVGQR) and octopole (IVGOR) strength 
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functions, adopting the scattering operator of Eq. (2.51), for 
40

Ca and for 
48

Ca, using a 

wide range of 18 Skyrme type effective interactions (Table 1). In the next section we 

present the results of our calculations and compare with available experimental data. 

Equation of state of nuclear matter 

 In the vicinity of the saturation density ρ0 of symmetric NM, the EOS can be 

approximated by 

 E0[ρ] = E[ρ0] +
1

18
KNM (ρ−ρ0

ρ0
)

2

, (2.59) 

 ρ0
2 𝑑E/A

𝑑ρ
|
ρ0

= 0 (2.60) 

where E0[ρ] is the binding energy per nucleon and KNM is the incompressibility 

coefficient which is directly related to the curvature of the EOS, KNM = 9ρ0
2 ∂2E0

∂ρ2 |
ρ0

. 

Similarly, the EOS of asymmetric NM, with proton density ρp and neutron density ρn, 

can be approximated by 

 E[ρp, ρn] = E0[ρ] + Esym[ρ] (
ρn−ρp

ρ
)

2

, (2.61) 

where Esym[ρ] is the symmetry energy at matter density ρ, approximated as 

 Esym[ρ] = J +
1

3
L (ρ−ρ0

ρ0
) +

1

18
Ksym (ρ−ρ0

ρ0
)

2

, (2.62) 

where J = Esym[ρ0] is the symmetry energy at saturation density ρ0, L = 3ρ0
∂Esym

∂ρ
|
ρ0

, 

and Ksym = 9ρ0
∂2Esym

∂ρ2 |
ρ0

. In terms of the Skyrme  parameters, ρ0, E/A[ρ0] = E0[ρ0], 

m*/m, KNM, J, L, Ksym, and 𝜅 are given by the following [40] with 𝛽 = (3𝜋2 2⁄ )2 3⁄  and 

𝛾 = 3𝑡1 + 𝑡2(5 + 4𝑥2), 
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 𝛽
ћ2

5m
ρ0

5 3⁄
+

3

8
𝑡0ρ0

2 +
𝛼+1

16
𝑡3ρ0

𝛼+2 +
1

16
𝛽𝛾ρ0

8 3⁄ = 0 (2.63) 

 
E

A
(ρ0) =

𝐻(ρ0)

ρ0
= 𝛽

3ћ2

10m
ρ0

2 3⁄
+

3

8
𝑡0ρ0 +

1

16
𝑡3ρ0

𝛼+1 +
3

80
𝛽𝛾ρ0

5 3⁄
 (2.64) 

 m∗/m = (1 + 𝛾
m

8ћ2 ρ0)
−1

 (2.65) 

 J = 𝛽
ћ2

6m
ρ0

2 3⁄
−

1

8
𝑡0(2𝑥0 + 1)ρ0 +

1

24
𝛽[𝑡2(5 + 4𝑥2) − 3𝑡1𝑥1]ρ0

5 3⁄
 

 −
1

48
𝑡3(2𝑥3 + 1)ρ0

𝛼+1 (2.66) 

 L = 𝛽
ћ2

3m
ρ0

2 3⁄
−

3

8
𝑡0(2𝑥0 + 1)ρ0 +

5

24
𝛽[𝑡2(5 + 4𝑥2) − 3𝑡1𝑥1]ρ0

5 3⁄
 

 −
1

16
𝑡3(2𝑥3 + 1)(𝛼 + 1)ρ0

𝛼+1 (2.67) 

 Ksym = −𝛽
ћ2

3m
ρ0

2 3⁄
+

5

12
𝛽[𝑡2(5 + 4𝑥2) − 3𝑡1𝑥1]ρ0

5 3⁄
 

 −
3

16
𝑡3(2𝑥3 + 1)(𝛼 + 1)𝛼ρ0

𝛼+1 (2.68) 

 𝜅 =
m

4ћ2
[𝑡1(2 + 𝑥1) + 𝑡2(2 + 𝑥2)]ρ0 (2.69) 

 Table 3 contains the values of the physical quantities of symmetric nuclear 

matter associated with these Skyrme interactions: the binding energy per nucleon E/A, 

the saturation matter density ρ0, the effective mass m*/m, the incompressibility 

coefficient of SNM, KNM, the coefficients associated with the symmetry energy density  

J, L and Ksym at saturation density ρ0 (Eq. (2.62)) and κ , the NM value of the  

enhancement factor of the EWSR of the IVGDR, Eqs (2.56), obtained from (2.57) with 

using the NM saturation matter density. 
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Table 3. Nuclear matter properties.  Properties of symmetric nuclear matter at nuclear 

saturation density ρ0 [fm
3
] associated with the Skyrme interactions of Table 1. Also 

shown are the total binding energy per nucleon E/A [MeV], isoscalar effective mass 

m*/m, incompressibility modulus KNM [MeV], the coefficients related to the symmetry 

energy density J [MeV], L [MeV] and Ksym [MeV], and the enhancement factor of the 

EWSR of the IVGDR, κ.  

 

Force E/A ρ0 m*/m KNM J L Ksym κ

SGII 15.59 0.159 0.79 215.0 26.80 37.63 -145.90 0.49

KDE0 16.11 0.161 0.72 228.8 33.00 45.22 -144.78 0.30

KDE0v1 16.23 0.165 0.74 227.5 34.58 54.70 -127.12 0.23

SKM* 15.78 0.160 0.79 216.7 30.03 45.78 -155.94 0.53

SK255 16.33 0.157 0.80 255.0 37.40 95.00 -58.33 0.54

SkI3 15.96 0.158 0.58 258.1 34.80 100.52 73.04 0.25

SkI4 15.92 0.160 0.65 247.9 29.50 60.39 -40.56 0.25

SkI5 15.83 0.156 0.58 255.7 36.70 129.33 159.57 0.25

SV-bas 15.90 0.160 0.90 234.0 30.00 45.21 -221.75 0.40

SV-min 15.91 0.161 0.95 222.0 30.01 44.76 -156.57 0.08

SV-sym32 15.94 0.159 0.90 233.8 32.00 57.07 -148.79 0.40

SV-m56-O 15.81 0.157 0.56 254.6 27.00 49.96 -45.04 0.60

SV-m64-O 15.82 0.159 0.64 241.4 27.01 30.63 -144.76 0.60

SLy4 15.97 0.160 0.70 229.9 32.00 45.96 -119.73 0.25

SLy5 15.98 0.160 0.70 229.9 32.03 48.27 -112.76 0.25

SLy6 15.92 0.159 0.69 229.8 31.96 47.44 -112.71 0.25

SkMP 15.56 0.157 0.65 230.9 29.88 70.31 -49.82 0.71

SkP 15.93 0.162 1.00 200.8 32.98 45.21 -266.60 0.30

SkO 15.84 0.160 0.90 223.3 31.97 79.14 -43.17 0.17

SkO' 15.75 0.160 0.90 222.3 31.95 68.93 -78.82 0.15

LNS 15.32 0.175 0.83 210.8 33.43 61.45 -127.36 0.38

MSL0 16.00 0.160 0.80 230.0 30.00 60.00 -99.33 0.43

NRAPR 15.85 0.161 0.69 225.7 32.78 59.63 -123.32 0.66

SQMC650 15.57 0.172 0.78 218.1 33.65 52.92 -173.15 0.59

SQMC700 15.49 0.171 0.76 222.2 33.47 59.06 -140.84 0.56

SkT1 15.98 0.161 1.00 236.2 32.02 56.18 -134.83 0.00

SkT2 15.94 0.161 1.00 235.7 32.00 56.16 -134.67 0.00

SkT3 15.95 0.161 1.00 235.7 31.50 55.31 -132.05 0.00

SkT8 15.94 0.161 0.83 235.7 29.92 33.72 -187.52 0.20

SkT9 15.88 0.160 0.83 234.9 29.76 33.74 -185.62 0.20

SkT1* 16.20 0.162 1.00 239.0 32.31 56.58 -136.66 0.00

SkT3* 16.20 0.162 1.00 239.0 31.97 56.32 -133.65 0.00

Skxs20 15.79 0.162 0.96 201.8 35.49 67.07 -122.25 0.08

Zσ 15.88 0.163 0.78 233.3 26.69 -29.38 -401.43 0.51
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CHAPTER III 

GIANT RESONANCES IN 
40

CA AND 
48

CA
*
 

 

 We now present results of our fully self-consistent HF based RPA calculations of 

the strength functions and centroid energies of isoscalar and isovector giant resonances 

of multipolarities L = 0 - 3 in 
40

Ca and 
48

Ca [60],  obtained for 18 widely used Skyrme 

type interactions shown in Table 1: SGII [23], KDE0 [24], KDE0v1 [24], SKM* [25], 

SK255 [26], SkI3 [41], SkI4 [41], SkI5 [41], SV-bas [42], SV-min [42], SV-m56-O [43], 

SV-m64-O [43], SLy4 [36], SLy5 [36], SLy6 [36], SkMP [44], SkP [45], and SkO’ [46]. 

These interactions are associated with the ranges of NM properties (see Table 3): E/A = 

15.56 – 16.33 MeV, ρ0 = 0.156 - 0.165 fm
-3

, KNM = 201 – 258 MeV, J = 26.80 – 37.40 

MeV, L = 31 – 129 MeV, Ksym = -267 – 160 MeV, m*/m = 0.56 – 1.00 and κ = 0.08 – 

0.71.  

In Figures 1-4 we display the HF-based RPA results (solid lines) for the 

distribution of the energy-weighted strength normalized to one (ES(E)/EWSR) for the 

isoscalar and isovector giant resonances of multipolarities L = 0-3 in 
40

Ca and 
48

Ca, 

obtained using the KDE0 [24] interaction that is representative of the strength 

distributions for the rest of the interactions. For the purpose of comparison with 

experiment a Lorenzian smearing of a 3 MeV width was used in the calculation. The 

experimental data [19,21] are shown as histograms. 

                                                 
*
 Part of this chapter is reprinted with permission from “Giant Resonances in 

40
Ca and 

48
Ca” by 

M. R. Anders et. al., 2013. Physical Review C, 87, 024303, Copyright [2013] by American Physical 

Society. 
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Figure 1 [60] Self-consistent HF-based RPA results (solid lines) for the distribution of 

the energy-weighted strength normalized to one (fraction of EWSR) for the isoscalar 

monopole (E0), dipole (E1),  quadrupole (E2), and octopole (E3) in 
40

Ca, obtained using 

the KDE0 [24] Skyrme interaction. A Lorenzian smearing of a 3 MeV width was used in 

the calculation. The experimental data [21] are shown as histograms. 
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Figure 2 [60] Same as Fig. 1 except for  
48

Ca. Experimental data is from Ref. [19]. 
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Figure 3 [60] Self-consistent HF-based RPA results (solid lines) for the distribution of 

the energy-weighted strength, normalized to one (fraction of EWSR), for the isovector 

monopole (E0), dipole (E1), quadrupole (E2), and octopole (E3) in 
40

Ca, obtained using 

the KDE0 [24] Skyrme interaction. A Lorenzian smearing of a 3 MeV width was used in 

the calculation. 
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Figure 4 [60] Same as Fig. 3 except for  
48

Ca. 
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To investigate the sensitivity of the energies of the giant resonances in 
40

Ca and 

48
Ca to NM properties (Table 3) we calculated the Pearson correlation coefficients (a 

measure of linear correlation) between the centroid energies ECEN, Eq. (2.53), and the 

properties of NM. We used a small smearing width (0.05 MeV) to insure accuracy for 

ECEN. For a proper comparison with experiment, we used the experimental excitation 

energy ranges in determining the centroid energies. We use the excitation energy range 

of 9.5 – 40 MeV [19,21] for the ISGMR and the ISGQR and the range of 20 – 40 MeV 

[19,21] for the ISGDR. For the ISGOR we use the appropriate excitation energy range of 

20 – 60 MeV. We use the excitation energy range of 0 – 60 MeV for the IVGMR 

[10,61], the range of 0 – 40 MeV for the IVGDR [62,63,64], the range of 9 – 60 MeV 

for the IVGQR [65] and the range of   25 – 60 MeV for the IVGOR (see also Figures 1-

4).  

ISGMR 

 In Figure 5 we compare the experimental data [19,21] of the ISGMR centroid 

energies of 
40

Ca (a), 
48

Ca (b), and the energy difference, ∆ECEN = ECEN(
48

Ca) – 

ECEN(
40

Ca),  between 
48

Ca and 
40

Ca (c) with the results of fully self-consistent HF-based 

RPA calculations (full circles), obtained using the 18 Skyrme interactions from Table 1. 

The results obtained with violation of self-consistency, by the neglecting the Coulomb 

and the spin orbit particle-hole interactions in the RPA calculations, are shown in Fig. 

5d. The calculated values are plotted as a function of KNM. The experimental values of 

ECEN = 19.18 +/- 0.37 MeV for 
40

Ca, ECEN = 19.88 +/- 0.16 MeV for 
48

Ca [19,21] and 

their difference are shown in Figure 5 as the regions between the dashed lines.  
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Figure 5 [60] Comparison of experimental data [19,21] of the ISGMR centroid energies 

of 
40

Ca (a), 
48

Ca (b), and the 
48

Ca – 
40

Ca  energy difference (c), shown as the regions 

between the dashed lines, with the results of fully self-consistent HF based RPA 

calculations (full circles)  obtained using the Skyrme interactions of Table 1, plotted vis. 

KNM. The results obtained with violation of self-consistency in the RPA calculations, are 

shown in (d). 
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A very strong correlation between ECEN of 
40

Ca and ECEN of 
48

Ca can be seen with KNM. 

