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ABSTRACT 

 

Scholars have indicated that construction operation inefficiency is due to particular 

complexity factors owing to industry specific uncertainties and interdependences. The 

study of complexity in construction has become an essential topic to provide advanced 

methods and concepts for construction industry. It also has raised valid questions:  Is 

construction really complex or just complicated? More importantly, how to measure the 

complexity in building construction systems? 

 

This dissertation is based upon these two questions, and intend to fill the research gap 

that no quantitative complexity measurement has ever been found in research works.  

Comprehensive literature search is firstly used to make an embedded conceptual analysis 

of basic concepts of complex and complicated, to conclude building construction 

systems as complex systems and to metonymic map complex to construction domain. 

Chaos theory was then used to linked complex building construction systems and 

entropy complexity measurement together and proposed to use entropy algorithms to 

measure complexity in building construction.  

 

However, entropy in construction could be measured in multiple ways with different 

results. Therefore, three commonly used entropy algorithms, which are Approximate 

Entropy, Sample Entropy and Permutation Entropy, were compared along with Six 

Sigma Analysis and Maximal Lyapunov Exponent based on ten (10) pilots cases and 
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their simulated cases. Two Rounds of simulation were conducted using Monte Carlo 

Simulation by MATLAB in order to generate more random number to represent 

different circumstances in building construction performance associate with different 

sample sizes.  

 

The outcomes indicated that the compared with Approximate Entropy and Permutation 

Entropy, the characteristics of Sample Entropy make be sensitively and efficiently to tell 

different construction performance circumstances apart by significant complexity 

measurement for either small sample or large sample. This quantitative measurement of 

complexity in building construction not only fill the knowledge gap; it also avoids the 

subjectivity of evaluators and set a unified standard for complexity measurement in 

building construction in the future research. 

 

 

Understanding complexity in construction management is important for two reasons: (1) 

to visualize how both complicated and complex traits exist in a construction project 

(object and social systems), and (2) to identify for stakeholders new types of managerial 

competencies and tools that reflect the understanding of complexity in construction.  
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NOMENCLATURE 

ApEn Approximate Entropy 

PEn Permutation Entropy 
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CHAPTER I 

INTRODUCTION 

 

1.1 Research Background 

 

Current research indicates that construction is approximately 40-60% as efficient as the 

manufacturing industry (Dubois & Gadde, 2002). Solving this low efficiency and high 

wastage problem is a priority for construction managers and researchers. Among all the 

studies, one conclusion is that construction operation inefficiency is due to particular 

complexity factors owing to industry specific uncertainties and interdependences. Winch 

(1989) indicated that construction projects are amongst the most complex of all 

undertakings. Gidado (1996) further emphasized this view by stating that there is a 

continuous increase in the complexity of construction projects. In construction, there are 

a number of sources for the resources employed, the environment in which construction 

takes place, the level of scientific knowledge required, and the number and interaction of 

different parts of the workflow. Dealing with complexity is one of the most difficult, but 

also the most critical, issues to improve construction performance (Baccarini, 1996; 

Gidado, 1996; Bertelsen, 2003). 

 

The construction industry has its own system properties, which are much different from 

manufacturing as summarized in Table 1 In the construction industry, the design and 

production of unique and complex projects in highly uncertain environments under great 
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time and schedule pressure is fundamentally different from making industrial products 

(Gregory, 1999). In addition, it has its own type of organization. The most common 

method for forming a temporary organization in the construction industry is general 

contractor plus sub-contractors. According to Fernandez-Solis’ (2013) pioneering study, 

the physical production procedure in a construction project is the one that produces the 

final building output. Only subcontractors and their labors are directly involved in this 

process; they have their own project number and achieve the conversion from budgets, 

materials and time to building products. However, other stakeholders including owner, 

designer, even general contractor, who do not engage in this physical production 

procedure, cannot direct control the work of the field (Rounds & Segner, 2010). Rather, 

they deal with the information of sub contractors’ projects. This project of projects is 

named a meta-project by Fernandez-Solis (2013). 

 

Table 1 Comparison between Manufacturing Products and Construct Products 

ITEMS MANUFACTURING PRODUCTS 
CONSTRUCTION PRODUCTS 

(Fernandez-Solis, 2008) 

Operation 

Organization 

§ A fixed production enterprise, 

which is a long-term stable 

organization.  

§ A temporary organization for a 

particular project within a limited 

duration. 

Materials § Repeated homogeneous 

productions.  

§ Materials and components are 

quantitative and modeled to 

improve the efficiency. 

§ Each project is a one-time 

production with different materials, 

components, structures and 

systems. 
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Table 1 Continued 

ITEMS MANUFACTURING PRODUCTS 
CONSTRUCTION PRODUCTS 

(Fernandez-Solis, 2008) 

Site § Made in stationary production 

workshop, thereby reducing the 

environmental uncertainty. 

§ Each project is on a unique site 

with its own conditions, constraints 

and benefits. 

Duration § Similar products have fixed 

production duration, which mainly 

depends on the produce technology 

§ A different time limit due to 

constantly changing economic and 

natural conditions and 

circumstances. 
 

In a meta-project system, the general contractor and sub-contractors make their own 

promises about what they will achieve in a certain time period. General contractors 

actually manage promises. Simply keeping promises and conducting each task on time 

makes a successful project. However, due to the unique complex nature of the 

construction organization and its performance, breaking promises frequently occurs. 

This not only causes waste for certain participants; it also affects other participants’ 

performance (Fernandez-Solis, 2013). Furthermore, the complex nature of construction 

also causes another kind of waste called systemic waste. Due to all of these, the complex 

nature of building constructions becomes the main reason for the high wastage and also 

for inefficient construction performance. This also becomes the motivation of 

complexity research in building construction.  
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1.2 Research Hypothesis and Research Question  

 

The first task for complexity research is to define the research objectives. There is often 

conflict over the nature of building construction systems, whether they are characterized 

as mainly complex or just complicated. To explore this, the first hypothesis states that 

building construction systems should be considered complex systems. Based on this 

assumption and its verification, most existing research about complexity in the 

construction field has focused on finding evidence for construction complexity and 

understanding it from different perspectives (Baccarini, 1996; Gidado, 1996; Bertelsen, 

2003). Because of this, for most construction managers, complexity is still only a rough 

idea and is seldom used in real work (Curlee & Gordon, 2011). In order to solve this 

problem, a comprehensive analysis of complexity in building construction is necessary, 

especially if we could find a quantitative method to present complexity more objectively 

and intuitively. For this purpose, the following hypothesis starts from chaos theory to 

introduce an entropy model as a quantitative measurement of construction complexity. It 

tests whether it would help construction managers understand complexity and promote 

further application of complexity theory in building construction so as to improve 

construction performance.  

 

Entropy describes the volume of change. It is one of the most important concepts in 

chaos theory and also in the proposed research. Since it was developed in the 1850s, it 

has expanded its definitions and application in three major fields: describing “waste 
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heat” in physics and chemistry; measuring “disorder” in statistical views; and describing 

an analogous loss of data in information transmission systems (information entropy). In 

building construction, the most commonly used definition of entropy is the third one, 

which is to quantify information uncertainty in science domains or to evaluate 

organizational structure from the perspective of information transformation. No one has 

ever tried to consider entropy as an effective measure of construction complexity, even 

though it has been explored in several entropy models and has been widely used in other 

fields, such as information technology, physiology, business and health care. As a result 

of this, the main objective of the proposed research is a scientific search for new 

knowledge: could an entropy model be the most effective technique for measuring 

complexity in construction? 

 

1.3 Research Outline 

 

In order to fill the research gap, and link the entropy model and building construction, 

the following structure and methodologies for the research work will be: 1) use a 

literature review for a full analysis of the complexity in building construction systems, 

which includes a comprehensive and embedded theoretical model of complexity science; 

2) based on pilot studies and simulated comparative analysis among different kinds of 

entropy previously applied in complexity measurement, find out the most understandable 

and practical mathematical model to calculate the complexity of building construction 
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systems; and showcase how it could benefit construction managers working on real 

projects.  
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CHAPTER II 

LITERATURE REVIEW 

 

2.1 Literature Search Approach 

 

The topic of entropy came from the research topic of Dixit (2010), which explored an 

embodied energy measurement for a building project. In the field of energy research-

thermodynamics, entropy is associated with energy. Entropy is the degree to which 

energy is wasted (dispersed) and also a measure of the unavailability of heat energy for 

work, or so-called disorder (Clausius, 1867). Therefore, the first exploration for the 

dissertation is whether or not embodied entropy is present in a building construction 

project. “Entropy” appears as a keyword in the literature searches of several popular 

databases in civil engineering and the construction field. In order to connect entropy 

models with complex nature of building construction by applying chaos theory, 

keywords like “complex/complexity”, “chaos/chaotic” and “building 

construction/construction project” are also combined with “entropy” together for 

literature exploration. The main databases used in this literature search were ASCE 

Library, Compendex (Ei Village 2), Web of Knowledge, GreenFILE (Ebsco), 

ScienceDirect, ProQuest Dissertations and Google Scholar.  
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2.2 Summary of Literature Search 

 

2.2.1 Types of entropy 

 

Based on entropy research in various fields, the topics could be divided into three major 

categories, according to Koskela's Production Theory (2000): transformation, flow and 

value. In the transformation category, entropy is defined in the usual way as the disposal 

of physical energy. In the flow category, entropy serves two different purposes 

depending on the field: some studies of chaos theory use entropy as a statistical concept 

to measure disorder or complexity, while information entropy is defined as the number 

of identical microstates. Finally, for the value view, entropy is often applied to assist in 

decision-making or measure the state of enterprises or organizations.  

 

Entropy, as the measurement for energy disposal in transformation, is a fundamental 

application. However, the current engineering and construction research trend is to 

extend modeling entropy to the flow and value categories. Koskela’s (2000) framework 

for construction incorporates all three categories into a systematic management. As a 

result of this, the literature is more numerous in the direction of information entropy and 

entropy in chaos theory. The literature matrix in Table 2 illustrates the studies that were 

explored, based on their references and citations.  
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Table 2 Literature Matrix Example 

Title What is 
entropy  

Related to 
construction? Ref. 1 Ref. 2 Ref. 3 

Gößling-Reisemann, S. 
(2008). What is resource 
consumption and how can it 
be measured?. Journal of 
Industrial Ecology, 12(1), 
10-25. 
(Has been cited 15 times) 

Y Y 

P6.1: Gößling-
Reisemann, S. (2008). 
Entropy analysis of metal 
production and recycling. 
Management of 
Environmental Quality: 
An International Journal, 
19(4), 487-492. 
 

P6.2: Ingwersen, W. W. 
(2011). Emergy as a life 
cycle impact assessment 
indicator. Journal of 
Industrial Ecology, 15(4), 
550-567. 
 

P6.3: Sulkowski, A., & 
White, D. (2009). 
Consumption of Energy, 
CO2 Emissions and 
Materials Usage Efficiency 
Per Capita: A Cluster 
Analysis of Europe and 
Eurasia. Global 
Management Journal, 1(1), 
55-65. 

Rödder, W. (2000). 
Conditional logic and the 
principle of entropy. 
Artificial Intelligence, 
117(1), 83-106. 
(Has been cited 47 times) 

Y N 

S1.1: Rödder, W., 
Gartner, I. R., & 
Rudolph, S. (2010). An 
entropy-driven expert 
system shell applied to 
portfolio selection. 
Expert Systems with 
Applications, 37(12), 
7509-7520. 
 

 
S1.2: Pankratz, G. (2005). 
A grouping genetic 
algorithm for the pickup 
and delivery problem with 
time windows. OR 
spectrum, 27(1), 21-41. 
 

S1.3: Calabrese, P. G. 
(2005). Reflections on logic 
and probability in the 
context of conditionals (pp. 
12-37). Springer Berlin 
Heidelberg. 
 

Choi, J., & Russell, J. S. 
(2005). Long-term entropy 
and profitability change of 
United States public 
construction firms. Journal 
of Management in 
Engineering, 21(1), 17-26. 
(Has been cited 22 times) 

Y Y 

D6.1: Christodoulou, S. 
E. (2008). A bid-­‐
unbalancing method for 
lowering a contractor's 
financial risk. 
Construction 
Management and 
Economics, 26(12), 
1291-1302. 

D6.2: Christodoulou, S., 
Ellinas, G., & Aslani, P. 
(2009). Entropy-based 
scheduling of resource-
constrained construction 
projects. Automation in 
Construction, 18(7), 919-
928. 

D6.3: Christodoulou, S. E., 
Ellinas, G. N., & Aslani, P. 
(2009). Disorder 
considerations in resource-­‐
constrained scheduling. 
Construction Management 
and Economics, 27(3), 229-
240. 
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2.2.2 Information within Building Construction  

 

Not only information entropy is associated with the average unpredictability in a random 

variable. This information perspective also could be found in the understanding of 

building construction systems. That is, the construction managers, especially general 

contractors, are actually managing information about all aspects of construction rather 

than being in control of the work in the field (Rounds & Segner, 2010).  

 

The owner, designer, the general contractor, subcontractors and its team of consultants 

are all involved in the task of creating and managing information (what, when, where, 

how and why) that can be executed in the field. The range of study is marked in Figure 1.  

 

 

 

 

 

 

Figure 1 Construction System and Study Range 
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2.2.3 Complexity in Building Construction 

 

Among all the literature, the paper of Baccarini (1996) was the most cited (cited by 413) 

and caught our attention. According to Baccarini, in construction, different sources and 

types of information, such as outside information, inside information, false information 

and asymmetric information, make the construction system more and more disordered 

and complex. Inspired by this idea, the second round of the literature search focused on 

construction complexity by using “complicated/complex/complexity,” “chaos/ chaotic,” 

“construction” and their combination as keywords. The studies indicate evidence for 

chaos and complexity in building construction, the preview and current research of 

construction complexity, and most importantly, the missing quantitative complexity-

measuring model for construction practice.  

 

In order to find a method for complexity calculation, the literature search also returned to 

entropy in disorder measuring, but this time, combining complex measure and entropy 

together as keywords. Three different kinds of commonly used entropy were found as 

complexity measurements in chaos theory. They are approximate entropy, sample 

entropy and permutation entropy. However, none of these entropy models has ever been 

used in construction systems for complexity measuring, and this is the research gap 

found based on the literature review.   
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This gap is investigated using chaos theory, which links an entropy model with the 

construction system to find out the most appropriate technique to measure construction 

complexity. The literature review map and the approach to finding the final proposal 

research topic is presented in Figure 2. The following parts summarize the literature 

reviews from several main aspects according to the keywords.  

 
Figure 2 Literature Review Path 

 

2.3 Entropy 

 

Entropy, a word originating from Greek, describes the volume of change. It is one of the 

most important concepts in the chaos theory and also in the proposed research. It is the 

approach used in this study to measure complexity in building construction. As Wiener 

(1948), the originator of control theory, pointed out: the entropy of a system is the 

measurement of complexity and chaos. 
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2.3.1 Definition and Application of Entropy 

 

The concept of entropy was used as early as the 1850s. With nearly two centuries of 

development, its definition and applications have expanded to more and more subjects. 

Among them, three basic understandings of entropy have been cited most. Originally, 

entropy described the "waste heat,” or more specific, losing of energy, from heat engines 

and other mechanical devices, which, according to the Second Law of Thermodynamics, 

could never be 100% efficient (Rudolf, 1850). Later, the term’s descriptions gradually 

expanded, as more was understood about the behavior of molecules on the microscopic 

level. Boltzmann, in 1872, proposed a microcosmic definition of entropy during his 

research on the movement of gas molecules. The word "disorder" was used in the study 

of statistical perspective of entropy, by applying probability theory into the description 

of the increased molecular movement on the microscopic level descriptions; entropy on 

the level of microscopic is resulted from statistical thermodynamics and its mechanics 

and then expanded in chaos theory. Since the mid-20th century, the concept of entropy 

has found applications in the field of information theory. Shannon (1948) developed the 

very general concept of information entropy to describe an analogous loss of data in 

information transmission systems. All the other ideas of entropy developed according to 

these three fundamental definitions, which could be summarized as classical 

thermodynamic view, statistical view and information theoretical view. 

 



 

 14 

Entropy has been applied to more and more subjects; those related to construction and 

building production, along with some key studies, are categorized into three different 

perspectives according to the Transformation-Flow-Value (TFV) theory, as shown in 

Figure 3 Even though current practice in construction is based on the transformation 

view, the results of some prior research on contemporary construction and lean 

construction show that the future trend of construction management lies in the flow and 

value views (Koskela 1992, 1999, 2000). As a result of this, the second round of 

literature search mainly concentrated on two perspectives, entropy in chaos theory and 

entropy in information theory. 

 

 

Figure 3 Summary of Related Entropy Research According to TFV Theory Based on 
Koskela (2000) 
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2.3.2 Entropy in chaos theory 

 

In Boltzmann’s definition (1872), entropy indicates how chaotic the particles’ positions 

are in the system. As thermal energy always flows spontaneously from regions of higher 

temperature to regions of lower temperature, these processes reduce the state of order of 

the initial systems, and therefore entropy is an expression of disorder or randomness 

(Myat et al., 2012). The more chaotic the system, the greater its entropy and vice versa 

(Mao et al., 2009). 

 

Certain papers concluded the existence of deterministic chaos from data analysis 

(Babloyantz & Destexhe, 1988) and included “error estimates” on dimension, the 

Lyapunov spectrum and entropy calculations (Zbilut et al., 1988). The classification of 

dynamical systems via entropy and the Lyapunov spectrum stemmed from the work of 

Kolmogorov (1963), Sinai (1959), and Oseledets (1968), though their works rely on 

ergodic theorems, and the results are applicable to probabilistic settings. Dimension 

formulas are motivated by a construction in the entropy calculation and generally 

resemble Hausdorff dimension calculations, which is a measure of the local size of a set 

of numbers by taking the distance between each of its members into account. 

 

The entropy concept, as a measure of the degree of disorder in a system, is an indicator 

of a project's tendency to progress out of order and into a chaotic condition and it can 

thus serve to forecast a project's performance and its further development (Christodoulou 
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et al., 2009a). Pincus (1991) and others’ valuable research works apply different ideas of 

entropy as measure of system chaos and complexity in physics and systems engineering 

(Pincus, 1991; Saparin et al., 1994; Bandt & Pompe, 2002; Li et al., 2007: Zhang et al. 

2010). The summary of each definition is listed in Table 3 for further comparison. 

 

These three definitions of entropy and their correlated research papers have been cited in 

plenty of fields for complexity measuring. Approximate entropy and sample entropy are 

mainly applied in the fields of information technology, physiology and health care 

(Kurths et al., 1995; Richman & Moorman, 2000; Zhang et al., 2008; Khandoker et al., 

2008). Permutation entropy is used in statistical and physical fields to distinguish noise 

from experimental data (Daw et al., 2003; Cao et al., 2004; Xu et al., 2008). However, 

none of the presented entropy estimators or other similar entropy concepts have been 

used in the building construction field to measure complexity. 
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Table 3 Summary of Entropy Models for Complexity or Chaos 
Entropy Model Definition Author & Year 

Approximate Entropy 
(ApEn) 

ApEn is a technique used to quantify the 
amount of regularity and the 
unpredictability of fluctuations over 
time-series data. 

Pincus (1991) 
(Has been cited by 
2859 times) 

Sample Entropy  
(SampEn) 

It is a modification of ApEn. It used 
extensively for assessing the complexity 
of a physiological time-series signal. But 
it does not include self-similar patterns 
as ApEn does. 

Grassberger 
(1988); Richman 
and Moorman 
(2000). 
(Has been cited by 
2184 times) 

Permutation Entropy 
It is an appropriate complexity in the 
presence of dynamical and observational 
noise. 

Bandt and Pompe 
(2002) 
(Has been cited by 
838 times) 

 

2.3.3 Entropy in Information Theory 

 

Information entropy is well defined in the literature. Generally, it quantifies the expected 

value of the information contained in a message. This concept of information entropy 

was introduced by Shannon (1948) –“A mathematical theory of communication.” This is 

the most influential paper about information entropy, having been cited 63187 times.  

 

One important purpose of entropy used in construction is to quantify information 

uncertainty in science domains and to solve problems associated with information 

transmission. For example, in Eshragh’s (2011) work, he proposed an adaptation of the 

Cross Entropy method called Projection-Adapted Cross Entropy to solve a transmission 

expansion problem that arises in management of national and provincial electricity grids. 
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The Cross Entropy method for solving rare event probability estimation was pioneered 

in 1997 (Rubinstein, 1997), and later expanded to solve combinatorial optimization 

problems (Rubinstein, 2004). Karimi-Hosseini also chose “transinformation entropy” as 

her main evaluation criteria for site selection of rain-gauges in the Gav-Khuni basin 

rainfall network (Karimi-Hosseini, 2011). In her research work, information transfer 

(transinformation) of random and continuous variables Z between two locations i and j 

in a monitoring is called transinformation entropy.  

