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ABSTRACT 

 

Maternal nutrient intake and partitioning, uteroplacental blood flow, nutrient 

transporter activity, and fetoplacental metabolism mediate nutrient delivery to the fetus.  

Inadequate delivery of nutrients results in intrauterine growth restriction (IUGR), a 

leading cause of neonatal morbidity and mortality.  The present studies  exploited natural 

population variance in nutrient-restricted (NR) ewes to identify subpopulations of IUGR 

and non-IUGR fetuses as subjects for research to elucidate adaptive mechanisms of 

fetal-placental development.   

Singleton pregnancies were generated by embryo transfer and assigned to receive 

either 50%  (n=24) or 100%  (n=7) of the National Research Council’s (NRC) 

recommended dietary intake from Day 35 to Day 125 of gestation, at which time ewes 

were necropsied.  Maternal weight did not correlate with fetal weight; therefore, 

differences in development of the six heaviest (NR non-IUGR) and six lightest (NR 

IUGR) fetuses from NR ewes, as well as the seven fetuses from control ewes were 

compared.  Mean weights of NR IUGR fetuses (2.8±0.1 kg) were lower (P<0.05) than 

for control (4.0±0.1 kg) and NR non-IUGR (4.1±0.1 kg) fetuses.   

The first study investigated potential mechanisms regulating nutrient availability 

for fetuses.  Results indicated that normal fetal growth in a subpopulation of NR ewes is 

associated with enhanced delivery of a number of amino acids and their metabolites into 

the fetal circulation, which may at least partially result from up-regulation of expression 

of amino acid transporter mRNAs in the placentome.  The second study elucidated 
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potential physiological mechanisms regulating placental growth and development in 

ewes having NR IUGR and NR non-IUGR fetuses.  Results suggest that placentome 

morphology and angiogenic growth factor expression varies in response to maternal 

nutritional challenge during pregnancy and may play critical roles in regulating fetal 

growth.  The third study was conducted to capitalize on natural population variance in 

NR ewes to identify novel factors regulating placental growth and function.  Results 

suggest that enhanced fetal growth in NR non-IUGR pregnancies is associated with an 

altered expression of genes related to immune response and function in the placentome.  

Collectively, results of these studies suggest that enhanced fetal growth in a subset of 

NR ewes is associated with enhanced expression of select nutrient transporters and 

angiogenic factors, increased nutrient availability to the fetus, altered placentome 

morphology, and an altered immune response within the placentomes of those ewes.   
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CHAPTER I  

INTRODUCTION  

 

Delivery of nutrients from the maternal circulation to the fetus is regulated by a 

multidimensional relationship involving maternal nutrient intake and partitioning, 

uteroplacental blood flow, expression and activity of nutrient transporters, and placental 

metabolism.  Perturbation of any of these components may result in inadequate nutrient 

delivery to the conceptus (fetus and placenta) and potentially lead to intrauterine growth 

restriction (IUGR) of the fetus.  Undernourishment during gestation is a global problem 

affecting numerous livestock species, such as cattle, sheep, and pigs, and may induce 

disruptions in the mechanisms regulating fetal nutrient availability [1, 2].  Subsequently, 

IUGR is a leading cause of neonatal morbidity and mortality in livestock species, as well 

as humans [3, 4].   

Growth, development, and other characteristics of reproductive efficiency in 

livestock significantly affect the profitability of an operation.  Interestingly, the in utero 

environment has been linked to postnatal growth and development [5-12].  Moreover, a 

correlation has been observed between a suboptimal uterine environment during 

gestation and an increased incidence of metabolic diseases in the adult [5, 13-16].  Thus, 

optimal fetal growth is imperative as it is a prerequisite for reproductive efficiency as 

well as lifelong health and productivity in livestock.   

Over the past decades there has been an increased demand for sheep production 

worldwide, yet there has been a dramatic decline in the sheep population [17].  
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Therefore, a smaller population of sheep must meet the increased demand for products 

such as lamb and mutton.  Notably, in some regions throughout China, the Middle East, 

North Africa, and India, lamb and mutton serve as the primary source of animal protein.  

With a vast majority of the world’s sheep being produced in arid climates, nutrition 

during gestation is often limited.  As discussed throughout this review, limited nutrient 

intake during gestation is a key contributor to neonatal death losses and can profoundly 

impact postnatal growth and development of the offspring.  Based on the ewe’s global 

significance, understanding the effects of nutrition during gestation, interactions between 

genes and the uterine environment that may affect the outcome of pregnancy, along with 

the various metabolic disturbances that may alter fetal growth and programming for 

postnatal life is of critical importance to ensure efficient production of animal protein to 

feed the world [1, 4, 18-22].  Additionally, studies in the undernourished sheep can be 

utilized to elucidate mechanisms whereby insufficient placental growth and nutrient 

transfer can alter economic factors of meat animal production, such as neonatal death 

loss, health and susceptibility to disease, average daily gains, and maturity at market 

weight [23].  Sheep models for investigating the impact of maternal nutrition on 

placental and fetal growth and development are also applicable to human medicine, as 

they may serve as a source of information pertaining to the impact of placental and fetal 

growth on pregnancy and health status of individuals throughout life [23]. 

It is well known that placental development occurs predominately during the first 

two-thirds of gestation, while rapid fetal growth and development occurs primarily 

during the latter third.  The large increase in trans-placental exchange needed for 
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extensive fetal growth in the last third of gestation is possible only through vascular 

growth and the expression of nutrient transporters that occurs during early placental 

development [24, 25].  Consequently, studies involving various experimental paradigms 

resulting in IUGR fetuses have shown fetal growth retardation to be highly correlated 

with restricted placental growth [25, 26].  In fact, placental insufficiency is the 

predominant cause of IUGR [27].   

Angiogenesis, in both the maternal and fetal placental tissues, is a vital part of 

placental development [28].  The primary role of the placenta is to exchange nutrients, 

wastes, and gases between the dam and fetus [25, 28, 29].  Importantly, vascular 

endothelial growth factor (VEGF), basic fibroblast growth factor (bFGF or FGF2), the 

angiopoietin family (ANG), and all respective receptors are recognized as the major 

factors regulating placental angiogenesis [26].   

Nutrient delivery to the fetus is also dependent, in part, on expression of nutrient 

transporters and their function in the placental vasculature.  Numerous environmental 

factors, such as, under- and over-nutrition, hypoxia, heat stress, and hormone exposure 

regulate activities of both glucose and amino acid transporters in the placenta [29-36].  A 

plethora of nutrient transporters are known to be expressed in the cotyledonary (fetal) 

placenta of sheep to aid in nutrient delivery to the fetus [37].  Moreover, a reduction in 

amino acid availability in placental fluids and fetal plasma occurs as a result of global 

nutrient restriction during gestation [38, 39].  Accordingly, a majority of these amino 

acids have critical roles in placental and fetal development.  For example, glutamine, 

arginine, serine, alanine, and leucine induce cell proliferation [1, 40].  Metabolism of 



 

4 

 

glutamine provides reducing equivalents, which may serve as an energy source for the 

conceptus [40-42].  Finally citrulline and arginine serve as precursors for polyamine and 

nitric oxide (NO; a potent vasodilator) synthesis, which promote placental development 

and function [4, 40]. 

Although work has been done to define models of maternal nutrient restriction 

and its effects on fetal development, the biochemical cause(s) for nutritional 

programming, along with its long-term consequences, have not been fully elucidated.  A 

simple and inexpensive solution to reverse the effects of IUGR on a fetus would be 

immensely beneficial to both the livestock industry and human pregnancies.  Likewise, a 

biomarker to indicate placental and fetal growth restriction would be exceedingly 

advantageous for the adoption of early intervention strategies. 
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CHAPTER II  

LITERATURE REVIEW  

 

Development and Function of the Ovine Placenta 

  The mammalian placenta serves a multitude of tasks that work to ensure proper 

fetal development during gestation.  As an organ with a high degree of plasticity, the 

placenta undergoes various physiological changes to maintain efficient nutrient, gas, and 

waste exchange between the mother and fetus.  These dynamic morphological changes 

are regulated by a plethora of factors, such as hormones, angiogenic regulators, and 

nutrient-related genes to adjust to the demands of the growing fetus [29].  Thus, it is not 

surprising that placental development precedes the period of rapid fetal growth, as 

shown in Figure 2.1 [43]. 

 

 

 

 
Figure 2.1 Placental and fetal weight throughout the sheep gestational period. Reprinted 

with permission from Bazer et al., 2012 [43]. 
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Placentas are classified by their degree of invasiveness into the uterine wall and 

the distribution of their chorionic villi.  The uterine endometrium of sheep, like other 

ruminant species, is characterized by aglandular caruncular and glandular 

intercaruncular regions [43, 44].  When placentation begins, fetal chorionic villi 

interdigitate with the maternal endometrium in the intercaruncular area to form an 

epitheliochorial interplacentomal region of the placenta.  Interdigitation between fetal 

cotyledonary villi and maternal caruncular crypts results in the formation of 

placentomes, which become the primary sites of exchange between mother and fetus 

during gestation.  Sheep are therefore classified as having a cotyledonary placenta.  As 

early as gestational Day 14, chorionic binucleate cells migrate to the maternal uterine 

epithelium where they will later fuse with the maternal luminal epithelial cells to form a 

syncytial layer and ultimately a synepitheliochorial level of invasiveness [31, 43].  Thus, 

the placenta of ruminant livestock species is classified as both synepitheliochorial and 

cotyledonary. 

 

The Peri-Implantation Period 

   Prior to placentation, the ovine conceptus goes through a period of rapid 

elongation followed by periods of apposition, adhesion, and implantation.  Between 

Days 10 and 16 of gestation, the conceptus rapidly transforms from a spherical, to 

tubular, and then filamentous form [43, 45, 46].  This elongation process is essential for 

implantation, including apposition and adhesion involving the conceptus trophectoderm 

and the uterine luminal and superficial glandular epithelia (LE and sGE, respectively) 
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[43].  The fully elongated ovine conceptus begins implantation at approximately Day 15-

16 of gestation.   

 As this filamentous conceptus becomes immobilized following apposition, 

cytoplasmic projections from conceptus trophectoderm cells interdigitate with uterine 

epithelial microvilli [43, 47].  Also during this time of apposition, the trophoblast 

extends finger-like villi, known as papillae, into the mouths of uterine glands for 

absorption of histotroph until Day 20 of gestation [43, 47-49].  These small areas of 

chorion located over the mouths of uterine glands develop into areolae and are common 

throughout the interplacentomal area of the ruminant placenta.  Areolae function as a 

pouch-like structure that receive secretions, or histotroph, from the uterine glands to 

transport components of these secretions across the placenta and into the fetal circulation 

[43].  Preceding Day 25 of pregnancy, there is transitory loss of the uterine LE to allow 

apposition, adhesion, and attachment of the conceptus; the LE then begins restoration at 

approximately Day 25, and placentation progresses [43]. 

 

Placentome Formation 

 Following attachment of the trophoblast to uterine LE, fusion with the 

cotyledonary villi with the caruncular crypts occurs, giving rise to the placentomes, 

depicted in Figure 2.2 [26].  This interdigitation of cotyledonary villi into caruncular 

crypts begins around Day 24 of gestation with clusters of fetal binucleate cells initiating 

migration and syncytia formation [44].  In the beginning, cotyledonary villi are 

simplistic and fill the caruncular crypts to form an initial adherence.  By approximately 
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Day 90 of gestation, cotyledonary villi reach their maximum length in the sheep 

placentome [44].  As gestation progresses to term, caruncular capillaries increase 

primarily in size, while cotyledonary capillaries proliferate by branching to form a 

complex vascular network of maximal surface area within the placentome, as shown in 

Figure 2.3 [26, 50].   

 

 

 

Figure 2.2. Schematic representation of the ovine placentome. Reprinted with 

permission from Reynolds et al., 2005 [26]. 
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Figure 2.3. Model of angiogenesis in maternal caruncular and fetal cotyledonary 

portions of the sheep placentome during the final two-thirds of gestation. Reprinted with 

permission from Reynolds et al., 2005 [26]. 

  

 

 

Transfer Capacity of the Placenta  

The capacity of the placenta to perform its principal functions of nutrient, waste, 

and gas exchange is achieved by a variety of mechanisms and structures, including fluid 

reservoirs within the extra-embryonic membranes, nutrient transporters, fetal-placental-

uterine vasculature, and increased uteroplacental blood flow.  This exchange process 

may be achieved by simple diffusion, passive diffusion, active transport, pinocytosis, or 

phagocytosis across the maternal and fetal-placental tissues and vasculature [44].  Proper 

placentation ensures adequate hematotrophic and histotrophic nutrition for fetal 

development via these mechanisms that involve the fetal fluids, placenta, uterus and fetal 



 

10 

 

vasculature [43].  Consequently, dynamic fluid changes within the various placental 

structures, particularly the allantois, allow for expansion of the placental membranes, 

ensuring maximal apposition and subsequently maximum placental surface area for 

transfer of nutrients and gases between the dam and conceptus.   

The yolk sac is a transient organ that develops early in gestation, being highly 

vascularized by gestational Day 16 in the sheep, and serves as a nutrient reservoir and 

source of primordial germ cells and hematopoietic progenitor cells in the early conceptus 

[44].  This transient structure is soon replaced by the rapidly developing allantois [44].  

Allantoic fluid is often thought of as simply a pool for fetal waste due to its anatomical 

connection to the fetal urachus; however, it functions largely as a reservoir for water, 

amino acids, proteins, and other nutrients [43, 51, 52].  Interestingly, previous work with 

ovine allantoic fluid has shown remarkable changes in the concentrations of amino acids 

between gestational Days 30 and 140, emphasizing the role of the allantoic sac as a 

nutrient reservoir [52].  The amniotic sac directly surrounds the fetus and functions to 

buoy the fetus for symmetrical development, prevent adherence of the fetal skin and 

amnion, and serves as a nutrient supply as the fetus consumes up to one liter of amniotic 

fluid daily [18, 43, 53].  Consequently, amniotic fluid, like allantoic fluid, is an available 

source of amino acids for the fetus [52] and ligation of the fetal esophagus to prevent 

amniotic fluid entry into the small intestine results in IUGR in sheep [54]. 

Uteroplacental blood flow plays an imperative role in facilitating adequate 

nutrient transport to the fetus.  As gestation progresses the fetal demand for nutrients 

increases due to the exponential growth period of the fetus.  This demand is achieved by 
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an increase in uteroplacental blood flow through both increased angiogenesis and 

vasodilation.  Therefore, expression of angiogenic factors, such as the VEGFs, FGF2, 

and ANGPTs, and all of their respective receptors, along with the presence of 

vasodilatory molecules such as NO are imperative for proper development of the 

placental vasculature [26].  It should be noted that while the VEGFs, FGF2, and 

ANGPTs serve as major angiogenic factors, acid fibroblast growth factor, angiogenin, 

transforming growth factors, and many other factors can induce or stimulate 

angiogenesis [55] and may also play a role in placental angiogenesis.   

Along with uteroplacental blood flow, a multitude of membrane transporters, are 

expressed by uterine epithelial and placental membranes to promote nutrient transport to 

the fetus [37, 56-59].  Transporter localization at both the maternal and fetal interfaces 

for transport across cell membranes is essential in the delivery of amino acids, 

polyamines, and other nutrients from the maternal circulation to the umbilical circulation 

[60].  Work in various species, such as sheep, humans, and rodents, has illustrated the 

necessity for placental nutrient transporters throughout gestation [40, 56-64].   

 Accordingly, it is widely accepted that proper placentation is crucial to growth 

and development of the fetus.  Perturbations at any point during placental establishment 

may permanently alter fetal development.  A common result of placental insufficiency is 

IUGR of the fetus [1, 4, 27, 65, 66].  Thus, numerous experimental models have been 

developed to elucidate the mechanisms regulating placentation and its impact on fetal 

development [1, 3, 4, 26, 38, 62, 65, 67-74].  The remainder of this review will discuss 
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blood flow, angiogenesis, and nutrient transport in the sheep placenta during a normal 

pregnancy, as well as in models of nutrient restriction from various species.  

 

Angiogenesis and Vasodilation in the Ovine Placenta 

 As previously mentioned, uteroplacental blood flow plays an essential role in 

facilitating adequate nutrient transport to the fetus.  The capacity for uteroplacental 

blood flow is influenced by two primary mechanisms, vascularity and vasodilation 

(increased volumetric capacity of the existing vasculature reduces resistance to blood 

flow).  Placental vascularity is increased by angiogenesis, which is the development of 

new blood vessels from existing structures.  Placental angiogenesis is largely regulated 

by the activity of the growth factor gene families, VEGFs, bFGFs the ANGs, and their 

respective receptors [26].  Increased vasculature and blood flow to the gravid uterine 

horn is evident as early as Day 24 of gestation [75].  This time point is correlated with 

the interdigitation of cotyledonary villi into maternal caruncular crypts [44].  

Furthermore, as gestation progresses and growth of the fetus increases exponentially, the 

demand for uteroplacental blood flow increases and is fulfilled by both vasodilation and 

increased angiogenesis [43].    

 

Uteroplacental blood flow 

During early gestation, the rate of uterine blood flow increases about 4.0- to 6.0-

fold between Days 11 and 30 of gestation [75].  A large majority of this increase occurs 

around Day 24 of gestation when the microvascular volume density increases in the 
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luminal caruncular tissue throughout the uterus (both the gravid and non-gravid uterine 

horns) [75].  From mid- to late gestation, an approximate 3.2-fold increase in uterine 

blood flow and a 19-fold increase in umbilical blood flow occurs [25].  This is 

concomitant with an approximate 0.5-fold increase in caruncular vascular density and 

6.0-fold increase in cotyledonary vascular density [25].  Furthermore, as the placenta 

reaches its maximum size around Day 90, placental blood flow is approximately 63% of 

total uterine flow.   In late gestation, close to term, 84% of the uterine blood flow passes 

through the caruncles and 94% of the total umbilical flow leaving the fetus travels 

through the cotyledons [76].  Collectively, placentomes serve as sites of high-throughput 

nutrient transfer [77] and provide the primary source of hematotrophic nutrient during 

gestation [78].    

Thus, it is not surprising that throughout gestation the caruncular capillaries 

increase primarily in size, while cotyledonary capillaries proliferate by branching for 

maximal surface area within the placentome [26, 50, 79].  This is depicted in Figure 2.4 

based on a study that determined vascularity of the caruncular and cotyledonary tissues 

of the sheep placentome [79].  In doing so, the following parameters were analyzed: 

tissue and shrinkage area, cross-sectional capillary area density or the total capillary area 

as a proportion of tissue area (abbreviated CAD), capillary number density or the total 

number of capillaries per unit of tissue area (CND), and capillary surface density or the 

total capillary circumference per unit of tissue area (CSD); the average cross-sectional 

area per capillary (APC) was also calculated by dividing the CAD by the CND [79].  

There is a steady increase in CAD, CND, CSD, and APC in the caruncular tissue 
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throughout gestation.  In cotyledonary tissue, however, there is a slight increase in CAD 

and CSD, an exponential increase in CND, but a decrease in APC.  The decrease in APC 

within the cotyledon tissue is not surprising since these capillaries become highly 

branched and there is an increase in overall number of capillaries as gestation progresses 

[79].   

 

 

Figure 2.4. Regressions of measures of vascularity in caruncular and cotyledonary 

tissues of the sheep placentome.  CAD, capillary area density (as a percentage); CND, 

capillary number density; CSD capillary surface density (in µm); APC, area per capillary 

(in µm
2
). Reprinted with permission from the Society for the Study of Reproduction 

[79]. 
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Vascular Endothelial Growth Factors 

The VEGF family contributes to angiogenesis by stimulating permeability of the 

vasculature, as well as production and migration of vascular endothelial cell proteases 

[28, 80, 81].  Expression of VEGF and its receptor has been localized in placental and 

fetal tissues in various species, including the human, sheep, and mouse [28, 82-87].  At 

least three molecular forms of VEGFA (VEGF120, VEGF165, and VEGF188) have been 

found in fetal placental tissues, with the most prominent form being VEGF165 [88].  All 

forms possess vascular permeability and can stimulate angiogenesis [88].   

 During early gestation (Days 14 to 30) in sheep, there is no change in VEGF 

mRNA in caruncles [89].  Expression of mRNA for the VEGF receptor FLT1 (also 

VEGR-1) in caruncles increases 2- to 2.5-fold between Days 20 and 28 and then 3.8-fold 

on Day 30 of gestation.  In addition, mRNA levels for the receptor KDR (also VEGFR-2) 

increase 1.8- to 2.6-fold between Days 18 and 30 of gestation [89].  In the maternal 

caruncle, levels of VEGF mRNA increase approximately 2-fold between Days 50 and 

130 of gestation, with peak mRNA expression at gestational Day 130 in the sheep [79].  

Within the placental cotyledon, expression of VEGF increases from Days 60 to 140 of 

gestation [88] and expression levels remain elevated between Days 90 and 130 of 

gestation [79].  A linear increase in FLT1 mRNA expression occurs in both the caruncles 

and cotyledons during the last two-thirds of gestation; however, mRNA levels and the 

rate of increase are greater in the caruncle.  Furthermore, caruncular KDR mRNA levels 

increase from Days 50 to 110, and then declines throughout late gestation.  However, 
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there is no change in KDR mRNA levels in cotyledons from Day 50 to Day 140 of 

gestation [79]. 

 In mice, both homozygous and heterozygous VEGF-gene knockouts are 

embryonic lethal [90, 91].  Embryonic death is seen by Day 11 of gestation, along with 

abnormal heart, aorta, and vessel development in the fetal and extraembryonic 

vasculature, in the VEGF
-/-

 mice [90].  Similar developmental defects are seen in the 

VEGF
+/-

 mice, which die around Days 11-12 of gestation [91].  Individual homozygous 

knockouts of the VEGF receptors FLT1 and KDR both impair vascular development in 

the extraembryonic membranes and result in embryonic mortality by Day 8 of gestation 

[92, 93].  Conclusively, these studies exemplify the magnitude of VEGF and its 

receptors in fetal development.        

 

Basic Fibroblast Growth Factor 

 Basic fibroblast growth factor (bFGF or FGF2) stimulates uterine and fetal 

arterial endothelial cells [26, 55]. In endothelial cells it stimulates production of 

collagenase and plasminogen activator and functions as a chemotactic and mitogenic 

factor [79, 94].  Similar to the expression of VEGF, no changes occur in levels of FGF2 

mRNA during early gestation (Days 14 to 30) in sheep, but levels of mRNA for its 

receptor FGFR2 (also FGFR2IIIc) increase by 1.5-fold on Day 16 of gestation compared 

cyclic ewes [89].  No variation in expression of FGF2 mRNA in the maternal caruncle 

occurs between Days 50 and 140 of gestation [79].  Cotyledonary expression of FGF2 

mRNA, however, increases exponentially from Day 50 to Day 140 of gestation [79].  
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Unlike VEGF-knockout mice, FGF2-gene knockouts are not embryonic lethal and only 

have mild defects in brain development, their ability to regulate blood pressure, and 

impaired wound healing [95-97].  In contrast, FGFR2-gene knockout mice die by 

approximately Day 4.5 of gestation and exhibit abnormal differentiation of the 

embryonic germ layers [97, 98].  Together, these studies demonstrate the importance of 

proper FGF signaling for normal development of the extraembryonic membranes and 

fetus.   

 

Angiopoietins 

 The angiopoietins are another angiogenic factor family known to regulate 

development and growth of the placental vasculature [26, 99, 100].  Both ANGPT1 and 

ANGPT2 (also ANG1 and ANG2, respectively) mRNAs are found throughout the 

reproductive tract and primarily function in vascular remodeling [26, 101].  ANGPT1 

promotes organization of the microvasculature, as well as endothelial cell survival [100, 

102].  Moreover, ANGPT1 induces both maturation and stabilization of vessels [103].  

Expression of ANGPT2 is hypothesized to be stimulated by VEGF and FGF2 and to 

serve as a modulator of vascular growth when expressed coordinately with VEGF [101].  

The angiopoietin receptor TIE2 (also TEK) is expressed primarily on endothelial cells 

and binds both ANGPT1 and ANGPT2 [104].   

 In the sheep, mRNA levels of ANGPT1 increase by 2.1- to 2.5-fold on 

gestational Days 26 to 30 in caruncles [89].  Levels of ANGPT2 mRNA do not differ 

until Day 30 of gestation, when there is a 2.4-fold increase in caruncular expression.  A 
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1.8- to 2.3-fold increase in mRNA expression is also seen for the receptor TIE2 between 

Days 18 to 30 of gestation [89].  Levels of ANGPT1 mRNA continue to increase from 

Day 50 to 130 of gestation in caruncles and then decrease to Day 140 [79].  In the 

cotyledon, levels of ANGPT1 mRNA increase drastically from Day 50 to Day 90, 

decrease to Day 110, and then remain steady from Day 110 to Day 140.  Expression of 

ANGPT2 mRNA steadily increase from mid- to late-gestation in both caruncular and 

cotyledonary tissues, with expression being significantly higher in the caruncle at Day 

110.  In contrast, expression of TIE2 mRNA remains constant and similar in the 

caruncles and cotyledons from Day 50 to Day 140 [79].   

 

Nitric Oxide Mediated Vasodilation 

 Endothelial cell-derived NO, synthesized from arginine by nitric oxide synthase 

(NOS), is essential in regulating vasodilation and angiogenesis in the placenta [105-108].  

Both VEGF and FGF2 stimulate production of NO by endothelial cells, while NO is also 

capable of both stimulating and inhibiting expression of those angiogenic factors [26, 

109].  NO can activate the soluble enzyme guanylate cyclase (GUCY1B3) in endothelial 

cells.  Once activated, GUCY1B3 catalyzes the conversion of guanosine 5’-triphosphate 

(GTP) to guanosine 3’,5’-monophosphate (cGMP) and thus regulates smooth muscle 

tone and blood flow [79].  In addition, endothelial nitric oxide synthase 3 (NOS3) is also 

hypothesized to interact with the VEGF family in the placenta, primarily to increase 

production and enhance function of the VEGF members during early pregnancy [89, 

110].  During early gestation (Days 12-30), no change in mRNA levels for GUCY1B3 
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was observed in the ovine caruncle compared to cyclic ewes [89].  However, NOS3 

mRNA expression increases 2.5-fold on Day 18 and then 4.1-fold on Day 30 of gestation 

in caruncles, compared to cyclic ewes [89].  Furthermore, from Day 50 to Day 130 of 

gestation, levels of GUCY1B3 mRNAs do not differ in either the caruncles or cotyledons 

based on day; however, there was a significance increase in GUCY1B3 mRNAs on Day 

140 in the cotyledonary tissue [79].  Levels of NOS3 mRNAs remained similar in the 

cotyledonary tissue from Day 50 to 140, while levels in the caruncle remained steady 

from Day 50 to 70, increased significantly at Day 90, and then remained similar 

throughout Day 140 of gestation [79].   