This is expected, since the ISGMR centroid energy is very sensitive to the value of KNM 

[1,3,8]. The ISGMR centroid energies for 
40

Ca are all higher than the experimental value 

19.18 +/- 0.37 MeV. The 
48

Ca ISGMR centroid energies are more consistent with the 

experimental value 19.88 +/- 0.16 MeV. While the experimental data show that the 

ISGMR in 
40

Ca lies at lower energy than in 
48

Ca, 17 of the Skyrme interactions (Table 1) 

show the ISGMR in 
40

Ca at a higher energy than in 
48

Ca, while the 18
th

 interaction 

(SkI3) shows them at essentially the same energy in 
40

Ca and 
48

Ca. For not fully self-

consistent RPA calculations, the results for some interactions leads to spurious 

agreement with the experimental data for the 
48

Ca – 
40

Ca energy difference as can be 

seen in Figure 5d. We also found a medium correlation between the ISGMR energies 

and the effective mass m*/m, which is a reflection of the strong correlation between KNM 

and m*/m seen in Figure 6 (see also Ref. [8]). Figure 6 also shows the correlation of the 

saturation symmetric NM density ρ0 and the symmetry energy coefficient J with KNM . 
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Figure 6 [60] The values of ρ0, m*/m, and J are plotted vs. KNM, for the Skyrme 

interactions of Table 1. 

 

 

 



 

36 

 

To investigate the dependence of the energy difference ∆ECEN = ECEN(
48

Ca) – 

ECEN(
40

Ca)  between the ISGMR in 
48

Ca and in 
40

Ca on the symmetry energy density, 

Figure 7 shows the results of our fully self-consistent HF based RPA calculations (full 

circles), using the Skyrme interactions (Table 1) having nuclear matter symmetry energy 

coefficient J = 26.80 –36.7 MeV.  No correlation is found between ∆ECEN and J.  Similar 

results were obtained for L, Ksym and KNM, which can be easily understood as a reflection 

of the correlation of Ksym, J and KNM with L shown in Figure 8.  

 Figure 9 shows the correlation of the ISGMR centroid energies with W0, the 

strength of the spin-orbit interaction. There is a positive strong correlation between the 

48
Ca - 

40
Ca energy difference and W0. Similar results were obtained for the ISGDR, 

ISGQR and the ISGOR.  
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Figure 7 [60] The HF based RPA results (full circles) of the ISGMR centroid energies 

ECEN of 
40

Ca (a), 
48

Ca (b) and the 
48

Ca – 
40

Ca energy difference (c), obtained using the 

Skyrme type interactions of Table 1, as a function of the NM symmetry energy at 

saturation density J. The limits on the experimental data are shown by the dashed lines.   
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Figure 8 [60] The values of Ksym, J, and KNM are plotted vs. L, for the Skyrme 

interactions of Table 1. 
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Figure 9 [60] Same as Figure 7 except as a function of the strength W0 of the spin-orbit 

interaction. 
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ISGDR 

In Figure 10 the results of the self-consistent HF-based RPA calculations (full 

circles) for the ISGDR centroid energies of 
40

Ca (a), 
48

Ca (b), and the 
48

Ca – 
40

Ca energy 

difference (c), are compared with the experimental data [19,21]. The experimental 

values of ECEN = 23.36 +/- 0.70 MeV for 
40

Ca, ECEN = 27.30 +/- 0.15 MeV for 
48

Ca and 

their difference are shown in Figure 10 as the regions between the dashed lines. The HF-

RPA energies, obtained for the 18 interactions from Table 1, are plotted as a function of 

KNM. For the 18 Skyrme interactions, the calculated ISGDR centroid energies are higher 

than the experimental values by 1.5 – 6 MeV and the calculated 
48

Ca - 
40

Ca energy 

difference, although positive, are smaller than the experimental value. We note that the 

experimental results for the fraction of the EWSR for the ISGDR in 
48

Ca and 
40

Ca are 

137 +/- 20% and 62 +/- 20% [19,21], respectively, compared to the calculated values of 

100%. Therefore, the comparison between the ISGDR in 
48

Ca and 
40

Ca might be 

misleading since only 62 +/- 20% of the EWSR of the ISGDR in 
40

Ca was found 

experimentally. A strong correlation is also found between the ISGDR energy of 
40

Ca 

with both KNM and m*/m and similarly for 
48

Ca. 
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Figure 10 [60] Same as Figure 7 except for the ISGDR as a function of KNM.. 
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ISGQR 

 Figure 11 shows, as a function of m*/m, our HF based RPA results (full circles) 

of the ISGQR centroid energies ECEN, of 
40

Ca (a), 
48

Ca (b),  and the 
48

Ca - 
40

Ca energy 

difference (c), obtained using 18 Skyrme type interactions from Table 1. The 

experimental values of ECEN = 17.84 +/- 0.43 MeV for 
40

Ca [19], ECEN = 18.61 +/- 0.24 

MeV for 
48

Ca [21] and their difference are shown in Figure 11 as the regions between 

the dashed lines. As seen in Figure 11, a very strong correlation exists between the 

ISGQR energy of 
40

Ca with m*/m and similarly for 
48

Ca. We find that interactions 

having m*/m = 0.65 – 0.8 reproducing the experimental data of the ISGQR. 

ISGOR 

 Figure 12 shows our HF based RPA results (full circles) of the ISGOR  centroid 

energies ECEN, of 
40

Ca (a), 
48

Ca (b),  and the 
48

Ca - 
40

Ca energy difference (c), using the 

18 Skyrme type interactions from Table 1. A very strong correlation exists between the 

ISGOR of 
40

Ca and 
48

Ca with m*/m as can be seen in Figure 12. Using the result that 

interactions having m*/m = 0.65 – 0.8 reproduce the experimental data of the ISGQR we 

can predict the values of the ECEN of the ISGOR in 
40

Ca and 
48

Ca to be in the region of 

30 – 34 MeV. 
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Figure 11 [60] Same as Figure 7 except for the ISGQR as a function of m*/m. 
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Figure 12 [60] Same as Figure 11 except for the ISGOR. 
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For completeness we present in Table 4 the centroid energies of the isoscalar 

(T0) giant resonances of multipolarities L= 0 – 3 for each of 18 interactions used and in 

Table 5 the values of the Pearson correlations coefficients among the various NM 

properties and spin-orbit strength W0 with the centroid energies of the isoscalar (T0) 

giant resonances of multipolarities L= 0 – 3. We find no correlations or very weak 

correlations between the 
48

Ca – 
40

Ca centroid energy differences of the isoscalar giant 

resonances with the coefficients J, L, or Ksym, associated with the density dependence of 

the symmetry energy and a strong correlation with the value of W0. 

 

 

Table 4. Isoscalar centroid energies. Isoscalar centroid energies of 
40

Ca or 
48

Ca for the 

18 Skyrme interactions for multipolarities L= 0 – 3.  

 

 

L0 L1 L2 L3 L0 L1 L2 L3

SGII 21.27 29.88 17.31 31.26 20.64 30.59 17.73 31.34

KDE0 21.09 29.51 17.93 32.11 20.21 30.60 18.18 31.77

KDE0v1 21.07 29.40 17.80 31.85 20.12 30.51 17.99 31.46

SKM* 20.58 29.34 16.86 30.26 20.09 30.10 17.45 30.56

SK255 22.04 29.83 17.20 31.03 20.86 30.25 16.95 30.22

SkI3 22.43 29.64 19.78 33.82 22.54 30.84 20.36 34.71

SkI4 22.14 30.10 18.91 33.40 21.23 30.90 18.97 32.89

SkI5 22.56 30.21 19.67 34.67 21.76 30.99 19.86 33.79

SV-bas 21.37 29.24 16.54 29.85 20.68 30.28 16.77 29.68

SV-min 20.88 28.90 16.18 29.14 20.16 29.66 16.38 29.00

SV-m56-O 22.58 30.56 20.10 35.21 21.65 30.79 20.15 34.54

SV-m64-O 21.94 30.08 19.00 33.79 21.12 30.99 19.18 33.39

SLy4 21.09 29.51 17.72 31.81 20.46 30.70 18.24 31.97

SLy5 21.09 29.55 17.74 31.86 20.11 30.52 17.96 31.44

SLy6 21.16 29.69 18.09 32.48 20.52 30.45 18.53 32.48

SkMP 21.17 29.84 18.18 31.95 21.03 30.63 18.58 32.71

SkP 19.86 28.60 15.35 27.64 18.94 28.78 15.51 27.54

SkO' 21.05 29.37 16.61 29.95 19.99 29.92 16.62 29.67

Experiment 19.18 23.36 17.84 19.88 27.3 18.61

+/- error 0.37 0.7 0.43 0.16 0.15 0.24

Reference [41] [41] [41] [43] [43] [43]

40Ca 48Ca
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Table 5. [60] Isoscalar Pearson correlation coefficients. Pearson correlation coefficients 

among the various NM properties and spin-orbit strength W0 with the centroid energies 

of the isoscalar T0 giant resonances of 
40

Ca or 
48

Ca of multipolarities L= 0 – 3.  

 
 

 

 

IVGMR 

 

 For the IVGMR, an isovector compression mode, we show the HF-RPA results 

(full circles), obtained using the 18 Skyrme interactions from Table 1, for the centroid 

energies ECEN of 
40

Ca (a), 
48

Ca (b) and the 
48

Ca - 
40

Ca energy difference (c) as a function 

of KNM in Figure 13 and as a function of J in Figure 14. The experimental value of ECEN 

= 31 +/- 2 MeV for 
40

Ca [10,46] is shown as the region between the dashed lines. We 

find a medium correlation between ECEN of the IVGMR with KNM and a weak 

correlation with J, L or Ksym. It can be seen from Figure 14 that a stronger correlation 

between the IVGMR energy and KNM is obtained for a fixed value of J (at 27 and 30 

MeV).  Figure 15 shows the IVGMR centroid energies as a function of W0, the  

m*/m KNM J L Ksym κ W0 (XW=1)

L0 T0 Ca 40 ECEN -0.75 0.95 0.07 0.56 0.78 0.20 0.00

L0 T0 Ca 48 ECEN -0.79 0.88 0.02 0.56 0.80 0.24 0.30

L0 T0 ∆ECEN -0.31 0.07 -0.11 0.16 0.25 0.18 0.73

L1 T0 Ca 40 ECEN -0.84 0.74 -0.20 0.30 0.64 0.47 0.24

L1 T0 Ca 48 ECEN -0.89 0.71 -0.11 0.25 0.62 0.25 0.46

L1 T0 ∆ECEN -0.30 0.14 0.11 -0.02 0.12 -0.28 0.54

L2 T0 Ca 40 ECEN -0.97 0.81 -0.03 0.40 0.76 0.22 0.48

L2 T0 Ca 48 ECEN -0.97 0.75 -0.06 0.36 0.74 0.22 0.57

L2 T0 ∆ECEN -0.20 -0.26 -0.20 -0.18 -0.02 0.00 0.52

L3 T0 Ca 40 ECEN -0.96 0.80 -0.05 0.35 0.73 0.23 0.41

L3 T0 Ca 48 ECEN -0.98 0.73 -0.08 0.33 0.72 0.27 0.59

L3 T0 ∆ECEN -0.11 -0.25 -0.13 -0.07 -0.01 0.16 0.56
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 strength of the spin-orbit interaction. A strong positive correlation between the 
48

Ca - 

40
Ca energy difference and the value of W0 is seen. Similar results were obtained for the 

IVGDR, and the IVGQR.  

 

 

Figure 13 [60] Same as Figure 7 except for the IVGMR as a function of KNM. The 

experimental data is taken from Ref. [10,61]. 
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Figure 14 [60] Same as Figure 13 except as a function of J. 
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Figure 15 [60] Same as Figure 13 except as a function of W0. 
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IVGDR 

 Figure 16 shows, as a function of J, our HF based RPA results (full circles) of the 

IVGDR centroid energies ECEN of 
40

Ca (a), 
48

Ca (b), and the 
48

Ca - 
40

Ca energy 

difference (c), obtained using the 18 Skyrme type interactions from Table 1. The 

experimental values of ECEN = 19.8 +/- 0.5 MeV for 
40

Ca, ECEN = 19.5 +/- 0.5 MeV for 

48
Ca [62,63,64] and their difference are shown in Figure 16 as the regions between the 

dashed lines. Weak correlations can be seen between ECEN of 
40

Ca and ECEN of 
48

Ca with 

J.  Similar results were obtained for L and Ksym. 

 Figure 17 shows the IVGDR centroid energies as a function of κ, the 

enhancement factor in the EWSR of the IVGDR. Strong positive correlations between 

the IVGDR centroid energy of 
40

Ca and of 
48

Ca with κ is seen in the Figure.  

IVGQR 

Figure 18 shows, as a function of m*/m, the HF based RPA results (full circles) 

of the IVGQR centroid energies ECEN of 
40

Ca (a), 
48

Ca (b) and the 
48

Ca - 
40

Ca energy 

difference (c), obtained using the 18 Skyrme type interactions from Table 1. The 

experimental data of ECEN = 31 +/- 1.5 MeV for 
40

Ca [65] is shown as the region 

between the dashed lines.  Medium correlations between m*/m and ECEN of 
40

Ca and 

ECEN of 
48

Ca can be seen in Figure 18. 
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Figure 16 [60] Same as Figure 7 except for the IVGDR. The experimental data is taken 

from Refs. [62,63,64]. 
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Figure 17 [60] Similar to Figure 16 as a function of κ. 
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Figure 18 [60] Same as Figure 11 except for the IVGQR. The experimental data is taken 

from Reference [65]. 
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IVGOR 

Figure 19 shows, as a function of m*/m, the HF based RPA results (full circles) 

of the IVGOR centroid energies ECEN of 
40

Ca (a), 
48

Ca (b) and the 
48

Ca - 
40

Ca energy 

difference (c), obtained using the 18 Skyrme type interactions from Table 1. Medium 

correlations between  m*/m and ECEN of 
40

Ca and ECEN of 
48

Ca can be seen in Figure 19. 