 

In the construction management filed, entropy is not only a useful tool to evaluate 

information transmission. Based on the theory of information entropy, an information 

entropy model of organizational structure is also constructed according to the 

characteristics of information flow in the execution of the construction program (Mao et 

al., 2009).  If there is direct connection between elements X and Y of a construction 

organization, information can be sent from one to the other directly, and vice versa. Due 

to the uncertainties involved in project management information, any delivered 

information could be valid, true or false with a probability of 𝑝!. Thus, the quantified 

uncertainty in the information communication from X to Y is information entropy, 

which could help determine the organization’s optimization. The entropy effect of 

project communication is mainly manifested in the transfer of communication 

effectiveness between each level and member. Even though excellent communication is 

crucial for a good construction organization and the success of a project (Zheng & Li, 

2009), only a few successful cases were found in the literature research. As Baccarini 
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(1996) stated, the reason for this failure is mainly because of the complexity in 

construction projects; and most important factor in the success of a project is the 

management of complexity.  

 

Baccarini’s research (1996) of project complexity has been cited 417 times and inspired 

the following research of complexity in construction. It also guided our second round of 

literature search, and raised a question of whether the idea of entropy could be related to 

the management of complexity.  

 

2.4 Complexity/Complex Theory 

 

Two fundamental studies have led the study of complexity in building construction: 

“The Concept of Project Complexity – A Review” (Baccarini, 1996), published in the 

International Journal of Project Management, and “Complexity – Construction in A 

New Perspective” (Bertelsen, 2003) in the 11th Annual Conference in the International 

Group for Lean Construction. Both of these papers are cited in the research of 

complexity in construction (Williams, 1999; Del Cano et al., 2002; Abdelhamid, 2004; 

Vidal & Marle, 2008; González et al., 2008); at the same time, they refer to those basic 

research works in the concept of complexity (Bennett & Fine, 1980; Gidado, 1996; 

Radosavljevic et al., 2002). As a result of this, these two papers helped us to expand the 

literature review for complex studies not only backward but forward as well. The 
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following sections summarize the results of complex studies and their applications in 

building construction.  

 

“System” commonly means a group of interacting, interrelated, or interdependent 

elements forming a holistic functional whole (Crawford et al., 2005). However, the 

“complex” nature of systems elicits multiple definitions. This proposal summarizes the 

literature of complex system from two perspectives: their different levels of definition, 

and their dimensions.  

 

No consensus exists with respect to a definition for “complex system,” as well as for the 

definition of complexity (Vidal et al., 2011). Complexity has different connotations 

within the same field. Different levels of complexity are expressed in Figure 4. The first 

definition is that complex systems integrate multiple thematic domains. None of the 

agents or subsystems could be fully understood when considered in isolation (Cilliers, 

1998). The second and more detailed level sees complexity as emerging from 

nonlinearities due to the large number of interactions involving feedback occurring at 

one or more lower levels within the system (Batten, 2001; Manson, 2001). One more 

idea of “complex system” extends the notion of complexity by creating more refined 

representations of micro-level heterogeneity and interactive processes and factoring in 

top-down (perhaps emergent) structures that feed back to influence bottom-up 

phenomena (Parker et al., 2003).   
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An exploration of the literature also reveals a wide range of factors that may contribute 

to project complexity. These contributing factors are defined by Remington et al. (2009) 

in terms of dimensions; see Table 4. 

 

 

Figure 4 Three Different Understandings of Complex Systems 
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Table 4 Dimensions of Project Complexity (Adapted from Yugue & Maximiano, 2012) 
DIMENSION OF 
COMPLEXITY AUTHORS 

Uncertainty about the product  Turner & Cochrane (1993); Williams (1999); 
Remington, et al. (2009) 

Uncertainty about the scope of 
the project  

Turner & Cochrane (1993); Baccarini (1996);  
Tatikonda & Rosenthal (2000);  

Novelty of technology 
Baccarini (1996); Williams (1999); Geraldi (2007); 
Fitsilis (2009); Remington, et al. (2009); Tatikonda & 
Rosenthal (2000) 

Highly multidisciplinary Baccarini (1996); Geraldi (2007); Geraldi & Adlbrecht 
(2007); Fitsilis (2009) 

Large number of stakeholders 
with influence on the project 

Williams (1999); Fitsilis (2009); Remington, et al. 
(2009) 

High difficulty to achieve 
performance goals Remington, et al. (2009) 

Significant change in the scope 
of the project during its 
implementation 

Turner & Cochrane (1993); Williams (1999);  
Geraldi (2007); Geraldi & Adlbrecht (2007);  
Fitsilis (2009); Remington, et al. (2009); 

High interdependence between 
the technologies 

Baccarini (1996); Williams (1999); Geraldi (2007);   
Fitsilis (2009); Remington, et al. (2009); Tatikonda & 
Rosenthal (2000) 

High interdependence between 
firms involved in the project 

Baccarini (1996); Williams (1999); Geraldi (2007); 
Remington, et al. (2009) 

 

2.4.1 Is the building construction system characterized as mainly complicated or 

complex? 

 

Based on the definitions of projects and systems, projects including construction projects 

may be considered as systems (Boulding, 1956; Vidal & Marle, 2008; Vidal et al., 2011). 

However, there are two different types of systems:  complicated and complex. This 
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classification frames the first hypothesis of this proposed research: is construction 

characterized as complicated or complex?  

 

Research has concentrated on the analysis and comparison of these two systems. Hill 

(1982) started the study of complicated system; the research work of Cilliers (1998, 

2002, 2005), Amaral and Ottino (2004) and Heylighen et al. (2007) focus on complex 

systems rather than complicated ones. Meanwhile, Grabowski and Strzalka (2008), Page 

(2008), and Dekker et al. (2013) have devoted their research to comparing these different 

concepts, such as simple, complicated, complexity and uncertainty. However, there are 

no common definitions for complicated system and complex system. Several 

characteristics are agreed upon by all the above scholars; they are compared and 

summarized in Table 5.  

 

Table 5 Comparisons Between a Complicated System and Complex System  
COMPLICATED SYSTEM COMPLEX SYSTEM 

Consisting of a large number of interacting components 
§ Specialized structures, deterministic 

switching 
§ Structures for general use, non-

deterministic switching 
§ Algorithmic processing § Interactive processing 
§ Fully understandable § No rules or formulas can capture the 

whole system 
§ Static planning of performance, Mean 

Value Analysis  
§ Dynamic planning of performance at the 

edge of chaos  
§ Bounded resources  § An open system with unbounded 

resources  
§ Lack of memory (independence of 

processes) 
§ Existence of memory (dependence of 

processes) 
§ Simple feedback § Self-organization 
§ Having best method to operate the 

system 
§ No best plan due to a changing 

environment 
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The building (final product, noun): 

• Consists of a large (bounded) number of interacting components 

• Is a specialized structure 

• Has an operation that can be mapped and put in algorithms 

• Is fully understandable 

• Has static performance, and mean value analysis of its functions can be readily 

made 

• Uses bounded resources, except for operation and maintenance; those can be 

considered un-bounded 

• Provides simple feedback loops 

• Contains a best method to operate the facility composed of all its systems 

 

To build, as in the physical work of construction, which encompasses materials, 

equipment and labor, a verb that mobilizes labor and equipment to erect and assemble 

materials, is characterized by the following statements: 

• Consists of an extremely large number of contributing components (mineral 

extraction, fabrication, transportation, general economy, assembly, erection, 

finishing, code compliance; the list is as big as the amount of granularity we 

seek to inform). 

• Non-deterministic switching is due to the fact that the players are autonomous 

agents. Autonomous agents have particular strategic, logistic and tactical 

interests and therefore may withhold asymmetric information from other players. 
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This non-deterministic switching property of complex systems, is relative to 

deterministic switching. Deterministic switching could be evaluated using 

specific algorithms, which means it is foreseeable. However, in a construction 

system, the autonomy of each participant, along with its own strategies that 

induce a variety of actions, lead to behavior ranging from almost deterministic 

actions to chaos-like dynamics, which makes the switching non-determinable.  

• Processing is interactive, due to the amount, quality and type of information that 

all the stakeholders must contribute, check, verify and approve to achieve the 

intended results. 

• No rules or formulas can capture the whole production system because each 

production is unique, one of a kind, different and distinct in multiple aspects, 

starting with the fact that the team of stakeholders is temporary and it intervenes 

as needed. 

• Dynamic planning of performance at the edge of chaos is due to the fact that the 

autonomous players’ interventions are predicated by activities in other projects 

and are determined by the strategic plan of each stakeholder. 

• If the process takes into consideration all the materials and players necessary to 

make the final product, a large portion of national or world economies would be 

included, as the process is energy and material intensive as well as labor 

intensive and information super intensive. 

• Existence of memory is required so that each process does not require 

reinvention each time it is needed. 
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• Self-organization is essential for the production system, as it has no central 

control. 

• Having no best plan, due to a changing environment, is apparent from the above 

mentioned characteristics of the construction process or project delivery system. 

 

According to Fernández-Solís’ (2008) summary of the systemic nature of construction, 

construction operation and organization is a deterministic dynamic, non-linear flow, in 

which an extremely large number of stakeholders are involved. The outputs of 

construction are not proportional to the inputs and the whole is different from the sum of 

its parts, where the sum of its parts is much larger than the final product. The building 

construction system must consider an open social system and also the inter-operability of 

each participant (working inside the company) as well as extra-operability of the 

participants (working with other companies). It is nested in a social system with a 

varying team where communications and cooperation are emergent phenomena in each 

project; this emergent nature also helps the system learn from itself and achieve its self-

organized goals toward the completion of the design intent. All of these natures of 

building construction’s project delivery system favor considering it as a complex system.  

In spite of the fact that there are numerous views on explaining the differences between 

complicated and complex systems, most scholars mentioned in this paper agree with the 

differences summarized in Table 6; the only characteristic common to complicated and 

complex systems is that both contain a great number of components. In this study, the 

definitions, descriptions and distinctions between complicated and complex are used to 
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shed light on the concepts of building and building construction system. While a 

building (noun, i.e. final product) is a complicated system, constructing a building (verb, 

i.e. to produce and erect the design intent) is a complex social system, which emerges 

from a deep and extended network of interactions and interconnection. It requires further 

detailed analysis.  

 

2.4.2 Building Construction as a Complex System 

 

Scientists have attempted to understand construction systems using a reductionist 

approach in which the behavior of a system is represented as being an equilibrium 

mechanical interaction of its components. This equilibrium assumption views spatial 

distribution as optimal and stationary (Allen, 2008). That is to say, rigid traditional 

construction management focuses on order, structure and planning. However, the 

unknowns in construction systems are better handled by a flexible process that promotes 

openness, coincidence and serendipity. For this reason, the behavior of complex systems 

offers an appropriate set of concepts with which to begin a new reflection on human 

systems, especially construction systems (Allen, 2008). Unlike the mechanical systems 

of a bygone era, overall system behaviors are no longer exclusively deterministic. In this 

new point of view, in construction systems, non-equilibrium phenomena are much more 

critical and offer a new way of understanding structural emergence and organization in 

systems with many interacting individual elements. In this complex system, all powers 

are connected. This new attitude toward construction systems puts forth a number of 
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characteristics to predict project outcomes, in order to control or manage the 

construction procedure (Remington et al., 2009).  Homer-Dixon’s work (2002) 

summarizes the characteristics of complex systems and we apply them to construction 

performance: 

 

1) Multiplicity: the number of ways that could produce a certain state. 

Construction’s stakeholders consist of owner, architects, engineers, and 

consultants, and especially, construction teams like general contractors, sub-

contractors, vendors and suppliers. Each organization has an identical structure 

of strategic, logistic and tactical personnel. 

 

2) Causal connections: numbers of links between components (to the extreme, there 

is causal feedback where a change in one component loops back to affect the 

originals). This is common in construction practices. One of the most common 

examples is the misunderstanding of a client’s requirements by the design team, 

which causes project schedule delays or over-budget performance. 

 

3) Interdependence: the larger the module that can be removed from the complex 

system without affecting the overall system’s behavior, the more resilient and 

less complex the system. However, in the construction system, none of the tasks, 

parts or units involved in the process can be easily removed or replaced, which 

makes construction a highly complex industry (Gidado ,1996). Supply Chain and 
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contractors’ networks are good examples to illustrate interdependence in 

construction systems.  

 

4) Openness: to outside environment, not self-contained, difficult to locate 

boundary.  Construction systems are nested in a social environment. Policies, 

economic situations and advanced technologies regularly affect construction 

systems. 

 

5) Emergence: the degree to which the entire system is more than the sum of its 

parts, because a system may transcend its components. This is also the 

philosophical core of complexity theory (Elnashaie & Grace, 2007). According 

to the recently specified “value” theory in construction (Koskela & Howell, 

2002), a constructed project has no value until it is turned over to the owner and 

used for its intended purpose; the value of the whole building is greater than the 

sum of parts.  

 

6) Nonlinear behavior: the effect on the system in not proportional to the size of the 

change on a component. The nonlinearity of the construction project carries 

through the nonlinearity of the subsectors, and the nonlinearity of the industry 

and the general economy. In construction projects, most mathematical equations 

are complex and nonlinear, and generating these equations can be a remarkable 

challenge (Azimi et al., 2012). For instance, the total cost is not only related to 
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the building mass; it is also affected by construction location, delivery method 

and so on.  

 

7) Adaptiveness: Organizations are adaptive in that they do not simply respond to 

events or surrounding circumstances, but evolve or learn. Each component, or we 

can say agent, in the construction system is guided by its own rules of behavior 

and also by a schema shared with others in the system (Thomas & Mengel, 

2008). Curlee and Gordon (2010) agree that transformation or adaptive-ness is 

the nature of construction projects. One of the most famous theories of this is the 

transformational leadership idea in lean construction. 

 

2.5 Current complexity research in building construction 

 

This dynamic complexity of construction projects intuitively results from the stochastic 

spatial and temporal interactions among multiple components, such as on-site equipment 

resources, labor productivity, unexpected external events, and human decisions 

regarding resource allocation and activity rescheduling (Tang et al., 2010). However, 

this is not the real complexity for this long-term research. As Curlee and Gordon 

indicated in their book Complexity Theory and Project Management (2011) that 

complexity does not necessarily reflect complicated or large projects, nor does it imply 

technical difficulty. In fact, it is concerned with the behavior over time of certain 

complex systems, while the complex systems combine elements of both ordered and 
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random behaviors in an elusive but striking manner (Stwart, 2002; Allen, 2008). From 

Thomas and Mengel’s statement (2008), we can categorize three different levels of 

complexity research:  complex system, complexity theory and complexity science. The 

current research of complexity in building construction may also be summarized from 

these three levels. 

 

2.5.1 Complex system 

 

Current research treats complex construction/project systems as objects mainly. Results 

reveal that complex systems have numerous unique characteristics, which could be 

referred to to as construction performance as well (Gidado, 1996; Koskela, 2000; 

Koskela & Howell, 2002; Azimi et al., 2012). According to Homer-Dixon (2000), they 

can be summarized as multiplicity, causal connections, interdependence, openness, 

emergence, nonlinear behavior and adaptiveness. This new concept of a construction 

system makes it extremely difficult to predict project outcomes, to control or manage 

construction procedures (Remington et al., 2009).  

 

2.5.2 Complexity theory 

 

Complexity theory is a relatively new way of thinking about systems of interacting 

components, such as firms and projects. It rests on the idea that order emerges through 

the interactions of components or agents (Benbya & Mckelvey, 2006). Complexity 
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theory suggests that attempts to rigidly control a complex system can increase problems 

and unintended consequences as individuals in the system “work around” these controls 

(Zimmerman et al., 1998). It also suggests that, in order to represent changes in a 

complex system, it is important to understand the recurring patterns in the system, 

including the patterns of interactive relationships (Cohen & Stewart, 1994). Research 

about complexity theory in construction (Turner & Cochrane, 1993; Baccarini, 1996; De 

Meyer et al., 2002; Williams, 2005) has proven that taking complexity theories seriously 

in the construction management field would (a) help us to understand the current 

construction project environment in new and different ways, and (b) require new types 

of competencies for contractors and their performance.  

 

2.5.3 Complexity Science 

 

Complexity science thinking within the natural sciences began in the 19th century with 

roots stretching back ,with at least of early work on cellular automata, cybernetics, and 

general systems theory（Spencer, 1887; Manson, 2001; Crawford et al., 2005). It 

continued into the 20th and 21st centuries, with scholars from politics, social policy, 

social network, geography and healthcare applying complexity science within their 

disciplines. As Linstone (1999) stated, complexity science was the most exciting 

development in the systems area in recent years. However, it is not easy to define 

“complexity science,” given its long gestation and continuing growth and maturation 

(O’Sullivan et al., 2006). However, a comparison between complexity science and 
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established science, as shown in Table 6, is cited and accepted in the research about 

complex science. 

 

Table 6 Complexity Science Compared with Established Science (Adapted from Begun 
et al., 2003) 

COMPLEXITY SCIENCE ESTABLISHED SCIENCE 
Holism  Reductionism 
Indeterminism 
Relationship among entities  

Determinism 
Discrete entities  
Linear relationship 

Marginal increase 
Newtonian Physics 

Nonlinear relationship 
Critical mass thresholds 

Quantum Physics 
Influence through iterative nonlinear 
feedback 

Influence as direct result of force from 
one object to another 

Expect novel and probabilistic world 
Understanding; sensitivity analysis 

Expect predictable world 
Prediction 

Focus on variation Focus on averages 
Behavior emerges from bottom up Behavior specified from top down 
Metaphor of morphogenesis Metaphor of assembly 
 

Manson (2001) reviewed a diverse literature of complexity and summarized three 

categories of research where the term is used: algorithmic complexity, deterministic 

complexity and aggregate complexity: 

 

Algorithmic Complexity: refers to measurement of the difficulty of computational 

problems (O’Sullivan et al., 2006).  The most widely known definition of algorithmic 

complexity is the Kolmogorov–Chaitin measure, which is often referred to simply as the 

Kolmogorov complexity. The Kolmogorov complexity of an object, such as a piece of 

text, is broadly defined as the length in bits of the shortest description for that object. 
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Alternatively, it is the length of the shortest program required to obtain the output 

(Dewey, 1997).  

 

Deterministic Complexity: refers to the unpredictable dynamic behavior of relatively 

simple deterministic systems (Manson, 2001). According to this definition, 

unpredictability is framed as sensitive dependence of outcomes on initial conditions.  

 

Aggregate Complexity: the study of phenomena characterized by interactions among 

many distinct components (Manson, 2001). This is the most comprehensive definition 

with encouraging characteristics for the analysis of building construction systems.  

 

The notion of complexity has been widely studied in fields such as astronomy, chemistry, 

evolutionary biology, geology and meteorology (Nocolis & Prigogine, 1989). However, 

its translation into the project management field started in the 1990s. In the project 

management field, the science of complexity seeks systematic and deliberate reduction 

in order to harness chaos in a manner that allows the project manager to increase his/her 

team’s effectiveness by allowing a certain degree of individuality to move a project 

forward (Allen, 2008). 
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2.5.4 Similarities and Differences between Complexity Theory and Science 

 

In the last 30 years, in particular, there has been a re-evaluation of the nature of 

complexity, and more fundamentally, of the relationship between order and disorder 

(Serres et al., 1982). Both complexity theory and complexity science focus on the 

relationships between these elements rather than on each element alone within the 

system. In addition, they all target the complex system as mainly objective, and provide 

a perspective to organize and manage a system or a project not only by simply linear 

prediction.  

 

Complexity theory is a new way of thinking about the complex systems; and dealing 

with its typically characteristics. It is concerned with the behavior over time of certain 

kinds of complex systems. Taking complexity theories seriously in construction 

management field would (a) help us to understand the current construction project 

environment in new and different ways, and (b) would require new types of 

competencies for contractors and their performance. Most authors like Turner and 

Cochrane (1993), Baccarini (1996), and Williams (2005) have tended to focus on 

uncertainty and difficulty of the technical or management challenges, or about the 

organizational complicacy. 

 

Complexity sciences are a relatively eclectic collection of academic efforts crossing a 

wide variety of disciplines. It reframes our view of many systems, which are only 
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partially understood by traditional scientific insights. Complexity science is not a single 

theory. It is the study of complex systems, including the patterns of relationships within 

them, how they are sustained, how they self-organize and how outcomes emerge. Within 

the science there are many theories and concepts. The science encompasses more than 

one theoretical framework, such as biologists, anthropologists, economists, sociologists, 

management theorists and many others in a quest to answer some fundamental questions 

about living, adaptable, changeable systems (Zimmerman et al., 2000). Complexity 

science describes how systems actually behave rather than how they should behave.  

 

From the science perspective, complexity research from the project management 

discipline has produced a number of approaches:  

 

§ Turner and Cochrane (1993) first connected project complexity with lack of clarity 

on project goals.  

 

§ The first established dichotomy about complexity is from Baccarini (1996). He 

proposed the complexity of a project could be interpreted and measured in terms of 

differentiation and interdependencies for both organizational complexity and 

technological complexity. The differentiation holds two dimensions: vertical 

differentiation and horizontal differentiation.  
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§ Based on previous studies, Remington and Pollack (2007) categorized complexity 

into four dimensions, which are factors that characterize the nature of the 

complexity or a mixture of the two, based on the source of complexity: structural, 

technical, directional and temporal.  

