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ABSTRACT

Wind energy is the mainstream source of clean and renewable energy and it is

also the fastest-growing source of sustainable energy in the world. In the Global

Wind Energy Council’s report in 2014, wind industry grew 44% worldwide. In order

to optimize the efficiency of wind farms, it is important to observe wake interactions

among wind turbines. Computational mathematics and mechanics provide funda-

mental methods and tools for simulating physical processes. Numerical computation

can offer important insights and data that are either difficult or expensive to measure

or to perform tests experimentally. In this dissertation, we use Computational Fluid

Dynamics (CFD) software OpenFOAM and ANSYS FLUENT to simulate the wake

effect of Horizontal Axis Wind Turbines (HAWT) and related problems. Numeri-

cal simulation can also help us comprehend and control man-made disasters. Air

craft crashworthiness and human survivability are of utmost concerns in any emer-

gency landing situation. Motivated by the air incidents lately, the disappearance of

Malaysia Airlines Flight MH370 in March 2014 and Germanwings Flight 9525 crash

in March 2015, we use Computational Structural Dynamics (CSD) software ANSYS

Explicit Dynamics and LS-DYNA to try different numerical simulations of Airbus

A320 crashing into a wall and compare the results to the reality.

We calculate three CFD problems in this dissertation: lid-driven problems, one

turbine wake problem, and two serial turbines wake problem. We simulate a lid-

driven flow in both two- (2D) and three-dimension (3D) to compare the simula-

tion capability of the three turbulence modelings, i.e., Direct Numerical Simulation

(DNS), Large Eddy Simulation (LES), and Reynolds-Averaged Navier-Stokes Equa-

tions Simulation (RANS) by OpenFOAM. Among these three turbulence models,
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we can find that LES is capable of capturing more details of turbulence flow. We

simulate the airflow effect of one wind turbine with both fixed angular velocity and

wind-driven case, run benchmark tests based on NRELs reports, and compare the

numerical results under the same condition by OpenFOAM and FLUENT. For the

fixed angular velocity case, we use wind speed 8 m/s and angular velocity of the

wind turbine 75 deg/s. For the wind-driven case, we use wind speed 8 m/s and 16

m/s and the angular velocity of the wind turbine calculated by FLUENT converges

faster than OpenFOAM case. We simulate the interactions of wake flow for two

serial wind turbines by FLUENT. We use wind speed 8 m/s and angular velocity

of the wind turbine 75 deg/s. The wake of former turbine affects the rear one and

the diffusion of flow caused by two turbines can be seen clearly. For both one and

two serial turbines problems, the turbulence model RANS kε is used. We calculate

and simulate Airbus A320 crashing into a wall by ANSYS Explicit Dynamics and

LS-DYNA. For ANSYS Explicit Dynamics, we use the angle of approach 0◦, 15◦, and

30◦. For LS-DYNA, we only test the pitch angles 0◦. For all cases, we use the speed

of aircarft 200 m/s. The deformation of both aircraft and wall can be seen clearly.
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1. INTRODUCTION ∗

Wind energy is the mainstream source of clean and renewable energy. It could

mitigate and reduce the effect of global warming since wind energy resource doesn’t

produce the greenhouse gas which mainly results from burning of fossil fuels. Of all

renewable energy resources, wind power is the fastest growing one in the world. It

is growing at the rate of 30% annually, and it reported that at the end of 2012, the

worldwide installed capacity has attained 282,482 megawatts (MW). Wind power is

widely used and developed in Europe, Asia, and the United States. In the Global

Wind Energy Council’s report in 2013 [10], 44.7 Gigawatts of new wind power was

added to worldwide capacity in 2012 and and it is a 19% increase over the preceding

year. This amount brings overall total global capacity to 282.5 Gigawatts. This

represents a tenfold increase in wind power capacity over the last decade. The U.S.

Department of Energy aims to grow wind energy to supply 20% of U.S. electricity

demand by 2030 [14]. Hence, efficiency of wind farm power production has to be

advanced. In a big wind farm, wakes from the upwind turbine can decrease the

mean velocity of the downstream turbine and this gives rise to power production

loss. It also increases fluctuations and turbulence which results in wind turbines’

structural fatigue. Thence, for designing and optimizing wind farms’ setup, local

turbine wake interactions is important and essential.

Wind energy resource is the energy extracted from wind by using wind turbines

∗Reprinted with permission from “OpenFOAM for Computational Fluid Dynamics” by Goong
Chen and Qingang Xiong and Philip J Morris and Eric G Paterson and Alexey Sergeev and Yi-Ching
Wang, 2014. Notices of the AMS, 61(4): 354-363, 2014, Copyright [2014] by American Mathematical
Society, and Reprinted with permission from “Malaysia Airlines Flight MH370: Water Entry of an
Airline” by Goong Chen, Cong Gu, Philip J Morris, Eric G Paterson, Alexey Sergeev, Yi- Ching
Wang, and Tomasz Wierzbicki, 2015. Notices of the AMS, 62(4):330-344, 2015. Copyright [2015]
by American Mathematical Society.
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to produce electrical power. The normal 1.5 MW wind turbine for commercial pro-

duction of electrical power has a tower 260 feet high and the length of the blades is

between 110 to 124 feet. The rotor assembly (blades and hub) weighs 48,000 pounds

and the nacelle, which contains the generator component, weighs 115,000 pounds. It

is money and time consuming to do the experiment.

Computational mathematics and mechanics provide fundamental methods and

tools for simulating physical processes. Numerical computation can offer important

insights and data that are either difficult or expensive to measure or to perform

tests experimentally. It has been recognized for at least 30 years that computational

science constitutes a third and independent branch of science, on equal footing with

theoretical and experimental sciences. Cutting across disciplines at the center of

computational science is computational fluid dynamics (CFD), which makes up the

core of FLUENT and OpenFOAM. Using CFD software, such as Fluent and Open-

FOAM, for many questions in wind energy is an effective way for modeling and

problem-solving, as it saves expensive experimental cost.

In the first part of this dissertation, first, we investigate the applicability of three

different turbulence models, Direct Numerical Simulation (DNS), Large Eddy Simu-

lation (LES), and Reynolds-averaged Navier-Stokes (RANS) on 2D and 3D lid-driven

flow [6, 18] by using OpenFOAM. Second, we use turbulence model RANS k-ε to

calculate and compare the wake development of one rotating turbine with fixed an-

gular velocity by FLUENT. Third, we compare the resulting angular velocity of one

wind-driven rotating turbine by using OpenFOAM and FLUENT. Last, we examine

the wake interaction of two in-line rotating turbines by using FLUENT.

In addition to natural resources issues, numerical simulation can also help us

comprehend and control man-made disasters. The problem was motivated by the air

incident, in March 2014, Malaysia Airlines Flight MH370 disappeared less than an
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hour after take-off on a flight from Kuala Lumpur to Beijing. The Boeing 777-200ER

carried 12 crew members and 227 passengers. On March 24 the Malaysian Prime

Minister announced that “It is therefore with deep sadness and regret that I must

inform you that ... Flight MH370 ended in the Southern Indian Ocean.” Though the

exact fate of Flight MH370 remains undetermined, the available evidence indicates a

crash into the ocean. However, disturbing as this is, not all emergency water landings,

referred to as “ditching” when they are controlled, end in tragedy. In the “Miracle

on the Hudson”, on January 15, 2009, Capt. Chelsey B. “Sully” Sullenberger and

his crew successfully ditched US Airways Flight 1549, an Airbus A320-200, in the

Hudson River after a loss of power due to a bird strike on take-off from La Guardia

Airport. There was no loss of life. Another terrible tragic air incident happened

in March 24, 2015. Germanwings Flight 9525, an Airbus A320-200, crashed into

the French Alps during the flight from Barcelona to Düsseldorf. The crash was

intentionally caused by the co-pilot who locked the captain out of the cockpit during

the flight and began a descent that caused this tragedy. All 144 passengers and 6

crew members were killed in this accident.

Aircraft crashworthiness and human survivability are of utmost concerns in any

emergency landing situation. The earth is covered 71% by water and many major

airports are situated oceanside. Assume that an aircraft did not have a mid-air

explosion and all available signs indicate that it crashed somewhere in the ocean, this

is an aircraft water-entry problem. Concerned with Germanwings Flight 9525 crash

incident in March 2015, numerical simulations of the crashing of the Airbus A320 into

a wall by using Computational Structural Dynamics (CSD) software ANSYS Explicit

Dynamics and LS-DYNA can help us understand the physical mechanisms at work

and also to improve passenger safety. It also shows how computational mathematics

and mechanics can help us understand the physical nature of an aircraft crash, how
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to model and compute it, and how this knowledge is helping safe civil aviation and

other aerospace related undertakings.