For completeness we present in Table 6 the centroid energies of the isovector 

(T1) giant resonances of multipolarities L= 0 – 3 for each of 18 interactions used and in 

Table 7 the values of the Pearson correlation coefficients among the various NM 

properties and spin-orbit strength W0 with the centroid energies of the isovector (T1) 

giant resonances of multipolarities L= 0 – 3.  As shown in Table 7, only weak 

correlations exist between the ECEN of the isovector giant resonances of 
40

Ca or 
48

Ca 

with J, L and Ksym. A strong correlation is found between the 
48

Ca - 
40

Ca centroid energy 

difference of the IVGMRs, IVDGRs, and IVGQRs with W0. We also note the strong 

correlation between the ECEN of the IVGDR and the value of κ. Table 8 shows the 

correlations among the NM properties and the spin-orbit strength W0 of the 18 Skyrme 

interactions. 
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Figure 19 [60] Same as Figure 18 except for the IVGOR. 

 

 

 



 

56 

 

Table 6. Isovector centroid energies. Isovector centroid energies of 
40

Ca or 
48

Ca for the 

18 Skyrme interactions for multipolarities L= 0 – 3.  

 

 

Table 7. [60] Isovector Pearson correlation coefficients. Pearson correlation coefficients 

among the various NM properties and spin-orbit strength W0 with the centroid energies 

of the isovector T1 giant resonances of 
40

Ca or 
48

Ca of multipolarities L = 0 – 3. 

 

L0 L1 L2 L3 L0 L1 L2 L3

SGII 32.69 19.01 30.55 40.15 34.01 19.06 30.93 40.05

KDE0 32.19 19.25 30.56 40.06 32.88 19.12 30.75 39.79

KDE0v1 31.90 18.87 29.93 39.56 32.47 18.71 30.06 39.25

SKM* 31.99 18.78 29.66 38.69 33.71 19.12 30.49 38.95

SK255 34.29 19.32 30.33 39.77 34.37 18.97 29.98 39.44

SkI3 32.67 18.02 30.34 39.30 34.77 18.53 31.11 39.85

SkI4 35.08 19.70 30.50 39.28 35.17 19.64 31.19 39.24

SkI5 33.37 17.51 29.99 40.83 33.82 17.31 29.92 39.79

SV-bas 33.07 19.61 30.35 39.78 34.27 19.65 30.75 39.63

SV-min 30.94 17.76 27.97 37.79 31.96 17.68 28.17 37.64

SV-m56-O 35.60 22.07 34.95 43.12 36.37 21.72 34.95 42.66

SV-m64-O 36.79 21.99 34.69 42.37 36.75 21.80 34.61 42.43

SLy4 31.00 18.29 29.51 39.12 31.97 18.28 29.88 39.38

SLy5 30.92 18.17 29.39 39.05 31.31 18.01 29.39 38.73

SLy6 31.52 18.62 30.07 39.85 32.53 18.61 30.41 39.98

SkMP 33.16 18.92 30.98 40.31 35.66 19.51 32.13 40.21

SkP 30.56 18.40 28.20 36.87 31.08 18.41 28.41 37.37

SkO' 31.27 17.65 28.07 38.15 32.44 17.70 28.13 38.04

Experiment 31 19.8 31 19.5

+/- error 2 0.5 1.5 0.5

Reference [10, 44] [51, 52] [50] [51, 47]

40Ca 48Ca

m*/m KNM J L Ksym κ W0 (XW=1)

L0 T1 Ca 40 ECEN -0.54 0.66 -0.33 0.10 0.31 0.61 0.01

L0 T1 Ca 48 ECEN -0.64 0.62 -0.35 0.17 0.40 0.74 0.36

L0 T1 ∆ECEN -0.25 -0.10 -0.06 0.16 0.22 0.31 0.70

L1 T1 Ca 40 ECEN -0.34 0.31 -0.58 -0.40 -0.17 0.66 -0.07

L1 T1 Ca 48 ECEN -0.36 0.28 -0.63 -0.40 -0.17 0.73 0.23

L1 T1 ∆ECEN -0.01 -0.22 -0.09 0.09 0.07 0.14 0.67

L2 T1 Ca 40 ECEN -0.64 0.52 -0.47 -0.14 0.16 0.68 0.43

L2 T1 Ca 48 ECEN -0.70 0.49 -0.50 -0.14 0.19 0.73 0.66

L2 T1 ∆ECEN -0.33 -0.10 -0.18 0.02 0.14 0.27 0.71

L3 T1 Ca 40 ECEN -0.73 0.61 -0.33 0.04 0.36 0.60 0.37

L3 T1 Ca 48 ECEN -0.71 0.56 -0.43 -0.07 0.26 0.65 0.42

L3 T1 ∆ECEN 0.34 -0.42 -0.21 -0.41 -0.47 -0.08 -0.11
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Table 8. Nuclear matter Pearson correlation coefficients. Pearson correlation 

coefficients among the various NM properties and spin-orbit strength W0 among the 18 

Skyrme interactions used for the calculation of the 
40

Ca and 
48

Ca  giant resonances. 

 
 

Conclusions 

We have presented results of our fully self-consistent HF-RPA calculations using 

18 commonly employed Skyrme type interactions of Table 1, for the centroid energies of 

isoscalar and isovector giant resonances of multipolarities L = 0 – 3 in 
40

Ca and 
48

Ca and 

compared with available experimental data. We have investigated and discussed the 

sensitivity of the ECEN of the giant resonances to various properties of NM. In particular 

we point out that:  

 For all the 18 Skyrme interactions used in our HF-based RPA calculations (Table 

1) the 
48

Ca – 
40

Ca centroid energy differences of the ISGMR are smaller than the 

experimental data. For 17 of the Skyrme interactions used in our HF-based RPA 

calculations the 
40

Ca ISGMR lies above that for 
48

Ca. The 18
th

 interaction (SkI3) 

predicts the ISGMR in about the same location in both nuclei. 

 We have demonstrated the very strong correlations of the ECEN of the compression 

modes, the ISGMR and the ISGDR, with the NM incompressibility coefficient KNM 

and noted that the sensitivity of ECEN to the effective mass is a reflection of the 

KNM J L Ksym m*/m κ W0(XW=1)

KNM 1.00 0.25 0.62 0.77 -0.73 0.16 0.07

J 0.25 1.00 0.72 0.40 0.01 -0.40 -0.28

L 0.62 0.72 1.00 0.86 -0.35 -0.11 0.00

Ksym 0.77 0.40 0.86 1.00 -0.72 -0.05 0.26

m*/m -0.73 0.01 -0.35 -0.72 1.00 -0.29 -0.62

κ 0.16 -0.40 -0.11 -0.05 -0.29 1.00 0.26

W0(XW=1) 0.07 -0.28 0.00 0.26 -0.62 0.26 1.00



 

58 

 

correlation between m*/m and KNM, existing in the Skyrme interactions used in our 

calculations. 

 For all the adopted Skyrme interactions, the calculated centroid energies of the 

ISGDR in 
40

Ca and 
48

Ca are consistently higher than the experimental data (by 

about 1.5 – 6 MeV). 

 We have demonstrated the very strong correlation of ECEN of the ISGQR and the 

ISGOR with m*/m. We have found that an agreement with the experimental data 

for ECEN of the ISGQR in 
40

Ca and 
48

Ca is obtained for a value of the effective mass 

in the range of m*/m = 0.65 – 0.8. Using this result we can predict that the values of 

the ECEN of the ISGOR in 
40

Ca and 
48

Ca should be in the region of 30 – 34 MeV.  

 We find no correlations or very weak correlations between the 
48

Ca – 
40

Ca centroid 

energy differences of the isoscalar giant resonances of multipolarities L = 0 -3 with 

the coefficients J, L, or Ksym, associated with the density dependence of the 

symmetry energy. Similar results were found for the isovector giant resonances of 

multipolarities L = 0 – 3.  

 We find positive strong correlations between the 
48

Ca – 
40

Ca centroid energy 

differences (∆ECEN) of the isoscalar and isovector giant resonances with W0. 

 For the IVGMR, the isovector compression mode, we find a medium correlation 

with KNM and a weak correlation with J, L or Ksym.  

 We find a weak correlation between the energies of the IVGDR of 
40

Ca (and 
48

Ca) 

and the quantities associated with the density dependence of the symmetry energy.  
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 We find a strong correlation between the energies of the IVGDR of 
40

Ca (and 
48

Ca) 

and the value of κ. 

 For the IVGQR and IVGOR we find a strong correlation between ECEN and m*/m. 

The disagreement between the HF-RPA results and the experimental data for the 

centroid energies of the ISGMR and ISGDR in 
40

Ca and 
48

Ca remain unsolved problems 

which call for possible extensions of the EDF used in this work, microscopic 

calculations of the excitation cross sections of giant resonances [58,66] and/or going 

beyond the HF-RPA theory [67]. 
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CHAPTER IV 

GIANT RESONANCES IN 
208

PB
*
 

 

 We now present results of our fully self-consistent HF based RPA calculations of 

the strength functions and centroid energies of isoscalar and isovector giant resonances 

of multipolarities L = 0 - 3 in 
208

Pb [68], obtained for 34 widely used Skyrme type 

interactions shown in Table 1: SGII [23], KDE0 [24], KDE0v1 [24], SKM* [25], SK255 

[26], SkI3 [41], SkI4 [41], SkI5 [41], SV-bas [42], SV-min [42], SV-m56-O [43], SV-

m64-O [43], SLy4 [36], SLy5 [36], SLy6 [36], SkMP [44], SkP [45], SkO’ [46], SV-

sym32 [42], SkO [46], LNS [47], MSL0 [48], NRAPR [49] SQMC650 [50], SQMC700 

[50], SkT1 [51], SkT2 [51], SkT3 [51], SkT8 [51], SkT9 [51], SkT1* [51], SkT3* [51], 

Skxs20 [52], and Z [53]. These interactions are associated with the ranges of NM 

properties (see Table 3): E/A = 15.32 – 16.33 MeV, ρ0 = 0.156 - 0.175 fm
-3

, KNM = 201 

– 258 MeV, J = 26.8 – 37.4 MeV, L = -29.4 – 129.3 MeV, Ksym = -401 – 160 MeV, 

m*/m = 0.56 – 1.00 and κ = 0.00 – 0.71.  

In Figures 20 and 21 we display the HF-based RPA results (solid lines) for the 

distribution of the energy-weighted strength normalized to one (ES(E)/EWSR) for the 

isoscalar and isovector giant resonances of multipolarities L = 0-3 in 
208

Pb, obtained 

using the KDE0 [24] interaction that is representative of the strength distributions for the 

rest of the interactions. For the purpose of comparison with experiment a Lorenzian 

                                                 
*
 Part of this chapter is reprinted with permission from “Giant Resonances in 

40
Ca and 

48
Ca” by M. R. 

Anders et. al., 2013. Physical Review C, 87, 024303, Copyright [2013] by American Physical Society. 
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smearing of a 3 MeV width was used in the calculation. The experimental data [69] are 

shown as histograms. 

 

 
Figure 20 Self-consistent HF-based RPA results (solid lines) for the distribution of the 

energy-weighted strength normalized to one (fraction of EWSR) for the isoscalar 

monopole (E0), dipole (E1),  quadrupole (E2), and octopole (E3) in 
208

Pb, obtained using 

the KDE0 [24] Skyrme interaction. A Lorenzian smearing of a 3 MeV width was used in 

the calculation. The experimental data [69] are shown as histograms. 
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Figure 21 Self-consistent HF-based RPA results (solid lines) for the distribution of the 

energy-weighted strength, normalized to one (fraction of EWSR), for the isovector 

monopole (E0), dipole (E1), quadrupole (E2), and octopole (E3) in 
208

Pb, obtained using 

the KDE0 [24] Skyrme interaction. A Lorenzian smearing of a 3 MeV width was used in 

the calculation. 
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To investigate the sensitivity of the energies of the giant resonances in 
208

Pb to 

NM properties (Table 3) we calculated the Pearson correlation coefficients (a measure of 

linear correlation) between the centroid energies ECEN, Eq. (2.53), and the properties of 

NM. We used a small smearing width (0.05 MeV) to insure accuracy for ECEN. For a 

proper comparison with experiment, we used the experimental excitation energy ranges 

in determining the centroid energies. We use the excitation energy range of 5 – 30 MeV 

[69] for the ISGMR, the range of 16 – 40 MeV [69] for the ISGDR, and the range of 8 – 

16 MeV [69] for the ISGQR. For the ISGOR we use the appropriate excitation energy 

range of 15 – 28 MeV [69]. We use the excitation energy range of 10 – 45 MeV for the 

IVGMR [10], the range of 5 – 30 MeV for the IVGDR [70], the range of 10 – 40 MeV 

for the IVGQR [71-75] and the range of  20 – 50 MeV for the IVGOR (see also Figures 

20 and 21). 

In Figures 22-26, we compare the experimental data [69] of the ISGMR (a), 

ISGDR (b), ISGQR (c), and ISGOR (d) centroid energies of 
208

Pb with the results of 

fully self-consistent HF-based RPA calculations (full circles), obtained using the 34 

Skyrme interactions of Table 1. The calculated values are plotted as a function of KNM, J, 

L, Ksym, and m*/m. Table 9 shows the correlations among the NM properties and the 

spin-orbit strength W0 of the 34 Skyrme interactions of Table 1. 
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Figure 22 Comparison of experimental data [69] of the ISGMR (a), ISGDR (b), ISGQR 

(c), and ISGOR (d) centroid energies of 
208

Pb, shown as the regions between the dashed 

lines, with the results of fully self-consistent HF based RPA calculations (full circles)  

obtained using the Skyrme interactions of Table 1, plotted vs. KNM. 
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Figure 23 Same as Figure 22 except as a function of J. 
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Figure 24 Same as Figure 22 except as a function of L. 
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Figure 25 Same as Figure 22 except as a function of Ksym. 
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Figure 26 Same as Figure 22 except as a function of m*/m. 
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Table 9. Nuclear matter Pearson correlation coefficients. Pearson correlation 

coefficients among the various NM properties and spin-orbit strength W0 among the 34 

Skyrme interactions used for the calculation of the 
208

Pb giant resonances. 