 

§ Vidal and Marle (2008) summarized the historical research of project complexity 

into two main scientific approaches. The first one, usually known as the field of 

descriptive complexity, considers complexity as an intrinsic property of a system. 

An example of this vision is the work of Baccarini (1996), which incited 

researchers to find methods and tools to quantify or measure complexity. The other 

one, usually known as the field of perceived complexity, treats complexity as 

subjective, seeing the complexity of a system as improperly understood through 

the perception of an observer. On the basis of this, a project manager deals with 

perceived complexity, as he/she cannot understand and deal with the full reality 

and complexity of the project.  

 

All of the above research has emphasized that a clear understanding of complexity helps 

in selecting appropriate tools and approaches to manage a project successfully. However, 

all these existing works in the science of complexity, no matter what perspective it is, are 

theoretical research or qualitative research of complexity. The research gap we found is 

that quantitative research or measurement of complexity in building construction 

remains scarce. One possible support for this statement, according to Lu (2010), there is 
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no fundamental conceptual framework with sufficient explanatory power has effectively 

integrated the mathematical model, complexity science and the practices of construction 

together until now. Furthermore, most scientists in the construction area still view 

complexity as an abstract concept, which is not familiar to them. As a result of this, 

complexity theory has not yet been considered as a practical method and an applicable 

tool, which is reflected in its limited applications in research studies of construction. In 

order to integrate the mathematical model and complexity science together and fill the 

research gap, chaos theory became a useful tool in the second hypothesis of the proposed 

research, which is using chaos theory as a bridge to link the complexity science in 

building construction systems and the entropy complexity measuring model together.  

 

2.6 Chaos as a Representation of a more Complex Order  

 

The complexity of construction systems stems from potential non-linear, emergent 

behavior that can occur in interactions between interconnected tasks (Remington et al., 

2009). Actually, chaos is where complexity arises through the non-linear interactions of 

small numbers of simple components and parts, people, equipment, materials and so on 

(Curlee & Gordon, 2011; Fernández-Solís et al., 2013, 2014). Project complexity is 

interested in the two zones to which a disturbed system may return: stable or unstable 

zones. Under appropriate conditions, systems may operate at the boundary between these 

zones, sometimes called a phase transition, or the “edge of chaos” (Rosenhead, 1998). 

Thompson and Gray (1990) provide the elements for a graphic metaphor on the range 
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from order to disorder with its transitions. Based on their ideas, we summarized the 

different status of a system in a more vivid graphic metaphor, shown in Figure 5. In 

building construction systems, Fernández-Solís et al.’s (2013) case study of chaos 

arrived at a series of similar graphic images of PPC time series data, which verified our 

metaphor. 

Figure 5 Graphic Metaphor of Order, Complexity, Chaos and Disorder 
 

From Figure 5, we surmise that in a complex system, we can expect an orderly start that 

flows through and into transitions to complexity and then experiences chaotic or near 

chaotic episodes in an ambient prone to disorder.  This conclusion fits well with the 

observation that the construction effort is a constantly focused effort at applying 

information and knowledge against an ever present tendency towards entropy. Entropy, 

the increase of disorder which is conquered through labor, nevertheless takes place in the 

arena, the ambience, of the universe of disorder. The complex construction system also 

has no long-term equilibrium, and just like other social systems, there is no historical 

evidence for long-run equilibrium; there is evidence only for the apparent “chaos” 

created by a complex interplay between a numbers of forces (Stevenson & Harmeling, 

1990). 

 
Order Complexity Chaos Disorder 

 

Complexity is the ‘edge of chaos’, the transition from order to disorder 
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McKercher (1999) treats chaos and complexity as companions. His view is supported by 

a number of other researchers, such as Lewin (1993), Faulkner and Ressell (1997), and 

Byrne (1998). Chaos describes a situation where a system is dislodged from its balance 

and stability, which is random and unpredictable for outcomes. Complex systems often 

show nonlinear phenomena as chaos. Therefore, chaos theory is closely allied with 

complexity theory or the theory of complex science. Ineluctably, there has been debate 

about the differences between chaos and complexity. Axelrod and Cohen (1999) argued 

that chaos deal with situations, which lead to disorganized and unmanageable systems, 

while complexity theory deals with systems that have a large number of subsystems or 

elements and although hard to predict, these systems have structural and permit 

improvement. In spite of these disagreements and arguments, many see the close linkage 

between chaos and complexity theory (Lu et al., 2010). Waldrop first (1992) considered 

complexity as the emerging science at the edge of order and chaos.  

 

Other similar expressions exist about their tight relationship.  Curlee and Gordon (2011) 

concluded that complexity theory grew from chaos theory, and it was about harnessing 

chaos in a manner that allows the project manager to increase his/her team’s 

effectiveness by allowing a certain degree of individuality to move a project forward.  

Chaos theory offers a solid theoretical and methodological foundation for interpreting a 

wide class of nonlinearity, instability and uncertainty, which characterize the 

increasingly complex systems. More detailed, chaos theory poses a promising and valid 
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alternative theory for modeling complex, unsteady and unpredictable dynamics, which 

are associated with many aspects of construction and building systems. This makes 

chaos theory and chaos models attractive, since small models can offer real-world like 

phenomena which are fully determined by internal dynamics. It is worth mentioning that 

the system is dependent on interaction with its surroundings; this influence is precisely 

what nonlinear parameters try to describe. Nonlinear dynamic complex systems and 

chaos theory have great potential, not only from a research point of view, but also for 

suggesting new applications. When we combine complex building construction systems, 

chaos model based analysis and visualization, this may open a potential practical way to 

identify, forecast, control, and provide insight into complex behaviors in numerous kinds 

of systems, especially construction activity and organization systems.  

 

The above explanations and arguments provide a possible way to fill the research gap, 

that is, we could use chaos as a modeling basis to validate and reflect the increasing 

complexity of complex construction systems, and to link the mathematical measurement 

model and complex construction performance together.  
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2.7 Conclusion  

 

The above literature exploration presents how the proposed research topic came about. 

In searching for “embodied entropy,” we found the application of entropy as the measure 

of complexity, and the complex nature of building construction systems. Even though 

most of the studies point out the importance of considering building construction as a 

dynamic, non-linear, and emergent complex system, they carry out their research on only 

one part or perspective of complexity in building construction. There is no fundamental 

and widely accepted conceptual framework of complexity in building construction, 

which leads to a missing quantitative complexity measurement model for building 

construction. This has resulted in current ineffectual and unsuccessful construction 

management projects. Even though several different kinds of entropy have been used as 

effective complexity measurements, none of them have been introduced in building 

construction systems to analyze the complex nature quantitatively and to improve the 

management of construction.  
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CHAPTER III 

METHODOLOGY 

 

The research methodology encompasses each single method used that directly affects the 

subject and outcomes of this study. Integrating a comprehensive literature review, 

conceptual analysis, and qualitative and quantitative comparisons forms a mixed-method 

analysis. The reason for selecting mixed-method analysis for a single study is to gain a 

better understanding of the research problem and more persuasive results (Teddlie & 

Tashakkori, 2003).  

 

3.1 Research Methods and Procedure 

 

In order to link the entropy model and building construction together, the study 

comprises three (3) phased procedures in the adapted mixed-method analysis. This 

multi-step mixed research procedure with both qualitative and quantitative methods is 

believed to provide a more comprehensive analysis than either approach could provide 

alone (Caracelli & Greene, 1997; Leedy & Ormrod, 2005). This multi-step research 

process offers a more rigorous analysis by incorporating the advantages of 

comprehensive literature review, conceptual analysis, and qualitative and quantitative 

comparisons.  
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The foundation for the study is a full analysis of the complexity in building construction 

systems, which includes a comprehensive and embedded theoretical model of 

complexity science. Among different kinds of entropy, which have already been applied 

in complexity measuring, an understandable and practical mathematical model to 

calculate complexity at each level would be based on in-depth analysis and the complex 

nature of building construction systems. To achieve the research objective, the research 

methodology was divided into three stages, graphically illustrated in the Figure 6, which 

are described briefly in the following:  

 

 

Figure 6 Research Procedures and Output 
 

1. At the theoretical level, the research goal is to make an embedded conceptual 

analysis and summary of basic concepts in complexity science and chaos theory 

in order to pick up the most commonly used entropy models for complexity 

measurement for further comparison.   
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2. At the mathematical level, the research goal is to discover the best systematic and 

understandable mathematical model for complexity in construction based on a 

comparative analysis of algorithms of entropy. Different entropy methods 

applied in complexity measuring are compared on the theoretical level, and also 

through a pilot study of ten representative cases. 

 

3. At the practical level, the research goal is to verify the results in real building 

construction projects, and to make sure the proposed quantitative measuring 

model could be accepted in real construction work. Monte Carlo simulation 

generates more numbers for each case in order to mimic real construction 

situations over a long period. Based on the simulated cases, the entropy 

algorithms are further compared, the complexity of construction is measured and 

also, different circumstances are tracked.   

 

3.2 Literature Review and Conceptual Analysis  

 

In order to build the theoretical model of complexity in building construction as the 

foundation for the research and to select appropriate entropy algorithms for further 

analysis, a comprehensive literature review and conceptual analysis are the primary 

methods used in the research.  
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The databases used for the literature search include ASCE Library, Compendex (Ei 

Village 2), Web of Knowledge, GreenFILE (Ebsco), ScienceDirect, ProQuest 

Dissertations and Google Scholar. The literature encompasses books, papers and 

doctoral dissertations about complexity, chaos and their application in building 

construction, as well as entropy algorithms used for complexity measurement in 

different fields. Most of the conceptual complexity research and complexity 

measurement papers are published in top ranked journals of complexity research and 

chaos theory: Chaos and Complexity, Chaos, Solutions and Fractals and Physical 

Review. The complexity research papers related to the construction industry are all 

published in high-impact journals in building construction, such as International Journal 

of Project Management, Construction Management and Economics, Construction 

Engineering and Management, Automation in Construction, and Architectural 

Engineering and Design Management. These journals are the major route to track 

current research in complexity, especially complexity research in building construction. 

Papers from these target journals also provide solid background and introduction of 

commonly used entropy algorithms for complexity measurement to be further compared 

and analyzed.  

 

Based on the literature review, the next phase of study uses conceptual analysis and 

metonymic mapping to summarize the complexity disciplines, to build a theoretical 

frame that is applicable and found in construction, and to select potential entropy models 

based on the theoretical frame. First, the study summarizes common definitions of 
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complex system and complexity in building construction, lists the characteristic of 

complex systems, and then applies them to construction performance. Next, it clarifies 

the relationship between complexity and chaos, and verifies it through graphic findings 

from the construction industry. This forms the foundation for a theoretical framework of 

complexity in building construction from three levels – complex system, complex theory 

and science of complexity. From the perspective of complexity science, the four most 

commonly used and the most well-known entropy algorithms, listed in Table 7, are 

selected as the potential complexity measurements for further comparison.  

 

Table 7 Summary of Entropy Models for Complexity or Chaos 
Entropy Model Definition Author & Year 

Approximate Entropy 
(ApEn) 

ApEn is a technique used to 
quantify the amount of regularity 
and the unpredictability of 
fluctuations over time-series data. 

Pincus (1991) 
(Has been cited 2859 
times). 

Sample Entropy  
(SampEn) 

It is a modification of ApEn. It used 
extensively for assessing the 
complexity of a physiological time-
series signal. But it does not 
include self-similar patterns as 
ApEn does. 

Grassberger (1988) (Has 
been cited 505 times);  
Richman and Moorman 
(2000) (Has been cited 
2184 times). 

Permutation Entropy 
(PEn) 

PerEn is an appropriate complexity 
in the presence of dynamical and 
observational noise. 

Bandt and Pompe (2002) 
Has been cited 838 
times). 
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3.3 Pilot Comparative Study  

 

The comparative method is one of the oldest research methods in the social sciences. 

The objective of using a pilot comparative study as the second phase of this research is 

to conduct initial analysis for the four proposed entropy algorithms, along with 

Lyapunov Exponent and Six Sigma methods. In the pilot comparison stage, three (3) 

different entropy models of complexity measures are compared  Approximate Entropy 

(ApEn), Sample Entropy (SampEn) and Permutation Entropy (PEn). They are also 

compared with other commonly used complexity measurement methods--Lyapunov 

Exponent, and the method for building construction performance evaluation known as 

Sig Sigma Method.  

 

Not only is a qualitative comparison for the proposed methods conducted based on the 

literature and definitions, a quantitative comparison is also made based on ten (10) pilot 

cases. These ten (10) pilot cases were randomly picked from the twenty-two (22)  real 

construction cases that Fernandez-Solis used for his study of chaos theories in building 

construction (Fernandez-Solis, 2013). All these cases used Percent Plan Complete (PPC, 

also known as Promise Plan Complete) to represent building construction performance. 

According to Lean Construction Institution (2015), PPC is a basic measure of how well 

the planned building construction system is working - calculated as the "number of 

assignments completed on the day specified" divided by the "total number of 

assignments made for the week.” It measures the percentage of assignments that are 
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100% complete as planned. This represents the overall reliability of production planning 

and that of workflow, rather than focusing only on a certain perspective, such as 

schedule, cost and safety (Ballard, 1999). The following Table 8 and Figure 7 list the 

PPC report for each pilot case.  

Table 8 PPC Reports for Pilot Cases 
Week Case 1 Case 2 Case 3 Case 4 Case 5 Case 6 Case 7 Case 8 Case 9 Case 10 

1 16.67% 51.98% 19.00% 40.96% 40.15% 65.19% 60.85% 36.88% 32.50% 53.57% 

2 15.63% 47.22% 45.83% 32.58% 30.88% 45.92% 42.86% 29.91% 25.00% 42.62% 

3 55.83% 41.27% 66.11% 44.55% 39.52% 81.51% 76.07% 40.97% 31.99% 58.28% 

4 55.83% 50.00% 47.22% 67.82% 69.12% 95.00% 93.33% 81.85% 55.95% 88.71% 

5 78.93% 51.67% 82.90% 61.79% 52.94% 79.72% 74.40% 67.50% 42.86% 80.82% 

6 70.89% 23.33% 69.81% 63.79% 88.24% 95.00% 92.59% 52.08% 71.43% 83.44% 

7 61.61% 61.11% 80.11% 64.88% 72.06% 95.00% 89.68% 50.00% 58.33% 84.86% 

8 49.17% 16.67% 46.11% 57.59% 59.04% 64.29% 60.00% 64.11% 47.80% 75.32% 

9 95.00% 95.00% 73.48% 76.45% 88.79% 84.69% 79.05% 71.25% 71.88% 95.00% 

10 60.28% 60.28% 78.94% 75.98% 95.00% 84.82% 79.17% 77.08% 80.95% 99.38% 

 

Figure 7 PPC Matrixes for Pilot Cases 
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For these pilot cases, the measured results based on each different model are compared 

from three different perspectives: the degree of calculation difficulty, sensitivity and 

dependence. On the basis of both the qualitative comparison and quantitative 

comparison of pilot cases, the criteria for further comparison and preliminary 

conclusions are summarized.  

 

3.4 Simulations and Comparative Analysis 

 

In order to test the proposed entropy algorithms in the different construction 

performance scenarios and to make sure the proposed quantitative measuring model 

could be accepted in real construction work, Monte Carlo simulation is used to generate 

more random numbers for each pilot case. This mimics real construction situations over 

long periods as case studies, which is an ideal methodology when a holistic, in-depth 

investigation is needed (Feagin et al., 1991). Based on the simulated cases, the entropy 

algorithms are further compared, the complexity of construction is measured and also 

some different circumstances are tracked.   

 

At this stage, two rounds of simulation are conducted with MATLAB to generate 

random numbers based on the pilot cases for the purpose of representing different 

circumstances in building construction performance as illustrated in Figure 8.  
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Figure 8 Process for Two-Round Simulation based on Pilot Cases 
 

The first round simulation is aimed to generate more random numbers following the 

same pattern of each pilot case to test the workability of proposed entropy models in real 

long term complex building construction systems. For each pilot case, twenty-two (22) 

different probability distribution scenarios are tested in order to find the specific pattern 

with the highest fitness to generate random numbers. The probability distributions tested 

for each pilot case include Beta, Binomial, Birnbaum-Saunders, Burr, Exponential, 

Extreme Value, Gamma, Generalized Extreme Value, Generalized Pareto, Inverse 

Gaussian, Log-Logistic, Logistic, Lognormal, Nakagami, Negative Binomial, Non-

parametric, Normal, Poisson, Rayleigh, Rician, t Location-Scale, and Weilbull. 

According to the probability distribution pattern with the highest fitness, 50, 100 and 250 

additional numbers are generated for further comparative analysis of proposed entropy 

algorithms.  
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The second round of simulation mimics different circumstances in building construction 

systems, rather than simply increasing the sample size. It generates more random 

numbers for each pilot case within a certain range by using MATLAB. In the round two 

simulation, three runs are conducted, like in the previous simulation: Run II-A with 50 

more numbers, Run II-B with 100 more numbers and Run II-C with 200 more numbers. 

However, in each run, the measurement results are not compared across different cases, 

they are compared based on different performance patterns for the same case. For each 

pilot case, four different simulated scenarios are generated. Simulated random numbers 

fall in the range of (Mean-3*Standard Deviation, Mean-3*Standard Deviation) for 

scenario a of each case, (Mean-1.5*Standard Deviation, Mean-1.5*Standard Deviation) 

for scenario b, (Mean-0.5*Standard Deviation, Mean-0.5*Standard Deviation) for 

scenario c and (Mean-0.25*Standard Deviation, Mean-0.25*Standard Deviation) for the 

last scenario, which is scenario d. Selected entropy models are applied for complexity 

calculation of each simulated circumstance set by the researcher to check the 

performance of the selected model. 

 

Conclusions and recommendations are based on the results of all the simulated 

circumstances, verifying the effectiveness of selected entropy models, and also 

showcasing how to use the model in real construction work.  
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CHAPTER IV 

PROPOSED ENTROPY ALGORITHMS 

 

Various measures of complexity have been developed to compare time series and 

distinguish regular (e.g., periodic), chaotic, and random behavior. The main types of 

complexity parameters are entropies, fractal dimensions, and Lyapunov exponents. For 

the entropy algorithm, there are also several perspectives to measure complexity. 

Different entropy models have been developed or modified to accommodate the 

characteristics of data source, project type and research requirements. From the 

perspective of chaos theory, as summarized in Chapter II Literature Review, the 

following comparison will focus on three commonly used entropy algorithms, a method 

cited more than 500 times by different authors. They are Approximate Entropy (ApEn), 

Sample Entropy (SampEn) and Permutation Entropy (PEn). 

 

4.1 Approximate Entropy (ApEn) 

 

Approximate Entropy (ApEn) was introduced as a quantification of regularity and 

complexity in noisy, short time-series data by Pincus in 1991 in “Approximate entropy 

as a measure of system complexity” published in Proceedings of the National Academy 

of Sciences (Pincus, 1991). This is the original appearance of the ApEn algorithm and 

the paper has been cited 2827 times until now. Mathematically, ApEn represents the rate 

of entropy for an approximating Markov chain to a process (Pincus, 1991), which 
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appears to have potential application to a wide variety of relatively short (greater than 

100 points) and noisy time-series data. A low value for entropy indicates that the time 

series is deterministic; a high value indicates randomness. 

 

The length of compared runs, which is represented as m, and effective filtering level, 

which is represented as r, are two input parameters that must be fixed for computing 

ApEn. Given N data points {u(i)},  form vector sequences x(l)  through x(N-m+1), 

defined by x(i)= [u(i), ... , u(i+m-1)].  These vectors represent m consecutive u values, 

commencing with the ith point. Define the distance d[x(i), x(j)]  between vectors x(i) and 

x(j)  as the maximum difference in their respective scalar components. Use the sequence 

x(l), x(2), ... , x(N-m+1)  to construct, for each I ≤  N-m +1, 𝐶!!(𝑟) = (number of j≤N-

m+1 such that d[x(i), x(j)]  ≤r)/(N-m+1).  The 𝐶!!(𝑟)'s measure, within a tolerance r, the 

regularity, or frequency, of patterns similar to a given pattern of window length m.  

Define 𝜙! 𝑟 = (𝑁 +𝑚 − 1)!! 𝑙𝑛!!!!!
!!! 𝐶!!(𝑟), where ln is the natural logarithm, 

then define the parameter Approximate Entropy ApEn(m, r)=𝑙𝑖𝑚!→![𝜙! 𝑟 −

𝜙!!! 𝑟 ]. It measures the likelihood that pattern runs that are close for m observations 

will remain close on the next incremental comparisons. 

 

The procedure of ApEn algorithm, summarized in the following steps, was coded in 

MATLAB (see Appendix A): 
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1. Form a time series of data {u(1), u(2), …, u(N)}. There are N raw data values as 

measured at equally spaced times.  

2. Fix length of compared runs (m) and effective filtering level (r). Typically 

choose m=1 or m=2, and r depends greatly on the application. 

3. Form a sequence of vectors x(1), x(2), …, x(N-m+1), in 𝑅!, real m-dimensional 

space defined by x(i)= [u(i),u(i+1), ... , u(i+m-1)]. 