 Results from studies of NOS3 knockout mice (NOS3
-/-

) illustrated impaired 

placental nutrient transport and reduced fetal weight in response to loss of NOS3 

compared to wild type controls [111].  This was concomitant with a significant increase 

in constriction of the uterine artery and a reduction in endothelium-dependent relaxation.  

Nutrient transport, as assessed by the unidirectional maternofetal 
14

C-

methylaminoisobutyric acid (MeAIB) clearance and sodium-dependent 
14

C-MeAIB 

uptake into placental vesicles, was significantly lower in NOS3
-/-

 mice [111].  A second 

study utilizing the NOS3
-/-

 mouse model observed reduced fetal growth in conjunction 

with decreased umbilical blood flow and reduced umbilical venous diameter at Day 17.5 

of gestation [112]. 

Coordination of angiogenic factors expression and that of their respective 

receptors throughout the entirety of gestation is imperative for proper development of 

placental vasculature [26].  During early gestation, growth and development of the 
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caruncular vasculature is essential in providing a framework for placental vascular 

growth.  As gestation progresses, it is the proliferation of cotyledonary vessels that 

ensures adequate surface area for maximal nutrient and waste exchange between the dam 

and fetus.  Disrupting the gestational environment, as in maternal nutrient restriction, can 

hinder the process of placental angiogenesis and ultimately lead to IUGR of the 

offspring [23, 113-116]. 

 

Select Nutrients and Growth Promoting Hormones in Ovine Placental Tissues and 

Fetal Fluids 

Amino Acids and Their Transporters 

Amino acids are fundamental for synthesis of peptides, proteins and other non-

proteinaceous molecules of biological significance, such as NO and polyamines [52, 

117].  With such a vast variety of physiological functions, it is not surprising that there 

are dynamic changes in concentrations of amino acids in maternal uterine arterial 

plasma, fetal plasma, and fetal fluids throughout pregnancy [52, 61].  These dynamic 

changes in concentrations of amino acids in fetal fluids, fetal plasma, and maternal 

plasma, as well as the variety of functions served by amino acids illustrate their necessity 

to the growing and developing fetus.  Thus, proper transplacental exchange of amino 

acids is imperative throughout gestation.   

The transport of amino acids across the placenta is largely regulated by members 

of the solute carrier (SLC) family of molecules [118-120].  The amino acid transport 

systems, listed Table 2.1, have been identified in mammals and are classified based on 
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whether they are sodium independent or sodium dependent, and if they show preference 

to cationic, anionic, or zwitterionic substrates [56, 121].  Amino acid transporters are 

often found on both the maternal and fetal membranes and many systems exhibit 

overlapping substrate affinities.  Moreover, this is a rapidly changing field of study in 

which discovery of individual transporters frequently leads to identification of new 

members in a family of transporters [121]. 

 

Table 2.1. Amino acid transport systems in the placenta. Adapted from Grillo et al. (2008) [56].  

 Transport 

System Protein Substrates 

Sodium-Dependent Systems A SNAT(1,2,4) Ala, Ser, Pro and Gly 

 ASC ASCT(1,2) Ala, Ser and Cys 

 N SN1 His, Asn and Gln 

 XGA
-
 EAAT(1-3) Glu and Asp 

 β TAUT Tau 

 B⁰,+ ATB⁰,+ Cationic and neutral amino 

acids 

 GLY GLYT1 Gly and Sarcosine 

Cationic Amino Acid Transport 

Systems 

y
+
 CAT 1-4 Cationic amino acids 

Glycoprotein Associated 

Transport Systems 

asc Asc14F2hc Small, neutral amino acids 

and D-serine 

 b⁰,+ b⁰,+/rBAT Cationic and neutral amino 

acids 

 L LAT1, 

LAT2/4F2hc 

Neutral amino acids, 

branched-chain amino acids 

and Trp 

 y
+
L y

+
LAT1/4F2hc Cationic amino acids 

 xc
-
 xCT/4F2hc Glutamate/cysteine exchange 

 T TAT1 Aromatic amino acids 

 

 

 

Although identification and characterization of nutrient transporters in the 

placenta is growing, expression of the SLC transporter family in the sheep placenta 

throughout gestation has not been fully elucidated.  However, studies have identified 

amino acid transporters in the sheep uterus and conceptus during the peri-implantation 
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period of pregnancy:  (1) sodium-independent System y+ transports cationic amino acids 

(such as arginine) and is comprised of four transporters that are encoded by the genes 

SLC7A1, SLC7A2, SLC7A3, and SLC7A4; (2) Systems ASC and N transport neutral 

amino acids (such as glutamine) and are encoded by SLC1A4 and SLC1A5 (ASC) and 

SLC38A3 and SLC38A6 (N); (3) System L transports branched-chain and large neutral 

amino acids and is encoded by SLC7A5, SLC7A8, and SLC43A2; (4) System XAG
-
 

transports glutamate and aspartate and is encoded by SLC1A1, SLC1A2¸ and SLC1A3; 

(5) System B⁰,+ transports neutral and basic amino acids and is encoded by SLC6A14;  

and (6) System B⁰ transports neutral amino acids and is encoded by SLC6A19 [57, 58, 

120].  Expression of transporters and the exchange of amino acids between the uterine 

tissues and conceptus trophectoderm during the peri-implantation of pregnancy are 

likely critical in establishing a proper environment for placentation and fetal 

development. 

Changes in concentrations of amino acids in uterine luminal fluid are detected as 

early as Day 10 of gestation in the sheep [40].  When compared with uterine fluids from 

cyclic sheep, total recoverable glutamine, glutamate, arginine, asparagine, aspartate, 

leucine, histidine, beta-alanine, tyrosine, methionine, tryptophan, valine, phenylalanine, 

lysine, isoleucine, cysteine, and proline are greater in pregnant ewes between Days 10 

and 16 of gestation.  Moreover, a 3- to 23-fold increase in glutamine, glutamate, 

arginine, glycine, leucine, cysteine, and proline occurs between Days 10 and 14 of 

pregnancy and remain elevated at Day 16.  Only modest changes (less than 2-fold) in 
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total recoverable citrulline, tyrosine, asparagine, tryptophan, methionine, cysteine, and 

valine are detectable between Days 3 and 16 of cyclic ewes [40].   

Between Days 10 to 16 of the peri-implantation period of pregnancy, 

concentrations of glutamine, arginine, and leucine increase rapidly in uterine luminal 

fluids, coinciding with the period of rapid growth, elongation, and development of the 

conceptus [40].  These amino acids can induce cell proliferation by stimulating FKBP12-

rapamycin complex-associated protein 1 (FRAP1, also mTOR) cell signaling and 

activating the protein kinase P70S6 [1, 40].  Additionally, through mTOR signaling, 

leucine and arginine stimulate outgrowth of the trophectoderm for implantation in mice 

[122, 123].  Metabolism of glutamine may provide energy for the early conceptus in the 

form of reducing equivalents [40-42].  Arginine’s roles in NO signaling and as a 

precursor for polyamines for enhanced vasodilation and nutrient transport also make it 

imperative for development of the pre-implantation conceptus [4, 40].   

In conjunction with the fluctuations in concentrations of amino acids in the 

uterine lumen during the peri-implantation period (Days 10 to 20) of gestation, 

expression of a multitude of amino acid transporters is evident throughout the 

endometrial LE/sGE, GE, and stroma, the caruncular LE and stroma, as well as the 

conceptus trophectoderm and endoderm (Table 2.2) [57, 58].  Expression of these 

transporters in the uterus during the peri-implantation period of pregnancy is most likely 

to increase concentrations of amino acids needed for conceptus development and 

survival [57].  In the peri-implantation conceptus, expression of these transporters is  
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Table 2.2. Localization of amino acid transporter in the sheep endometrium, caruncle, and conceptus during the peri-implantation stage.* Adapted 

from Gao et. al. 2009 [57, 58]. 

Transporter Select Substrates 

Endometrial Expression Caruncular 

Expression 

Conceptus Expression 

LE/sGE GE Stroma LE Stroma Trophectoderm Endoderm 

SLC1A1 Glu and Asp +++ +++ - +++ - + ++ 

SLC1A2 Glu and Asp + + + + + + + 

SLC1A3 Glu and Asp + + ++ + ++ + + 

SLC1A4 Ala, Ser and Cys ++ ++  ++ + + ++ 

SLC1A5 Ala, Ser and Cys + ++ ++ + + + ++ 

SLC38A3 His, Asn and Gln + + + + + + + 

SLC38A4 His, Asn and Gln + + ++ + ++ + + 

SLC38A6 His, Asn and Gln - - ++† - ++† + + 

SLC3A1 Cationic and neutral  

amino acids 

+ + + + + + + 

SLC6A14 Cationic and neutral  

amino acids 

+ + + + + + + 

SLC7A6 Cationic and neutral 

 amino acids 

+ + + + + ++ ++ 

SLC6A19 Neutral amino acids + + + + + ++ ++ 

SLC7A1 Cationic amino acids ++ ++ +   + + 

SLC7A2 Cationic amino acids + + +   + + 

SLC7A3 Cationic amino acids + + +   + + 

SLC7A5 BCAA and large neutral 

amino acids 

+ +++ +++ + + ++ +++ 

SLC7A8 BCAA and large neutral 

amino acids 

++ + + ++ + + ++ 

SLC43A2 BCAA and large neutral 

amino acids 

++ ++ + ++ + ++ ++ 

*Expression denoted as: -, not expressed; +, weakly expressed; ++, moderately expressed; +++, abundantly expressed. 

LE – luminal epithelium; sGE – superficial glandular epithelium; GE – glandular epithelium; BCCA – branch-chained. 
†Authors noted that expression of SLC38A6 was only in cells distributed throughout the stroma that might represent an immune cell lineage [57]. 



 

25 

 

thought to increase amino acids available to support growth and survival prior to 

implantation [57, 58].   

Although limited work has been done in the late gestation placenta work utilizing 

50% nutrient restriction and 100% dietary requirement control ewes identified temporal 

changes in expression of transporters patterns of expression for various amino acid 

transporters, including SLC7A2, SLC7A5, SLC7A6 , and SLC38A2 on gestational Days 

50 to 125, with no differences seen based on treatment [124].  Expression of mRNA for 

the sodium-coupled neutral amino acid transporter SLC38A2 is not different between 

Days 50 and 125 in nutrient restricted (NR) ewes; however, in placentomes of well-fed 

ewes SLC38A2 expression increased from Days 50 to 75, decreased to Day 100 and then 

increased to Day 125.  Conversely, expression of the amino acid transporters SLC7A1, 

SLC7A7, SLC7A8, and SLC38A4 mRNAs did not differ as gestation progressed [124].   

Fluctuations in concentrations of amino acids persist throughout gestation in fetal 

plasma, and fetal fluids.  While there are fluctuations in the concentrations of select 

amino acids in the maternal circulation, the concentrations of total amino acids remain 

relatively constant throughout gestation [52].  This contrasts with the steady increase in 

concentrations of total amino acids throughout gestation.  Total amino acids in amniotic 

fluid increase approximately 10-fold from Day 30 to Day 40, then another 10-fold from 

Day 40 to Day 60 of gestation, and will later double in amount between Day 100 and 

120 of gestation just prior to the exponential phase of fetal growth.  Similarly, total 

amino acids in the allantoic fluid increase approximately 9-fold between Day 80 and 100 

of gestation when the placenta reaches its maximum weight and the period of rapid fetal 
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growth is about to begin [52].  Total content of amino acids in the amniotic and allantoic 

fluids are discussed here as they give a more accurate illustration of nutrient availability 

in these reservoirs at any given point during gestation since concentrations of amino 

acids do not reflect the significant changes in volumes of these fetal fluids throughout 

gestation. 

 As previously stated, the ovine fetus consumes up to one liter of amniotic fluid 

daily during late gestation.  Thus, it is not surprising that some of the amino acids, such 

as glutamine, in the amniotic fluid may have an essential role in development of the fetal 

gut [52].  Although the fetus consumes large quantities of amniotic fluid and nutrient 

restriction causes IUGR, a comparison of amino acid concentrations and total quantities 

indicates that the allantois is by far the primary nutrient reservoir with amino acid 

concentrations being approximately 7 times greater than in amniotic fluid at Day 120 of 

gestation [52].  The allantois is comprised of maternal and fetal secretions and its 

composition is largely influenced by transplacental exchange of nutrients and wastes 

[52].  Citrulline, glutamine, serine, and alanine are the four most abundant amino acids 

in ovine allantoic fluid, predominantly during early gestation and the time of placental 

development.  Alanine, serine, and glutamine have various functions which are required 

for DNA synthesis and, thus, ultimately cell proliferation [52].  These three amino acids 

are also gluconeogenic in sheep [125] and humans [52, 126].  Additionally, serine 

functions in one-carbon unit metabolism for the synthesis of 2’-deoxythymidylate for 

DNA synthesis and methylation [52, 127].  Glutamine serves as a major fuel source for 

the developing ovine fetus [52, 126] and is needed for synthesis of aminosugars, 
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nucleotides, and NAD(P)
+
 [52, 128].  Citrulline is known to be an effective precursor for 

arginine.  Moreover, the presence of argininosuccinate synthase and lyase in nearly all 

animal tissues, such as the placenta, allows the allantois to serve as a reservoir of 

citrulline for conversion to arginine for use by the fetal sheep [52, 117].  Citrulline may 

also function as an antioxidant, protecting against radical-induced oxidative damage and 

potentially aiding in the establishment of a protective fetal environment [52].   

 Additionally, the flux of essential amino acids (methionine, phenylalanine, 

leucine, isoleucine, valine, tryptophan, threonine, histidine, and lysine) across the 

placenta has been characterized by administering a bolus containing these nine amino 

acids into the maternal circulation [129, 130].  Not surprisingly, certain amino acids 

display a higher clearance rate than others.  For example, methionine, phenylalanine, 

leucine, isoleucine, and valine have higher clearance rates than tryptophan, threonine, 

histidine, and lysine.  Rapid clearance rates for methionine, phenylalanine, leucine, 

isoleucine, and valine are thought to be associated with the fact that these amino acids 

utilize the sodium-independent, glycoprotein associated L transport system [60, 130].  

Further analysis of the five amino acids with more rapid clearance rates illustrates that 

the magnitude of flux across the placenta is impacted by the normal concentration of 

each amino acid in the maternal circulation [129, 130].  This also demonstrates a 

relatively low affinity for neutral amino-acid transporters and little transplacental 

clearance of basic amino acids [60, 129, 130].   
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Polyamines 

 Polyamines, such as putrescine, spermidine, and spermine, are synthesized from 

amino acids, mainly arginine, and function to stimulate DNA and protein synthesis, cell 

proliferation and differentiation, placental development, mammalian embryogenesis, 

signal transduction, and angiogenesis [38, 52, 131].  The regulation of gene expression, 

intracellular signal transduction, as well as the synthesis of DNA and proteins, occurs by 

the binding of polyamines to DNA, RNA, proteins, and other negatively charged 

intracellular molecules [131].  Additionally, polyamines function as endogenous 

scavengers of reactive oxygen species and have an essential role in the prevention of 

oxidative damage to DNA, proteins, and lipids.  Ultimately all of these intracellular 

functions add to their importance in cellular proliferation and differentiation [131].  

Importantly, inhibition of polyamine synthesis impairs placental growth and results in 

IUGR in both mice and rats [132-134].   

Synthesis of polyamines from amino acids via the polyamine-synthetic pathway 

begins with the conversion of arginine to ornithine by arginase or with the conversion of 

proline to pyrroline-5-carboxylate, which is used to generate ornithine via ornithine 

aminotransferase [135].  This pathway is largely regulated by the rate-controlling 

enzyme ornithine decarboxylase (ODC1), which converts ornithine into putrescine.  

Putrescine may then be converted to spermidine by spermidine synthase or spermine by 

spermine synthase [131].  An alternative pathway for polyamine synthesis has also been 

recently discovered in mammalian cells, including ovine trophectoderm cells [45].  An 

in vivo ODC1 knockdown using morpholino antisense oligonucleotides during the pre-
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implantation period illustrated that a deficiency in ODC1 function can be compensated 

for by the ADC/AGMAT pathway in the ovine conceptus.  This ADC/AGMAT pathway 

involves arginine being metabolized to agmatine by arginine decarboxylase (ADC) and 

agmatine then being converted to putrescine  by agmatinase [45].   

 During early pregnancy, levels of ODC1 mRNA in the ovine endometrium 

decrease from Days 10 to 14 and then increase again at Day 20 [136].  The level of 

ODC1 mRNA in the ovine conceptus increases between gestational Days 13 and 18, 

while ODC1 protein is more abundant in the trophectoderm than in the endoderm at this 

time [136].  Throughout gestation, concentrations of ornithine and polyamines are 

highest at Day 40, around the time of early placentome formation, in both the 

intercaruncular endometrium and placentomes [131].  This is concomitant with peak 

ODC1 and arginase activities in the intercaruncular endometrium, intercotyledonary 

placenta, and placentomes.  Concentrations of polyamines in the allantoic fluid are 

greatest between Days 40 and 60, while peak concentrations in amniotic fluid occur 

between Days 100 and 140 of gestation [131].   

  

Glucose and Its Transporters 

 Glucose serves as a primary energy source for the developing ovine conceptus 

during the peri-implantation period [40].  The concentration of glucose in uterine 

luminal fluid between Days 10 and 15 of gestation increases approximately 6-fold in 

order to meet the demands of the developing conceptus [40, 59].  During this time, 

glucose, as well as certain amino acids like arginine, glutamine, and leucine, can 
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stimulate the mTOR signaling pathway to enhance cell proliferation and function.  As 

gestation progresses and the placenta is formed, the uteroplacental tissues consume 50% 

or more of the glucose received from the maternal circulation before it reaches the fetal 

circulation [36].  Indeed, from mid- to late pregnancy glucose requirements needed to 

meet the exponential growth in fetal mass increase greater than 6-fold [137]. 

 In order to meet this increased demand for glucose, expression and availability of 

glucose transporters increase in the uteroplacental tissues.  These consist largely of 

facilitative transporters of the SLC2A family (common name GLUT) and sodium-

dependent transporters of the SLC5A family (common name SGLT) [59].  During the 

peri-implantation period, specifically Days 10 to 20 of gestation, the mRNAs and 

proteins of both SLC2A1 and SLC5A1 are greatest in the uterine LE and sGE [59].  The 

SLC2A3 mRNA is not detectable in the uterine endometrium, while the SLC2A4 mRNA 

and protein are localized to uterine stromal cells and GE.  Additionally, expression of 

SLC5A11 mRNA is abundant in uterine GE.  Also at this time, all of these transporters 

(SLC2A1, SLC2A3, SLC2A4, SLC5A1, and SLC5A11) are expressed in the 

trophectoderm and endoderm of the conceptus [59].   

 Earlier work investigating the expression and characterization of glucose 

transporters in the ovine placenta focused on mid- to late-gestation.  In a study utilizing 

placentas from ewes carrying twin pregnancies, the SLC2A1 and SLC2A3 (GLUT-1 and 

GLUT-3) proteins increase 2.3 and 2.9 times, respectively, between Days 75 and 140 of 

gestation [137].  This increase in protein is accompanied by increases in SLC2A1 mRNA 

of 1.8 times, while SLC2A3 mRNA increases 3.9 times.  This study was unable to detect 
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SLC2A4 protein at Days 75, 110, and 140 of gestation in ewes [137].  Thus, as the 

demand for the energy substrate glucose increases throughout pregnancy, the expression 

and activity of its transporters in the placenta increase to ensure proper fetal-placental 

development. 

  

Insulin  

 The pancreatic cells of the fetal lamb secrete the anabolic hormone, insulin, 

during the second half of gestation [138, 139].  As in adult mammals, insulin secretion in 

the fetal lamb is also dependent upon changes in nutrient availability and is thus 

involved in the relationship between fetal growth rates in response to fetal nutrient 

supply.  Furthermore, glucose metabolism in the fetal pancreatic islet cells can have a 

profound impact on insulin release and insulin biosynthesis.  However, glucose is not the 

only factor regulating insulin release, as norepinephrine and other catecholamines can 

impair insulin secretion in the fetus [139].   Due to the majority of fetal development 

occurring later in gestation, including development of the pancreas and insulin-sensitive 

tissues like the liver and skeletal muscle, it is not surprising that fetal plasma glucose 

levels and glucose uptake are higher at mid-gestation than near term [140].  

Consequently, as the fetal pancreas and insulin-sensitive tissues become more developed 

and gestation progresses, concentrations of insulin in the fetal plasma increase [140].  As 

previously stated, insulin secretion is dependent upon nutrient availability.  Thus, it is 

not surprising that pancreatic development and insulin secretion are altered in times of 



 

32 

 

maternal nutrient restriction.  The implications of maternal nutrient restriction on fetal 

insulin secretion and pancreatic function will be discussed later in this review.   

An earlier study illustrated that intravenous infusion of insulin into the fetal lamb 

in a normal, well-fed ewe for an 18 hour period during late gestation (sometime between 

Days 115 and 123) increased concentrations of oxygen, glucose, and lactate in fetal 

blood [141].  The increased uptake of glucose by the fetus following infusion also 

stimulated fetal uptake of amino acids.  Increased uptake of those nutrients and amino 

acids could subsequently lead to increased oxidative metabolism by the fetus [141].  It is 

possible that infusion of insulin into the fetal system could increase fetal nutrient uptake 

in pregnancies of undernourished ewes.  Means to ameliorate the effects of maternal 

under-nutrition during pregnancy will also be discussed later in this review. 

 

Insulin-like Growth Factors 

 The insulin-like growth factors (IGF1 and IGF2), along with their associated 

receptors and binding proteins, are influential to both placental and fetal development.  

These growth factors serve to promote cellular proliferation and differentiation, as well 

as various metabolic functions.  While the IGFs are known to regulate fetal 

development, gene deletion studies in rodent models initially illustrated their roles in 

placental development and function [142-145].  Studies were later conducted in the 

sheep to elucidate the mechanisms of action of IGFs in the ovine placenta and fetus 

[144].   
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During early gestation, levels of IGF1 mRNA are low (compared to levels of 

IGF1 expression during the estrous cycle) throughout the endometrial stroma, 

myometrium, and GE, with the highest expression being in the deep uterine glands 

[144].  Some expression of IGF1 mRNA is detected in the caruncular tissue, but 

following the interdigitation of cotyledonary villi with the caruncular crypts this 

expression is lost.  In contrast, levels of IGF2 mRNA in the caruncular crypts increase 

between Days 25 and 35 of gestation and remain elevated through Day 55 (the last day 

studied by these authors) and high levels of expression are detectable in the 

interdigitating fetal cotyledonary villi.  Expression of IGF type 1 receptor (IGF1R) 

mRNA is elevated in the deep uterine glands throughout the period of study (Days 13 to 

55).  Moderate expression of IGF1R occurs in the uterine sGE and caruncular crypts.  

Levels of IGF1R mRNA in the caruncle, like IGF1, decrease following interdigitation 

between caruncular and cotyledonary tissues.  Additionally, expression of this receptor 

was not detected in the cotyledonary villi [144].   

 The IGFBPs can stimulate the effects of IGFs by helping transport IGFs to their 

receptors and by increasing half-life while remaining bound to the IGFs.  They can also 

inhibit actions of IGF1 by preventing its binding to its receptor.  IGFBP2, IGFBP4, 

IGFBP5, IGFBP6, and IGFBP7 are all present in the stroma of the intercaruncular 

endometrial on Days 9 and 12 of gestation [146].  On Day 9 of gestation, IGFBP5 

mRNA is detected in the LE, while IGFBP4, IGFBP5, and IGFBP7 mRNAs are 

localized in the smooth muscle of blood vessels within the endometrium [146].  IGFBP1 

and IGFBP3 mRNAs are exclusively expressed in the LE and sGE of the intercaruncular 
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endometrium, as well as in the LE of the caruncles [146].  In a previously mentioned 

study, levels of IGFBP2 are undetectable until Day 29 of gestation in sheep, at which 

time expression is restricted to the dense caruncular tissue close to the uterine LE and are 

co-localized with IGFBP4 [144].  Expression of IGFBP4 is also detectable within the 

capsule of the placentomes between Days 13 and 55 of gestation [144].  Moreover, 

levels of IGFBP3 are high in uterine LE from Days 13 to 15 and then decrease 

dramatically [144]0.  Elevated expression of IGFBP3 is also detected in the caruncular 

crypts of the placentomes, but not in the cotyledonary villi [144].  Expression of 

IGFBP1 is only seen during early pregnancy, at approximately Day 13, in the uterine LE 

and is undetectable by Day 21 [145].  Furthermore, IGFBP5 mRNA is also localized to 

uterine LE and GE and expression increases throughout gestation [145].   

 IGF1 and IGF2 impact placental nutrient utilization and transfer of nutrients to 

the fetus [147].  Conversely, fetal nutrient levels can enhance IGF1 production [147].  

IGF2, however, also enhances placental development in various species, such as the 

sheep [147].  The role of IGFs in fetal development, as well as the relationship between 

nutrient availability and IGF functions, will be discussed later in this review.  

 

Malnourishment and Intrauterine Growth Restriction 

 Numerous genetic, physiological, and environmental factors impact uterine and 

placental development.  Not surprisingly, disruption of placental physiology and the 

uterine milieu by any of these factors increases the likelihood of IUGR of the offspring, 

as depicted in Figure 2.5.  IUGR may be defined as impaired growth and development of 
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the fetus or any of its organs during gestation.  IUGR fetuses may be categorized under 

either symmetrical or asymmetrical with respect to growth patterns [4, 148].  The 

majority of IUGR fetuses fall into the asymmetrical category, which is often associated 

with insufficient placental structure and function [148].  Thus, an IUGR offspring may 

exhibit a seemingly normal growth trajectory, but have abnormal organ development 

that results in health implications later in life.    

 

 

Fig 2.5. Factors affecting mammalian fetal growth. Adapted from Wu et al. (2006) [4]. 

 

 

Although the exponential growth of the fetus occurs primarily during the last 

third of gestation, insults to the gestational environment at any time point between 
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conception and parturition can dramatically affect development of the offspring and 

possibly result in termination of the pregnancy [4, 149].  In livestock, IUGR negatively 

influences neonatal adjustment, preweaning survival, postnatal growth, feed efficiency, 

overall health and body composition, meat quality, and reproductive performance [4].   

 In human pregnancies, small for gestational age (SGA) is often defined as a 

weight below the 10
th

 percentile for any given gestational age at birth [27, 150].  

Similarly, IUGR is utilized to describe infants that are born smaller than normal.  