 
 

 

ISGMR 

 In Figures 22a, 23a, 24a, 25a, and 26a we compare the experimental data [69] of 

the ISGMR centroid energies of 
208

Pb with the results of fully self-consistent HF-based 

RPA calculations (full circles), obtained using the 34 Skyrme interactions of Table 1 

plotted as a function of KNM, J, L, Ksym, and m*/m, respectively. The experimental 

values of ECEN = 13.96 +/- 0.20 MeV [69] are plotted as the regions between the dashed 

lines. A very strong correlation between ECEN of 
208

Pb can be seen with KNM and is 

consistent with value of KNM = 220 – 240 MeV.  This is expected, since the ISGMR 

centroid energy is very sensitive to the value of KNM [1,3,8]. We also found a medium 

correlation between the ISGMR energies and the effective mass m*/m and Ksym, which 

is a reflection of the medium correlation between KNM and m*/m seen in Table 9 (see 

also Ref. [8]). No correlations were found between the ISGMR energies and J or L. 

ISGDR 

In Figures 22b, 23b, 24b, 25b, and 26b we compare the experimental data [69] of 

the ISGDR centroid energies of 
208

Pb with the results of fully self-consistent HF-based 

KNM J L Ksym m*/m κ W0 (xw=1)

KNM 1.00 0.00 0.30 0.49 -0.43 -0.01 0.10

J 0.00 1.00 0.71 0.44 0.09 -0.24 -0.26

L 0.30 0.71 1.00 0.90 -0.17 -0.12 -0.07

Ksym 0.49 0.44 0.90 1.00 -0.45 -0.07 0.09

m*/m -0.43 0.09 -0.17 -0.45 1.00 -0.61 -0.22

κ -0.01 -0.24 -0.12 -0.07 -0.61 1.00 -0.03

W0 (xw=1) 0.10 -0.26 -0.07 0.09 -0.22 -0.03 1.00
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RPA calculations (full circles), obtained using the 34 Skyrme interactions of Table 1 

plotted as a function of KNM, J, L, Ksym, and m*/m, respectively.  The experimental 

values of ECEN = 22.20 +/- 0.30 MeV [69] are plotted as the regions between the dashed 

lines. For all the Skyrme interactions of Table 1, the calculated ISGDR centroid energies 

are higher than the experimental values by 0.5 – 3 MeV except one interaction, SkP. We 

note that the experimental results for the fraction of the EWSR for the ISGDR in 
208

Pb is 

114 + 12 - 25 % [69] compared to the calculated values of 100%. A strong correlation is 

also found between the ISGDR energy of 
208

Pb with m*/m and a medium correlation 

with KNM reflecting the medium correlation between m*/m and KNM shown in Table 9. 

No correlations were found with the symmetry energy parameters, J, L, or Ksym. 

ISGQR 

 In Figures 22c, 23c, 24c, 25c, and 26c we compare the experimental data [69] of 

the ISGQR centroid energies of 
208

Pb with the results of fully self-consistent HF-based 

RPA calculations (full circles), obtained using the 34 Skyrme interactions of Table 1 

plotted as a function of KNM, J, L, Ksym, and m*/m, respectively.  The experimental 

values of ECEN = 10.89 +/- 0.30 MeV [69] are plotted as the regions between the dashed 

lines. As seen in Figure 26c, a very strong correlation exists between the ISGQR energy 

of 
208

Pb with m*/m. We find that interactions having m*/m = 0.9 – 1.0 reproduce the 

experimental data of the ISGQR. 

ISGOR 

 In Figures 22d, 23d, 24d, 25d, and 26d we compare the experimental data [69] of 

the ISGOR centroid energies of 
208

Pb with the results of fully self-consistent HF-based 
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RPA calculations (full circles), obtained using the 34 Skyrme interactions of Table 1 

plotted as a function of KNM, J, L, Ksym, and m*/m, respectively.  The experimental 

values of ECEN = 19.6 +/- 0.5 MeV [69] are plotted as the regions between the dashed 

lines. As seen in Figure 26d, a very strong correlation exists between the ISGOR energy 

of 
208

Pb with m*/m. We find that interactions having m*/m = 0.9 – 1.0 reproduce the 

experimental data of the ISGOR. 

For completeness we present in Table 10 the centroid energies of the isoscalar 

(T0) giant resonances of multipolarities L= 0 – 3 for each of 34 interactions used and in 

Table 11 the values of the Pearson correlations coefficients among the various NM 

properties and spin-orbit strength W0 with the centroid energies of the isoscalar (T0) 

giant resonances of multipolarities L= 0 – 3. The isoscalar giant resonances for 
208

Pb are 

consistent with KNM ~ 230 MeV, J ~ 32 MeV, L ~ 45 MeV, Ksym ~ -140 MeV, and m*/m 

~ 1.0. 
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Table 10. Isoscalar centroid energies. Isoscalar centroid energies of 
208

Pb for the 34 

Skyrme interactions for multipolarities L= 0 – 3.  

 

L0 L1 L2 L3

SGII 13.48 23.95 11.74 21.57

KDE0 13.70 24.72 12.12 22.19

KDE0v1 13.64 24.54 12.08 22.50

SKM* 13.34 23.74 11.47 20.85

SK255 14.18 24.38 11.17 20.68

SkI3 14.82 25.16 13.70 23.66

SkI4 14.42 25.23 12.52 23.06

SkI5 14.46 25.42 13.03 23.53

SV-bas 13.90 23.82 10.98 20.06

SV-min 13.53 23.19 10.68 19.56

SV-sym32 13.81 23.72 11.00 20.25

SV-m56-O 14.66 26.13 14.31 23.13

SV-m64-O 14.28 25.33 13.00 23.70

SLy4 13.77 24.52 12.14 22.27

SLy5 13.73 24.54 12.14 22.29

SLy6 13.83 24.80 12.26 22.33

SkMP 13.87 24.15 12.69 23.01

SkP 12.77 22.23 10.33 18.87

SkO 13.99 23.75 11.16 20.39

SkO' 13.31 23.26 10.65 20.14

LNS 13.57 24.41 12.11 22.20

MSL0 13.58 23.76 11.32 21.02

NRAPR 13.37 24.27 11.78 23.36

SQMC650 13.37 24.11 11.99 21.75

SQMC700 13.67 24.72 12.37 22.38

SkT1 13.86 23.21 10.43 19.52

SkT2 13.87 23.25 10.47 19.71

SkT3 13.77 23.16 10.32 19.59

SkT8 13.89 24.05 11.20 20.91

SkT9 13.88 24.08 11.26 20.87

SkT1* 13.79 23.07 10.25 19.05

SkT3* 13.69 22.89 10.08 19.07

Skxs20 12.73 24.29 10.61 19.46

Zσ 14.01 25.03 12.13 22.12

Experiment 13.96 22.20 10.89 19.60

Error 0.20 0.30 0.30 0.50
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Table 11. Isoscalar Pearson correlation coefficients. Pearson correlation coefficients 

among the various NM properties and spin-orbit strength W0 with the centroid energies 

of the isoscalar T0 giant resonances of 
208

Pb for multipolarities L= 0 – 3.  

 
 

 

In Figures 27-32, we compare the experimental data [69] of the IVGMR (a), 

IVGDR (b), and IVGQR (c) centroid energies of 
208

Pb with the results of fully self-

consistent HF-based RPA calculations (full circles), obtained using the 34 Skyrme 

interactions of Table 1. The results of ISGOR are also plotted in part (d) of these figures. 

The calculated values are plotted as a function of KNM, J, L, Ksym, m*/m, and κ.  

 

 

 

 

 

 

 

 

 

 

L0 L1 L2 L3

K 0.91 0.46 0.41 0.35

J -0.14 -0.08 -0.14 -0.08

L 0.23 0.07 0.12 0.11

Ksym 0.48 0.35 0.41 0.38

m*/m -0.56 -0.88 -0.95 -0.96

κ 0.10 0.48 0.59 0.60

W0 (xw=1) 0.29 0.20 0.31 0.12
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Figure 27 Comparison of experimental data [69] of the IVGMR (a), IVGDR (b), and 

IVGQR (c) centroid energies of 
208

Pb, shown as the regions between the dashed lines, 

with the results of fully self-consistent HF based RPA calculations (full circles)  

obtained using the Skyrme interactions of Table 1, plotted vs. KNM. Calculated IVGOR 

(d) centroid energies are also shown. 
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Figure 28 Same as Figure 27 except as a function of J. 
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Figure 29 Same as Figure 27 except as a function of L. 
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Figure 30 Same as Figure 27 except as a function of Ksym. 
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Figure 31 Same as Figure 27 except as a function of m*/m. 
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Figure 32 Same as Figure 27 except as a function of κ. 
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IVGMR 

 In Figures 27a, 28a, 29a, 30a, 31a, and 32a we compare the experimental data 

[10] of the IVGMR centroid energies of 
208

Pb with the results of fully self-consistent 

HF-based RPA calculations (full circles), obtained using the 34 Skyrme interactions of 

Table 1 plotted as a function of KNM, J, L, Ksym, m*/m, and κ, respectively. The 

experimental values of ECEN = 26 +/- 2 MeV [10] are plotted as the regions between the 

dashed lines. We find a strong correlation between ECEN of the IVGMR with κ, a 

medium correlation with m*/m, and a weak correlation with KNM, J, L or Ksym. It can be 

seen from Figure 28a that a stronger correlation between the IVGMR energy and KNM is 

obtained for a fixed value of J (at 27 and 30 MeV).  

IVGDR 

 In Figures 27b, 28b, 29b, 30b, 31b, and 32b we compare the experimental data 

[10] of the IVGDR centroid energies of 
208

Pb with the results of fully self-consistent HF-

based RPA calculations (full circles), obtained using the 34 Skyrme interactions of Table 

1 plotted as a function of KNM, J, L, Ksym, m*/m, and κ, respectively. The experimental 

values of ECEN = 13.4 +/- 0.5 MeV [70] are plotted as the regions between the dashed 

lines. Weak correlations can be seen between ECEN of 
208

Pb with the parameters of the 

symmetry energy: J, L, and Ksym. We find a medium correlation between ECEN of the 

IVGMR with κ and a medium correlation with m*/m. Figure 32b shows the IVGDR 

centroid energies as a function of κ, the enhancement factor in the EWSR of the IVGDR. 

A strong positive correlation between the IVGDR centroid energy of 
208

Pb with κ is seen 

in the Figure and is consistent with κ = 0.2 – 0.5. 
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IVGQR 

In Figures 27c, 28c, 29c, 30c, 31c, and 32c we compare the experimental data [10] of the 

IVGDR centroid energies of 
208

Pb with the results of fully self-consistent HF-based RPA 

calculations (full circles), obtained using the 34 Skyrme interactions of Table 1 plotted 

as a function of KNM, J, L, Ksym, m*/m, and κ, respectively. The experimental values of 

ECEN = 23.00 +/- 0.22 MeV [71], ECEN = 20.2 +/- 0.5 MeV [72],  ECEN = 24.3 +/- 0.4 

MeV [73], ECEN = 22.5 +/- 1.0 MeV [74], and ECEN = 23 +/- 0.5 MeV [75], are plotted as 

the regions between the dashed lines as 22.8 +/- 0.5 MeV.  Strong correlations between 

m*/m and ECEN of 
208

Pb can be seen in Figure 31c. We find a strong correlation between 

ECEN of the IVGMR with κ. 

IVGOR 

In Figures 27d, 28d, 29d, 30d, 31d, and 32d we show the results of fully self-

consistent HF-based RPA calculations (full circles) of the IVGOR, obtained using the 34 

Skyrme interactions of Table 1 plotted as a function of KNM, J, L, Ksym, m*/m, and κ, 

respectively. Strong correlations between m*/m and κ with ECEN of 
208

Pb can be seen in 

Figures 31d and 32d. For completeness we present in Table 12 the centroid energies of 

the isoscalar (T1) giant resonances of multipolarities L= 0 – 3 for each of the 34 

interactions used and in Table 13 the values of the Pearson correlations coefficients 

among the various NM properties and spin-orbit strength W0 with the centroid energies 

of the isoscalar (T1) giant resonances of multipolarities L= 0 – 3. The isovector giant 

resonances for 
208

Pb are consistent with KNM ~ 235 MeV, J ~ 32 MeV, L ~ 45 MeV, Ksym 

~ -140 MeV, m*/m ~ 0.6 – 0.9, and κ ~ 0.2 – 0.5.  
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Table 12. Isovector centroid energies. Isovector centroid energies of 
208

Pb for the 34 

Skyrme interactions for multipolarities L= 0 – 3.  