In the second part of this dissertation, first, we discuss the water entry problem.

Second, we simulate the impact and damage of an aircraft, Airbus A320, crashing

into a wall by using both ANSYS Explicit Dynamics and LS-DYNA.
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2. INTRODUCTION TO OPENFOAM SOFTWARE AND USAGE

2.1 Introduction

In this Section, we introduce the OpenFOAM software. There is a revolution go-

ing on, impacting and transforming how computational mechanics and the associated

design and optimization are done: the emergence, availability, and large-scale use of

OpenFOAM [20]. It belongs to the contemporary open-source trend not unlike the

roles played by the Linux operating system or the Internet encyclopedia Wikipedia.

OpenFOAM is free and is used by thousands of people worldwide in both academic

and industrial settings. The acronym OpenFOAM stands for Open Source Field

Operation and Manipulation.

OpenFOAM was born in the strong British tradition of fluid dynamics research,

specifically at The Imperial College, London, which has been a center of CFD re-

search since the 1960’s. The original development of OpenFOAM was begun by Prof.

David Gosman and Dr. Radd Issa, with principal developers Mr. Henry Weller and

Dr. Hrvoje Jasak. It was based on the finite volume method (FVM) [28], an idea to

use C++ and object-oriented programming to develop a syntactical model of equa-

tion mimicking (see Table 2.2), and scalar-vector-tensor operations. A large number

of PhD students and their theses have contributed to the project. Weller and Jasak

founded the company Nabla Ltd., but it was not successful in marketing its prod-

uct FOAM (the predecessor of OpenFOAM) and folded in 2004. Weller founded

OpenCFD Ltd. in 2004 and released the GNU general public license of OpenFOAM

software. OpenFOAM constitutes a C++ CFD toolbox for customized numerical

solvers (over 60 of them) that can perform simulations of basic CFD, combustion,

turbulence modeling, electromagnetics, heat transfer, multiphase flow, stress analysis,
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and even financial mathematics modeled by the Black-Scholes equation. In August

2011, OpenCFD was acquired by Silicon Graphics International (SGI). In September

2012, SGI sold OpenCFD Ltd to the ESI Group.

The revenue and survival strategy of the company, OpenCFD Ltd. (which has

been absorbed into ESI Group), is a “Redhat model” [40] by providing support,

training, and consulting services. While OpenFOAM is open-source, the development

model is a “cathedral” style [41] where code contributions from researchers are not

accepted back into the main distribution due to strict control of the code base.

For researchers who want to distribute their developments, and find other online

documentation, there are a community-oriented discussion forum [19], a wiki [1],

and an international summer workshop [22].

Now, with the open-source libraries in OpenFOAM, one does not have to spend

one’s whole career writing CFD codes, or be forced to buy commercial softwares.

Many other users of OpenFOAM have developed relevant libraries and solvers that

are either posted online or may be requested for free. The number of OpenFOAM

users has been steadily increasing. It is now estimated to be of the order of many

thousands, with the majority of them being engineers in Europe. But the U.S. is

catching up.

2.2 A Sketch of How to Use OpenFOAM

For beginners who are enthusiastic to learn how to use OpenFOAM to obtain

CFD solutions, the best way is to study the many tutorial examples available in [20].

One such tutorial is the lid-driven cavity case [6]. (Such a case will also be computed

in Cases 1 and 2 in Section 5.) It provides nearly all information from start to finish

as to how to use OpenFOAM, including pre-processing, solving (i.e., how to run the
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codes) and post-processing. The structure of OpenFOAM could be seen in Chart. 2.1.

The tutorial has a couple of dozen pages. If the beginner can get some help from an

experienced OpenFOAM user, then it usually takes only a few weeks to run a simple

OpenFOAM computer program for this problem.

Chart 2.1: The structure of OpenFOAM.

As most of the readers may not necessarily be interested in running OpenFOAM

codes for now, in this section we will mainly give some brief sketch. We first illustrate

this for a simple elliptic boundary value problem

 ∇2u(x, y, z) = f(x, y, z), on Ω ⊆ R3,

u(x, y, z) = g(x, y, z), on the boundary ∂Ω.
(2.1)

In OpenFOAM, one can use a Laplacian solver in the heat transfer library to obtain

numerical solutions. By using the C++ language, in OpenFOAM Eq. (2.1)1 is written

7



Table 2.1: OpenFOAM code for the potential equation (2.1).

// define field scalar u and f

volVectorField u, f;

// construct the Laplacian equation and solve it

solve

(

fvm::laplacian(u) == f

);

as in Table 2.1.

Note that the inhomogeneous Dirichlet boundary condition, given in (2.1)2, will

be prescribed elsewhere, in the “time directories” in the Case Directory Structure as

shown in Chart 2.2. If, instead of (2.1)2, we have inhomogeneous Neumann or Robin

boundary conditions such as

∂u(x, y, z)

∂n
= g(x, y, z),

∂u(x, y, z)

∂n
+ αu(x, y, z) = g(x, y, z), on ∂Ω, (2.2)

they can be specified similarly in the time directories.

To numerically solve a PDE by using OpenFOAM, a user needs to create a

Case Directory Structure as shown in Chart 2.2. Normally, it contains three sub-

directories. The user first gives a name for the <case>. The compositions of the

various sub-directories are indicated in Chart 2.2.

Now, we look at the core case of this section, the incompressible Navier-Stokes
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Chart 2.2: Case directory structure (adapted from [20]).

<case>

system

controlDict

fvSchemes

fvSolution

constant

. . . Properties

polyMesh

points

cells

faces

boundary

time directories

(control parameter: ∆ t, ∆ x, maximum
Courant number, etc)

(discretization schemes for ∇, ∇2, ∇×,
interpolation, etc.)

(linear algebra solvers for the
discretized, linear systems.)

(viscosity, gravity, various coefficients.)

(mesh generation files by
BlockMeshDict.)

(initial and boundary conditions.)
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Table 2.2: OpenFOAM code for the N-S equation (2.3). Here as well as in Table
2.1, equation mimicking is quite obvious. Note that the specifications fvm and fvc
are selected by the user from the fvSchemes dictionary in the system dictionary, cf.
Chart 2.1. Here fvm::laplacian means an implicit finite volume discretization for

the Laplacian operator, and similarly for fvm:: div for the divergence operator. On
the other hand, fvc::grad means an explicit finite volume discretization for the

gradient operator. The parentheses ( , ) means a product of the enclosed
quantities, including tensor products.

Solve

(

fvm::ddt(rho,U)

+ fvm::div(U,U)

- fvm::laplacian(mu,U)

==

- fvc::grad(p)

+ f

);

(N-S) equations in CFD. The governing equations are

∂(ρu)

∂t
+∇ · (ρuu)− µ∇2u = −∇p+ f(x, y, z, t), (2.3)

∇ · u = 0. (2.4)

Note that in (2.2), uu is defined to be the 3× 3 matrix

uu = [uiuj]3×3.

One can specify the given initial and boundary conditions on u in the “time direc-

tories” of Chart 2.2.

An effective algorithm for solving the coupled system (2.3) and (2.4) is the PISO

(pressure-implicit with splitting of operators) algorithm of Issa [13]; see also [39]. In
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OpenFOAM, basically, Eq. (2.3) is written as shown in Table 2.2.

With some details, the PISO algorithm is implemented in OpenFOAM as shown

in Table 2.3. This (largely) takes care of the equation solving step.

For pre-processing involving mesh generation, one can use the utility blockMesh,

supplied in OpenFOAM, to first generate a rectangular mesh for a cubic domain.

The input data consists of coordinates of 8 vortices of the cube and numbers of

cells in each direction, (nx, ny, nz). The output is a rectangular mesh containing

nx × ny × nz cells. In case of more complicated geometry, one can use either the

snappyHexMesh utility or third-party packages such as Gambit meshing software

[17], with subsequent conversion into OpenFOAM format.

Finally, for post-processing, to produce graphical output [23], OpenFOAM uses

an open-source, multi-platform data analysis and visualization application called

ParaView [38]. Alternatively, one can also use third party commercial products such

as EnSight [12].

As opposed to a monolithic solver as is typically seen in commercial software,

pisoFoam is one of 76 standard solvers that are included in the OpenFOAM dis-

tribution. These solvers are tailored to specific physics in the broad categories of

combustion, compressible flow, discrete methods, electromagnetics, financial, heat

transfer, incompressible flow, Lagrangian particle dynamics, multiphase flow, and

stress analysis. There are also 80+ standard utilities for pre- and post-processing

of data, parallel computing, and mesh creation and manipulation. For all of these

different programs, the burden is on the user to verify that the implemented physics

and models match their needs and intended application.
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Table 2.3: The OpenFOAM code to solve the N-S equation of
incompressible fluid. Note that the codes from lines (a) to (b)

implement the PISO algorithm [13, 39].