Despite advancements in prenatal care, the prevalence of IUGR infants born each year 

has remained relatively constant [151].  IUGR infants are at greater risk for perinatal 

morbidity and mortality, as well as increased incidences of diseases in postnatal life, 

such as coronary heart disease, hypertension, and adult-onset diabetes [5, 151].   

 The “developmental origins of disease” paradigm encompasses this concept that 

the interaction between the fetal genome and its intrauterine environment determines the 

offspring’s risk of postnatal disease and its capability of thriving in its postnatal life [5, 

6, 14, 15, 152, 153].  Accordingly, the fetus is considered to be in a state of 

developmental plasticity, indicating that one genotype can give rise to various 

phenotypes in response to its environmental condition [6].  Concomitantly, “the thrifty 

phenotype hypothesis” was developed in defense of the idea that the genetic component 

cannot fully explain the rapid increased risk for adult onset of disease which results from 

maternal nutrient restriction during gestation.  This hypothesis proposes that in NR 

pregnancies a reduced fetal growth response may occur in anticipation for an inadequate 

or deprived postnatal environment [152, 154].  From this, the concept of fetal 
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programming during gestation is used to describe the phenomenon of unknown linkages 

between fetal and adult life [152, 155].   

 The prenatal growth trajectory is directly and indirectly influenced by maternal 

nutrition throughout gestation [4, 156-158].  Varying weather conditions, such as 

summer droughts and harsh winters, make maternal undernutrition during pregnancy a 

common occurrence for livestock producers.  Indeed, maternal undernutrition leads to 

fetal undernutrition, thus impairing fetal growth.  Lack of supplementation during times 

of undernutrition can further increase the risk of producing an IUGR offspring.  Ewes 

grazing in the western United States often consume less than 50% of the National 

Research Council (NRC) dietary recommendations without receiving any supplements 

[4, 159, 160].  Since the primary breeding season for sheep occurs during the late-fall to 

early-winter months, ewes generally begin gestation when forage is low in quantity, as 

well as quality [4, 161].  While lack of adequate forage during the winter months may 

lead to gestational undernutrition, thermal stress in tropical and subtropical areas may 

also induce IUGR.  Indeed, gestating animals have been shown to consume less feed and 

blood flow is diverted to the extremities for heat dissipation when environmental 

temperatures are elevated [3, 4, 162].  Furthermore, diverting blood flow to the 

extremities consequently means reducing nutrient transport to the uterus. 

Malnourishment in humans is also a global crisis, prompting challenges in both 

developing and developed countries.  The spectrum of malnutrition is immense, 

encompassing both under- and over-nutrition.  The Food and Agriculture Organization 

(FAO) of the United Nations estimates that approximately 843 million people suffer 
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from chronic hunger, with even more of the global population suffering from diets that 

are deficient in total nutrient composition [163, 164].  Excessive consumption of 

nutrients results in an estimated 35% overweight and 12% obese adults in a population, 

as well as over 42 million overweight children worldwide [165, 166].  In the United 

States, more than one-third of the adult population is obese [167].   Collectively, 

malnourishment affects approximately 58% of the world population, of which a large 

portion are men and women of reproductive age.  The cascade of consequences resulting 

from either maternal or paternal dietary alterations is summarized in Figure 2.6.   

 

Fig 2.6. Consequences of maternal and paternal nutrition on fetal growth and 

development. Adapted from Wang et al. (2012) [13]. 
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It is imperative to note that not all offspring of NR mothers are classified as 

IUGR.  Indeed, at least one study in cattle has shown that gestational nutrient restriction 

induces IUGR in only a subset of offspring [168].  At mid-gestation fetuses of cows that 

had been nutrient restricted fell into two distinct groups: a non-IUGR group which 

possessed fetal weights similar to those of the control fed cows, and an IUGR group 

which possessed fetal weights significantly lower than for the control and NR non-IUGR 

groups.  At this point during fetal development, the brain was significantly larger and the 

heart tended to be larger in the NR IUGR fetuses in comparison to the NR non-IUGR 

and control fetuses.  However, in late gestation, realimentation of the diet at mid-

gestation resulted in all NR pregnancies producing fetuses which were similar in weight 

to those that received the control diet.  Therefore, this study suggests that a period of 

diminished fetal development during early gestation could go unnoticed if dams receive 

additional supplementation or a proper diet during late gestation (the period of 

exponential fetal growth) [168].  Similarly in sheep, this model of nutrient restriction 

during early gestation followed by proper nutrition until parturition results in an IUGR-

like classification of fetuses at mid-gestation, but by late gestation fetuses are considered 

normal based upon weight [7, 38, 71].   

The worldwide crisis of malnourishment in livestock and humans has led to 

development of models for research on nutrient restriction during pregnancy.  Nutrient 

restriction models such as the one previously mentioned involving dietary realimentation 

during late gestation [7, 37, 38, 71, 168, 169], as well as models for global nutrient 

restriction throughout gestation [39, 62, 67, 68, 72, 170], have been developed in species 
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such as sheep, mice, and rats.  Additionally, nutrient restriction models may also include 

diets specifically deficient in protein or even specific nutrients [63, 64, 171-177].   

 

Impairment of Placental Angiogenesis by Nutrient Restriction 

 Uteroplacental blood flow is a critical mediator in the transfer of nutrients, 

wastes, and gases between the dam and fetus.  In humans and livestock, uterine blood 

flow is correlated with placental function and fetal growth [178].  Thus, an exponential 

increase in uterine and umbilical blood flow must occur in order to facilitate nutrient 

availability to the developing fetus [116].  During the latter half of gestation, when the 

fetus is developing at a rapid rate, the absolute rate of uterine blood flow increases at 

least 3-fold in sheep, 4.5-fold in cattle, and 2.5-fold in humans [116, 179, 180].   

 

Global Nutrient Restriction 

Work in sheep demonstrated that while development of the vasculature  increases 

in both the maternal and fetal portions of the placenta, increased vasularity occurs to a 

greater extent within the fetal component [79].  Additionally, work with severely 

undernourished adult ewes (diets were 30-40% that of control diets) showed a 17% 

reduction in uterine blood flow if the dietary insult occurred during mid-gestation, or an 

average 12% decrease in fetal weight was associated with a 20-33% reduction in uterine 

blood flow if the nutritional insult occurred late in gestation [116, 181-183].  Those 

results suggest that the timing of the nutritional insult exerts an effect upon 

uteroplacental vascularity.   
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Maternal nutrient restriction in the rat, cow, sheep, and pig results in differential 

expression of various angiogenic factors in the placenta throughout gestation, impacting 

placental function and ultimately blood flow to the fetus [23, 72, 169, 174, 175].  

Interestingly, global nutrient restriction (60% of dietary requirements) in sheep from 

Day 50 to 130 of gestation induced IUGR, but surprisingly increased placental 

vascularity, although there was no difference in total placentome weight between 

treatment groups [23].  A decrease in expression of mRNAs for VEGF receptors at Day 

130 occurred in the restricted group, but no difference in VEGF mRNA expression was 

detected.  Therefore, the authors hypothesized that it is likely that a reduction in 

expression of VEGF receptors and possibly changes in the expression of other factors 

(such as the angiopoietins) and/or their receptors are responsible for modulating 

angiogenesis in NR pregnancies [23].  To date, however, the role of angiopoietins in the 

placentas of NR pregnancies has not been fully elucidated [29]. 

 

Nutrient Restriction Followed by Dietary Realimentation 

 As displayed in Figure 2.8, angiogenic factors such as the VEGF family can 

function through the MAPK/ERK1/2 and PI3K/Akt pathways, which stimulate 

angiogenesis in the mammalian placenta [169].  The role of these signaling pathways 

was evaluated in a sheep model implementing either a 50% NRC or a 100% NRC 

control diet beginning 60 days prior to conception and continuing until Day 30 of 

gestation [184].  Between Day 31 and 78 of gestation, all ewes were fed a diet providing 

100% NRC requirements and necropsies were performed on Day 78.  At this time, 
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increased vascularity was detected in the caruncular and cotyledonary tissues in response 

to nutrient restriction.  Phosphorylated Akt and phosphorylated ERK1/2 were increased 

in the arteries of cotyledons, but not caruncles in response to nutrient restriction, 

indicating that members of the MAPK/ERK1/2, as well as the PI3K/Akt signaling 

pathways are increased in the arteries of cotyledonary, but not caruncular tissues in 

response to periconceptional nutrient restriction of ewes [184]. 

In a similar study, the researchers implemented either global 50% nutrient 

restriction or fed a control diet (100% NRC requirements) for beef cows from Day 30 to 

125 of gestation, and then fed both treatment groups a 100% NRC diet until Day 250 of 

gestation [169].  Necropsies were performed on a subset of the cattle at Day 125, at 

which time the NR dams had increased levels of phosphorylated Akt and ERK1/2 in 

cotyledonary arteries, increased vascularity of the cotyledons, and enhanced placentome 

efficiency when compared to control fed dams.  However, at Day 250 there was no 

difference in levels of phosphorylated Akt or ERK1/2 in the cotyledons or caruncles due 

to dietary treatments.  Fetal weights only tended to be reduced in response to maternal 

undernutrition on Day 125, but fetal weights were similar for both dietary groups at Day 

250.  Thus, it is possible that an up-regulation of activities in the MAPK/ERK1/2 and 

PI3-K/Akt pathways enhance cotyledonary angiogenesis during early- to mid-gestation 

in response to nutrient restriction [169].   
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Figure 2.7. Roles of Akt and Erk1/2 signaling pathways in stimulating angiogenesis.  

This figure demonstrates that angiogenic and growth factors can bind to their receptors 

and stimulate the MAPK/ERK1/2 and PI3-K/Akt pathways which can ultimately 

enhance angiogenesis. Adapted from Zhu et al. (2006) [169]. 
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Dietary Protein Restriction 

Low protein diets reduce uteroplacental blood flow during pregnancy [175].  

This is hypothesized to be partially due to a reduced response of the maternal uterine 

artery to VEGF.  Indeed, rats fed a 9% casein diet (compared with an 18% casein 

control) from mating until Day 18 or 19 of gestation displayed a significant reduction in 

maximal uterine artery relaxation and overall response to VEGF.  For comparison, the 

uterine arteries were also stimulated in vitro with phenylephrine to analyze 

vasoconstriction responses, and acetylcholine to analyze relaxation responses, and no 

difference was seen in response to those treatments between dietary groups.  The uterine 

artery response to VEGF was reduced by inhibiting NOS in the control, but not the low 

protein diet.  Thus, a low protein diet during gestation can result in an attenuated uterine 

artery vasodilatory response to VEGF.  This may be partially due a reduction in the NO 

component of relaxation mechanisms induced by VEGF [175].  In a similar study during 

which rats were fed either 18% or 9% casein from mating until Day 19 of gestation, 

maximum relaxation of the mesenteric artery in response to acetylcholine was reduced in 

the pregnant rats fed the low protein diet [176].  This study demonstrated the sensitivity 

of the entire vascular network to dietary alterations during gestation [176]. 

In another study of a low protein diet, primiparous gilts were selected for either 

low or high concentrations of total cholesterol in plasma and then fed an isocaloric diet 

containing either 13% or 0.5% crude protein from mating until Day 40 or Day 60 of 

gestation [174].  Activity of total NOS, inducible nitric oxide synthase (iNOS), and 

constitutive nitric oxide synthase (cNOS) was 30-51% lower in the placentas of gilts fed 
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low protein diets to Day 40 or Day 60 of gestation.  More specifically, gilts possessing 

high concentrations of total cholesterol in plasma and receiving the low protein diet had 

lower NOS, iNOS, and cNOS activities in their placentas at Day 40 and Day 60 of 

gestation in comparison to gilts selected for low concentrations of total cholesterol in 

plasma and also receiving the low protein diet.  Low NOS activity in placentas of gilts 

receiving the low protein diet led to a 42% decrease in synthesis of citrulline from L-

arginine.  Furthermore, within the gilts fed the low protein diet, citrulline synthesis was 

decreased by 23% in gilts selected for high concentrations of total cholesterol in plasma 

compared to those selected for lower total cholesterol.  This decrease in NOS, iNOS, and 

cNOS activities in response to low protein diets can impair NO synthesis and ultimately 

hinder placental angiogenesis [174].   

 

Nutrient Restriction Alters Nutrient, Hormone and Growth Factor Availability  

Amino Acids and Polyamines  

Implementation of 50% global nutrient restriction in gestating ewes either 

throughout early to mid-gestation or from early to late gestation reduced concentrations 

of amino acids and polyamines in maternal and fetal blood, as well as allantoic and 

amniotic fluids at mid- and late-gestation [38].  Specifically, arginine-family member 

amino acids, branched-chain amino acids, and serine were reduced in these fluids.  

Dietary realimentation from mid- to late-gestation following 50% nutrient restriction 

during early gestation, increased concentrations of total amino acids and polyamines and 

prevented IUGR [38].  In studies comparing the genetically similar Baggs ewe with the 
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University of Wyoming (UW) ewe, nutrient restriction induced IUGR in UW ewes, but 

not Baggs ewes [67, 72, 170].  These populations are from two different physical  

environments as the Baggs ewes were raised in areas of limited nutrient availability 

while the UW ewes were raised in a more temperate and nutrient-rich environment.  

Amino acid analyses indicate that Baggs ewes had increased concentrations of amino 

acids in the fetal circulation compared to diet matched UW ewes, indicating that long-

term selection for survival characteristics in a nutritionally limited environment can 

result in adaptive changes in placental function to increase amino acid transfer across the 

placenta and reduce the incidence of IUGR [67, 72, 170].     

Functions of amino acids far surpass their most recognized role as foundational 

units for protein synthesis.  Essential roles for amino acids during gestation also include 

regulation of hormone secretion, antioxidant function, and synthesis of nonprotein 

substances such as NO and polyamines [38, 126, 128, 131].  Importantly, arginine 

catabolism results in the production of NO, polyamines, agmatine, creatine, proline, and 

glutamate [185].  Catabolism of the amino acid arginine for the production of NO is 

illustrated in Figure 2.7 [108, 186, 187].  NO is synthesized from L-arginine by NOS and 

serves as a key regulator in placental angiogenesis, trophoblast growth, and development 

of the conceptus [188, 189].   Polyamines function to stimulate DNA and protein 

synthesis, cell proliferation and differentiation, signal transduction, and angiogenesis 

[38, 131].  Studies in both mice and rats have shown that inhibition of polyamine 

synthesis impairs placental development and results in IUGR offspring [132, 190].   
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Figure 2.8. Roles of arginine, polyamines, and NO in placental 

development. Placental synthesis of polyamines and NO may be reduced in 

malnourished pregnancies, thereby reducing placental blood flow and 

transport of nutrients.  Citrulline, synthesized from glutamine by the enzyme 

argininosuccinate synthase (AS-AL), may be used as a precursor for arginine 

synthesis.  In turn, arginine may be catabolized into NO via NOS.  Proline, 

also synthesized from glutamine, is used for the formation of ornithine via 

proline oxidase and ornithine aminotransferase (PO-OAT).  Ornithine is then 

used for polyamine synthesis.  Both NO and polyamines stimulate placental 

growth. Adapted from Wu et al. (2006) [4].  
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Glucose and Insulin 

 Fetal metabolism and use of glucose is highly dependent upon the availability of 

glucose and concentration of insulin in fetal plasma.  As gestation progresses and the 

fetal pancreas develops (around the beginning of the second trimester [191]), use of 

glucose by insulin-sensitive tissues such as skeletal muscle and liver, increase the need 

for glucose.  To meet these demands, the placenta must increase transport of glucose and 

gluconeogenic precursors (such as alanine, serine, and glutamine) to the fetus.  IUGR 

pregnancies are associated with reduced glucose transport either by a smaller placenta or 

reduced transporter expression (to be discussed in a later section of this review) or both 

[191].   

In a nutrient restriction model that utilized a treatment diet containing 70% of 

daily nutrient requirements between Days 26 and either Day 90 or Day 135, a significant 

decrease in fetal growth was associated with decreased concentrations of glucose and 

insulin in plasma of fetuses at Day 135, but not at Day 90 of gestation [192].  Levels of 

glucose in the amniotic and allantoic fluids were decreased at Day 90 and Day 135 of 

NR pregnancies.  Additionally, maternal concentrations of glucose and insulin in plasma 

also decreased in response to nutrient restriction.  Moreover, all of this was associated 

with decreased placental mass in NR ewes.  Thus, a reduction in glucose and insulin, 

coupled with alterations in placental development and function, appeared to perturb fetal 

substrate delivery [192].    

 In sheep, a 50% maternal nutrient restriction from Days 28 to 115 of gestation 

does not alter glucose concentrations in the maternal serum, amniotic fluid, allantoic 
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fluid, although fetal weights were significantly reduced in NR ewes compared to control 

fed ewes at Day 115 [39].  Conversely, ewes being fed 50% NRC requirements 

beginning on Day 28 had lower serum glucose concentrations throughout gestation and 

produced lambs with significantly lower birth weights than control ewes [193].  Thus, 

nutrient restriction may alter glucose concentrations in the maternal circulation and 

subsequently lead to reduced birth weights in lambs.  However, contrasting data suggests 

low fetal weights may not be a result of reduced maternal glucose concentrations and 

instead are a result of a decreased availability of amino acids and their metabolites [39].   

 

Insulin-Like Growth Factors 

 A previously mentioned study in which ewes were fed only 70% of daily nutrient 

requirements between Days 26 and Day 90 or Day 135 of pregnancy decreased IGFBP2 

protein in fetuses at Day 90 in response to dietary treatment [192].  However, levels of 

fetal IGFBP2 increased in NR pregnancies between Day 90 and 135 of gestation.  A 

decrease in fetal plasma IGF1 was detected at Day 135 in response to nutrient restriction, 

even though maternal and fetal concentrations of IGF1 in plasma increased with 

advancing gestation in control fed pregnancies.  Additionally, the declines in fetal 

insulin, glucose, IGF1, and IGFBP2 were associated with decreased fetal growth [192].  

IGF1 is crucial to fetal growth, including development of pancreatic β cells which are 

responsible for insulin production so it is not surprising that decreased IGF1 is 

associated with decreased insulin and fetal growth.  
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 An additional nutrient restriction study revealed alterations in placental 

expression of IGFBPs when pregnant ewes were fed 100% of their requirements and 

housed on straw bedding until Day 83 of gestation, at which time the ration was reduced 

and then completely withdrawn for a period of acute nutrient restriction on Days 85 to 

90 of gestation [194].  During the withdrawal period, ewes were still housed on the straw 

bedding.  Following the withdrawal period, a group of ewes was euthanized and another 

group of ewes were again given 100% of their dietary requirements until necropsies on 

Day 135 of gestation.  At both Day 90 and Day 135 of pregnancy, expression of IGFBP2 

and IGFB3 mRNAs were reduced in the placentas of NR ewes.  However, no alterations 

in fetal IGF1 or insulin concentrations were detected [194].   

 As mentioned previously, IGF1 and IGF2, along with the IGFBPs, have critical 

roles in placental and fetal development.  These growth factors function to enhance 

cellular proliferation and differentiation and various metabolic functions.  Therefore, a 

decrease in IGFs and IGFBPs in response to nutrient restriction can perturb placental 

development and function, along with fetal development.  Exogenous IGFs may improve 

some of these inhibitory effects in nutrient restriction models and will be discussed in a 

subsequent section of this review.  

 

Nutrient Restriction Alters Expression of Placental Nutrient Transporters 

Global Nutrient Restriction 

Interestingly, although blood flow plays an essential role in nutrient transport to 

the fetus, the rate limiting step for delivery of amino acids and glucose is thought to be 
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expression and/or activity of their specific transporters [195].   In mice, a diet containing 

80% of nutrient requirements reduced placental expression of glucose transporter 

SLC2A1 mRNA at Day 16, but increased expression of SLC2A1 and sodium-dependent 

amino acid transporter SLC38A2 mRNAs at Day 19 of gestation [62].  Additionally, no 

change in fetal weight was observed at Day 16 although both placental and fetal weights 

were decreased in undernourished pregnancies at Day 19 of gestation [62].   

In sheep, expression of SLC2A1 (GLUT1) in the placenta increased while fetal 

blood glucose concentrations decreased at Day 78, but not Day 135 of pregnancy in 

response to 50% nutrient restriction during early- to mid-gestation [37].  Similarly, 50% 

nutrient restriction during pregnancy in rats decreased expression of glucose transporter 

SLC2A3 without altering glucose concentrations in plasma of the fetus [68].  Therefore, 

expression of nutrient transporters may vary throughout gestation and may not always be 

reflected in variances in placental weight, fetal weight, or concentrations of  nutrients in 

the fetal circulation.   

 

Dietary Protein Restriction 

Maternal dietary protein restriction in rats induces down-regulation of amino acid 

transport systems in the placenta early in gestation, before fetal growth restriction occurs 

[63, 64].  Implementation of a 5% casein diet (in comparison to a control diet of 20% 

casein) reduced amino acid ratios in fetal and maternal serum [63].  Transport of neutral 

amino acids by the sodium-dependent system A was reduced in pregnant rats on low 

protein diets; however, transport of neutral amino acids by sodium-dependent system 
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ASC was unaltered.  Transport of anionic amino acids by sodium-dependent transporters 

was reduced on the basal membrane of placental trophoblast in pregnant rats on a low 

protein diet, while sodium-independent transporters of anionic amino acids were not 

altered.  Additionally, the activity of transporters of cationic amino acids was reduced in 

placentas of rats fed a low protein diet [63].  In a second study, administration of a low 

protein diet to pregnant rats decreased activity of system A amino acid transporters in 

late gestation [64].  Specifically, levels of sodium-dependent amino acid transporter 

SLC38A2 mRNA were reduced at gestational Day 21 in rats fed a low protein diet.  The 

ubiquitous sodium-dependent system A transporter family has been hypothesized to 

have a fundamental role in fetal growth in rats [196].  Inhibition of the sodium-

dependent system A transporter family by administration of 2-(methylamino)isobutyric 

acid between Days 7–20 of gestation resulted in a decrease in fetal weight via a 

mechanism that has not been fully elucidated [196].  It is possible that altered transporter 

activity is a causitive factor, instead of a compensatory mechanism in response to 

impaired fetal growth [64]. 

 

Dietary Supplements as a Means to Ameliorate IUGR 

 In addition to amino acids, certain pharmacological agents may be utilized to 

induce vasodilation during pregnancy.  Sildenafil citrate has been shown to increase 

uterine blood flow in an ovariectomized sheep model [197].  Additionally, sildenafil 

citrate was shown to improve relaxation and decrease vasoconstriction in small arteries 

in myometrial biopsies taken from women with pregnancies complicated by fetal growth 
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restriction [198].  In order to increase uteroplacental blood flow and nutrient transport, 

three different doses of sildenafil citrate were given via subcutaneous injections from 

day 28 to 115 of gestation in both well-fed and undernourished ewes [39].  Sildenafil 

citrate (Viagra) inhibits phosphodiesterase-5A to increase intracellular cGMP, 

subsequently inducing vasodilation [135, 199].  Interestingly, administration of sildenafil 

citrate increased fetal weight at Day 115 in both undernourished and adequately fed 

ewes [39].  Concentrations of total amino acids and polyamines in amniotic and allantoic 

fluids and fetal serum, but not maternal serum, were increased in response to sildenafil 

citrate administration.  Indeed, concentrations of over half of the amino acids in allantoic 

fluid, amniotic fluid, and fetal circulation in NR ewes were significantly increased 

following administration of sildenafil citrate.  The increase in those nutrients in fetal 

fluids and circulation, but not maternal circulation further suggests increased availability 

of nutrients for fetal growth and not for maternal use or energy storage.  It appears that 

the use of sildenafil citrate in challenged pregnancies may prevent perturbations in 

placental nutrient delivery and fetal development [39].   

As previously discussed, amino acids and polyamines play numerous roles in 

placental and fetal development.  Thus, using select nutrients to ameliorate the effects of 

undernutrition during gestation would be beneficial.  Since arginine is a precursor for 

NO and polyamines (both of which have a demonstrated role in placental development 

and function), a number of studies have investigated the efficacy of arginine 

supplementation to ameliorate IUGR.  In humans, L-arginine has also been shown to 

reduce placental apoptosis and improve fetal development in IUGR pregnancies [200].  
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In the undernourished sheep model, intravenous administration of L-arginine 

compared to administration of saline control between Day 60 of gestation and parturition 

enhanced birth weights of lambs from NR ewes by 21% [193].  Furthermore, the birth 

weights of lambs from NR ewes given L-arginine were similar to lambs from control-fed 

ewes [193].  In an additional study, L-arginine administration to NR ewes between Days 

100 and 125 of gestation did not improve fetal weight on gestational Day 125.  However, 

there was an increased mass of the fetal pancreas and peri-renal brown adipose tissue 

(BAT) in lambs from NR ewes administered L-arginine from Day 100 to 125 of 

gestation [201].  Results of those studies suggest that administration of L-arginine to NR 

ewes from gestational Day 60 until birth, but not from Day 100 to 125, can enhance the 

weight of lambs.  It is not clear, however, whether it is the earlier administration 

(beginning on Day 60 instead of Day 100) or the continued administration until 

parturition (as opposed to performing necropsies on Day 125) that increased weights of 

lambs.  Additionally, the postnatal implications of enhanced fetal pancreas and BAT 

mass as a result of administration of L-arginine later in gestation, Days 100 to 125, have 

yet to be elucidated. 

L-citrulline, a neutral amino acid that serves as a precursor for L-arginine 

synthesis, is more easily transferred across the placenta.  Due to its placental transport 

efficiency, L-citrulline may serve as a potential nutritional supplement to ameliorate 

impaired placental development and IUGR [52, 135, 202].  Indeed, intravenous 

administration of L-citrulline to ewes late in gestation was shown to be more effective at 

sustaining maternal and fetal arginine levels than the administration of L-arginine [202].  
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This study suggests the possible clinical use of arginine and citrulline as a means to 

prevent or repair insufficient placental development and function, as well as IUGR 

[202].   

Taurine has also been supplemented to gestating rats consuming low protein diets 

to improve health of the offspring [203, 204].  Low protein diets consisting of 8% casein 

and control diets consisting of 20% casein were fed from gestational Day 1 until term 

when fetal organs were evaluated [203, 204].  Development of the endocrine pancreas, 

including β-cell mass and islet vascularization, appeared to be impaired as a result of 

low protein diets.  Supplementation of low protein diets with taurine throughout 

gestation restored levels of angiogenic factors (VEGF and Flk-1) within pancreatic islets 

and endocrine cells of fetuses at birth and pups at 1 month of age [203].  Taurine 

supplementation to low protein diets from Day 12 of gestation until term increased fetal 

and cerebral weights, improved brain cortex structures (a greater number of synapses, 

increased glial cell proliferation, and a greater number of neurons) in IUGR offspring, 

and decreased amounts of cellular apoptosis detectable in the brain [204].  These results 

suggest that supplementation of low protein diets with taurine improves development 

and function of fetal organs such as the pancreas and brain.   