 

 
 

 

L0 L1 L2 L3

SGII 27.47 13.60 22.55 31.10

KDE0 27.91 13.94 22.98 31.78

KDE0v1 27.41 13.68 22.49 31.21

SKM* 28.00 13.91 22.74 31.14

SK255 28.94 13.97 22.46 31.02

SkI3 27.29 12.93 22.50 32.27

SkI4 28.11 13.44 22.13 33.43

SkI5 26.38 12.17 21.36 30.94

SV-bas 28.43 14.04 22.71 31.05

SV-min 25.72 12.46 20.42 28.52

SV-sym32 28.22 13.72 22.07 30.52

SV-m56-O 30.32 14.85 25.25 36.78

SV-m64-O 30.14 15.06 25.38 35.76

SLy4 26.79 13.39 22.24 30.92

SLy5 26.69 13.34 22.17 30.83

SLy6 27.11 13.46 22.43 31.28

SkMP 28.53 13.97 23.55 32.88

SkP 26.96 13.72 21.78 29.46

SkO 24.08 11.17 19.26 28.37

SkO' 26.00 12.40 20.25 28.64

LNS 28.44 14.05 23.03 31.76

MSL0 27.02 13.14 21.62 29.97

NRAPR 29.14 14.51 23.95 32.93

SQMC650 28.83 14.66 23.74 32.43

SQMC700 29.43 14.75 24.09 33.31

SkT1 24.47 11.87 19.39 27.19

SkT2 24.53 11.87 19.39 27.23

SkT3 24.56 11.85 19.41 27.21

SkT8 26.38 13.07 21.47 29.75

SkT9 26.35 13.03 21.42 29.69

SkT1* 24.38 11.86 19.31 27.03

SkT3* 24.38 11.78 19.41 26.99

Skxs20 25.81 12.52 20.20 28.14

Zσ 30.30 15.64 25.73 34.99

Experiment 26.00 13.40 22.80

Error 2.00 0.50 0.50
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Table 13. Isovector Pearson correlation coefficients. Pearson correlation coefficients 

among the various NM properties and spin-orbit strength W0 with the centroid energies 

of the isovector T1 giant resonances of 
208

Pb for multipolarities L= 0 – 3.  

 
 

 

 

For completeness we also present in Table 14 the centroid energies for all of the 

giant resonances energies for 
208

Pb that experimental data is available of the 34 

interactions and the χ2
 for each interaction. SV-sym32 has the best fit to the experimental 

giant resonance data with a χ2
 = 3.5, with m*/m = 0.90, KNM = 234 MeV, J = 32 MeV,   

L = 57 MeV, Ksym = -149 MeV, and κ = 0.40 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

L0 L1 L2 L3

K 0.08 -0.06 0.08 0.23

J -0.25 -0.30 -0.32 -0.34

L -0.26 -0.44 -0.34 -0.22

Ksym -0.17 -0.37 -0.19 0.00

m*/m -0.65 -0.54 -0.71 -0.82

κ 0.90 0.86 0.87 0.82

W0 (xw=1) -0.04 -0.05 0.03 0.08
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Table 14. Giant resonance centroid energies of 
208

Pb. Giant resonance centroid energies 

of 
208

Pb for the 34 Skyrme interactions for multipolarities L = 0 – 3 and T = 0 - 1, except 

L3T1 with χ2
 for each interaction.  

 
 

L0 T0 L1 T0 L2 T0 L3 T0 L0 T1 L1 T1 L2 T1 χ2

SGII 13.48 23.95 11.74 21.57 27.47 13.60 22.55 7.1

KDE0 13.70 24.72 12.12 22.19 27.91 13.94 22.98 13.2

KDE0v1 13.64 24.54 12.08 22.50 27.41 13.68 22.49 12.6

SKM* 13.34 23.74 11.47 20.85 28.00 13.91 22.74 5.3

SK255 14.18 24.38 11.17 20.68 28.94 13.97 22.46 7.1

SkI3 14.82 25.16 13.70 23.66 27.29 12.93 22.50 30.2

SkI4 14.42 25.23 12.52 23.06 28.11 13.44 22.13 20.8

SkI5 14.46 25.42 13.03 23.53 26.38 12.17 21.36 27.6

SV-bas 13.90 23.82 10.98 20.06 28.43 14.04 22.71 3.7

SV-min 13.53 23.19 10.68 19.56 25.72 12.46 20.42 4.7

SV-sym32 13.81 23.72 11.00 20.25 28.22 13.72 22.07 3.5

SV-m56-O 14.66 26.13 14.31 23.13 30.32 14.85 25.25 44.6

SV-m64-O 14.28 25.33 13.00 23.70 30.14 15.06 25.38 30.1

SLy4 13.77 24.52 12.14 22.27 26.79 13.39 22.24 12.0

SLy5 13.73 24.54 12.14 22.29 26.69 13.34 22.17 12.2

SLy6 13.83 24.80 12.26 22.33 27.11 13.46 22.43 14.1

SkMP 13.87 24.15 12.69 23.01 28.53 13.97 23.55 14.4

SkP 12.77 22.23 10.33 18.87 26.96 13.72 21.78 5.1

SkO 13.99 23.75 11.16 20.39 24.08 11.17 19.26 11.2

SkO' 13.31 23.26 10.65 20.14 26.00 12.40 20.25 6.1

LNS 13.57 24.41 12.11 22.20 28.44 14.05 23.03 11.7

MSL0 13.58 23.76 11.32 21.02 27.02 13.14 21.62 5.2

NRAPR 13.37 24.27 11.78 23.36 29.14 14.51 23.95 14.9

SQMC650 13.37 24.11 11.99 21.75 28.83 14.66 23.74 10.3

SQMC700 13.67 24.72 12.37 22.38 29.43 14.75 24.09 16.1

SkT1 13.86 23.21 10.43 19.52 24.47 11.87 19.39 7.8

SkT2 13.87 23.25 10.47 19.71 24.53 11.87 19.39 7.9

SkT3 13.77 23.16 10.32 19.59 24.56 11.85 19.41 7.9

SkT8 13.89 24.05 11.20 20.91 26.38 13.07 21.47 5.9

SkT9 13.88 24.08 11.26 20.87 26.35 13.03 21.42 6.2

SkT1* 13.79 23.07 10.25 19.05 24.38 11.86 19.31 8.2

SkT3* 13.69 22.89 10.08 19.07 24.38 11.78 19.41 8.1

Skxs20 12.73 24.29 10.61 19.46 25.81 12.52 20.20 13.1

Zσ 14.01 25.03 12.13 22.12 30.30 15.64 25.73 21.2

experiment 13.96 22.2 10.89 19.6 26 13.4 22.8

error 0.2 0.3 0.3 0.5 2 0.5 0.5



 

85 

 

Electric polarizability 

 The electric polarizability, αD, is of special interest because it has been suggested 

as a good proxy to determine the neutron skin, rn − rp, of 
208

Pb, since according to 

Reinhard and Nazarewicz [76] there is a high correlation between αD and rn − rp. The 

electric polarizability has been experimentally measured as αD = 20.1 +/- 0.6 fm
3
 and 

with the high correlation between αD and rn − rp found by Reinhard and Nazarewicz, 

the neutron skin of 
208

Pb had been predicted to be rn − rp = 0.156−0.021
+0.025 fm [70]. The 

neutron skin and the electric polarizability are calculated within the HF-RPA by using 

respectively, the neutron and proton densities and the inverse energy weighted sum rule 

(IEWSR), 𝑚−1, of the IVGDR strengths distribution from eq. (2.52) with k = -1 and the 

upper limit energy cut off set at 60 MeV and 𝑒2 = 1.44 MeV fm. 

 𝑚−1 = ∫ 𝐸−1𝑆(𝐸)
60

0
𝑑𝐸 . (4.1) 

 αD =
24𝜋𝑒2

9
𝑚−1 (4.2) 

 〈𝑟𝑞
2〉 = ∫ 𝑟2 𝜌𝑞(𝑟)4𝜋𝑟2𝑑𝑟 ∫ 𝜌𝑞(𝑟)4𝜋𝑟2𝑑𝑟⁄   , (4.3) 

where 𝜌𝑞(𝑟) is the HF ground-state neutron (q = n) or proton (q = p) density distribution 

which is used to find the neutron skin, 

 rn − rp = √〈𝑟𝑛2〉 − √〈𝑟𝑝2〉 . (4.4) 

 The results obtained using the Skyrme interactions of Table 1 are plotted in 

Figure 33 as electric polarizability versus the neutron skin. Unlike Reinhard and 

Nazarewicz which found a strong correlation of C = 0.98 [76], our results indicate a 

weaker correlation of C = 0.67. Several Skyrme forces with neutron skins between 0.138 
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and 0.211 fm fall within or are very close to the experimental range of αD as compared 

to 0.156−0.021
+0.025 fm [70]. These results indicate that the electric polarizability is not a good 

proxy to help determine the neutron skin of 
208

Pb. Our method takes 34 Skyrme forces 

which were fitted to varying data sets and which have various NM parameters and 

electric polarizabilities and neutron skins of 
208

Pb to determine the correlation between 

the electric polarizability and neutron skin of 
208

Pb. The Skyrme force is fitted to a data 

set and varying the parameters destroys the initial fit. The method of varying the 

parameters of a single Skyrme force to determine the correlation among the various NM 

coefficients and other parameters such as the electric polarizability of 
208

Pb is called into 

question as a valid method. Perhaps varying one fixed parameter for several separate fits 

would give a better indication of the effect of differing values for the fixed parameter on 

other calculated values such as the electric polarizability. 
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Figure 33 Comparison of experimental data [70] of the electric polarizability, αD, of 
208

Pb, shown as the regions between the dashed lines and the results of fully self-

consistent HF based RPA calculations of αD of 
208

Pb (full circles) obtained using the 

Skyrme interactions of Table 1, with the HF calculations of the neutron skin, rn − rp, of 
208

Pb. 

 

 

 

“Since the correlation between polarizability, neutron skin thickness, and symmetry 

energy is model dependent, viz. 𝑟skin ∝ 𝛼𝐷 ∙ 𝑎sym  [ rn − rp ∝ αDJ ] [77], a systematic 

study with a variety of EDFs as well as experimental tests in other nuclei would be 

important” [70]. The results obtained using the Skyrme interactions of Table 1 are 

plotted in Figure 34 as the product of the electric polarizability with symmetry energy at 

saturation density versus the neutron skin of 
208

Pb. Our results indicate a correlation of C 
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= 0.91 which is much stronger than the correlation, C = 0.67, of just electric 

polarizability with neutron skin of 
208

Pb. Several Skyrme forces with neutron skins 

between 0.135 and 0.211 fm fall within or are very close to the experimental range of 

αDJ = 653 +/- 70 MeV with 30 < J < 35 MeV [40] or J = 32.5 MeV +/- 2.5 MeV as 

compared to 0.156−0.021
+0.025 fm [70]. For completeness, Table 14 is provided to show the 

values of J, rn, rp, rn − rp, 𝑚−1, αD, and αDJ. 

 

 
Figure 34 Comparison of the product of the experimental data [70] of the electric 

polarizability, αD, with symmetry energy at saturation density, J, of 
208

Pb, shown as the 

regions between the dashed lines and the results of fully self-consistent HF based RPA 

calculations of αDJ of 
208

Pb (full circles) obtained using the Skyrme interactions of Table 

1, with the HF calculations of the neutron skin, rn − rp, of 
208

Pb. 
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Table 15. Electric Polarizability and Neutron Skin. Values for the symmetry energy at 

saturation density, J [MeV], neutron root mean square (rms) radius, rn [fm], proton rms 

radius rp [fm], neutron skin, rn − rp [fm], inverse energy weighted sum rule, 𝑚−1 [fm
6
 

MeV
-1

], electric polarizability αD [fm
3
], and αDJ [fm

3
 MeV]. 

 

 

J rn rp rn-rp m -1 αD αDJ

SGII 26.80 5.591 5.455 0.135 1.866 22.52 603

KDE0 33.00 5.600 5.440 0.160 1.580 19.06 629

KDE0v1 34.58 5.584 5.407 0.176 1.565 18.88 653

SKM* 30.03 5.622 5.453 0.169 1.815 21.89 657

SK255 37.40 5.705 5.459 0.246 1.812 21.86 817

SkI3 34.80 5.621 5.392 0.230 1.806 21.78 758

SkI4 29.50 5.607 5.426 0.181 1.671 20.16 595

SkI5 36.70 5.706 5.434 0.271 2.021 24.38 895

SV-bas 30.00 5.617 5.461 0.156 1.676 20.21 606

SV-min 30.01 5.647 5.474 0.173 1.734 20.91 628

SV-sym32 32.00 5.660 5.466 0.194 1.776 21.42 685

SV-m56-O 27.00 5.607 5.450 0.157 1.661 20.04 541

SV-m64-O 27.01 5.584 5.446 0.138 1.612 19.45 525

SLy4 32.00 5.617 5.458 0.160 1.648 19.87 636

SLy5 32.03 5.614 5.452 0.162 1.659 20.01 641

SLy6 31.96 5.616 5.456 0.160 1.642 19.81 633

SkMP 29.88 5.644 5.448 0.196 1.996 24.08 720

SkP 32.98 5.610 5.465 0.145 1.669 20.14 664

SkO 31.97 5.538 5.477 0.060 2.307 27.83 890

SkO' 31.95 5.653 5.450 0.203 1.817 21.92 700

LNS 33.43 5.456 5.268 0.187 1.630 19.66 657

MSL0 30.00 5.643 5.464 0.180 1.915 23.10 693

NRAPR 32.78 5.665 5.476 0.188 1.810 21.83 716

SQMC650 33.65 5.545 5.349 0.196 1.682 20.29 683

SQMC700 33.47 5.509 5.317 0.191 1.656 19.98 669

SkT1 32.02 5.625 5.435 0.189 1.755 21.17 678

SkT2 32.00 5.620 5.431 0.190 1.755 21.17 677

SkT3 31.50 5.626 5.439 0.188 1.760 21.23 669

SkT8 29.92 5.594 5.445 0.149 1.669 20.13 602

SkT9 29.76 5.593 5.443 0.150 1.682 20.29 604

SkT1* 32.31 5.641 5.451 0.190 1.768 21.32 689

SkT3* 31.97 5.652 5.462 0.190 1.777 21.44 686

Skxs20 35.49 5.648 5.436 0.211 1.707 20.60 731

Zσ 26.71 5.450 5.394 0.056 1.424 17.18 459

0.67 0.91Correlation with rn-rp
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Conclusions 

We have presented results of our fully self-consistent HF-RPA calculations using 

34 commonly employed Skyrme type interactions of Table 1, for the centroid energies of 

isoscalar and isovector giant resonances of multipolarities L = 0 – 3 along with the 

electric polarizability and neutron skin of  
208

Pb and compared with available 

experimental data. We have investigated and discussed the sensitivity of the ECEN of the 

giant resonances to various properties of NM and the correlation between the electric 

polarizability and the neutron skin. In particular we point out that:  

 We have demonstrated the very strong to strong correlations of the ECEN of the 

compression mode, the ISGMR, with the NM incompressibility coefficient KNM and 

noted that the sensitivity of ECEN to the effective mass is a reflection of the 

correlation between m*/m and KNM, existing in the Skyrme interactions used in our 

calculations. 

