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ABSTRACT

The Capacitance Resistance Model (CRM) is a fast way for modeling and simu-

lating gas and waterflooding recovery processes, making it a great tool for improving

flood management in real time. CRM is an input-output and material balance-based

model, and uses only the most reliable data gathered throughout the production

life of a flooded reservoir, which are bottom-hole pressures and production/injection

rates. In this work, the CRM input-output relationship is explored by representing

CRM in a control systems framework with state-space (SS) equations and transfer

functions. Systems identification is applied for history matching using only pro-

duction data to characterize the reservoir, evaluating interwell connectivities, time

constants and productivity indices.

A linear system SS equations define the relationship between inputs, outputs and

states to completely describe system dynamics. We estimate the CRM parameters

using a grey-box system identification algorithm, where production rates are com-

puted simulating the system with SS-CRM instead of using ODE solutions as in prior

works. The matrix form of the CRM history matching and a sensitivity analysis to

the CRM parameters estimates are presented. Minimal realizations and reduced

order models are easily obtained with the SS-CRM approach. The performance of

three types of CRM formulations are analyzed: integrated (ICRM), producer based

(CRMP), injector-producer based (CRMIP). Also, the methodology developed here

are tested in three different reservoir setups: 1) homogeneous with flow barriers; 2)

channelized; 3) shoreface environment.

The new formulation in terms of state-space allows to write the CRM in a matrix

representation, this provides more insight into reservoir behavior and is computa-
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tionally faster. SS-CRM facilitates closed loop reservoir management by enabling

CRM’s use for linear control algorithms, which can improve tracking performance

and predictability, and is amenable to real time optimization. Expressing the history

matching problem using matrices provides structure and facilitates its implementa-

tion. CRM represented as a multi-input multi-output model is easier to apply in

fields with large number of wells.
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1. INTRODUCTION

1.1 Problem Statement

The ultimate goal of reservoir modeling and simulation is to obtain a model

that can reliably predict the reservoir behavior and be used to achieve the best

management strategy in a timely manner. Usually, it involves an integration of

several disciplines and can become a quite complex task to be performed in a timely

manner. Besides the physical complexity of the porous media flow phenomena itself,

the fact that petroleum reservoirs are data poor environments makes the process

even more challenging. Few reservoir properties are directly measured, and many

of them have to be inferred, which frequently results in complex models with high

uncertainty. Furthermore, acquiring data can be quite expensive in the oil industry.

Thus, it is very important to ensure that the data acquired significantly contribute

to the improvement of the decision making process. Another problem is that data

analysis is time consuming, since data from different sources have to be examined

and interpreted to be incorporated in a reservoir model, and very often the industry

is pressed to make decisions in a daily basis with limited amount of resources.

Simplified reservoir models emerge as an attempt to overcome the problems pre-

viously mentioned. In this context, the capacitance resistance model (CRM) charac-

terizes a flooded reservoir by estimating interwell connectivities, time constants and

productivity indices using only the producers’ bottom hole pressure (BHP) and pro-

duction/injection rates for history matching. This results in fast and cheap reservoir

modeling and simulation [62, 46, 59], which can be used for optimization in real time.

Similarly, other simplified models for waterflooding reservoirs have been proposed in

the literature, as for example the flow-network model [32], and interwell numerical

1



simulation model (INSIM) [64].

In 1942, when the first capacitor resistor circuit was used to mimic the reservoirs

behavior under waterflooding, the experiment was mainly justified by the lack of

computational power to solve the large scale problem of reservoir simulation [3].

Nowadays, the oil industry tackles another paradigm, namely the real-time recovery

and optimization. Even though the computational power is available to run large

reservoir grid-based models and support the decision making process, optimization

algorithms require running numerous simulations, which is unfeasible in many cases.

Furthermore, due to the high uncertainty related to some important parameters

(e. g. porosity and permeability), robust mathematical solutions still can be very

doubtful for managerial decisions, requiring many realizations for the geologic model

and estimates of worst and best case scenarios. In this context, reduced complexity

models are the best alternative for optimization purposes, because they are much

faster to run, provide a good physical understanding of the reservoir, and usually

present an objective function with smoother surface, which keeps the optimization

algorithm from getting stuck in a local minima. For these reasons, CRM has been

applied as flooding management tool in many fields [47, 45].

The underlying idea of CRM is that the reservoir can be thought out as a sim-

ple data-driven input-output model governed by linear material balance differential

equations. The inputs, injection rates and bottomhole pressures, are the variables

that can be manipulated to control the outputs, which are production rates, the vari-

ables with economical value. This input-output representation uses only the most

accurate information from the system. In this context, the actual literature misses

a valuable point of view that is to use the linear control theory to improve CRM’s

applicability, since it provides a very consistent basis to represent CRM in a control

systems framework. Also, the CRM equations have been written individually for

2



each well, instead of using a matrix format to represent the reservoir behavior, as it

is done in grid-based reservoir simulation.

1.2 Chapter Layouts

In chapter 2, we document the progression of CRM since its inception by doing

a comprehensive literature review. Even though the underlying physical analogy

between electrical circuits and petroleum reservoirs is still the same [3], formulations

and applications considerably evolved with time.

Since CRM is an input-output model with the dynamics governed by linear mate-

rial balance differential equations, we see a great potential for applying linear control

theory algorithms. In chapter 3, we derived the state space equations for CRMT,

CRMP, CRMIP, and the transfer functions for CRMT, CRMP, CRMIP, CRMIP-

Block and the CRM for unconventional reservoirs [52]. Such approach improves the

understanding of the input-output relationship, allows fast computation and analysis

of CRM in a reservoir scale, instead of a well by well basis, and facilitates real-time

optimization.

In chapter 4, the history matching problem is described as a grey-box system

identification algorithm. The physical meaning of the CRM parameters and their

deviations from the assumption of being constant are also discussed. Data pre-

processing for the experiments done in this thesis are also explained. The history

matching with its constraints was also formulated in a matrix format, which is suit-

able to implement with optimization algorithms. The production rates for the his-

tory matching objective function were computed by simulating the system with the

state space equations, instead of the ODE analytical solution as in previous works

[63, 47, 60].

In chapter 5, the state-space equations with grey-box system identification is val-
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idated with three reservoirs with different geological environments: 1) homogeneous

with flow barriers; 2) channelized; 3) shoreface environment. The performance of

ICRM, CRMP and CRMIP are assessed. Minimal realizations and reduced order

models are easily obtained from CRMIP, which means that it is possible to obtain

simpler models than CRMIP that are capable to preserve its dynamics.
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2. CAPACITANCE RESISTANCE MODEL BACKGROUND

This chapter covers several formulations for the Capacitance Resistance Model

(CRM), presenting the equations and highlighting the applicability of each one. It

is a comprehensive literature review of what has been done in this topic of research.

2.1 First Lab Experiments and Underlying Analogy

Oil has been commercially produced much earlier than the first computer’s in-

vention. Even though reservoir simulation has been used to facilitate the decision

making process in the last decades, there was always a need to have tools that could

support such a process. In 1942, Bruce [3] developed a capacitor resistor circuit to

mimic the fluid flow behavior in a water-drive reservoir.

The basic idea was to explore the similarities between fluid flow in a porous media

(such as a reservoir rock) and electrons flow (current) in a conductor (such as a

wire). In the electrical circuit, a potential difference (∆E) in a conductor generates

a current (I). According to Ohm’s Law, I is proportional to ∆E and inversely

proportional to the resistance (R). Analogously, fluid flow in a reservoir (q) results

from a pressure difference (∆p). According to Darcy’s law, flowrate is proportional to

pressure difference. From a macroscopic point of view, Darcy’s law can be applied to

obtain the well deliverability equation (q = J∆p, where ∆p = p̄−pwf ), therefore one

can see that the resistance (R) is equivalent to the inverse of the well index (R = 1
J

).

In both systems (circuit and reservoir), resistance is a function of cross-sectional area

and length, as well as another intrinsic properties of the system (resistivity in the

electrical circuit and mobility in the reservoir, k
µ
) [52].

In an electrical circuit, a capacitor stores energy in the form of an electrical charge.

Capacitance is defined as ratio of the stored energy to the voltage (∆E) applied to
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such capacitor. If a constant current is applied to a pure capacitance, the voltage

will change linearly over time, i. e. I = C dE
dt

. Similarly in a reservoir, capacitance

can be thought out as the ability of the system to supply energy (pressure). Thus, it

is the ratio of cumulative fluid produced to the pressure depletion (difference) caused

by the displacement of such fluids, i. e. q = −C dp
dt

. According to the compressibility

equation, capacitance can be expressed as the product of the total system compress-

ibility and the reservoir volume being depleted. Table 2.1 summarizes the analogies

between these two systems [52]:

Table 2.1: CRM’s underlying analogies (adapted from [52]).
Capacitor Resistor Circuit Reservoir and Wells System

Driving force: voltage difference, ∆E pressure difference, ∆p
Flow equation: Ohm’s law, I = ∆E

R
deliverability eq., q = J∆p

Storage equation: Faraday eq. compressibility eq.
Resistance, R: f1(material property, Ac,L) f2(fluid/rock properties, Ac,L)

Capacitance, C: C = Idt
dE

C = − qdt
dp

Based on these analogies, Bruce [3] was able to history match his apparatus

by controlling potential (pressure) difference and currents (flowrates). An experi-

ment based on the same concepts was conducted in 1962, when an extremely large

capacitor-resistor circuit with a control equipment was built to simulate the produc-

tion of four of the most prolific Saudi Arabian fields. The history matching was

based in a trial and error procedure, where the authors adjusted resistances and ca-

pacitances until the voltage history of each controller in the circuit agreed with the

pressure history of the wells in the fields. Then, this huge network was used to fore-

cast oil production [57]. The next sections present the evolution of the mathematical

models based on the capacitance resistance analogy, which have been applied to real
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fields.

2.2 Correlating Injection and Production Rates

Albertoni and Lake [1] suggested two simplified models to predict liquid rates

in waterflooding and infer interwell connectivity based on injection rates. The first

model accounts for unbalanced waterflooding, that is when the field injection rate

is significantly different from the field production rate. In such case, the production

rate (qj) of producer j is given by the linear combination of the injection rates (i),

plus a constant (f0j) that accounts for the unbalance, as follows:

qj(t) = f0j +

Ninj∑
i=1

fijii(t) (j = 1, 2, ..., Nprod) (2.1)

where Ninj is the total number of injectors, Nprod is the total number of producers,

and fij are the weighting coefficients correlating injector i to producer j. The system

of equations above is a multivariate linear regression (MLR), similar to a simple

kriging problem. Thus, the unknowns (weighting coefficients, fij, and constant term,

f0j) are determined exactly as in a simple kriging: minimizing the variance to obtain

fij’s and computing the expected values of the known variables to obtain f0j. The

weighting coefficients (fij) are equivalent to injector-producer connectivity.

The second model proposed was applicable to balanced waterflooding, that is

when total injection rate and total production rate are approximately equal. In this

case, the constant term is zero, as shown below [1]:

qj(t) =

Ninj∑
i=1

fijii(t) (2.2)

This system of equations was called balanced multivariate linear regression (BLMR),

and it has the same structure and solution as the ordinary kriging.
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Equations 2.1 and 2.2 account for incompressible fluids. Actually, for the case

of compressible fluids there is a time delay and attenuation in the production rates’

response when the injection rates vary. In order to account for such dissipation in

the stimulus signal (injection), diffusivity filters were applied to the injection rates

as shown in the following equations for BLMR [1]:

qj(t) =

Ninj∑
i=1

fiji
c
ij(t) (2.3)

where icij(t) are the transformed injection rates for the effect of compressibility, which

are computed as follows:

icij(t) =
Nt∑
n=0

α
(n)
ij ii(t− n) (2.4)

Basically, the coefficients α
(n)
ij quantify the influence of previous injection rates in the

actual production rate, Nt is the number of time steps considered in the diffusivity

filters. These filters are used to transform the response of the compressible system

in an incompressible system.

2.3 CRM: A Material Balance Based Model

The MLR and BMLR models were not material balance based models. Moreover,

they could not account for the effects of bottom hole pressure (pwf ) variation, and

the diffusivity filters required the evaluation of many coefficients to account for the

time lag. Thus, based on the analogies first presented by Bruce [3], Yousef et al.

[63] proposed a Capacitance Resistance Model (CRM) to describe the production

behavior of waterflooding reservoirs. The material balance equation can be written

as follows:

accumulation within system = flow in− flow out (2.5)
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ctVp
dp̄

dt
= i(t)− q(t) (2.6)

where ct is total compressibility, Vp is pore volume, p̄ is average pressure, i(t) is

injection rate and q(t) is total production rate (oil and water). The deliverability

equation is given by:

q = J(p̄− pwf ) (2.7)

Thus, p̄ can be expressed in terms of q, pwf and J (productivity index):

p̄ =
q

J
+ pwf (2.8)

Substituting equation 2.8 in 2.6, the following expression is obtained:

τ
dq

dt
+ q(t) = i(t)− τJ dpwf

dt
(2.9)

where τ is the time constant given by:

τ =
ctVp
J

(2.10)

The time constant was incorporated into the model to capture the time lag and

attenuation of the systems’ response (production rates) to the stimulus (injection

rates and BHP variation). Thus, it substituted the use of diffusivity filters in the

previous model.

In order to have more accurate results and describe pressure and saturation prop-

agation in the models, grid-based reservoir simulators can generate fine grids to ob-

tain more resolution. Likewise, the reservoir domain can also be discretized in several

ways when using CRM. Superposition in time and space is used to extend the ma-

terial balance equation 2.9 to cases with multiple injectors and producers as done in
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[63, 62, 48, 46, 33]. In the following subsections four CRM discretization schemes

will be presented: CRMT (single tank representation), CRMP (producer based rep-

resentation), CRMIP (injector-producer pair based representation), and CRM-block

(blocks in series representation).

2.3.1 CRMT: Single Tank Representation

The control volume for CRMT is the drainage volume of the entire reservoir

(figure 2.1). A material balance is computed by assuming only two wells: 1) a single

pseudo-producer, that sums all the production rates, and 2) single pseudo-injector,

that sums all the injection rates. So, the whole reservoir has only one time constant

and one productivity index. The parameter f (connectivity or gain) is introduced in

the differential equation to account for effective injection, in other words, the effects

of leakage (f < 1) or aquifer pressure support (f > 1), as described by Weber [59].

Therefore, the differential equation for CRMT is given by:

τ
dq(t)

dt
+ q(t) = fi(t)− τJ dpwf (t)

dt
(2.11)

 
𝐼(𝑡) 𝑄𝐿(𝑡) 

𝑃𝑤𝑓(𝑡) 𝑓,  𝜏 

Figure 2.1: Single tank representation (CRMT).
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This formulation is similar to the classical chemical engineering control problem

of a first-order tank, where the inlet rate is used to predict and control the level of

an incompressible fluid in the tank and outlet rate [50]. For such reason, CRMT is

called a single tank representation of the whole reservoir control volume.

Assuming that injection rate varies as a step and bottom hole pressure varies

linearly in a discrete time interval, the ordinary differential equation 2.11 can be

solved analytically by integrating over a discrete time step (∆t), giving the following

solution [46]:

qk = q(k−1)e
−∆t

τ +
(

1− e−
∆t
τ

)(
fik − Jτ

p
(k)
wf − p

(k−1)
wf

∆t

)
, (2.12)

where k indicates the kth time step. As one can see, the solution of the differential

equation 2.11 is the superposition in time of three factors:

1. primary production
(
q(k−1)e

−∆t
τ

)
;

2. injection
((

1− e−∆t
τ

)
fik

)
;

3. BHP variation

((
1− e−∆t

τ

)(
−Jτ p

(k)
wf−p

(k−1)
wf

∆t

))
.

The CRMT representation can rapidly history match and predict total field pro-

duction rates, and its estimated parameters are an useful initial guess for other more

robust representations. CRMT is not suitable for optimization because it does not

estimate the production rates of each producer separately.

2.3.2 CRMP: Producer Based Representation

It is usually important to analyze and predict well rates separately. More resolu-

tion can be obtained if instead of considering pseudo-injectors and pseudo-producers

as in CRMT, the actual well rates can be computed individually. As shown in fig-
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ure 2.2, the producer based representation (CRMP) divides the reservoir in control

volumes (“conceptual grid blocks”) based on each producer and including all of the

injectors that influences its production rate, which usually are all of them, unless

some assumptions are made, such as an specified maximum interwell distance. This

formulation was originally introduced in [33].

CRMP considers one time constant (τj) for each producer and one connectiv-

ity (fij) for each injector(i)-producer(j) pair, therefore, the continuity equation for

producer j becomes:

τj
dqj
dt

+ qj(t) =

Ninj∑
i=1

fijii(t)− τjJj
dp

(j)
wf

dt
(2.13)

 

𝐼1(𝑡) 
𝑞𝐿𝑗(𝑡) 

𝑃𝑤𝑓𝑗
(𝑡) 

𝜏 
𝑗

 

𝐼4(𝑡) 

𝐼2(𝑡) 𝐼3(𝑡) 

𝐼6(𝑡) 𝐼5(𝑡) 

𝑓1𝑗  
𝑓2𝑗  

𝑓6𝑗  

𝑓3𝑗  

𝑓4𝑗  

𝑓5𝑗  

Figure 2.2: Producer based representation (CRMP).

The production rates for a producer j is obtained by integrating equation 2.13

over a discrete time step (∆t) and assuming that injection rates vary as a step and
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bottom hole pressures vary linearly in a discrete time interval [46]:

qjk = qj(k−1)e
−∆t
τj +

(
1− e−

∆t
τj

)Ninj∑
i=1

fijiik − Jjτj
p

(jk)
wf − p

(j(k−1))
wf

∆t

 (2.14)

The CRMP representation works better when the reservoir properties are mostly

homogeneous around each producer because it considers only one time constant per

producer.

2.3.2.1 ICRM: Integrated Capacitance Resistance Model

Nguyen et al. [43] generated the Integrated Capacitance Resistance Model (ICRM)

by integrating the simplified continuity material balance equation for the CRMP con-

trol volumes in the cases of primary and secondary recovery. Integrating equation

2.13 in time from t0 to tk, one gets the model for secondary recovery:

∫ qjk

qj0

dqj +
1

τj

∫ tk

t0

qjdt =
1

τj

Ninj∑
i=1

(
fij

∫ tk

t0

iidt

)
− Jj

∫ pkwf,j

p0
wf,j

dpwf,j (2.15)

Nk
p,j = (qj0 − qjk)τj +

Ninj∑
i=1

(
fijCWIki

)
+ Jjτj(p

0
wf,j − pkwf,j) (2.16)

where Nk
p,j is the cumulative total liquid production of producer j at tk, and CWIki

is the cumulative volume of water injected in injector i at tk.

As it will be presented in chapter 4, the ICRM representation is easier to his-

tory match because it results in a constrained linear regression for the cumulative

production. The implications of this approach will be further discussed in chapter 5.