//define field vector fluid velocity u and f, face flux phi, and pressure p

volVectorField u, f;

volScalarField p;

surfaceScalarField phi;

//define constant parameter fluid dynamical viscosity nu

scalarField nu;

//construct the fluid velocity equation

fvVectorMatrix UEqn (

fvm::ddt(u) + fvm::div(phi, u) - fvm::laplacian(nu, u) - f ) (a)
//solve the momentum equation using explicit pressure

solve (

UEqn == -fvc::grad(p) )

//predict the intermediate fluid velocity to calculate face flux

volVectorField rUA = 1.0/UEqn.A();

u = rUA *UEqn.H();

phi = fvc::interpolate(u) & mesh.Sf();

//construct the pressure equation using the constraint from continuity equation

fvScalarMatrix pEqn (

fvm::laplacian(rUA,p) == fvc::div(phi) )

pEqn.solve();

//correct the fluid velocity by the post-solve pressure and update face flux

u = u - rUA*fvc::grad(p);

phi = phi - pEqn.flux(); (b)
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2.3 Problem Description

This CFD model contains the geometry of the Horizontal axis wind turbine

(HAWT) where a wind turbine consisting of three blades with 50 m radius. The

physical setup is provided by Dr. Alain Perronnet. The computational domain con-

tains the rotor region and an outer cylinder. It extends from approximately 1.87

times blades radius upwind to 7.22 times blades radius downwind of this wind tur-

bine. A uniform incoming velocity 8 m/s is prescribed for the wind and a uniform

angular velocity of the wind turbine is set 75 deg/s. The wind direction is exactly

perpendicular to the plane of the turbine blades. The main grids were unstructured

with polyhedral mesh elements. The total grid consists of approximately 0.7 million

cells for the computational domain. The geometry of our model could be seen in

Fig. 2.1.

Figure 2.1: Geometry of the wind turbine.
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2.3.1 Problem Setup and Configurations

In the following, we will describe how to pre-process, run, and post-process our

case by OpenFOAM. For our case, we use pimpleDyMFoam solver which is a

transient solver for incompressible flow of Newtonian fluids on a moving mesh by

using the PIMPLE (merged PISO-SIMPLE ) algorithm to solve it.

2.3.2 Pre-Processing

2.3.3 Mesh Generation

In OpenFOAM, there are two utilities which are used to create meshes. One

is the blockMesh utility which can be used to generate simple meshes of blocks

containing hexahedral cells and the other one is the snappyHexMesh utility which

is for generating complex 3-D meshes consisting of hexahedral and split-hexahedral

cells from triangulated surface geometries in Stereolithography (STL) format. The

domain of one wind turbine case consists of one block, one outer cylinder, and one

propeller surrounded by the smaller cylinder. We are going to use blockMesh

utility to make the background mesh for the block and snappyHexMesh utility

to make the mesh for the wind turbine and cylinders. We must build the external

boundary to create the background mesh by using blockMesh before executing

snappyHexMesh.

The mesh of outside block in our domain is made by the blockMesh utility.

The steps of the blockMesh utility creating the mesh are reading a file called

blockMeshDict which is in the folder polyMesh under the directory constant, gener-

ating the mesh, and writing out the data points, pointZones, pointLevel, faces,

faceZones, cellLevel, cellZones, neighbour, owner, and boundary under the

same folder.

The blockMeshDict entries for this case can be seen as follows.

14



convertToMeters 445.455;

vertices((-0.81 -0.3 -0.3)

(-0.81 0.3 -0.3)

(0.21 0.3 -0.3)

(0.21 -0.3 -0.3)

(-0.81 -0.3 0.3)

( -0.81 0.3 0.3)

( 0.21 0.3 0.3)

(0.21 -0.3 0.3));

blocks( hex ( 4 5 6 7 0 1 2 3) (12 20 12) simpleGrading (1 1 1));

edges ( );

boundary ( walls{type wall;

faces((1 5 6 2)

(1 2 3 0)

(3 7 4 0)

(7 6 5 4));}

inlet{ type patch;

faces

((2 6 7 3));}

outlet

{type patch;

faces((0 4 5 1));});

The description of important keywords in the blockMeshDict file can be seen

in Chart 2.3.

In our case, we generate the background mesh by subdividing a rectangular par-
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Chart 2.3: The description of keywords in the blockMeshDict file (adapted from [21]).

allelepiped 449.9.955 × 267.273 × 267.273 in 108 × 44 × 44 parts. It has 209088

hexahedra cells.

To run the blockMesh utility, we type blockMesh in the terminal within the

case directory. The running status of the case will be reported in the terminal. The

checkMesh utility could be used to check the validity of the mesh after we generate

it.

For our case, the geometry of the outer cylinder and one wind turbine surrounded

by a smaller cylinder are specified through obj files in the folder triSurface under the

directory constant. The mesh of the wind turbine system is made by the snappy-

HexMesh utility. The steps of the snappyHexMesh utility creating the mesh are

generating initial mesh, splitting cells by feature edges, splitting cells by surface, re-

fining regions, removing cells, splitting cells by regions, snapping surface, and adding

layers.

The snappyHexMeshDict entries for this case can be seen as follows.
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castellatedMesh true;

snap true;

addLayers false;

geometry

{ innerCylinder.obj

{ type triSurfaceMesh;

name innerCylinder;

regions

{ascii { name innerCylinder; }}}

innerCylinderSmall.obj

{ type triSurfaceMesh;

name innerCylinderSmall;

regions

{ascii { name innerCylinderSmall;}}}

outerCylinder.obj

{ type triSurfaceMesh;

name outerCylinder;

regions

{ascii{ name outerCylinder;}}}

propellerTip.obj

{ type triSurfaceMesh;

name propellerTip;

regions

{ascii{ name propellerTip;}}}};
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castellatedMeshControls

{ features

( { file "innerCylinderSmall.eMesh";

level 4;}

{ file "outerCylinder.eMesh";

level 0;}

{ file "propellerTip.eMesh";

level 4;});

refinementSurfaces

{ innerCylinder

{ level (2 3);

cellZone innerCylinder;

faceZone innerCylinder;

cellZoneInside inside;}

innerCylinderSmall

{ level (4 4);

cellZone innerCylinderSmall;

faceZone innerCylinderSmall;

cellZoneInside inside;}

outerCylinder

{ level (0 0);}

propellerTip

{ level (4 6);} }

resolveFeatureAngle 30;
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refinementRegions

{ innerCylinder

{ mode inside;

levels ((1E15 3));}

innerCylinderSmall

{ mode inside;

levels ((1E15 4));}

outerCylinder

{ mode inside;

levels ((1E15 0));} }

locationInMesh (-350 0 0);

allowFreeStandingZoneFaces true;}

snapControls

{nSmoothPatch 3;

tolerance 4.0;

nSolveIter 300;

nRelaxIter 5;

nFeatureSnapIter 20; }

addLayersControls

{ relativeSizes true;

layers { }

expansionRatio 1.0;

finalLayerThickness 0.3;
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minThickness 0.1;

nGrow 0;

featureAngle 30;

nRelaxIter 3;

nSmoothSurfaceNormals 1;

nSmoothNormals 3;

nSmoothThickness 10;

Stop layer growth on highly warped cells

maxFaceThicknessRatio 0.5;

maxThicknessToMedialRatio 0.3;

minMedianAxisAngle 90;

nBufferCellsNoExtrude 0;

nLayerIter 50;}

meshQualityControls

{ maxNonOrtho 65;

maxBoundarySkewness 20;

maxInternalSkewness 4;

maxConcave 80;

minVol 1e-13;

minTetQuality -1;

minArea -1;

minTwist 0.01;

minDeterminant 0.001;

minFaceWeight 0.05;

minVolRatio 0.01;
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Chart 2.4: The description of keywords in the snappyHexMeshDict file (adapted from
[21]).

minTriangleTwist -1;

nSmoothScale 4;

errorReduction 0.75;

relaxed { maxNonOrtho 75;}}

debug 0;

mergeTolerance 1e-6;

The description of important keywords in the snappyHexMeshDict file can be

seen in Chart 2.4.