 For all the adopted Skyrme interactions, the calculated centroid energies of the 

ISGDR in 
208

Pb are consistently higher than the experimental data (by about 0.5 – 3 

MeV) except for the interaction SkP. 

 We have demonstrated the very strong correlation of ECEN of the ISGQR and the 

ISGOR with m*/m. We have found that an agreement with the experimental data 

for ECEN of the ISGQR in 
208

Pb is obtained for a value of the effective mass in the 

range of m*/m = 0.9 – 1.0. 
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 For the IVGMR of 
208

Pb, the isovector compression mode, we find a strong 

correlation with κ, a medium correlation with m*/m, and a weak correlation with 

KNM, J, L or Ksym. 

 We find a weak correlation between the energies of the IVGDR of 
208

Pb and the 

quantities associated with the density dependence of the symmetry energy.  

 We find a strong correlation between the energies of the IVGMR, IVGDR, IVGQR, 

and IVGOR of 
208

Pb and the value of κ. 

 For the IVGQR and IVGOR we find a strong correlation between ECEN and m*/m. 

Using this result we can predict that the values of the ECEN of the IVGOR in 
208

Pb 

should be in the region of 27 – 32 MeV. 

 Unlike Reinhard and Nazarewicz which found a strong correlation of C = 0.98, our 

results indicate a weaker correlation of C = 0.67 between the electric polarizability 

and the neutron skin casting into doubt the result of rn − rp = 0.156−0.021
+0.025 fm and 

the method of varying the parameters of individual Skyrme forces to the determine 

correlation between electric polarizability and the neutron skin of 
208

Pb . 

 The correlation of C = 0.91 of the product of the electric polarizability with 

symmetry energy at saturation density is much stronger than the correlation, C = 

0.67, of just electric polarizability with neutron skin of 
208

Pb yielding a much tighter 

range for the neutron skin of between 0.169 and 0.187 fm versus between 0.138 and 

0.211 fm. 
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The disagreement between the HF-RPA results except for the SkP interaction and the 

experimental data for the centroid energies of the ISGDR in 
208

Pb remain an unsolved 

problem which calls for possible extensions of the EDF used in the work, microscopic 

calculations of the excitation cross sections of giant resonances [58,66] and/or going 

beyond the HF-RPA theory [67]. As discussed in Ref. [40], the Skyrme potential is a 

phenomenological density-dependent interaction which contains 2-body and 3-body 

correlations. All of the physical information is contained within the parameters, however 

since the force is phenomenological, the microscopic details of the 2-body and 3-body 

forces are lost. The goal of using the Skyrme potential is to find an effective potential 

which best describes the ground state properties of nuclei and their excited states such as 

giant resonances for light to heavy nuclei and then to proceed to glean information about 

the parameters of the equation of state of asymmetric nuclear matter. This study has been 

carried out to find better constraints on the parameters of nuclear matter such that a new 

search for a better Skyrme force can take place. 
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CHAPTER V 

MEASURED DIFFERENCE BETWEEN 
206

PB, 
205

TL CHARGE DISTRIBUTIONS 

 AND THE PROTON 3S1/2 WAVE FUNCTION 

 

Introduction 

The shell model, which is based on the assumption that nucleons in the atomic 

nucleus move independently in single particle orbits associated with a single particle 

potential, has been very successful in explaining many features of nuclei [27]. In 

determining the nuclear mean-field potential, it is common to: (i) parametrize the central 

potential, using for example the WS form, and determine the parameters by a fit of 

calculated properties, such as single particle energy and reaction cross-sections, to the 

corresponding experimental data [1]; and (ii) by carrying out Hartree-Fock calculations 

using a parametrized effective two-body interaction and determine the parameters by a 

fit to experimental data and deduce the mean-field potential [28]. We present a novel 

method [78], using the single particle Schrödinger equation for a wave function 𝛹(𝑟) 

with eigenenergy E, to determine the central potential 𝑉(𝑟)  directly from the measured 

single particle matter density, 𝜌(𝑟)  = [𝛹(𝑟)]2 and its first and second derivatives, 

assuming these are known for all 𝑟. 

A well-known important test of the shell model is the experimental measurement 

of the charge distribution of the proton 3s1/2 orbit given by the charge density difference, 

𝛥𝜌𝑐(𝑟), between charge density distributions of the isotones 
206

Pb – 
205

Tl, determined by 

analysis of elastic electron scattering measurements [29,30]. The experimental data for 
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the 3s1/2 charge density shows a clear maximum at the center of 
206

Pb with two 

additional maxima, which nicely corresponds to the shape of the shell model 3s1/2 proton 

orbit, in agreement with the simple shell model. It was pointed out [31] that commonly 

used central potentials, such as the WS potential, lead to a 3s1/2 charge density in 

disagreement with experimental data. In particular, the central density obtained from the 

WS potential is too large by 40%.  

This difference between data and the WS results was attributed in Ref. [31] to be 

due to the effects of two-body short range correlations. Using our new method, we look 

for the single particle nuclear potential that corresponds to the experimental charge 

density associated with the proton 3s1/2 orbit in 
206

Pb. We point out that the resulting 

single particle potential, if found, will provide a stringent limit on the effects of short 

correlations on the expected values of long-range operators, an important test for the 

shell model. The potential can also be used as an additional experimental constraint in 

determining a modern energy density functional (EDF) for more reliable prediction of 

properties of nuclei and nuclear matter [28,32].  

In the second section we consider the single particle Schrödinger equation and 

describe the method for determining the single particle potential 𝑉(𝑟)  from a given 

single particle wave function  𝛹(𝑟) or matter density, 𝜌(𝑟)  = [𝛹(𝑟)]2, assuming it is 

known for all 𝑟 [27]. In particular, we consider the case of spherical symmetry. We also 

describe the method of deducing the point proton density from the charge distribution 

determined in electron scattering measurements. In the third section we present results 

for the case of the experimental data [29,30] for the charge density difference between 
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the close (∆𝑍 = 1)  isotones 
206

Pb – 
205

Tl, associated with the 3s1/2 proton single particle 

orbit, and determine the corresponding single particle potential. In the last section we 

present our conclusions. 

 

Determining single particle potential from single particle matter density  

Consider the single particle Schrödinger equation, 

 −
ћ2

2𝑚
𝛥𝛹 + 𝑉𝛹 = 𝐸𝛹 , (5.1) 

where 𝑉(𝑟) is a real local and non-singular potential and 𝛥 = 𝛻 ⃗ ∙ 𝛻 ⃗ , with  𝛻 ⃗   being the 

gradient operator. Using Eq. (5.1) we have that for a given single particle wave function 

𝛹(𝑟) known for all 𝑟 and given eigenvalue E, the corresponding single particle potential 

V is uniquely determined [27] from 

 𝑉(𝑟) = 𝐸 +
ћ2

2𝑚
𝑆(𝑟) ,          𝑆(𝑟) =

𝛥𝛹(𝑟)

𝛹(𝑟)
 . (5.2) 

It is important to point out that for a nonsingular V, 𝛥𝛹(𝑟) = 0 when  𝛹(𝑟) = 0 . In the 

analysis of experiments, such as electron scattering, one determines the matter 

density 𝜌(𝑟)  = [𝛹(𝑟)]2, for real Ψ. Operating with Δ on  [𝛹(𝑟)]𝑏, where b is positive 

and real, and using the relation ∇  ⃗ 𝛹𝑏 = 𝑏𝛹𝑏−1∇  ⃗ 𝛹 with  the definition 𝑆(𝑟) =
𝛥𝛹(𝑟)

𝛹(𝑟)
 of 

Eq. (5.2), we obtain the general relation 

          𝑆(𝑟) =
𝛥 [𝛹(𝑟)]𝑏

𝑏 [𝛹(𝑟)]𝑏
−

𝑏−1

𝑏2 [
 𝛻  ⃗  [𝛹(𝑟)]𝑏

 [𝛹(𝑟)]𝑏
]
2

. (5.3) 

Note that ∇  ⃗ 𝛹 = 0 and  𝛥[𝛹(𝑟)]𝑏 = 0 , when [𝛹(𝑟)]𝑏 = 0 . Eq. (5.2) is a special case of 

Eq. (5.3) for b = 1. For b = 2, we have from Eqs. (5.2) and (5.3) that the potential 𝑉(𝑟) is 
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given in terms of the corresponding single particle matter density 𝜌(𝑟) (for real 𝛹(𝑟)) 

and its first and second derivatives. 

In the spherical case we have for the wave function of a nucleon 

 𝛹𝑛𝑙𝑗(𝑟) =
𝑅𝑛𝑙𝑗(𝑟)   

𝑟
𝑌𝑙𝑗 , (5.4) 

where 𝑅𝑛𝑙𝑗(𝑟) is the (one-dimensional) radial wave function for the orbit with principle 

number n, orbital angular momentum l and total angular momentum j and  𝑌𝑙𝑗 is the 

known spin harmonic wave function, with the normalization  

 ∫ 𝑅𝑛𝑙𝑗
2 (𝑟)𝑑𝑟 = 1 . (5.5) 

The corresponding single particle potential for a nucleon has the form 

 𝑉(𝑟) = 𝑉𝑐𝑒𝑛(𝑟) + 𝑠 ∙ 𝑙 𝑉𝑠.𝑜.(𝑟) +
1

2
(1 − 𝜏𝑧)𝑉𝑐𝑜𝑢𝑙(𝑟) ,  (5.6) 

where 𝑉𝑐𝑒𝑛(𝑟), 𝑠 ∙ 𝑙 𝑉𝑠.𝑜.(𝑟) and 
1

2
(1 − 𝜏𝑧)𝑉𝑐𝑜𝑢𝑙(𝑟), are the nuclear central, spin-orbit and 

coulomb potentials, respectively, and 𝜏𝑧=1 for a neutron and -1 for a proton. Using Eqs. 

(5.2), (5.4) and (5.6) the nuclear central potential is given by, 

 𝑉𝑐𝑒𝑛(𝑟) = 𝐸 +
ћ2

2𝑚
𝑆(𝑟) −

ћ2

2𝑚

𝑙(𝑙+1)

𝑟
−

1

2
(1 − 𝜏𝑧)𝑉𝑐𝑜𝑢𝑙(𝑟) − 𝑐𝑙𝑠 𝑉𝑠.𝑜.(𝑟) , (5.7) 

 𝑆(𝑟) =
𝑑2𝑅𝑛𝑙𝑗 

𝑑𝑟2

1

𝑅𝑛𝑙𝑗(𝑟)
 , 

where 𝑐𝑙𝑠 = −𝑙(𝑙 + 1) and 𝑙 for 𝑗 = 𝑙 − 1 2⁄  and 𝑗 = 𝑙 + 1 2⁄ , respectively. The single 

particle radial density 𝜌𝑛𝑙𝑗(𝑟) is related to the square of the single particle radial wave 

function 𝑅𝑛𝑙𝑗
2  by 

 𝑅𝑛𝑙𝑗
2 (𝑟) = 4𝜋𝑟2𝜌𝑛𝑙𝑗(𝑟) . (5.8)  
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Using Eq. (5.1) one can deduce the radial wave-function 𝑅𝑛𝑙𝑗(𝑟) and determine the 

central potential using Eq. (5.4). But this leads to numerical complication, particularly in 

the vicinity of the nodes of the wave function. From Eq. (5.1) for the radial wave-

function 𝑅𝑛𝑙𝑗(𝑟) and Eq. (5.3) for b = 2 the corresponding single particle potential V can 

be obtained from (5.6) by using the simple relation                                                                                                                      

 𝑆(𝑟) =
1

2𝑅𝑛𝑙𝑗
2 [

𝑑2(𝑅𝑛𝑙𝑗
2 ) 

𝑑𝑟2
−

1

2
[

1

𝑅𝑛𝑙𝑗

𝑑(𝑅𝑛𝑙𝑗
2 )

𝑑𝑟
]
2

]. (5.9) 

From Eqs. (5.8) and (5.9) we find the relation 

 𝑆(𝑟) =
1

2𝜌𝑛𝑙𝑗
[
𝑑2𝜌𝑛𝑙𝑗

𝑑𝑟2 +
2

𝑟

𝑑𝜌𝑛𝑙𝑗

𝑑𝑟
−

1

2𝜌𝑛𝑙𝑗
(

𝑑𝜌𝑛𝑙𝑗

𝑑𝑟
)

2

]. (5.10) 

Eqs. (5.10) can also be derived from Eq. (5.3) with b = 2 using the (real) three-

dimensional wave function and the operators 𝛥 and 𝛻 ⃗  in spherical coordinates. 

        As an example, we note that for the single particle radial wave function of the form 

𝑅~sin (𝑘𝑟 + 𝜑), an eigenstate of a constant potential, one finds from (5.7) that the 

corresponding constant potential 𝑉 = 𝐸 −
ћ2𝑘2

2𝑚
. Similarly, for the Harmonic Oscillator 

3𝑠1 2⁄  single particle wave function 

 𝑅3𝑠 2⁄ (𝑟) = (
15

2√𝜋
𝜈3/2)

1/2

𝑟𝑒−
1

2
𝜈𝑟2

[1 −
4

3
𝜈𝑟2 +

4

15
(𝜈𝑟2)2] , (5.11) 

with the size parameter 𝜈 =
𝑚𝜔

ћ
 we have from (5.7) the expected potential 

 𝑉(𝑟) = 𝐸 −
11

2
 ћ𝜔 +

1

2
𝑚𝜔2𝑟2 , (5.12) 

We note that for the central nuclear potential it is common to use for the WS form,      

 𝑉(𝑟) = 𝑉0 [1 + 𝑒𝑥𝑝((𝑟 − 𝑅1) a0⁄ )]⁄  , (5.13) 
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where,  𝑉0, 𝑅1 and a0  are the depth, half radius and diffuseness parameters, respectively. 