4. Use the sequence x(1), x(2), …, x(N-m+1) to construct, for each i, 1 ≤ 𝑖 ≤ 𝑁 +

𝑚 − 1: 

𝐶!! 𝑟 =
(number  of  x(j)  such  that  d[x(i), x(j)]   ≤ r)

(N−m+ 1)  

in which d[x, x*] is defined as 𝑑 𝑥, 𝑥∗ = max   |u a − 𝑢∗ 𝑎 |. 

The u(a) are the m scalar components of x. d represents the distance between the 

vectors x(i) and x(j), given by the maximum difference in their respective scalar 

components. Note the j takes on all values, so the match provided when i = j will 

be counted (the subsequence is matched against itself). 

5. Define  

𝜙! 𝑟 = 𝑁 +𝑚 − 1 !! 𝑙𝑛!!!!!
!!! (𝐶!!(𝑟)). 

6. Calculate Approximate Entropy ApEn as  

ApEn(m, r)=𝑙𝑖𝑚!→![𝜙! 𝑟 − 𝜙!!! 𝑟 ]. 
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4.2 Sample Entropy (SampEn) 

 

Using the ApEn algorithm requires each template to contribute a defined nonzero 

probability. This is secured by permitting self-matching of each template. However, this 

makes ApEn a biased estimate, which indicates more similarity than is truly present for 

finite N (Pincus & Goldberger, 1994). An estimate of a statistic is biased if its expected 

value is not equal to the parameter it estimates. 

 

Sample entropy (SampEn) was developed to reduce the bias caused by self-matching. 

The idea to associate sample correction with entropy estimation, Sample Entropy 

(SampEn), comes from the work of Grassberger (1988). The name refers to the 

applicability to time series data sampled from a continuous process. Sample entropy, a 

modification of approximate entropy, is used extensively for assessing the complexity of 

a physiological time-series signal, thereby diagnosing a diseased state. It examines a 

time series for similar epochs and assigns a non-negative number to the sequence, with 

large values corresponding to more irregularity in the data, and more complexity in the 

system (Richman & Moorman, 2000). Richman and Moorman (2000) wrote 

“Physiological time-series analysis using approximate entropy and sample entropy,” 

which has become the most widely cited paper for Sample Entropy Algorithms (cited 

2168 times to present).  
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SampEn differs from ApEn in two ways. First, SampEn does not count self-matches. 

This is justified since entropy is a measure of the rate of information production, and in 

this context, comparing data with themselves is meaningless. Second, SampEn does not 

use a template-wise approach when estimating conditional probabilities. It only requires 

that one template find a match of length m+1, then it computes the logarithm of a 

probability associated with the time series as a whole (Al-Angari & Sahakian, 2007). 

 

The length of compared runs, which is represented as m, and effective filtering level, 

which is represented as r, are two input parameters that must be specified to compute 

ApEn. Given N the length of time series {u(i)},  Sample Entropy (SampEn) is the 

negative logarithm of the conditional probability that two sequences similar for m points 

remain similar at the next point, where self-matches are not included in calculating the 

probability. Thus, a lower value of SampEn also indicates more self-similarity in the 

time series (Richman & Moorman, 2000).  

  

Formally, given N data points from a time series {u(1), u(2), …, u(N)}, SampEn, 

calculated as follows (Richman & Moorman, 2000), was coded in MATLAB (see 

Appendix B): 

 

1. Fix length of compared runs (m) and effective filtering level (r). Although m and 

r are critical in determining the outcome of SampEn, no guidelines exist for 

optimizing their values. In principle, the accuracy and confidence of the entropy 
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estimate improve as the number of length m matches increases. The number of 

matches can be increased by choosing small m (short templates) and large r 

(wide tolerance). Typically, one chooses m=2, and r between 0.1 and 1 times the 

standard deviation of the original time series {u(i)}, as recommended by Pincus 

(2001). 

2. Form vector sequences of size m, xm(1), xm(2), …, xm(N-m+1) in 𝑅!, real m-

dimensional space defined by xm(i)= [u(i),u(i+1), ... , u(i+m-1)]. These vectors 

represent m consecutive x values starting with the ith point. 

3. Define the distance between vectors xm(i) and xm(j), d[xm(i), xm(j)], as the 

absolute maximum difference between their scalar components: 

𝑑 𝑥! 𝑖 , 𝑥! 𝑗 = 𝑚𝑎𝑥!!!,…,!!!( 𝑢 𝑖 + 𝑘 − 𝑢 𝑗 + 𝑘 ) 

4. For a give x(i), count the number of j (1≤ j ≤ N−m, j ≠ i), denoted as Bi, such 

that the distance between xm(i) and xm(j) is less than or equal to r. Then, for 

1≤ i ≤ N−m: 

𝐵!! 𝑟 =
1

(N−m− 1)𝐵! 

5. Define 𝐵!(𝑟) as: 

𝐵! 𝑟 =
1

𝑁 −𝑚 𝐵!! 𝑟
!!!

!!!
 

6.  Increase the dimension to m + 1 and calculate Ai as the number of xm+1(i) within 

r of xm+1(j), where j ranges from 1 to N – m (i ≠  j). Then, Am(r) is defined as: 

𝐴!! 𝑟 =
1

(N−m− 1)𝐴! 
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7. Set 𝐴!(𝑟) as: 

𝐴! 𝑟 =
1

𝑁 −𝑚 𝐴!! 𝑟
!!!

!!!
 

Thus, 𝐵!(𝑟)  is the probability that two sequences will match for m points, 

whereas 𝐴!(𝑟)  is the probability that two sequences will match for m + 1 points.  

8. Finally, SampEn can be defined as: 

𝑆𝑎𝑚𝑝𝐸𝑛 𝑚, 𝑟 = lim
!→!

{−ln  [
𝐴! 𝑟
  𝐵! 𝑟 ]} 

which is estimated by the statistic  

𝑆𝑎𝑚𝑝𝐸𝑛 𝑚, 𝑟,𝑁 = −ln  [
𝐴! 𝑟
  𝐵! 𝑟 ] 

 

4.3 Permutation Entropy (PEn) 

 

Permutation entropy was introduced in 2002 by Bandt and Pompe as a complexity 

measure for time series data based on a comparison of neighboring values. Their paper, 

“Permutation entropy: a natural complexity measure for time series,” has been cited 

more than 806 times until now.  

 

Roughly speaking, permutation entropy replaces the probabilities of length-L symbol 

blocks in the definition of Shannon entropy by the probabilities of length-L ordinal 

patterns, each pattern being a digest of the ups and downs of L consecutive elements of a 
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time series. Since its introduction, the permutation entropy algorithm, along with 

different tools based on ordinal patterns, has found a number of interesting applications. 

 

When quantifying complexity for a given time series {u(i)} that length is equal to T,, 

permutation entropy reflects the rank order of successive 

ui in sequences of length n and thus is defined as: 

𝐻(𝑛) = − 𝑝(𝜋)log  (𝑝(𝜋))
!!

!!!
 

The 𝑝(𝜋) represent the relative frequencies of the possible patterns of symbol sequences, 

termed permutations (see Fig. 1). This relative frequency is determined by 

𝑝 𝜋 =
#{𝑡|𝑡 ≤ 𝑇 − 𝑛, 𝑢!!!,… ,𝑢!!!   ℎ𝑎𝑠  𝑡𝑦𝑝𝑒  𝜋}

𝑇 − 𝑛 + 1  

The permutation entropy per symbol is given by 

ℎ(𝑛) = −
1

𝑛 − 1 𝑝(𝜋)log  (𝑝(𝜋))
!!

!!!
 

in order to compare permutation entropies with different n. Besides the normalization 

using n – 1, there are also other approaches (e.g., normalization with log2(n!) to get 0 ≤ 

ℎ! ≤ 1). 

 

PEn essentially measures information based on the occurrence or absence of certain 

permutation patterns of the ranks of values in a time series. To compute the PEn for a 

given time series {u(i)} of length T, following are seven steps listed in detail and in 

Appendix C (Bandt & Pompe, 2002): 
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1. Define the order of permutation n. That leads to the possible permutation patterns 

πj (j = 1, .., n!) which are built from the numbers 1, ..., n.  

2. Initialize i = 1 as the index of the considered time series {u(i)}i=1,...,T and the 

counter zj = 0 for each πj . 

3. Calculate the ranks of the values in the sequence ui, ..., ui+n−1 which leads to the 

rank sequence ri, ..., ri+n−1. The ranks are the indices of the values in ascending 

sorted order. 

4. Compare the rank sequence of step 3 with all permutations patterns and increase 

the counter of the equal pattern πk = ri, ..., ri+n−1 by one (zk = zk + 1). 

5. If i ≤ T − n then increase i by one (i = i + 1) and start from step 3 again. If i > T − 

n go to the next step. 

6. Calculate the relative frequency of all permutations πj by means of 𝑝(𝜋)! =

!!
!!
  as an estimation of their probability pj . 

7. Select all values of 𝑝(𝜋)!   greater than 0 (since empty symbol classes yield 0log0 

= 0) and calculate the permutation entropy by  

𝐻(𝑛) = − 𝑝(𝜋)log  (𝑝(𝜋))
!!

!!!
 

ℎ(𝑛) = −
1

𝑛 − 1 𝑝(𝜋)log  (𝑝(𝜋))
!!

!!!
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CHAPTER V 

PILOT COMPARATIVE STUDY AND RESULT 

 

For the pilot comparative study of proposed entropy algorithms, ten (10) cases were 

randomly selected from the twenty-two (22) real construction cases that Fernandez-Solis’ 

used for his study of chaos theories in building construction (Fernandez-Solis, 2013). All 

ten cases used Percent Plan Complete (PPC) to represent building construction 

performance. The original PPC reports for the selected pilot cases are presented in Table 

8 and Figure 7 in Chapter III.  These cases will be used for preliminary tests of the three 

(3) proposed Entropy Algorithms. The comparison of complexity measurement results 

from all the models, along with Lyapunov Exponent and Six Sigma, could provide not 

only initial results for further testing, but also some critical criteria for further simulation 

and comparative analysis.  

 

5.1 Six Sigma Analysis of Pilot Cases 

 

The Six Sigma approach was initiated in the early 1980s at Motorola, but it gained little 

attention until General Electric and AlliedSignal successfully adopted it in their 

organizations in the late 1990s. Because of its practical successes, the study and 

development of the Six Sigma method have been widely conducted in different fields.  

Numerous strategies, tools, techniques and principles have been invented; there are also 

plenty of different definitions of Six Sigma, each with its own point of emphasis. The 
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fundamental definition is provided by Harry and Schroeder (2000), who were the 

principal developers of the Six Sigma program at Motorola. They define Six Sigma as “a 

disciplined method of using extremely rigorous data gathering and statistical analysis to 

pinpoint sources of errors and ways of eliminating them.” On the basis of this definition, 

Six Sigma have been further developed from numerous perspectives, such as a strategic 

approach (Snee, 2000), a statistical measure and management philosophy (Chowdhury, 

2001; Pande et al., 2002), and a comprehensive and flexible system for achieving and 

maximizing business success (Pande et al., 2000). Among all these definitions, this study 

considers Six Sigma to be a statistical measure used to measure the performance of 

processes against anticipated plan, which is also known as a “technical” definition of Six 

Sigma compared to the business point of view (Kwak & Anbari, 2006).  

 

The statistical Six Sigma principle is a universal quality metric that measures the 

performance of specified process, which in this study is the building construction 

process. High sigma values indicate better processes with fewer numbers of defects, 

which would prevent the realization of expectations. A simplified Six Sigma Conversion 

Table that could be used in construction was summarized by Pheng and Hui (2004), as 

shown in Table 9. 
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Table 9 Simplified Sigma Conversion Table (Adapted from Pheng & Hui, 2004) 
Yield=Percentage of items achieve 

the anticipated plan 
Defects per million Opportunities 

(DPMO) 
Sigma 
Level 

30.9 690,000 1 
69.2 308,000 2 
93.3 66,800 3 
99.4 6,210 4 
99.98 320 5 
99.9997 3.4 6 
 

As there is no proven statistical rule for using Six Sigma analysis in the construction 

field, two different rules were set up in this study for the pilot comparison of ten cases in 

order to find their sigma levels and for further testing: I) if the Weekly PPC was larger 

than the mean of each case minus its standard deviation and less than the mean plus 

standard deviation, it would be considered as achieving the anticipated plan; II) if the 

Weekly PPC was larger than the average PPC of each case, it would be considered as 

achieving the anticipated plan. Figures 9 and 10 showcase the Six Sigma analysis for 

Case 1 based on different rules. These two rules were tested in the pilot cases, and one of 

them was selected for the study. 

 



 

 65 

 

Figure 9 Six Sigma Analysis for Case 1 based on Criterion I 
 

 

Figure 10 Six Sigma Analysis for Case 1 based on Criterion II 
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Following the analysis of Case 1, the same Six Sigma Analysis was conducted on the 

rest of the pilot cases. According to these two criteria, the sigma levels of each case are 

listed in the Table 10. 

 

Table 10 Six Sigma Analysis for Pilot Cases 

CASE Mean Standard 
Deviation 

Criteria I Criteria II 
Yield Sigma Level Yield Sigma Level 

1 55.98% 24.82% 70.00% 3 50.00% 2 
2 49.85% 21.52% 70.00% 3 60.00% 2 
3 60.95% 20.63% 80.00% 3 60.00% 2 
4 58.64% 14.79% 60.00% 2 60.00% 2 
5 63.57% 22.76% 40.00% 2 50.00% 2 
6 79.11% 16.13% 90.00% 3 70.00% 3 
7 74.80% 16.17% 70.00% 3 60.00% 2 
8 57.16% 17.80% 60.00% 2 50.00% 2 
9 51.87% 19.08% 40.00% 2 50.00% 2 
10 76.20% 18.73% 60.00% 2 60.00% 2 

 

According to Table 10, sigma levels for the ten pilot cases, based on both criteria, only 

offer a rough ranking for the performance level. Within each level, the performance 

evaluations for different cases are not significant. As presented in Figure 11, according 

to Six Sigma analysis of criterion I, Cases 1, 2, 3, 6, and 7 have the same Sigma Level. 

However, significantly different patterns for these cases are easily observed from their 

PPC metrics. Even the cases with the same yield percent (Cases 1, 2, and 7) take on 

different trends. As a result, it could be preliminarily concluded that Six Sigma as a 

statistical approach only picks up and ranks the projects for a wide range rather than 

reflecting fluctuation within this range. That is to say, the Six Sigma Statistical approach 
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is not a sensitive enough measurement for building construction performance and its 

complexity.  

 

 

Figure 11 PPC Metrics of Selected Cases with Same Sigma Level. 
 

From the ranked results based on the two predetermined criteria as shown in Table 10, 

the results based on criterion II were almost the same. The same statistical phenomenon 

becomes more obvious when the sample size increases. As a result, this criterion will be 

eliminated from the pilot study. Thus, the first criterion of Six Sigma Analysis was 

chosen for the following work.   
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5.2 Complexity Measurement of Pilot Cases  

 

To test the selected entropy models, each of the three entropy algorithms were used to 

measure the complexity of the ten pilot cases in turn. From the definitions and algorithm 

procedures discussed in Chapter IV, we specify the input time-series data source, which 

is each individual pilot case; each entropy model also contains several parameters 

required for the calculation. With different parameter set-ups, the measurement results 

should be different. However, there are no clearly defined selection principles for each 

parameter in the current research field. The pilot case study will also aim to test different 

parameter combinations for each proposed entropy algorithm.  

 

Approximate Entropy is first tested using the pilot cases, for which fixed length of 

compared runs (m) and effective filtering level (r) are the parameters required. The 

parameter combination tested in the pilot cases and the measurement results are listed in 

Table 11. Because it shares similar principles of calculation with Approximation 

Entropy, the idea and parameters required for Sample Entropy are the same, whose 

results are shown in Table 12. Permutation Entropy, measures complexity based on the 

pattern of the metric. For this reason, only the length of the compared unit is required for 

calculation. Its parameter test and calculation results are listed in Table 13.  
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Table 11 Complexity Measurement for Pilot Cases Using ApEn 
ApEn CASE 

1 
CASE 

2 
CASE 

3 
CASE 

4 
CASE 

5 
CASE 

6 
CASE 

7 
CASE 

8 
CASE 

9 
CASE 

10 

m=1, r=0.1*Std 0.3105 0.3629 0.3629 0.1719 0.1719 0.5015 0.3105 0 0.1719 0.0333 

m=1, r=0.2*Std 0.4609 0.4609 0.6483 0.2376 0.3105 0.5672 0.5554 0.1719 0.3105 0.0000 

m=1, r=0.5*Std 0.7338 0.4529 0.5825 0.3159 0.4501 0.7633 0.7633 0.6653 0.4501 0.3916 

m=1, r=Std 0.3943 0.5075 0.4627 0.2537 0.6326 0.4129 0.4047 0.4406 0.6326 0.2537 

*Std = Standard Deviation of each case 
 

Table 12 Complexity Measurement for Pilot Cases Using SampEn 
SampEn CASE 

1 
CASE 

2 
CASE 

3 
CASE 

4 
CASE 

5 
CASE 

6 
CASE 

7 
CASE 

8 
CASE 

9 
CASE 

10 

m=2, r=0.1*Std NaN NaN NaN NaN NaN NaN NaN NaN NaN NaN 

m=2, r=0.2*Std NaN NaN NaN Inf NaN Inf Inf NaN NaN Inf 

m=2, r=0.5*Std Inf 0.8473 0.6931 0.6931 1.0986 Inf Inf NaN 1.0986 0.9163 

m=2, r=Std 0.3567 0.5878 1.0986 0.3185 1.2528 0.2877 0.2231 0.4700 1.2528 0.3185 

*Std = Standard Deviation of each case 

 

Table 13 Complexity Measurement for Pilot Cases Using PEn 
PEn CASE 1 CASE 2 CASE 3 CASE 4 CASE 5 CASE 6 CASE 7 CASE 8 CASE 9 CASE 10 

n=2 0.6365 0.6870 0.6365 0.6870 0.6870 0.6365 0.6870 0.6870 0.6870 0.6365 

n=3 1.0822 1.4942 1.5596 1.5596 1.5596 1.3209 1.7329 1.3209 1.5596 1.4942 

n=4 1.7479 1.7479 1.9459 1.9459 1.9459 1.7479 1.9459 1.7479 1.9459 1.7479 

 

 

5.3 Lyapunov Exponent for Pilot Cases 

 

In current research about chaos and complexity, the Lyapunov exponent is also used to 

produce maps of complexity and to represent the complex levels of time series data. The 

algorithm chosen for complexity measurement on the basis of sensitivity to initial 

conditions of the specific dynamical system is called the Lyapunov exponent method 
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(Wolf et al., 1985). It provides a quantitative measure of sensitivity to initial conditions 

and is one of the most useful dynamical diagnostics for chaotic and complex systems. 

Based on a summary by Zeng, Eykholt and Peilke (1991), any system that contains at 

least one positive Lyapunov exponent can be defined as chaotic and complex.  

 

Because it is a dynamical and complex diagnostic developed and used before entropy 

algorithms, there are plenty of methods for calculating the Lyanupov Exponent. For this 

study, I apply the Maximal Lyapunov Exponent (or so called Largest Lyapunov 

Exponent) as the complex prediction and measurement method to compare with the 

proposed entropy algorithms (Kantz, 1994). Compared to the tradition Lyapunov 

Exponent calculation, this algorithm makes use of the statistical properties of the local 

divergence rates of nearby trajectories. As such, it does not depend on knowledge of the 

correct embedding dimension or on other parameters. The calculation procedures in 

order to find the Maximum Lyapunov were coded in MATLAB (see Appendix D). The 

Maximal Lyapunov Exponent for each pilot case is found in Table 14.  

 

Table 14 Maximal Lyapunov Exponent for Pilot Cases 
Case 1 2 3 4 5 6 7 8 9 10 

Maximal Lyapunov 
Exponent  0.3466 0.6838 0.5959 0.1238 0.7115 0.2101 0.1349 0.3475 0.7115 0.1201 
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5.4 Descriptive Analysis of Pilot Cases Study 

 

From the Six Sigma analysis, Sigma Levels for the ten pilot cases based on both criteria 

only offer a rough rank for performance level. Within each level, the performance 

evaluations for different cases are not significant. However, significantly different 

patterns for these cases are easily observed from their PPC metrics. As a result, it could 

be preliminarily concluded that Six Sigma analysis only picks up and ranks the projects 

across a wide range, rather than reflecting fluctuation within this range, which means the 

measured results are not sensitive to the pattern and fluctuation of the case.  That is to 

say, Six Sigma Statistical approach is not a sensitive enough measurement for analyzing 

building construction performance and its complexity. However, even though it has low 

sensitivity for complexity measurement, the rough ranking results from Six Sigma 

Analysis may still be used as a predetermined verification condition to test the proposed 

complexity measurement algorithms, as it has been proven and utilized in previous 

construction performance analyses.  