 Recent studies utilizing a model of IUGR induced by placental embolization 

between Days 113 and 120 of gestation followed by intra-amniotic infusion of IGF1 

from Days 120 to 130 of gestation illustrated that IGF1 administration can increase fetal 

weight and enhance gut growth in those pregnancies [205, 206].  However, the weights 

of certain organs such as the spleen, liver, and thymus were reduced following IGF1 
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infusion, despite the weights of the fetuses being normal [205, 206].  Additionally, IGF1 

treatment did not alter the concentrations of amino acids in blood or allantoic fluid, but 

decreased glutamine uptake by fetuses from blood [207].  A subsequent study using the 

same IUGR model revealed an 8% reduction in IGF1 mRNA and a 30% reduction in 

IGF1 protein following IGF1 infusion into the lambs [208].  Levels of IGFBP1, 2, and 3 

mRNAs were reduced, but there was no change in levels of IGF1 mRNA in the fetal gut.  

In contrast, IGF1 infusion increased hepatic IGF1 expression [208].  Results of these 

studies illustrate tissue-specific regulation of expression of IGF1 and IGFBPs in 

response to IGF1 supplementation that enhances fetal weight.   

 Collectively, results from a variety of supplementation studies indicate that 

administration of sildenafil citrate, arginine, citrulline, taurine, and other amino acids or 

combinations of amino acids, as well as IGFs, may ameliorate some of the complications 

of IUGR and ultimately enhance fetal development in some species.  Studies to further 

elucidate the mechanisms allowing for such enhanced transport capacity could lead to 

the practical use of these supplementations in malnourished gestating mothers.  

The aim of the present studies was to establish an ovine model of adaptive 

placental nutrient transport and use this model to: (1) determine nutrient availability in 

maternal, fetal, and placental fluids and compare mRNA expression of nutrient 

transporters in the placentomes of IUGR and non-IUGR pregnancies; (2) examine 

morphology and histoarchitecture of placentomes from IUGR and non-IUGR 

pregnancies and contrast mRNA expression of angiogenic factors in the those 

placentomes; and (3) identify novel genes regulating placental growth and function. 
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CHAPTER III  

ADAPTIVE PLACENTAL RESPONSE TO MATERNAL NUTRIENT 

RESTRICTION ALTERS FETAL GROWTH IN EWES 

 

Introduction 

Prolonged periods of maternal nutrient restriction, particularly during late 

gestation, result in IUGR [38, 39, 71, 209].  Delivery of nutrients to the fetus is 

dependent upon placental growth, uteroplacental blood flow, nutrient availability, and 

placental metabolism and transport capacity.  In sheep, maternal nutrient restriction 

reduces uteroplacental blood flow [178] and amino acid availability for the fetus [38, 

39].  In mice, maternal undernutrition alters the expression of placental transporters for 

glucose and system A amino acids [62], while feeding rats a low protein diet decreases 

system A transporter activity [63, 64], which precedes the development of IUGR.  We 

have previously observed that the variation in birth weights of lambs is greater in ewes 

fed 50% of NRC requirements (mean = 4.84 kg; range = 2.5-7.1 kg; n=54) compared to 

those receiving 100% NRC requirements (mean = 6.28 kg; range = 5.2-7.2 kg; n=13) 

(Satterfield et al. unpublished observations).  Similarly, in cattle, maternal nutrient 

restriction induces IUGR in only a subset of individuals [168].  In addition, studies 

comparing ewes adapted to harsh environmental conditions versus genetically similar 

ewes raised and selected under temperate conditions indicate that long-term selection for 

survival characteristics in a nutritionally limited environment can result in adaptive 

changes in placental function [67, 72, 170].  Collectivley, results suggest that adaptive 
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mechanisms of placental transport of nutrients exist to maintain normal fetal growth 

despite limited maternal resources. 

 Our objectives were to: 1) utilize natural population variance to establish an 

ovine model of adaptive placental nutrient transport for future investigations of critical 

mechanisms mediating fetal growth; and 2) determine nutrient availability in maternal 

and fetal fluids of NR ewes having IUGR and non-IUGR fetuses.       

      

Materials and Methods 

Experimental Design  

All experimental and surgical procedures were approved by the Institutional 

Agricultural Animal Care and Use Committee of Texas A&M University.  Prior to 

embryo transfer recipient Suffolk ewes of similar parity and frame size were fed 100% 

of their NRC requirements to maintain their body condition.  Ewes were synchronized 

into estrus and a single embryo from superovulated Suffolk donor ewes of normal body 

condition was transferred into the uterus of each recipient ewe on Day 5.5 post-estrus.  

Pregnancy was diagnosed by ultrasound on Day 28 of gestation.  On Day 35 of 

pregnancy, ewes were assigned randomly to a control-fed group (100% NRC) (n = 7) 

and a nutrient-restricted group (50% NRC requirements) (n = 24).  Composition of the 

diet has been published previously [193].  All ewes were individually housed on 

concrete flooring from Days 28 to 125 of gestation and fed once daily at 0700.  

Beginning on Day 28 of gestation, body weight was determined every 7 days and feed 

intake was adjusted based on changes in body weight.  Blood samples from the maternal 
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jugular vein were collected into vacuum tubes containing EDTA on Day 125 of gestation 

and plasma was harvested following centrifugation (2000 x g for 10 min at 4
o
C) and 

stored at -20
o
C until analyzed.  On Day 125 of pregnancy (term = 147 days of gestation) 

ewes were necropsied and conceptus (fetal-placental unit) development assessed. 

 

Tissue Collection and Handling Following Necropsy 

At the time of necropsy ewes were euthanized using Beuthanasia.  Immediately 

following euthanization, the uterus was removed and opened.  A blood sample from the 

fetal umbilical vein was collected into an EDTA tube and plasma harvested.  Following 

collection of blood samples, the fetus was removed, weighed, measured, and dissected.  

Samples from fetal organs were preserved in either 4% paraformaldehyde or snap frozen 

in liquid nitrogen and stored at -80
o
C for analyses.  A portion of the uteroplacental-unit 

was removed with placentomes being snap frozen in liquid nitrogen.  The remaining 

placentomes were dissected, counted, and weighed.  

 

Biochemical Analyses of Maternal, Fetal, and Placental Fluids 

Concentrations of insulin in plasma were measured in duplicate by enzyme-

linked immunoassay (EIA) (Catalog number 80-INSOV-E01, ALPCO Diagnostics) 

according to manufacturer’s recommendations [201].  Non-esterified fatty acids (NEFA) 

were determined in duplicate using a commercial colorimetric assay (Wako Chemicals, 

Richmond, VA) [201].  Glucose, ammonia, and urea in plasma were analyzed in 

duplicate using enzymatic methods [210-212].  Amino acids and polyamines in plasma 
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were analyzed using HPLC as previously described [38].  To determine total quantities 

of nutrients in the fetal circulation, concentrations were multiplied by estimated blood 

volume.  Blood volume exhibits a linear relationship with fetal weight [213] and was 

estimated at 110 ml/kg fetal weight [213, 214].   

 

RNA Isolation and Real-Time PCR Analysis 

Synthesis of cDNA from total cellular RNA (2 µg) using random primers 

(Invitrogen, Carlsbad, CA), oligo-dT primers, and SuperScript II Reverse Transcriptase 

(Invitrogen) was achieved as described previously [215].  Newly synthesized cDNA was 

acid-ethanol precipitated, resuspended in 20 μl water at a dilution of 100 ng, and stored 

at –20ºC for real-time PCR analysis. Primers under 200 bp were designed for each gene 

in order to maximize efficiency (Table 3.1).  qPCR analysis of mRNAs was performed 

using an ABI PRISM 7700 (Applied Biosystems, Foster City, CA) with Power SYBR 

Green PCR Master Mix (Applied Biosystems) as the detector, according to 

manufacturer’s recommendations and using methods described previously [146].  Cycle 

parameters for qPCR were 50⁰C for 2 min, 95⁰C for 10 min, and then 95⁰C for 15 sec 

and 60⁰C for 1 min for 40 cycles.  Selected genes analyzed for microarray validation 

included: solute carrier family 2, (facilitated glucose transporter), member 1 (SLC2A1), 

solute carrier family 2, (facilitated glucose transporter), member 3 (SLC2A3), solute 

carrier family 2, (facilitated glucose transporter), member 4 (SLC2A4), solute carrier 

family 5 (sodium/glucose cotransporter), member 5 (SLC5A1), solute carrier family 7 

(cationic amino acid transporter, y+ system), member 1 (SLC7A1), solute carrier family 
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7 (cationic amino acid transporter, y+ system), member 2 (SLC7A2), solute carrier 

family 7 (amino acid transporter light chain, L system), member 5 (SLC7A5), solute 

carrier family 7 (amino acid transporter light chain, y+L system), member 6 (SLC7A6), 

solute carrier family 7 (amino acid transporter light chain, y+L system), member 7 

(SLC7A7), solute carrier family 7 (amino acid transporter light chain, L system), 

member 8 (SLC7A8), solute carrier family 38, member 1 (SLC38A1), solute carrier 

family 38, member 2 (SLC38A2), and solute carrier family 38, member 4 (SLC38A4).  

Template input was optimized from serial dilutions of placentomal cDNA for 

each gene to ensure that the amplification reaction achieved 95-105% efficiency, and 

that the amount of input chosen was based on being within the linear range of efficiency.  

Final reactions for SLC2A1 and SLC2A3 used 2.5 ng, SLC5A1, SLC7A2, SLC7A6, 

SLC7A7, SLC7A8, SLC38A1, and SLC38A2 used 5 ng, and SLC2A4, SLC7A1, SLC7A5, 

and SLC384 used 10 ng of input. Data were analyzed using 7200HT SDS software 

(version 2.3, Applied Biosystems).  The relative quantification of gene expression across 

treatments was evaluated using the comparative CT method as previously described 

[146].   
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Table 3.1.   Primers utilized for quantitative real-time PCR analyses of solute carrier family 

members. 

Target
a
 Forward/reverse primers (5'3')

b
 

Length of  

amplicon (bp) 

GenBank 

accession no.
c
 

SLC2A1 AACTGTGCGGACCCTATGTC 149 XM_004001865 

 

GTCACTTTGGCTTGCTCCTC 

  SLC2A3 TGTGGTGTCTGTGTTCTTGG 160 NM_001009770 

 

TTTCAAAGAAGGCCACAAAG 

  SLC2A4 GGCATGGGTTTCCAGTATGTG 62 XM_004012643 

 

ACCGCGAATAGAAGAAAGACGTA 

  SLC5A1 GCTGGAGCCTGCGTAACAG 64 NM_001009404 

 

TGAATGTCCTCGTCTTCTGCAT 

  SLC7A1 CCTAGCGCTCCTGGTCATCA 56 AF212146 

 

GGGCGTCCTTGCCAAGTA 

  SLC7A2 GCAGAGCAGCGCTGTCTTT 62 XM_002698665 

 

ACTGTCCAGAGTGACGATTTTCC 

  SLC7A5 GGTGAACCCTGGTACGAATTTAGT 64 NM_174613 

 

TCCACGCTCGAGAGGTATCTG 

  SLC7A6 CATTTGTGAACTGCGCCTATGT 72 NM_001075937 

 

CCAGGACCTTGGCATAAGTGA 

  SLC7A7 TCAGGCTTGCCCTTCTACTTCT 64 NM_001075151 

 

GGAGCCAAAGAGGTCGTTTG 

  SLC7A8 GGCCATGATCCACGTGAAG 65 NM_001192889 

 

GGGTGGAGATGCATGTGAAGA 

  SLC38A1 CAAATTTGGGCTGCCCTTT 60 XM_002687321 

 

GGGAATGCTTACCAGGGAAAA 

  SLC38A2 CAGCTATAGTTCCAACAGCGACTTC 77 NM_001082424 

 

CATCGGCATAATGGCTTTTCA 

  SLC38A4 TGCTTCATGCTTACAGCAAAGTG 63 NM_001205943 

  CAGCCAGGCGTACCATGAG 

  TUBA GGTCTTCAAGGCTTCTTGGT 54 AF251146 

 

CATAATCGACAGAGAGGCGT 

  a
The amplification target. 

b
The forward and reverse DNA oligos used for amplification of the target.  Forward and reverse 

primers do not necessarily indicate the in vivo direction of transcription. 
c
The accession numbers to the ovine or bovine sequences used for primer design. 
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Statistical Analyses 

Regression analyses were conducted using the PROC-MIXED procedures of the 

Statistical Analysis System (SAS Institute, Cary, NC).  All other measures were 

subjected to least-squares analysis of variance using the General Linear Models 

procedures of the Statistical Analysis System.  Data are presented as least-squares means 

with overall standard error of the mean (SE).  There was no effect of fetal sex in the 

statistical model; therefore it was removed from the statistical model.  Differences in 

means were considered to be statistically significant when a P value was ≤ 0.05 while a 

P value of ≤ 0.1 was considered to indicate a tendency toward significance.  Data from 

quantitative real-time PCR analysis were subjected to least-squares analysis of variance 

using the general linear models procedures of the Statistical Analysis System (SAS 

Institute, Cary, NC).   

 

Results 

Assessment of Fetal Weight Correlations 

Based on results of a prior study, the present study was completed to exploit 

natural population variance in NR ewes to identify subpopulations of IUGR and non-

IUGR fetuses as a first step to elucidate adaptive mechanisms for placental transport of 

nutrients.  The complete distribution of fetal weights from control and NR ewes is shown 

in Fig. 3.1.  To determine if maternal weight prior to the onset of nutrient restriction was 

correlatedwith fetal weight, regression analyses were conducted for NR ewes.  Fetal 

weight was not correlated with maternal weight at Day 35 (P = 0.26) (Fig. 3.2A) or at 
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Day 125 of gestation (P = 0.11) (data not shown).  Further, fetal weight did not correlate 

with maternal weight changes between Days 35 and 125 of gestation (P = 0.45) (data not 

shown).  However, as expected, total placentome weight was correlated (R
2 

= 0.419; P < 

0.0005) with fetal weight within NR ewes (Fig. 3.2B).  Given that the correlation 

between maternal and fetal weights were not significant, the six fetuses with the highest 

weights (NR non-IUGR) and the six fetuses with the lowest weights (NR IUGR) from 

NR ewes and all fetuses from control ewes were utilized in all subsequent comparisons.  

The inclusion of all control animals allowed evaluation of a sentinel cohort of ewes 

representing average parameters of growth and development of fetuses from ewes with 

adequate nutrition.  Mean fetal weights for NR IUGR lambs (2.8 ± 0.1 kg) were lower (P 

< 0.05) than weights for control (4.0 ± 0.1 kg) and NR non-IUGR (4.1 ± 0.1 kg) fetuses 

(Fig. 3.3).  Mean placentome weights for NR IUGR pregnancies (401 ± 40 g) were 

lower (P < 0.005) than weights of placentomes from control (587 ± 40 g) and NR non-

IUGR (630 ± 40 g) pregnancies (data not shown). 
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Figure 3.1.  The distribution of fetal weights of lambs from nutrient-restricted (50% 

NRC) and control (100% NRC) ewes collected on Day 125 of gestation. 
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Figure 3.2.  Regression analyses of fetal weight against maternal weight and weights of 

placentomes.  [A] Fetal weight was not correlated (P = 0.26) with maternal weight.  [B] 

Fetal weight was positively correlated (P < 0.0005) with placentome weight on Day 125 

of gestation. 
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Figure 3.3.  Mean fetal weights for control, NR IUGR and NR non-IUGR fetuses on 

Day 125 of gestation.  Mean weight of the six heaviest (non-IUGR) fetuses from NR 

ewes was similar (P > 0.10) to the mean weight of fetuses from control-fed ewes.  In 

contrast, mean weight of the six lightest (IUGR) fetuses from NR ewes was lower (P < 

0.05) than weights of both NR non-IUGR and control fetuses. 
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Concentrations of Select Nutrients in Maternal Plasma 

Concentrations of select nutrients in maternal plasma are presented in Table 3.2.  

Concentrations of ammonia, urea, putrescine, spermidine, and insulin were not affected 

(P > 0.1) by maternal nutrient restriction and were not different (P > 0.1) between NR 

ewes having IUGR and non-IUGR fetuses.  Concentrations of glucose in maternal 

plasma were less (P < 0.01) for NR non-IUGR compared to NR IUGR ewes and control 

ewes.  Concentrations of NEFAs in maternal plasma were greater (P < 0.01) for NR non-

IUGR compared to NR IUGR and control ewes.  The total of all amino acids, as well as 

concentrations of glycine, were less (P < 0.05) in plasma from control ewes compared to 

NR ewes.  In contrast, concentrations of tryptophan in maternal plasma were greater (P < 

0.05) for control than NR ewes.  Concentrations of serine in plasma were greater (P < 

0.05) for NR IUGR versus NR non-IUGR and control ewes.  Concentrations of 

glutamate, isoleucine, and cysteine in maternal plasma were greater (P < 0.05) for NR 

non-IUGR compared to NR IUGR and control ewes.  Concentrations of methionine 

tended to be greater (P = 0.1) in plasma of NR non-IUGR compared to NR IUGR and 

control ewes.  Concentrations of histidine and leucine in maternal plasma were greater 

(P < 0.05) for NR non-IUGR compared to control ewes, with concentrations of those 

amino acids being intermediate in NR IUGR ewes.    

    

 

 

 



 

69 

 

Table 3.2.  Concentrations of total and select nutrients in maternal plasma. 

 

100% 

NRC 

50% NRC 

non-IUGR 

50% NRC 

IUGR SE P-value 

Ammonia (µmol/L) 148 129 181 52  

Urea (µmol/L) 4691 4515 4374 780  

Glucose (µmol/L) 4840
a
 2862

b
 4583

a
 382 P<0.01 

Insulin (ng/ml) 0.54 0.35 0.85 0.17  

NEFA (mmol/L) 0.61
a
 1.17

b
 0.72

a
 0.1 P<0.01 

Putrescine (nmol/L) 2802 2863 3580 332  

Spermidine (nmol/L) 1802 1455 2355 569  

Amino Acids (µmol/L)      

Asp 5.3 5.8 7.1 0.9  

Glu 62
a
 83

b
 58

a
 6 P<0.05 

Asn 28 34 31 3  

Ser 73
a
 74

a
 98

b
 7 P<0.05 

Gln 348 403 359 31  

His 56
a
 79

b
 65

a,b
 7 P=0.07 

Gly 603
a
 902

b
 1040

b
 101 P<0.05 

Thr 49 56 47 6  

Cit 192 211 226 21  

Arg 218 228 226 19  

b-Ala 30 30 31 5  

Tau 72 76 76 13  

Ala 165 170 137 27  

Tyr 57 61 56 3  

Trp 41
a
 29

b
 32

b
 3 P<0.05 

Met 28
a
 32

b
 28

a
 1 P=0.1 

Val 108 124 125 8  

Phe 43 49 47 2  

Ile 64
a
 91

b
 70

a
 5 P<0.01 

Leu 85
a
 111

b
 101

a,b
 5 P<0.05 

Orn 72 64 62 15  

Lys 91 120 116 12  

Cys 121
a
 162

b
 114

a
 12 P<0.05 

Pro 153 174 135 18  

Total AA 2764
a
 3368

b
 3287

b
 161 P<0.05 

Means in a row without a common superscript letter are significantly different. 
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Select Nutrients in the Fetal Circulation 

Concentrations of select nutrients in fetal plasma are presented in Table 3.3.  

Concentrations of spermidine in the fetal circulation were less (P < 0.05) in NR IUGR 

fetuses compared to NR non-IUGR and control fetuses.  Concentrations of the amino 

acid serine tended to be greater (P = 0.06) in the circulation of NR non-IUGR fetuses 

versus control and NR IUGR fetuses.   

Total amounts of select nutrients in the fetal circulation are presented in Table 

3.4.  Concentrations of urea were lower (P = 0.05) in plasma of NR IUGR compared to 

NR non-IUGR and control fetuses.  Total amounts of insulin, putrescine, and spermidine 

were lower (P < 0.05) in the circulation of NR IUGR fetuses compared to NR non-IUGR 

and control fetuses.  Total amino acids in the fetal circulation were less (P < 0.01) for 

NR IUGR versus NR non-IUGR and control fetuses.  Specifically, serine, glutamine, 

histidine, threonine, arginine, alanine, tyrosine, tryptophan, methionine, phenylalanine, 

isoleucine, leucine, ornithine, lysine, and proline were lower (P < 0.05) in plasma of NR 

IUGR fetuses than NR non-IUGR and control fetuses.  In addition, concentrations of 

valine and cysteine were lower (P < 0.05) in plasma from NR IUGR versus NR non-

IUGR fetuses.  Concentrations of isoleucine and cysteine were greater (P < 0.05) in 

plasma from NR non-IUGR than control fetuses.  Concentrations of asparagine, 

glutamate, glycine, citrulline, beta-alanine, and taurine were not different (P > 0.10) 

among groups of fetuses, nor were concentrations of ammonia, glucose, and NEFAs (P > 

0.10) in plasma.      
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Table 3.3.  Concentrations of select nutrients in plasma from fetuses.     

 

100% NRC 

50% NRC 

non-IUGR 

50% NRC 

IUGR SE P-value 

Ammonia (µmol/L) 86.0 140.1 292.6 75.7 

 Urea (µmol/L) 5558 5001 4918 643.0 

 Glucose (µmol/L) 23.9 36.0 27.7 8.9 

 Insulin (ng/ml) 0.28 0.23 0.14 0.06 

 NEFA (mmol/L) 0.09 0.10 0.23 0.06 

 Putrescine (µmol/L) 2.45 2.37 1.93 0.21 

 Spermidine (µmol/L) 3.03
a
 2.01

a
 0.27

 b
 1.29 P<0.05 

Amino Acids (µmol/L) 

     Asp 26.7 26.4 35.3 3.7 

 Glu 47.3 51.3 74.8 13.3 

 Asn 92.8 101.7 93.3 11.1 

 Ser 638.3
a
 798.6

b
 604.4

a
 56.2 P=0.06 

Gln 977 1016 912.5 97.6 

 His 103.4 103.8 95.4 8.8 

 Gly 683.7 850.2 730.1 141.4 

 Thr 250.8 304.8 211 36.6 

 Cit 218.6 217.8 227.6 21.9 

 Arg 290.3 298.6 224.1 25.7 

 b-Ala 355.3 274.3 290.0 48.6 

 Tau 152.9 155.8 164.5 38.2 

 Ala 378.2 361.8 331.1 23.7 

 Tyr 108 117.6 104.3 9.5 

 Trp 101 107.8 87 8.0 

 Met 56.3 54.2 48.7 5.0 

 Val 235 251.1 268.8 14.4 

 Phe 116.2 127 130.2 6.3 

 Ile 93.5
a
 113.2

b
 98.4

a,b
 6.1 P=0.09 

Leu 173.6 178.9 176.1 13.3 

 Orn 151.4 147 153.2 9.3 

 Lys 171.4 193.2 168.7 15.7 

 Cys 90.8 113.1 99.3 8.4 

 Pro 318.6
a
 317

a
 260.5

b
 14.2 P<0.05 

Total AA 5422 5851 5230 397.0 

 Means in a row without a common superscript are significantly different. 
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Table 3.4.  Total amounts of select nutrients in plasma from fetuses.     

 

100% 

NRC 

50% NRC non-

IUGR 

50% NRC 

IUGR SE P-value 

Ammonia (µmol) 36.8 64.6 87.3 26.4  

Urea (µmol) 2,443
a
 2,284

a
 1,536

b
 286.0 P=0.05 

Glucose (µmol) 10.9 15.9 9.0 3.4  

Insulin (ng) 122
a
 106

a
 46

b
 26.3 P<0.05 

NEFA (mmol) 39.4 42.7 64.6 17.6  

Putrescine (µmol) 1.07
a
 1.08

a
 0.62

b
 0.08 P<0.01 

Spermidine (µmol) 1.23
a
 0.96

a
 0.09

b
 0.56 P<0.05 

Amino Acids (µmol)      

Asp 11.7 12.1 10.5 1.0  

Glu 20.7 23.5 21.1 2.6  

Asn 40.7
a
 46.2

a
 27.9

b
 2.2 P<0.01 

Ser 280.6
a
 364.2

a
 189.7

b
 28.1 P<0.01 

Gln 429.6
a
 461.5

a
 284.1

b
 41.7 P<0.05 

His 45.3
a
 47.2

a
 29.1

b
 3.2 P<0.01 

Gly 304.8 383.3 223.3 63.0  

Thr 110.0
a
 136.3

a
 64.6

b
 14.6 P<0.05 

Cit 96.0 98.9 71.3 9.8  

Arg 127.1
a
 135.4

a
 69.7

b
 10.8 P<0.01 

b-Ala 156.7 122.9 93.9 19.6  

Tau 67.2 69.5 46.1 12.7  

Ala 166.7
a
 164.1

a
 101.8

b
 10.5 P<0.01 

Tyr 47.7
a
 53.2

a
 31.8

b
 4.1 P<0.01 

Trp 44.6
a
 48.7

a
 26.9

b
 3.6 P<0.01 

Met 24.7
a
 24.4

a
 14.9

b
 2.1 P<0.01 

Val 103.2
a,b

 113.9
a
 83.0

b
 4.2 P<0.05 

Phe 51.1
a
 57.7

a
 40.2

b
 3.2 P<0.01 

Ile 41.0
a
 51.5

b
 30.4

c
 1.7 P<0.01 

Leu 76.6
a
 81.1

a
 54.1

b
 6.2 P<0.05 

Orn 66.7
a
 66.7

a
 47.2

b
 4.2 P<0.01 

Lys 75.1
a
 87.4

a
 51.4

b
 5.9 P<0.01 

Cys 39.8
a
 51.6

b
 33.1

a
 3.9 P<0.05 

Pro 139.8
a
 144.0

a
 86.8

b
 6.9 P<0.0001 

Total AA 2,387.3
a
 2,649.5

a
 1,613.1

b
 181.7 P<0.01 

Total amount of each of the select nutrients was calculated by multiplying concentration by blood 

volume, which was estimated at 110 ml/kg fetal weight.  Means in a row without a common 

superscript differ significantly. 
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Expression of Amino Acid and Glucose Transporters in the Placenta 

As a first step in determining adaptive mechanisms potentially responsible for 

enhanced nutrient availability to fetuses, we determined expression of mRNAs for select 

amino acid transporters in the placentomes of ewes.  Steady-state levels of mRNA for 

large neutral amino acid transporters are shown in Fig. 3.4A.  SLC7A8 mRNA 

expression was greater (P < 0.05) in placentomes from NR non-IUGR compared to NR 

IUGR pregnancies, but intermediate (P > 0.10) between NR ewes having an IUGR or 

non-IUGR fetuses.  In contrast, expression of SLC7A5 mRNA in placentomes was not 

different (P > 0.10) among fetal types.  Steady-state levels of mRNAs for cationic amino 

acid transporters are shown in Fig. 3.4B.  SLC7A2 mRNA levels were greater (P < 0.05) 

in placentomes from control ewes as compared to NR ewes having either an IUGR or a 

non-IUGR fetus.  SLC7A6 mRNA expression was greater (P < 0.05) for both control and 

NR non-IUGR placentomes as compared to placentomes from NR ewes having an IUGR 

fetus.  Expression of SLC7A7 mRNA was higher (P < 0.05) for placentomes from NR 

non-IUGR pregnancies compared to NR IUGR pregnancies, but were intermediate for 

control ewes and did not differ (P > 0.10) between from NR ewes having either IUGR or 

non-IUGR fetuses.  SLC7A1 mRNA expression was not affected (P > 0.10) by type of 

fetus.  Steady-state levels of mRNAs for sodium coupled neutral amino acid transporters 

(SNATs) are shown in Fig. 3.4C.  SLC38A2 mRNA was more abundant (P < 0.05) in 

both control and NR non-IUGR placentomes compared to NR-IUGR placentomes.  In 

contrast, SLC38A1 and SLC38A4 mRNAs in placentomes were not different in 

abundance (P > 0.10) among fetal types.  Steady-state levels of mRNAs for glucose 
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transporters SLC2A1, SLC2A3, SLC2A4, and SLC5A1 were not different (P > 0.10) 

among fetal types (data not shown).     