Furthermore, for the Coulomb potential we adopt the form obtained from a uniform 

charge distribution of radius 𝑅𝑐ℎ,                                                         

 𝑉𝑐𝑜𝑢𝑙(𝑟) = 𝑍𝑒2 {
(3 −  𝑟2/𝑅𝑐

2) 2𝑅𝑐        𝑟 < 𝑅𝑐ℎ⁄

                   1/𝑟                 𝑟 > 𝑅𝑐ℎ
  . (5.14) 

In Eqs. (5.14), 𝑅𝑐ℎ is the equivalent radius determined by the charge root-mean-square 

radius, 〈𝑟2〉𝑐ℎ 

 𝑅𝑐ℎ
2 = (5 3⁄ )〈𝑟2〉𝑐ℎ . (5.15) 

The form of the spin-orbit potential is commonly taken as, 

 𝑉𝑠.𝑜.(𝑟) = 𝑐 𝑑𝑉𝑐𝑒𝑛.(𝑟)/𝑑𝑟,  (5.16) 

where c is adjusted to the experimental spin-orbit splittings ( ~ 0.2). 

 

Determining the point proton density from the charge density 

 In an elastic electron-nucleus scattering measurement, one determines the charge 

density distribution, 𝜌𝑐ℎ(𝑟), by carrying out a phase shift analysis of the cross section 

[79], whereas in a theoretical model one calculates the point proton density distribution, 

𝜌𝑝(𝑟). They are related by,  

 

 𝜌𝑐ℎ(𝑟) = ∫ 𝜌𝑝(𝑟′  ⃗ ) 𝜌𝑝𝑓𝑠(𝑟 − 𝑟′  ⃗ )𝑑3𝑟′  ⃗  , (5.17) 

where 𝜌𝑝𝑓𝑠(𝑟) is the charge density distribution of a free proton.  

From elastic electron scattering on a free proton one finds that,  

 𝜌𝑝𝑓𝑠(𝑟) =
1

8𝜋𝑎3 𝑒−𝑟 𝑎⁄  , (5.18) 
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where 𝑎2 =
1

12
𝑟𝑝𝑓𝑠

2   with  𝑟𝑝𝑓𝑠 = 0.85 fm being the corresponding charge root mean 

square (rms) radius. The charge mean square radius is given by  

 〈𝑟2〉𝑐ℎ = ∫ 𝑟2𝜌𝑐ℎ(𝑟)𝑑3𝑟 /∫ 𝜌𝑐ℎ(𝑟)𝑑3𝑟. (5.19) 

From Eqs. (5.17) and (5.19) one has the relation 

 〈𝑟2〉𝑐ℎ = 〈𝑟2〉𝑝 + 〈𝑟2〉𝑝𝑓𝑠 . (5.20) 

Considering the spherical case, we have using Eqs. (5.17) and (5.18), that 

𝜌𝑐ℎ(𝑟) =
1

4𝜋𝑎
∫ 𝑟′𝑑𝑟′𝜌𝑝(𝑟′) [(1 +

|𝑟−𝑟′|

𝑎
) 𝑒−|𝑟−𝑟′| 𝑎⁄ − (1 +

(𝑟+𝑟′)

𝑎
) 𝑒−(𝑟+𝑟′) 𝑎⁄ ]

∞

0
 . (5.21) 

It is common [79] to define the form factor F(q) as the Fourier transform of the density 

𝜌(𝑟) as  

 𝐹(𝑞) =
4𝜋

𝑞
∫ sin(𝑞𝑟) 𝜌(𝑟)𝑟𝑑𝑟

∞

0
. (5.22)  

The corresponding inverse transform is given by 

 𝜌(𝑟) =
1

(2𝜋)3

4𝜋

𝑟
∫ sin(𝑞𝑟) 𝐹(𝑞)𝑞𝑑𝑞

∞

0
 . (5.23) 

For the proton charge distribution of Eq. (5.18) we have the dipole form 

 𝐹𝑝𝑓𝑠(𝑞) = (1 +
1

12
𝑟𝑝

2𝑞2)
−2

 . (5.24) 

For the charge density 𝜌𝑐ℎ(𝑟), given by the convolution relation of Eq. (5.17) we have 

the simple relation for the form factors 

 𝐹𝑐ℎ(𝑞) = 𝐹𝑝𝑓𝑠(𝑞)𝐹𝑝(𝑞) . (5.25) 

Eq. (5.25) can be used to determine the form factor 𝐹𝑝(𝑞), associated with the point 

proton density distribution 𝜌𝑝(𝑟) , Eq. (5.17). Then 𝜌𝑝(𝑟) can be obtained from 𝐹𝑝(𝑞), 

using (5.23) and compared with theoretical predictions. 
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Results 

We consider the charge density difference, 

 𝛥𝜌𝑐(𝑟) = 𝜌𝑐ℎ(𝑟;  206
Pb) −𝜌𝑐ℎ(𝑟;  205

Tl), (5.26)  

between the isotones 
206

Pb – 
205

Tl, associated with the proton 3s1/2 single particle orbit, 

and determine the corresponding single particle potential. The experimental data for the 

charge densities, 𝜌𝑐ℎ(𝑟), of the isotones 
206

Pb and 
205

Tl, obtained from accurate elastic 

electron scattering experiments, are taken from Refs.  [29,30], where they are given in 

term of sums of Gaussian functions of r.  

In Fig. 35a we present the experimental data for the charge density difference, 

𝛥𝜌𝑐(𝑟), between the isotones 
206

Pb – 
205

Tl , shown by the solid line. It is normalized to a 

total charge of one proton (Z=1). The experimental uncertainty is indicated by the dotted 

lines. Note that the two nodes associated with the proton 3s1/2 orbit are clearly seen in 

the figure. The experimental values of the charge rms radii of 
206

Pb and 
205

Tl are 5.4897 

and 5.4792 fm, respectively, leading to a value of 6.2822 fm for the charge rms radius of 

the proton 3s1/2 orbit. To determine the corresponding single particle potential, using 

Eqs. (5.7) and (5.9) or (5.10), the point proton distribution, 𝛥𝜌𝑝(𝑟), is needed. This is 

obtained by using Eqs. (5.22), (5.24) and (5.25) to determine the point proton form 

factor, 𝐹𝑝(𝑞), and then employing Eq. (5.23) to obtain 𝛥𝜌𝑝(𝑟). The results are shown as 

a solid line in Figure 35b.  The experimental uncertainty is shown by the dotted lines. 

Using the value of 𝑟𝑝𝑓𝑠 = 0.85 fm in Eq. (5.20), we find that the rms radii of the proton 

density distributions of 
206

Pb and 
205

Tl are 5.4235 and 5.4129 fm, respectively, leading to 
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a value of 6.2244 fm for the rms radius of the point proton 3s1/2 orbit.  Note that 𝛥𝜌𝑝(𝑟)  

(solid line) is slightly negative at the first node (at ~ 2.6 fm) and above zero at the 

second node (r ~ 4.9 fm). Moreover, in the vicinity of these minima, the experimental 

uncertainty in 𝛥𝜌𝑝(𝑟) is larger than its value.  

We also present in Figure 35a and 35b (dashed line) the charge density 𝛥𝜌𝑅𝑐(𝑟) 

and the point particle density 𝛥𝜌𝑅𝑝(𝑟) of the proton 3s1/2 orbit, respectively, corrected 

for the rearrangement effect (from 
205

Tl to 
206

Pb). We adopted the scaling model to 

assess the rearrangement effect [80]. The charge distribution of 
205

Tl is scaled so that the 

charge rms radius of the scaled density is equal to that of the 81 core protons in 
206

Pb. 

We obtained,  

 𝛥𝜌𝑅𝑐(𝑟) = 𝜌𝑐ℎ(𝑟;  206
Pb) −𝛼3𝜌𝑐ℎ(𝛼𝑟;  205

Tl), (5.27) 

where the scaling parameter 𝛼 = 5.4792/5.4848 = 0.9990 is the ratio between the charge 

rms radius of 
205

Tl to that of the core 81 protons in 
206

Pb. The value of 5.4848 fm is 

obtained by adopting the Harmonic Oscillator approximation for the single particle 

proton orbits in 
206

Pb and subtracting the contribution of the proton 3s1/2 orbit, using the 

value of 𝑟𝑝𝑓𝑠 = 0.85 fm.  We add that the same value of 𝛼 is obtained by assuming that 

the charge rms radius of the core 81 protons in 
206

Pb is larger than that of  
205

Tl by 0.005 

fm, a value similar to the change in the charge rms radii for isotone in this region [80]. 

We note that 𝛥𝜌𝑅𝑝(𝑟)  of Eq. (5.27) is normalized to 1. It is seen from Fig. 35b that 

𝛥𝜌𝑅𝑝(𝑟)  (dashed line) is above zero at the first node (at ~ 2.6 fm) and at the second node 

(r ~ 4.9 fm). We point out that the magnitude of the difference between 𝛥𝜌𝑝(𝑟) and 

𝛥𝜌𝑅𝑝(𝑟) is similar to that of the experimental uncertainty. 
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Fig.35 (a) The experimental difference, Δρc(r) between 

206
Pb and 

205
Tl charge 

distributions (solid line). The dashed line is for ΔρRc(r), the data after rearrangement 

correction. The dotted lines indicate the experimental uncertainty. (b) The experimental 

difference, Δρp(r) between 
206

Pb and 
205

Tl charge distributions (solid line). The dashed 

line is for ΔρRp(r), the data after rearrangement correction. The dotted lines indicate the 

experimental uncertainty. 

 

 

Using the relation (5.8) we determined the corresponding square of the 3s1/2 

convolved (charge) radial wave function 𝑅𝑐
2(𝑟) = 4𝜋𝑟2𝛥𝜌𝑐(𝑟) as obtained from Figure 

35a and shown by the solid line in Figure 36a. Similarly, 𝑅𝑅𝑐
2 (𝑟) = 4𝜋𝑟2𝛥𝜌𝑅𝑐(𝑟), the 

dashed line in Figure 36a is obtained from the dashes line in Figure 35a.The dotted lines 
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indicate the experimental uncertainty. In Figure 36b we present the square of the point 

particle radial wave function 𝑅𝑝
2(𝑟) = 4𝜋𝑟2𝛥𝜌𝑝(𝑟), (solid line) obtained from the solid 

line of Figure 35b. The dotted lines indicate the experimental uncertainty. Similarly, 

𝑅𝑅𝑝
2 (𝑟) = 4𝜋𝑟2𝛥𝜌𝑅𝑝(𝑟), the dashed line in Figure 36b is obtained from the dashed line 

in Figure 35b.  

We have therefore used the experimental 𝑅𝑝
2(𝑟) of Figure 36b, shown by the 

solid line, to directly deduce the corresponding potentials by employing Eqs. (5.6), (5.7) 

and (5.9), obtaining the results shown in Figure 37a by the solid line. Similarly, in Fig. 

37b we show the potential obtained from 𝑅𝑅𝑝
2 (𝑟) of Figure 36b. The Coulomb potential 

of Eq. (5.14), with  𝑅𝑐 = 7.1 fm, was adopted in the calculations. For the 3s1/2 orbit, 

there is no contribution from the centrifugal and spin-orbit potentials. We note that for a 

nonsingular potential V, 
𝑑2𝑅 

𝑑𝑟2 = 0 when 𝑅(𝑟) = 0. As seen from Figure 36b, this 

condition is not fulfilled at the nodes of the experimental 𝑅𝑝
2(𝑟). Moreover, in the 

vicinity of these nodes, the uncertainty in 𝛥𝜌𝑝(𝑟) is larger than its value.  This leads to a 

very large uncertainty for V in the region of the nodes. We have thus constructed from 

the experimental data, radial wave functions having a proper behavior at the zeroes 

(around 2.6 fm and 4.9 fm), by fitting the experimental point radial wave function to the 

function 𝑅𝑝 = 𝐴𝑠𝑖𝑛(𝑘𝑟 + 𝜑) in the vicinity of the nodes. The corresponding (constant) 

potentials are shown by the dashed lines in Figure 37. 
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Fig.36 Similar to Figure 35. (a) 𝑅𝐶 

2 (𝑟) = 4𝜋𝑟2Δρc(r). The dashed line is for 𝑅𝑅𝑐
2 (𝑟) 

related to ΔρRc(r). (b) 𝑅𝑃 
2 (𝑟) = 4𝜋𝑟2Δρp(r) where Δρp(r) is derived from the 

experimental Δρc(r). The dashed line is for 𝑅𝑅𝑝
2 (𝑟) related to ΔρRp(r) similarly obtained 

from ΔρRc(r). 
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Fig.37 (a) The solid line is the potential derived from the 𝑅𝑃 

2 (𝑟) = 4𝜋𝑟2Δρp(r) using 

Eqs. (5.7) and (5.9). The dashed line is the potential derived from an 𝑅𝑝 = 𝐴𝑠𝑖𝑛(𝑘𝑟 +

𝜑) fit near each of the minima of 𝑅𝑃 
2 (𝑟) since the potential blows up. (b) Similar to (a) 

except rearrangement correction has been taken into consideration. 