Kim et al. [29] also highlighted the advantages of ICRM by applying it to three

synthetic fields. Besides this, they proposed a linear regression to estimate connectiv-

ities between new injectors and existing producers in homogeneous reservoirs based
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only on the interwell distance and connectivities of existing wells. Even though this

estimation of connectivities for new injectors does not present a very good correla-

tion, the error related to it might not be so large when analyzing field production

data so it might be a valid approach under very restricted situations.

2.3.3 CRMIP: Injector-Producer Pair Based Representation

Depending on the heterogeneity of the reservoir in study, different injectors can

impact the production rates of a certain producer with different velocities. So, assum-

ing only one time constant for each producer, as in CRMP, will no longer be a reliable

model. In such case, it is better to write one continuity equation for each injector-

producer pair, obtaining the injector-producer pair based representation (CRMIP),

as shown in figure 2.3, which assigns one time constant (τij) and connectivity (fij)

for each injector(i)-producer(j) pair. Then, the governing differential equation for

each control volume is given by:

τij
dqij
dt

+ qij(t) = fijii(t)− τijJij
dp

(j)
wf

dt
(2.17)

Where qij is the production rate in producer j relative to the injector(i)-producer(j)

pair control volume, as well as Jij is the productivity index associated with such

control volume. Thus, the total production rate of producer j is simply the sum of

all of its control volumes production rates:

qj(t) =

Ninj∑
i=1

qij(t) (2.18)

The ordinary differential equation 2.17 can be integrated analytically over a dis-

crete time step (∆t) to obtain production rates for each control volume, and assuming

that injection rates vary as a step and bottom hole pressures vary linearly in each
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𝑞𝐿1(𝑡) 

𝑃𝑤𝑓1
(𝑡) 

𝜏11 

𝐼1(𝑡) 

𝑓11 

𝐼2(𝑡) 𝐼3(𝑡) 

𝐼4(𝑡) 

𝑞𝐿3(𝑡) 

𝑃𝑤𝑓3
(𝑡) 

𝑞𝐿2(𝑡) 

𝑃𝑤𝑓2
(𝑡) 

𝑓21 

𝜏21 

𝜏31 
𝑓31 

𝑓41 

𝜏41 

𝑓12 

𝑓13 

𝜏13 

𝜏12 

Figure 2.3: Injector-producer pair based representation (CRMIP).

discrete time step [46]:

qijk = qij(k−1)e
− ∆t
τij +

(
1− e−

∆t
τij

)Ninj∑
i=1

fijiik − Jijτij
p

(jk)
wf − p

(j(k−1))
wf

∆t

 (2.19)

The production rates for each producer can be calculated by substituting Equa-

tion 2.19 in 2.18:

qj(t) =

Ninj∑
i=1

qij(k−1)e
− ∆t
τij +

(
1− e−

∆t
τij

)Ninj∑
i=1

fijiik − Jijτij
p

(jk)
wf − p

(j(k−1))
wf

∆t


(2.20)

2.3.4 CRM-Block: Block Refinement Representation

Sayarpour [46] extended the CRMT and CRMIP to consider the time delay in the

producers response because the first-order tank formulation assumes immediate re-

sponse to variations in the input signals. Hence, the injector-producer control volume
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was divided in several blocks, as a tanks in series model (figure 2.4). This represen-

tation was called CRM-Block and is recommended for cases with low permeability,

high frequency injection signal, and/or distant injector-producer pairs.

 

𝑃𝑤𝑓𝑗
(𝑡) 

𝐼𝑖(𝑡) 𝑞𝐿𝑗(𝑡) 

𝑓1𝑖𝑗 , 𝜏 1𝑖𝑗 𝑓2𝑖𝑗 , 𝜏 2𝑖𝑗  𝑓3𝑖𝑗 , 𝜏 3𝑖𝑗  𝑓𝑙𝑖𝑗 , 𝜏 𝑙𝑖𝑗 𝑓𝑀𝑖𝑗 , 𝜏 𝑀𝑖𝑗
 

Figure 2.4: Block representation (CRM-Block).

Originally, the CRM-Block formulation was derived from the analytical solution

and neglecting the effects of bottom hole pressures variation [46]. Here, the deriva-

tion from the differential equations is presented and BHP variation is included, as-

sumptions are discussed as well. Each “conceptual” block l between injector i and

producer j represents one reservoir control volume and its dynamics is governed by

the same differential equation as CRMIP:

τlij
dqlij
dt

+ qlij(t) = flijilij(t)− τlijJlij
dp

(lj)
wf

dt
(2.21)

If we consider that the total control volume between producer and injector is defined

by the streamlines from injector i that arrive to producer j, then it is reasonable to

assume that the connectivities are equal to one for all of the blocks, except for the

first one:

flij = 1, l = 2, . . . ,M (2.22)
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f1ij = fij (2.23)

whereM is the total number of blocks between each injector-producer pair. Following

the same assumption, each the production rate for a given block is equal to the

injection rate of the next block:

ilij = q(l−1)ij, l = 2, . . . ,M (2.24)

Indeed the only value of bottom hole pressure (p
(lj)
wf ) that is known is the one for the

block of the producer well (p
(Mj)
wf ), this is the reason why it was totally neglected in

a previous work [46]. Here, since BHP is controlled only in the producers and, obvi-

ously, impacts the pressure much more in the near wellbore region,
dp

(lj)
wf

dt
is assumed

to be zero, except in the block M :

dp
(lj)
wf

dt
= 0, l = 1, . . . ,M − 1 (2.25)

This is an empirical assumption, which results in a semi-empirical formulation for

CRMIP-Block that is capable to account for the time lag in the response to injection

rates variation and also considers BHP variation.

2.3.5 Other CRM Models and Applications

CRM relies on field data to properly estimate connectivities, time constants, and

productivity indices by history matching. Once such parameters were estimated, the

model can be used for forecasting production. Even though injection and production

rates are readily available in the history data, producers’ BHP might be missing in a

significant amount of practical cases, which leads to an unreliable history matching.

In order to address this issue, Kaviani et al. [26] proposed a model to keep track
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of the effects of non-measured BHP’s. The segmented CRM adds a constant to the

analytical solution obtained by Yousef et al. [63] to account for the unknown BHP

variation effect in the production rate. The time is always segmented when the BHP

of some producer changes. The constants need to be reevaluated to account for the

shift that this BHP variation causes to the production rates.

Another problem arises when there are long shut-in time for producers. In such

cases, there is a significant change in the flow pattern, causing different allocation

of the injected fluids in the reservoir, in other words, connectivity changes. Based

on superposition, the compensated CRM treats shut-in producers by keeping it as

an open producer and re-injecting all the produced fluid at the same spot. In this

sense, connectivities between producers (or producer-virtual injector) is also defined

[26].

As discussed before, Sayarpour [46] obtained analytical solutions for CRMT,

CRMP, CRMIP and CRM-Block. Taking consecutive data points in the produc-

tion history, he considered injection rates varying linearly or stepwise between those

points while BHP varies only linearly. Even though these material balance equations

are capable to forecast the total liquid production rates quite well under specified

circumstances, due to economic values, reservoir engineers are more interested in

the oil and water production rates separately. Thus, fractional flow models were

included in the model to calculate the oil rate from the total production rate for

waterflooding and CO2 flooding; the parameters were obtained by matching the oil

production history. Coupling CRM and fractional flow models, an optimal injection

strategy to develop fields can be determined, such as defining water reallocation in

the reservoir to maximize cumulative oil production.

Since CRM predicts production rates solving the pressure propagation equation

for much less control volumes than in the traditional reservoir simulation scheme,
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it is expected to incredibly speed up the computational time in optimization prob-

lems. Weber et al. [60] defined the main problems regarding CRMs applicability and

optimization to reservoir with hundreds of wells. In such cases, hundreds to thou-

sands of parameters have to be estimated, which requires thousands of data points.

Therefore, first, it is necessary to be very cautious in the data processing stage, re-

moving outliers, determining shut-in periods, producers that become injectors, and

even relaxing some constraints when needed. Additionally, the number of connectiv-

ities can be drastically reduced by removing inactive wells, where the flowrates are

zero, setting up an upper limit for the interwell distance above which connectivities

are considered to be zero, and selecting a cutoff value for connectivities below which

they are automatically fixed at zero. This approach was validated by optimizing net

present value for two reservoirs, using an empirical fractional flow model to calculate

oil rates from the total rates. The results showed that it was possible to obtain sig-

nificantly more profitable injection strategies using fewer injector than in patterned

schemes.

The classical CRM solves only the pressure propagation equation in the reservoir,

disregarding saturation effects. To compute the oil production rates, the fractional

flow models used earlier were restricted to mature waterflooding (large water cut).

Cao et al. [7, 8] developed a fully coupled two-phase flow CRM, which extends CRMs

applicability to immature waterflooding cases (low water cut). For this purpose, the

oil material balance equation was included in the formulation. It is proved that

time constants are actually a function of total mobility, and therefore a function of

saturation, and can vary significantly at low water cuts. Since the coupled CRM

take such effects into account, it is a more physically based tool, which is expected

to perform better for injection strategy optimization [7, 8].

Studying the stratigraphy of a generic reservoir, one may note that it is comprised
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of a sequence of several layers, and the rock properties may vary a lot from one

layer to the subsequent one such that it is common to have completely some sealing

layers. In such case, flow patterns may be also quite different in the several regions

of the reservoir that are delimited by sealing layers. So, a better representation of

the reservoir would be to compute the material balance equation for each of the

permeable layers separately.

A version of CRM to compute the contribution of different layers in the reservoir

and the impact of completion status in each layer was proposed by Moreno [39].

This model assigns connectivities for each layer of the reservoir and recalculates

them by history matching always that there is a flow pattern change due to opening

or shutting-in the completion. Therefore, it assumes dynamic parameters for CRM,

but the limitation is that they can only be determined when history data is available,

so it is not possible to re-estimate connectivities in each layer for future events.

The adaptiveness of the CRM concept to complex reservoirs was also illustrated

by Salazar et al. [45] when CRM was combined with an exponential decline curve

model to history match and predict the behavior of a deep highly fractured carbon-

ated field under hydrocarbon gas and nitrogen injection. It was also necessary to

consider the water encroachment from the aquifer. Due to the existence of several

components and their implications in the field operations, a fractional flow model

was developed using multivariate linear regression to compute separately flowrates

for water, oil, hydrocarbon gas and nitrogen. The decline curve model was used for

the primary depletion period and propagated for the enhanced oil recovery period,

when CRM was also used to determine the incremental response to the injection

rates.

In order to demonstrate CRMs practicality and reliability, Sayarpour et al. [47]

published multiple field examples covering waterflooding and CO2 flooding projects.
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Reservoir description is provided for each case. The good quality of the results for

different geological environments, such as carbonate reservoirs and low permeability

turbidite, illustrates the applicability of CRM to different levels of heterogeneity.

Furthermore, CRM can be used as precursor for grid-based simulation since trans-

missibility trends, response time and fluids allocation can be easily assessed with this

tool.

2.4 CRM for Unconventional Reservoirs

2.4.1 Primary Production

Due to the early exploitation of unconventional resources, it is still a mystery

which methods are the best at forecasting their production. Indeed, many different

models have been created in order to try to explain the behavior of such reservoirs.

In this context, this section also discusses the CRM formulations for unconventional

reservoirs.

The CRM-Block analytical solution for primary production derived by Sayarpour

[46] was used by Kabir and Lake [21] to represent the decline production behavior

of unconventional reservoirs. The reservoir was divided in several concentric concep-

tual blocks (or “compressibility elements”) around a horizontal well. Assuming only

primary production, the analytical solution for a well considering M blocks (the well

is in the M-th block) becomes:

qM(t) = qM(t0)e
− t−t0

τM +
M−1∑
b=1

{
qb(t0)e

− t−t0
τb

M−b∏
a=1

(
1− e−

t−t0
τb

)}
(2.26)

If the time constants for all of the blocks are equal (τ1 = τ2 = · · · = τM = τ ∗), the
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solution is:

qM(t1) = qM(t0)e−
∆t1
τ∗ +

M−1∑
b=1

qb(t0)e−
∆t1
τ∗
(

1− e−
∆t1
τ∗
)M−b

=
M∑
b=1

qb(t0)e−
∆t1
τ∗
(

1− e−
∆t1
τ∗
)M−b

(2.27)

In this formulation it is possible to quantify the flowrate of each block at a

specific time. The fractional contribution of distant blocks from the well is very low

in the beginning and increases with time, so they are like a source. The blocks close

to the well have high fractional contribution in the beginning and decrease with

time. In this model, the time constant governs the fluid transfer between blocks.

Since unconventional reservoirs have very low permeability (in the scale of micro to

nano-Darcy), they have high values for time constants, which results in slow signal

propagation away from the producer. Major events, e. g. pump installation or

restimulation, require another history matching to define the model’s time constants

again.

The results in [21] are consistent in the fact that blocks far away from the well

will have increasing contribution with time to the total production. In other words,

as the pressure breakthrough advances and the reservoir’s investigated volume grows,

the distant regions will start to flow an increasing amount of fluids due to the increas-

ing pressure difference. On the other hand, the reservoir is depleting, so pressure

drawdown decreases affecting first the blocks close to the well, because it is where

the pressure wave started. Therefore, blocks close to the well have decreasing con-

tribution with time.

Even though Kabir and Lake [21] state that this is a more flexible formulation

because BHP variation can be included, there is no analytical solution in the litera-
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ture including varying BHP for CRM-Block, not even in the work done by Sayarpour

[46]. Here, this issue has been discussed in this chapter and the transfer function

for CRMIP-Block will be derived in the next chapter, which accounts for BHP vari-

ation. In Sayarpour’s [46] equation, an initial flowrate is assumed for every block

since the stimulus (injection) comes from the first block (block of the injector) and

travels through the reservoir until the M-th block (block of the producer). In other

words, stimulus and response are physically located at the extremes of the reservoir

control volume. For primary production, it is different; stimulus (BHP) and response

(production rate) are in the same spot (producer well); however, the stimulus still

will travel through the reservoir (pressure wave) to obtain the response. So, initial

flowrates of blocks other than the well block should be zero. For this reason, it is fair

to judge that Kabir and Lake [21] representation is reasonable in providing insight

of how flow develops in the reservoir, but it comes from an unphysical assumption.

As documented by Mohaghegh [38], full field modeling of shale formations using

analytical and numerical methods has been impractical or provided poor results,

so data-driven models seems to be the most reasonable alternative. Also, decline

curve analysis is simple and easy to implement, providing good results when used

appropriately. Other decline curve models are comparable to the CRM presented

by Kabir and Lake [21], such as stretched exponential decline model [55], two-tank

model [51], three-tank model [4], and variable pressure drop model [17].

Shahamat et al. [52] coupled three simple concepts to predict the declining

production behavior of unconventional reservoirs: material balance (compressibility

equation), boundary dominated flow (deliverability equation) and distance of inves-

tigation. Doing the same analogy to electrical engineering as Bruce [3], the concepts
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of capacitance (C) and resistance (R) can be applied to the reservoir giving:

q = −Cdp
dt

(2.28)

q =
∆p

R
=
p− pwf
R

(2.29)

Substituting reservoir pressure (p) from 2.29 in 2.28, one obtains the following con-

tinuity equation:

q = −C
(
R
dq

dt
+
dpwf
dt

)
(2.30)

Due to transient flow, the investigated reservoir volume increases with time, hence

the reservoir’s capacitance and resistance vary. So, capacitance and resistance are

dynamic variables for transient flow; it violates the assumptions from the classical

CRM. Shahamat et al. [52] defined two parameters that describe the reservoir and

are not time dependent: capacity and resistivity.

Capacity and resistivity can be calculated analytically for simple flow geometries.

The inverse of the multiplication of capacity by resistivity gives hydraulic diffusivity.

Using hydraulic diffusivity and capacity resistivity ratio it is possible to calculate the

distance of investigation. Once the distance of investigation was defined, capacitance

and resistance can be calculated. Assuming a succession of pseudo-steady states with

the size of the investigated reservoir increasing during transient flow and constant

during boundary dominated flow, the values of flowrates or BHP can be predicted.

Linear flow is considered in their work. Flowcharts of the calculation procedure

are provided, making it very easy to understand how the three concepts mentioned

above are coupled. There are examples for liquid and gas reservoirs, considering

two different production scenarios: constant pressure production and constant rate

production.
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2.4.2 Flooding Processes in Unconventional Reservoirs

Unconventional reservoirs have a very low recovery factor and rapid decline in

production. Flooding processes are commonly used in conventional reservoirs to

enhance oil recovery. On the other hand, re-fracking has been the most used alterna-

tive to increase well flowrates in unconventional reservoirs. Flooding processes are a

challenging subject for low permeability reservoirs due to their low injectivity, but it

has not gained enough academic and industrial efforts to judge their feasibility, es-

pecially due to the fact that unconventional reservoirs are at an early developmental

stage. However, few works have pointed out that flooding processes could leverage

oil production in such reservoirs.

Morsy et al. [40] tested the impact of brines composition and pH at core samples

from Eagle Ford, Marcellus, Barnett and Mancos, proving that these are major

factors in the waterflooding efficiency and can significantly affect shale stability.

Morsy et al. [42] did a simulation study indicating that the recovery factor in the

Eagle Ford could increase from 12% (natural depletion) to 18% by secondary recovery.

In this case, key factors in the project design are fracture half-length, fracture spacing

between producer and injector, and vertical to horizontal permeability; which are

determined by sensitivity analysis. Using core samples, Morsy et al. [41] showed

that it is possible to significantly improve the waterflooding performance in shale

formations by optimizing fracture orientation and using low pH fracturing fluids.

According to Kurtoglu and Kazemi [30], secondary permeability and porosity

(interconnected micro-fractures) are necessary to explain the drive mechanism for

waterflooding in the Bakken formation. Even though the matrix contribution is neg-

ligible in a short-term, it is significant in a long-term. Numerical experiments done by

Fakcharoenphol et al. [12] indicate that waterflooding changes the formation in-situ
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stress due to the pressure increase and temperature decrease, which opens macrofrac-

tures and creates new microfractures. Therefore, oil production of shale formations

is improved by the new paths created and additional interface area between fractures

and matrix.

Kurtoglu et al. [31] provided a detailed geologic description to analyze CO2 flood-

ing potential for a Bakken reservoir. Comparing to water, CO2 has the advantage

that it is more miscible, dissolving in oil easily; it reduces the mixture viscosity,

expands the oil, and diffuses across the fracture-matrix interface. Wells are rec-

ommended to be placed in areas with more macro and micro-fractures, where the

connectivity is higher, because of the greater fracture-matrix interface area, allowing

CO2 to penetrate the matrix. Wang et al. [58] also demonstrated that CO2 has

much better injectivity than water in tight formations and can provide much higher

recovery factors, several injection strategies are considered in this study. CO2 in-

jection in the Bakken formation was also studied by Liu et al. [34], who estimated

that oil production could increase by 43% to 58%. They point out that the results

are very sensitive to fracture and matrix relative permeability, thus it is fundamen-

tal to have accurate relative permeability models to define fracture and matrix flow

contributions.