 

Both Approximate Entropy and Sample Entropy capture the dynamical level of 

performance or complex system from the perspective of information contained in each 

case. Their calculation procedures and required parameters also share some common 

principles. However, from their measurement results, ApEn works better for a limited 

amount of data points (only 10 numbers for each case), whereas SampEn does not 

provide precise results for a small number of comparisons and with less tolerance. In 
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addition, for ApEn, even the measured complexity results are sensitive to different cases 

(different number series), but there is still no unified rank based on the different input 

combinations, which are the compared template units and tolerance. This means that 

further tests with simulated cases with greater captured numbers are necessary.  

 

From Table 11, we see that all parameter combinations of ApEn are workable with the 

small numbers. For this reason, to get more sensitive results in the large sample size 

complexity measurement in the following analysis, we introduce a higher parameter 

criterion, which means a smaller tolerance (r=0.1*Std or r=0.2*Std). Sample Entropy 

(see Table 12) does not work well with a limited number of cases. In order to compare 

the complexity level among the cases and increase the sensitivity of this method, a small 

sample size requires that we use a wider tolerance. In addition, the workability of 

Sample Entropy, especially for the smaller tolerances, should also be further tested using 

a larger sample size.  

 

The Permutation Entropy algorithm measures entropy from a different perspective 

compared to ApEn and SampEn. It focuses on the pattern of the time-series data, rather 

than on the data itself. For example, the two matrices [4, 2, 8] and [2, 1, 4] have the same 

pattern but with different numbers. Based on this idea, the results of PEn show no 

different complexity levels for data with the same pattern of fluctuation. That is to say, 

for different time series, compared with Six Sigma Analysis, PEn is sensitive to 

fluctuation patterns, but not to data values.  
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The Maximal Lyanupov Exponent method is sensitive to both the pattern and value of 

time-series data. However, the differences among all the measurement methods are not 

as significant as with Sample Entropy, but they are still more significant than with 

Approximate Entropy.  

 

From the above discussion, some inferential conclusions are made: 

1. Compared with other complex performance measurement methods, Sample 

Entropy does not work well with small sample size; 

2.  The level of sensitivity for each methods: 

Six Sigma Analysis < PEn < SampEn = ApEn = Maximal Lyanupov Exponent. 

3. The significant levels among the measured complexity results for each methods: 

ApEn < Maximal Lyanupov Exponent < SampEn.  

 

In order to better understand the proposed entropy algorithms, we also checked and 

compared their results. Table 15 ranks the pilot cases from the most complex one (the 

hardest to be controlled) to the least complex one (could be easily controlled) using 

different models. Figure 12 plots the complexity measurement results based on different 

algorithms in a single chart. From both the figure and the table, we see that ranks are 

different based on different methods, as they are from different perspectives. The ranks 

based on PEn with different compared unit numbers are quite similar. In addition, the 
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rank based on Sample Entropy and the one based on Maximal Lyanupov Exponent are 

roughly the same (although not exactly same), which is worthy of further testing. 

 

Figure 12 Complexity Measurements for Each Pilot Case 
 

Table 15 Pilot Cases Rank by Proposed Methods 
Method Cases Rank from the Most Complex to the Least 

Six Sigma 9 5 8 4 10 7 1 2 3 6 
ApEn(m=1,r=0.5*Std) 3 10 6 1 5 8 4 7 2 9 

ApEn(m=1,r=Std) 3 4 1 9 8 2 7 6 5 10 
SampEn(m=2, r=Std) 5 9 3 2 8 1 4 10 6 7 

PEn (n=2) 7 4 5 9 8 2 3 10 6 1 
PEn (n=3) 7 4 5 9 3 2 10 8 6 1 
PEn (n=4) 7 4 5 9 3 2 10 8 6 1 

Maximal Lyapunov Exponent  5 9 2 3 8 1 6 7 4 10 
 

For measurement values, ApEn values are the same for cases sharing similar patterns 

and similar values. This is also seen in the SampEn and Maximal Lyanupov Exponent 

methods. For example, as shown in Figure 13, pilot Case 5 and Case 9 have similar 

weekly PPC reports, which means they have a similar performance pattern. Each 
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individual algorithm reflects the same complexity level for similar construction 

performance.  

  

 

Figure 13 PPC Report and Complexity Measurement of Case 5 and 9 
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5.5 Normalization of Complexity Measurements and Analysis 

 

For the different entropy algorithms based on different principles, or for the same 

algorithms with different parameters, it makes no sense to compare their measured 

results directly. Normalization would be a necessary next step before comparing results 

from different proposed methods. In this study, normalization of ratings or 

measurements means adjusting values measured on different scales or different 

algorithms to a common scale. In order to normalize different measurements from the 

proposed entropy algorithms, each group of complexity measurements will be divided 

by the maximal measurement in the group in order to get the common scale, which 

ranges from 0 to 1. The normalized results of the pilot case analysis are listed in Table 

16 and plotted in Figure 14.  

 

Table 16 Normalized Results of Complexity Measurement for Pilot Cases 
Proposed Methods CASE 

1 
CASE 

2 
CASE 

3 
CASE 

4 
CASE 

5 
CASE 

6 
CASE 

7 
CASE 

8 
CASE 

9 
CASE 

10 

ApEn(r=0.1*Std) 0.6192 0.7236 0.7236 0.3428 0.3428 1.0000 0.6192 0.0000 0.3428 0.0663 

ApEn(r=0.2*Std) 0.7110 0.7110 1.0000 0.3665 0.4790 0.8749 0.8567 0.2652 0.4790 0.0000 

ApEn(r=0.5*Std) 0.9613 0.5933 0.7631 0.4138 0.5896 1.0000 1.0000 0.8715 0.5896 0.5130 

ApEn(r=Std) 0.6233 0.8022 0.7314 0.4010 1.0000 0.6528 0.6397 0.6966 1.0000 0.4010 

SampEn(r=Std) 0.2847 0.4692 0.8770 0.2542 1.0000 0.2296 0.1781 0.3752 1.0000 0.2542 

PEn (n=2) 0.9266 1.0000 0.9266 1.0000 1.0000 0.9266 1.0000 1.0000 1.0000 0.9266 

PEn (n=3) 0.6245 0.8623 0.9000 0.9000 0.9000 0.7623 1.0000 0.7623 0.9000 0.8623 

PEn (n=4) 0.8982 0.8982 1.0000 1.0000 1.0000 0.8982 1.0000 0.8982 1.0000 0.8982 
Maximal Lyapunov 

Exponent  0.4872 0.9610 0.8374 0.1741 1.0000 0.2953 0.1896 0.4883 1.0000 0.1687 

Note: All ApEn in the form, compared runs m = 1; compared runs (m) for Sample is equal to 2 in the form.  
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Figure 14 Normalized Complexity Measurements based on Proposed Methods for Pilot 
Cases 

  

From Figure 14, we verify the conclusion made on the basis of the inferential analysis of 

the complexity measurements of each proposed method. Complexity measurements 

based on Permutation Entropy are not significant, and are mostly between 0.8 to 1; 

complexity ranks of the pilot cases based on Permutation Entropy also differ from the 

other proposed methods. The complexity ranks for pilot cases based on Approximate 

Entropy, Sample Entropy and the Maximal Lyapunov Exponent are similar to each other; 

they all rank Cases 5 and 9 as the most complex pilot cases. In addition, we see, for most 

of the cases, complexity measurements based on both Sample Entropy and the Maximal 

Lyapunov Exponent are pretty close.  
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5.6 Conclusion  

 

Based on the above analysis of results from the pilot cases study, the result and 

workability of each proposed entropy algorithms are summarized in Table 17. The 

results based on Six Sigma Analysis may be used as verification for the other proposed 

methods, because it only provides a rough ranking. Except for Permutation Entropy and 

Sample Entropy with narrow tolerance, which do not work for small sample size in close 

performance scenarios, the rest of the proposed algorithms are all workable for the pilot 

cases.   

 

Table 17 Workability of Proposed Algorithms for Pilot Cases 
Proposed Algorithms Workability 

(with Sample Size 10) Description Example 

ApEn with Small Tolerance ApEn(m=1, r=0.1*Std); ApEn(m=1, r=0.2*Std) Yes 

ApEn with Large Tolerance ApEn(m=1, r=0.5*Std); ApEn(m=1, r=1*Std) Yes 

SampEn with Small Tolerance SampEn(m=2, r=0.1*Std);  
SampEn(m=2, r=0.2*Std) No 

SampEn with Large Tolerance SampEn(m=2, r=0. 5*Std);  
SampEn(m=2, r=1*Std) Yes 

PEn PEn (n=2); PEn (n=3) No 

Maximal Lyapunov Exponent  Yes 

Six Sigma Analysis  Yes 

 

Even though PPC is a comprehensive parameter to indicate the performance of a 

building construction project, it is still in its early stages. Among all construction 

projects and contractors, even though there are an increasing number adapting Lean 

Construction philosophy and methods, only a few have kept a complete PPC record for 
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their work. The limited number of pilot cases are a direct result of this situation. 

However, with further simulation in the following chapters, these pilot cases and their 

simulated scenarios may still provide plenty of worthy conclusions for this advanced 

research of complexity measurement in building construction and for future studies.  
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CHAPTER VI 

SIMULATION AND COMPARATIVE ANALYSIS  

 

Pilot cases provide a limited number for complexity analysis in building construction 

systems. In order to test the proposed entropy algorithms in different scenarios and to 

make sure the proposed quantitative measuring model could be accepted in real 

construction work, a Monte Carlo simulation was used to generate more random 

numbers for each pilot case and to simulate different performance scenarios of the pilot 

cases. Based on these simulated cases, the complexity of construction could be measured 

and the entropy algorithms could be further compared.   

 

At this stage, two rounds of simulation were conducted by MATLAB to generate more 

random numbers based on the pilot cases for the purpose of representing different 

circumstances in building construction performance so as to further compare the 

proposed entropy algorithms. The first round of simulations followed the same track of 

each pilot case to produce more random numbers for each entropy model based on 

sample size. Then, the second round of simulations provided each single pilot case 

different performance scenarios to test the performance of selected entropy algorithms 

and to determine how the measured results represented the performance change.  
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6.1 Simulation Round I and Its Result Analysis 

 

The first round simulation generated more random numbers, following the same pattern 

of each pilot case, to test the workability of proposed entropy models in real complex 

long-term building construction systems. It also tested the workability of proposed 

entropy models with different sample sizes.  

 

6.1.1 Simulation Method and Simulated Results 

 

The first round of simulation generated additional random numbers based on the same 

pilot case pattern, because most of the entropy algorithms suggest using larger samples 

sizes to achieve stable performance. Nineteen (19) different probability distribution 

scenarios were tested for each pilot case in order to find the specific pattern with the 

highest fitness to generate random numbers.  

 

Not only were common probability distributions (e.g., normal distribution) tested, other 

special probability distributions were tested in order to find the right pattern for each 

case with the highest fitness. Probability distributions, including Beta, Birnbaum-

Saunders, Burr, Exponential, Extreme Value, Gamma, Generalized Extreme Value, 

Generalized Pareto, Inverse Gaussian, Log-Logistic, Logistic, Lognormal, Nakagami, 

Non-parametric, Normal, Rayleigh, Rician, t Location-Scale, and Weilbull, were tested 

for each pilot case. Taking Case 1 as an example, nineteen (19) probability distributions 
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and their relative fitness are listed in Table 18. From the results, we see that Beta 

Distribution has the largest log-likelihood for pilot Case 1; and random numbers were 

generated for case 1 based on Beta Distribution.  

 

Table 18 Probability Distribution and Likelihood for Case 1 
Probability Distribution  Log Likelihood Probability Distribution  Log Likelihood 
Beta 0.9239 Logistic 0.1697 
Birnbaum-Saunders -1.6250 Lognormal -1.6772 
Burr 0 Nakagaml -0.0436 
Exponential -4.1987 Non-parametric 0.1076 
Extreme Value 0.3215 Normal 0.2476 
Gamma -0.6968 Rayleigh -0.2406 
Generalized Extreme Value 0.5802 Rician 0.3590 
Generalized Pareto 0 t Location-Scale 0.2744 
Inverse Gaussian -1.8040 Weilbull 0.1897 
 Log-Logistic -1.4851   
 

According to the probability distribution pattern with the highest fitness, 50, 100 and 200 

more numbers will be generated for each case for further comparative analysis of the 

proposed entropy algorithms. The first run (I-A) generated 50 more random numbers; 

each case then had 60 numbers total. The second run (I-B) generated 50 more random 

numbers than in Run I-A, making each case have 110 numbers total. The last run, which 

is Run I-C, generated 100 more random numbers than with Run I-B; each case then had 

210 numbers total in the end. Each simulated case was tested by using the proposed 

entropy algorithms along with Six Sigma Analysis and the Maximal Lyapunov Exponent.  
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6.1.2 Descriptive Analysis of Round I Simulation and Comparison 

In order to gain a better understanding of different complexity measurement models, the 

comparative analysis of the measured results and each algorithm were compared from 

two perspectives. Entropy algorithms were compared with each other in the same run 

and they were also compared for the same case across different runs. As most of the 

cases possessed similar probability distributions, the sigma level of the cases became 

ever closer while the sample size increased. As a result of this, for simulated cases in 

Run I, only proposed entropy algorithms and Maximal Lyapunov Exponent were 

compared and analyzed.  

Run I-A 

In Run I-A, each case had 60 weekly PPC values to represent its long-term performance. 

Proposed entropy algorithms with different parameter combinations were used to 

measure the complexity of its performance. Along with the results of Maximal 

Lyapunov Exponent, the measured results for Run I-A are listed in Table 19. For each 

individual entropy algorithm, the complexity level of each case increased with much 

stricter parameter selection. These stricter selections of parameters included low 

tolerance for ApEn and Sample, and more units in the compared template for PEn. As 

illustrated in Figure 15, when the tolerance widened (from 0.1 to 0.2 times the standard 

deviation), the cases became less complex. 
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Table 19 Complexity Measurements for Simulated Cases Round I Run A (I-A) 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

1 1.3544 1.1998 Inf 1.9810 1.3782 0.7229 0.6861 1.7400 1.5519 

2 1.4923 1.1835 1.3863 2.0794 1.4553 0.6867 0.6861 1.7016 1.6206 

3 1.4742 1.1436 Inf Inf 1.2448 0.6162 0.6815 1.7512 1.4418 

4 1.4581 1.2354 Inf 1.9459 1.3365 0.5050 0.6919 1.7789 1.5576 

5 1.5292 1.2652 Inf 1.8718 1.2104 0.7895 0.6919 1.7855 1.4652 

6 1.3378 1.1925 Inf 2.5123 1.1680 0.5863 0.6896 1.7501 1.3570 

7 1.5191 1.1497 Inf 2.0794 1.3618 0.6088 0.6930 1.7646 1.4690 

8 1.6015 1.2995 Inf 1.7918 1.3257 0.6113 0.6919 1.7729 1.6958 

9 1.5350 1.2205 Inf 2.8904 1.1827 0.7223 0.6919 1.7533 1.7302 

10 1.4713 1.2195 Inf 2.4423 1.0684 0.4796 0.6896 1.7759 1.5394 

 

 

Figure 15 Complexity Measurement for Simulated Cases Using ApEn 
 

From the results listed in Table 19, we concluded that the narrower tolerance of Sample 

Entropy would not work well with a sample size of approximately 50. Plotting all the 
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were not significantly different based on each method, especially for Permutation 

Entropy. Because each method has its own perspective, similar cases were ranked 

differently. However, the ranks of the cases based on Sample Entropy is still similar to 

the rank based on Maximal Lyapunov Exponent, as observed in the pilot case analysis.   

 

Figure 16 Complexity Rank Based Proposed Methods 
 

Run I-B 
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were tested in Run I-B again. Their results are shown in Table 20. From the horizontal 

comparison of different methods in the single run, we see that stricter parameter 

selections resulted in higher complexity levels for the same case using the same entropy 

algorithm. For ApEn, in Figure 17, we see that the complexity measurement increased 

when we chose smaller tolerance. For SampEn in Figure 18 (more than 100 numbers), a 

narrower tolerance provided precise complexity measurements, while wider tolerances 

became less sensitive to similar data patterns. This lower sensitivity was also found in 

the measurement of PEn. 

 

Table 20 Complexity Measurement for Simulated Cases Round I Run B (I-B) 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

1 1.7446 1.6203 3.2958 2.0541 1.3083 0.6939 0.6880 1.7658 1.8105 

2 1.7828 1.6626 1.5581 1.9299 1.2144 0.6817 0.6880 1.7270 1.6504 

3 1.7710 1.6593 Inf 3.4812 1.3194 0.6573 0.6911 1.7824 1.7661 

4 1.7256 1.642 2.6391 1.8971 1.3031 0.5715 0.6921 1.7788 1.686 

5 1.6644 1.6288 2.6391 2.5200 1.3297 0.7246 0.6911 1.7786 1.7015 

6 1.6593 1.6141 3.2189 1.9924 1.1109 0.5744 0.6921 1.7658 1.6547 

7 1.7393 1.6607 Inf 2.2900 1.3427 0.6571 0.6921 1.7845 1.9201 

8 1.7086 1.5974 3.0910 1.9889 1.3463 0.6104 0.6931 1.7768 1.6707 

9 1.8049 1.7151 2.4849 2.5337 1.2605 0.7128 0.6928 1.7866 1.8773 

10 1.7330 1.6997 3.0445 1.7819 1.0420 0.5427 0.6931 1.7821 1.6914 
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Figure 17 Complexity Measurement for Simulated Cases Run I-B Using ApEn 
 

 

 

 

 

 

 

Figure 18 Complexity Measurement for Simulated Cases Run I-B Using SampEn 
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For further analysis, we plotted the measurement results with the stricter criteria, along 

with the results of Maximal Lyapunov Exponent (see Figure 19) for an intuitive 

comparison. As shown in the chart, Sample Entropy with a narrower tolerance was 

sensitive to the similar data patterns of larger sample sizes, compared to Approximate 

Entropy and Permutation Entropy. The rank fluctuation based on Sample Entropy is also 

similar to the rank based on Maximal Lyapunov Exponent as plotted in Figure 19. 

 

 

 

 

 

 

 

 

Figure 19 Complexity Rank of Run I-B based on Proposed Methods 
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algorithms with different parameter combinations and Maximal Lyapunov Exponents 

were tested in Run I-C again. The results are shown in Table 21. Based on the horizontal 

comparison of different methods in the last run of the first round simulation, for each 

specific entropy model, stricter parameter selections resulted in higher complexity levels 

for the same case.  

 

For ApEn, in Figure 20, we see that the complexity measurement increased for the same 

case when we chose smaller tolerances. However, with the large sample size, actually 

most of the simulated cases followed a similar pattern. As a result of this, we see that the 

ApEn complexity measurement for these cases is more or less the same. For example, 

the complexity measurement based on Approximate Entropy Model, with m=1 and r= 

0.1 times the standard deviation of the sample, falls within the range of (1.95, 2.1). For 

SampEn in Figure 21, with a larger sample size, it actually worked better than with small 

sample sizes, like in the pilot cases and in the first run of Round I simulation. With a 

narrower tolerance, it provided precise complexity measurements, while wider 

tolerances became less sensitive to similar data patterns just like with ApEn. This 

character of less sensitivity could still be found in the measurement of PEn. 
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Table 21 Complexity Measurement for Simulated Cases Round I Run C (I-C) 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

1 2.0084 1.9585 3.0204 2.3820 1.3298 0.6823 0.6906 1.7758 1.9721 

2 1.9710 1.9003 2.2900 1.9763 1.3379 0.6847 0.6890 1.7657 2.0150 

3 1.9929 1.8861 2.9444 2.0422 1.2550 0.6200 0.6912 1.7842 2.1142 

4 1.9952 1.9250 2.7344 2.0857 1.2483 0.6269 0.6922 1.7860 1.8944 

5 2.0690 1.9480 3.4177 2.2336 1.3074 0.6794 0.6930 1.7904 2.0274 

6 2.0097 1.9064 2.4532 2.1053 1.2274 0.6337 0.6906 1.7754 2.0757 

7 2.0945 1.9959 2.7568 2.2274 1.2876 0.6585 0.6930 1.7911 2.1029 

8 2.0252 1.8897 2.8332 1.9027 1.1805 0.5870 0.6930 1.7849 1.9440 

9 2.0322 1.9213 2.5953 2.0541 1.3184 0.6969 0.6918 1.7787 2.0932 

10 2.0346 1.9232 2.6288 1.8142 1.0276 0.5423 0.6929 1.7843 1.9983 

 

 

 

 

 

 

 

 

 

 

Figure 20 Complexity Measurement for Simulated Cases Run I-C Using ApEn 
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Figure 21 Complexity Measurement for Simulated Cases Run I-C Using SampEn 
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comparison. As shown in the chart, Sample Entropy with a narrower tolerance is 

sensitive to the similar data pattern with larger sample sizes compared with Approximate 

Entropy, Permutation Entropy and Maximal Lyapunov Exponent.  