 

Discussion 

The placenta mediates delivery of nutrients for fetal growth.  Perturbations 

resulting in impaired placental development or function result in IUGR [216].  In a series 

of previous studies using the undernourished sheep model, we detected a range of fetal 

weights that were greater for NR ewes than ewes fed to meet 100% of NRC 

requirements, when confounding variables such as maternal size, genotype, and 

fecundity are controlled.  Therefore, we aimed to develop a model to investigate 

mechanisms by which the placenta adapts to maternal nutrient restriction to support 

normal versus restricted fetal growth using a population variance approach.  As a first 

step, we determined quantities of select nutrients in maternal and fetal fluids in well-fed 

and NR ewes having either IUGR or non-IUGR fetuses and the expression of a number 

of amino acid transporter family members hypothesized to be involved in placental 

and/or fetal development.  Results of the present study indicated that quantities of a 

number of amino acids and their metabolites are reduced in plasma of NR IUGR versus 

NR non-IUGR and control fetuses in NR ewes.  Interestingly, a number of these 

nutrients can be metabolized to form products involved in regulating angiogenesis and 

blood flow.  Further, enhanced fetal growth in NR ewes having non-IUGR fetuses was 

associated with increased expression of mRNAs in placentomes for a number of amino 

acid transporters, including the neutral amino acid transporters SLC7A8 and SLC38A2, 



 

75 

 

 

 

 

Figure 3.4.  Steady-state levels of mRNAs encoding select amino acid transporters in 

the ovine placentome.  [A] Analyses of steady-state levels of mRNAs for large neutral 

amino acid transporters SLC7A5 and SLC7A6 indicated that expression of SLC7A6 

mRNA is greater  (P<0.05) for placentomes from control and NR non-IUGR than NR-

IUGR pregnancies. [B] Steady-state mRNA levels for the cationic amino acid 

transporters SLC7A1, SLC7A2, SLC7A7 and SLC7A8 were assessed and expression of 

SLC7A7 and SLC7A8 was greater (P<0.05) in placentomes from NR non-IUGR than NR 

IUGR pregnancies. Results also indicated that SLC7A2 mRNA is less abundant in 

placentomes of NR IUGR and NR non-IUGR pregnancies compared to placentomes 

from control ewes.  [C] Analyses of steady-state levels of mRNA  for sodium coupled 

neutral amino acid transporters (SNATs) SLC38A1, SL38A2, and SLC38A4 revealed that 

expression of SLC38A2 is greater (P<0.05) in placentomes from control and NR non-

IUGR pregnancies than NR IUGR pregnancies.  For each gene, columns lacking a 

similar letter differ statistically (P<0.05). 

[A] 

[B] 

[C] 
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as well as the cationic amino acid transporters SLC7A6 and SLC7A7, above those for 

IUGR fetuses.  

In agreement with our prior observations, results from the present study indicated 

that despite an identical nutrient restriction there was a wide range in fetal weights at 

Day 125 of gestation for NR ewes.  Indeed, the upper quartile of NR ewes had fetuses 

that were similar in weight to well-fed control ewes.  These results are similar to those 

observed in beef cattle, whereby nutrient restriction from early- to mid-gestation resulted 

in both IUGR and non-IUGR fetuses at mid-gestation [168].  Further, the IUGR 

pregnancies were characterized by smaller cotyledonary weights and reduced 

placentomal surface area [168] which is similar to results from the present study, further 

supporting a large body of literature indicating that placental weight is positively 

correlated with fetal weight.  Placental adaptation to meet the increasing demands of the 

growing fetus has been observed under a variety of conditions in humans and mice [62, 

217-219].  Importantly, these adaptive changes are not simply characterized by an 

increase in placental size or blood flow, but also by changes in specific nutrient transport 

mechanisms [62, 64, 217, 220].  Although placental blood flow is imperative for optimal 

nutrient delivery, expression and/or activity of specific transporters is the rate limiting 

step for delivery of many nutrients, including glucose and amino acids [195].  In both 

humans and rats, compromised pregnancies are associated with specific alterations in 

transporter availability and function [64, 221].  In rats, maternal dietary protein 

deprivation results in down-regulation of placental amino acid transport systems prior to 

the detection of fetal growth restriction [63, 64].  These observations are in line with 



 

77 

 

results from the present study indicating increased expression of transporters for both 

neutral and cationic amino acids in the placentomes of NR ewes having a non-IUGR 

fetus versus an IUGR fetus.     

Placental growth precedes fetal growth, thus the ability to respond to the 

increased demand for nutrients during late gestation can be undermined by poor 

placental development earlier in gestation [116, 222].  Interestingly, a number of amino 

acids and their metabolites may play a central role in regulating placental angiogenesis 

and vasodilation.  NO, a product of arginine catabolism, plays a crucial role in regulating 

placental angiogenesis and fetal-placental blood flow during gestation [108, 186, 187].  

In addition, arginine, proline, and glutamate can be metabolized to form ornithine, a 

precursor of polyamine synthesis [135].  Polyamines stimulate gene expression, cell 

proliferation and differentiation, DNA and protein synthesis, and angiogenesis [131].  

Inhibition of polyamine synthesis in mice and rats results in impaired placental growth 

and IUGR [132-134].  In sheep, maternal supplementation with arginine throughout mid-

gestation increases fetal growth in undernourished ewes and ewes carrying multiple 

fetuses [105, 193].  Results of the present study further support the hypothesis that select 

nutrients are essential for optimal fetal growth directly and/or via enhanced growth of 

the placenta.  Indeed, arginine, proline, glutamate, ornithine, methionine, putrescine, and 

spermidine were all increased in the fetal circulation of NR non-IUGR compared to 

IUGR lambs.  Further, increased expression of mRNAs for amino acid transporters in 

placentomes known to transport arginine, proline, glutamate, and ornithine was detected 

in non-IUGR pregnancies of NR ewes. Insulin is a critical metabolic regulator that 
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stimulates cells to take up nutrients such as glucose and amino acids.  In well-fed sheep, 

infusion of insulin to fetuses in late-gestation increased amino acid uptake, but failed to 

increase weight of lambs [141].  Failure to increase fetal weight following treatment 

with insulin has also been observed in the pig [223].  However, in the rhesus monkey, 

long-term insulin infusion to the fetus resulted in a 33% increase in body mass [224].  

Similarly, in the rat, infusion of long-acting insulin into the fetus during late gestation 

resulted in a 10% increase in pup weight at birth [225].  In sheep, restriction of placental 

growth by carunclectomy impairs insulin secretion from the late-gestation sheep fetus 

[226].  In the present study, there were increased concentrations of insulin in the fetal 

circulation of lambs from NR non-IUGR and control fed pregnancies.  As the sheep 

placenta does not transport appreciable quantities of insulin [227], the increases in 

insulin likely result from either increased secretion by the fetus or reduced utilization.  

Increased quantities of insulin in the fetal circulation may contribute to increases in 

amino acids in the fetal circulation as insulin promotes amino acid transport across the 

placenta [228-231].  The observation that concentrations of glucose were lower in 

maternal plasma of NR non-IUGR ewes than control or NR IUGR ewes is interesting, 

especially given that concentrations of glucose in the fetal circulation were not different 

among fetal types.  This suggests that ewes with NR non-IUGR fetuses may have an 

altered metabolic state resulting in enhanced glucose utilization or transport to the 

conceptus to meet metabolic demands of the fetus or for conversion to fructose by the 

placenta.  How this might impact nutrient delivery to the fetus is currently unknown.  
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Consequently, it may be advantageous to measure fructose in the fetal circulation of 

control fed and NR pregnancies. 

In conclusion, results of the present study establish a model for investigation of 

mechanisms for placental adaptation in an effort to increase nutrient delivery to the 

conceptus despite limited nutrient availability for the ewe.   Results support previous 

findings from our laboratory and others highlighting critical roles for amino acids and 

their metabolites in supporting normal fetal growth and development and the critical role 

for amino acid transporters in nutrient delivery to the fetus.  Future studies to determine 

differences in placental vascularization, placental blood flow, nutrient transporter 

activity, and the long-term consequences of maternal nutrient restriction in both normal 

and IUGR offspring are needed.  
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CHAPTER IV  

ALTERED PLACENTAL MORPHOLOGY AND EXPRESSION OF 

ANGIOGENIC FACTORS ARE ASSOCIATED WITH COMPENSATORY 

GROWTH IN AN OVINE MODEL OF INTRAUTERINE GROWTH 

RESTRICTION 

 

Introduction 

The mammalian placenta serves a multitude of tasks to ensure proper fetal 

development during gestation.  Due to its high degree of plasticity, the placenta 

undergoes various physiological changes to maintain efficient nutrient, gas, and waste 

exchange between the mother and fetus.  Such changes can include alterations in 

uteroplacental blood flow, maternal nutrient partitioning, activity and availability of 

nutrient transporters, and/or metabolism by both the placenta and fetus.  Accordingly, it 

is widely acknowledged that proper placentation is fundamental to the growth and 

development of the fetus.   

Uteroplacental blood flow plays an essential role in facilitating sufficient nutrient 

transport from the maternal circulation to the fetus.  As gestation progresses the demand 

for uteroplacental blood flow increases due to the exponential growth of the fetus, 

particularly in late gestation.  This demand for increased vasculature and blood flow is 

attained by both enhanced vasodilation and increased angiogenesis [43].  In the 

cotyledonary placentas of ruminants, structures known as placentomes support 

hematotrophic nutrient flow between maternal and fetal vasculatures [77].  
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Expression of vascular endothelial growth factors, basic fibroblast growth 

factors, angiopoietins, and their respective receptors are known to be imperative to the 

proper development of placental vasculature [26].  The VEGF family stimulates 

permeability of the vasculature, as well as production and migration of vascular 

endothelial cell proteases which are involved in degradation of the extracellular matrix 

and are essential of the angiogenic process [28, 80, 81].  Expression of VEGF and its 

receptors have been localized in placental and fetal tissues in multiple species, including 

the sheep, mouse and human [28, 82-87].  Within endothelial cells, basic fibroblast 

growth factor (bFGF or FGF2) stimulates both collagenase and plasminogen activator 

protease production for the conversion of plasminogen to plasmin for degradation of 

blood clots, and FGF2 functions as a chemotactic and a mitogenic factor [79, 94].  The 

angiopoietins, ANGPT1 and ANGPT2 (also ANG1 and ANG2, respectively), also 

function in vascular remodeling, promoting endothelial cell survival, organization of the 

microvasculature, and inducing both maturation and stabilization of blood vessels to 

enhance and sustain adequate blood flow [26, 99-103].  Additionally, endothelium-

derived NO is essential for the regulation of both vasodilation and angiogenesis in the 

placenta [105-108].  The growth factors VEGF and FGF2 stimulate production of NO by 

endothelial cells, while NO is also capable of regulating expression of these angiogenic 

factors [26].   

Disruptions to placental establishment, development, and function at any point 

during gestation may permanently alter fetal development.  A common consequence of 

placental insufficiency is IUGR of the fetus [1, 4, 27, 65, 66].  Interestingly, work in 
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cattle [168] and sheep (Satterfield et al. unpublished observations) have shown that 

maternal nutrient restriction only induces IUGR in a subset of individuals.  Furthermore, 

studies utilizing two populations of genetically similar ewes raised in either harsh or 

temperate environmental conditions illustrate that adaptive placental changes can occur 

in response to long-term exposure to a nutritionally limited environment for population 

preservation and survival  [67, 72, 170].  The purpose of this study was to investigate 

differences in placentomal morphology and expression of angiogenic factors in placentas 

from NR ewes having either IUGR or non-IUGR pregnancies.   

 

Materials and Methods 

Animals 

 Mature Suffolk ewes (Ovis aries) were observed for estrus (designated as Day 0) 

in the presence of a vasectomized ram and used in experiments only after exhibiting at 

least two estrous cycles of normal duration (16–18 Days) as described previously [232]. 

Ewes were maintained and cared for at the Texas A&M Nutrition and Physiology 

Center.  All experimental procedures were in compliance with the Guide for the Care 

and Use of Agriculture Animals in Research and Teaching and approved by the 

Institutional Animal Care and Use Committee of Texas A&M University. 

 

Experimental Design and Tissue Collection 

Prior to embryo transfer recipient Suffolk ewes of similar parity and frame size 

were fed 100% of their NRC requirements to maintain their body condition.  Ewes were 
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synchronized into estrus and a single embryo from superovulated Suffolk donor ewes of 

normal body condition was transferred into the uterus of each recipient ewe on Day 5.5 

post-estrus.  Pregnancy was diagnosed by ultrasound on Day 28 of gestation.  On Day 35 

of pregnancy, ewes were assigned randomly to a control-fed group (100% NRC) (n = 7) 

and a nutrient-restricted group (50% NRC requirements) (n = 24).  Composition of the 

diet has been published previously [193].  All ewes were individually housed on 

concrete flooring from Days 28 to 125 of gestation and fed once daily at 0700.  

Beginning on Day 28 of gestation, body weight was determined every 7 days and feed 

intake was adjusted based on changes in body weight.  Blood samples from the maternal 

jugular vein were collected into vacuum tubes containing EDTA on Day 125 of gestation 

and plasma was harvested following centrifugation (2000 x g for 10 min at 4
o
C) and 

stored at -20
o
C until analyzed.  On Day 125 of pregnancy (term = 147 days of gestation) 

ewes were necropsied and conceptus (fetal-placental unit) development assessed.  At the 

time of necropsy ewes were euthanized using Beuthanasia.   

Following euthanization, the fetus was removed, weighed, measurements made, 

and dissected to obtain organs.  A portion of the uteroplacental-unit was removed with 

placentomes being snap frozen in liquid nitrogen.  The remainder of the uteroplacental 

unit was filled with warmed PBS with lidocaine and maternal and fetal arteries were 

catheterized to allow for perfusion of placentomes with Carnoy’s solution as previously 

described by Borowicz and colleagues [79].  Placentomes were dissected, counted, and 

weighed following perfusion.  Lastly, ewes were divided into 3 groups, control, NR non-

IUGR and NR IUGR, with the NR ewes divided into upper and lower quartiles (NR non-
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IUGR and NR IUGR) based on fetal weights, as described in Chapter III. 

   

RNA Isolation and Real-Time PCR Analysis 

Total cellular RNA was isolated from frozen placentomes using Trizol reagent 

(Gibco-BRL, Bethesda, MD) according to manufacturer’s instructions.  The quantity and 

quality of total RNA will be determined by spectrometry and by denaturing agarose gel 

electrophoresis, respectively, in accordance with the manufacturer’s instructions.  Total 

RNA samples were digested with RNase-free DNase I and cleaned up using the RNeasy 

MinElute Cleanup Kit (Qiagen, Valencia, CA).  Synthesis of cDNA from total cellular 

RNA (2 µg) using random primers (Invitrogen, Carlsbad, CA), oligo-dT primers, and 

SuperScript II Reverse Transcriptase (Invitrogen) was achieved as described 

previously [215].  Newly synthesized cDNA was acid-ethanol precipitated, resuspended 

in 20 μl water at a dilution of 100 ng, and stored at –20ºC for real-time PCR analysis.  

Primers under 100 bp were designed for each gene in order to maximize efficiency 

(Table 4.1).  qPCR analysis of mRNAs was performed using an ABI PRISM 7700 

(Applied Biosystems, Foster City, CA) with Power SYBR Green PCR Master Mix 

(Applied Biosystems) as the detector, according to manufacturer’s recommendations and 

using methods described previously [146].  Cycle parameters for qPCR were 50⁰C for 2 

min, 95⁰C for 10 min, and then 95⁰C for 15 sec and 60⁰C for 1 min for 40 cycles.  

Selected genes analyzed for microarray validation included: vascular endothelial growth 

factors (VEGFA, VEGFB, and VEGFC),kinase insert domain receptor (a type III 

receptor kinase) (KDR), fms-related tyrosine kinases (FLT1, and FLT4), fibroblast 

http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=3763
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=3676
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growth factor 2 (basic) (FGF2), fibroblast growth factor receptors (FGFR1, FGFR2, 

FGFR3, and FGFR4), angiopoietins (ANGPT1, and ANGPT2), tyrosine kinase, 

endothelial (TEK), tyrosine kinase with immunoglobulin-like and EGF-like domains 1 

(TIE1), guanylate cyclase 1, soluble, beta 3 (GUCY1B3), nitric oxide synthase 3 

(endothelial cell) (NOS3), placental growth factor (PGF), sphingosine-1-phosphate 

receptor 1 (S1PR1), and sphingosine kinase 1 (SPHK1.) 

 Template input was optimized from serial dilutions of placentomal cDNA for 

each gene to ensure that the amplification reaction achieved 95-105% efficiency, and 

that the amount of input chosen was based on being within the linear range of efficiency.  

Final reactions for VEGFA, VEGFB, VEGFC, KDR, FLT1, FLT4, FGF2, FGFR1, 

FGFR4, ANGPT2, and GUCY1B3 used 2.5 ng, FGFR2, FGFR3, ANGPT1, TIE1, NOS3, 

PGF, S1PR1, and SPHK1 used 5 ng, and TEK used 10 ng of input. Data were analyzed 

using 7200HT SDS software (version 2.3, Applied Biosystems).  The relative 

quantification of gene expression across treatments was evaluated using the comparative 

CT method as previously described [146].    

http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=3688
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=484
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=11724
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=11724
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=11809
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=4687
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=7876
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=7876
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=8893
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=3165
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=3165
http://www.genenames.org/cgi-bin/gene_symbol_report?hgnc_id=11240
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Table 4.1. Primers utilized for quantitative real-time PCR analysis of angiogenic factors. 

Target
a
 Forward/reverse primers (5'3')

b
 

Length of 

amplicon (bp) 

GenBank 

accession no.
c
 

VEGFA GCCCACTGAGGAGTTCAACATC 62 NM_174216 

 

GCTGGCTTTGGTGAGGTTTG 

  VEGFB TCCAAGGCTGCCATCCA 57 NM_174487  

 

GACCCCTCTTGGTCTCCTCAT 

  VEGFC CCAGGCTGCAAACAAGACTTG 60 NM_174488 

 

CATCTGCAGACGTGGTTATTCC 

  KDR GCTTGGCCCGGGATATTTA 57 AF534634  

 

GGCGAGCATCTCCTTTTCTG 

  FLT1 TGGATTTCAGGTGAGCTTGGA 68 XM_012184655 

 

TCACCGTGCAAGACAGCTTC 

  FLT4 GAGCATCGCGCCCTGAT 63 XM_002688493   

 

CACGTTGAGGTGGTTACCAATG 

  FGF2 CCAGTTGGTATGTGGCACTGA 61 NM_001009769 

 

GGTCCTGTTTTGGGTCCAAGT 

  FGFR1 GAGGTGCTGCACTTAAGGAATGT 65 NM_001110207 

 

TTACCCGCCAAGCATGTATACTC 

  FGFR2 TGAAGCAGTGGGAATTGACAAG 64 NM_001205310   

 

CAACATCTTCACGGCCACAGT 

  FGFR3 GACGGCGGGCGCTAA 61 NM_174318 

 

GGTGACATTGCGCAAGGAT 

  FGFR4  TCCTTGCTTCTGCACAACGT 60 NM_001192584 

 

GCCATTGCTGGAGGTCATG 

  ANGPT1 AAATGAAAAGCAGAACTACAGGTTGTAT 77 NM_001076797 

 

GCAAGATCAGGCTGCTCTGTT 

  ANGPT2 TCCGTCCAGCAGATTTCTAAACT 62 NM_001098855 

 

GGAAACAGGGCAAGACATTGTC 

  TEK CCTCGGAGGCAGGAAGAT 62 NM_173964 

 

TCAGGCAGGTCATTCCCG 

  TIE1 CATCCGGGCCATGATCA 71 NM_173965 

 

AGGCATACTCTTTCAGCATCTTGA 

  GUCY1B3 CACCACGCACGGTCCAT 55 NM_174641 

 

GGCCAGCAATCTCCATCATATC 

  NOS3 CGGAACAGCACAAGAGTTACAAGAT 100 NM_001129901 

 

GTGTTGCTGGACTCCTTTCTCTTC 
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Table 4.1. Cont’d. 

Target
a
 Forward/reverse primers (5'3')

b
 

Length of 

amplicon (bp) 

GenBank 

accession no.
c
 

PGF CCATGTGGCTTCAGCTTGAG 57 NM_173950 

 

AGGCCTGCCCATCACAAA 

  S1PR1 CGCCATTGAGCGCTACATC 62 NM_001013585 

 

GGAACCTGTTGCTCCCATTG 

  SPHK1 TGGCCGCTTCTTTGAACTATTAC 69 XM_002696204 

  TGCAGTTGGTCAGGAGGTCTT     

TUBA GGTCTTCAAGGCTTCTTGGT 54 AF251146 

 

CATAATCGACAGAGAGGCGT  
 

a
The amplification target. 

  b
The forward and reverse DNA oligonucleotides used for amplification of the target.  Forward and 

reverse primers do not necessarily indicate the in vivo direction of transcription. 
c
The accession number to the ovine or bovine sequence used for primer design. 

 

 

 

Histological Analyses 

Placentomes were sectioned (5 microns) and stained with Masson’s trichrome 

stain as previously described [233].  This procedure stains nuclei black, cytoplasm and 

muscle fibres red, and extracellular matrix (ECM) components blue.  For this stain, 

placentome sections were deparaffinized in CitraSolv (Fisher Scientific; Fairlawn, NJ) 

and rehydrated through a graded alcohol series to distilled water.  Tissues were then 

incubated for 1 h at 55⁰C in Bouin’s solution (71% (v/v) picric acid, 24% formaldehyde 

(40%), and 5% (v/v) glacial acetic acid) and rinsed in water.  Slides were incubated 

sequentially at room temperature for 5 min each in Weigert’s iron haematoxylin (50% 

(v/v) ethanol (95%), 4% (v/v) ferric chloride (29% aqueous), 1% (v/v) hydrochloric acid, 

and 1% (w/v) haematoxylin),  biebrich scarlet-acid fuchsin solution (90% (v/v) biebrich 

scarlet (1% aqueous), 9% (v/v) acid fuchsin (1% aqueous), and 1% (v/v) glacial acetic 



 

88 

 

acid), phosphomolybdic–phosphotungstic acid solution (2.5% (v/v) phosphomolybdic 

acid, 2.5% (w/v) phosphotungstic acid), aniline blue solution (2.5% (w/v) aniline blue, 

2% (v/v) glacial acetic acid), and then in 1% glacial acetic acid (v/v) for 5 min.  Slides 

were then dehydrated through alcohol to xylene, and coverslips fixed with Permount 

(Fisher Scientific, Fair Lawn, NJ).  Photomicrographs of stained tissues were captured 

using a Nikon Ni-E motorized research microscope with Apochromat Lamda 10X and 

20X objectives.  Images were assembled using Adobe Photoshop. 

 

Immunohistochemistry 

 Immunohistochemical localization of cytokeratin, desmin, and von Willebrand 

factor proteins in ovine placentomes was performed as described previously [120].  

Localization of cytokeratin and desmin was performed using mouse monoclonal anti-

Cytokeratin (ab49779; AbCam) and mouse monoclonal anti-Desmin at 1:500 (ab6322; 

AbCam) with substitution of the primary antibody with nonimmune mouse IgG (Sigma).  

Localization of von Willebrand factor was performed using rabbit polyclonal anti-von 

Willebrand Factor (ab6994; AbCam) at 1:500, with substitution of the primary antibody 

with nonimmune rabbit IgG (Sigma).  A Vectastain ABC anti-mouse or anti-rabbit kit 

(Vector Laboratories) was used for detection of all proteins following antigen retrieval 

with boiling citrate buffer as described previously [234].  Immunoreactive protein was 

visualized using diaminobenzidine tetrahydrochloride (Sigma) as the chromagen.  

Sections were dehydrated and coverslips affixed with Permount (Fisher). 
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Statistical Analysis 

Data were subjected to least-squares analysis of variance using the General 

Linear Models procedures of the Statistical Analysis System (SAS Institute, Cary, NC) 

and are presented as least-squares means with overall standard error of the mean (SE).  

There was no effect of fetal sex in the statistical model; therefore it was removed from 

the statistical model.  Differences in means were considered to be statistically significant 

when a P value was ≤ 0.05 while a P value of ≤ 0.1 was considered to indicate a 

tendency toward significance.  Data from quantitative real-time PCR analysis were 

subjected to least-squares analysis of variance using the general linear models 

procedures of the Statistical Analysis System (SAS Institute, Cary, NC).   