Traditionally, CRM has been mostly applied to flooding processes. Even though

unconventional reservoirs have been developed by primary depletion, the previous

works mentioned above have indicated that secondary and tertiary recovery are at-

tractive solutions to significantly enhance oil recovery in some reservoirs. Moreover,

some unconventional oil plays can have some areas with richer permeability, not in

the micro to nano-Darcy scale, where flooding processes are feasible. An example is

the pilot waterflooding plant operating in Bakken since 2006 [61]. Since there is a

very high number of well in such reservoirs, CRM might be a good model to approach
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them due to its simplicity.

A sophisticated approach to evaluate interwell connectivity analytically in tight

formations was developed by Soroush [53]. He applied for transient flow a similar

method to the one used by Kaviani and Jensen [25] to derive analytical connectiv-

ities for boundary dominated flow using multiwell productivity index [56]. Due to

the transient flow nature of tight formations, connectivities between injectors and

producers are time dependent. In the beginning, all connectivities are equal, because

producers cannot feel the influence of injectors. As transient flow evolves, increas-

ing the investigated size of the reservoir, the connectivities will tend smoothly to

their constant values at boundary dominated flow. Therefore, the low permeability

reservoirs’ transient flow behavior results in a linear time-variant system because

connectivities and time constants are time dependent.

Furthermore, as mentioned before the porous media suffers significant changes

over time, changing the connectivities not only due to the transient flow behavior,

but also due to structural transformations in the fracture system [12], which may

require several history matching windows to fit the model taking into account such

effects.

Because unconventional reservoirs are slow systems, the signals may take too

long to reach the producer, or be dissipated on their way; parameters such as per-

meability and interwell distance are crucial to analyze this. Therefore, closed-loop

reservoir management has limited applicability, but real time history matching is still

encouraged, since parameters such as capacity and resistivity can be inferred from

the transient response.

Soroush [53] also adapted CRM to heavy oil reservoirs, where the non-unit mobil-

ity ratio is an important violation of the original assumptions. Using his formulation

it was possible to detect the existence of wormhole, as well as its equivalent skin and
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rate of growth.
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3. CRM IN A CONTROL SYSTEMS FRAMEWORK

CRM describes the flow behavior in a flooded reservoir through a system of

linear differential equations. Thus, the reservoir can be thought out as linear system

(figure 3.1), where injection rates and producers’ BHP are manipulated variables, i.

e. inputs, used to control the production rates, i. e. outputs. Since the reservoirs

outputs depend only on the past and present input values, it is also classified as a

causal system [22, 9]. This chapter describes the process for obtaining CRM state

space equations and transfer functions, which represent the reservoir as a multiple-

input/multiple-output (MIMO) system.

3.1 State-Space Equations

A simple way to represent a linear system, such as CRM representations, is

through state space equations, which converts higher order linear differential equa-

tions to a set of first order differential equations. The state space representation

defines the relationship between the states of the system, x(t), the inputs, u(t), the

outputs, y(t), and the future states of the system, represented by the time derivative

ẋ(t), as follows:

ẋ(t) = A(t)x(t) + B(t)u(t) (3.1)

y(t) = C(t)x(t) + D(t)u(t) (3.2)

Supposing that the system has n states, m inputs and r outputs, A(t) is the state

matrix (n× n), B(t) is the input matrix (n×m), C(t) is the output matrix (r× n),

and D(t) is the feedforward matrix (r×m). Formulating CRM in this matrix format

provides structure to the CRM representations, simulates the production rates simul-
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Injection Rates

Production Rates

Bottom Hole Pressures

Inputs → 𝐮(𝑡)

System
 𝐱 𝑡 = 𝐀 𝑡 𝐱 𝑡 + 𝐁 𝑡 𝐮(𝑡)

Outputs
𝐲 𝑡 = 𝐂 𝑡 𝐱 𝑡 + 𝐃 𝑡 𝐮(𝑡)

Figure 3.1: Input-output representation of the reservoir system.

taneously, saving computational time, and enables the use of several linear control

algorithms that can improve CRM’s performance [22, 9]. State-space equations are

also amenable for real-time optimization. Because of these advantages, state-space

equations has already been developed and applied for grid-based reservoir simulation

by Jansen [19] . In the following subsections the state space equations for the CRM

representations will be derived.

3.1.1 CRMT

As previously discussed, CRMT is the simplest representation, where all the in-

jector wells are replaced by one pseudo-injector that sums up all of the injection rates,

and the producers are replaced by a pseudo-producer that sums up all of the pro-

duction rates. Such simplification results in a system with two inputs
(
i(t),

dpwf (t)

dt

)
and one output (q(t)) as shown in equations 3.3 and 3.4, respectively. Since 2.11 is

a first-order ordinary differential equation and there is only one control volume to

represent the whole system, one state is enough. The choice of the states is arbitrary.

For the sake of simplicity, the states are defined as the production rate of each control
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volume (equation 3.4) in this work.

u(t) =

 i(t)

dpwf (t)

dt

 , u(t) ∈ <2×1 (3.3)

y(t) = x(t) = q(t) (3.4)

Once the inputs, outputs and states of the system have been defined, equation

2.11 can be rearranged to provide the time derivatives of the states of the system in

a very straightforward way:

dq(t)

dt
= −1

τ
q(t) +

f

τ
i(t)− J dpwf (t)

dt
(3.5)

Comparing equation 3.5 to 3.1, the matrices A and B are obtained as

A = −1

τ
; B =

[
f
τ
−J

]
. (3.6)

C and D are obtained from equation 3.4 as

C = 1; D = 0. (3.7)

Indeed, the values of total injection and production rates are known. On the other

hand, the values of BHP for the pseudo-producer is unknown, and it is very often

assumed to be constant; however, in this work it is assumed to be the arithmetic

mean of the BHP of all producer wells.
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3.1.2 CRMP

For CRMP, the input vector is defined by all of the injection rates (ii(t)) and the

time derivative of the BHP of all producers

(
dp

(j)
wf (t)

dt

)
:

u(t) =



i1(t)

i2(t)

...

iNinj(t)

dp
(1)
wf (t)

dt

dp
(2)
wf (t)

dt

...

dp
(Nprod)

wf (t)

dt



, u(t) ∈ <(Nprod+Ninj)×1 (3.8)

Similarly to the CRMT formulation, the outputs are the production rates of

each producer well (qj(t)). Again, the states of the system are defined to be the

production rate of each reservoir control volume, which is equal to the output for

this representation:

y(t) = x(t) =



q1(t)

q2(t)

...

qNprod(t)


, y(t),x(t) ∈ <Nprod×1 (3.9)

Thus, it is easy to rearrange equation 2.13 to get the time derivatives of the

states:

dqj
dt

= − 1

τj
qj(t) +

Ninj∑
i=1

fij
τj
ii(t)− Jj

dp
(j)
wf

dt
(3.10)
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The state matrix (A) and input matrix (B) are obtained from writing 3.10 for

all the producer wells and assembling the system of equations. Organizing it alge-

braically, one gets:

A =



− 1
τ1

0 0 · · · 0

0 − 1
τ2

0
...

0 0 − 1
τ3

...
. . . 0

0 · · · 0 − 1
τNprod


, A ∈ <Nprod×Nprod (3.11)

Since there are two types of inputs (rates and pressure), it is simpler to divide

input matrix (B) in two blocks: one representing the influence of injection rates

(Binj) and the other one representing the influence of the time derivative of the BHP

(BBHP).

B =

[
Binj BBHP

]
, B ∈ <Nprod×(Nprod+Ninj) (3.12)

Binj =



f11

τ1

f21

τ1

f31

τ1
· · · fNinj,1

τ1

f12

τ2

f22

τ2

f32

τ2

fNinj,2

τ2

...
...

...
. . .

...

f1,Nprod

τNprod

f2,Nprod

τNprod

f3,Nprod

τNprod
· · ·

fNinj,Nprod
τNprod


, Binj ∈ <Nprod×Ninj (3.13)

BBHP =



−J1 0 · · · 0

0 −J2
...

...
. . . 0

0 · · · 0 −JNprod


, BBHP ∈ <Nprod×Nprod (3.14)

Since the states are equal to the output, the output matrix (C) is an identity
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matrix (I), and the feedforward matrix (D) is a null matrix (0).

C = I, C ∈ <Nprod×Nprod (3.15)

D = 0, D ∈ <Nprod×(Nprod+Ninj) (3.16)

3.1.3 CRMIP

The inputs and outputs for CRMIP are the same as for CRMP (equations 3.8

and 3.9, respectively), however the outputs are different from the states, because the

states are defined by the flowrates of each reservoir control volume as

x(t) =



q11(t)

q12(t)

...

qij(t)

...

qNinj ,Nprod(t)


, x(t) ∈ <NinjNprod×1. (3.17)

The time derivatives of the states are obtained by simply rearranging equation

2.17:

dqij
dt

= − 1

τij
qij(t) +

fij
τij
ii(t)− Jij

dp
(j)
wf

dt
(3.18)

Thus, writing 3.18 for every control volume results in a system of equations from

which the state matrix (A) and input matrix (B) can be obtained as
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A =



− 1
τ11

0 0 · · · 0

0 − 1
τ12

0
...

0 0 − 1
τ13

...
. . . 0

0 · · · 0 − 1
τNprod,Nprod


, A ∈ <NinjNprod×NinjNprod . (3.19)

As done for CRMP, it is suitable to divide the input matrix (B) in blocks for

CRMIP as well. However, in CRMIP, the number of blocks is given by 2 × Ninj,

because such matrix blocks comprise the influence of a given type of input (injection

rates, Binj,i, or BHP, BBHP,i) for all the control volumes connected to an injector

(i). Thus, B is defined as

B =



Binj,1 BBHP,1

...
...

Binj,i BBHP,i

...
...

Binj,Ninj
BBHP,Ninj


, B ∈ <(NprodNinj)×(Nprod+Ninj), (3.20)

Binj,i =



0 · · · 0 fi1
τi1

0 · · · 0

0 · · · 0 fi2
τi2

0 · · · 0

...
...

...
...

...

0 · · · 0
fi,Nprod
τi,Nprod

0 · · · 0


, Binj,i ∈ <Nprod×Ninj , (3.21)

where in Binj,i only the ith column has non-zero elements, and BBHP,i is defined as
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BBHP,i =



−Ji1 0 · · · 0

0 −Ji2
...

...
. . . 0

0 · · · 0 −Ji,Nprod


, BBHP,i ∈ <Nprod×Nprod . (3.22)

Since equation 2.18 express that the production rate of a certain producer is given

by the summation of the production rates of each control volume connected to such

producer, this relationship is algebraically translated to the output matrix (C) as

C =

[
I · · · I · · · I

]
, C ∈ <Nprod×(NprodNinj), (3.23)

where I is the identity matrix of size Nprod × Nprod. Thus, the feedforward matrix

(D) is also a null matrix (0):

D = 0, D ∈ <Nprod×(Nprod+Ninj). (3.24)

3.2 Transfer Functions

The state vector , usually, does not have an evident physical meaning, however

inputs and outputs do. Therefore, in many cases one is actually interested in knowing

the input-output relationship directly, which is called transfer function and by defi-

nition it is in the Laplace domain. For a single-input single-output (SISO) system,

the transfer function can be written as:

G(s) =
Y(s)

U(s)
, (3.25)
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where s is the Laplace variable, U(s) and Y(s) are the input and output in the

Laplace domain, respectively. The transfer function is directly related to the state-

space representation by:

G(s) = C(sI−A)−1B + D (3.26)

where I is the identity matrix. This equation is valid for SISO and MIMO systems

[22, 9].

The transfer functions of CRMT, CRMP, CRMIP, CRMIP-Block and CRM for

unconventional reservoirs are presented in the following subsections. The transfer

functions derived here and the state-space equations previously presented will be not

directly interchangeable because the transfer functions will consider Pwf (s) as an

input while the state-space equations considered
dpwf (t)

dt
. Zero initial conditions are

considered.

3.2.1 CRMT

The inputs of the system for CRMT representation can be defined as injection rate

(I(s)) of the pseudo-injector and the bottom hole pressure (Pwf (s)) of the pseudo-

producer, instead of its time derivative
(
dpwf (t)

dt

)
as in the state space equation. The

output is still the total liquid production rate Q(s).

U(s) =

 I(s)

Pwf (s)

 ; Y(s) = Q(s) (3.27)

Recalling equation 2.11 and taking the Laplace transform, one gets:

τ
dq

dt
+ q(t) = fi(t)− τJ dpwf

dt
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τsQ(s)− τq(0) +Q(s) = fI(s)− τJsPwf (s) + τJpwf (0) (3.28)

(1 + τs)Q(s) = fI(s)− τJsPwf (s) + τJpwf (0) + τq(0) (3.29)

In a matrix format, equation 3.29 becomes:

Q(s) =

[
f

1+τs
− τJs

1+τs

] I(s)

Pwf (s)

+
τJpwf (0) + τq(0)

1 + τs
(3.30)

Notice that the term
(
τJpwf (0)+τq(0)

1+τs

)
represents the influence of the initial conditions.

It is in agreement with what has been shown in the literature, since the primary

production term has an exponential decline in the analytic solutions derived in [62,

46]. Assuming zero initial conditions (pwf (0) = 0 and q(0) = 0), the transfer function

is given by:

G(s) =

[
f

1+τs
− τJs

1+τs

]
(3.31)

3.2.2 CRMP

The inputs and outputs for the transfer function of CRMP are analogous to

the ones defined for CRMT, but instead of having only one pseudo-producer and

one pseudo-injector, there are multiple wells. Thus, the input and output vectors

become the ones shown below, respectively:
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U(s) =



I1(s)

I2(s)

...

INinj(s)

P
(1)
wf (s)

P
(2)
wf (s)

...

P
(Nprod)

wf (s)



; Y(s) =



Q1(s)

Q2(s)

...

QNprod(s)


. (3.32)

In order to find the transfer function, it is necessary to recall the differential

equation 2.13 and transform to the Laplace domain as it was previously done for

CRMT:

τj
dqj
dt

+ qj(t) =

Ninj∑
i=1

fijii(t)− τjJj
dp

(j)
wf

dt

τjsQj(s)− τjqj(0) +Qj(s) =

Ninj∑
i=1

fijIi(s)− τjJjsP (j)
wf (s) + τjJjp

(j)
wf (0) (3.33)

(1 + τjs)Qj(s) =

Ninj∑
i=1

fijIi(s)− τjJjsP (j)
wf (s) + τjJjp

(j)
wf (0) + τjqj(0) (3.34)

Qj(s) =

Ninj∑
i=1

fij
1 + τjs

Ii(s)−
τjJjs

1 + τjs
P

(j)
wf (s) +

τjJjp
(j)
wf (0) + τjqj(0)

1 + τjs
(3.35)

Assuming p
(j)
wf (0) = 0 and qj(0) = 0, the previous equation must be written in a

matrix format to represent the transfer function for the CRMP representation:

Y(s) =

[
Ginj(s) GBHP(s)

]
U(s) (3.36)
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where, Ginj(s) and GBHP (s) are respectively given by:

Ginj(s) =



f11

1+τ1s
f21

1+τ1s
· · · fNinj,1

1+τ1s

f12

1+τ2s
f22

1+τ2s

fNinj,2

1+τ2s

...
. . .

...

f1,Nprod

1+τNprods

f2,Nprod

1+τNprods
· · ·

fNinj,Nprod
1+τNprods


(3.37)

GBHP (s) =



− τ1J1s
1+τ1s

0 · · · 0

0 − τ2J2s
1+τ2s

...

...
. . . 0

0 · · · 0 −
τNprodJNprods

1+τNprods


(3.38)

3.2.3 CRMIP

The inputs and outputs for CRMIP are the same as in CRMP (equation 3.32).

However, before obtaining the full transfer function of the system it is useful to take a

secondary step by defining the outputs as being the production rates of each injector

producer pair as

Yij(s) =



Q11(s)

Q12(s)

...

Qij(s)

...

QNinj ,Nprod(s)


. (3.39)

The same procedure used for CRMT and CRMP must be applied to obtain the

transfer functions for CRMIP, that is to transform equation 2.17 to the Laplace

40



domain:

τij
dqij
dt

+ qij(t) = fijii(t)− τijJij
dp

(j)
wf

dt

τijsQij(s)− τijqij(0) +Qij(s) = fijIi(s)− τijJijsP (j)
wf (s) + τijJijp

(j)
wf (0) (3.40)

(1 + τijs)Qij(s) = fijIi(s)− τijJijsP (j)
wf (s) + τijJijp

(j)
wf (0) + τijqij(0) (3.41)

Qij(s) =
fij

1 + τijs
Ii(s)−

τijJijs

1 + τijs
P

(j)
wf (s) +

τijJijp
(j)
wf (0) + τijqij(0)

1 + τijs
(3.42)

Assuming zero initial conditions (p
(j)
wf (0) = 0 and qj(0) = 0), the following block

matrix is obtained:

G(ij)(s) =



G
(ij)
inj,1(s) G

(ij)
BHP,1(s)

...
...

G
(ij)
inj,i G

(ij)
BHP,i

...
...

G
(ij)
inj,Ninj

G
(ij)
BHP,Ninj


(3.43)

where G
(ij)
inj,i is the transfer function related to injection inputs, and G

(ij)
BHP,i is the

transfer function related to BHP inputs of the control volumes of injector i. G
(ij)
inj,i

and G
(ij)
BHP,i are expressed as, respectively:

G
(ij)
inj,i =



0 · · · 0 fi1
1+τi1s

0 · · · 0

0 · · · 0 fi2
1+τi2s

0 · · · 0

...
...

...
...

...

0 · · · 0
fi,Nprod

1+τi,Nprods
0 · · · 0


(3.44)
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G
(ij)
BHP,i =



− τi1Ji1s
1+τi1s

0 · · · 0

0 − τi2Ji2s
1+τi2s

...

...
. . . 0

0 · · · 0 −
τi,NprodJi,Nprods

1+τi,Nprods


(3.45)

In G
(ij)
inj,i only the i -th column have non-zero elements.

Equation 3.43 provides the transfer function if the output is considered to be

given by 3.39. However, recalling equation 2.18 the actual output vector can be

algebraically constructed from Yij(s), as follows:

qj(t) =

Ninj∑
i=1

qij(t)

Y(s) =

[
I · · · I · · · I

]
Yij(s) (3.46)

where I ∈ <Nprod×Nprod and is the identity matrix. Therefore, the total transfer

functions for the inputs and outputs given by 3.32 is obtained similarly:

G(s) =

[
I · · · I · · · I

]
G(ij)(s) (3.47)

Once the matrix multiplication above is done, the simplified transfer function struc-

ture below is obtained:

G(s) =

[
Ginj(s) GBHP(s)

]
(3.48)
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Ginj(s) =



f11

1+τ11s
f21

1+τ21s
· · · fNinj,1

1+τNinj,1s

f12

1+τ12s
f22

1+τ22s

fNinj,2

1+τNinj,2s

...
. . .