We could run snappyHexMesh on this snappyHexMeshDict file by typing

snappyHexMesh in the terminal within the case directory.
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2.3.4 Boundary and Initial Conditions

After blockMesh and snappyHexMesh complete mesh generation, the details

of boundary geometry can be viewed by the boundary file in the polyMesh folder

under the constant directory. Hence, we can examine the type and number of faces

for the geometry. For our case, the boundary conditions can be seen as follows:

(inlet

{ type patch;

nFaces 268;

startFace 1658757;}

outlet

{ type patch;

nFaces 112;

startFace 1659025;}

outerCylinder

{ type wall;

nFaces 976;

startFace 1659137;}

propellerTip

{ type wall;

nFaces 5741;

startFace 1660113;}

AMI1

{ type cyclicAMI;

nFaces 22632;

startFace 1667522;
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matchTolerance 0.0001;

neighbourPatch AMI2;

transform noOrdering;}

AMI2

{ type cyclicAMI;

nFaces 22632;

startFace 1690154;

matchTolerance 0.0001;

neighbourPatch AMI1;

transform noOrdering;})

The initial field data is saved in a 0 directory under the case directory since

our case is set up to start at the beginning time t = 0 s. There are two files in 0

directory, pressure (p) and velocity (U ). The initial values and boundary conditions

for pressure and velocity fields of regions can be set in these two files.

The p entries for this case are as follows:

dimensions [0 2 -2 0 0 0 0];

internalField uniform 0;

boundaryField

{inlet

{type zeroGradient;}

outlet

{type fixedValue;

value uniform 0;}

outerCylinder

{type zeroGradient;}
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"propeller.*"

{type zeroGradient;}

AMI1

{type cyclicAMI;

value uniform 0;}

AMI2

{type cyclicAMI;

value uniform 0;}}

At the beginning of these two files, there are dimensional units. The format for

a dimensionSet is 7 scalars with square brackets. The base units for the Système

International (SI) and the United States Customary System (USCS) can be seen in

Chart 2.5. The description of important keywords in the p and U field data files

can be seen in Chart 2.6. For boundary field, a boundary is normally divided into a

set of patches, and one or more area of the boundary surface can be included in one

patch, even those areas are not connected to each other. There are three main type

of patches: Base type which type of patch only describes the geometry, Primitive

type which type of patch is assigned the numerical condition to a filed variable on,

and Derived type which type of patch is a complicated patch condition and derived

from Primitive type. The examples of these three type of patches can be seen in

Chart ??. The description of the basic, primitive, and derived patch field types can

be viewed in Chart 2.8, Chart 2.9, and Chart 2.10, respectively.

For our case, the boundary consists of inlet, outlet, outer cylinder, and propeller.

Both intern fields are set to be uniform. For inlet, propellers, and camels, all are

given a zeroGradient boundary condition in p, and this means that the normal

gradient of pressure is zero. The fixedValue condition with a value of uniform 0 is
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Chart 2.5: Base units for Système International SI and the United States Customary
System USCS (adapted from [21]).

Chart 2.6: The description of keywords in the p and U field data files (adapted from
[21]).

Chart 2.7: The examples of three type of patches (adapted from [21]).
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Chart 2.8: The description of the basic patch field types (adapted from [21]).

Chart 2.9: The description of the primitive patch field types (adapted from [21]).
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Chart 2.10: The description of the derived patch field types (adapted from [21]).
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assigned to outlet in p. The wind comes from the inlet in the negative x-direction

so we assign a fixedValue condition with a value of uniform (-8 0 0) to inlet and

outer cylinder in U . The outlet is given a inletOutlet boundary condition with a

value of uniform (-8 0 0) in U . The movingWallVelocity boundary condition is

assigned to propeller with a value of uniform (0,0,0) in U .

2.3.5 Setup of the Model

The properties of rotating motion, center of rotation and angular velocity for the

propeller can be specified in the dynamicMeshDict file in constant directory.

The dynamicMeshDict entries for this case are as follows:

dynamicFvMesh solidBodyMotionFvMesh;

motionSolverLibs ( "libfvMotionSolvers.so" );

solidBodyMotionFvMeshCoeffs

{

cellZone innerCylinderSmall;

solidBodyMotionFunction rotatingMotion;

rotatingMotionCoeffs

{

CofG (0 0 0);

radialVelocity (-75 0 0); // deg/s

}

}

For our case, we set the center of rotation to be (0,0,0) and the angular velocity for

the propeller in the negative x-direction (-75,0,0).
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Chart 2.11: The description of keywords in the RASProperties file (adapted from [21]).

2.3.6 Physical Properties

The physical properties, such as the viscosity of air and type of turbulence models

can be set up in the transportProperties and turbulenceProperties files in the

constant directory.

The transportProperties entries for this case are as follows:

transportModel Newtonian;

nu nu [ 0 2 -1 0 0 0 0 ] 1e-6;

ν is the kinematic viscosity of air and we use the default value 10−6 m2/t.

In the turbulenceProperties file, there are three turbulence models we can use,

laminar which does not use any turbulence models, RASModel which uses Reynolds-

averaged stress (RAS) modeling, and LESModel which uses large eddy simulation

(LES) modeling. If RASModel is selected, the options of RAS modeling is specified in

the RASProperties file under the constant directory. The description of keywords

in the RASProperties file can be seen in Chart 2.11. The library of all RAS models

in OpenFOAM could be seen in Chart 2.12. If LESModel is selected, the choices

of LES modeling is stored in the LESProperties file under the constant directory.

The description of keywords in the LESProperties file can be seen in Chart 2.13.

The library of all LES models in OpenFOAM could be seen in Chart ??.
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Chart 2.12: Libraries of RAS turbulence model (adapted from [21]).

Chart 2.13: The description of keywords in the LESProperties file (adapted from [21]).
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Chart 2.14: Libraries of LES turbulence model (adapted from [21]).
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Chart 2.15: The description of keywords in the fvSchemes file (adapted from [21]).

The turbulenceProperties entries for this case are as follows:

simulationType RASModel;

The RASProperties entries for this case are as follows:

RASModel kEpsilon;

turbulence on;

printCoeffs on;

For our incompressible case, we choose kEpsilon which is one of RAS turbulence

model. We turn on turbulence model and printCoeffs switch in our case.

2.3.7 Discretisation Schemes and Linear-Solver Settings

The option of finite volume numerical discretisation schemes can be specified in

the fvSchemes file under the system directory. The choice of linear equation solvers,

tolerances and algorithms used in the solution can be made in the fvSolution file

under the system directory. The description of main keywords in the fvSchemes

file can be viewed in Chart 2.15.

The fvSchemes entries for this case are as follows:
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ddtSchemes

{ default Euler;}

gradSchemes

{ default Gauss linear;

grad(p) Gauss linear;

grad(U) cellLimited Gauss linear 1;}

divSchemes

{ default none;

div(phi,U) Gauss linearUpwind grad(U);

div(phi,k) Gauss upwind;

div(phi,epsilon) Gauss upwind;

div((nuEff*dev(T(grad(U))))) Gauss linear;}

laplacianSchemes

{ default Gauss linear corrected;}

interpolationSchemes

{ default linear;}

snGradSchemes

{ default corrected;}

fluxRequired

{ default no;

pcorr ;

p ;}

The fvSolution entries for this case are as follows:

solvers

{ pcorr
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{ solver GAMG;

tolerance 1e-2;

relTol 0;

smoother DICGaussSeidel;

cacheAgglomeration no;

nCellsInCoarsestLevel 10;

agglomerator faceAreaPair;

mergeLevels 1;

maxIter 50;}

p

{ $pcorr;

tolerance 1e-5;

relTol 0.01;}

pFinal

{ $p;

tolerance 1e-6;

relTol 0;}

"(U|k|epsion)"

{ solver smoothSolver;

smoother GaussSeidel;

tolerance 1e-6;

relTol 0.1;}

"(U|k|epsilon)Final"

{ solver PBiCG;

preconditioner DILU;

tolerance 1e-6;
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relTol 0;}}

PIMPLE

{ correctPhi no;

nOuterCorrectors 3;

nCorrectors 1;

nNonOrthogonalCorrectors 0;}

relaxationFactors

{ "(U|k|epsilon).*" 1;}

cache

{ grad(U);}

2.3.8 Control

The time settings, such as start/end time and fixed/adjusted time step, and the

form of data output can be set up in the controlDict file under the system directory.

The description of main keywords in the fvSchemes file can be viewed in Chart

2.16.