 

Results 

Expression of mRNAs for Angiogenic Factors in the Placentome 

 To begin investigating differences in vasculature in the ovine placentomes in NR 

non-IUGR, IUGR, and control pregnancies, we determined mRNA expression of select 

angiogenic factors and associated genes.  Steady-state mRNA levels of genes in the 

VEGF family are shown in Fig. 4.1A.  Steady-state mRNA levels of VEGFA were 

higher (P<0.05) in placentomes from ewes having NR non-IUGR fetuses compared to 

either control ewes or NR ewes having IUGR fetuses.  VEGFB mRNA levels in 

placentomes of NR ewes with non-IUGR fetuses were intermediate and did not differ 

(P>0.10) from control or NR IUGR fetuses, but expression between control and NR 

IUGR placentomes was different (P<0.05). VEGFC mRNA levels in placentomes were 
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not different (P>0.10) among fetal phenotypes.  Expression of the receptor, FLT1, in 

placentomes of control ewes tended to be lower (P<0.10) than that for placentomes of 

IUGR or non-IUGR ewes.  Steady state levels of KDR mRNA tended (P<0.10) to be less 

for placentomes from control versus NR non-IUGR pregnancies, but did not differ 

(P>0.10) from NR non-IUGR placentomes.  No differences (P>0.10) were detected for 

FLT4 mRNA in placentomes from the three groups.  Steady-state levels of mRNAs for 

the fibroblast growth factor family are shown in Fig. 4.1B.  No differences (P>0.10) 

were detected among placentomes from the three fetal phenotypes for mRNAs for FGF2 

or its receptors FGFR1, FGFR2, FGFR3, and FGFR4.  Similarly, steady-state levels of 

mRNAs for the angiopoietin family are shown in Fig. 4.1C.  Steady-state levels of 

mRNAs for ANGPT1, ANGPT2, and the receptor TEK were not different (P>0.10) for 

placentomes among groups.  Steady state levels of TIE mRNA did, however, tend 

(P<0.10) to be less in placentomes from control ewes versus NR non-IUGR pregnancies, 

but did not differ from those for NR non-IUGR pregnancies.  Furthermore, expression 

was not different (P>0.10) among treatments for GUCY1B3, NOS3, PGF, S1PR1, or 

SPHK1 mRNA levels (data not shown). 
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Figure 4.1. Steady state levels of mRNAs for angiogenic factors assessed via real time RT-

PCR. [A] Expression of the growth factor VEGFA mRNA was greater (P<0.05) in placentomes 

from NR non-IUGR fetuses than either control ewes or NR ewes having IUGR fetuses. VEGFB 

mRNA levels in placentomes of NR ewes with non-IUGR fetuses were intermediate and did not 

differ (P>0.10) from control or NR IUGR fetuses, which did differ (P<0.05) significantly from 

each other. VEGFC mRNA levels in placentomes were not different (P>0.10) among groups. 

Expression of FLT1 mRNA in placentomes of control ewes was lower (P<0.05) than for NR 

ewes. Steady state levels of KDR and TIE1 mRNAs tended (P<0.10) to be less in placentomes 

from control ewes versus those from NR non-IUGR pregnancies, but did not differ (P>0.10) 

from those of NR non-IUGR pregnancies. [B] No statistically significant differences (P>0.10) 

were detected in levels of FGF2 nor FGFR1, FGFR2, FGFR3, and FGFR4 mRNAs. [C] Steady 

state levels of TIE1 mRNA tended (P<0.10) to be less in placentomes from control ewes versus 

NR non-IUGR pregnancies, but did not differ (P>0.10) from those of NR non-IUGR 

pregnancies. Expression of ANGPT1, ANGPT2, and TEK did not differ (P>0.10) significantly 

between groups.   
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    Alterations in Histoarchitecture of the Placentome 

Placentomes of the NR IUGR pregnancies were strikingly less dense than those 

from either control or NR non-IUGR ewes, as evidenced by a lack of caruncular crypt 

development.  In both the NR non-IUGR and control placentomes there were numerous 

thick and highly branched crypts with closer juxtapostition to the fetal cotyledonary 

tissues than for the NR IUGR placentomes.  Interestingly, concomitant with a decrease 

in caruncular crypt development there was an increased thickness of the caruncular 

capsule in the NR IUGR placentomes.  

 

Localization of Immunoreactive Cytokeratin, Desmin, and von Willebrand Factor in the 

Placentome 

Immunohistochemical staining detected the presence of cytokeratin protein, a 

marker of intermediate filaments located within the intracytoplasmic cytoskeleton of 

epithelial cells, at the fetal maternal interface of the placentome (Figure 4.3). 

Specifically, immunoreactive cytokeratin was more abundant in the syncytia of the 

control and non-IUGR placentomes and less abundant in the IUGR placentomes.   
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Figure 4.2. Histoarchitecture of the placentomes from 50% NR IUGR, 50% NR non-

IUGR and 100% NRC control ewes.  CAR denotes caruncle and COT denotes 

cotyledon. Width of each field of view is 940 µm for low magnification and 640 µm for 

high magnification.   
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Desmin, a common marker of vascular development and intermediate filaments of the 

sarcomere, was detectable in samples from all ewes in this study.  However, amounts of 

immunoreactive desmin protein localized to blood vessels throughout the caruncular and 

cotyledonary portions of placentomes were markedly more abundant in control and non-

IUGR pregnancies.  This suggests that IUGR pregnancies are associated with a lack of 

vascular development.  Immunoreactive vWF is used to evaluate the presence of 

endothelial cells.  In the present study, immunoreactive vWF was most abundant in 

placentomes of the control ewes compared to that for ewes receiving 50%NRC.  The 

presence of vWF protein was detected throughout the placentome, but was most 

abundant within the cotyledons.  While still detectable in placentomes from NR ewes 

having both non-IUGR and IUGR pregnancies, levels were markedly lower than 

controls.  Collectively, suggesting that NR may compromise vascular development in 

cotyledonary tissue. 
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Figure 4.3.  Immunohistochemical staining for cytokeratin, desmin, and von Willebrand 

Factor in placentomes of 100%NRC, 50% NR non-IUGR, and 50% NR IUGR 

pregnancies.  Cytokeratin was localized to the fetal-maternal interface of the placentome 

and the abundance of immunoreactive cytokeratin was greater in the syncytia of control 

and non-IUGR placentomes and less in the IUGR placentomes.  Desmin was detectable 

in samples from all ewes and it was localized to blood vessels throughout the caruncular 

and cotyledonary portions of placentomes and was markedly more abundant in control 

and non-IUGR pregnancies.  Immunoreactive vWF were most abundant in placentomes 

of control ewes compared to those receiving 50%NRC, and vWF protein was detected 

throughout the placentome, but most abundant within the cotyledons.  CAR denotes 

caruncle; COT denotes cotyledon; and BV denotes blood vessel. Images are taken at 

10X with the width of each field of view being 940 µm. 
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Discussion 

 The exponential increase in fetal weight which occurs late in gestation must be 

supported by an extensive vascular network in the placenta.  Thus, angiogenesis is 

essential to placental formation and function throughout pregnancy in both the maternal 

caruncular and fetal cotyledonary tissues.  Alterations in placental angiogenesis and 

blood flow in response to inadequate maternal nutrition has been shown to induce IUGR 

of the fetus in a variety of species, including the sheep, cow, rat, and pig [23, 72, 116, 

169, 174, 175].  Results from the present study suggest that placentome morphology and 

expression of angiogenic growth factors vary in response to maternal nutritional 

challenge during pregnancy.  More specifically, placentomes in NR non-IUGR 

pregnancies are similar in morphology to placentomes of control fed ewes, with more 

intimate contact between maternal and fetal tissues than in the placentomes of NR IUGR 

pregnancies.  Those morphological differences likely support enhanced exchange of 

nutrients, gases, and wastes across the placenta either through increased hematotrophic 

support and/or via enhanced apposition of maternal and fetal interfaces to improve 

transport efficiency.  

VEGFs play an essential role in angiogenesis by stimulating the production and 

migration of vascular endothelial cell protease and increasing permeability of the 

vasculature [28, 80, 81].  More specifically, VEGFA is known to stimulate strong 

angiogenesis when bound to its receptors FLT1 (also VEGFR1) and KDR (also 

VEGFR2), with KDR displaying a stronger affinity to VEGFA than FLT1 [235].  

Conversely, VEGFB binds to FLT1, but not to KDR or FLT4 (also VEGFR3).  The in 
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vivo functions of VEGFB are less clear, but it has been reported to stimulate 

anigogenesis in fetal tissues such as the heart, lungs, and brown fat [235, 236].  It is also 

hypothesized that VEGFB can dimerize with VEGFA to increase angiogenic activity 

[235, 237, 238].  VEGFC stimulates endothelial cell proliferation and migration when 

bound to KDR or FLT4, and increases vascular permeability when bound to KDR [235].   

In the present study, an up-regulation of VEGFA mRNA was observed in 

placentomes from NR non-IUGR ewes compared to both the NR IUGR and control fed 

ewes at Day 125 of gestation.  In addition, an up-regulation of VEGFB mRNA 

expression was seen in the placentomes of control fed ewes compared to the NR IUGR 

pregnancies, but levels of VEGFB in the placentomes from NR non-IUGR were 

intermediate between these two groups.  Collectively, these results suggest that VEGF 

function was elevated in placentomes from NR non-IUGR ewes compared to NR IUGR 

ewes.  A previous study found no difference in VEGF mRNA expression in NR ewes 

compared to controls using a slightly milder and shorter period of nutrient restriction 

[22].  The differences observed between these two studies highlights the potential 

benefits of using this model to investigate placental factors regulating fetal growth.  

Indeed, it is likely that the previous study failed to identify differences in VEGF gene 

expression within NR ewes that correlated with differential rates of fetal growth.  It is 

further likely that the up-regulation of VEGFA and maintenance of VEGFB mRNA 

expression serve as compensatory factors to enhance placental development and function 

in NR ewes having normal weight fetuses.  
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Angiogenic factors, such as the VEGF family, can function through 

MAPK/ERK1/2 and PI3-K/Akt pathways to stimulate angiogenesis within the placenta.  

Cell proliferation and growth are also regulated by the MAPK/ERK1/2 and PI3-K/Akt 

pathways.  In cattle, nutrient restriction from Days 30 to 125, followed by dietary 

realimentation to Day 250 of gestation demonstrated an up-regulation of the 

MAPK/ERK1/2 and PI3-K/Akt pathways in the cotyledons of NR pregnancies at Day 

125 but not Day 250 of gestation [169].  Moreover, fetal weights only tended to be 

reduced in response to maternal undernutrition on Day 125, but were similar in both 

dietary groups at Day 250.  Thus, this up-regulation of proliferative factors was 

associated with a tendency for reduced fetal weights at Day 125 of gestation.  However, 

this was mitigated once the diet was restored and did not persist to term.  The authors 

suggest that the up-regulation of MAPK/ERK1/2 and PI3-K/Akt pathways enhanced 

cotyledonary angiogenesis during early to mid-gestation to ameliorate the effects of 

nutrient restriction to prevent growth restriction [169].  Yet, it is also possible that the 

nutrient restriction stimulus induced an inappropriate up-regulation which led to a 

tendency for smaller fetal weights that was then mitigated once the diet was restored.  

These results differ from the ones of the present study in which an up-regulation of 

VEGFA expression in the placenta is associated with fetal weights in the NR non-IUGR 

and control ewes, but greater than weights of NR IUGR fetuses.   

 FGF2 enhances proliferation of uterine and fetal arterial endothelial cells [26, 

55].  Within the endothelial cells, FGF2 stimulates collagenase and plasminogen 

activator protease [79, 94].  Additionally, FGF2 is a chemotactic and mitogenic factor 
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for endothelial cells [79, 94].  In humans, there is an increase in VEGFA, FGF2, and 

endothelial NOS3 proteins, localized to cytotrophoblasts, syncytiotrophoblasts, 

extravillous trophoblasts, vascular smooth muscle cells, chorionic villous stromal cells, 

and villous vascular endothelial cells of the placenta of IUGR pregnancies [239].  In the 

present study, however, no significant changes in levels of mRNAs for FGF2 or its 

receptors, FGFR1-4 were detected, suggesting that at gestational Day 125 this 

angiogenic factor is not impacted by maternal nutrient restriction and does not play a 

role in the increased nutrient delivery for enhanced fetal growth in the NR non-IUGR 

compared to the NR IUGR pregnancies. 

Furthermore, there were no significant changes in expression of ANGPT1 and 

ANGPT2, or their receptors, TIE1 and TEK.  ANGPT1 functions to maintain adequate 

blood flow through maturation and stabilization of vessels [103], while ANGPT2 

modulates vascular growth when expressed with VEGF [101].  Similarly, no change in 

mRNA levels of placental growth factor (PGF) was detected in the placentomes.  An in 

vitro study has shown that vasodilation is increased when PGF is bound to the FLT1 

receptor [240].  The lysosphingolipid sphingosine 1-phosphate (S1P) biochemical 

pathway is another key pathway in mediating angiogenesis and previous work has 

illustrated coordinated temporal regulation of several members of this pathway at key 

sites of angiogenesis within the pregnant ovine uterus [241].  The present study assessed 

steady-state mRNA levels for the kinase SPHK1, which phosphorylates sphingosine to 

generate sphingosine 1-phosphate, and the receptor S1PR1, in placentomes and saw no 

changes between groups for either of these genes.  Consequently, like FGF2 and its 
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receptors, the ANGPT family and S1P pathway  does not appear to be impacted by the 

nutrient restriction stimulus, again suggesting that these genes are not involved in the 

mechanisms which increase nutrient delivery and fetal size in the NR non-IUGR 

compared to the NR IUGR pregnancies at Day 125.  

 The relationship between the vasodilatory molecule NO and the VEGF and FGF2 

angiogenic factors is essential in regulating both vasodilation and angiogenesis in the 

placenta [105-108].  Vasodilation may be induced when NO activates GUCY1B3, an 

enzyme present in endothelial cells that catalyzes the conversion of GTP to cGMP [79].  

The functions of the VEGFs can be further stimulated by increased activity of NOS3 

[89, 110].  However, no changes in expression of GUCY1B3 or NOS3 mRNAs were 

detected among the three groups of ewes in this study, suggesting that these genes are 

not associated with the placental mechanisms regulating fetal growth in control or NR 

pregnancies at Day 125 of gestation.   

Formation of placentomes involves interdigitation of the cotyledonary villi into 

the caruncular crypts during early gestation.  As interdigitation progresses, clusters of 

fetal binucleate cells migrate to the maternal uterine epithelium where they fuse with the 

maternal epithelial cells to form a syncytial layer.  Throughout gestation, capillaries 

within the cotyledons increase primarily in size, while capillaries in the cotyledon 

proliferate and branch to maximize surface area [26, 50, 79].  Once these cotyledonary 

capillaries become highly branched, there is a decrease in area per capillary, but an 

increase in overall capillary number and overall surface area as gestation progresses 

[79].  Intimate contact between the maternal caruncle and fetal cotyledon is imperative 
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to the exchange of nutrients, wastes, and gases between the dam and fetus since 

hematotrophic transfer of nutrients and gasses is primarily conveyed through 

placentomes.  Moreover, failure of placentome development results in loss of the fetus 

[242]. 

 In the present study, placentomes of NR IUGR pregnancies were markedly less 

dense than those of either controls or NR non-IUGR pregnancies. In sheep, maximal 

juxtaposition between the endometrial and placental microvasculatures is achieved by 

Day 40 of gestation [243, 244].  As gestation progresses, the placentomes continues to 

develop and interdigitation of the caruncular and cotyledonary tissues increases [244].  

The strikingly reduced density of caruncular crypts, coupled with noticeably less contact 

and juxtapostition between the maternal caruncular and the fetal cotyledonary tissues in 

the NR IUGR placentomes further illustrate an impediment in the transfer of nutrients to 

the fetus.  

Cytokeratin protein was detected by immunohistochemical staining at the 

placental-maternal interface of the placentome. Cytokeratins are typically localized to 

the intracytoplasmic skeleton of epithelial tissues and localized to uninucleate and 

binucleate trophoblast cells, as well as the syncytial plaques within the ovine placentome 

[245].  In this study, cytokeratin protein was specifically increased in the syncytia of 

placentomes from control and NR non-IUGR ewes and decreased in placentomes from 

NR IUGR ewes, indicating reduced syncytial plaque formation in these placentomes.  

Desmin serves as a common marker of vascular development as it stains intermediate 

filaments of the sarcomere. This localization of desmin suggests a lack of vascular 
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development in NR IUGR pregnancies.  Immunoreactive vWF was used to evaluate 

presence of endothelial cells in placentomes [246]. Similar to desmin, reduced levels of 

immunoreactive vWF indicate a decreased abundance of endothelial cells, and thus a 

lack of vascular development, within the cotyledons in response to nutrient restriction.   

In conclusion, the results of this study suggest that illustrates that enhanced fetal 

growth rates in NR pregnancies is associated with a compensatory elevation of VEGFA 

mRNA expression.  Further, the placental histoarchitecture of placentomes from NR 

non-IUGR pregnancies more closely mirrors that of well-fed control animals compared 

to NR IUGR pregnancies.  The mechanisms and timing by which the NR non-IUGR 

placentomes develop in a manner similar to well-fed controls warrants further 

investigation.   
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CHAPTER V  

MICROARRAY ANALYSIS PORTRAYS AN ADAPTIVE PLACENTAL 

RESPONSE TO NUTRIENT RESTRICTION IN EWES 

 

Introduction 

Maternal nutrient restriction during pregnancy impairs placental and fetal growth 

in humans and livestock species, often resulting in intrauterine growth restriction 

(IUGR) [1-4].  Indeed, undernutrition in ruminant livestock species is a global challenge, 

with the nutrient intake of ewes frequently being less than 50% of the National Research 

Council (NRC) recommendations [4, 159].  IUGR is a leading cause of neonatal 

morbidity and mortality in livestock species, as well as humans, with the clinical 

definition of IUGR being below the 10
th

 percentile for birth [1, 3, 4, 65].  The 

intrauterine environment is not only a major determinant of fetal growth in utero, but 

also of great importance in the etiology of chronic disease during adult life [1, 6].  In 

response to reduced nutrient delivery from the dam, the fetus undergoes a number of 

epigenetic adaptations to reset critical metabolic and physiologic functions that will 

allow for enhanced survival in postnatal life [6, 247].  The mechanisms regulating this 

adaptation in fetal growth, development, and programming are not fully understood.   

Placental growth and development occur primarily during the first half of 

gestation and is significantly affected by maternal nutrition and other environmental 

stressors [248, 249].  During the latter half of gestation, vascularization of the placenta 

increases markedly, especially within the cotyledonary portion of placentomes, to 
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develop sufficient absorptive area for nutrient exchange [26, 28, 50, 249].  The 

functional capacity obtained during placental development is necessary to support the 

substantial fetal growth which occurs late in gestation.  Throughout pregnancy, the 

placenta facilitates transportation of maternal nutrients to the fetus; however, nutrient 

delivery is dynamic and also dependent upon nutrient availablity, uteroplacental blood 

flow, placental metabolism and transport capacity of the uterus and placenta.  Not 

surprisingly, a significant positive correlation exists between placental and fetal weights 

and between uteroplacental blood flow and fetal weight in various species [65, 70, 168, 

250].  Interestingly, the highly adaptable placenta is hypothesized to undergo 

developmental and functional compensation during times of suboptimal nutrition [251].   

Although maternal nutrient restriction results in smaller offspring at birth than 

those from adequately fed ewes, a wider variation in lamb weights has been observed 

within ewes that received 50% NRC than within those that received 100% NRC 

requirements.  Similarly, placental weights vary greatly between uniformly treated ewes 

[69].  Previous work from our lab has shown that lamb birth weights in ewes fed at 50% 

of NRC requirements (mean = 4.84 kg; range = 2.5-7.1 kg; n=54) vary more in 

comparison to those receiving 100% NRC (mean = 6.28 kg; range = 5.2-7.2 kg; n=13) 

(Satterfield et al. unpublished observations).  A subsequent study from our lab also 

resulted in a large variation in fetal weights within the lambs from nutrient restricted 

ewes (CHAPTER III).  Within this study, lambs from ewes receiving 50% NRC 

requirements were further divided into the top and bottom quartiles based on fetal 

weights; the six largest (NR non-IUGR) and six smallest (NR IUGR) fetuses.  Available 
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evidence suggests that adaptive mechanisms exist in a subset of nutrient restricted ewes 

that allows them to support normal fetal growth despite limited nutrient availability.  

Therefore, the objective of the present study was to utilize a discovery based approach to 

identify novel placental genes associated with differential rates of fetal growth within 

nutrient restricted ewes.   

 

Materials and Methods 

Animals 

 Mature Suffolk ewes (Ovis aries) were observed for estrus (designated as Day 0) 

in the presence of a vasectomized ram and used in experiments only after exhibiting at 

least two estrous cycles of normal duration (16–18 days). Ewes were maintained and 

cared for at the Texas A&M Nutrition and Physiology Center.  All experimental 

procedures were in compliance with the Guide for the Care and Use of Agriculture 

Animals in Research and Teaching and approved by the Institutional Animal Care and 

Use Committee of Texas A&M University. 

 

Experimental Design and Tissue Collection 

Prior to embryo transfer recipient Suffolk ewes of similar parity and frame size 

were fed 100% of their NRC requirements to maintain their body condition.  Ewes were 

synchronized into estrus and a single embryo from superovulated Suffolk donor ewes of 

normal body condition was transferred into the uterus of each recipient ewe on Day 5.5 

post-estrus.  Pregnancy was diagnosed by ultrasound on Day 28 of gestation.  On Day 35 
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of pregnancy, ewes were assigned randomly to a control-fed group (100% NRC) (n = 7) 

and a nutrient-restricted group (50% NRC requirements) (n = 24).  Composition of the 

diet has been published previously [193].  All ewes were individually housed on 

concrete flooring from Days 28 to 125 of gestation and fed once daily at 0700.  

Beginning on Day 28 of gestation, body weight was determined every 7 days and feed 

intake was adjusted based on changes in body weight.  Blood samples from the maternal 

jugular vein were collected into vacuum tubes containing EDTA on Day 125 of gestation 

and plasma was harvested following centrifugation (2000 x g for 10 min at 4
o
C) and 

stored at -20
o
C until analyzed.  On Day 125 of pregnancy (term = 147 days of gestation) 

ewes were necropsied and conceptus (fetal-placental unit) development assessed.  At the 

time of necropsy ewes were euthanized using Beuthanasia.   

Following euthanization, the fetus was removed, weighed, measurements made, 

and dissected to obtain organs.  A portion of the uteroplacental-unit was removed with 

placentomes being snap frozen in liquid nitrogen.  The remainder of the uteroplacental 

unit was filled with warmed PBS with lidocaine and maternal and fetal arteries were 

catheterized to allow for perfusion of placentomes with Carnoy’s solution as previously 

described by Borowicz and colleagues [79].  Placentomes were dissected, counted, and 

weighed following perfusion.  Lastly, ewes were divided into 3 groups, control, NR non-

IUGR and NR IUGR, with the NR ewes divided into upper and lower quartiles (NR non-

IUGR and NR IUGR) based on fetal weights, as described in Chapter III. 

  

 



 

107 

 

RNA Extraction and Affymetrix GeneChip Array Analysis 

Total cellular RNA was isolated from frozen placentomes using Trizol reagent 

(Gibco-BRL, Bethesda, MD) according to manufacturer’s instructions.  The quantity and 

quality of total RNA was determined by spectrometry and by Bioanalyzer, respectively, 

in accordance with the manufacturer’s instructions.  Total RNA samples were digested 

with RNase-free DNase I and cleaned up using the RNeasy MinElute Cleanup Kit 

(Qiagen, Valencia, CA).  Both quality and quantity of RNA were determined using the 

Agilent Bioanalyzer (Agilent Technologies, Santa Clara, CA, USA) and the NanoDrop 

1000 (Thermo Fisher Scientific, Inc., Wilmington, DE, USA) respectively.  Only 

samples with an RNA integrity number > 8.0 were used for microarray analysis.   

Microarray analysis were perform on placentomes from NR non-IUGR and NR 

IUGR pregnancies using methods previously described [252].  A Gene Chip One-cycle 

Target Labeling Kit (Affymetrix, Santa Clara, CA, USA) was used to label total RNA, 

which was then hybridized to the Affymetrix GeneChip Bovine and Ovine Genome 1.0 

ST Arrays.  Hybridization quality was assessed using GCOS 1.4 (Affymetrix).  

Hybridization probes for the Affymetrix GeneChip Bovine and Ovine Genome 1.0 ST 

Arrays (Affymetrix) were prepared using 10 mg of total RNA and the One-Cycle Target 

Labeling and Control Reagent package (Affymetrix).  The GeneChip Hybridization, 

Wash, and Stain Kit (Affymetrix) and a Fluidic Station 450 (Affymetrix) were used for 

the hybridization, wash, and staining process.  All steps were carried out according to the 

manufacturer’s protocol.  The processed arrays were scanned with a GeneChip Scanner 

3000 (Affymetrix).  
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Array output was normalized via the robust multiarray method, and probe sets 

were filtered based on expression calls, as previously described [252, 253]. Data analysis 

was conducted using the GeneSpring GX Software (Agilent Technologies) using 

ANOVA (PZ0.05) with a Benjamini and Hochberg false discovery rate multiple test 

correction to determine differentially expressed genes in placentomes from NR non-

IUGR and NR IUGR pregnancies.  

 

Database for Annotation, Visualization, and Integrated Discovery 

 DAVID version 6.7 (http://david.abcc.ncifcrf.gov/home.jsp) facilitates the use of 

microarray gene lists to generate specific functional annotations of biological processes 

affected by treatment in microarray experiments [232, 254, 255].  DAVID was utilized, 

as previously described, to annotate biological themes in response to dietary treatment 

[232]. All differentially expressed genes identified were both significantly (P ≤ 0.05) and 

numerically (1.5-fold change or greater) different and homologous to a known and 

annotated human gene for use in the DAVID analysis. The background list utilized in the 

program included all genes assigned a human accession number that were present on the 

bovine or ovine oligo array.  With Gene Ontology (GO) terms identified as biological 

mechanism, cellular component, and molecular function, along with protein domain and 

biochemical pathway membership, DAVID generated biological themes by grouping 

similar terms, ultimately creating functional annotation clusters associated with effects 

of dietary treatment [232]. 
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cDNA Synthesis and Real-Time PCR Analysis 

Synthesis of cDNA from total cellular RNA (2 µg) using random primers 

(Invitrogen, Carlsbad, CA), oligo-dT primers, and SuperScript II Reverse Transcriptase 

(Invitrogen) was achieved as described previously [215].  Newly synthesized cDNA was 

acid-ethanol precipitated, resuspended in 20 μl water at a dilution of 100 ng, and stored 

at –20ºC for real-time PCR analysis. Primers under 100 bp were designed for each gene 

in order to maximize efficiency (Table 5.1).  qPCR analysis of mRNAs was performed 

using an ABI PRISM 7700 (Applied Biosystems, Foster City, CA) with Power SYBR 

Green PCR Master Mix (Applied Biosystems) as the detector, according to 

manufacturer’s recommendations and using methods described previously [146].  Cycle 

parameters for qPCR were 50⁰C for 2 min, 95⁰C for 10 min, and then 95⁰C for 15 sec 

and 60⁰C for 1 min for 40 cycles.  Selected genes analyzed for microarray validation 

included: anterior gradient protein 2 homolog (AGR2), UDP-Gal:betaGlcNAc beta 1,3-

galactosyltransferase, polypeptide 2 (B3GALT2), cell adhesion molecule 1 (CADM1), 

leukocyte antigen CD37 (CD37), T-lymphocyte activation antigen CD86 (CD86), C-X-

C motif chemokine 10 (CXCL10), chemokine (C-X-C motif) ligand 14 (CXCL14), 

cathepsin S (CTSS), dihydropyrimidine dehydrogenase (DPYD), glycine 

amidinotransferase (L-arginine:glycine amidinotransferase) (GATM), histone 

deacetylase 11 (HDAC11), interleukin 12 receptor, beta 2 (IL12RB2), lipase, endothelial 

(LIPG), nucleoporin 210kDa (NUP210), solute carrier family 44, member 4 (SLC44A4), 

solute carrier organic anion transporter family, member 1C1 (SLCO1C1), secreted 

phosphoprotein 1 (SPP1), stanniocalcin 1 (STC1), and sulfatase 2 (SULF2). 
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Template input was optimized from serial dilutions of placentomal cDNA for 

each gene to ensure that the amplification reaction achieved 95-105% efficiency, and 

that the amount of input chosen was based on being within the linear range of efficiency.  