...

f1,Nprod

1+τ1,Nprods

f2,Nprod

1+τ2,Nprods
· · ·

fNinj,Nprod
1+τNinj,Nprods


(3.49)

GBHP(s) =



−
∑Ninj

i=1
τi1Ji1s
1+τi1s

0 · · · 0

0 −
∑Ninj

i=1
τi2Ji2s
1+τi2s

...

...
. . . 0

0 · · · 0 −
∑Ninj

i=1

τi,NprodJi,Nprods

1+τi,Nprods


(3.50)

3.2.4 CRMIP-Block

In order to explain the derivation of the transfer function for CRMIP-Block,

it is necessary to recall equation 2.21 and the assumptions made in section 2.3.4.

Taking the Laplace transform from equation 2.21 and assuming zero initial conditions(
qlij(0) = p

(lj)
wf (0) = 0

)
, one gets:

τlij
dqlij
dt

+ qlij(t) = flijilij(t)− τlijJlij
dp

(lj)
wf

dt

τlijsQlij(s)− τlijqlij(0) +Qlij(s) = flijIlij(s)− τlijJlijsP (lj)
wf (s) + τlijJlijp

(lj)
wf (0) (3.51)

(1 + τlijs)Qlij(s) = flijIlij(s)− τlijJlijsP (lj)
wf (s) (3.52)

From assumptions given by equations 2.23 and 2.25, the transfer function for the

block of the injector is:

Q1ij(s) =
fij

1 + τ1ijs
Ii(s) (3.53)

Now, from assumptions given by equations 2.22 and 2.25, the transfer function for
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the blocks that are not the block of the injectors or the block of the producers is

given by:

Qlij(s) =
1

1 + τlijs
Q(l−1)ij(s), l = 2, . . . ,M − 1 (3.54)

From the assumption given by equation 2.22, the transfer function for the block of

the producer is:

QMij(s) =
1

1 + τMijs
Q(M−1)ij(s)−

τMijJMijs

1 + τMijs
P

(j)
wf (s) (3.55)

In order to construct the transfer function of the system comprised by the series of

blocks between injector i and producer j, it is necessary to consecutively substitute

3.53 in 3.54, and 3.54 in 3.55 to obtain:

Qij(s) = QMij(s) = fij

M∏
l=1

(
1

1 + τlijs

)
Ii(s)−

τMijJMijs

1 + τMijs
P

(j)
wf (s) (3.56)

Thus, the transfer function for the whole reservoir system considering the same

outputs as in equation 3.32 is the block matrix given below:

G(s) =

[
Ginj(s) GBHP(s)

]
(3.57)
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Ginj(s) =

f11

∏M
l=1

1
1+τl11s

f21

∏M
l=1

1
1+τl21s

· · · fNinj ,1
∏M

l=1
1

1+τl,Ninj,1s

f12

∏M
l=1

1
1+τl12s

f22

∏M
l=1

1
1+τl22s

fNinj ,2
∏M

l=1
1

1+τl,Ninj,2s

...
. . .

...

f1,Nprod

∏M
l=1

1
1+τl,1,Nprods

f2,Nprod

∏M
l=1

1
1+τl,2,Nprods

fNinj ,Nprod
∏M

l=1
1

1+τl,Ninj,Nprods


(3.58)

GBHP(s) =



−
∑Ninj

i=1
τMi1JMi1s
1+τMi1s

0 · · · 0

0 −
∑Ninj

i=1
τMi2JMi2s
1+τMi2s

...

...
. . . 0

0 · · · 0 −
∑Ninj

i=1

τM,i,NprodJM,i,Nprods

1+τM,i,Nprods


(3.59)

In linear control theory, it is known that some higher order systems can have its

dynamics approximated by a first order transfer with time delay [22, 9]. In the time

domain, if the function y(t) is equivalent to g(t) with a time delay θ, it can be written

as:

y(t) =

 0 for t < θ

g(t− θ) for t ≥ θ
(3.60)

The transfer function of the time delay function is given by e−θs. Therefore, equation
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3.58 can be substituted by:

Ginj(s) =



f11e−θ11s

1+τ11s
f21e−θ21s

1+τ21s
· · · fNinj,1e

−θNinj,1s

1+τNinj,1s

f12e−θ12s

1+τ12s
f22e−θ22s

1+τ22s

fNinj,2e
−θNinj,2s

1+τNinj,2s

...
. . .

...

f1,Nprod
e
−θ1,Nprod

s

1+τ1,Nprods

f2,Nprod
e
−θ2,Nprod

s

1+τ2,Nprods
· · ·

fNinj,Nprode
−θNinj,Nprod

s

1+τNinj,Nprods


(3.61)

Sayyafzadeh et al. [49] also used a first order transfer function with time delay

to model waterflooding reservoirs. The main difference between their method and

CRM is that they assumed independent time constants for natural decline (initial

conditions) and injection rates, but the results are still very close. Also, the approach

proposed here is more general because it includes BHP variation, and representing

the transfer function as matrices for multi-input multi-output (MIMO) cases is more

convenient, specially for cases with large number of wells.

3.2.5 CRM for Unconventional Reservoirs

The work done by Shahamat et al. [52] was chosen here because of its physical

consistency, reliable results, and easy derivation of the differential equation 2.30. In

order to obtain the transfer function, equation 2.30 is transformed to the Laplace

domain:

q = −C
(
R
dq

dt
+
dpwf
dt

)
Q(s) = −C (RsQ(s)−Rq(0) + sPwf (s)− pwf (0)) (3.62)

Assuming zero initial conditions (pwf (0) = 0 and q(0) = 0) and rearranging the pre-

vious equation algebraically, the transfer function is obtained for the case of input
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Pwf (s) and output Q(s):

Q(s) =
−Cs

1 + CRs
Pwf (s) (3.63)

G(s) =
−Cs

1 + CRs
(3.64)

As one can see, the transfer function (equation 3.64) is similar to the GBHP(s)

block in the other CRM formulations. Most of the CRM examples in the literature

consider constant connectivities and time constants, which results in a linear time-

invariant (LTI) system. However, capacitance and resistance are a function of time

for unconventional reservoirs, so it is a linear time-variant system [22, 9]. Since the

solution is discretized in time, it can also be considered as piecewise LTI system,

where capacitance and resistance are constant in each time step. This assumption is

also valid for CRM for conventional reservoirs that connectivities [53] and time con-

stants [7] were proved to vary with time, in cases such as transient flow or immature

waterfloods, respectively.

3.2.6 Transfer Functions Analysis

Analyzing the transfer functions for CRMT, CRMP, CRMIP and CRMIP-Block,

one can realize that these matrices were divided in two blocks:

• A full matrix for injection influence, Ginj(s)

• A diagonal matrix for the terms related to the bottom hole pressures, GBHP(s)

Ginj(s) is a full matrix because it is assumed that all of the injectors can affect

the production rates at each of the producers; however, if there is an upper limit for

interwell distance to be considered, as in [60], it will not be a full matrix. Likewise,

GBHP(s) is a diagonal matrix because of the assumption that the production rate

of a specific producer is not affected by the bottom hole pressure of other producers;
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this assumption is not always true. Off-diagonal terms can be added in GBHP(s) to

account for neighboring wells competing for the same fluids; however, it will increase

the number of parameters in the model and might generate values that are not

statistically significant.

Transfer function are suitable to predict the response profile to a certain stimulus.

Figures 3.2 and 3.3 depict the production rate response to unit step increase in

injection rates and to unit step drop in BHP, respectively. Figure 3.4 shows the

production rate response profile for the case of multiple blocks in series, as in the

CRM-Block formulation.

Figure 3.2: Production rate response profile for unit step injection rate increase for
CRMT, CRMP and CRMIP.

The relative degree of a transfer function is defined as the degree of the denomi-

nator (number of poles) minus the degree of the numerator (number of zeros) [22, 9].

If the relative degree is greater than zero, the transfer function is strictly proper, such
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Figure 3.3: Production rate response profile for unit BHP drop for CRMT and
CRMP.

as the injection block (Ginj(s)). The higher the relative degree (e.g. CRMIP-Block),

the longer the system takes to achieve a steady state (figure 3.4). The relative degree

of BHP block (GBHP(s)) is zero, which classifies it as a biproper transfer function;

thus, the outputs of the system suddenly respond to BHP variations (figure 3.3).

CRM’s transfer functions are very useful to compare the different CRM formula-

tions. For example, the difference between CRM and CRMP is basically the number

of control volumes. On the other hand, the difference CRMIP and CRMP is that,

in CRMIP, for each injector-producer pair a time constant is assigned, and the BHP

influence is the summation of the BHP influence in all of the control volumes for a

certain producer.

CRMIP-Block has higher order transfer functions in the injection block (Ginj(s)).

As one can see in figure 3.4, higher order systems can also be approximated as a first

order system with time lag, as previously discussed.
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Figure 3.4: Production rate response profile for unit step injection rate increase in
the case of blocks in series (CRM-Block).

3.3 Controllability

Controllability is the ability to move the internal states of a given system from

any initial state to any final state in a finite time by manipulating the system’s

external inputs. For linear time-invariant systems in the state space representation,

the controllability matrix is defined by:

ζ =

[
B, AB, A2B, . . . , An−1B

]
(3.65)

where n is the number of internal states. The system is controllable if the rank of ζ

is equal to the number of states (n):

rank(ζ) = n (3.66)
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3.4 Observability

Observability is the ability to uniquely determine any unknown initial states of

a given system, x(0), by examining the inputs, u(t), and outputs, y(t), over a finite

time interval. Controllability and observability are dual properties of linear systems.

For linear time-invariant systems in the state space representation, the observability

matrix is defined by:

Ψ =



CT

CTA

CTA2

...

CTAn−1


(3.67)

The system is observable if the rank of Ψ is equal to the number of states (n):

rank(Ψ) = n (3.68)

3.5 Minimal Realization

In control theory, the realization problem can be stated as follows: given the

systems transfer function, G(s), find A, B, C and D that represents the system.

In other words, it is the inverse problem of obtaining the transfer function from the

state space equation (3.26). As one can realize, the same system can have multiple

realizations and for each realization different state vectors, which does not necessarily

have a clear physical meaning.

A realization that has the minimum number of states to represent the system

is called a minimal realization; it is a controllable and observable representation of

the system. Generally, minimal realizations are desirable because they are compu-
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tationally more stable and faster, especially for large scale models. Several minimal

realization algorithms are available in past works, such as Kalman decomposition

[23] and Gilberts realization [16].
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4. PARAMETERS ESTIMATION: GREY-BOX SYSTEMS IDENTIFICATION

Unlike the grid-based reservoir simulation framework where many rock and fluid

properties are necessary to describe a reservoir and predict its flow behavior, the

standard CRM’s (and most of the more complex ones) require only three types

of parameters, which are connectivities (fij), time constants (τij) and productivity

indices (Jij). The quantity of parameters necessary to describe the system is a

function of the number of injectors, producers and the CRM formulation chosen, and

certainly it is much less than any of the discretized models (using finite differences,

finite volumes, etc.). So, instead of starting with a full-physics model, one can

determine CRM parameters based solely on production data. This chapter discusses

the physical meaning of each type of parameter and how they are estimated.

4.1 Parameters’ Physical Meaning

Generally, in order to describe more accurately the reservoir’s flow behavior, it is

necessary to have more detailed physics models, which requires more properties eval-

uation. Usually, the data acquisition and analysis that is necessary to evaluate the

reservoir’s properties is quite expensive and time consuming due to the infrastructure

and specialized work force needed. Moreover, many properties, such as permeability

and porosity, can only be evaluated locally, requiring the use of many geostatistical

techniques to infer their values in other areas of the reservoir, which may lead to

parameters that do not represent the reservoir’s physics. For all of these reasons,

reservoir simulation becomes prohibitively expensive in many practical cases.

As it will be further discussed in this chapter, the CRM’s parameters are much

easier to estimate, which establishes a much faster and cheaper work flow for prac-

tical implementation. Furthermore, all of them can be easily interpreted from an
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operational point of view, as it will be explained in the following subsections.

4.1.1 Connectivities

In CRM, the interwell connectivity, f , defines the volume fraction of injected

water from a certain injector that flows towards a specified producer. Connectivity

can also be thought out as an allocation factor. Frequently, connectivities are also

referred to as gains. In terms of control, gains are directly related to the change in

the steady state response of the output signal caused by a variation in the input.

Figure 4.1 shows the CRMT production rate response to a series of injection rate

steps. As one can see, the higher the gain, the higher is the variation in the output.
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Figure 4.1: Comparison of responses (production rates) for CRMT with different
connectivities (gains) for a series of steps input signals (injection rates).
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From an operational point of view, by interpreting the connectivities values, an

operator in the field can know how much he could expect the production rate of a

certain producer to increase due to a variation in the injection rate of a given injector.

In the CRM representation previously presented here, only injector-producer con-

nectivity are taken into account. However, producers that are close to each other

will be “competing to produce the same fluid”, therefore it is reasonable to con-

sider producer-producer interactions in some cases. Yousef [62] proposed a heuristic

equation for handling this situations.

Another approach to describe reservoirs and quantify the interactions between

injector-producer, producer-producer and injector-injector is by using the multiwell

productivity index (MPI) based method proposed by Kaviani [24, 28, 25]. In the MPI

approach, the connectivity indices are not the same as connectivity in CRM. They

are used to exclusively describe the role of heterogeneity in rectangular reservoirs

by decoupling the effects of well location, skin factor, injection rates and producer’s

BHP from the connectivity indices’ computation.

Gentil [13] shed some light on the physical meaning of regression coefficients for

patterned waterfloods, which later on was useful to physically explain connectivities

as ratio of the average transmissibility (Tij) between injector (i) and producer (j) to

the sum of the transmissibility between injector (i) and all other producers:

fij =
Tij∑Nprod

j=1 Tij
(4.1)

Even though this equation is qualitatively useful to analyze connectivity in the pres-

ence of high permeability streaks or flow barriers, which are very often presented in

the literature, it is not a practical equation, since it is generally unfeasible to exactly

define each control volume and compute its transmissibility.
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The assumption of constant connectivities has been frequently applied in the

literature, however equation 4.1 can be expanded in order to discuss in details the

implication of this assumption:

fij =

(
krk
µL
A
)
ij∑Nprod

j=1

(
krk
µL
A
)
ij

, (4.2)

where kr is the relative permeability, k is the absolute permeability, A is the effective

cross sectional area of flow, µ is the fluid viscosity, L is the average path necessary

for fluid to go from injector i to producer j. It is quite reasonable to consider all of

these parameters as time varying.

kr is a function of water saturation. After the water breakthrough, kr does not

change too much in the reservoir control volume. k usually does not change much;

changes in k could be due to major events such as fracking. A and L can vary

every time that there are significant changes in the flow patterns, such as opening

or shutting a well, or even big variations in BHP or injection rates, which would

change the streamlines of the system, thus changing the water allocation factor. µ

varies due to the variations in the fraction of each component in the reservoir as the

waterflooding progresses.

In this context, Jafroodi and Zhang [18] used ensemble Kalman filter to capture

the dynamic behavior of the CRM parameters during the history matching stage.

As shown in this work, after the water breakthrough these parameters tend to be

constant, unless there is a major perturbation to the system. Thiele and Batycky

[54] also discussed the dynamic behavior of well allocation factors.

Since connectivities are dynamic parameters, it is important to keep in mind the

concept of instantaneous connectivity for future works, which can be defined based
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on streamlines. Instantaneous connectivity fij(t) is the fraction of the total volume

injected in injector i at time time t that is carried by the streamtubes defined by the

set of streamlines that start in injector i and end in producer j.

4.1.2 Time Constants

The theoretical definition of time constant (τ) was previously shown in equation

2.10:

τ =
ctVp
J

Analyzing this equation, one can see that the time constant is directly related to the

time necessary for the pressure wave (caused by a variation in the injection rate) to

propagate in the porous media and effectively influence the production signal. If the

time constant is higher, it means that the system has a slow response, which could

be due to a high compressibility, large pore volume, or low permeability. On the

other hand, if the time constant is small, it means that the system responds rapidly

to a stimulus, which could be due to a low compressibility, small pore volume, or

high permeability. The influence of the time constant for a CRMT production rate

response is depicted in figure 4.2, considering a series of injection rate steps.

If a first order system, such as the CRMT, CRMP and CRMIP formulations, is

perturbed by a step increase in the input signal, one time constant is the time taken

for the system to achieve 63.2% of its final increase (when it achieves steady state)

in the output signal [50].

In equation 2.10, ct is the total compressibility. For a waterflooding reservoir

with no free gas, ct is given by:

ct = cr + Swcw + (1− Sw)co (4.3)
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Figure 4.2: Comparison of responses (production rates) for CRMT with different
time constants for a series of steps input signals (injection rates).

Where cr, cw and co are the rock, water and oil compressibility, respectively, and Sw

is the water saturation. Therefore, if co and cw are significantly different, ct will vary

a lot as the water front advances. For this reason, most of the CRM applications have

been done for mature waterflooding, and in such case the assumption of constant τ

is reasonable.

In equation 2.10, Vp is the total pore volume, which also can be time varying. As

previously discussed, operational changes such as high injection rates or producers’

BHP variation and opening or shutting a well will cause significant changes in the

streamlines, changing the flow pattern in the reservoir, which changes the total pore

volume (Vp) being drained for a given control volume. For further details in the

time-variant behavior of time constants the reader is referred to [6, 7, 18].
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4.1.3 Productivity Indices

Productivity indices (J) define the necessary pressure drawdown for a given pro-

ducer to produce a certain flowrate, as described by the deliverability equation:

J =
q

∆p
(4.4)

The analytical computation of J depends on rock and fluids properties as well

as the well design, for detailed explanation on this topic the reader is referred to

[11]. If the reservoir is in steady state flow, the reservoir investigated volume is

constant as well as the pressure, which implies constant rock and fluid properties.

These assumptions result in a constant productivity index. However, if pseudo-

steady state (boundary dominated flow) or transient flow is assumed, J is no longer

constant.

CRM assumes boundary dominated flow, therefore J should not be considered

constant. However, since water is being injected in the reservoir, keeping its pres-

sure, it is expected that J fluctuates around a certain values as injection rates and

producers’ BHP vary.

4.2 Systems Identification

Even though the physical meaning of the CRM’s parameters is theoretically

known, most of the physical properties necessary to determine their values (e.g.