The controlDict entries for this case are shown below:

application pimpleDyMFoam;

startFrom startTime;

startTime 0;

stopAt endTime;

endTime 200;

deltaT 0.001;

writeControl adjustableRunTime;

writeInterval 0.1;

purgeWrite 0;
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Chart 2.16: The description of keywords in the controlDict file (adapted from [21]).
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writeFormat binary;

writePrecision 6;

writeCompression off;

timeFormat general;

timePrecision 6;

runTimeModifiable true;

adjustTimeStep yes;

maxCo 2;

2.4 Running the Code

For our case, we use pimpleDyMFoam solver. To run the pimpleDyMFoam

solver, we type pimpleDyMFoam in the terminal within the case directory. The

progress of the case, such as the current time, initial and final residuals for all fields,

and maximum Courant number, will be showed on the terminal window during the

calculation.

2.5 Post-Processing

2.5.1 Settings of ParaView

The main post-processing utility used by OpenFOAM is paraFoam and it uses

the software ParaView which is an open source visualisation application. To run

the paraFoam utility, we type paraFoam in the terminal within the case directory.

The panel of ParaView for our case will be showed (Fig. 2.2). After opening the

panel of ParaView, we click our case under Pipeline Browser to make it hightlighted

in blue and switch the eye button alongside our case on to show the graphs.

The Properties panel controls the input settings for the case, such as time
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Figure 2.2: The panel of ParaView.

steps, region status, and filed status. We enable the patches, inlet, outlet, outer

cylinder, and propeller, in Mesh Parts which we want to show in the geometry

and mesh graphs in the Properties panel (Fig. 2.3). We also enable the p and U

fields in Volume Fields to display filed plots (Fig. 2.4). After the setups are done,

we click Apply to finish the settings and display the results.

The Display panel (Fig. 2.5) controls the visual representation of the case, such

as colors. In the Display panel, we select U and Magnitude from the Color by

menu in the Color panel to make the plot of velocity. We could change the color

scale of velocity by the settings in Edit Color Map.... In the Color Scale panel

of the Color Scale Editor window (Fig. 2.6), we click Choose Preset. In the

Choose Preset panel (Fig. 2.7), we could choose common color scale Blue to Red

38



Figure 2.3: The properties panel 1.

Rainbow instead of the default one, CIELab Blue to Red, to make our plot look

clearer and prettier. After clicking the OK confirmation button, we could also click

the Make Default button so that ParaView will always use this type of color bar

for our case. If the data range is not automatically updated to the max/min limits

of a field, we select Rescale to Data Range and the data will be at appropriate

intervals. We can show color bar for the field by enabling Show Color Legend in

the Color Legend panel of the Color Scale Editor window. We can also justify

the color bar, such as text size, font selection, and numbering format for the scale.

In the Style panel (Fig. 2.8), the mesh can be represented by select Wireframe

from Representation menu.

2.5.2 Plots

At first, we select Clip (Fig. 2.9) from the Filter menu at the top menu bar

to create the hemi-cylinder. We input (0, 0, 0) for Origin and (0, 0, 1) for Normal

in the Display panel under Clip to make the center and normal vector of this
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Figure 2.4: The properties panel 2.

hemi-cylinder to be (0, 0, 0) and (0, 0, 1) (Z axis).

We can make a contour plot by selecting Contour from the Filter menu. If the

module is the 3D case, the contours filter will be a set of 2D surfaces that represent

a constant value, i.e. isosurfaces. The contour plot can be seen in (Fig. 2.10).

Second, We select Slice (Fig. 2.11) from the Filter menu to create the cutting

plane. We use the same settings as Clip to make the center and normal vector of

this cutting plane to be (0; 0; 0) and (0; 0; 1) (Z axis).

Vector plots are made by using the Glyph filter. In ParaView, by default,

vectors are plotted on cell vertices but we would like to plot them at cell centers.

This could be done by applying the Cell Centers filter to the case, and then applying

the Glyph filter to the resulting cell center data. In the Properties panel of Glyph,

since it is the only vector field present, the velocity field, U, is automatically selected

in the vectors menu. In the Scale Mode menu, we choose off which means each

glyph has the same length, instead of the default value Vector, where the glyph
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Figure 2.5: The display panel 1.

length is proportional to the vector magnitude. The Set Scale Factor parameter

controls the base length of the glyphs. The vector plot can be seen in (Fig. 2.12).

Streamlines plots are made by creating tracer lines using the Stream Tracer

filter. We could adjust the number and range of tracer lines by changing the Number

of Points and Radius in the Properties panel. The streamlines plot can be seen

in (Fig. 2.13).
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Figure 2.6: The color scale edit.

Figure 2.7: Preset color scales.
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Figure 2.8: The display panel 2.

Figure 2.9: The clip filter.
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Figure 2.10: The contour plot.

Figure 2.11: The slice filter.
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Figure 2.12: The glyph plot.

Figure 2.13: The streamtracer plot.
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3. INTRODUCTION TO ANSYS FLUENT SOFTWARE AND USAGE

3.1 Introduction

In this Section, we introduce the ANSYS FLUENT software [11]. This software

is a product of ANSYS, Inc., considered to be one of world’s largest computational

fluid dynamics (CFD) developers. FLUENT software could be used to compute and

simulate a wide range of complex physical problems, especially fluid flow problems.

Therefore, scientists and research engineers could build virtual models to visualize

and predict the performance of their design problems. This gives them an intuitive

and efficient way for understanding and problem-solving, as it saves expensive exper-

imental cost. It also makes FLUENT useful tool of the computer-aided engineering

(CAE) process for the manufacturing industry.

FLUENT has excellent parallel processing capability so it could deal with large-

scale problems well by using multiple processors to run one single simulation. FLU-

ENT uses the finite volume method to discretize the domain and the governing equa-

tions of the problem. Hence, by employing the control-volume-based technique, the

governing equations of the problem could be converted into algebraic equations and

then solved numerically. Creating user-defined functions in FLUENT would allow

our design and solution process more flexibly. It can implement the new user mod-

els and customize the existing user models extensively for specific applications, e.g.,

wind turbines.
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3.2 Problem Description

This CFD model contains similar geometry of the horizontal axis wind turbine

(HAWT) where a wind turbine consisting of three blades with 50 m radius to the

one in Section 2. The physical setup is provided by Dr. Alain Perronnet, too. The

computational domain contains the rotor region which is surrounded by a smaller

cylinder and an outer cylinder inside the block. It extends from approximately

1.87 times blades radius upwind to 7.22 times blades radius downwind of this wind

turbine. The wind comes from the left hand side, the inlet, and goes out of the right

hand side, the outlet. The uniform incoming velocity of the wind is 8 m/s. The

uniform angular velocity of the wind turbine is 75 deg/s. The geometry of our model

is given in Fig. 3.1.

Figure 3.1: Geometry of our model of the wind turbine in an outer cylinderical domain.
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3.2.1 Problem Setup and Configurations

In the following sections, we show how to set up the problem in some details.

3.2.2 Preparation

We start ANSYS FLUENT by using FLUENT launcher (Fig. 3.2). In FLUENT

launcher, we can specify the options that fit our models. For our case, we select 3D

for the three-dimensional solver under Dimension. Under Display Option, we can

make decisions about the graphic windows within the FLUENT application. We en-

able Display Mesh After Reading, which asks FLUENT to automatically display

all of the boundary zones of the mesh immediately after it reads a mesh or case file,

Embed Graphics Windows, which has the graphics windows embedded within

FLUENT instead of floating graphics windows, and Workbench Color Scheme,

which shows a blue background in the FLUENT graphics windows instead of the

classic black one (Fig. 3.3). Under Options, Double Precision can be used to run

the double-precision solver in FLUENT instead of the default single-precision solver.

The double-precision solver uses 64 bits to represent each floating point number,

compared with the single-precision solver which uses 32 bits. In addition to preci-

sion, the extra bits also increase the range of the numbers which can be represented,

nevertheless at the cost of much more memory space (for using double precision).

The Use Job Scheduler can run FLUENT with various job schedulers such as, the

Microsoft Job Scheduler for Windows, or LSF, SGE, and PBS Pro on Linux. We did

not enable these two options in our case. Under Processing Options, we can select

one from two options, serial or parallel, to run the solver. After enabling Parallel,

we can specify the number of processors which we would like to use. We use the

serial solver to run our case.
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Figure 3.2: The FLUENT launcher.

3.2.3 Mesh

We read our mesh file from the folder.

File → Read → Mesh. . .

3.2.4 General

The options of mesh and solver can be specified under General (Fig. 3.4).

First, we display our mesh.

General → Display (Fig. 3.5)

Mesh can be displayed in different ways such as nodes, edges, faces, or partitions;

meanwhile, we can select the surface areas that we would like to see.

The mesh can be scaled in case of needs.