 

 

 

 

 

 

 

Figure 22 Complexity Rank of Run I-C based on Proposed Methods 
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Longitudinal Comparison of Complexity Measurements for Single Case in Three 

Different Runs 

 

From the horizontal comparison of complexity measurements of the ten simulated cases 

in the same run, we note that with the stricter parameter selection, proposed entropy 

algorithms became more sensitive, even for the cases with similar probability 

distribution patterns. However, with the larger sample size, most of the pilot cases 

started to show a similar pattern in the complexity measurement results. Most of the 

proposed entropy algorithms began to fall within a small range, while only the Sample 

Entropy with narrow tolerance still provided precise complexity measurements to tell the 

difference among those cases. However, Approximate Entropy or Sample Entropy with 

wider tolerances worked better for the smaller sample size.  

 

For further analysis and comparison of the proposed entropy algorithms, they were also 

compared longitudinally for the same case with a different sample size. In order to 

conduct this further comparison, we randomly chose Case 2 as an example to illustrate 

the analysis procedure and results; for other cases, the analysis procedure and results are 

the same.  

 

The complexity measurement results for Case 2 in three different runs are presented in 

Table 22. From the results, one can conclude that in the runs with stricter parameter 
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selection criteria (narrower tolerance or more units in the compared template), higher 

complexity measurements are obtained. For the Entropy Algorithms, especially the 

Sample Entropy, the measurement results became more sensitive with the stricter 

parameters.  

 

Table 22 Complexity Measurements for Case 2 in Different Simulated Runs 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

Case 2-A 1.4923 1.1835 1.3863 2.0794 1.4553 0.6867 0.6861 1.7016 1.6206 

Case 2-B 1.7828 1.6626 1.5581 1.9299 1.2144 0.6817 0.688 1.727 1.6504 

Case 2-C 1.9710 1.9003 2.2900 1.9763 1.3379 0.6847 0.6890 1.7657 2.0150 

 

From the data in Table 22, we also checked the complexity track of each case with 

different simulated sample sizes. For Case 2, the three different simulated PPC values 

are plotted in Figure 23. The latter run of each case, based on its previous run to generate 

more random numbers, follows the same probability distribution pattern.  

 

Figure 23 Weekly PPC Record for Case 2 in Three Simulated Run 
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Figure 24 Complexity Measurements of Simulated Case 2 Using ApEn 
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sample, the complexity measurement was almost the same for the three runs. From the 

measurement results for PEn, shown in Figure 26, the lower sensitivity was also found.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25 Complexity Measurements of Simulated Case 2 Using SampEn 
 

 

 

 

 

 

Figure 26 Complexity Measurements of Simulated Case 2 Using PEn 
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 In the end, with the Maximal Lyapunov Exponent method (see Figure 27), the case’s 

complexity level also increased with the generation of random numbers.  

 

 

 

 

 

 

 

Figure 27 Complexity of Simulated Case 2 ranked by Maximal Lyapunov Exponent 
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6.1.3 Normalization of Complexity Measurements in Round I Simulation 

 

As mentioned in the pilot cases analysis, directly comparing the complexity 

measurements based on different entropy algorithms is not an appropriate perspective. 

To overcome this problem, normalization was conducted in order to compare different 

entropy complexity results. The method we used to normalize the measurements is the 

one we used and tested in the pilot cases analysis, which is to divide the maximal 

measurement from each group of results.  

 

The normalized complexity measurements for simulation Run I-A are listed in Table 23, 

and plotted in Figure 28. Permutation Entropy results are the least significant, while the 

results based on Sample Entropy are the most significant. Except for Case 9, the 

complexity trend based on Sample Entropy and the Maximal Lyapunov Exponent are 

similar. All of these verified the conclusions we found in the previous analysis of Run I-

A. 
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Table 23 Normalized Complexity Measurements for Simulation Run I-A 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal Lyapunov 

Exponent r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

1 0.8457 0.9233 0.9470 0.9156 0.9900 0.9745 0.8969 

2 0.9318 0.9107 1.0000 0.8698 0.9900 0.9530 0.9367 

3 0.9205 0.8800 0.8554 0.7805 0.9834 0.9808 0.8333 

4 0.9105 0.9507 0.9184 0.6396 0.9984 0.9963 0.9002 

5 0.9549 0.9736 0.8317 1.0000 0.9984 1.0000 0.9002 

6 0.8353 0.9177 0.8026 0.7426 0.9951 0.9802 0.7843 

7 0.9485 0.8847 0.9358 0.7711 1.0000 0.9883 0.8490 

8 1.0000 1.0000 0.9109 0.7743 0.9984 0.9929 0.9223 

9 0.9585 0.9392 0.8127 0.9149 0.9984 0.9820 1.0000 

10 0.9187 0.9384 0.7341 0.6075 0.9951 0.9946 0.8897 

 

 

Figure 28 Normalized Results based on Different Proposed Methods for Simulation I-A 
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Maximal Lyapunov Exponent. The rank fluctuation based on Sample Entropy is also 

similar to the rank based on Maximal Lyapunov Exponent. All of these statements prove 

the previous conclusions based on the descriptive analysis of Run I-B results.   

 

Table 24 Normalized Complexity Measurements for Simulation Run I-B 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

1 0.9666 0.9447 N/A 0.5901 0.9718 0.9576 0.9926 0.9884 0.9429 

2 0.9878 0.9694 N/A 0.5544 0.9020 0.9408 0.9926 0.9666 0.8595 

3 0.9812 0.9675 N/A 1.0000 0.9800 0.9071 0.9971 0.9976 0.9198 

4 0.9561 0.9574 N/A 0.5450 0.9679 0.7887 0.9986 0.9956 0.8781 

5 0.9222 0.9497 N/A 0.7239 0.9877 1.0000 0.9971 0.9955 0.8862 

6 0.9193 0.9411 N/A 0.5723 0.8252 0.7927 0.9986 0.9884 0.8618 

7 0.9637 0.9683 N/A 0.6578 0.9973 0.9068 0.9986 0.9988 1.0000 

8 0.9466 0.9314 N/A 0.5713 1.0000 0.8424 1.0000 0.9945 0.8701 

9 1.0000 1.0000 N/A 0.7278 0.9363 0.9837 0.9996 1.0000 0.9777 

10 0.9602 0.9910 N/A 0.5119 0.7740 0.7490 1.0000 0.9975 0.8809 

 

Figure 29 Normalized Results based on Different Proposed Methods for Simulation I-B 

0 

0.2 

0.4 

0.6 

0.8 

1 

1.2 

0 1 2 3 4 5 6 7 8 9 10 

Normalized Results based on Different Proposed Methods for Simulation 
Run I-B 

ApEn (m=1) 

SampEn (m=2) 

PEn 

Maximal Lyapunov Exponent 



 

 100 

 

The normalized complexity measurements for simulation Run I-C are listed in Table 25, 

and plotted in Figure 30. As in Figure 22 in the previous analysis of simulation Run I-C, 

the normalized complexity measurements of simulation Run I-C also shows that the 

Sample Entropy with narrower tolerance offers the most significant results for a similar 

data pattern with larger sample size, as compared with Approximate Entropy, 

Permutation Entropy and Maximal Lyapunov Exponent. 

 

Table 25 Normalized Complexity Measurements for Simulation Run I-C 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

1 0.9589 0.9813 0.8838 1.0000 0.9939 0.9791 0.9965 0.9915 0.9328 

2 0.9410 0.9521 0.6700 0.8297 1.0000 0.9825 0.9942 0.9858 0.9531 

3 0.9515 0.9450 0.8615 0.8573 0.9380 0.8897 0.9974 0.9961 1.0000 

4 0.9526 0.9645 0.8001 0.8756 0.9330 0.8996 0.9988 0.9972 0.8960 

5 0.9878 0.9760 1.0000 0.9377 0.9772 0.9749 1.0000 0.9996 0.9589 

6 0.9595 0.9552 0.7178 0.8838 0.9174 0.9093 0.9965 0.9912 0.9818 

7 1.0000 1.0000 0.8066 0.9351 0.9624 0.9449 1.0000 1.0000 0.9947 

8 0.9669 0.9468 0.8290 0.7988 0.8824 0.8423 1.0000 0.9965 0.9195 

9 0.9703 0.9626 0.7594 0.8623 0.9854 1.0000 0.9983 0.9931 0.9901 

10 0.9714 0.9636 0.7692 0.7616 0.7681 0.7782 0.9999 0.9962 0.9452 
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Figure 30 Normalized Results based on Different Proposed Methods for Simulation I-C 
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normalized complexity measurements based on different proposed methods, as well. The 

workability of dealing with different sample sizes for each method is summarized in 

Table 26.  From the summary, we conclude that Approximate Entropy and the Maximal 

Lyapunov Exponent only work well for sample sizes from 10 to 100. Only Sample 
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Entropy works for both small and large sample sizes, with the only change being the 

choice of appropriate tolerance. The larger the sample size , the narrower the tolerance 

should be for Sample Entropy. One other interesting outcome is that the rank based on 

Sample Entropy is similar to the rank based on the Maximal Lyapunov Exponent; both 

of these two methods could be used to obtain the complexity measurements.  

 

Table 26 Proposed Methods’ Workability of Dealing with Different Sample Sizes 

Proposed Algorithms Workability for Different Sample Size 
60 110 210 Increasing Size 

ApEn with Small Tolerance Yes No No Yes 

SampEn with Small Tolerance No Yes Yes Yes 

SampEn with Large Tolerance Yes No No No 

PEn No No No No 

Maximal Lyapunov Exponent Yes Yes No Yes 

Six Sigma Analysis No No No No 

 

 

6.2 Simulation Round II and Its Results Analysis 

 

The first round simulation tested the workability and sensitivity of each proposed 

entropy algorithm based on different sample sizes of similar performance that resulted 

from three runs of Monte Carlo simulation for each pilot case. For each case, all random 

numbers were generated based on the same performance pattern, which was decided by 

the PPC probability distribution in the process of simulation. The second round of 

simulation generated more performance patterns to further test the proposed entropy 

algorithms. In round two simulations, the three runs (II-A, II-B, and II-C) were 
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conducted: with additional random numbers (50, 100, and 200, respectively). However, 

in each run, the measurement results were not compared across different cases, instead, 

they were compared based on different performance patterns for the same case. For each 

pilot case, four different simulated scenarios were generated. Simulated random numbers 

fell in the range of (Mean-3*Standard Deviation, Mean-3*Standard Deviation) for 

scenario a of each case, (Mean-1.5*Standard Deviation, Mean-1.5*Standard Deviation) 

for scenario b, (Mean-0.5*Standard Deviation, Mean-0.5*Standard Deviation) for 

scenario c and (Mean-0.25*Standard Deviation, Mean-0.25*Standard Deviation) for the 

last scenario, which is scenario d. This time, the proposed entropy algorithms, along with 

Six Sigma Analysis and the Maximal Lyapunov Exponent, were tested on each scenario.  

 

6.2.1 Simulation Method and Simulated Results 

 

In round two simulation, three run will be conducted like in previous simulation that Run 

II-A with 50 more number, Run II-B with 100 more number and Run II-C with 200  

number. However, in each run, the measurement results with not be compared across 

different cases, they will be compared based on different performance patterns for the 

same case. And for each pilot case, four different simulated scenarios will be generated. 

Simulated random numbers will fall in the range of (Mean-3*Standard Deviation, Mean-

3*Standard Deviation) for scenario a of each case, (Mean-1.5*Standard Deviation, 

Mean-1.5*Standard Deviation) for scenario b, (Mean-0.5*Standard Deviation, Mean-

0.5*Standard Deviation) for scenario c and (Mean-0.25*Standard Deviation, Mean-
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0.25*Standard Deviation) for the last scenario, which is scenario d. For scenario a, if the 

lower boundary of the range of (Mean-3*Standard Deviation, Mean-3*Standard 

Deviation) was less than 0%, it was replaced by 0%; if the upper boundary was larger 

than 100%, if was replaced by 100% to make sure the PPC report would be no greater 

than 100% or less than 0%. Taking Pilot Case 1 as an example, the four different 

scenarios generated in Run A of simulation Round II are shown in Figure 31.  

 

Figure 31 Four Different Scenarios of PPC Report for Case 1 
 

This time, the proposed entropy algorithms along with Six Sigma Analysis and the 

Maximal Lyapunov Exponent were tested for each scenario. The parameter selections 

for ApEn, SampEn and PEn will be the same with parameters used in simulation Round 
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SampEn (m=2, r=0.2*Std), SampEn (m=2, r=0.5*Std), SampEn (m=2, r=1*Std), PEn 

(n=2) and PEn (n=3).  

 

6.2.2 Descriptive Analysis of Round II Simulation and Comparison  

 

In order to have a better understanding of all three proposed entropy algorithms, the 

measured results and each algorithm were compared from two perspectives. The entropy 

algorithms were compared with each other in the same run for the same case with 

different scenarios, and they were also compared for the same case and same scenario 

across different runs. From the comparative results, the ability to determine different 

construction performance levels were tested for each entropy algorithm, as was their 

ability to deal with different sample sizes.  

 

Run II-A 

 

In Run A of the second round simulation, each simulated pilot case contained 60 weekly 

PPC values to represent its long-term performance. In addition, compared with Run A in 

simulation Round I, each case had four different performance scenarios to simulate 

different project circumstances.  

 

Six Sigma Analysis was first applied to each simulated case to rank the four simulated 

performances. The criteria of Six Sigma Analysis was the same as the criteria discussed 
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in Chapter 5.1, which was the mean of each pilot case minus its standard deviation and 

that mean plus its standard deviation. The sigma levels of four scenarios for each pilot 

case are shown in Table 27 as the tested ranks for the measurement results of the 

proposed entropy algorithms.  

 

The proposed entropy algorithms with different parameter combinations were used to 

measure the complexity of each scenario, and then compared with the other scenarios for 

the same case. Along with the results of the Maximal Lyapunov Exponent, the measured 

results for Run II-A are listed in Table 28.  

 

Table 27 Six Sigma Analysis for Simulated Cases Round II Run A (II-A) 
Case  Scenario a Scenario b Scenario c Scenario d 

Yield 68.33% 90.00% 95.00% 95.00% 
Sigma Level  3 3 4 4 

 

Table 28 Complexity Measurement for Simulated Cases Round II Run A (II-A) 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

1 

a 1.4957 1.2465 Inf 2.7726 1.4469 0.6430 0.6930 1.7906 1.7054 

b 1.2989 1.2451 2.2687 2.0794 1.2148 0.5318 0.6930 1.7871 1.5615 

c 1.2889 1.1104 1.6946 1.8068 0.6931 0.1837 0.6896 1.7538 1.3306 

d 1.1690 0.8972 1.6094 0.9957 0.2586 0.0843 0.6861 1.7401 1.2030 

2 

a 1.3924 1.2726 Inf Inf 1.3321 0.6713 0.6930 1.7869 1.6699 
b 1.3603 1.1764 2.3026 1.7228 1.2969 0.6486 0.6930 1.7852 1.5363 
c 1.2894 1.1521 2.1972 1.4271 0.7510 0.2110 0.6896 1.7745 1.5150 
d 1.1825 0.8176 1.1820 0.7785 0.2049 0.0584 0.6896 1.7322 1.4793 
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Table 28 Continued 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

3 

a 1.4417 1.2643 Inf 2.9444 1.4412 0.6401 0.6930 1.7852 1.6756 
b 1.4286 1.2338 Inf 1.5686 1.1907 0.6194 0.6930 1.7888 1.4432 
c 1.1680 1.1756 Inf 1.3695 0.6057 0.1263 0.6896 1.7759 1.3792 
d 1.0685 0.9584 1.4854 0.9589 0.2286 0.0165 0.6815 1.7121 1.1976 

4 

a 1.4904 1.2363 Inf 2.3514 1.2062 0.6101 1.0101 1.0564 1.4588 
b 1.3569 1.1610 Inf 2.1203 0.8400 0.3662 1.0000 1.0137 1.4214 
c 1.2183 1.1750 2.2513 1.4553 0.6190 0.2470 0.9950 0.9989 1.4088 
d 1.1258 0.9087 1.5294 0.9163 0.2657 0.0484 0.9850 0.9589 1.2390 

5 

a 1.4178 1.2117 Inf 1.8971 1.1486 0.6553 0.6930 1.7602 1.7584 
b 1.3287 1.0830 Inf 1.2040 1.1415 0.5048 0.6930 1.7852 1.4845 
c 1.2870 1.1061 Inf 1.4321 0.6103 0.1756 0.6815 1.7307 1.6248 
d 1.2408 0.8691 1.7148 0.9330 0.2222 0.0498 0.6930 1.7836 1.2057 

6 

a 1.4432 1.2761 Inf Inf 1.3782 0.6163 0.6896 1.7778 1.5904 
b 1.3670 1.2260 Inf 1.4816 1.2969 0.5346 0.6896 1.7591 1.4945 
c 1.3606 1.1859 2.0794 1.2404 0.6641 0.1656 0.6930 1.7852 1.4366 
d 1.1736 0.8586 1.0986 0.7199 0.1249 0.0017 0.6930 1.7370 1.4285 

7 

a 1.5781 1.3208 Inf 3.1355 1.3335 0.6209 0.6930 1.7888 1.6588 
b 1.3833 1.1581 Inf 2.3437 1.0906 0.5761 0.6919 1.7852 1.4432 
c 1.3582 1.0909 Inf 1.4028 0.5900 0.1148 0.6919 1.7800 1.3267 
d 1.2084 1.0532 1.4854 0.9500 0.2238 0.0144 0.6757 1.7070 1.1705 

8 

a 1.3917 1.2447 Inf 2.0369 1.2015 0.7126 0.6861 1.7215 1.5954 
b 1.3689 1.1804 Inf 1.7492 1.0849 0.5971 0.6896 1.7512 1.4808 
c 1.1770 1.1164 2.9957 1.6835 0.5213 0.1377 0.6896 1.7789 1.4257 
d 1.0899 0.8146 1.2730 0.7370 0.2114 0.0270 0.6919 1.7778 1.3404 

9 

a 1.4785 1.2537 Inf 2.3972 1.1342 0.6725 0.6861 1.6898 1.4772 
b 1.3550 1.1985 Inf 2.1979 0.8194 0.4164 0.6930 1.7646 1.4354 
c 1.1837 1.1628 2.3026 1.4718 0.6268 0.2648 0.6930 1.7778 1.3974 
d 1.1121 0.8957 1.5294 0.9163 0.2617 0.0562 0.6919 1.7855 1.3297 

10 

a 1.3736 1.1564 Inf 1.6094 1.1299 0.6594 0.6919 1.7501 1.6897 
b 1.2928 1.0386 Inf 1.4321 1.0402 0.4697 0.6919 1.7852 1.6895 
c 1.2401 1.0060 Inf 1.3291 0.6103 0.1611 0.6757 1.7147 1.3848 
d 1.2091 0.8745 1.7148 0.9330 0.2248 0.0424 0.6930 1.7819 1.2661 

 

Again, we take Case 1 as an example, which shows the same results as the rest of the 

cases.  
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Like the conclusions drawn from simulation round I, with stricter parameter selection, 

the measurement results could increase reflecting levels of complexity. Based on the 

ranks resulting from the Six Sigma analysis, ApEn, SampEn and Maximal Lyapunov 

Exponent showed decreasing complexity for the four scenario of each case similar to the 

sigma level. SampeEn reflected significant results compared to ApEn and the Maximal 

Lyapunov Exponent, as illustrated in Figure 32, Figure 33 and Figure 34. Except for the 

significant rank based on SampEn, sometimes ApEn and Maximal Lyapunov Exponent 

also resulted in similar trends. Compared with ApEn and SampEn, results from PEn 

were pretty much the same, rather than decreasing, as shown in Figure 35. For the results 

based on SampEn, as shown in Table 24, we also concluded that the narrower tolerance 

of Sample Entropy still does not work well with a sample size of approximately 50. 

 

 

 

 

 

 

 

 

 

Figure 32  Complexity of Simulated Case 1 in Run II-A ranked by ApEn 
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Figure 33 Complexity of Simulated Case 1 in Run II-A ranked by SampEn 
 

 

Figure 34 Complexity of Simulated Case 1 in Run II-A by Maximal Lyapunov Exponent 
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Figure 35 Complexity of Simulated Case 1 in Run II-A ranked by PEn 
 

 
Run II-B 

 

In Run II-B, additional random numbers were generated, based on the previous run for 

the set-up scenario of each case; this time each scenario had 110 PPC values to represent 

the different long-term performance scenarios of building construction. Similar to that 

which wwas conducted in the previous run, Six Sigma Analysis was first conducted to 

test the predicted complexity rank for the four scenarios of each case, as listed in Table 

29. Notably, the simulated cases became less complex while the range of numbers 

shrank.  

 

Table 29 Six Sigma for Simulated Cases Round II Run B (II-B) 
Case  Scenario a Scenario b Scenario c Scenario d 

Yield 74.55% 92.73% 97.27% 97.27% 
Sigma Level  3 3 4 4 
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The next step was to test the proposed entropy algorithms with the same parameter 

combinations and Maximal Lyapunov Exponent, then check the results for the different 

scenarios of the same case, and compare the results with the pretested rank. All the 

complexity calculation results are shown in Table 30. Based on the form, if we compare 

complexity results across the four different performance scenarios, the same conclusion 

were obtained as with the previous run. With ApEn, SampEn and Maximal Lyapunov 

Exponent, the complexity level decreased when the range of PPC values became 

narrower and narrower. Among them, the results from SampEn were more significant 

and clearer, as shown in Figure 36. The Pen method just achieved pretty close results for 

the four different scenarios; thus its results were not sensitive to different construction 

performance scenarios. Looking at the results from SampEn in more detail, we verified 

the first round simulation’s results, which indicated that the smaller tolerance of SampEn 

cannot work well on a sample size of about 100--the larger tolerance choices for the 

algorithm work better.  