Vp, Tij) cannot be directly and accurately measured through lab experiments. There-

fore, the most practical approach so far is to directly compute the CRM’s parameters

(f ’s, τ ’s, J ’s) by analyzing the reservoir’s response to excitations in the inputs, which

is a system identification technique [35]. The flowchart in figure 4.3 describes this

process, which will be explained in details in the following subsections.
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Figure 4.3: System identification flowchart.

4.2.1 Production History Requirements

Unlike most of the commercial reservoir simulators, CRM requires reduced amount

of data to history match and predict the reservoir behavior. If only the total produc-

tion rates are to be computed, then the only information required from the production

history is injection rates (ii(t)), producers’ BHP (p
(j)
wf (t)) and total production rates

(qj(t)). In case oil production rates are to be computed as well, a fractional flow

model is required. In this thesis the fractional model developed by Gentil [13] will

be applied, in which the only extra data needed to decouple oil and total flowrates is

the oil production rates (qoj(t)). Generally, these data required by CRM is abundant

and readily available in the field. Furthermore, it is the most reliable data gathered,

also known as “hard data”.
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In practical cases the data required is measured in the field and may be noisy

due to the measurement errors or simply oscillations in the field operations. On

the other hand, in research experiments, the production history is usually generated

by a reservoir simulator, therefore it is a noise free experiment. In this thesis, the

production histories for the study cases were generated using the IMEX simulator

from the Computer Modelling Group Ltd. (CMG) [36].

In order to obtain a reliable system identification it is necessary that the inputs

(ii(t) and pwf (t)) vary within a reasonable range that covers the system’s operation.

Thus, the simplified model can capture most of the dynamics of the system. For

this reason and also due to the lack of real field production history available, the

experiments done in this thesis generated the input signals as sequence of steps

applying a random uniform distribution, where only the lower and upper limits have

to be specified, as shown in figure 4.4.

Figure 4.4: Randomly generated steps for injection rates of five wells.
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4.2.2 Data Preprocessing

Data acquisition and preprocessing are the most time consuming stages of reser-

voir modeling and simulation because a group of specialized professionals (engineers,

geologists, geophysicists, etc.) have to work together analyzing several sources of

data (seismics, well logging, production history, etc.) and reconcile their interpre-

tation to generate realizations that reliably represent the reservoir geology and flow

behavior. Due to the fact that CRM requires reduced amount of data, modeling can

be accomplished significantly faster, overcoming the time constraints that commonly

makes reservoir simulation unfeasible in the industry’s routine.

In practical cases it is necessary to treat the noise in the production history,

controlling the quality of the data used to model the reservoir. Detailed explanation

on this subject is out of the scope of this thesis, and the reader is referred to [5, 59, 27]

for further details. In this thesis, the production histories are noise free because they

are directly obtained from the IMEX [36] simulation results, therefore there is no

requirement for noise treatment.

In systems identification, it is important that the sampled data is evenly spaced in

time, so that the dynamic behavior of the system is not biased by a time period with

higher sample frequency. Since the reservoir simulators commonly use an adaptive

time step, it is necessary to resample the data in order to have a dataset that is

evenly spaced in time. As shown in figure 4.4, the input signals (ii(t) and p
(t)
wf (t) )

vary as steps, thus the shape of this signal must be preserved when resampling. On

the other hand, the output signal (qj(t)) does not have a predefined shape (figure 4.5)

and smoothly varies between consecutive sampled data, therefore linear interpolation

is applied to resample them.

If state-space equations are used,
dp

(j)
wf

dt
is required.

dp
(j)
wf

dt
must be numerically
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computed from the resampled production history to assure the same ∆t along the

experiment, so the effects of pressure variations (∆p
(j)
wf ) will be always comparable.

Figure 4.5: Production rates response for four wells for the injection steps shown in
figure 4.4 and BHP steps.

4.2.3 Grey-Box System Identification

The classical approach for parameters estimation in CRM is a curve fitting prob-

lem, also called history matching. Since the ordinary differential equations governing

the system dynamics are known, but the parameters (fij’s, τij’s, Jij’s) are unknown,

this is a grey-box system. The parameters are identified using grey box system iden-

tification, which is an optimization problem where the sum of squared error between

predicted and observed total fluid rates (qpredjk and qobsjk , respectively) is minimized:

min z =
Nt∑
k=1

Nprod∑
j=1

(
qobsjk − q

pred
jk

)2

(4.5)
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For CRM in a control systems framework, either representing the system through

state space equations or transfer functions, qpredjk is computed directly by simulating

the system, and thus, there is no need to use the analytical equation previously

derived in [62, 46]. In the case studies presented in this thesis, qobsjk is obtained

directly from the resampled production history.

Due to this optimization problem’s constraints, which will be further discussed

here, the most suitable function in MATLAB Optimization Toolbox [37] to solve it

is “fmincon”. The general optimization problem solved by “fmincon” is given by:

min
χ
z(χ) such that



c(χ) ≤ 0

ceq(χ) = 0

a · χ ≤ b

aeq · χ = beq

lb ≤ χ ≤ ub

(4.6)

Where χ is the vector to be optimized, z(χ) is the objective function (scalar)

represented by equation 4.5, c(χ) is an inequality constraint that could be nonlin-

ear, ceq(χ) is an equality constraint that also could be nonlinear, a and aeq are

matrices, b and beq are vectors for inequality and equality linear constraints, re-

spectively, lb and ub are lower and upper bounds, respectively. In order to set the

optimization problem properly, these matrices and vectors must be defined for each

CRM representation, which is done in the following subsections.
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4.2.3.1 CRMT

The first step is to define the vector of unknowns:

χ =


f

τ

J

 , χ ∈ <3×1 (4.7)

As discussed by Weber [59], there are physical constraints related to each of the

parameters. However, here a slightly different definitions for these constraints will

be assumed:

• In order to be mass conservative, connectivities are not allowed to be higher

than one for any representation. If f > 1, it means that there is some source

of energy other than the injected fluid acting in the reservoir, which should be

modeled through another way.

• τ is not allowed to be zero. A zero time constant means incompressible fluid

and rock, or zero pore volume, or even infinite productivity index for the given

control volume. Furthermore, it causes numerical instability in the state space

equations, since A = − 1
τ

and B =

[
f
τ
−J

]
. Instead of assuming τ ≥ 0, we

assume τ ≥ τmin, where τmin ≈ 0.

• Since box constraints (upper and lower bounds) are used, it is necessary to

define an upper limit for τ and J as well, which are defined as τmax and Jmax,

respectively. This helps the convergence of the algorithm and avoid the time

constant to diverge to infinity when a response to a stimulus is not realized,

which may be caused by a higher frequency in the input signal than the ap-

propriate one.

65



Thus, there are only box constraints for CRMT, which are defined as:

lb =


0

τmin

0

 , ub =


1

τmax

Jmax

 , lb and ub ∈ <3×1 (4.8)

4.2.3.2 CRMP

For CRMP the vector of unknowns and box constraints are given by:

χ =



f11

f12

...

fNinjNprod

τ1

...

τNprod

J1

...

JNprod



, lb =



0

0

...

0

τmin
...

τmin

0

...

0



, ub =



1

1

...

1

τmax
...

τmax

Jmax
...

Jmax



,

χ, lb and ub ∈ <(Ninj+2)Nprod×1 (4.9)

The sum of the connectivities related to a certain injector must be less than or

equal to one:
Nprod∑
j=1

fij ≤ 1 (4.10)

This is the only linear inequality constraint, it is based on mass conservation. If the
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sum of the connectivities is less than one, some of the injected fluid may be leaking

to another reservoir region, or there is a significant reduction in the fluid volume due

to compressibility. Putting this equation in a matrix format, a and b are obtained:

a =



11,Nprod
01,Nprod

· · · 01,Nprod

01,Nprod
11,Nprod

... 0Ninj,2Nprod

...
. . . 01,Nprod

01,Nprod
· · · 01,Nprod

11,Nprod


, a ∈ <Ninj×(Ninj+2)Nprod

(4.11)

b = 1Ninj,1, b ∈ <Ninj×1 (4.12)

Where 1m,n is a m × n matrix with all of its elements equal to one, and 0m,n is a

m × n matrix with all of its elements equal to zero. This notation will be further

used in this thesis.

4.2.3.3 CRMIP

In order to simulate a system it is necessary to know its initial state. For the

CRMT and CRMP representations, the states of the system are expressly known

from the production history since they are directly measured physical quantities.

However, in the CRMIP representation, the initial states are also unknown because

the production rates of each control volume associated with a certain producer are not

given in the production history. Therefore, the initial states of the system must be

included in the history matching problem and they are constrained by the following

equations:

0 ≤ qij(0) ≤ qj(0) (4.13)
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From equation 2.18:
Ninj∑
i=1

qij(0) = qj(0) (4.14)

Thus, the vector of unknowns (χ) and its lower (lb) and upper (ub) bounds are

defined as follows:

χ =



f11

f12

...

fNinjNprod

τ11

τ12

...

τNinjNprod

J11

J12

...

JNinjNprod

q11(0)

q12(0)

...

qNinjNprod(0)



, lb =



0

0

...

0

τmin

τmin
...

τmin

0

0

...

0

0

0

...

0



, ub =



1

1

...

1

τmax

τmax
...

τmax

Jmax

Jmax
...

Jmax

q1(0)

q2(0)

...

qNprod(0)



,

χ, lb and ub ∈ <4NinjNprod×1 (4.15)

The linear inequality constraint is simply defined by equation 4.10, which in

matrix format defines a and b:
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a =



11,Nprod
01,Nprod

· · · 01,Nprod

01,Nprod
11,Nprod

... 0Ninj,3NinjNprod

...
. . . 01,Nprod

01,Nprod
· · · 01,Nprod

11,Nprod


,

a ∈ <Ninj×4NinjNprod (4.16)

b = 1Ninj,1, b ∈ <Ninj×1 (4.17)

Where 1m,n is a m × n matrix with all of its elements equal to one, and 0m,n is a

m× n matrix with all of its elements equal to zero.

The only equality constraint is defined by equation 4.14, which is algebraically

rearranged to obtain the matrices aeq and beq:

aeq =

[
0Nprod,3NinjNprod

I I · · · I

]
, aeq ∈ <Nprod×4NinjNprod (4.18)

beq =



q1(0)

q2(0)

...

qNprod(0)


, beq ∈ <Nprod×1 (4.19)

Where I is the identity matrix.

4.2.3.4 ICRM

In the work done by Nguyen et al. [43], an ICRM formulation for primary recovery

is developed, which estimates dynamic compressible pore volume, productivity index

and reservoir pressure. Compared to the traditional buildup test, ICRM has the
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advantage that it does not require shutting-in the well, so there is no production

loss. For secondary recovery, the parameters estimated are productivity indices,

time constants and interwell connectivities. Compared to other CRM formulations,

the advantage of ICRM is that it is a linear model. Therefore, there is a unique set

of model parameters that minimizes objective function, which is obtained via linear

regression. Furthermore, it is much easier to establish confidence intervals, enabling

uncertainty assessment in the model. In other words, it is possible to determine if the

model parameters are statistically significant by checking how narrow the confidence

intervals are.

As previously shown, the ICRM computes the cumulative liquid production at a

given time instead of the total liquid production rates. Thus, instead of using equa-

tion 4.5 as the objective function, the history matching minimizes the squared error

between the cumulative total production from the production history
((
Nk
p,j

)
obs

)
and the one predicted by model

((
Nk
p,j

)
pred

)
:

min z =
Nt∑
k=1

Nprod∑
j=1

((
Nk
p,j

)
obs
−
(
Nk
p,j

)
pred

)2

(4.20)

(
Nk
p,j

)
pred

is given by equation 2.16, and it is copied here for easy interpretation:

Nk
p,j = (qj0 − qjk)τj +

Ninj∑
i=1

(
fijCWIki

)
+ Jjτj(p

0
wf,j − pkwf,j)

This is a linear constrained least square problem, the most suitable function in

MATLAB Optimization Toolbox [37] to solve it is “lsqlin”. The general optimization

problem solved by “lsqlin” is given by:
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min
χ
z(χ) =

1

2
‖c · χ− d‖2

2 such that


a · χ ≤ b

aeq · χ = beq

lb ≤ χ ≤ ub

(4.21)

Where χ is the vector to be optimized, c and d are a matrix and a vector, respec-

tively, that represent the objective function (equation 4.20), a and aeq are matrices,

b and beq are vectors for inequality and equality linear constraints, respectively, lb

and ub are lower and upper bounds, respectively. In order to set the optimization

problem properly, these matrices and vectors must be defined for ICRM.

Even though the control volume is the same as CRMP, the vector of unknowns

(χ) is different because the linearity of the objective function must be kept. Thus,

instead of determining the productivity indices (J ’s) directly, Jτ is computed. Thus,

the vector of unknowns (χ), lower (lb) and upper (ub) bounds are defined as follows:

χ =



f11

f21

...

fNinjNprod

τ1

...

τNprod

J1τ1

...

JNprodτNprod



, lb =



0

0

...

0

τmin
...

τmin

0

...

0



, ub =



1

1

...

1

τmax
...

τmax

Jmaxτmax
...

Jmaxτmax



,

χ, lb and ub ∈ <(Ninj+2)Nprod×1 (4.22)
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Since the time constants (τ ’s) are directly determined, J can be simply computed

by dividing Jτ by τ after the optimization problem has been solved. Also, notice

the connectivities (fij’s) are purposely ordered differently than in CRMP, so matrix

c will look simpler.

There is only one linear inequality constraint, which is equation 4.10. Rearranging

it in matrix format, a and b are obtained:

a =

[
I I · · · I 0Ninj,2Nprod

]
, a ∈ <Ninj×(Ninj+2)Nprod (4.23)

b = 1Ninj,1, b ∈ <Ninj×1 (4.24)

Where 1m,n is a m× n matrix with all of its elements equal to one, 0m,n is a m× n

matrix with all of its elements equal to zero, and I is the identity matrix.

For the objective function, the matrix c and vector d must be defined. d expresses

the values to be matched, in this case it is defined by the cumulative total production

history
((
Nk
p,j

)
obs

)
. Together, the order of elements in d and χ also define the shape

of c. If d and χ are ordered properly, it can facilitate the assembly of the system of

equations. Here, d is ordered as follows:

d =



Np,1

Np,2

...

Np,Nprod


, d ∈ <NprodNt×1 (4.25)
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Where Np,j is the cumulative production history of the j-th producer:

Np,j =



N1
p,j

N2
p,j

...

NNt
p,j


, Np,j ∈ <Nt×1 (4.26)

Then, matrix c can be divided in three blocks:

c =

[
cf cτ cJτ

]
, c ∈ <NtNprod×(Ninj+2)Nprod (4.27)

cf , cτ and cJτ are blocks that respectively multiply fij’s, τj’s and Jjτj’s in the ob-

jective function. All of them are block diagonal matrices. cf represents the influence

of the cumulative injection:

cf =



CWI 0 · · · 0

0 CWI
...

...
. . . 0

0 · · · 0 CWI


, cf ∈ <NtNprod×NinjNprod (4.28)

Where CWI is the cumulative injection matrix:

CWI =



CWI1
1 CWI1

2 · · · CWI1
Ninj

CWI2
1 CWI2

2 · · · CWI2
Ninj

...
...

...

CWINt1 CWINt2 · · · CWINtNinj


, CWI ∈ <Nt×Ninj (4.29)
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cτ represents the influence of the production rates:

cτ =



q1 0 · · · 0

0 q2
...

...
. . . 0

0 · · · 0 qNprod


, cτ ∈ <NtNprod×Nprod (4.30)

Where qj is defined by the production history as follows:

qj =



qj0 − qj1

qj0 − qj2
...

qj0 − qj,Nt


, qj ∈ <Nt×1 (4.31)

cJτ represents the influence of the producers’ BHP:

cJτ =



pwf ,1 0 · · · 0

0 pwf ,2
...

...
. . . 0

0 · · · 0 pwf ,Nprod


, cJτ ∈ <NtNprod×Nprod (4.32)

Where pwf ,j is defined by the producers’ BHP from the production history as follows:

pwf ,j =



p0
wf,j − p1

wf,j

p0
wf,j − p2

wf,j

...

p0
wf,j − p

Nt
wf,j


, pwf ,j ∈ <Nt×1 (4.33)

Once all these matrices and vectors have been defined, the optimization problem
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(equation 4.21) can be solved to estimate fij’s, τj’s and Jj’s, which can applied to

the CRMP’s state space equation to simulate the future behavior of the system. In

the next section, the optimization algorithm selection and the computation of the

gradient and hessian will be explained.

4.2.4 Choice of Optimization Algorithm

The choice of optimization algorithm must be based on the properties of the

model, such as the behavior of the objective function, type of variables, type of

constraints, dimension of the problem, etc.. The objective function of the CRM

formulations presented here (equation 4.5), except ICRM, is a nonlinear least-square

problem, and it is a smooth function with continuous variables (χ). The derivatives

of the objective function are possible to be computed, however it is a daunting task

due to its size and complexity. As previously discussed, there are three types of

constraints in the CRM problems:

• Box constraints: χmin ≤ χ ≤ χmax, applies to CRMT, CRMP and CRMIP;

• Linear inequality constraint: a · χ ≤ b, applies to CRMP and CRMIP;

• Linear equality constraint: aeq · χ ≤ beq, applies only to CRMIP.

The derivatives of these type of constraints are really simple to compute. The di-

mension of the problem depends on the number of wells as shown in table 4.1.

Table 4.1: Number of parameters to be estimated for each model.
Model Number of parameters
CRMT 3
CRMP (Ninj + 2)Nprod

CRMIP 4NinjNprod

ICRM (Ninj + 2)Nprod
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Based on this analysis of the problem, the sequential quadratic programming

(SQP) algorithm was chosen to estimate the parameters. The gradient is numeri-

cally computed and an approximation of the hessian matrix is computed using the

Broyden-Fletcher-Goldfarb-Shanno (BFGS) algorithm. For details on the SQP or

BFGS algorithms the reader is referred to [44].

In order to understand how accurate the estimated parameters are, it is also

important to understand how the objective function varies with them, in order words,

how sensitive the objective function is to each type of parameter. This subject is

addressed in the next subsection.

4.2.5 Sensitivity Analysis

Connectivities (gains, f) define how much production rates vary due to a step

variation in injection rates when a steady state is achieved. Therefore, changing the

connectivities of the system is equivalent to shifting the response up or down (figure

4.1). Time constants are related to the time required to achieve the steady state, a

faster system has lower τ , while a slower system has higher τ . Thus, if only the time

constant is changed, the system still tends to the same stationary point (figure 4.2).

The homogeneous five-spot depicted at figure 4.6 was simulated to show the

impact of f and τ in the objective function (equation 4.5). In order to have a

two-dimensional problem so that the behavior of equation 4.5 can be plotted and

analyzed, the CRMT formulation was chosen and the bottomhole pressures were

kept constant, thus J is not estimated.