General → Scale (Fig. 3.6)

There is information about dimensions of the mesh on the mesh scale panel. We
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Figure 3.3: The FLUENT display panel.

can scale the mesh by enabling Convert Units under Scaling, selecting the unit

we need under Mesh Was Created In, and clicking Scale. The working unit for

the length could be changed by selecting it under View Length Unit In. For our

case, we use the default unit m.

We define the units of the quantities for our model. The panel of units settings can

be seen in Fig. 3.7. We select angular-velocity and pressure under Quantities,

and deg/s and pascal under Units respectively.

After manipulating our mesh, we check the mesh to see the information of its

statistics.

General → Check (Fig. 3.8)

Various checks will be done on the mesh by FLUENT and the progress will be
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Figure 3.4: The general panel.

reported in the console window. There are the statistics for Domain Extents, Volume,

and Face area. Errors in the mesh will be reported here. Make sure that the reported

minimum volume under Volume statistics is a positive number or FLUENT could

not run the calculation. A negative minimum volume value means that one or more

cells in the solution domain have improper connectivity so this discretization area

needs to be repaired or removed.

There are two numerical methods we can choose in FLUENT. One is pressure-

based solver and the other is density-based solver. Originally, the pressure-based

solver is designed for low-speed incompressible flows and mildly compressible flows,

and the density-based solver is used for high-speed compressible flows. Nevertheless,

lately both solvers have been remodeled and extended to solve for a broad range of

flow conditions (from incompressible to highly compressible). Based on the origin of

the density-based solver’s formulation, the density-based solver may be more accurate

than the pressure-based solver for high-speed compressible flows.
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Figure 3.5: The mesh display panel.

In both approaches, the velocity field is derived from the momentum equation:

∮
ρ−→v −→v · d

−→
A = −

∮
pI · d

−→
A +

∮
¯̄τ · d
−→
A +

∫
V

−→
F dV (3.1)

In the pressure-based solver, the pressure field is solved by a pressure (or pressure

correction) equation which is derived from the momentum equation (3.1) and the

continuity equation: ∮
ρ−→v · d

−→
A = 0 (3.2)

There are two pressure-based solver algorithms in FLUENT. One is the segregated al-

gorithm, which solves the governing equations one after another since each governing

equation is segregated from other equations, and the other one is the coupled algo-

rithm, which solves a coupled system of governing equations. In the density-based

solver, the density field is obtained from the continuity equation; meanwhile, the

pressure filed is solved by the equation of state. The governing equations are non-
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Figure 3.6: The mesh scale panel.

linear and coupled so the process of finding a solution must be calculated iteratively

until the numerical solution converges.

The iteration steps of pressure-based and density-based solution methods are

illustrated in Chart 3.1 and Chart 3.2, respectively.

For our case, we select Pressured-Based, Transient, and Absolute under

Type, Time, and Velocity Formulation, respectively to define the settings of our

solver.

3.2.5 Models

Since our case is about the wind turbine model, the viscous model is the only

model that we deal with.

Models → Viscous → Edit. . . (Fig. 3.9)

In the panel of viscous model (Fig. 3.10), we select k-epsilon(2 eqns), Real-

izable, and Enhanced Wall Treatment under Model, k-epsilon Model, and

Near-Wall Treatment, respectively, for our case while keeping the variables under
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Figure 3.7: The setup of units.

Model Constants as default values.

We will introduce and explain turbulence models and wall functions in details in

Section 4.

3.2.6 Materials

The only fluid material in our case is air so here we specify the properties of air

in the settings of materials.

Materials → air → Create/Edit. . . (Fig. 3.11)

The density and viscosity of air depend on the temperature, humidity, and so on.

According to International Standard Atmosphere (ISA), air has a density of 1.225

kg/m3 and a viscosity of 1.81×10−5 kg/m·s approximately. We select constant

under Density(kg/m3) and Viscosity(kg/m·s), and set the number to be 1.225

and 1.81e− 05, respectively, in the panel of air properties settings. (Fig. 3.12)
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Figure 3.8: The statistics of the mesh.

3.2.7 Cell Zone Conditions

In FLUENT, the fluid flow problems which involve moving parts (such as rotat-

ing turbine blades) can be solved in a moving reference frame instead of the default

stationary reference frame. When a moving reference frame is used, an additional

acceleration term would be considered in the original motion equation since a sta-

tionary reference frame is transformed to a moving reference frame. The flow features

could be modeled by solving those equations. For some problems, the entire com-

putational domain can be considered as a single moving reference domain. This is

called the single reference frame (SRF) approach. For some other problems with

more complicated geometries or multiple moving parts, the model must be broken

up into multiple fluid/solid cell zones and the interfaces between these cell zones
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Chart 3.1: Iteration steps of Pressure-Based solution methods.

should be well-defined. There are two approaches to solve this type of problems in

FLUENT:

• Multiple Moving Reference Frames

– Multiple Reference Frame (MRF) Model

– Mixing Plane Model

• Sliding Mesh Model

• Dynamic Mesh Model
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Chart 3.2: Iteration steps of Density-Based solution methods.

The MRF and mixing plane approaches are both approximations for steady states

and the main difference between these two approaches is that they use different ways

to treat the interfaces’ conditions. When the interactions between the stationary

and moving parts are unsteady, the sliding mesh approach could be used to capture

the transient behaviors of the fluid flow around the moving parts. Both sliding mesh

and dynamic mesh approaches allow us to move zones relative to each other and

the dynamic mesh approach can even adjust the mesh according to the changes.

The primary determining factor of using the sliding mesh approach or the dynamic

mesh approach is whether the problem involves the mesh deformation. If the mesh

in the problem is deforming, the dynamic mesh approach must be used. Otherwise,

either approach could be used. The sliding mesh approach would be recommended

if the mesh is not deforming in the problem since this approach is simpler and more

efficient than the dynamic approach.
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Figure 3.9: The panel of the models.

To simulate rotating blades in our case, we use the sliding mesh approach. We

start to set the cell zone conditions for the fluid inside the cylinder.

Cell Zone Conditions → fluid-1 → Edit. . . (Fig. 3.13)

In the panel of fluid settings (Fig. 3.14), we enable Mesh Motion in order to

use the sliding mesh approach and then click on Mesh Motion tab to set up the

conditions for the fluid. We use the default number 0, 0, 0 for X(m), Y(m), Z(m)

under Rotation-Axis Origin, respectively. For our case, we set the number to be

−75 for Speed(deg/s) under Rotational Velocity. We set the direction 1, 0, 0

for X, Y, Z under Rotation-Axis Direction. We do not need the translational

behavior so we use the default number 0, 0, 0 for X(m/s), Y(m/s), Z(m/s) under

Translation Velocity.

3.2.8 Boundary Conditions

After setting up the conditions for the interior fluid, we can start to set the

boundary conditions for other parts, inlet, outlet, outer cylinder, and turbine blades,

in our case.
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Figure 3.10: The setup of the viscous model.

First, we choose the type for the inlet and then start setting up the boundary

conditions.

Boundary Conditions→ inlet→ velocity-inlet under Type→Edit. . . (Fig. 3.15)

In the panel of the inlet settings (Fig. 3.16), we select Components, Abso-

lute, and Cartesian (X,Y,Z) under Velocity Specification Method, Refer-

ence Frame, and Coordinate System. We set the number (−8,0,0) for X-

Velocity (m/s), Y-Velocity (m/s), and Z-Velocity (m/s). For Superson-

ic/Initial Gauge Pressure (pascal) and Turbulence part, we use the default

values.

Second, we choose the type for the outlet and then start setting up the boundary

conditions.

Boundary Conditions → outlet → pressure-outlet under Type → Edit. . .
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Figure 3.11: The panel of the materials.

We retain the default boundary conditions for the outlet in the panel of the outlet

settings (Fig. 3.17).

Third, we choose the type for the outer cylinder and then start setting up the

boundary conditions.

Boundary Conditions → outer cylinder → wall under Type → Edit. . .

In the panel of the outer cylinder settings (Fig. 3.18), we select Moving Wall,

Absolute, Components, and No Slip under Wall Motion, Motion, and Shear

Condition, respectively. We change the number (−8,0,0) for X-Velocity (m/s),

Y-Velocity (m/s), and Z-Velocity (m/s) under Velocity Components.

Last, we choose the type for the turbine blades and then we start setting up the

boundary conditions.

Boundary Conditions → turbine blades → wall under Type → Edit. . .

In the panel of the turbine blades settings (Fig. 3.19), we select Moving Wall,

Relative to Adjacent Cell Zone, Rotational and No Slip under Wall Motion,
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Figure 3.12: The setup of air.