 

 

In view of the resulting potentials shown in Figure 3, we have constructed from 

the experimental data a function 𝑅𝑝
2(𝑟)  having a proper behavior at the zeroes (around 

2.6 fm and  4.9 fm). This was done by fitting the experimental point radial wave function 

to a sum of two separate sine functions, 𝑅𝑝 = 𝐴𝑠𝑖𝑛(𝑘𝑟 + 𝜑), spliced together at 𝑟 ~ 5.3 



 

106 

 

fm. This function is shown by the dashed line in in Figure 38a. Also shown in Figure 38a 

are the experimental data (solid line) and the uncertainty (dotted lines). We then 

determined the nuclear potential from the fitted 𝑅𝑝
2(𝑟) (dashed line of Figure 38a) by 

employing Eqs. (5.7) and (5.9). The results are shown by the dashed line of Figure 38b. 

Note the step function behavior of the resulting potential. 

 

 
Fig.38 (a) The experimental difference, 𝑅𝑃 

2 (𝑟) = 4𝜋𝑟2Δρp(r) between 
206

Pb and 
205

Tl 

charge distributions (solid line). The dashed line is for a 𝑅𝑝 = 𝐴𝑠𝑖𝑛(𝑘𝑟 + 𝜑) fit with 

two separate Sine functions spliced together at 𝑟 ~ 5.3 fm. The dotted lines indicate the 

experimental uncertainty. (b) The dashed line is the potential derived from the spliced 

Sine functions using Eqs. (5.7) and (5.9). 
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We have therefore considered several nuclear central potentials with parameters 

obtained by fits of the calculated 𝑅𝑝
2(𝑟) to the corresponding experimental data, taking 

into account the Coulomb potential, Eq. (5.14). In Figure 39 we show the potential VF(r), 

solid line, which is a smoothed potential of a jagged, multiply connected linear potential 

by taking the values of the jagged, linear potential at r = 3, 6 and 9 fm as free 

parameters, the value of r = 0 fm is constrained to reproduce the experimental value of 

7.25 MeV for the separation energy of the proton 3s1/2 orbit and the value of the 

potential to be 0.0 MeV at r = 12 fm. The values of VF(r) are determined by a polynomial 

fit to all the values of the jagged, linear potential and is smoothed near r = 0 and 12 fm 

so that the first derivative is zero. From a fit to the experimental data of 𝑅𝑝
2(𝑟), solid line 

in Figure 36b, we obtained that the values of VF(r) at r = 0, 3, 6, 9 and 12 fm are -58.19,  

-81.35, -34.50, -23.54 and 0.0 MeV, respectively, with a corresponding χ
2

 /N =  1.15. 

Similarly, the potential VRF(r) (dashed line in Figure 39) is obtained by a fit to 𝑅𝑅𝑝
2 (𝑟) 

(dashed line of Figure 36b) resulting in the values of -51.33, -88.29, -33.64, -23.96 and 

0.0 MeV, for VRF(r) at r = 0, 3, 6, 9 and 12 fm respectively, with a corresponding χ
2

 /N =  

1.81. The potential VWSF(r), dashed double dotted line in Figure 39, is obtained by fitting 

WS potential, Eq. (5.13), obtaining the values of -167.95 MeV, -0.03 fm and 4.68 fm for 

V0, R1 and a0, respectively, with the corresponding value of χ
2

 /N =  3.28. For 

comparison, we also show by the dashed-dotted line the WS Potential VWS(r) using the 

conventional values of -62.712 MeV, 7.087 fm and 0.65 fm for V0, R1 and a0, 

respectively, with the corresponding value of χ
2

 /N =  8.85. 
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Fig.39 Potentials fitted to data in Fig.35b. The VF(r) potential (solid line), the VRF(r) 

version including rearrangement (dashed line) and the fitted VFWS(r) potential (double 

dotted-dashed line) are shown. Also shown is the conventional WS VWS(r) potential 

(dashed-dotted line). 

 

In Figures 40a and 40b we compare the experimental results of the square of the 

convolved (charge) radial wave function 𝑅𝑐
2(𝑟) and the charge density 𝛥𝜌𝑐(𝑟) of the 

proton 3s1/2 orbit, respectively, with the corresponding results obtained from the 

potentials shown in Figure 39. The experimental data is given by the region defined by 

the dotted lines and the results obtained using, VF(r), VWSF(r) and VWS(r) are shown by the 

solid, dashed-double dotted and dashed-dotted curves, respectively. Note that the results 

of the fitted potentials VF(r) potential are in very good agreement with the experimental 

data.  The results of the fitted potential VWSF(r) are in reasonable agreement with data. It 

is important to point out that the amplitudes of the oscillations of 𝑅𝑐
2(𝑟) obtained from 
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the conventional WS potential VWS(r) are much larger than those of the experimental data 

for r smaller than 5.0 fm and much smaller than the data for r larger than 5.0 fm. Also, as 

noted in Refs. [29,30], the calculated value of the charge density 𝛥𝜌𝑐(𝑟) at r = 0 fm 

obtained using the  VWS(r) potential is larger than the experimental value [29,30] by a 

factor of two. 

 

 
Fig.40 Experimental values of 𝑅𝑐

2(𝑟) = 4𝜋𝑟2𝛥𝜌𝑐 (𝑟) (a) and 𝛥𝜌𝑐 (𝑟) (b) plotted between 

dotted lines of error limits. They are compared to calculated charge distributions due to 

the 3s1/2 wave functions of the fitted VF(r) potential (solid lines), the fitted WS VFWS(r) 

potential (double dotted-dashed lines) and the conventional VWS(r) potential (dashed-

dotted lines. 
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 In Figure 41a, b and c we compare 𝑅𝑐
2(𝑟), the square of the radial functions, of 

the 1s1/2, 2s1/2, and 3s1/2 proton orbits, respectively, obtained from the fitted  potential 

VF(r) (solid lines) with those obtained from the conventional WS potential VWS(r) 

(dashed-double dotted line). The separation energies of the 1s1/2, 2s1/2, and 3s1/2 proton 

orbits are -47.09, -22.64 and -7.24 MeV and  -36.31, -24.46 and -8.00 MeV for the VF(r) 

and VWS(r) potentials, respectively. Note the relatively large separation energy of the 

1s1/2 proton orbit obtained for the VF(r), which is closer to the experimental data [81]. 

 In Figure 42a, b and c, we show the corresponding charge density of the 1s1/2, 

2s1/2, and 3s1/2 proton orbits for the VF(r) (solid lines) and VWS(r) (dashed-double dot 

lines) potentials, respectively. We point out that at r = 0 fm only the proton s orbits 

contribute to the charge density, 𝜌𝑐ℎ(𝑟), in 
206

Pb. The calculated value of 𝜌𝑐ℎ(0) =

0.060 fm
-3

 for the fitted potential VF(r) is significantly smaller than the value of  

𝜌𝑐ℎ(0) = 0.073 fm
-3

 for conventional WS VWS(r), in good agreement with experimental 

value of 𝜌𝑐ℎ(0) = 0.063 fm
-3

 [29,30]. 
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Fig.41 Calculated squared wave functions, 𝑅𝑐
2(𝑟) = 4𝜋𝑟2𝛥𝜌𝑐 (𝑟), of a proton in the 1s1/2 

(a), 2s1/2 (b) and  3s1/2 (c) orbits in the VF(r) potential (solid lines) and the conventional 

VWS(r) potential (dashed lines).  



 

112 

 

 
 

Fig.42 Calculated charge densities of a proton in the 1s1/2 (a), 2s1/2 (b) and  3s1/2 (c) orbits 

in the VF(r) potential (solid lines) and the conventional VWS(r) potential (dashed lines).  
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Conclusions  

Starting from the single particle Schrödinger equation for the function 𝛹(𝑟) , 

with eigen-energy E, we have derived a novel method for determining the corresponding 

single particle potential V from [𝛹(𝑟)]𝑏, where b is a real number, assuming that 

[𝛹(𝑟)]𝑏,  ∇  ⃗ 𝛹 and  𝛥[𝛹(𝑟)]𝑏 are known for all positions (𝑟), see Eqs. (5.2) and (5.3).  It 

is clear from the Schrödinger equation that for a nonsingular V, 𝛥𝛹(𝑟) = 0 when  

𝛹(𝑟) = 0. This condition is extended to the requirements that  ∇  ⃗ 𝛹 = 0 and  𝛥[𝛹(𝑟)]𝑏 =

0 , when [𝛹(𝑟)]𝑏 = 0 . For b = 2, we have from Eqs. (5.2) and (5.3) that the potential 

𝑉(𝑟) is given in term of the corresponding single particle matter density 𝜌(𝑟) (for 

real 𝛹(𝑟)) and its first and second derivatives.  

We have presented results for the nuclear single particle potential V associated 

with the proton 3s1/2 orbit in 
206

Pb deduced from the electron scattering [29,30] data for 

the charge density difference between the isotones 
206

Pb – 
205

Tl, obtained by employing 

our new method for the special case of spherical symmetry, Eqs.  (5.7) and (5.10). The 

results for the proton 3s1/2 orbit in 
206

Pb, shown in figure 37a, exhibit large uncertainty 

for V around the zero values of the 3s1/2 proton density 𝛥𝜌𝑝(𝑟), where the experimental 

uncertainty in 𝛥𝜌𝑝(𝑟) is lager than its value. It is difficult to see whether the conditions 

that the first derivative of 𝛥𝜌𝑝(𝑟) and the corresponding expression in the square 

brackets in right hand side of Eq. (5.10) vanish when 𝛥𝜌𝑝(𝑟) = 0 , which are necessary 

for determining a nonsingular V, are satisfied by the experimental data for 𝛥𝜌𝑝(𝑟) .  
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We have also carried out a least-square fit of the calculated density 𝛥𝜌𝑝(𝑟) of the 

3s1/2 point proton density to the corresponding experimental data, using the three 

parameter WS potential and a potential defined by its values at r = 0, 3, 6, 9, and 12 fm 

and compared with the results obtained from the conventional WS potential. We note 

that the fitted potentials exhibit large diffuseness (Figure 39). As seen from Figure 40, 

we obtained good agreements with the experimental data for the fitted potentials, 

whereas the results obtained from the conventional WS potential are in disagreement 

with data. Clearly more accurate experimental data for 𝛥𝜌𝑝(𝑟) with uncertainty smaller 

by a factor of two or more may help in answering  the question how well can the data be 

reproduced be a calculated 3s1/2 single particle wave function and determining the form 

of V. 
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CHAPTER VI 

SUMMARY
*
 

 

We have presented results of our fully self-consistent HF-RPA calculations for 

the centroid energies of isoscalar and isovector giant resonances of multipolarities L = 0 

– 3 in 
40

Ca, 
48

Ca, and 
208

Pb using 18 and 34, respectively, commonly employed Skyrme 

type interactions of Table 1, and compared with available experimental data. The goal of 

using the Skyrme potential is to find an effective potential which best describes the 

ground state properties of nuclei and their excited states such as giant resonances for 

light to heavy nuclei and then to proceed to glean information about the parameters of 

the equation of state of asymmetric nuclear matter. We have investigated and discussed 

the sensitivity of the ECEN of the giant resonances to various properties of NM. We have 

also investigated the relationship between the electric polarizability and the neutron skin 

in 
208

Pb where we found there is not a strong enough correlation to narrow down the 

neutron skin. 

The Skyrme forces we used were unable to reproduce 
48

Ca – 
40

Ca centroid 

energy differences of the ISGMR. For 
40

Ca, 
48

Ca, and 
208

Pb the ISGDR was consistently 

higher than the experimental data except for the SkP interaction. We have demonstrated 

the very strong correlation of ECEN of the ISGQR and the ISGOR for 
40

Ca, 
48

Ca, and 

208
Pb with m*/m. However, 

40
Ca and 

48
Ca prefer m*/m = 0.65 – 0.80 while 

208
Pb prefers 

                                                 
*
 Part of this chapter is reprinted with permission from “Giant Resonances in 

40
Ca and 

48
Ca” by M. R. 

Anders et. al., 2013. Physical Review C, 87, 024303, Copyright [2013] by American Physical Society. 
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m*/m = 0.9 – 1.0. The effective mass in nuclear matter is better determined by 
208

Pb 

rather than 
40

Ca or 
48

Ca due its larger nucleon number which better approximates infinite 

nuclear matter, meaning m*/m = 0.9 – 1.0 is the more certain estimate for the effective 

mass. Caution must be used when seeing correlations among the centroid energies of the 

GRs and the NM properties since the NM properties also can have strong correlations 

among themselves as in the case of  m*/m and KNM. We have also reconfirmed the very 

strong correlation between the ISGMR centroid energy in 
40

Ca, 
48

Ca, and 
208

Pb   and 

KNM. However, we have demonstrated that there are no strong correlations between the 

IVGDR centroid energy and the parameters of the symmetry energy, J, L, and Ksym. This 

again demonstrates the need to use a wide variety of interactions and not to vary the 

parameters of one interaction to investigate possible correlations. This part of the study 

has been carried out to find better constraints on the parameters of nuclear matter such 

that a new search for a better Skyrme force can take place. 

We also succeeded in extracting some limited information about the mean field 

from the 3s1/2 state in 
206

Pb and 
205

Tl even though the data was challenging around the 

nodes. Starting from the single particle Schrödinger equation for the function (𝑟) , with 

eigen-energy E, we have derived a novel method for determining the corresponding 

single particle potential V from the corresponding single particle matter density 𝜌(𝑟) (for 

real 𝛹(𝑟)) and its first and second derivatives.  

We have presented results for the nuclear single particle potential V associated 

with the proton 3s1/2 orbit in 
206

Pb deduced from the charge density difference between 

the isotones 
206

Pb – 
205

Tl, obtained by employing our new method for the special case of 
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spherical symmetry. The results for the proton 3s1/2 orbit in 
206

Pb exhibit large 

uncertainty for the mean-field potential around the zeroes of the 3s1/2 proton density, 

where the experimental uncertainty is larger than its value. Tighter error bars around the 

zeroes of the proton density would therefore be of great help in the pursuit of the mean-

field potential. 
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