As one can see in figure 4.7, the objective function is much more sensitive to

connectivity than to time constant because changing connectivities shifts the whole

response curve up or down, generating a big error, changing the order of magnitude

of the objective function, which does not happen when changing time constants.
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Figure 4.6: Water saturation of homogeneous five spot pattern used for the sensitivity
analysis.

The active-set SQP method was used for this optimization problem [44]. As

shown in figure 4.8, starting with different initial guesses, the problem will quickly

converge to the right value of connectivity; however, the time constants estimation

is still inaccurate. This example is trivial, but enough to realize that parameters

estimation can be very complicated when applying to systems with several control

volumes.

Jafroodi and Zhang [18] used ensemble Kalman filter to estimate dynamic f and τ

for history matching using 100 ensemble realizations. After the history matching, the

dynamic connectivities fit within a narrow band while the dynamic time constants

fit within a broad band. This results also corroborate that the objective function is

significantly more sensitive to connectivities than time constants.

4.3 Fractional Flow Model

Once the f ’s τ ’s and J ’s were estimated it is easy to forecast the total liquid

production. However, in field operations, it is usually necessary to predict oil rates
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Figure 4.7: Objective function behavior for the CRMT applied to the five spot
pattern.

as well. Thus, a fractional flow must be used for this sake. Among many options

available in the literature, the empirical power law developed by Gentil [13] was

chosen because of its simplicity. Also, the only data required for this model is total

injection (iik) and production rates (qjk), which also was a requirement for CRM,

and oil production rates (qojk). The limitation of this model is that it must be used

only for mature waterflooding, specifically when the water cut is greater than 0.5.

The model is defined by the following equation:

qojk =
1

1 + ajCWI
bj
eff,jk

qjk (4.34)
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CRMT convergence for different initial guesses

normalized time constant
0.035 0.04 0.045 0.05 0.055 0.06 0.065 0.07 0.075 0.08 0.085

co
nn

ec
ti

vi
ty

0.2

0.205

0.21

0.215

0.22

0.225

0.23

0.235

0.24

0.245

0.25
# 104

2

4

6

8

10

12

14

16objective function
x

1
x

2
x

3
x

4

Figure 4.8: Contours of the objective function and convergence of the active set SQP
method for CRMT.

Where aj and bj are the parameters that define the model for producer j, and

CWIeff,jk is the cumulative water injected that effectively influences the production

rates in producer j at the k-th time step. CWIeff,jk is defined by:

CWIeff,jk =
k∑

κ=1

Nt∑
i=1

fijIiκ (4.35)

The advantage of this power law fractional flow model is that it can be converted

to a straight line equation, as follows:

ln

(
qjk
qojk

− 1

)
= ln

(
qwjk
qojk

)
= ln (WORjk) = ln (aj) + bj ln (CWIeff,jk) (4.36)

Where qwjk is the water production rate and WORjk is the water oil ratio of producer

j at the k-th time step.
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Once the problem was linearized, a linear regression is applied to estimate the

coefficients aj and bj, which has the following objective function:

min z =
Nt∑

k=koil

(
ln
(
WORobs

jk

)
− ln

(
WORpred

jk

))2

(4.37)

Where WORobs
jk is the water oil ratio computed or directly obtained from the pro-

duction history and ln
(
WORpred

jk

)
is computed by equation 4.36. koil is the time

when the fractional flow parameters estimation window starts, which may be differ-

ent from the CRM history matching window, since the water cut must be higher

than 0.5 for this fractional flow model. This problem can be solved independently

for each producer.

The only constraint imposed to equation 4.37 is:

bj ≥ 0 (4.38)

To assure that the water oil ratio will increase as more water is injected.

Once all the CRM and fractional flow model parameters have been estimated, it

is necessary to judge if the model really represent the dynamics of the system with

the desired degree of accuracy. If it does, then the model is validated and can be used

for certain managerial decisions. If it does not, then it is necessary to choose another

model that is more likely to capture the physics of the reservoir and go through the

same steps again. The model validation step will be exemplified in the next chapter.
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5. CASE STUDIES

In this chapter, three case studies are presented to exemplify the use of the

state space equations developed in chapter 3 with the grey-box system identification

algorithm explained in chapter 4. Analyzing the time response, the models (ICRM,

CRMP, or CRMIP) will be validated based on the production data. The three

reservoirs were purposely chosen to demonstrate the CRM’s applicability in different

levels of heterogeneity:

• Case 1 – 5× 4 (5 injectors and 4 producers) homogeneous with flow barriers;

• Case 2 – 8× 7 channelized;

• Case 3 – 8× 7 shoreface environment.

5.1 Case 1: Homogeneous Reservoir with Flow Barriers

In order to validate the concepts developed in the previous chapters, the method

is applied to the simple reservoir with a predictable flow behavior depicted in figure

5.1. This 5 injectors × 4 producers homogeneous reservoir with flow barriers is

based on the on the one presented in [7]. The reservoir properties are listed in table

5.1.

The production history data is presented in appendix A. The values of injection

rates were generated by an uniform distribution with minimum of 300 bbl/day and

maximum of 2525 bbl/day varying monthly (figure A.1). Analogously, the produc-

ers’ BHP were generated by an uniform distribution with minimum of 120 psi and

maximum of 180 psi varying monthly (figure A.2). The observed production rates

were computed using IMEX [36] and are shown in figure A.3. Due to the symmetry
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Figure 5.1: Horizontal permeability for case 1.

of this problem and inputs uniformly varying in the same range, it is easy to real-

ize a similar production behavior for wells “PROD1” and “PROD3”, as well as for

“PROD2” and “PROD4”.

The time window selected for history matching is from 3200 days (≈ 9 years) to

5000 days (≈ 14 years), such that the water breakthrough already happened in all

of the producers, reducing the effects of nonlinearities in the CRM parameters. The

model validation window is from 5000 days (≈ 14 years) to 7200 days (≈ 20 years).

Once the production history has been obtained and the appropriate time windows

have been selected, the CRM’s are generated by history matching the production

data as described in chapter 4. Three models had their capability to represent

the system tested: ICRM, CRMP and CRMIP. The liquid production rates for the
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Table 5.1: Reservoir properties for case 1 (adapted from [7]).
Parameters Value

Number of Grid Blocks 33× 33× 5
Grid Block Size (ft) 77.5× 77.5× 38.75

Producer-Injector Well Spacing (ft) 852.5
Porosity 0.2

Horizontal Permeability (kh, md) 200
Horizontal Permeability in the barrier (kh, md) 1

Vertical Permeability (kv, md) kv = kh
10

Oil Compressibility (psi−1) 3× 10−5

Water Compressibility (psi−1) 1× 10−6

Water Compressibility (psi−1) 1× 10−6

Initial Reservoir Pressure (psi) 1250
End-Point Water Relative Permeability 0.3

End-Point Oil Relative Permeability 1

history matching and validation windows from the production data and the CRM’s

are compared in figure A.4.

Figure A.4 suggests that all CRM’s capture the dynamic behavior of this reser-

voir with a reasonable accuracy. Even though the ICRM response follows all the

trends in the observed flowrates, it does not overlap the production history as well

as the CRMP and CRMIP responses. Analyzing more carefully, there are notable

overshoots in the wells “PROD1” and “PROD3”, which is caused by productivity in-

dices being estimated by values that are higher than the real ones. This is confirmed

in table A.1, where the ICRM productivity indices can be compared to the ones

obtained from CRMP and CRMIP, which are better representations of the system.

Still in table A.1, ICRM estimates J2 = 0.00, which is not physically meaningful.

Furthermore, due to symmetry and inputs varying within the same range, the re-

lationship J2 ≈ J4 should apply to be physically consistent, for CRMP it does, for

ICRM it does not.
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Analyzing the time constant estimates in table A.2, the values for the ICRM time

constants are significantly different from the ones for CRMP, which is based on the

same control volumes. The cause of this is that ICRM does a history matching for

the cumulative liquid production, so the information in the flowrates is smoothed

out, losing accuracy in estimating the parameters that represent the dynamics of the

reservoir. As shown in figure A.5, ICRM, CRMP and CRMIP perform a good history

matching for the cumulative liquid production. However, CRMP and CRMIP still

are better than ICRM in forecasting the cumulative liquid production, this is evident

for well “PROD3”.

Comparing the CRMP to the CRMIP liquid production rates in figure A.4, the

CRMIP fits better the production history at the expense of estimating more param-

eters. However, the differences between the CRMP and CRMIP responses are small.

Therefore, CRMP is a representative model of the dynamics of the reservoir. The

homogeneity of this reservoir enables the use of CRMP by making the assumption

of one single time constant for all injector-producer pairs plausible. Indeed, CRMIP

is a more robust model for the fact that different injector-producer pairs may have

different time constants. For instance, “PROD3” should respond faster to injection

rates variations in “INJ2” than in the other injectors due to the flow barrier, it re-

flects in a lower time constant between “INJ2” and “PROD3” than for “PROD3”

and the other injectors, as one can see in table A.2.

Figure 5.2 shows the connectivity maps for the CRM realizations. Indeed, the

connectivities are capable to infer the transmissibility trends in the reservoir, as

described in [13], identifying the presence of the low permeability barrier separating

“PROD1”, “PROD3” and “INJ2” from the other wells. Also, the symmetry in the

permeability is preserved in all models, specially for the larger connectivity values.

The connectivities estimates for all the models are consistent with the features of
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the reservoir, which corroborates the sensitivity analysis in section 4.2.5. Since the

history matching objective function is more sensitive to connectivities, they are most

likely to be good estimates than other parameters, having a narrower confidence

interval.
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Figure 5.2: Connectivity maps for ICRM, CRMP and CRMIP compared to the
horizontal permeability (case 1).

The CRMP and CRMIP estimates are more consistent than the ICRM ones also
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for connectivities. For example, “INJ3” is also connected to “PROD1” and “PROD3”

because the flow barrier is not completely sealing, thus such connectivity must be

low, but not zero as in the ICRM (figure 5.2). The connectivity estimated values

are also shown in table A.3. The sum of connectivities related to a certain injector

is one, indicating that the injected fluid is not leaking. On the other hand, the sum

of connectivities related to a certain producer can be used to indicate the producers

that receive more pressure support from the injectors, which are “PROD2” and

“PROD4”, since the pressure support for “PROD1” and ”PROD3” is almost reduced

to “INJ2”. It is also important to highlight that connectivities were filtered, assigning

zero to any of them that was less than 10−3 in order to simplify the production rates

computation. The connectivities estimates are in agreement with the ones obtained

in [7].

Figure A.6 shows the water cut computed using the fractional flow model pro-

posed in [13]. This model fits well in the history matching window, specially after

3500 days. However, the water cut is overestimated in the prediction window for

wells “PROD2” and “PROD4”, which leads to pessimistic oil rates predictions for

those wells at late time, as one can see in figure A.7. Even though the fractional flow

model depends on the connectivities estimates, no significant difference was realized

in the water cut (figure A.6) when comparing ICRM, CRMP and CRMIP. Also, since

production is happening at high water cut, the differences in liquid production rates

between CRM’s (figure A.4) are reduced when comparing oil rates (figure A.7).

The results previously discussed can be summarized in figure 5.3, where the mean

square error (MSE) is plotted for each CRM and each well taking into account history

matching and model validation windows. The total production rates MSE, suggest

that CRMIP is the most reliable representation. However, CRMP is almost as accu-

rate as CRMIP. These differences are more expressive in the cumulative production.
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Indeed, ICRM is not the best even to predict cumulative production. The fractional

flow prediction are not much affected by the CRM chosen, even though it relies on

the connectivity estimates. In a mature waterflood, the oil production rates are less

sensitive to the choice of model than the total production rates. Another statistical

parameter also used as a measurement of the goodness of fitting is the normalized

root mean square error (NRMSE), which is shown in figure A.8 and can be used for

comparison between different wells, since it is normalized. The closer the NRMSE is

to one, the better is the fit to the data.
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Figure 5.3: Mean square error for ICRM, CRMP and CRMIP (case 1).

Figure 5.4 depicts the productivity indices and time constant maps obtained using

the CRMIP representation. Theoretically, each injector-producer pair is assigned one
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productivity index (Jij), one time constant (τij) and one connectivity (fij). However,

figure 5.4 shows that a maximum of two Jij’s per producer is enough to capture the

response to the producers’ BHP variations, and the rest of Jij’s are zero (table A.1).

In this case, a zero productivity indices for a given injector-producer control volume

does not mean that there is no response to the producer’s BHP variation, instead

it means that the BHP response must be analyzed for the producer as a whole, not

separately for its control volumes.
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Figure 5.4: Productivity indices and time constants maps for the CRMIP represen-
tation (case 1).

Analyzing the CRMIP transfer function (equations 3.48, 3.49 and 3.50), one can

see that the BHP response is given by the summation of biproper terms linked to the

same input (P
(j)
wf ), which in the time domain is the summation of exponential terms.

Moreover, the BHP and injection responses are only linked by the time constants

(τij’s). Therefore, assigning few productivity indices to a producer, and computing
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the time constants related to them separately, can significantly reduce the size of the

history matching problem, specially for reservoirs with large number of wells.

The BHP response is mostly controlled by the reservoir properties in the near

wellbore region. For this reason, it can be decoupled from the injector-producer

control volumes. The same does not apply to the injection response because the

signal needs to travel all the way to the producer, therefore connectivities really are

interwell properties. These observation and the results obtained here indicate that

the CRMIP representation can be simplified and a model with the same degree of

accuracy can be obtained.

As previously discussed in chapter 3, a linear system representation may not

be controllable or observable, which means that it is not a minimal realization. In

other words, it is possible to represent the same system with less states than the

actual realization. As shown in table 5.2, the CRMIP is observable and controllable,

therefore, it is indeed a minimal realization for case 1.

Table 5.2: Results after controllability and observability analysis and model reduc-
tion for CRMIP (case 1).

Number of States

CRMIP 20

Uncontrollable (CRMIP) 0

Unobservable (CRMIP) 0

Minimal Realization 20

Model Reduction (99% preserved) 7

Even in a minimal realization, it is possible to reduce even further the order of

the model by removing states that give negligible contribution to the dynamics of
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the system. This leads to the notion of model reduction of large scale dynamical

systems [2]. Since, the model reduction is not the focus of this thesis, we will only

describe the process in terms of the Hankel singular values of the dynamical system

[9, 2]. In this case, one can perform what is called balancing the system, whereby

one determines the controllable and observable description of the system. Model

reduction follows by removing simultaneously the states that are uncontrollable (or

weakly controllable) and unobservable (or weakly observable). Model reduction has

been recently applied in reservoir simulation [14, 15]. The reader can refer to the

above cited references for more details.

The Hankel singular values (HSV) can be used to estimate the amount of states

that can be removed from the system penalizing its dynamics within a given toler-

ance. A state with higher HSV means that it has a more significant contribution to

the physics of the system while very low HSV means negligible contribution. Thus,

the normalized cumulative sum of the HSV’s in decreasing order indicates the frac-

tion (or percentage) of the system dynamics preserved when the rest of the states

are neglected. Figure 5.5 shows the HSV’s for the CRMIP representation, indicating

that it is possible to keep 99% of the CRMIP dynamics with only 7 states, instead

of the original 20.

Figure A.9 compares the liquid production rates of the reduced order model with

the CRMIP and CRMP. Indeed, the reduced model accurately represents the CR-

MIP dynamics, consequently the reservoir dynamics. The reduced model only have

three states more than the CRMP representation, so it is comparable in complexity,

however it decribes the dynamics of the system more accurately than CRMP for wells

“PROD1”, “PROD3” and “PROD4”, but not for “PROD2”, which can be fixed if a

reduced model with more states is obtained.
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Figure 5.5: Hankel singular values decomposition and system’s dynamics preserved
after model reduction for CRMIP (case 1).

5.2 Case 2: Channelized Reservoir

It was straightforward to predict the flow behavior in case 1. Even though case

1 is a valid proof of concept, it is too idealistic. In practice, a real reservoir can be

very heterogeneous depending on the geological history of the formation. Thus, it

can be quite complicate to predict the subsurface flow behavior just by looking at

the permeability maps, as it was previously done. Building reliable models for very

heterogeneous reservoirs is also a daunting and time consuming task. Generally, an

interdisciplinary group (geophysicists, geologists, reservoir engineers, etc.) acquire

and analyze data to develop a model based on well-known concepts. Since reservoirs

are data poor environments, where the uncertainty is high, many realizations may

be necessary.

The objective of case 2 and 3, to be discussed next, is to test the state space
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equations CRM’s applicability in more realistic scenarios. Case 2 and 3 are based

on the SPE-10 model, which was originally proposed to compare upscaling methods.

For further information regarding the SPE-10 model, the reader is referred to [10].

Case 2 is based on layers 80 to 85 of the SPE-10 model. The horizontal perme-

ability map for each of these layers is shown in figure 5.6. It is a fluvial environment,

where a strong contrast is noticed (figure 5.6), high permeability channels are shown

in reddish colors while poor facies are depicted by the blueish colors. The wells are

placed as a five-spot pattern with 8 injectors and 7 producers. The main modifica-

tions made to the original SPE-10 model are shown in table 5.3.

Table 5.3: SPE-10 model modifications for cases 2 and 3.
Parameters Value

Number of Grid Blocks 60× 220× 6
Grid Block Size (ft) 50× 25× 5

Transmissibility Multipliers 0.1

Appendix B presents the production history data and results obtained using

CRM’s for case 2. Injection rates for all the injector vary monthly between 100

bbl/day and 300 bbl/day (figure B.1). Producers’ BHP vary every 6 months between

3400 psi and 3600 psi (figure B.2). The observed production rates obtained using

IMEX [36] are shown in figure B.3. The history matching window is from 2000

days (≈ 5.5 years) to 4745 days (13 years), starting after water breakthrough for all

producers. The model validation window is from 4745 days (13 years) to 7300 days

(20 years).

Figures B.4 and figure B.5 show the liquid production rates for the history match-

ing and validation windows from the production data, ICRM, CRMP and CRMIP.
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Figure 5.6: Logarithm of horizontal permeability (md) for layers 80 to 85 of the
SPE-10 model.

Differently from case 1, the differences between models and production history are

notable, they do not overlap as well as in the first case. This suggests that the choice

of model becomes more important as reservoir complexity increases.

Starting from the simplest model, ICRM is problematic in wells “PROD1”,

“PROD2” and “PROD5”, overshooting their responses when there are changes in the

BHP. Due to this problem, there are negative production rates for “PROD5”, which
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is unacceptable. As previously discussed, this is caused by an overestimation of the

productivity indices, as one can compare with CRMP (table B.1), which does not

present these overshoots and considers the same control volumes. The productivity

indices estimates for wells “PROD3”, “PROD4” and “PROD7” are zero, which is

also unreasonable.