Motion, and Shear Condition, respectively. We set the number 0 under Speed

(deg/s). For the rotational properties, we change the value (0,0,0) for X (m), Y

(m), and Z (m) under Rotation-Axis Origin, and set the direction (1,0,0) for

X, Y, and Z under Rotation-Axis Direction.

3.2.9 Solution Methods

Since we choose the pressure-based solver to be the solver type for our case, we

can choose from various pressure-velocity coupling algorithms to attain the results

we want. There are two pressure-based solver in FLUENT. One is the segregated

algorithm and the other is the coupled algorithm. FLUENT provides five pressure-

velocity coupling algorithms: SIMPLE , SIMPLEC (SIMPLE-Consistent), PISO,

Fractional Step (FSM), and Coupled. The first four schemes use the pressure-based

segregated solver and the last one uses the pressure-based coupled solver.

SIMPLE stands for Semi-Implicit Method for Pressure-Linked Equations and it
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Figure 3.13: The panel of the cell zone conditions.

is normally used for steady-state problems. The SIMPLE algorithm uses the velocity

and pressure correction equations to make the mass conservation equation to solve

for the pressure field. ([? ])

The SIMPLEC algorithm is similar to the SIMPLE algorithm. The only difference

between these two algorithms is the expression for the face flux correction equation.

PISO is the acronym for Pressure Implicit with Split Operator. The PISO al-

gorithm is the extension of the SIMPLE algorithm and normally is used for the

time-dependent fluid flow problems. The primary differences between these two

algorithms is that the PISO algorithm does not apply under-relaxation and could re-

peat the momentum corrector step until the condition is satisfied. In FLUENT, the

PISO algorithm offers two additional corrections: neighbor correction and skewness

correction, to improve the efficiency of the calculation. ([? ])
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Figure 3.14: The setup of the cell zone conditions.

The Fractional Step Method is normally used for unsteady flow problems. FSM

uses operator-splitting (is also called approximate factorization) to decouple the mo-

mentum equations from the continuity equations to solve the problem and this way

is similar to the segregated solution algorithms. FSM could be enabled by using the

non-iterative time advancement (NITA) scheme.

The coupled algorithm can be used both in the steady-state flows problems and

the transient flows problems especially with poor mesh quality or large time steps.

This algorithm solves a coupled system of governing equations, i.e., the momentum

and continuity equations together.

To compare with the results in OpenFOAM, we use the SIMPLE algorithm for

the pressure-velocity coupling scheme. The solution parameters selection is as fol-
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Figure 3.15: The panel of the boundary conditions.

lows: we select SIMPLE for Scheme under Pressure-Velocity Coupling; mean-

while, we select Green-Gauss Cell Based, PRESTO!, Second Order Upwind,

Second Order Upwind, and Second Order Upwind, for Gradient, Pressure,

Momentum, Turbulent Kinetic Energy, and Turbulent Dissipation Rate un-

der Spatial Discretization, respectively; finally, we select First Order Implicit

under Transient Formulation. (Fig. 3.20)

3.2.10 Monitors

FLUENT can record residuals, drag coefficient, lift coefficient, and moment, and

report the results of these options. (Fig. 3.21)

We can make the plots of residuals during the calculation.

Monitors → Residuals → Edit. . .

In the panel of the residuals settings (Fig. 3.22), we select Print to Console and
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Figure 3.16: The setup of the inlet.

Plot under Options and leave the remaining as default values.

To record the drag and lift coefficients during the calculation, we can select the

wall zones of our interest and the force vector.

Monitors → Drag/Lift → Edit. . .

In the panel of the drag/lift settings (Fig. 3.23 and Fig. 3.24), we select Write and

Per Zone for both coefficients, and set the value (1,0,0) and (0,1,0) for (X,Y,Z)

under Force Vector, respectively. We also enable both of outer cylinder and

turbine blades under Wall Zones.

For the report of moment during the calculation, we could select the wall zones

of our interest, the moment axis, and the moment center.

Monitors → Moment → Edit. . .

In the panel of the moment settings (Fig. 3.25), we enable Write and Per Zone

and set the value (1,0,0) for (X,Y,Z) under both Moment Center and Moment
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Figure 3.17: The setup of the outlet.

Axis. We also enable both of outer cylinder and turbine blades under Wall

Zones.

3.2.11 Solution Initialization

Before FLUENT runs the calculation, the flow field in the entire domain must

be initialized. In the panel of the solution initialization (Fig. 3.26), we select Stan-

dard Initialization under Initialization Methods for our case. We choose inlet

under Compute from to start the initialization. The relative velocity formulation

is preferred to be used for the problem that most of fluid flow is rotating in the

domain in contrast to the absolute velocity formulation. For our case, if we select

Relative to Cell Zone, the calculation may have problems about convergence in

first few iteration steps by containing discontinuities. We select Absolute from Ref-
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Figure 3.18: The setup of the outercylinder.

erence Frame to avoid the convergence problems. Meanwhile, we set the values 0,

(−8,0,0), 0.06, and 0.0495 for Gauge Pressure (pascal), (X Velocity (m/s),Y

Velocity (m/s),Z Velocity (m/s)), Turbulent Kinetic Energy (m2/s2), and

Turbulent Dissipation Rate (m2/s3).

3.2.12 Calculation Activities

FLUENT can save the numerical results for the calculation. In order not to

occupy more space, we select to save the results for every 10 time steps. We set the

number 10 under Autosave Every (Time Steps) and start setting up the options

for the saved results.

Calculation Activities→ Edit. . . (Fig. 3.27) In the panel of autosave (Fig. 3.28),

we enable Each Time in the When the Data File is Saved, Save the Case in

order to do the post-processing work in other softwares. We can use the file names
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Figure 3.19: The setup of the propellertip.

by typing or browsing in the folder under File Name. In order to make the results

organized, we prefer the file names ordered by time steps so we select time-step

under Append File Name with.

3.2.13 Run Calculation

After finishing all settings for our model, we are ready prepare to run the cal-

culation. (Fig. 3.29) Check Case (Fig. 3.30) is recommended to do before the

calculation starts. After checking the quality of mesh, FLUENT shows the details

of mesh and offers recommendations for the case. We select Fixed under Time

Stepping Method for our case and set the numbers 0.0001 and 1000 under Time

Step Size (s) and Number of Time Steps, respectively, to start our calculation.

We keep the remaining values as the default values.
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Figure 3.20: The setup of the solution methods.

3.2.14 Graphics and Animations

FLUENT can display results by graphs or animations. (Fig. 3.31)

We can display contours of velocity magnitude on the wall zones. (Fig. 3.32)

Graphics and Animations → Contours → Set Up. . .

We enable Filled under Options and select Velocity. . . and Velocity Magni-

tude from Contours of. To display the contours of velocity on all wall zones, we

select wall from Surface Types.

3.2.15 Reports

FLUENT can calculate and display the reports for many statistics. (Fig. 3.33)

Since we have already set up the moment, drag coefficients, and lift coefficients in

Monitor, we can get reports in the prescribed folder.
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Figure 3.21: The panel of the monitors.

Figure 3.22: The setup of the residual monitors.
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Figure 3.23: The setup of the drag monitors.

Figure 3.24: The setup of the lift monitors.
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Figure 3.25: The setup of the moment monitors.

Figure 3.26: The setup of the solution initialization.
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Figure 3.27: The panel of the calculation activities.

Figure 3.28: The setup of the autosave.
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Figure 3.29: The setup of the run calculation.

Figure 3.30: The panel of the check case.
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Figure 3.31: The panel of the graphic and animations.

Figure 3.32: The setup of the contours.
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Figure 3.33: The panel of the reports.
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4. TURBULENCE MODELING

The fluid motion can be expressed by a mathematical model. The model observes

properties of the fluid motion by including three conservation laws: conservation of

mass, momentum and energy. The flow is assumed to be incompressible, a contin-

uum, and not moving at relativistic velocities so the motion of fluid substances can

be described by the continuity equation and the N-S equations. Since exact solu-

tions to the N-S equations are not straightforward and mostly unavailable, we need

to rely on numerical methods to find approximate solutions. There are a lot number

of numerical methods. The three classical and important ones are described here:

• Direct numerical simulation (DNS)

• Large eddy simulation (LES)

• Reynolds averaged Navier-Stokes simulation (RANS)

– one-equation model: Spalart-Allmaras model

– two-equation models: k − ε models, k − ω models

4.1 Direct Numerical Simulation (DNS)

The computation of numerical solutions, without the introduction of any addi-

tional approximations, except those associated with the numerical algorithms, is

called Direct Numerical Simulation (DNS). From a mathematical viewpoint this

would seem to be most logically sound, as mathematicians and many other theoreti-

cians normally desire great purity by being truly faithful to the model of problems

under treatment. In DNS, all of the motion which are contained in the flow are
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analyzed. The great majority of mathematical, numerical analysis papers published

are of the DNS type.