 

Table 30 Complexity Measurement for Simulated Cases Round II Run B (II-B) 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

1 

a 1.7626 1.5907 Inf 2.3026 1.3289 0.6575 0.6928 1.7897 1.8824 

b 1.6714 1.5268 2.8332 1.8871 1.2944 0.58 0.6921 1.785 1.7395 

c 1.6345 1.4999 2.3418 2.0236 0.8651 0.2808 0.6931 1.7769 1.7367 

d 1.5802 1.1874 1.7834 1.1929 0.4436 0.0798 0.6779 1.7085 1.7107 

2 

a 1.6878 1.5764 3.0445 2.2687 1.2658 0.6261 0.6931 1.7907 1.8164 

b 1.6796 1.5667 2.6150 1.7975 1.1658 0.6070 0.6931 1.7912 1.7824 

c 1.6205 1.5315 1.7135 1.6614 0.8283 0.2963 0.6931 1.7815 1.7539 

d 1.4860 1.1161 1.7047 1.1161 0.3131 0.0606 0.6921 1.7703 1.6759 
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Table 30 Continued 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

3 

a 1.7607 1.5874 3.0445 2.4953 1.3309 0.6298 0.6928 1.7817 1.7918 

b 1.7205 1.5163 2.9704 2.0971 1.1473 0.5768 0.6931 1.7897 1.7551 

c 1.6028 1.4398 2.6741 1.9924 0.8319 0.2438 0.6911 1.7845 1.7020 

d 1.5445 1.4052 2.1484 1.1701 0.4005 0.0665 0.6911 1.7794 1.6426 

4 

a 1.7835 1.6239 Inf 2.4510 1.4092 0.6638 0.6897 1.7490 1.7055 

b 1.7731 1.6144 3.0445 2.0794 1.1197 0.5042 0.6928 1.7730 1.6528 

c 1.5297 1.3713 2.3168 1.3903 0.7436 0.2572 0.6931 1.7758 1.5232 

d 1.4898 1.1531 1.8971 1.1073 0.4099 0.0514 0.6860 1.7697 1.4434 

5 

a 1.7423 1.6109 2.7300 2.0075 1.2866 0.6959 0.6911 1.7778 1.9147 

b 1.6054 1.4952 2.1203 1.6541 1.2109 0.5727 0.6911 1.7809 1.8253 

c 1.5665 1.4043 1.9818 1.5476 0.8231 0.2574 0.6897 1.7668 1.8151 

d 1.4946 1.1582 1.8681 1.1609 0.3198 0.0404 0.6921 1.7814 1.5867 

6 

a 1.7257 1.6138 3.0445 2.2095 1.2989 0.6929 0.6928 1.7877 1.8166 

b 1.7173 1.6058 2.5903 1.7778 1.2037 0.5167 0.6928 1.7871 1.7202 

c 1.6776 1.5588 1.7918 1.5079 0.7732 0.2633 0.6928 1.7800 1.6516 

d 1.4942 1.1323 1.6720 1.0841 0.2763 0.0228 0.6931 1.7685 1.6311 

7 

a 1.6960 1.6289 Inf 2.4277 1.5491 0.7611 0.6928 1.7806 1.7934 

b 1.6044 1.5960 Inf 1.9397 1.2977 0.6134 0.6931 1.7886 1.6120 

c 1.5425 1.4581 3.0204 1.8458 0.8248 0.2375 0.6921 1.7845 1.5795 

d 1.4528 1.2139 2.1484 1.1676 0.3988 0.0660 0.6897 1.7789 1.5488 

8 

a 1.7516 1.6311 Inf 2.1972 1.2550 0.6473 0.6897 1.7474 1.8293 

b 1.7031 1.6005 Inf 1.8788 1.1576 0.6253 0.6921 1.7814 1.8229 

c 1.6120 1.4907 2.3749 1.8211 0.7644 0.2299 0.6928 1.7887 1.7569 

d 1.4399 1.1118 1.8632 1.1345 0.3425 0.0447 0.6930 1.7811 1.6791 

9 

a 1.7794 1.6204 Inf 2.5177 1.3528 0.6912 0.6897 1.7490 1.8270 

b 1.7929 1.6086 2.9444 2.0281 1.1285 0.5274 0.6928 1.7730 1.7377 

c 1.5419 1.4055 2.3308 1.4110 0.7411 0.2577 0.6931 1.7758 1.6250 

d 1.4755 1.1362 1.9136 1.1094 0.4079 0.0499 0.6860 1.7697 1.5832 

10 

a 1.7216 1.5845 3.0445 1.9021 1.2590 0.6945 0.6921 1.7800 1.9351 

b 1.5910 1.4775 2.0149 1.6701 1.1959 0.5600 0.6897 1.7767 1.8273 

c 1.5568 1.3987 1.9459 1.6422 0.8260 0.2553 0.6880 1.7607 1.8151 

d 1.4822 1.1474 1.8681 1.1609 0.3202 0.0397 0.6928 1.7812 1.5180 
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Figure 36 Complexity of Simulated Case 1 in Run II-B by SampEn 
 

Run II-C 

 

In the last run of the Round II simulation, Run II-C, 100 more random numbers were 

generated for the four different scenarios of each pilot case; each case had 210 PPC 

values in each of its performance scenarios. Six Sigma Analysis was conducted and 

again found decreased complexity from scenario a to scenario d. Proposed entropy 

algorithms with different parameter combinations and Maximal Lyapunov Exponent 

were tested in Run II-C again. Their results are shown in Table 31. For each specific 

entropy model, stricter parameter selections resulted in higher complexity levels for the 

same case, as easily seen from the results.  
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Table 31 Complexity Measurement for Simulated Cases Round II Run C (II-C) 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

1 

a 1.9857 1.9102 2.7881 1.9755 1.3129 0.6542 0.6930 1.7886 2.0514 

b 1.9371 1.8103 2.4696 1.7253 1.0176 0.4120 0.6931 1.7866 2.0937 

c 1.6871 1.3506 1.6924 1.1964 0.4168 0.1225 0.6931 1.7888 2.0222 

d 1.5318 1.2400 1.2577 0.7159 0.2283 0.0500 0.6918 1.7741 1.9524 

2 

a 2.0315 1.9442 2.8744 2.3775 1.1917 0.6978 0.6929 1.7879 2.0235 

b 1.9882 1.9323 2.5953 2.0116 1.2470 0.5039 0.6930 1.7906 2.0227 

c 1.8907 1.7453 2.5390 1.9538 0.9729 0.3960 0.6931 1.7865 2.0518 

d 1.8373 1.4227 2.3265 1.4556 0.5521 0.1222 0.6912 1.7854 2.0002 

3 

a 1.9848 1.9468 2.9704 2.4496 1.2551 0.6445 0.6929 1.7856 2.0456 

b 1.9672 1.8491 2.5777 2.0412 1.1930 0.5709 0.6922 1.7736 2.0193 

c 1.9495 1.8112 2.4159 1.9072 0.9743 0.3900 0.6931 1.7889 1.9855 

d 1.7720 1.4130 2.1193 1.3574 0.5528 0.1215 0.6926 1.7878 1.8800 

4 

a 1.9875 1.9646 2.9575 2.2156 1.2851 0.6922 1.7824 1.7886 1.9956 

b 1.9736 1.9374 2.7150 1.9524 1.0595 0.6930 1.7848 1.7866 1.8824 

c 1.9554 1.7755 2.6148 1.7918 0.9437 0.6906 1.7690 1.7888 1.4863 

d 1.8871 1.4310 2.5275 1.4234 0.5841 0.6926 1.7890 1.7741 1.2835 

5 

a 2.0532 1.9765 3.0819 2.2502 1.3080 0.6994 0.6922 1.7888 2.3077 

b 2.0099 1.9088 2.7344 2.1484 1.2780 0.6191 0.6929 1.7900 2.0792 

c 1.9460 1.8376 2.4159 2.0401 1.0343 0.4321 0.6918 1.7717 1.9987 

d 1.8694 1.4069 2.1041 1.4400 0.5689 0.1293 0.6931 1.7880 1.9921 

6 

a 2.0383 1.9568 2.8622 2.4371 1.1846 0.5871 0.6922 1.7858 1.9277 

b 2.0078 1.8569 2.8163 2.0254 1.2496 0.5983 0.6926 1.7895 1.7890 

c 1.9916 1.7562 2.5802 1.9238 0.9532 0.3758 0.6930 1.7858 1.5620 

d 1.8407 1.4233 2.3119 1.4266 0.5315 0.1015 0.6922 1.7882 1.3290 

7 

a 1.9857 1.9102 3.2055 2.1302 1.3859 0.6674 0.6922 1.7837 2.0556 

b 1.9371 1.8103 3.0910 1.9763 1.2562 0.6467 0.6930 1.7853 2.0522 

c 1.6871 1.3506 2.4472 1.9132 0.9163 0.3622 0.6931 1.7904 1.9851 

d 1.5318 1.0400 2.0794 1.4001 0.5477 0.1023 0.6929 1.7823 1.9258 

8 

a 1.9857 1.9102 3.2055 2.1302 1.3859 0.6674 0.6922 1.7837 2.0556 

b 1.9371 1.8103 3.0910 1.9763 1.2562 0.6467 0.6930 1.7853 2.0522 

c 1.6871 1.3506 2.4472 1.9132 0.9163 0.3622 0.6931 1.7904 1.9851 

d 1.5318 1.0400 2.0794 1.4001 0.5477 0.1023 0.6929 1.7823 1.9258 
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Table 31 Continued 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

9 

a 1.9965 1.9634 2.8904 2.1418 1.2741 0.6622 0.6922 1.7824 2.1186 

b 1.9848 1.9570 2.5903 1.9525 1.0642 0.5557 0.6930 1.7848 2.0124 

c 1.9491 1.7821 2.4999 1.7897 0.9450 0.4015 0.6906 1.7690 2.0055 

d 1.8645 1.4279 2.3945 1.4266 0.5848 0.1237 0.6926 1.7890 1.8763 

10 

a 2.0182 1.9698 3.0910 2.1471 1.3016 0.6921 0.6926 1.7895 2.2940 

b 1.9843 1.9004 2.6027 2.0331 1.2660 0.6092 0.6926 1.7895 2.1028 

c 1.9280 1.8095 2.5337 1.9517 1.0363 0.4307 0.6912 1.7707 2.0149 

d 1.8715 1.4000 2.1041 1.4400 0.5689 0.1288 0.6930 1.7861 2.0051 

 

For ApEn and Maximal Lyapunov Exponent, the complexity measurement decreased for 

the four scenarios of the same case. However, these results were not as significant as the 

results for SampEn as presented in Figure 37. Permutation Entropy’s results were 

roughly the same for the different performance scenarios. When the compared template 

contained two (2) units, the results were around 0.69, and they were approximately 1.78 

when three (3) units were compared each time. For Sample Entropy, not only did it offer 

significant results for different construction performance scenarios, both its narrow and 

wide tolerances worked for the larger sample size of around 200.  

 

Figure 37 Complexity of Simulated Case 1 in Run II-C by SampEn 
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6.2.3 Normalization of Complexity Measurements in Round II Simulation 

 

As in Round I of the pilot case analysis and the comparative complexity measurement 

analyses, the Round II simulation results were normalized in order to compare different 

entropy complexity results. To normalize the measurements, we divided the maximal 

measurement from each group of results. In order to verify the previous comparative 

analysis for the complexity measurements in simulation Round II, Case 1 was selected to 

showcase the normalization procedure and its results. The normalization procedure for 

the rest of the cases was the same, but those cases are not mentioned in this dissertation.  

 

For the first run of the Round II simulation, the normalized complexity measurements 

for the four different performance circumstances of Case 1 are summarized in Table 32, 

and then plotted in Figure 38. All the normalized results of ApEn, SampEn and Maximal 

Lyapunov Exponent follow the pretested performance ranks created by the Six Sigma 

Analysis. Except for the fact that the small tolerance of SampEn did not work well for 

sample size 60, the other results of SampEn were more significant than the results of the 

other methods. Compared with ApEn, SampEn and Maximal Lyapunov Exponent, the 

results from PEn were pretty much the same, rather than showing a decreasing track, as 

shown in Figure 38.  
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Table 32 Normalized Complexity Measurements for Case 1 in Simulation Run II-A 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

1 

a 1.0000 1.0000 N/A 1.0000 1.0000 1.0000 1.0000 1.0000 1.0000 

b 0.8684 0.9989 N/A 0.7500 0.8396 0.8271 1.0000 0.9980 0.9156 

c 0.8617 0.8908 N/A 0.6517 0.4790 0.2857 0.9951 0.9794 0.7802 

d 0.7816 0.7198 N/A 0.3591 0.1787 0.1311 0.9900 0.9718 0.7054 

 

 

 

Figure 38 Normalized Complexity Measurements for Four Different Performance 
Scenarios of Case 1 in Simulation Run II-A 

 

For Run B of the Round II simulation, the normalized complexity measurements for the 

four different performance circumstances of Case 1 are summarized in Table 33, and 

then plotted in Figure 39. Based on the normalized results, and comparing the 

complexity results across the four different performance scenarios, we obtained the same 
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conclusions as those from Run II-B’s descriptive analysis. With ApEn, SampEn and the 

Maximal Lyapunov Exponent, the complexity level decreased when the range of PPC 

values became narrower and narrower. Among them, the results from SampEn were 

more significant and clearer compared with the others. PEn obtained pretty close results 

for the four different scenarios, meaning that its results wewre not sensitive to different 

construction performance scenarios. In the end, the smallest tolerance of SampEn still 

did not work well for a sample size of around 100.  

Table 33 Normalized Complexity Measurements for Case 1 in Simulation Run II-B 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

1 

a 1.0000 1.0000 N/A 1.0000 1.0000 1.0000 0.9996 1.0000 1.0000 

b 0.9483 0.9598 N/A 0.8196 0.9740 0.8821 0.9986 0.9974 0.9241 

c 0.9273 0.9429 N/A 0.8788 0.6510 0.4271 1.0000 0.9928 0.9226 

d 0.8965 0.7465 N/A 0.5181 0.3338 0.1214 0.9781 0.9546 0.9088 

 

 

Figure 39 Normalized Complexity Measurements for Four Different Performance 
Scenarios of Case 1 in Simulation Run II-B 
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In the end, the normalized complexity measurements for the four different performance 

circumstances of Case 1 in the last run of simulation Round II, which have the largest 

sample sizes, are summarized in Table 34, and Figure 40. For ApEn and Maximal 

Lyapunov Exponent, the normalized results showed decreases in complexity 

measurements for the four scenarios of the same case; however, their results were not as 

significant as the results of SampEn were. Permutation Entropy’s results were roughly 

the same for the different performance scenarios. For Sample Entropy, both its narrow 

and wide tolerances worked for the larger sample size of around 200.  

Table 34 Normalized Complexity Measurements for Case 1 in Simulation Run II-C 

Case 
ApEn (m=1) SampEn (m=2) PEn Maximal 

Lyapunov 
Exponent r=0.1*Std r=0.2*Std r=0.1*Std r=0.2*Std r=0.5*Std r=Std n=2 n=3 

1 

a 1.0000 1.0000 N/A 1.0000 1.0000 1.0000 0.9996 1.0000 1.0000 

b 0.9483 0.9598 N/A 0.8196 0.9740 0.8821 0.9986 0.9974 0.9241 

c 0.9273 0.9429 N/A 0.8788 0.6510 0.4271 1.0000 0.9928 0.9226 
d 0.8965 0.7465 N/A 0.5181 0.3338 0.1214 0.9781 0.9546 0.9088 

 

 

Figure 40 Normalized Complexity Measurements for Four Different Performance 
Scenarios of Case 1 in Simulation Run II-C 
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6.2.4 Inferential Analysis of Comparative Analysis for Round II 

 

The purpose of the Round II simulations with three different runs that included three 

different sample sizes and four different scenarios for each case was to test the 

workability of the proposed entropy algorithms for different construction performances. 

Both the descriptive analysis of the complexity measurements and the analysis of 

normalized results provided the same results. As found in the basic Six Sigma Analysis 

of the four different scenarios, the wider the range of the random PPC values, the more 

complex the construction performances were. The ranks of each proposed entropy 

algorithm are summarized in Table 35.  

 

The Sigma Level of each case provided a preliminary performance rank of the four 

different scenarios. The complexity rank based on both ApEn and SampEn showed that 

the lower the sigma level, the higher the complexity level. This rank was also verified by 

the Maximal Lyapunov Exponent. Based on the different sample sizes, we also 

concluded that only Sample Entropy worked well for describing different construction 

scenarios based on different sample sizes. The larger the sample size, the narrower the 

tolerance was for Sample Entropy. Approximate Entropy and the Maximal Lyapunov 

Exponent provided the same complexity rank for different performance scenarios with 

small samples. For large samples, neither of them was sensitive enough to differentiate 

the performance levels.  
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Table 35 Proposed Methods’ Workability of Dealing with Different Performance 
Scenarios 

Proposed Algorithms Workability for Different Performance Scenarios 
60 110 210 

ApEn with Small Tolerance Yes No No 

SampEn with Small Tolerance No Yes Yes 

SampEn with Large Tolerance Yes Yes No 

PEn No No No 

Maximal Lyapunov Exponent Yes Yes No 

Six Sigma Analysis Yes Yes Yes 

 

 

6.3 Summary of Simulation and Comparative Analysis 

 

As discussed in the previous sections of this chapter, two rounds of simulation were 

conducted based on the ten (10) pilot cases in order to create different cases with 

different construction performance patterns. The simulation procedures expanded the 

scenarios we used to test the proposed entropy algorithms by creating samples with 

different sizes and different ranges of values. Applying these simulated cases in further 

comparative analysis for selected entropy algorithms provided enough evidence to draw 

solid conclusion and to make reasonable selections.  

 

MATLAB was used to generate more random PPC numbers and simulate different 

construction performance scenarios for both rounds of simulation based on the pilot 

cases. The first round of simulations tested the workability of proposed entropy 

algorithms and their parameter selections for different sample sizes. For this reason, 50, 
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100 and 200 additional random PPC values that followed the same probability 

distribution of each pilot case were generated separately for the three runs embedded in 

the first round simulation. The second round simulation added one more dimension, the 

different performance of each case, to test the workability of each proposed entropy 

algorithm. In this round, 50, 100 and 200 additional PPC values were generated again for 

each pilot case; however, this time we set four different performance ranges to each 

simulated case. They were (Mean-3*Standard Deviation, Mean-3*Standard Deviation) 

for scenario a of each case, (Mean-1.5*Standard Deviation, Mean-1.5*Standard 

Deviation) for scenario b, (Mean-0.5*Standard Deviation, Mean-0.5*Standard Deviation) 

for scenario c and (Mean-0.25*Standard Deviation, Mean-0.25*Standard Deviation) for 

scenario d. In each run, each pilot case had four simulated scenarios with specific PPC 

ranges. The ability to separate different performance circumstances for each entropy 

model was used in this round.  

 

Approximate Entropy, Sample Entropy and Permutation Entropy, each with several 

different parameter choices, were tested in two rounds of simulation, for a total of six 

runs. Six Sigma Analysis and Maximal Lyapunov Exponent were also used in the 

comparative analysis to provide more references and points to check the results of the 

entropy algorithms. The calculated results in each simulated run were presented in the 

tables discussed in the previous sections of this chapter. Their normalized results also 

double checked the comparative analysis results. Based on those results, a summary of 
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their workability to deal with different sample sizes and different performance 

circumstances is presented in Table 36.  