The ICRM time constant estimates are not acceptable as well. For example,

analyzing “PROD4” liquid production rates in figure B.4, one can see that the ICRM

production curve looks like a series of steps, this caused by underestimating the

time constant as shown in table B.2, thus the model provides a faster response

to a stimulus than the actual reservoir’s production rate response. Therefore, the

ICRM productivity indices and time constant estimates do not represent the reservoir

dynamics.

Comparing CRMP and CRMIP to the production history, the CRMIP represen-

tation captures the reservoir dynamics much better than CRMP. Even when CRMIP

does not match the production history, it still follows all the trends of the system dy-

namics, for example, “PROD3” flowrates after 6700 days (figure B.4). On the other

hand, CRMP tends to provide a smoother response than the production history and

does not capture all of the trends as CRMIP, because only one time constant is

assigned for each producer. This CRMP behavior is clearer in wells “PROD3” and

“PROD6”, which are partially drilled in the poor facies (layers 80 to 82) and par-

tially in the channels (layers 83 to 86). Comparing case 2 to 1, it is evident that in

very heterogeneous reservoirs the price of estimating more parameters when using

CRMIP becomes justifiable since the CRMIP performance can be remarkably better

than CRMP.

In control theory, a state observer is capable to estimate the system states by

examining its inputs and outputs. Thus, we expect to improve CRMIP short-term
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predictability in future works by coupling it with a state observer to remove the

offset, for example, in “PROD3” after 6700 days (figure B.4).

Comparing ICRM, CRMP and CRMIP connectivity maps shown in figures 5.7

and 5.8, the ICRM connectivity estimates are not in agreement with CRMP and

CRMIP, and based on the previous discussion, are not representative of the reservoir

properties. The CRMP connectivity estimates are close to the CRMIP ones, as

one can analyze more carefully in table B.3. This result is in agreement with the

sensitivity analysis in section 4.2.5. Since the CRMIP provides better results, its

connectivities are the ones taken as reference.
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Figure 5.7: ICRM and CRMP connectivity maps (case 2).
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Figure 5.8: CRMIP connectivity map (case 2).

Analyzing figure 5.8, “PROD3”, “PROD5” and “PROD6” are not very connected

to the injectors, since they are in the poor facies in the upper layers (figure 5.6). On

the other hand, “PROD1”, “PROD4” and “PROD7” are in the middle of the chan-

nels in all the layers, having a high connectivity with injectors. Also, it is important

to notice that in channelized reservoirs high connectivity in distant injector-producer

pairs is more likely to happen, an example is “INJ7” and “PROD1”: f71 = 0.373

(table A.3).

Cumulative production is shown in figures B.6 and B.7. All CRM’s provide a

good history matching for cumulative production. Analyzing the prediction window,

it is not conclusive which one is the best model. For example, ICRM performs better
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than CRMIP and CRMP for “PROD3” and “PROD6”, on the other hand, CRMIP

is the most accurate for “PROD1” and “PROD2”.

Figures B.8 and B.9 show the water cut computed using the fractional flow model

[13]. This model fits well in the history matching window, except when the water cut

is less than 0.5, as in “PROD3” and “PROD5”. The results obtained corroborate

what has been observed in case 1, even though this empirical fractional flow model

depends on the connectivities estimates, the differences between the ICRM, CRMP

and CRMIP’s capability to predict water cut are negligible. However, the fractional

flow parameters aj and bj can be different (table B.4). In the prediction window,

“PROD3”, “PROD4”, “PROD5” and “PROD6” have their water cut slightly over-

estimated.

Oil production rates are presented in figures B.10 and B.11. The same observa-

tions done for the liquid production rates (figures B.4 and B.5) applies here, however

the differences between the CRM’s are reduced because of production in higher water

cut. Therefore, CRMIP is also significantly better than the others.

Figure 5.9 summarizes the results previously discussed by showing the mean

square error for each method in each producer. It is clear the CRMIP outperforms

CRMP, which is better than ICRM, when predicting liquid rates and oil rates. On

the other hand, there is no general rule regarding the best cumulative production

model, where ICRM could outperform the other CRM models in some wells. The

water cut predictions are equivalent for all the models. Analogously, the normalized

root mean square is shown in figure B.12.

The productivity indices and time constants maps for the CRMIP representation

are shown in figure 5.10. The higher productivity index values are for wells “PROD1”

and “PROD7”, which are fully drilled in the high permeability channels. The high

productivity indices are associated with low time constants, as one can confirm in
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Figure 5.9: Mean square error for ICRM, CRMP and CRMIP (case 2).

tables B.1 and B.2, which means a fast response to producers’ BHP changes, and

is in agreement with the expected dynamics in high permeability channels. Again,

the CRMIP representation generated several zero productivity indices for control

volumes, a maximum of three nonzero Jij’s was enough per producer. As discussed

in case 1, this suggests that the CRMIP representation can be simplified and pro-

vide similar results with less parameters, confirming that productivity indices are a

localized property being more dependent on the near wellbore region characteristics,

instead of being an interwell property, such as connectivity.

Computing the controllability and observability matrices and their ranks, the

CRMIP realization had 55 uncontrollable and 55 unobservable states, which means

that CRMIP is not a minimal realization. Therefore, it is possible to reduce the
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Figure 5.10: Productivity indices and time constants maps for the CRMIP represen-
tation (case 2).

number of states in CRMIP without penalizing its dynamics. The CRMIP minimal

realization obtained has 45 states, reducing 11 states from the original formulation

(table 5.4) and is more stable for control purposes.

The number of states of the system can still be further reduced from the minimal

realization, however its dynamics will be penalized. Analyzing the Hankel singular

values for the minimal realization (figure 5.11), 99% of the CRMIP dynamics can be

preserved with only one state more than the CRMP representation. Thus, a model

as good as CRMIP can be obtained almost with the same order as CRMP.

Figures B.13 and B.14 compare the liquid production rates of the reduced order

model with the CRMIP and CRMP. Indeed, the reduced model accurately represents
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Table 5.4: Results after controllability and observability analysis and model reduc-
tion for CRMIP (case 2).

Number of States

CRMIP 56

Uncontrollable (CRMIP) 55

Unobservable (CRMIP) 55

Minimal Realization 45

Model Reduction (99% preserved) 8

the CRMIP dynamics, consequently the reservoir dynamics. The reduced model only

have one state more than the CRMP representation, therefore it is also much simpler

than CRMIP. However, it does not give a smooth response as CRMP, and is capable

to predict the same oscillations as in CRMIP, for instance, this observation is evident

in wells “PROD3”, “PROD5” and “PROD6”.

5.3 Case 3: Shoreface Environment Reservoir

Case 3 is based on the six top layers of the SPE-10 model [10], which represents

a shoreface depositional environment. The horizontal permeability maps are shown

in figure 5.12. In case 2 there was a vertical continuity in the channels pattern with

high areal contrast in permeability when moving from the poor to the rich facies,

and vice-versa. Case 3 is comprised by thin bedding planes, the areal transitions

are much smoother, however there is not much vertical continuity, so the patterns

significantly change when comparing consecutive layers.

As shown in figure 5.12, there are seven producers and eight injectors located

exactly in the same place as in case 2. The modifications in the SPE-10 model listed

in table 5.3 also apply to case 3. Production history data is presented in Appendix

C. Injection rates for all the injector vary monthly between 100 bbl/day and 300
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Figure 5.11: Hankel singular values decomposition and system’s dynamics preserved
after model reduction for CRMIP’s minimal realization (case 2).

bbl/day (figure C.1). Producers’ BHP vary every 6 months between 3150 psi and

3850 psi (figure C.2). The observed production rates obtained using IMEX [36] are

shown in figure C.3. The history matching window is from 2000 days (≈ 5.5 years)

to 4745 days (13 years), starting after water breakthrough for all producers. The

model validation window is from 4745 days (13 years) to 7300 days (20 years).

Figures C.4 and C.5 show the production rates obtained with the CRM’s com-

pared to the ones from the production history. The ICRM present the same prob-

lems previously discussed. ICRM computes negative production rates for “PROD1”

and “PROD5”, which is caused by an overestimation of the productivity indices, as

one can see in table C.1. Also, the ICRM estimates zero productivity indices for

“PROD2”, “PROD4” and “PROD7”, which is physically inconsistent. Moreover,

the ICRM time constant estimates are not realiable as well. For example, the ICRM

production rate response for “PROD4” looks like steps, which is the result from a
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Figure 5.12: Logarithm of horizontal permeability (md) for layers 1 to 6 of the SPE-
10 model.

very low time estimate, as one can see in table C.2, and is not consistent with the

one observed in the production history, the same happens to “PROD5”.

Comparing CRMP and CRMIP production responses, they are almost overlap-

ping in “PROD1”. In other wells they are also quite similar. Generally, the CRMIP

captures reservoir the dynamics better than CRMP, following most of the trends

noted in the production history. CRMP gives a smoother response, since only one
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time constant is considered for all types stimulus acting in a producer. The big

changes in production rates in “PROD2” and “PROD6” in the prediction window

are caused by BHP variations, and none CRMP or CRMIP are capable to predict

them accurately, in fact, these exemplify a case where the CRM parameters are time

varying. The existing offset in “PROD2” and “PROD6” production response can be

reduced using an observer to estimate the actual states of the reservoir in real-time,

improving CRM’s predictability.

The cumulative liquid production is depicted in figures C.6 and C.7. Since

ICRM does the history matching for the cumulative production, maybe it could pro-

vide more reliable predictions than CRMP and CRMIP. Indeed, ICRM outperforms

CRMP and CRMIP when predicting cumulative liquid production for “PROD2”,

“PROD4”, “PROD6” and “PROD7”, but not for the others. Therefore, it is not

conclusive which is the best model for cumulative production rates. Since CRMIP

provides represents the system dynamics reliably, it seems to be a safer choice. Gen-

erally, the CRMP and CRMIP cumulative production predictions are in good agree-

ment in all the case studies.

The water cut computed using the fractional flow model proposed in [13] are

shown in figures C.8 and C.9. The fractional flow parameters are shown in table C.3.

“PRO3”, “PROD4”, “PROD5” and “PROD6” have their water cut slightly overes-

timated in the prediction window. Generally, the history matching is good, major

differences are observed at low water cut in “PROD3” and “PROD5”, because this

fractional flow is recommended for higher water cuts. There is not any remarkable

difference in the water cut computed with ICRM, CRMP, or CRMIP. Using this

fractional flow model, the oil rates were computed, results are shown in figures C.10

and C.11. As one can see, the CRMP and CRMIP provides good predictions, the

differences seen in figures C.4 and C.5 are reduced due to production in higher water
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cuts.

The results previously discussed for case 3 are summarized by comparing the

mean square error in figure 5.13, and the normalized mean square error in figure

C.12. CRMIP is the best model to predict liquid and oil production rates, however s

CRMP has a similar performance in some well (ex: “PROD6”). Sometimes, ICRM

performs better than CRMP and CRMIP predicting cumulative production rates,

however it does not represent the reservoir dynamics well, so its use must be avoided.

The fractional flow model used can adjust well to all CRM’s to accurately predict

each well’s water.
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Figure 5.13: Mean square error for ICRM, CRMP and CRMIP (case 3).
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The connectivity maps are shown in figures 5.14 and 5.15, numerical values are

provided in table . Comparing the ICRM, CRMP and CRMIP connectivity estimates

and the CRMIP results as reference, one can see that ICRM captures some trends in

the water allocation (ex: “INJ1”, “INJ7”), however the differences are quite signifi-

cant (ex: “INJ5”, “INJ6” and “INJ8”). Therefore, ICRM does not provide reliable

connectivity estimates as well. The CRMP and CRMIP maps are in agreement, the

major differences can noted in “INJ2”, “INJ4” and “INJ5”.
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Figure 5.14: ICRM and CRMP connectivity maps (case 3).
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Figure 5.15: CRMIP connectivity map (case 3).

It is not straightforward to correlate the connectivity maps with the permeability

maps in figure 5.12 as it was in case 2, where the highest connectivities were point-

ing to wells in the channels. Looking at the permeability maps it is possible to have

an idea how flow evolves horizontally, however the vertical continuity of the high

permeability regions also must be taken into account, since they are thin bedding

planes with high vertical contrast. For example, “PROD3” is located in high perme-

ability regions in all of the layers, this creates good flow paths between “PROD3”

and the injectors, resulting in high values of connectivities. The opposite happens to
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“PROD2” and “PROD7”, which are mostly drilled in the low and moderate perme-

ability zones. Since the flow path can be very tortuous, in a shoreface environment

reservoir it is also possible to have high permeability in distant injector-producer

pairs, an example is: f83 = 0.749.
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Figure 5.16: Productivity indices and time constants maps for the CRMIP represen-
tation (case 3).

Figure 5.16 presents the productivity indices and time constants maps for the

CRMIP representation. Similarly to the results obtained in cases 1 and 2, it is pos-
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sible to significantly reduce the number of parameters estimated, since only nonzero

3 productivity indices per producer are enough to describe the response to its BHP

variation. It is easy to see what are the time constant associated with each produc-

tivity index. As previously discussed, “PROD3” is in the high permeability zone, this

is confirmed by examining its high productivity indices, on other hand, ‘PROD2”

and “PROD7” are mostly in low to moderate permeability zones this is reflected in

their low productivity indices.

Analyzing the controllability and observability of the CRMIP representation,

after filtering the connectivity values by assigning zero to all the connectivities that

were less than 10−3, there was 15 uncontrollable states and 17 unobservable states,

as shown in table 5.5, therefore the system was uncontrollable and unobservable.

A minimal realization was obtained with 43 states, which means a reduction of 13

states from the original CRMIP realization.

Table 5.5: Results after controllability and observability analysis and model reduc-
tion for CRMIP (case 3).

Number of States

CRMIP 56

Uncontrollable (CRMIP) 15

Unobservable (CRMIP) 17

Minimal Realization 43

Model Reduction (99% preserved) 8

Analyzing the Hankel singular values shown in figure 5.17, 99% of the CRMIP

dynamics can be preserved using a realization with 8 states obtained from model

order reduction, which is comparable in size to the CRMP representation (7 states)
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and in quality with CRMIP.
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Figure 5.17: Hankel singular values decomposition and system’s dynamics preserved
after model reduction for CRMIP’s minimal realization (case 3).

Figures C.13 and C.14 compare the liquid production rates of the reduced order

model with the CRMIP and CRMP. Indeed, the reduced model accurately represents

the CRMIP dynamics, consequently the reservoir dynamics, except for “PROD7”,

where the reduced model overshoots the production response when there are changes

in BHP, such problem must be overcome by generating reduced realizations with more

states. As for case 2, the reduced model only have one state more than the CRMP

representation. However, it does not provide a smooth response as CRMP, and, in

general, is capable to predict the same oscillations as in CRMIP, for instance, this

observation is evident in wells “PROD2”, “PROD3”, “PROD4” and “PROD6”.
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6. CONCLUSIONS AND RECOMMENDATIONS FOR FUTURE WORK

6.1 Concluding Remarks

1. Representing CRM with state space equations opens the venues for imple-

mentation of linear control theory algorithms, which can improve CRM’s pre-

dictability and tracking performance, it also facilitates real-time reservoir op-

timization.

2. The CRM transfer functions clarify the input-output relationships defined in

each CRM representation, facilitating the choice of model.

3. Defining the constraints and objective functions of the history matching prob-

lem as matrices, enables the straightforward use of optimization algorithms,

speeding up the reservoir modeling stage.

4. A sensitivity analysis in the history matching objective function coupled with

the CRM parameters’ physical understanding indicates that connectivity esti-

mates are usually more accurate than time constant estimates.

5. Generally, ICRM provides bad productivity index and time constant estimates.

In simple cases, such as case 1, ICRM is useful for connectivity estimates and

production rates prediction. ICRM is not a reliable representation for complex

reservoir, as cases 2 and 3, for history matching and predicting production

rates.

6. The CRMP representation captures the reservoir dynamics better when there

is more homogeneity around the producers because it assumes only one time

constant for all injector-producer pairs. The CRMP connectivity estimates are
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usually consistent with the CRMIP ones.

7. The CRMIP representation performs better predicting production rates, in the

expense of estimating more parameters, and frequently generating physically

meaningless parameters, such as several zero productivity index per producer.

8. Many times the CRMIP representation is not a minimal realization, thus it is

possible to obtain a lower order and more stable to control realization without

penalizing the system dynamics.

9. Analyzing the Hankel singular values, the results have shown that, penalyzing

less than 1 % of the system dynamics, it is possible to obtain reduced order

models from the CRMIP that have only few states more the CRMP.

6.2 Future Works

6.2.1 CRM for Closed-Loop Reservoir Management

Analogously to Jansen et al. [20], the flowchart for CRM in a systems framework

with closed-loop reservoir management is shown in figure 6.1. The production history

of the reservoir, i. e. inputs and outputs of the real system, is detected by sensors in

the field. The processed production history will be used in the observer to estimate

the states of the system and history matching using CRM in a control systems

framework. The CRM model is necessary to maximize oil production or net present

value in a given time horizon; therefore, using optimization algorithms the optimal

input values of the system must be defined and applied in the field to control the

real system.

Using CRM with closed-loop reservoir management is expected to outperform

the open-loop strategy because the feedback controller keeps track of the system

response, adjusting the inputs to achieve the desirable setpoint for the outputs in
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Figure 6.1: CRM for closed-loop reservoir management.

a stable and timely manner. As discussed in chapter 4, the models parameters

may be time-variant in many situations. In such cases, CRM would be reliable

only for short-term prediction. Therefore, another advantage of closed-loop reservoir

management is that the systems parameters are constantly updated, which reduces

the uncertainties, providing more reliable predictions.

6.2.2 Dynamic Parameters

As discussed in section 4.1, rigorously, the CRM parameters are time-varying.

Big operational changes, such as shutting wells, drilling a new well, or even high

variations in the inputs, can cause considerable changes in the streamlines, therefore

the assumption of constant connectivities, time constants and productivity indices

does not hold. Also, before the water breakthrough this problem is expressively
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nonlinear.

Few works in the literature have considered CRM parameters as time-varying

[18, 6]. Usually, even in these works, the parameters are considered constant when

predicting production rates. Indeed, it is necessary to improve the predictability of

this time-varying behavior, improving CRM robustness, but keeping it simple.

6.2.3 Decline Curves and BHP Response

As discussed in chapter 2, CRM is based on the superposition in time and space

of the natural reservoir’s production decline, and the responses to injection rates

and producers’ BHP variations. However, the actual formulation only consider these

factors as exponential (CRMT, CRMP), or a series of exponential (CRMIP) terms,

which may not be the most appropriate representation sometimes. Thus, coupling

CRM with different types of decline curve other than exponential could improve its

performance for some reservoirs. Also, taking advantage of superposition in time and

space, the BHP response term can be changed from the original models to explain

better the depletion in the nearwell region.