Final reactions for CADM1, GATM, HDAC11, LIPG, SLC44A4 used 2 ng, B3GALT2, 

CD37, CD86, CTSS,CXCL10, CXCL14, DPYD, IL12RB2, NUP210, SLCO1C1and STC1 

used 2.5 ng, SPP1 used 5 ng, SULF2 used 10 ng, and AGR2 used 12.5 ng of input. Data 

were analyzed using 7200HT SDS software (version 2.3, Applied Biosystems).  The 

relative quantification of gene expression across treatments was evaluated using the 

comparative CT method as previously described [146].  Statistical analysis of each 

qPCR gene analyzed the NR non-IUGR and NR IUGR placentomes for validation of the 

Affymetrix GeneChip Bovine and Ovine Genome 1.0 ST Arrays.  Mean gene expression 

values from placentomes from control fed ewes have been included for informative 

comparisons only and were not included in the statistical analysis.   
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Table 5.1. Sequences of primers used for quantitative real-time PCR analyses for microarray validation. 

Amplification 

target Forward primer (5'3')
a
 Reverse primer (5'3')

a
 

Length of 

amplicon (bp)
b
 

GenBank 

accession no. 

AGR2 CCTCTCTCCTGATGGCCAGTAT CAGTCAGGGATGGGTCAACAA 55 NM_001040500 

B3GALT2 ACTACTAATCGCTGCGGAACCT GCCCCAAGTTTGCCGAAT 64 NM_001076188 

CADM1 AAGCCCCAGCCTGTGATG ACGGCATGTTGAGGCATTTC 62 NM_001038558 

CD37 TTCGTGGGCTTGTCCTTCAT CTGAGACGGCCAGGACCTT 58 NM_001046011  

CD86 GGCCGCACAAGCTTTGA TTTGATTTGAACGTTGTGGAGTCT  60 NM_001038017   

CTSS TGGGAGCCCTGGAAGCA TGCACTCAGAGACACCAGCTTT 59 NM_001033615 

CXCL10 CCGTGGACTTCGGTTTTCCTA GCAGGAGTAGTAGCAGCTGAT ATG G 66 NM_001046551 

CXCL14 CCGCTACAGCGACGTGAA CCTCGCAGTGCGGGTACTT 56 NM_001034410 

DPYD TGCTCCAGGTATGCAGTGCTAT TTTGAGGCCAGTGCAGTAGTCTT 71 NM_174041 

GATM CCGAAGCGCTGCACTACA CACCCATCCCGTTACAGTTCTT 56 NM_001045878 

GRP CCAGTGGGAAGAAGCGACAA CGGGCCCCCTTTGCT 57 NM_001101239 

HDAC11 CACGGCCCGCATCATC ATGAGCCCCAGGCTGTACAG 54 NM_001102056 

IL12RB2 ATGGTGGGCGTTCTCTCAAT GAGGGCCAAAAGGAGAACAAA 63 NM_174645 

LIPG GAGGGACGGCTGCAAGGT TGGCAGCAGTCGGTACCA 55 XM_002697766 

NUP210 CAGTGATGTTTTTTATTTGTGTCAGTTC ATTTGCTCCAATCATTTCCCAGTA 92 NM_001191461 

SLC44A4 GACCCCATGGAGCAAGTGA GCCCTGGAAGACGCACAT 57 NM_001083442 

SLCO1C1 GTGCCTGGTGGCTTGGTTA GGCACAGCTGCCAAAAGAGT 58 NM_001191509 

SPP1 TTCTGCCTCTTGGGCATTG CTGCCAGAACTGGTCGGTTT 56 NM_001009224 

STC1 TGTGATCCGGCCTGCTATG ACTGATGAACGGTGACAAGTCAA 61 NM_176669 

SULF2 CCCACCACCGCCTGAA GGATGATGTTGGGACGAATGT 63 NM_001192938 

TUBA GGTCTTCAAGGCTTCTTGGT CATAACGACAGAGAGGCGT 54 AF251146 

a
 Forward and reverse primers do not necessarily indicate the in vivo direction of transcription.

 

b
 The length of the amplicon created during PCR. 
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Cloning of Partial cDNAs 

Partial cDNAs were amplified by RT-PCR using placentomal or endometrial 

total RNA isolated from Day 125 pregnant ewes and specific primers (Table 5.2) using 

methods described previously [232, 256]. PCR amplification was conducted as follows 

for CTSS, IL12RB2, and STC: 1) 95°C for 5 min; 2) 95°C for 30 s; 58°C for 30 s (for 

CTSS, and IL12RB2), and 60°C (for STC1); and 72°C for 30 s for 35 cycles; and 3) 72°C 

for 7 min. The partial cDNAs of the correct predicted size were cloned into pCRII using 

a T/A Cloning Kit (Invitrogen) and the sequence of each verified using an ABI PRISM 

Dye Terminator Cycle Sequencing Kit and ABI PRISM automated DNA sequencer 

(Perkin-Elmer Applied Biosystems). 

 

Table 5.2. Sequences of primers used for RT-PCR and cloning. 

 Amplification 

target Forward/reverse primers (5'3')
a
 

Length of 

amplicon (bp)
b
 

GenBank 

accession no. 

CTSS CCTGGAAGCACAAGTGAAGC 330 X62001 

 

GAATGGCTCGCGTCTATACC 

  IL12RB2 TGTGCAGGAATACGTGGTGG 585 NM_174645 

 

CAACGCATTGAGAGAACGCC 

  STC1 TGATCAGTGCTTCTGCAACC 478 NM_176669 

 

TCACAGTCCAGTAGGCTTCG 

  
a
 Forward and reverse primers do not necessarily indicate the in vivo direction of 

transcription. 

b
 The length of the amplicon created during PCR. 
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In Situ Hybridization 

Localization of mRNAs in the ovine placentome was determined by radioactive 

in situ hybridization analysis as described previously [232, 256].  Exposure times were 

as follows: three weeks for CTSS, and STC1; and six weeks for IL12RB2.  Images of 

representative fields were recorded under bright-field or dark-field illumination using a 

Nikon Ni-E motorized research microscope with Apochromat Lamda 4X, 10X, 20X and 

40X objectives.   

 

Statistical Analysis 

Data were subjected to least-squares analysis of variance using the General 

Linear Models procedures of the Statistical Analysis System (SAS Institute, Cary, NC) 

and are presented as least-squares means with overall standard error of the mean (SE).  

There was no effect of fetal sex in the statistical model; therefore it was removed from 

the statistical model.  Differences in means were considered to be statistically significant 

when a P value was ≤ 0.05 while a P value of ≤ 0.1 was considered to indicate a 

tendency toward significance.  Data from quantitative real-time PCR analysis for 

placentomes from NR non-IUGR and NR IUGR pregnancies were subjected to least-

squares analysis of variance using the general linear models procedures of the Statistical 

Analysis System (SAS Institute, Cary, NC). 
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Results 

Microarray Analysis 

To capitalize on our observed natural population variance in response to maternal 

nutrient restriction we conducted a gene expression array to identify novel genes in the 

placentomal transcriptome that regulate placental growth and/or function.  A summary 

of this approach identified 103 differentially expressed genes in placentomes from ewes 

having NR non-IUGR versus NR IUGR fetuses (Table 5.3). Within this set of 

differentially expressed genes, 15 genes were upregulated and 88 genes were down-

regulated in placentomes having NR non-IUGR fetuses compared to those having IUGR 

fetuses. 

 

Validation of Selected Genes 

 A summary comparison of differentially expressed genes selected for validation 

of the microarray can be found in Table 5.4. Steady-state mRNA levels of IL12RB2, 

NUP210, and SLCO1C1 were higher (P<0.05) and B3GALT2 tended (P<0.10) to be 

higher in NR non-IUGR compared to NR IUGR placentomes (Fig. 5.1).  In contrast, 

CADM1, CD86, CTSS, CXCL10, DPYD, GATM, SLC44A4, STC1 and SULF2 mRNA 

levels were increased (P<0.05), and CD37 and SPP1 tended to be increased (P<0.10) in 

placentomes from ewes having NR IUGR fetuses compared to NR non-IUGR fetuses 

(Fig. 5.2).    
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Table 5.3. Placentomal mRNA levels for selected genes identified using the microarray analysis. 

Gene 

Symbol Gene Name 

Fold 

Change 

20ALPHA-

HSD  Placental and ovarian 20alpha hydroxysteroid dehydrogenase protein  -2.13 

A4IFS4 Pregnancy-associated glycoprotein 16 2.11 

ADH6  Alcohol dehydrogenase 6 (class V)  -1.99 

AGR2 Anterior gradient protein 2 homolog -2.32 

AGTR2  Angiotensin II receptor, type 2 -1.89 

ALDH1A1  Aldehyde dehydrogenase 1 family, member A1  -1.54 

B3GALT2 Beta-1,3-galactosyltransferase 2 1.57 

B3GNT3 UDP-GlcNAc:betaGal beta-1,3-N-acetylglucosaminyltransferase 3 1.74 

BCL2L15 Bcl-2-like protein 15 -2.17 

BOLA-DRA  Major histocompatibility complex, class II, DR alpha  -1.69 

BOLA-

DRB3  Major histocompatibility complex, class II, DRB3  -1.65 

C1QB Complement C1q subcomponent subunit B -1.67 

C4ORF19 Uncharacterized protein C4orf19 -1.60 

CADM1 Cell adhesion molecule 1 -1.58 

CCKN Cholecystokinin Precursor 1.77 

CD200R1 Cell surface glycoprotein CD200 receptor 1 -1.51 

CD37 Leukocyte antigen CD37 -1.59 

CD86 T-lymphocyte activation antigen CD86 -1.51 

CFD Complement factor D -1.55 

CH3L1 Chitinase 3-like protein 1 Precursor -2.13 

CHRM2 Muscarinic acetylcholine receptor M2 -1.53 

CP  Ceruloplasmin (ferroxidase)  -2.25 

CPE Carboxypeptidase E -1.60 

CR2 Complement receptor type 2 -2.93 

CST6 Cystatin-M -1.59 

CTSS Cathepsin S -1.54 

CXCL10 C-X-C motif chemokine 10 -1.85 

CXCL14 C-X-C motif chemokine 14 -2.17 

CYP26A1  Cytochrome P450, family 26, subfamily A, polypeptide 1  -1.57 

CYP4F22 Cytochrome P450 4F22 1.51 

DLK1 Protein delta homolog 1 -1.62 

DPYD  Dihydropyrimidine dehydrogenase  -1.51 

EHF  Ets homologous factor  -1.60 

EMP1 Epithelial membrane protein 1 -1.53 
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Table 5.3. Cont’d 

Gene 

Symbol Gene Name 

Fold 

Change 

EVI2B Protein EVI2B -1.59 

FAM134B Protein FAM134B -1.71 

FBN2 Fibrillin-2 -1.54 

FCGR3 Low affinity immunoglobulin gamma Fc region receptor III -1.61 

FGFR1 Fibroblast growth factor receptor 1 -1.60 

FOLR2 Folate receptor beta -1.54 

GATA6 Transcription factor GATA-6 -1.66 

GATM Glycine amidinotransferase, mitochondrial -2.01 

GHR  Growth hormone receptor  -1.55 

GPR115 Probable G-protein coupled receptor 115 -1.66 

GPR151 Probable G-protein coupled receptor 151 2.20 

GRM7 Metabotropic glutamate receptor 7 -2.66 

HDAC11 Histone deacetylase 11 1.58 

HTR4 Serotonin 5-HTA receptor -2.78 

IL12RB2 Interleukin-12 receptor subunit beta-2 1.88 

INHBA  Inhibin, beta A  -1.85 

KLF5 Krueppel-like factor 5 -1.54 

KNG2 Kininogen-2 -1.68 

LBP  Lipopolysaccharide binding protein  -1.68 

LIPG Endothelial lipase 2.00 

Mamu-DRA Mamu class II histocompatibility antigen, DR alpha chain -1.78 

MCEMP1 Mast cell-expressed membrane protein 1 1.70 

MICB MHC class I polypeptide-related sequence B -1.75 

MILR1 Allergin-1 -1.57 

MIR186  MicroRNA mir-186  -2.16 

MIR29A  MicroRNA mir-29a  1.53 

MIR329B  MicroRNA mir-329b  -1.55 

MS4A8A Membrane-spanning 4-domains subfamily A member 8A -1.72 

MSLN Mesothelin -1.56 

MSR1 Macrophage scavenger receptor types I and II -1.65 

MUC16 Mucin-16 -1.64 

NUP210 Nuclear pore membrane glycoprotein 210 1.77 

OCIAD2 OCIA domain-containing protein 2 -1.55 

OGN Mimecan -1.88 

OR52E1 Olfactory receptor 52E1 1.53 

OSTP Osteopontin Precursor -1.52 
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Table 5.3. Cont’d 

Gene 

Symbol Gene Name 

Fold 

Change 

P2RY12 P2Y purinoceptor 12 -1.61 

PAM Peptidyl-glycine alpha-amidating monooxygenase -1.58 

PDCD2L Programmed cell death protein 2-like 1.83 

PDZK1IP1 PDZK1-interacting protein 1 -1.61 

PEBP4  Phosphatidylethanolamine-binding protein 4  -2.46 

PPAP2A Lipid phosphate phosphohydrolase 1 -1.58 

PRR15 Proline-rich protein 15 -1.70 

QSOX1  Quiescin Q6 sulfhydryl oxidase 1  -1.63 

RBP4 Retinol-binding protein 4 -1.59 

RNASE6 Ribonuclease K6 -1.67 

S100A7  S100 calcium binding protein A7  -1.51 

SAA3  Serum amyloid A 3  -2.08 

SDS L-serine dehydratase/L-threonine deaminase -1.66 

SERPINE2 Glia-derived nexin -1.62 

SESN3 Sestrin-3 -1.61 

SIGLEC1  Sialic acid binding Ig-like lectin 1, sialoadhesin  -1.54 

SLC1A1 Excitatory amino acid transporter 3 -1.72 

SLC26A3 Chloride anion exchanger -1.82 

SLC37A2 Sugar phosphate exchanger 2 -1.68 

SLC44A4 Choline transporter-like protein 4 -2.19 

SLC7A2 Low affinity cationic amino acid transporter 2 -2.22 

SLC7A9 B(0,+)-type amino acid transporter 1 -1.82 

SLCO1C1 Solute carrier organic anion transporter family member 1C1 1.78 

SPP1  Secreted phosphoprotein 1  -1.56 

STC1 Stanniocalcin-1 -1.91 

SULF2 Extracellular sulfatase Sulf-2 -1.64 

TC2N Tandem C2 domains nuclear protein -2.26 

TFEC Transcription factor EC -1.51 

TFPI2 Tissue factor pathway inhibitor 2 -1.64 

THBS4 Thrombospondin-4 -1.62 

TIMD4  T-cell immunoglobulin and mucin domain containing 4  -1.59 

VNN1 Pantetheinase -1.53 

WNT11 Protein Wnt-11 -1.81 
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Steady-state mRNA levels for CXCL14, HDAC11, and LIPG were not statistically 

different (P>0.10).  Further, we previously reported that levels of AGR2 mRNA in 

placentomes were greater (P<0.05) for ewes producing NR IUGR fetuses than for ewes 

producing NR non-IUGR fetuses (data not shown) [257].  These results validate gene 

expression based on transcriptional profiling analyses and indicate that genes are 

differentially expressed in NR non-IUGR compared with NR IUGR placentomes. 

 Expression of IL12RB2 mRNA was weak in the placentomes of control or NR 

IUGR associated pregnancies.  However, expression of IL12RB2 mRNA was detected in 

scattered cells throughout the caruncular stroma of the placentomes of NR non-IUGR 

pregnancies.  The relative abundance of STC1 and CTSS mRNAs was greater in the 

cotyledonary tissue of NR IUGR associated placentomes as compared to that of NR non-

IUGR or controls.  Expression of STC1 was detected in a diffuse pattern throughout the 

cotyledonary tissue, while CTSS appeared to be more abundant at the fetal maternal 

interface of the cotyledon and caruncle.  
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Table 5.4.  Comparison of expression of placentomal mRNAs for selected genes identified using 

microarray or quantitative real-time PCR analyses. 

Gene 

Symbol
a
 Gene Name 

Microarray 

Fold Change
b
 

qPCR  

Fold Change 

qPCR  

P-Value 

AGR2 Anterior gradient protein 2 homolog -2.32 -2.69 0.05 

B3GALT2 Beta-1,3-galactosyltransferase 2 1.57 1.67 0.09 

CADM1 Cell adhesion molecule 1 -1.58 -2.14 0.03 

CD37 Leukocyte antigen CD37 -1.59 -1.73 0.07 

CD86 T-lymphocyte activation antigen CD86 -1.51 -1.84 0.01 

CTSS Cathepsin S -1.54 -1.88 0.03 

CXCL10 C-X-C motif chemokine 10 -1.85 -3.01 0.03 

CXCL14 C-X-C motif chemokine 14 -2.17 -2.79 0.12 

DPYD  Dihydropyrimidine dehydrogenase  -1.51 -2.12 0.03 

GATM Glycine amidinotransferase, mitochondrial -2.01 -2.84 0.02 

HDAC11 Histone deacetylase 11 1.58 1.85 0.17 

IL12RB2 Interleukin-12 receptor subunit beta-2 1.88 6.40 0.00 

LIPG Endothelial lipase 2.00 2.02 0.28 

NUP210 Nuclear pore membrane glycoprotein 210 1.77 2.50 0.03 

SLC44A4 Choline transporter-like protein 4 -2.19 -3.07 0.03 

SLCO1C1 

Solute carrier organic anion transporter 

family member 1C1 1.78 2.04 0.05 

SPP1  Secreted phosphoprotein 1  -1.56 -3.41 0.09 

STC1 Stanniocalcin 1 -1.91 -1.54 0.03 

SULF2 Extracellular sulfatase Sulf-2 -1.64 -2.74 0.03 
a
Official gene symbols were used as abbreviations.  

b
Microarray fold-changes are significant (P<0.05). 
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Figure 5.1.  Steady state levels of IL2RB2, NUP210, and SLCO1C1 mRNAs from an affymetrix microarray were assessed via 

real time RT-PCR.  Expression of the genes IL2RB2, NUP210, and SLCO1C1 was greater (P<0.05) in placentomes from NR 

non-IUGR fetuses compared to NR ewes having IUGR fetuses.  Mean gene expression values from placentomes from control 

fed ewes have been included for informative comparisons only and were not included in the statistical analysis. 
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Figure 5.2. Steady state levels of CADM1, CTSS, DPYD, GATM, SLC44A4, STC1, and SULF2 mRNAs from an affymetrix microarray were assessed 

via real time RT-PCR.  [A] GATM, SLC44A4, STC1 and SULF2 mRNAs in placentomes were greater (P<0.05) in placentomes from ewes producing 

NR IUGR fetuses compared to placentomes from ewes producing NR non-IUGR fetuses.  [B] CADM1, CTSS, and DPYD mRNAs in placentomes were 

greater (P<0.05) for ewes producing NR IUGR fetuses than for ewes producing NR non-IUGR fetuses.  [C] CD86 and CXCL10 mRNAs in placentomes 

were greater (P<0.05) for ewes producing NR IUGR fetuses than for ewes producing NR non-IUGR fetuses.  Mean gene expression values from 

placentomes from control fed ewes have been included for informative comparisons only and were not included in the statistical analysis.  
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Figure 5.3.  Localization of IL12RB2, STC1, and CTSS mRNA in placentomes of 100%NRC, 50% NR non-IUGR, and 50% NR IUGR pregnancies.  

Expression of IL12RB2 mRNA was weak in the placentomes of control or NR IUGR associated pregnancies.  However, expression of IL12RB2 mRNA 

was detected in scattered cells throughout the caruncular stroma of the placentomes of NR non-IUGR pregnancies.  The relative abundance of STC1 and 

CTSS mRNAs was greater in the cotyledonary tissue of NR IUGR associated placentomes as compared to that of NR non-IUGR or controls.  Expression 

of STC1 was detected in a diffuse pattern throughout the cotyledonary tissue, while CTSS appeared to be more abundant at the fetal-maternal interface 

of the cotyledon and caruncle.  Corresponding bright and dark field images of representative cross sections are shown.  CAR denotes caruncle and COT 

denotes cotyledon.  Corresponding bright and dark field images of representative cross sections are shown.  All photomicrographs are shown at the same 

width of field (940 µm). 
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Bioinformatics 

 DAVID bioinformatic analyses were performed to identify biological processes 

potentially regulating the differential rates of placental growth and/or function between 

NR non-IUGR and NR IUGR ewes.  DAVID analysis of the 15 genes upregulated in NR 

non-IUGR pregnancies identified three weakly enriched functional annotation clusters, 

which were associated with biological terms such as transmembrane region, integral to 

membrane, intrinsic to membrane, receptor, cell surface receptor linked signal 

transduction, signal peptide, alternative splicing, and splice variant (Table 5.5).   

Conversely, thirty-three enriched clusters were identified by DAVID analysis of 

the 88 down-regulated genes from NR non-IUGR placentomes. The 10 most highly 

enriched clusters are presented in Table 5.6.  Interestingly, of the ten most enriched 

clusters, two were associated with response to nutrients, while five were associated with 

immune response.  Clusters associated with a response to nutrient levels featured 

biological terms such as response to nutrient, response to extracellular stimulus, amino 

acid transport, amine transport, amino acid transmembrane transporter activity, 

carboxylic acid transport, organic acid transport, and amine transmembrane transporter 

activity. Those clusters related to immune responses featured biological terms such as 

positive regulation of immune response, immune effector process, immunoglobulin-like, 

immunoglobulin domain, activation of immune response, complement activation, 

activation of plasma proteins involved in acute inflammatory response, humoral immune 

response, lymphocyte mediated immunity, adaptive immune response, leukocyte 
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mediated immunity and adaptive immune response based on somatic recombination of 

immune receptors built from immunoglobulin superfamily domains.    

 

Table 5.5. Functional annotation clusters of biological terms representing NR non-IUGR placentomes. 

Annotation 

Cluster
a
 

Enrichment 

Score
b
 

Biological Terms
c
 

 

1 1.27 transmembrane region (7) 

  

Transmembrane (7) 

  

GO:0016021 ~ integral to membrane (7) 

  

GO:0031224 ~ intrinsic to membrane (7) 

2 0.51 receptor (3) 

  

GO:0007166 ~ cell surface receptor linked signal transduction (3) 

  

topological domain:Extracellular (3) 

3 0.15 signal  (3) 

  

signal peptide (3) 

  

alternative splicing (3) 

    splice variant  (3) 
a
The three most significant annotation clusters identified from the gene list submitted for analysis 

through DAVID. 
b
The enrichment score is determined through DAVID and ranks the significance of 

each annotation cluster based on the relatedness of the terms and the genes associated with them. 
c
This 

column summarizes the biological terms in the annotation clusters. The gene ontology (GO) terms 

were gathered based on the known annotation of the submitted genes with respect to biological 

process, cellular component, and molecular function; as well as biological pathway membership and 

protein domains. The number in parentheses indicates the number of differentially expressed genes 

contributing to the clustered term. 
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Table 5.6. Functional annotation clusters of biological terms representing NR IUGR placentomes. 

Annotation 

Cluster
a 

Enrichment 

Score
b
 Biological Terms

c
 

1 3.4 GO:0031667 ~ response to nutrient levels (7) 

  

GO:0007584 ~ response to nutrient (6) 

  

GO:0009991 ~ response to extracellular stimulus (7) 

2 2.01 GO:0050778 ~ positive regulation of immune response (6) 

  

GO:0002252 ~ immune effector process (5) 

  

GO:0048584 ~ positive regulation of response to stimulus (6) 

  

immune response (5) 

3 2.01 transmembrane region (32) 

  

transmembrane (32) 

  

membrane (37) 

  

GO:0031224 ~ intrinsic to membrane (36) 

  

GO:0016021 ~ integral to membrane (33) 

4 1.91 GO:0005624 ~ membrane fraction (11) 

  

GO:0005626 ~ insoluble fraction (11)  

  

GO:0000267 ~ cell fraction (12) 

5 1.67 Ig-like V-type (5) 

  

CD80-like, immunoglobulin C2-set (3) 

  

IG (4) 

  

Immunoglobulin subtype (4) 

6 1.66 GO:0006865 ~ amino acid transport (4) 

  

GO:0015837 ~ amine transport (4) 

  

GO:0015171 ~ amino acid transmembrane transporter activity (3) 

  

GO:0046942 ~ carboxylic acid transport (4) 

  

GO:0015849 ~ organic acid transport (4) 

  

GO:0005275 ~ amine transmembrane transporter activity (3) 

7 1.62 Immunoglobulin-like (7) 

  

Immunoglobulin-like fold (7) 

  

Immunoglobulin domain (6) 

8 1.61 GO:0042803 ~ protein homodimerization activity (6) 

  

GO:0046983 ~ protein dimerization activity (7) 

  

GO:0042802 ~ identical protein binding (7) 

9 1.54 GO:0051605 ~ protein maturation by peptide bond cleavage (4) 

  

GO:0002253 ~ activation of immune response (4) 

  

GO:0016485 ~ protein processing (4) 

  

GO:0006956 ~ complement activation (3) 

  

GO:0002541 ~ activation of plasma proteins involved in acute 

inflammatory response (3) 

  

GO:0051604 ~ protein maturation  (4) 
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Table 5.6. Cont’d 

Annotation 

Cluster
a 

Enrichment 

Score
b
 Biological Terms

c
 

9 1.54 innate immunity (3) 

  

GO:0006959 ~ humoral immune response (3) 

  

Complement and coagulation cascades (3) 

  

GO:0006508 ~ proteolysis  (5) 

10 1.31 GO:0002449 ~ lymphocyte mediated immunity (3) 

  

GO:0002250 ~ adaptive immune response (3) 

  

GO:0002460 ~ adaptive immune response based on somatic 

recombination of immune receptors built from immunoglobulin 

superfamily domains (3) 

    GO:0002443 ~ leukocyte mediated immunity (3) 
a
The 10 most significant annotation clusters identified from the gene list submitted for analysis 

through DAVID. 
b
The enrichment score is determined through DAVID and ranks the significance of 

each annotation cluster based on the relatedness of the terms and the genes associated with them. 
c
This 

column summarizes the biological terms in the annotation clusters. The gene ontology (GO) terms 

were gathered based on the known annotation of the submitted genes with respect to biological 

process, cellular component, and molecular function; as well as biological pathway membership and 

protein domains. The number in parentheses indicates the number of differentially expressed genes 

contributing to the clustered term. 