 

Table 36 Workability of Proposed Entropy Algorithms to Deal with Different Size and 
Performance 

Proposed Algorithms 
Workability  

Different Sample Size Different Performance 
Small Large (Different PPC Range) 

ApEn with Small Tolerance Yes No Yes 

ApEn with Small Tolerance Yes No Yes 

SampEn with Small Tolerance No Yes Yes 

SampEn with Large Tolerance Yes No No 

PEn No No No 

Maximal Lyapunov Exponent Yes No Yes 

Six Sigma Analysis No No Yes 

 

According to the workability summary, Approximate Entropy works well with small 

sample sizes. When the sample size was small (less than 200), it shows both the size and 

increasing complexity, which we see in the pilot case and in the first and second 

simulation runs. However, this result becomes close regarding different performance 

circumstances when the sample size exceeds 200. For Sample Entropy, by choosing a 

different tolerance parameter, both small and large sample sizes reflect the complexity 

level of different construction performance scenarios. Small tolerance provides 

significant results for different performance scenarios for a large sample, while large 

tolerance works better for a small sample size. The final entropy algorithm tested, 

Permutation Entropy, cannot work in either simulated scenario, as its results are based 

on the fluctuation dimension only, rather than value of each number.  
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The added comparison with Six Sigma Level and Maximal Lyapunov Exponent for each 

simulation case also provided several more conclusions to ponder. As long as the 

performance follows the same distribution pattern, Six Sigma Level is not a good choice 

for performance evaluation since it is a statistical value for each case, especially with 

increasing sample size. However, with different performance scenarios, a Sigma Level 

for each case provides a pretested rank of different scenarios to compare with the 

entropy results. The Maximal Lyapunov Exponent’s performance has not been widely 

tested in the construction management field yet, but we tested in the comparative 

analysis. From the test results, we see that it could also tell the complexity/or dynamic 

level of different performance circumstances for small sample sizes. The complexity 

rank of its results is similar to the rank based on Sample Entropy; however, its results are 

not as significant as those for Sample Entropy.  
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CHAPTER VII 

SUMMARY AND CONCLUSIONS 

 

This study has been a pioneering complexity study, especially quantitative complexity 

measurement, in building construction systems. This is the first study to apply entropy 

algorithms for complexity measurement in building construction from the perspective of 

chaos theory. This final chapter includes a summary of the research, findings and 

conclusions, limitations of the study, contributions and recommendations, and future 

research directions. 

 

7.1 Summary of the Research 

 

According to the abundant literature search, research in construction has already started 

to probe the complex nature of construction operation and considers it a fundamental 

part of construction management. However, none of the existing studies provide a 

scientific and comprehensive analysis of this complexity, an inclusive understanding of 

the complexity of construction, and the most important, a transmittable and 

understandable model to calculate the complexity of building construction. As a result, 

the overall objective of this research was to create a novel mathematical model to 

calculate complexity quantitatively in order to fill the research gap of a missing 

mathematical model for the study of complexity in building construction.  

 



 

 126 

In support of the overall objective, there were three supporting specific objectives that 

were explored, including: a comprehensive and embedded theoretical analysis for 

complexity in building construction; appropriate entropy models to quantitatively 

present complexity in building construction; and measurement of complexity in building 

construction cases using the most efficient entropy algorithm.  

 

Organizationally, the study began with a review of literature concerning complexity 

research in building and construction domains and other related subjects, chaos theory, 

and entropy algorithms. In conjunction with the literature review, the first hypothesis of 

this study was proposed, as there is no inclusive understanding of complexity in building 

construction systems, regarding construction’s real nature--whether it is mainly 

characterized as complex or just complicated. In order to answer this question, a 

comprehensive theoretical framework of complexity study was built to reflect the 

complex nature of building construction, and to serve as the theoretical foundation. 

Chaos theory was treated as a companion to complexity and representation of a more 

complex order to link building construction systems, complexity studies, and 

measurement together. From the perspective of chaos theory, an entropy-measuring 

model linked with the complex nature in building construction was proposed to provide 

a scientific and quantitative analysis of complexity in building construction, which 

constituted the second hypothesis of this study. Together, the literature review and 

theoretical analysis established a baseline for complexity measurement in building 
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construction;  three (3) widely used entropy algorithms were selected for the 

comparative analysis.  

 

The comparative analysis was the other indispensable characteristic of this study in order 

to fulfill the research goal to find the most appropriate and efficient entropy algorithm 

for complexity measurement in building construction. For the pilot comparative study of 

proposed entropy algorithms, ten (10) pilot cases were randomly selected from the 

twenty-two (22) real construction cases that Fernandez-Solis used for his study of chaos 

theory in building construction (Fernandez-Solis, 2013). This provided the initial results, 

along with some critical criteria for further analysis. Two rounds of simulations based on 

the pilot cases were used to explore both different sample sizes and construction 

performance scenarios for further comparison of entropy algorithms, as well as Maximal 

Lyapunov Exponent and Six Sigma Analysis. Simulations were conducted by MATLAB 

to generate more random numbers based on the pilot cases for the purpose of 

representing different circumstances in building construction performance associated 

with different sample sizes. Approximate Entropy, Sample Entropy and Permutation 

Entropy, each with several different parameter choices, were tested in two rounds of 

simulation, for a total of six runs. Six Sigma Analysis and Maximal Lyapunov Exponent 

were also used in the comparative analysis to provide more references and checkpoints 

for the results of the entropy algorithms. 
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The complexity measurement results from the proposed methods were then analyzed in a 

descriptive perspective and an inferential manner. The results were also verified by the 

analysis of their normalized complexity measurements. The outcomes of those analyses 

have been compiled and established in the findings and conclusions of the study. The 

rigor of the descriptive and inferential analyses were conveyed in Chapter VI. 

 

7.2 Findings and Conclusions 

 

This study reviewed and summarized the basic concepts of complexity and connected it 

with building construction systems. If building construction’s project delivery system 

can be loosely categorized as a production system, rather than a complicated system that 

purely combines intricate components, it is a proven interdependent, open, emergent, 

non-linear and adaptive complex system. The output of a construction organization and 

production system is not proportional to the inputs, and the final product—a finished 

building--is not only the simple sum of its material and partial components. With a 

developing understanding of the complex nature of building construction and the 

evolutionary mechanism of the system, there is a new era for complex system research 

and complex sciences in construction research and practice.  

 

From the perspective of chaos theory, an entropy-measuring model linked with the 

complex nature of building construction may provide a scientific and quantitative 

measurement of complexity in building construction systems. Among the three proposed 
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commonly used entropy algorithms, which are Approximate Entropy, Sample Entropy 

and Permutation Entropy, Sample Entropy was the most efficient method for complexity 

measurement in building construction, using PPC values based on the comparative 

analysis of pilot cases and simulated cases.  

 

The three proposed entropy models are not simple calculations. Each of them provides 

different sensitivities by using different values for specific parameters embedded within 

the algorithms. The choice of tolerance, also named effective filtering level, is the most 

important determinant for the sensitivity of Approximate Entropy and Sample Entropy; 

while the order, which is the number of units in the compared template, decides the 

sensitivity of Permutation Entropy. Based on the calculated results, it could be 

concluded that the narrower the tolerance, the more sensitive are the Approximate 

Entropy and Sample Entropy algorithms. That is to say, for the same case, it would have 

a higher complexity measurement. The same sensitivity increase could be observed for 

Permutation Entropy when its order becomes larger.  

 

 Permutation Entropy tracks complexity based simply on the shape of time series data 

without the magnitude of the shape. Thus, it is not workable for building construction 

performance complexity measurements based on PPC values. Approximate Entropy is 

only sensitive to different performance scenarios for small sample sizes. That is to say, it 

is useful for small construction projects or short term performance complexity 

measurements. Both its workability and sensitivity markedly decreases when the sample 
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size exceeds two-hundred (200). This restricts the performance of Approximate Entropy 

for complexity measurement of large and long-term building construction projects.  

 

Compared with Approximate Entropy and Permutation Entropy, the characteristics of 

Sample Entropy offset the defects of these two methods. It worked sensitively and 

efficiently to tell different construction performance circumstances apart through 

significant complexity measurements for either small or large sample sizes. For small 

sample sizes (10-100), which could refer to short-term construction systems, by 

choosing a larger tolerance, it provides significant measurement for different 

performance scenarios. And for large sample sizes, which means long-term construction 

systems, it maintains the same workability and significance level by decreasing the value 

of its tolerance. The other important reason to select Sample Entropy for complexity 

measurement in building construction, rather than Approximate Entropy and 

Permutation Entropy, is because the rank of different performance scenarios based on 

Sample Entropy is similar to the rank based on Six Sigma Level or the Maximal 

Lyapunov Exponent, if they were applicable for the comparison.  

 

7.3 Limitations of the Study 

 

As a pioneering study of a quantitative complexity measurement in building construction 

systema, this study was geared towards finding the most efficient entropy algorithms for 

complexity in building construction by using PPC values based on the theoretical and 
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comparative analysis of three commonly used entropy algorithms. With this objective, 

the study endured limiting elements through the course of the research. 

 

The study encountered three main limitations. The first limitation was associated with 

the values used to calculate complexity in building construction, which is weekly PPC 

data records introduced by lean construction. Even though it represents the overall 

reliability of production planning and workflow, rather than focusing on a single 

perspective, such as schedule and cost, it has not been widely used in the construction 

industry as a main source for data records. However, it is still probable that other factors 

not addressed in this study could be used to calculate complexity in building 

construction. The second limitation was obtaining a large enough sample to generate 

conclusions about the study that could be generalized. Because of the application of PPC 

records from lean construction is still in its early stage in building construction, only a 

few PPC record cases exist in the previous data record. This restricts the available cases 

for use in the comparative analysis. This study used Monte Carlo simulation to generate 

more random numbers in order to represent different construction performance scenarios; 

but it is still possible that some specific cases we did not cover could have significant 

effects on the final conclusions. The third limitation was associated with the proposed 

entropy algorithms for further comparative analysis. Approximate Entropy, Sample 

Entropy and Permutation Entropy are three of the most commonly used entropy 

algorithms in existing research of complexity measurement based on the literature 

review, but they are not the only entropy algorithms for complexity measurement.  Due 
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to limitation of effort and scope, we could not compare all the entropy models in this 

study. However, we cannot rule out the probability that there are other entropy 

algorithms that may work better for complexity measurement. The study of other 

possible entropy algorithms for complexity measurement in building construction would 

be one direction for future research. 

 

A multitude of factors contributed to the results and outcomes of the research and the 

study recognizes and acknowledges that. Because of this, it is virtually impossible to 

account for every factor or contributing nuance and it is beyond the intended scope of 

this study. 

 

7.4 Contributions and Recommendations 

 

It is the intent of every dissertation to put forth a measurable and impactful piece of 

knowledge with the hope that it will become a placeholder in the framework of the given 

field of study. Within the defined range of study, this research has provided valid and 

meaningful results through a comprehensive theoretical and mathematical process. 

 

First of all, the comprehensive theoretical framework of complexity research in building 

construction, based on previous literature and the conclusion that building construction 

could be considered a complex system, provided a revolutionary way to understand all 

the possible uncertainties and order changes during the construction process. This study, 
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along with other pioneers’ work, is just the beginning of complexity research in building 

construction systems. There is much left to accomplish in this field, but this study 

provides a solid foundation for future research on complexity in building construction 

systems.  

 

The contributions of this study also include an effort to fill a knowledge gap and by 

finding a quantitative measurement of complexity in building construction. The 

complexity measurement based on Sample Entropy could provide a more objective and 

direct understanding of the complex nature of building construction. Compared with the 

previous qualitative analyses, Sample Entropy could avoid the subjectivity of evaluators 

and set a unified standard for complexity measurement in building construction, 

especially for comparing the complexity level of different construction performance 

circumstances, and to track construction performance from the complexity perspective, 

and even to test approaches in order to reduce the complexity level and to improve 

construction performance. All of this can be further studied in future research. 

 

Last but not the least, in order to use Sample Entropy to measure complexity in real 

construction projects, several recommendations should be considered. Approximate 

tolerance, or so called effective filtering level, should be selected in order to reach the 

desired sensitivity. An effective filtering level of 0.5 or 1.0 times the standard deviation 

of the recorded PPC values could be used for cases with 10 to 100 numbers. A smaller 

effective filtering level, such as 0.1 or 0.2 times the standard deviation of the recorded 
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PPC values, should be selected for larger sample sizes (around 200). In order to compare 

complexity levels based on different effective filtering levels, or to track the complexity 

trend with increasing PPC records, normalization could be used to to make the results 

comparable. Finally, complexity level is not the only indicator for evaluating the 

performance of building construction systems; performance could also be associated 

with other indicators, such as scope to form an evaluation system for the thorough 

assessment of complex building construction systems.  

 

7.5 Future Research 

 

This study has provided a platform and solid foundation for future research with the 

intention of exploring the complex nature of building construction systems and its 

measurements.  

 

The literature review and theoretical analysis of complex building construction systems 

provided a comprehensive theoretical foundation for the future research of complex 

building construction systems. This is a new era for complex system and complex 

sciences in construction research and practice. The field of complexity allows the 

industry to look at itself from a different prism, a different point of view or paradigm.  It 

requires practitioners to step out of the traditional way of doing things, borrow insights 

from other disciplines and industry, and experiment, learn and apply new methods in a 

continuous improvement atmosphere. 
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 As this study was specific to finding the most efficient entropy algorithms out of the 

three commonly used ones, it sets the platform and stage for future studies to explore 

other complexity measurement algorithms, or combinations thereof, to be executed in 

similar fashion, thus testing new levels of influence. 

 

As mentioned in the previous section, obtaining quantitative measurements of 

complexity levels, rather than just qualitative descriptions, provides the possibility and 

opportunity to explore and further analyze complexity in building construction. This 

provides us with the criteria to check different approaches in order to improve 

construction performance and reduce the complexity in building construction. It offers 

the metrics to compare different construction performances, different construction 

project delivery systems, or even different construction methods from the perspective of 

complexity and chaos theory. These could all be the subjects of future study.  
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APPENDIX A 

 

MATLAB code for Approximate Entropy (ApEn) Algorithm 

 

function apen = ApEn( dim, r, data, tau ) 

% ApEn 

% dim: embedded dimension 

%  r: tolerance (typically 0.2 * std) 

%  data: time-series data 

%--------------------------------------------------------------------- 

 

N = length(data); 

result = zeros(1,2); 

 

for j = 1:2 

    m = dim+j-1; 

    phi = zeros(1,N-m+1); 

    dataMat = zeros(m,N-m+1); 

     

    % setting up data matrix 

    for i = 1:m 

        dataMat(i,:) = data(i:N-m+i); 
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    end 

     

    % counting similar patterns using distance calculation 

    for i = 1:N-m+1 

        tempMat = abs(dataMat - repmat(dataMat(:,i),1,N-m+1)); 

        boolMat = any( (tempMat > r),1); 

        phi(i) = sum(~boolMat)/(N-m+1); 

    end 

     

    % summing over the counts 

    result(j) = sum(log(phi))/(N-m+1); 

end 

 

apen = result(1)-result(2); 

end 
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APPENDIX B 

 

MATLAB code for Sample Entropy (SampEn) Algorithm 

 

function sampen = SampEn( dim, r, data ) 

 

%   dim: embedded dimension 

%   r: tolerance (typically 0.2 * std) 

%   data: time-series data 

%--------------------------------------------------------------------- 

 

N = length(data); 

correl = zeros(1,2); 

dataMat = zeros(dim+1,N-dim); 

for i = 1:dim+1 

    dataMat(i,:) = data(i:N-dim+i-1); 

end 

 

for m = dim:dim+1 

    count = zeros(1,N-dim); 

    tempMat = dataMat(1:m,:); 
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    for i = 1:N-m 

        % calculate Chebyshev distance, excluding self-matching case 

        dist = max(abs(tempMat(:,i+1:N-dim) - repmat(tempMat(:,i),1,N-dim-i))); 

         

        % calculate Heaviside function of the distance 

        % User can change it to any other function 

        % for modified sample entropy (mSampEn) calculation 

        D = (dist < r); 

         

        count(i) = sum(D)/(N-dim); 

    end 

     

    correl(m-dim+1) = sum(count)/(N-dim); 

end 

 

sampen = log(correl(1)/correl(2)); 

end 
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APPENDIX C 

 

MATLAB code for Permutation Entropy (PEn): 

 

function [pe hist] = PEn(y,m) 

 

%  Input:   y: time series; 

%              m: order of permuation entropy 

% Output:  

%           pe:    permuation entropy 

%           hist:  the histogram for the order distribution 

%-------------------------------------------------------------------------- 

 

ly = length(y); 

permlist = perms(1:m); 

c(1:length(permlist))=0; 

     

 for j=1:ly-(m-1) 

     [a,iv]=sort(y(j:1:j+(m-1))); 

     for jj=1:length(permlist) 

         if (abs(permlist(jj,:)'-iv))==0 

             c(jj) = c(jj) + 1 ; 
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         end 

     end 

 end 

 

hist = c; 

  

c=c(find(c~=0)); 

p = c/sum(c); 

pe = -sum(p .* log(p)); 
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APPENDIX D 

 

MATLAB Code for Maximal Lyapunov Exponent 

 

function lam = lyapunov(y,tau) 

% calculate the largest positive Lyapunov exponent from time series data 

if tau==0; 

%___________________Determination of Embeding Lag: tau_____________________ 

 

% A: Autocorrelation  

 

y=y(:); 

[nyr,nyc]=size(y); 

 

[ACF,Lags,Bounds] = autocorr(y(:,1),10,[],[]); 

ACF=ACF(2:end); 

for l=1:10 

    if abs(ACF(l))<=exp(-1),tau=l-1; break,end    

end 

 

if tau==0  
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% B:  Minimum Mutual Information 

pnts=100; 

for im=0:10 

    z=lagmatrix(y,im); 

d=2; 

n=length(z(im+1:end)); 

 

endp1=ceil(pnts/10); 

endp2=ceil(pnts/10); 

 

minz=min(z(im+1:end));maxz=max(z(im+1:end));grz=(maxz-minz)/(pnts-endp1); 

miny=min(y(im+1:end));maxy=max(y(im+1:end));gry=(maxy-miny)/(pnts-endp1); 

 

h1z=(4/(3*n))^(1/5)*std(z(im+1:end)); 

h1y=(4/(3*n))^(1/5)*std(y(im+1:end)); 

 

for k=1:pnts 

zi(k,1)=minz+grz*(k-endp2); 

yi(k,1)=miny+gry*(k-endp2); 

 

fz(k,1)=(1/((2*pi)^0.5*n*h1z))*sum(exp(-((zi(k,1)-... 

    z(im+1:end)).^2)/(2*h1z^2))); 
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fy(k,1)=(1/((2*pi)^0.5*n*h1y))*sum(exp(-((yi(k,1)-... 

    y(im+1:end)).^2)/(2*h1y^2))); 

 

pz(k,1)=(1/((2*pi)^0.5*n*h1z))*sum(exp(-((zi(k,1)-... 

    z(im+1:end)).^2)/(2*h1z^2)))*grz; 

py(k,1)=(1/((2*pi)^0.5*n*h1y))*sum(exp(-((yi(k,1)-... 

    y(im+1:end)).^2)/(2*h1y^2)))*gry; 

 

end 

 

[gz gy]=meshgrid(zi,yi); 

sigma=((n*var(z(im+1:end))+n*var(y(im+1:end)))/(n+n))^0.5; 

h=sigma*(4/(d+2))^(1/(d+4))*(n^(-1/(d+4))); 

 

for i=1:pnts 

    for j=1:pnts 

        

       fzy(i,j)=(1/(2*pi*n*h^2))*sum(exp(-((gz(i,j)-z(im+1:end)).^2+... 

           (gy(i,j)-y(im+1:end)).^2)/(2*h^2))); 

       pzy(i,j)=(1/(2*pi*n*h^2))*sum(exp(-((gz(i,j)-z(im+1:end)).^2+... 

           (gy(i,j)-y(im+1:end)).^2)/(2*h^2)))*grz*gry; 

       I1zy(i,j)= pzy(i,j)*log(pzy(i,j)/(pz(i)*py(j))); 



 

 161 

    end 

end 

 

Hz=-(pz'*log(pz)); 

Hy=-(py'*log(py)); 

 

MIzy=(sum(sum(I1zy))); 

RMIzy1(im+1,1)=2*MIzy/(Hz+Hy); 

RMIzy2(im+1,1)=MIzy/(Hz*Hy)^0.5; 

RMIzy3(im+1,1)=MIzy/min(Hz,Hy); 

end 

 

MIInd=find(RMIzy1(2:end)<exp(-1)*RMIzy1(1,1)); 

if MIInd(1,1)>1 

tauMI=MIInd(1,1)-1; 

else 

   tauMI=1; 

end 

 

tau=tauMI; 

 

end 
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end 

 

[ndata nvars]=size(y); 

 

N2 = floor(ndata/2); 

N4 = floor(ndata/4); 

TOL = 1.0e-6; 

 

exponent = zeros(N4+1,1); 

 

for i=N4:N2  % second quartile of data should be sufficiently evolved 

   dist = norm(y(i+1,:)-y(i,:)); 

   indx = i+1; 

   for j=1:ndata-5 

       if (i ~= j) && norm(y(i,:)-y(j,:))<dist 

           dist = norm(y(i,:)-y(j,:)); 

           indx = j; % closest point! 

       end 

   end 

   expn = 0.0; % estimate local rate of expansion (i.e. largest eigenvalue) 

   for k=1:5 

       if norm(y(i+k,:)-y(indx+k,:))>TOL && norm(y(i,:)-y(indx,:))>TOL 
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           expn = expn + (log(norm(y(i+k,:)-y(indx+k,:)))-log(norm(y(i,:)-y(indx,:))))/k; 

       end 

   end 

   exponent(i-N4+1)=expn/5; 

end 

 

% plot(exponent);  % plot the estimates for each initial point (fairly noisy) 

 

summ=0;  % now, calculate the overal average over N4 data points ... 

for i=1:N4+1 

    summ = summ+exponent(i); 

end 

 

lam=summ/((N4+1)*tau);  % return the average value 

% if lam > 0, then system is chaotic 

 