6.2.4 CRM for Unconventional Reservoirs

Traditionally, CRM has been mostly applied to flooding processes. Even though

unconventional reservoirs have been developed by primary depletion, some previous

works have indicated that secondary and tertiary recovery are attractive solutions

to significantly enhance oil recovery in some reservoirs [42, 58]. Moreover, some

unconventional oil plays can have some areas with richer permeability, not in the

micro to nano-Darcy scale, where flooding processes are feasible. An example is the

pilot waterflooding plant operating in Bakken since 2006 [61]. Since there is a very

high number of well in such reservoirs, CRM might be a good model to approach

them due to its simplicity. The low permeability reservoirs’ transient flow behavior
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also results in a linear time-variant system because connectivities and time constants

are time dependent [53]. Furthermore, the literature review shows that the porous

media suffers significant changes over time, changing the connectivities not only due

to the transient flow behavior, but also due to structural transformations in the

fracture system [12], which may require several history matching windows to fit the

model taking into account such effects.

Because unconventional reservoirs are slow systems, the signals may take too

long to reach the producer, or be dissipated on their way; parameters such as per-

meability and interwell distance are crucial to analyze this. Therefore, closed-loop

reservoir management has limited applicability, but real time history matching is still

encouraged, since parameters such as capacity and resistivity can be inferred from

the transient response.

In the literature, the CRM formulations for unconventional reservoirs have been

tested only for synthetic examples with a single well. Since the principles have been

established, it would be important to apply them at a field scale now. Besides the

transient flow nature, the effects of changes in the porous media characteristics with

time should be considered as well since it can affect the production significantly.
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APPENDIX A

DATA AND RESULTS FOR CASE 1

 

Figure A.1: Injection rates (bbl/day) for the five injectors during simulation time
(days) in case 1.
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Figure A.2: Bottom hole pressures (psi) for the four producers during simulation
time (days) in case 1.

Table A.1: Productivity indices estimates (case 1).

i

j
1 2 3 4 5

1 5.25 0.00 0.00 0.00 3.23 8.31 12.71

2 0.00 0.00 0.00 0.00 6.88 6.74 0.00

3 0.00 4.84 0.00 0.00 2.83 7.42 16.29

4 0.00 3.89 0.00 0.00 3.13 6.95 9.55

CRMIP

CRMP ICRM
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Figure A.3: Production rates (bbl/day) for the four producers from production his-
tory (IMEX [36]) in case 1.

Table A.2: Time constant estimates (case 1).

             i                     

j
1 2 3 4 5

1 10.18 12.83 51.24 17.99 200.00 15.07 29.63

2 20.56 22.22 24.00 26.98 41.68 25.12 20.63

3 96.60 12.68 46.29 16.87 200.00 14.82 35.96

4 30.52 200.00 23.55 19.56 19.09 23.45 17.01

CRMIP

CRMP ICRM
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Figure A.4: Liquid production rates (bbl/days) for ICRM, CRMP and CRMIP com-
pared to the production history (case 1).
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Figure A.5: Cumulative liquid production (bbl) for ICRM, CRMP and CRMIP
compared to the production history (case 1).

127



3500 4000 4500 5000 5500 6000 6500 7000

P
R

O
D

1

0.2

0.4

0.6

0.8

Water Cut

3500 4000 4500 5000 5500 6000 6500 7000

P
R

O
D

2

0.8

0.85

0.9

0.95

3500 4000 4500 5000 5500 6000 6500 7000

P
R

O
D

3

0.2

0.4

0.6

0.8

time (days)
3500 4000 4500 5000 5500 6000 6500 7000

P
R

O
D

4

0.8

0.85

0.9

0.95

IMEX
ICRM
CRMP
CRMIP

PredictionHistory Matching

Figure A.6: Water cut for ICRM, CRMP and CRMIP compared to the production
history (case 1).
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Figure A.7: Oil production rates (bbl/days) for ICRM, CRMP and CRMIP compared
to the production history (case 1).
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Figure A.8: Normalized root mean square for ICRM, CRMP and CRMIP (case 1).
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Table A.3: Connectivity estimates (case 1).

     i                     

j
1 2 3 4 5 sum

1 0.021 0.518 0.000 0.068 0.092 0.699

2 0.660 0.000 0.490 0.412 0.244 1.806

3 0.000 0.482 0.000 0.117 0.101 0.700

4 0.319 0.000 0.510 0.403 0.563 1.795

sum 1.000 1.000 1.000 1.000 1.000

1 0.071 0.504 0.046 0.020 0.053 0.694

2 0.574 0.034 0.435 0.460 0.305 1.808

3 0.050 0.461 0.047 0.061 0.069 0.688

4 0.305 0.000 0.472 0.459 0.573 1.809

sum 1.000 0.999 1.000 1.000 1.000

1 0.049 0.450 0.068 0.038 0.078 0.683

2 0.538 0.002 0.407 0.490 0.371 1.808

3 0.091 0.429 0.069 0.045 0.043 0.677

4 0.322 0.119 0.456 0.421 0.508 1.826

sum 1.000 1.000 1.000 0.994 1.000

ICRM

CRMP

CRMIP

Table A.4: Fractional flow parameters for ICRM, CRMP and CRMIP (case 1).

1 2 3 4

a 7.46E-29 2.06E-18 3.05E-30 6.04E-18

b 4.2299 2.6504 4.4319 2.5856

a 1.05E-28 1.98E-18 5.29E-30 5.36E-18

b 4.2100 2.6525 4.4006 2.5919

a 1.83E-28 2.22E-18 7.13E-30 4.12E-18

b 4.1770 2.6455 4.3862 2.6067

Producer

ICRM

CRMP

CRMIP
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APPENDIX B

DATA AND RESULTS FOR CASE 2

Table B.1: Productivity indices estimates (case 2).

i

j
1 2 3 4 5 6 7 8

1 0.0000 0.0000 0.0000 0.0000 6.1033 0.0000 0.7071 0.0000 0.84 1.69

2 0.0000 0.0000 0.0000 0.0000 0.5900 0.0000 0.0000 0.0000 0.61 1.21

3 0.0000 0.0000 0.0000 0.0000 0.2671 0.0000 0.0000 0.0000 0.34 0.00

4 0.4246 0.5761 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 1.05 0.00

5 0.0000 0.0000 0.0903 0.0000 0.0000 0.0000 0.0000 0.0000 0.09 0.80

6 0.0078 0.0000 0.1638 0.0000 0.0000 0.0000 0.0000 0.0000 0.22 0.39

7 0.0000 20.0076 0.5637 0.2892 0.0000 0.0000 0.0000 0.0000 0.91 0.00

CRMIP

CRMP ICRM

Table B.2: Time constant estimates (case 2).

i

j
1 2 3 4 5 6 7 8

1 4.99 6.98 5.58 13.85 0.02 23.73 200.00 40.24 7.90 40.55

2 3.49 21.32 4.57 5.76 200.00 8.20 45.61 76.12 7.94 7.23

3 5.06 7.30 4.63 19.20 200.00 14.34 19.45 117.87 200.00 5.76

4 1.56 200.00 4.39 6.03 3.87 12.97 45.15 23.28 6.67 1.00

5 45.89 3.68 200.00 7.32 141.81 9.50 4.58 22.80 49.43 8.62

6 5.69 25.25 200.00 40.97 5.87 6.74 29.25 150.16 86.44 31.03

7 44.94 0.00 6.21 200.00 8.85 9.85 10.61 2.94 8.41 5.52

CRMIP

CRMP ICRM
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Figure B.1: Injection rates (bbl/day) for the eight injectors during simulation time
(days) in case 2.
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Figure B.2: Bottom hole pressures (psi) for the seven producers during simulation
time (days) in case 2.
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Figure B.3: Production rates (bbl/day) for the seven producers from production
history (IMEX [36]) in case 2.
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Figure B.4: Liquid production rates (bbl/days) for ICRM, CRMP and CRMIP com-
pared to the production history for producers 1 to 4 (case 2).
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Figure B.5: Liquid production rates (bbl/days) for ICRM, CRMP and CRMIP com-
pared to the production history for producers 5 to 7 (case 2).
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Figure B.6: Cumulative liquid production (bbl) for ICRM, CRMP and CRMIP com-
pared to the production history for producers 1 to 4 (case 2).
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Figure B.7: Cumulative liquid production (bbl) for ICRM, CRMP and CRMIP com-
pared to the production history for producers 5 to 7 (case 2).
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Figure B.8: Water cut for ICRM, CRMP and CRMIP compared to the production
history for producers 1 to 4 (case 2).
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Figure B.9: Water cut for ICRM, CRMP and CRMIP compared to the production
history for producers 5 to 7 (case 2).
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Figure B.10: Oil production rates (bbl/days) for ICRM, CRMP and CRMIP com-
pared to the production history for producers 1 to 4 (case 2).
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Figure B.11: Oil production rates (bbl/days) for ICRM, CRMP and CRMIP com-
pared to the production history for producers 5 to 7 (case 2).

141



Producer
1 2 3 4 5 6 7

-0.8

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Total Production Rates

ICRM
CRMP
CRMIP

Producer
1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1
Cumulative Total Production

Producer
1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1
Oil Production Rates

Producer
1 2 3 4 5 6 7

0

0.2

0.4

0.6

0.8

1
Water Cut

NORMALIZED ROOT
MEAN SQUARE ERROR

Figure B.12: Normalized root mean square error for ICRM, CRMP and CRMIP
(case 2).
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Figure B.13: Comparison between CRMP, CRMIP and reduced order model liquid
production rates (bbl/days) for producer 1 to 4 (case 2).
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Figure B.14: Comparison between CRMP, CRMIP and reduced order model liquid
production rates (bbl/days) for producer 5 to 7 (case 2).
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Table B.3: Connectivity estimates (case 2).

i

j
1 2 3 4 5 6 7 8 sum

1 0.039 0.000 0.915 0.000 0.000 0.000 0.539 0.000 1.493

2 0.441 0.522 0.063 0.149 0.018 0.000 0.000 0.165 1.359

3 0.177 0.202 0.018 0.000 0.098 0.000 0.000 0.000 0.495

4 0.000 0.000 0.000 0.000 0.799 0.953 0.000 0.157 1.909

5 0.197 0.045 0.000 0.008 0.043 0.000 0.000 0.000 0.293

6 0.146 0.231 0.004 0.000 0.041 0.000 0.000 0.000 0.422

7 0.000 0.000 0.000 0.843 0.000 0.047 0.461 0.678 2.029

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 0.525 0.387 0.373 0.096 0.000 0.000 0.190 0.000 1.572

2 0.298 0.148 0.271 0.176 0.194 0.095 0.000 0.153 1.334

3 0.000 0.232 0.062 0.000 0.000 0.180 0.000 0.000 0.474

4 0.000 0.101 0.219 0.319 0.745 0.372 0.124 0.051 1.932

5 0.072 0.016 0.043 0.113 0.041 0.004 0.000 0.000 0.288

6 0.037 0.116 0.032 0.113 0.010 0.106 0.000 0.000 0.414

7 0.069 0.000 0.000 0.183 0.010 0.243 0.686 0.796 1.987

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 0.424 0.433 0.259 0.072 0.001 0.000 0.373 0.000 1.563

2 0.409 0.224 0.178 0.236 0.075 0.072 0.000 0.157 1.351

3 0.023 0.167 0.115 0.004 0.113 0.059 0.000 0.000 0.481

4 0.000 0.149 0.207 0.323 0.664 0.449 0.000 0.151 1.943

5 0.000 0.000 0.096 0.047 0.068 0.053 0.016 0.000 0.278

6 0.000 0.028 0.145 0.040 0.053 0.137 0.000 0.000 0.404

7 0.143 0.000 0.000 0.278 0.026 0.230 0.611 0.692 1.980

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ICRM

CRMP

CRMIP

Table B.4: Fractional flow parameters estimates for ICRM, CRMP and CRMIP (case
2).

1 2 3 4 5 6 7

a 1.15E-06 2.40E-07 2.34E-10 4.77E-09 3.30E-12 2.93E-09 2.55E-06

b 1.0908 1.2424 1.7752 1.4501 2.1328249 1.6420371 1.0231165

a 5.43E-07 3.55E-07 3.82E-10 4.88E-09 5.97E-12 5.12E-09 2.61E-06

b 1.1403 1.2151 1.7411 1.4496 2.0911196 1.6017791 1.02162

a 5.72E-07 2.96E-07 4.26E-10 4.38E-09 1.24E-11 8.51E-09 2.59E-06

b 1.1376 1.2275 1.7312 1.4562 2.0336131 1.5621142 1.022304

ICRM

CRMP

CRMIP

Producer
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APPENDIX C

DATA AND RESULTS FOR CASE 3

Table C.1: Productivity indices estimates (case 3).

i

j
1 2 3 4 5 6 7 8

1 0.0000 0.0000 0.1831 0.0000 0.0000 0.0000 0.0000 0.0000 0.19 0.42

2 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0618 0.06 0.00

3 0.0000 0.1255 0.0000 0.6373 0.2740 0.0000 0.0000 0.0000 0.77 0.56

4 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.3313 0.0000 0.33 0.00

5 0.0000 0.0426 0.0000 0.0000 0.1137 0.0085 0.0000 0.0000 0.11 6.07

6 0.0000 0.0000 0.1082 0.0000 0.0000 0.0022 0.0000 0.0000 0.11 0.04

7 0.0000 0.0026 0.0000 0.0000 0.0115 0.0258 0.0000 0.0000 0.03 0.00

CRMP ICRM

CRMIP

Table C.2: Time constant estimates (case 3).

i

j
1 2 3 4 5 6 7 8

1 4.67 24.84 200.00 26.27 27.41 22.26 85.23 31.54 200.00 74.85

2 11.78 3.46 117.25 104.80 11.96 8.60 53.81 200.00 200.00 63.85

3 15.62 7.06 8.04 200.00 5.83 20.74 56.29 173.46 124.78 47.03

4 8.56 100.15 9.03 11.22 16.18 3.64 200.00 93.72 200.00 1.00

5 36.13 2.83 43.10 19.54 200.00 0.79 32.87 33.40 102.88 1.00

6 21.72 115.32 200.00 15.04 9.56 200.00 39.18 37.71 200.00 76.36

7 28.07 5.23 200.00 50.16 15.69 200.00 108.51 22.54 78.04 200.00

ICRMCRMP

CRMIP
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Figure C.1: Injection rates (bbl/day) for the eight injectors during the simulation
time (days) in case 3.
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Figure C.2: Bottom hole pressures (psi) for the seven producers during simulation
time (days) in case 3.
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Figure C.3: Production rates (bbl/day) for the seven producers from production
history (IMEX [36]) in case 3.
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Figure C.4: Liquid production rates (bbl/days) for ICRM, CRMP and CRMIP com-
pared to the production history for producers 1 to 4 (case 3).
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Figure C.5: Liquid production rates (bbl/days) for ICRM, CRMP and CRMIP com-
pared to the production history for producers 5 to 7 (case 3).
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Figure C.6: Cumulative liquid production (bbl) for ICRM, CRMP and CRMIP com-
pared to the production history for producers 1 to 4 (case 3).

Table C.3: Fractional flow parameters estimates for ICRM, CRMP and CRMIP (case
3).

1 2 3 4 5 6 7

a 3.35E-06 8.83E-09 1.19E-06 1.23E-07 1.48E-10 1.16E-10 0.000104

b 1.0900 1.5232 1.0521 1.2681 1.761504 1.774041 0.803848

a 2.96E-06 6.47E-09 1.24E-06 1.24E-07 1.15E-10 1.27E-10 0.000108

b 1.0933 1.5486 1.0496 1.2686 1.778902 1.76859 0.801542

a 2.68E-06 6.34E-09 1.26E-06 1.04E-07 1.17E-10 1.64E-10 0.000127

b 1.1003 1.5518 1.0485 1.2802 1.776636 1.751157 0.791362

ICRM

CRMP

CRMIP

Producer
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Figure C.7: Cumulative liquid production (bbl) for ICRM, CRMP and CRMIP com-
pared to the production history for producers 5 to 7 (case 3).
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Figure C.8: Water cut for ICRM, CRMP and CRMIP compared to the production
history for producers 1 to 4 (case 3).
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Figure C.9: Water cut for ICRM, CRMP and CRMIP compared to the production
history for producers 5 to 7 (case 3).
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Figure C.10: Oil production rates (bbl/days) for ICRM, CRMP and CRMIP com-
pared to the production history for producers 1 to 4 (case 3).
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Figure C.11: Oil production rates (bbl/days) for ICRM, CRMP and CRMIP com-
pared to the production history for producers 5 to 7 (case 3).
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Figure C.12: Normalized root mean square error for ICRM, CRMP and CRMIP
(case 3).
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Figure C.13: Comparison between CRMP, CRMIP and reduced order model liquid
production rates (bbl/days) for producer 1 to 4 (case 3).
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Figure C.14: Comparison between CRMP, CRMIP and reduced order model liquid
production rates (bbl/days) for producer 5 to 7 (case 3).
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Table C.4: Connectivity estimates (case 3).

i

j
1 2 3 4 5 6 7 8 sum

1 0.000 0.000 0.476 0.000 0.000 0.000 0.015 0.000 0.491

2 0.000 0.003 0.000 0.000 0.000 0.000 0.324 0.000 0.327

3 1.000 0.329 0.074 1.000 0.775 0.262 0.286 0.282 4.008

4 0.000 0.000 0.000 0.000 0.000 0.738 0.073 0.481 1.292

5 0.000 0.232 0.450 0.000 0.157 0.000 0.001 0.000 0.840

6 0.000 0.436 0.000 0.000 0.068 0.000 0.036 0.000 0.540

7 0.000 0.000 0.000 0.000 0.000 0.000 0.265 0.237 0.502

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 0.000 0.000 0.287 0.000 0.000 0.000 0.264 0.000 0.551

2 0.000 0.095 0.129 0.000 0.000 0.000 0.082 0.000 0.306

3 0.837 0.415 0.544 0.678 0.000 0.877 0.000 0.575 3.926

4 0.000 0.155 0.000 0.000 0.630 0.123 0.119 0.269 1.296

5 0.163 0.013 0.040 0.088 0.267 0.000 0.313 0.000 0.885

6 0.000 0.321 0.000 0.112 0.103 0.000 0.000 0.000 0.536

7 0.000 0.000 0.000 0.121 0.000 0.000 0.222 0.156 0.499

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

1 0.038 0.000 0.238 0.000 0.000 0.000 0.281 0.000 0.558

2 0.062 0.008 0.115 0.000 0.029 0.000 0.089 0.000 0.303

3 0.612 0.468 0.547 0.532 0.306 0.716 0.000 0.749 3.929

4 0.038 0.375 0.000 0.285 0.321 0.126 0.000 0.176 1.321

5 0.144 0.000 0.036 0.113 0.289 0.009 0.298 0.000 0.890

6 0.082 0.150 0.063 0.056 0.055 0.069 0.049 0.000 0.524

7 0.024 0.000 0.000 0.014 0.000 0.079 0.283 0.074 0.474

sum 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000

ICRM

CRMP

CRMIP
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