 

 

 

Discussion 

Microarray analysis of placentomes from NR ewes identified novel candidate 

genes that may regulate development and/or function of the placentome which give rise 

to differing rates of fetal growth.  Placentomal genes expressed later in gestation, in this 

case gestational Day 125, are likely indicative of either prior changes in placental 

development which set a pathway(s) in motion or factors regulating the substantial rate 

of fetal growth that occurs during the final trimester.  Indeed, previous studies using 

models of nutrient restriction in pregnant ewes have shown that throughout gestation, 

genes such as nutrient transporters [37, 124] and angiogenic factors [26, 28, 115] are 

essential in regulating proper fetal development.  Likewise, data from various pregnancy 
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models in livestock, humans, and mice also illustrate the importance of placental 

development and gene function on fetal development [116, 178, 248].   

 Previous work from our laboratory using the same nutrient restriction model has 

shown that the expression of various nutrient transporters (CHAPTER III) and 

angiogenic factors (CHAPTER IV) are up-regulated in NR non-IUGR placentomes in 

comparison to their NR IUGR counterparts.  This, along with the increased placental and 

fetal weights in NR non-IUGR pregnancies led to the hypothesis that adaptive 

mechanisms exist in a subset of NR ewes to maintain normal fetal growth despite limited 

maternal nutrient availability.  However, results from the present study suggest that 

enhanced fetal growth in NR ewes is associated with an altered immune response, rather 

than solely a compensatory up-regulation of genes involved in placental development 

and function.  Furthermore, the nutrient transporters and angiogenic factors (CHAPTER 

III and IV, respectively) that were up-regulated in the NR non-IUGR compared to NR 

IUGR placentomes were not detected in this microarray.  This is likely due to the 

selection criteria of a 1.5-fold change or greater, as many of the previously discussed 

genes exhibited smaller fold changes.  While these select nutrient transporters and 

angiogenic factors significantly impact placental function and fetal development, we 

increased the stringency of our selection criteria of this microarray in order to elucidate 

novel genes influencing placental development and function. 

  DAVID bioinformatic analysis of the 15 genes up-regulated in NR non-IUGR 

pregnancies identified only three functional annotation clusters.  Those clusters featured 

GO terms such as integral to membrane, intrinsic to membrane, and cell surface receptor 
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linked signal transduction.  Select genes found in those clusters included interleukin-12 

receptor subunit beta-2 (IL12Rβ2), nuclear pore membrane glycoprotein 210 (NUP210), 

solute carrier organic anion transporter family member 1C1 (SLCO1C1), beta-1,3-

galactosyltransferase 2 (β3GALT2), and endothelial lipase (LIPG).   

The interleukin-12 receptor is known to be expressed primarily on natural killer 

(NK) and activated T cells, with the β2 subunit being restricted to Th1 lymphocytes 

[258-260].  Thus, when acting with its ligand Il-12, IL12Rβ2 may mediate 

differentiation of Th1 lymphocytes [258, 261].  During implantation and pregnancy, 

there appears to be shift towards a greater population of Th2 lymphocytes at the 

maternal-fetal interface [262].  Th1 lymphocytes produce cytokines that can compromise 

pregnancy.  The increase in cytokines produced by Th2 lymphocytes are thought to 

inhibit inflammatory Th1 responses at the maternal-fetal interface to allow implantation 

and pregnancy to occur [262].  While there is an up-regulation of IL12Rβ2 mRNA in the 

placentomes of NR non-IUGR pregnancies, the present study did not investigate the 

amount of IL-12 in placentomes or at the maternal-fetal interface throughout the 

placenta, the presence of other IL-12 receptors has also not been assessed and further 

work is needed to fully elucidate the implications of the increased IL12Rβ2 mRNA in 

the placentomes of NR non-IUGR pregnancies.   

Approximately 30 proteins known as nucleoporins serve as building blocks for 

nuclear pore complexes (NPCs) at fusion sites between the inner and outer nuclear 

membranes.  NUP210 is one of only three integral membrane proteins in the various 

components of the NPC [263].  The complete function of NUP210 is not clear; however, 
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in mice it has been shown to be involved in epithelial cell development in various 

organs, and is required for myogenic and neuronal differentiation, serving a role in cell 

fate determination and regulation of gene expression [263, 264].  Therefore, it is possible 

that NUP210 in the placentomes during late gestation regulate cell fate determination 

and expression of genes that allow this subpopulation of ewes to produce NR non-IUGR 

fetuses.  To our knowledge this is the first study showing NUP210 mRNA expression in 

the placenta and further work to assess localization is still needed.   

 The thyroid hormones (TH), triiodothyronine (T3) and thyroxine (T4), are 

imperative to normal in utero growth and development, largely by being essential for 

increasing fetal mass and terminal tissue differentiation [265].  Expression of the organic 

anion transporter SLCO1C1 (also known as OATP1C1 and OATP14)  is primarily  at 

the blood-brain barrier and blood-cerebrospinal fluid barrier for transport of TH to the 

developing brain and to be expressed in human Leydig cells [266, 267].  In the rat brain, 

SLCO1C1 possess the highest affinity for T4 [266, 268].  Interestingly, SLCO1C1 was 

recently found to be strongly expressed in the villous stroma of the rat placenta [266].  In 

that same study, SLCO1C1 was found to work with the thyroid hormone transporter 

MCT8 in a compensatory manner during times of TH deficiency in either the mother or 

fetus throughout gestation.  Permeability of the placenta to TH is partly dependent on 

species and placental type.  Humans and rodents, having a hemochorial placenta, are 

relatively permeable to T3 and T4, while livestock, possessing epitheliochorial and 

synepitheliochorial placentas, are thought to be seemingly impermeable to maternal THs 
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[265].  Moreover, concentrations of TH are low in human IUGR infants and in IUGR 

offspring from placental insufficiency and NR animal models [265, 269-273].   

 In the present study 88 genes were down-regulated in placentomes from NR non-

IUGR versus NR IUGR conceptuses.  Interestingly, a number of these genes appeared to 

display similar patterns of expression between the NR IUGR and control placentomes, 

with these genes being down-regulated in the NR non-IUGR pregnancies.  DAVID 

analysis of these genes revealed 33 functional annotation clusters.  Not surprisingly, the 

most significant cluster featured the GO terms response to nutrient levels, response to 

nutrient, and response to extracellular stimulus.  However, of the 10 most significant 

annotation clusters identified, half were related to immune response, with GO terms such 

as positive regulation of immune response, immune effecter process, activation of 

immune response, humoral immune response, lymphocyte mediated immunity, 

leukocyte mediated immunity, and adaptive immune response.    

Establishment and maintenance of pregnancy in all mammalian species involves 

an intricate balance of immune cells, particularly a balance of pro- and anti-

inflammatory cytokines regulated by the maternal immune system, at the maternal-

placental interface [274].  This balance is largely regulated by the presence of 

progesterone which allows for local inhibition of immune responses at the maternal-

placental interface without resulting in systemic immunosuppression [275].  In a clinical 

setting, an increase in inflammatory cytokines, such as TNF-α, and the chemokine IL-8 

is seen in placentas of IUGR pregnancies [276, 277].  Umbilical artery ligation in sheep 

induces a fetoplacental inflammatory response, characterized by increased pro-
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inflammatory cytokines, and ultimately results in IUGR at Day 116 of gestation [278].  

Overall, work illustrating immune responses in the placentas of IUGR pregnancies are 

limited.  Furthermore, to our knowledge, data on the immunological profile of the 

placenta in response to maternal nutrient restriction is lacking and the present study 

presents novel genes regulating immune responses within the placental of NR 

pregnancies which result in IUGR.   

The rate-limiting enzyme for creatine synthesis, glycine amidinotransferase 

(GATM), decreases production of NO by competing with the inducible form of NO 

synthase for the amino acid arginine [279].  Additionally, GATM is an imprinted gene in 

human and mouse placentas [280, 281], with expression being exclusively from the 

maternal allele in extraembryonic tissues of mice [281].  Importantly, a genome-wide 

survey discovered increased expression of GATM of placentas from women that gave 

birth to an IUGR fetus [282].  Expression of GATM is also seen on bovine endometrial 

CD14
+
 cells, potentially serving roles characteristic of M2 activated macrophages such 

as tissue remodeling and immune regulation for promoting pregnancy [283].  It is 

hypothesized that expression of GATM in the placenta for production of phosphocreatine 

might reduce the impact of sudden high-energy demands from the fetus on the gestating 

dam [281].     

Stanniocalcin 1 is a glycoprotein responsible for regulating calcium and 

phosphate homeostasis in a paracrine manner, with a role in regulating calcium and 

phosphate transport in the kidney and intestine [284, 285].  During pregnancy in sheep, 

STC1 is involved in regulation of placental and fetal growth and differentiation with 
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expression appearing in the endometrial glands on Day 18 of gestation and increases 

until Day 80 [286].  Levels of STC1 remain elevated in the uterine glands through 

gestational Day 120.  Localization of STC1 in the glands is associated with the secretion 

of STC1 protein into the glands and uterine lumen and transport via the placental areolae 

into fetal circulation and allantoic fluid [286].  In the study by Song et al. [286], 

expression of STC1 mRNA was not detected in the placentomes of ewes from Days 30, 

40, 60, 80, 100, 120, or 140 of gestation.  However, in the present study we detected low 

levels of STC1 mRNA in the placentome at Day 125 of gestation.  It is probable that the 

stress of under-nutrition stimulates up-regulation of STC1 in the NR IUGR compared 

the NR non-IUGR pregnancies but its overall function in the placentome is still unclear.   

 Uterine remodeling is initiated during the very early stages of gestation and 

continues until parturition to ensure proper implantation and placentation needed for 

normal fetal development.  This tissue remodeling is partially supported by the 

degradation of the extracellular matrix and catabolism of intracellular hormones 

stimulated by a group of peptidases known as cathepsins [287, 288].  Expression of 

various cathepsins has been detected in ovine uteroplacental tissues throughout 

gestation.  Cathepsin S, in particular, was found in both the intercaruncular 

endometrium, as well as the placentome through Day 120 of gestation [287].  More 

specifically, expression of CTSS increased in the stratum compactum stroma but 

declined in the caruncular stroma during gestation [287].  Our data indicate that mRNA 

levels of CTSS are increased in NR IUGR compared to NR non-IUGR placentomes, with 

CTSS being localized in the cotyledonary villi and being more abundant at the fetal-
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maternal interface of the cotyledon and caruncle of the placentome at gestational Day 

125.   

 In addition to its role as a cysteine protease, CTSS is also essential to major 

histocompatibility complex (MHC) class II antigen presentation and proteolysis [289, 

290].  CTSS-deficient mice (CTSS
-/-

) have normal populations of B and T cells but have 

an impaired ability to degrade the invariant chain (Ii), which is necessary for MHC class 

II molecules to acquire antigenic peptides and undergo peptide binding [291, 292].  

While the expression of MHC class II molecules in the placentome is not fully 

understood, there is expression of MHC class I during late gestation, around the time of 

parturition [293, 294].  Additionally, parturition in cattle is associated with increased 

apoptosis, degradation of the extracellular matrix, and an innate immune response [295].  

These physiological processes and complexes at late gestation align with the genes and 

functional annotation clusters discovered in the present study.  CTSS’s role as a 

peptidase suggests that an increase in CTSS in the placentomes of NR IUGR 

pregnancies during late gestation may represent a failed attempt to enhance vascular or 

tissue remodeling to improve placental function.  However, as it also functions in MHC 

class II antigen presentation and proteolysis, its exact role in the placentomes of NR 

ewes at this point in gestation is not clear and warrants further investigation.    

 Epigenetic alterations, such as DNA methylation, during fetal development can 

profoundly influence the susceptibility of offspring to postnatal diseases through a 

phenomenon known as fetal programming.  Therefore, it is a common clinical practice 

for gestating mothers to be supplemented with methyl donors such as folate and choline 
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[1].  Previous work in our laboratory with ewes revealed that the sodium-dependent 

choline transporter SLC44A4 is up-regulated in the endometrium of the uterus during 

early pregnancy and in response to exogenous progesterone [232].  Studies in rodents 

and humans have shown that a deficiency in choline during early pregnancy can lead to 

neural tube defects and other brain defects during postnatal life [296].  Thus, an increase 

in expression of SLC44A4 mRNA in NR IUGR compared to NR non-IUGR placentomes 

could be an attempt to prevent choline deficiency in IUGR lambs in response to nutrient 

restriction by attempting to increase mRNA levels similar to that seen in control 

pregnancies. However, levels of choline were not measured in these studies. 

 In conclusion, results of the present study indicate that in a subpopulation of NR 

ewes, placentomal genes expressed late in gestation are associated with an altered 

immune response that is associated with enhanced fetal growth.  This altered immune 

response may work in conjunction with increased expression of certain nutrient 

transporters and angiogenic factors, along with increased fetal nutrient availability to 

enhance fetal growth in NR non-IUGR pregnancies (Fig. 3.4 and 4.1; Table 3.3 and 3.4).  

Future studies are necessary to investigate the immune cell profile and immunological 

forces at play within the placentas of compromised and adaptive pregnancies.  
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CHAPTER VI  

SUMMARY 

 

Maternal nutrient restriction during pregnancy impairs placental and fetal growth 

in humans and livestock species, often resulting in IUGR [1-4].  Indeed, undernutrition 

in ruminant livestock species is a global challenge, with the nutrient intake of ewes 

frequently being less than 50% of the National Research Council (NRC) 

recommendations [4, 159].  IUGR is a leading cause of neonatal morbidity and mortality 

in livestock species, as well as humans, with approximately 5% of human infants in the 

U.S. suffering complications of IUGR each year [1, 3, 4, 65].  The intrauterine 

environment is not only a major determinant of fetal growth in utero, but also of great 

importance in the etiology of chronic disease during adult life [1, 6].  As a result of 

maternal malnutrition, the fetus is hypothesized to adapt to a thrifty phenotype, through 

which it attempts to alter the function of its organs to maximize the chances of its 

survival in a postnatal life that is nutrient deficient [6, 247].  However, the mechanisms 

regulating this adaptation in fetal growth, development, and programming are not fully 

understood. 

Available evidence suggests that, in the face of maternal nutrient restriction, a 

subset of the population is capable of adapting to this insult in order to increase delivery 

of nutrients to the fetus.  In previous studies, our laboratory determined that variation in 

lamb birth weights is greater in ewes fed at 50% of the NRC requirements (mean = 4.84 

kg; range = 2.5-7.1 kg; n=54) compared to those receiving 100% NRC (mean = 6.28 kg; 
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range = 5.2-7.2 kg; n=13) (Satterfield et al. unpublished observations).  Likewise, in a 

bovine model, maternal nutrient restriction induced IUGR in only a subset of individuals 

[168].  Furthermore, research comparing ewes raised and selected under temperate 

conditions to genetically similar ewes that have adapted to harsh environmental 

conditions indicated that long-term selection for survival characteristics in a nutritionally 

limited environment can result in adaptive changes in placental function [67, 72, 170].  

Collectively, results suggest that adaptive mechanisms of placental nutrient transport 

exist to maintain normal fetal growth despite limited maternal resources in certain 

individuals. 

 As a first step to elucidate the mechanisms involved in an adaptive placental 

response to maternal nutrient restricion, we established an ovine model of maternal 

nutrient restriction followed by subpopulation delineation.  Briefly, ewes were 

synchronized into estrus and a single blastocyst from superovulated Suffolk donor ewes 

of normal body condition was transferred into the uterus of a recipient ewe.  Pregnant 

ewes received either 50% NRC or 100% NRC from Day 35 of gestation to necropsy on 

Day 125.  Maternal weight did not correlate with fetal weight; therefore, the six heaviest 

(NR non-IUGR) and six lightest (NR IUGR) fetuses from NR (representing the upper 

and lower quartiles for fetal growth, respectively), as well as the seven control fetuses, 

were compared with respect to various indices of placental development and gene 

expression.  Mean weights of NR IUGR fetal lambs were lower than weights for control 

and NR non-IUGR fetal lambs. 
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 In the first study we aimed to determine quantities of select nutrients in maternal 

and fetal fluids in well-fed and NR ewes having either IUGR or non-IUGR fetuses.  We 

then quantified the expression of a number of amino acid transporter family members 

which transport nutrients hypothesized to be involved in placental and/or fetal 

development.  Results of this study (CHAPTER III) indicate that quantities of 18 out of 

24 amino acids and related hormones and metabolites are reduced in the fetal circulation 

in NR IUGR versus NR non-IUGR and control ewes.  Moreover, enhanced fetal growth 

in NR ewes having non-IUGR fetuses was associated with increased placentomal mRNA 

expression of a number of amino acid transporters above levels observed in those having 

an IUGR fetus.  Interestingly, many of the amino acids that were decreased by maternal 

nutrient restriction, as well their metabolites, are involved in placental angiogenesis and 

vasodilation [4, 40].  As example, arginine can be catabolized into NO which has a 

critical role in promoting placental angiogenesis and increasing fetal-placental blood 

flow during gestation [108, 186, 187].  Additionally, arginine, proline, and glutamate can 

be metabolized to form ornithine, a precursor of polyamine synthesis [135].  Polyamines 

serve a multitude of functions such as stimulating gene expression, cell proliferation and 

differentiation, DNA and protein synthesis, and angiogenesis [131].  In rodent models, 

inhibition of polyamine synthesis results in impaired placental growth and IUGR [132-

134].  An increase in arginine, proline, glutamate, ornithine, methionine, putrescine, and 

spermidine in the fetal circulation of NR non-IUGR lambs compared to IUGR lambs 

was concomitant with increased expression of amino acid transporters known to 

transport arginine, proline, glutamate, and ornithine in the placentomes of NR non-IUGR 



 

138 

 

pregnancies.  These observations are similar to previous studies in humans and rats 

which demonstrated that growth restricted pregnancies are associated with specific 

alterations in nutrient transporter availability and function [64, 221].   

 Insulin also serves as a critical metabolic regulator that stimulates the uptake of 

nutrients such as glucose and amino acids into cells.  Our results identified increased 

concentrations of insulin in the circulation of NR non-IUGR and control fetuses 

compared to IUGR fetuses.  Since the sheep placenta does not transport appreciable 

quantities of insulin [227], this likely resulted from either increased secretion or reduced 

utilization of insulin by the fetus.  Furthermore, insulin promotes amino acid transport 

across the placenta [228-231] and thus may contribute to the detected increases in amino 

acids in the circulation of NR non-IUGR lambs.  Reduced concentrations of glucose in 

maternal plasma of NR non-IUGR ewes compared to both control and NR IUGR ewes 

was interesting as there was no difference in concentrations of glucose in plasma due to 

phenotype of fetus.  Additionally, since excess glucose not utilized by the fetus can be 

converted to fructose [43], it would be advantageous to measure fructose in the fetal 

circulation, as well as concentrations of both fructose and glucose in the allantoic fluid.   

Angiogenesis in both the maternal and fetal portions of the placenta is a vital part 

of placental development [28].  The primary role of the placenta is physiological 

exchange of nutrients, wastes, and gases between the dam and conceptus.  Indeed, all 

nutrients, wastes, and gases exchanged between the dam and conceptus must be 

transported through the placenta, primarily through the placental vasculature [25, 28].  
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Fetal weight is typically correlated with both placental weight and uteroplacental blood 

flow and uteroplacental blood flow may be reduced by maternal nutrient restriction [70].   

We hypothesized that, in the face of maternal nutrient restriction, the remarkable 

adaptations by the placenta to increase delivery of nutrients to the fetus involve 

alterations in morphology of placentomes and expression of major angiogenic factors in 

placentomes.  The major factors regulating angiogenesis are the VEGFs, FGF2, the 

ANGPT family, and their respective receptors [26].  Indeed, histological analysis of 

placentomes in our second study (CHAPTER IV) illustrated that placentomes of the NR 

IUGR pregnancies were strikingly less dense than those for control and NR non-IUGR 

pregnancies, as evidenced by a lack of caruncular crypt development.  There were 

numerous, thick and highly branched crypts with closer juxtaposition to the fetal 

cotyledonary tissues in both the NR non-IUGR and control placentomes compared to the 

NR IUGR placentomes.  Along with the decrease in caruncular crypt development, there 

was also an increased thickness of the caruncular capsule in the NR IUGR placentomes.   

 The exponential increase in fetal growth which occurs late in gestation must be 

supported by an extensive vascular network in the placenta.  Thus, angiogenesis in both 

the maternal caruncular and fetal cotyledonary tissues is fundamental to placental 

formation and function throughout pregnancy.  Importantly, perturbations in placental 

angiogenesis and blood flow in response to inadequate maternal nutrition induce IUGR 

of the fetus in a variety of species, including sheep, cow, rat, and pig [23, 72, 116, 169, 

174, 175].  Similarly, in our second study (CHAPTER IV), up-regulation of VEGFA 

mRNA was detected in placentomes from NR non-IUGR ewes compared to both NR 
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IUGR and control ewes.  In addition, up-regulation of VEGFB mRNA expression was 

detected in placentomes of control ewes compared to NR IUGR pregnancies, but 

expression of VEGFB in placentomes from NR non-IUGR was intermediate.  However, 

these results contrast with those from a study that implemented a nutrient restricted diet 

containing 60% of dietary requirements in ewes from Day 50 to Day 130 of gestation 

and found no change in expression of VEGF mRNA in placentomes [23].  A decrease in 

expression of mRNAs for VEGF receptors in placentomes at Day 130 in response to 

nutrient restriction was also reported for that study [23].  The increased expression of 

VEGFA in the NR non-IUGR placentomes found in the present study may be part of a 

compensatory mechanism in response to the fetal nutrient deprivation that promote 

compensatory vascular development to increase transport of nutrients to the fetus.  

Additionally, the division of the nutrient restricted pregnancies into NR non-IUGR and 

NR IUGR groups offers a more focused assessment of expression of VEGF as it relates 

to placental growth and function, while the previous study [23] utilized a non-segregated 

population of lambs from nutrient restricted mothers, which may account for the 

observed differences between the two studies.   

 Results of immunohistochemical staining for cytokeratin, desmin, and vWF 

suggested that nutrient restriction may compromise the histoarchitecture of cotyledonary 

tissue, particularly in IUGR pregnancies.  This is first illustrated by an increase in 

immunoreactive cytokeratin in the syncytia of placentomes from control and non-IUGR 

ewes compared to IUGR placentomes.  Additionally, immunoreactive desmin was 

detectable in placentomes from all ewes and was distinctively localized to blood vessels 
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throughout the caruncular and cotyledonary components of placentomes.  The 

abundance of desmin was markedly less in placentomes from NR IUGR ewes.  This 

localization of desmin suggests that IUGR pregnancies are compromised, in part, due to 

a lack of vascular development.  Furthermore, vWF protein was detected throughout the 

placentomes, but most abundant within the cotyledons.  Additionally, vWF was more 

abundant in placentomes from control ewes compared to NR ewes.  

Lastly, we utilized an Affymetrix Bovine/Ovine Gene 1.0 ST array to capitalize 

on natural population variance in fetal weights in response to nutrient restriction, in an 

effort to identify novel factors regulating placental growth and function (CHAPTER V).  

Interestingly, based on statistical significance and a fold change of 1.5 or greater, 15 

genes were upregulated and 88 genes were down-regulated in placentomes having NR 

non-IUGR fetuses compared to those having IUGR fetuses.  Bioinformatic analyses, 

performed using DAVID, of genes upregulated in NR non-IUGR pregnancies identified 

three functional annotation clusters, which featured GO terms such as integral to 

membrane, intrinsic to membrane, and cell surface receptor linked signal transduction.  

Thirty-three clusters were identified by DAVID analysis of the down-regulated genes 

from NR non-IUGR placentomes. These clusters were associated with response to 

nutrient levels, immune response, and positive regulation of response to stimulus. 

Indeed, of the ten most enriched clusters, two were associated with response to nutrients, 

while five were associated with immune response.   

An intricate balance of immune cells, particularly a balance of pro- and anti-

inflammatory cytokines regulated by the maternal immune system, at the maternal-
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placental interface is imperative to the establishment and maintenance of pregnancy 

[274].  Placentas from pregnancies of IUGR infants are associated with an increase in 

inflammatory cytokines, such as TNF-α, and the chemokine IL-8 [276, 277].  In an 

ovine model of IUGR by umbilical artery ligation, a fetoplacental inflammatory 

response is characterized by increased pro-inflammatory cytokines [278].  Work 

illustrating immune responses at the maternal-placental interface in response to nutrient 

restriction is limited and the present study presents novel genes regulating immune 

responses within the placenta of nutrient restricted pregnancies which result in IUGR.   

Future studies are necessary to investigate the immune cell profile and immunological 

forces at play within the placentas of compromised and adaptive pregnancies.   

In conclusion, these studies suggest that in the face of maternal nutrient 

restriction, a subset of the population of ewes is capable of adapting to this insult in 

order to increase delivery of nutrients to the fetus.  Accordingly, such adaptive 

mechanisms in the placentomes of NR non-IUGR pregnancies include increased 

expression of select nutrient transporters and angiogenic factors, thick and highly 

branched caruncular crypts with close juxtaposition to the fetal cotyledonary tissues, and 

an altered immune response.  Results also support previous findings from our laboratory 

and others highlighting critical roles for amino acids and their metabolites in supporting 

normal fetal growth and development and the critical role for amino acid transporters in 

nutrient delivery to the fetus.   

 Future studies to determine differences in placental vascularization, blood flow, 

nutrient transporter activity, as well as the immune cell profile and immunological forces 
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at play within the placentas of compromised and adaptive pregnancies are needed.  

Furthermore, it would be exceedingly advantageous to analyze placentome morphology, 

blood flow, and gene expression earlier in gestation when placentome development is 

occurring.  This would grant the opportunity to elucidate adaptive mechanisms during 

early placental development that potentially lead to subsequent IUGR late in gestation. 
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