However, numerical solutions obtained using DNS are of quite limited usefulness.

The reason is that fluids exhibit turbulent behavior. Turbulence is characterized by

rapid and irregular fluctuations in the fluid properties with a wide range of length

and time scales. DNS computes a turbulent flow by discretizing and solving the N-S

equations on a sufficiently fine spatial mesh (spatial scale) along with sufficiently

small time steps (temporal scale) to resolve and capture the tiniest eddies and the

fastest fluctuations. There is very detailed information in the numerical results from

DNS. On one hand, engineers or researchers do not need that much information; on

the other hand, it is too expensive to employ DNS often.

The transition of flow from laminar or smooth to turbulent or irregular is de-

termined by the Reynolds number. For example, in a pipe, transition occurs at a

Reynolds number of approximately 2300, where the Reynolds number in this case is

defined as,

Re =
ρUd

µ
, (4.1)

where, ρ, µ, d and U are the fluid density, molecular viscosity, pipe diameter and

average velocity, respectively. Beyond Re = 4000 the flow is fully turbulent. The

range of length and time scales in a turbulent flow depends on the Reynolds number.

Kolmogorov [34] argued that the smallest scales of turbulence should be independent

of the largest scales. Dimensional analysis then gives the smallest spatial and time

scale, respectively, as

η = (
ν3

ε
)
1
4 , τη = (

ν

ε
)
1
2 , (4.2)

where ν and ε are the fluid kinematic viscosity and average viscous dissipation rate

of turbulent energy per unit mass. For turbulence in equilibrium the rate of viscous
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dissipation at the smallest scales must equal the rate of supply of energy from the

large scales. That is, ε ∼ U3/L, where U and L are the largest velocity and length

scales of the turbulence. This gives

L

η
∼
(
UL

ν

)3/4

= Re3/4. (4.3)

Thus, to simulate all scales of motion in a turbulent flow the grid size increases as

Re9/4. The number of grids is restricted by the storage space and CPU performance

of the machine so that DNS can be used possibly only in relatively low Reynolds

number problems and in simple geometric domain. Since the Reynolds number in

flows of engineering interest are of the order of 105 (or much higher in geophysical

flows), DNS is of little use in such problems.

To overcome this limitation researchers have resorted to different levels of ap-

proximation. This is referred to as turbulence modeling. A comprehensive coverage

of turbulent flows and turbulence modeling is given by Pope [24]. The two most

widely-used approaches are large eddy simulation (LES) and Reynolds-averaged N-S

(RANS) simulations ; cf. e.g., [24], [28].

4.2 Large Eddy Simulation (LES)

Instead of resolving all scales of the eddies as DNS does, the large eddy simulation

(LES) approach is to separate the larger and smaller eddies. LES computes and

captures the larger eddies with a time-dependent simulation, and discards the smaller

eddies in the domain. Although LES reduces computational cost, it still costs a lot

of space and memory of the machine .

LES is based on a spatial average of the N-S equations by using a box, Gaus-

sian, or spectral cutoff filter. This method chooses a filtered function and a cutoff
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scale to retain the eddies whose length scales are larger than the cutoff scale. The

action of turbulent scales smaller than the cutoff scale is modeled by using a sub-

grid scale (SGS) model. The interaction effects between larger-scale resolved eddies

and smaller-scale unresolved eddies cause the SGS stresses. Then, LES performs the

spatial filtering operation on the time-dependent flow equations.

In LES, a spatial filtered function is defined by,

φ̄(x, t) ≡
∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

G(x,x′,∆)φ(x′, t)dx′1dx′2dx′3 (4.4)

where φ(x, t) is the original (unfiltered) function, G(x,x′,∆) is a filter function which

determines the length scale of all resolved eddies, and ∆ is a filter cutoff scale.

The most common three filter functions G(x,x′,∆) used in LES are as follows:

(1) box filter:

G(x,x′,∆) =


1

∆3
|x− x′| ≤ ∆

2

0 |x− x′| > ∆

2

(4.5)

(2) Gaussian filter:

G(x,x′,∆) = (
γ

π∆2
)3/2 exp(−γ |x− x′|2

∆2
) (4.6)

(3) spectral cutoff filter:

G(x,x′,∆) =
3∏
i=1

sin[(xi − x′i)/∆]

(xi − x′i)
(4.7)

The cutoff scale ∆ is used as an indicative measure for the size of the eddies which

are kept in the computations and the eddies which are discarded. ∆ can be chosen to

be any size, however, it is meaningless to choose the size of ∆ to be smaller than the
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size of a grid in the finite volume method of CFD computations. The most common

selection of the size of ∆ is the size of the grid. In three-dimensional computations,

∆ is represented by the cubic root of the volume of the grid cell.

∆ = 3
√
4x4y4z (4.8)

where4x,4y, and4z are the length, width, and height of the grid cell, respectively.

For incompressible flow, the filtered N-S equations are:



∂p

∂t
+ div(ρū) = 0 (LES continuity equation)

∂(ρū1)

∂t
+ div(ρu1u) = − ∂p̄

∂x1

+ µ div(grad(ū1))

∂(ρū2)

∂t
+ div(ρu2u) = − ∂p̄

∂x2

+ µ div(grad(ū2))

∂(ρū3)

∂t
+ div(ρu3u) = − ∂p̄

∂x3

+ µ div(grad(ū3))

(4.9)

where ρ is the fluid density, u = (u1, u2, u3) is the velocity vector, p is the pressure

field, and µ is the constant viscosity.

The convective term can be expressed in the following way:

div(ρuiu) = div(ρūiū) + (div(ρuiu)− div(ρūiū)) (4.10)

After substituting 4.10 in 4.9 and rearranging 4.9, the N-S equations can be rewritten:

∂(ρūi)

∂t
+ div(ρūiū) = − ∂p̄

∂xi
+ µ div(grad(ūi))−

∂τij
∂xj

i, j = 1, 2, 3 (4.11)
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where τij are the SGS stresses which is defined by:

τij ≡ ρuiu− ρūiū = ρuiuj − ρūiūj (4.12)

The most usual SGS turbulence model which is used to model and approximate

the SGS stresses τij is Smagorinsky-Lilly SGS model. It is an eddy viscosity model.

τij is modeled:

τij = −2µSGSS̄ij +
1

3
τkkδij (4.13)

where µSGS is the SGS eddy viscosity and S̄ij is the rate-of-strain tensor for the

resolved flow which is defined by

S̄ij ≡
1

2
(
∂ūi
∂xj

+
∂ūj
∂xi

) (4.14)

The SGS eddy viscosity µSGS is derived:

µSGS = ρ(CSGS∆)2|S̄| (4.15)

where CSGS is Smagorinsky constant and S̄ ≡
√

2S̄ijS̄ij.

Lilly presented a value between 0.17 and 0.21 for CSGS for homogeneous isotropic

turbulent eddies in the inertial subrange. These values caused excessive damping of

large-scale turbulence, especially in the near-wall regions. Generally speaking, CSGS

is not constant. It is a parameter to be determined and may use different values

in different flow configurations. However, the value CSGS = 0.1 has been found

to be most appropriate and attain the best results for this type of internal flow

computation. CSGS can also be computed dynamically. The value of CSGS would be

based on the information of the resolved turbulent scales of eddies’ motion. This
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means that CSGS is related to the size of the grid.

The SGS model is usually in the form of an eddy viscosity model that can involve a

constant or dynamic coefficient. In the latter case the eddy viscosity or Smagorinsky

constant is allowed to vary in space and time and is calculated based on two filterings

of the flow variables. Some averaging is generally required for stability. This could be

averaging in a homogeneous flow direction or a local spatial average. LES methods

are still computationally expensive, though not as much as DNS. This is especially

true for wall-bounded turbulent flows since the “large” scales close to the wall can

be very small.

4.3 Reynolds Averaged Navier-Stokes Simulation (RANS)

RANS methods are based on the time or ensemble averaged N-S equations. The

main concept to derive the RANS equations is Reynolds decomposition which means

that a flow variable is decomposed into the mean (time-averaged) component and

fluctuating component. For an incompressible Newtonian fluid, the flow velocity can

be represented by:

u(x, t) = U(x) + u′(x, t), x = (x, y, z) is the position vector (4.16)

where U(x) = lim
T→∞

1

T

∫ T

0

u(x, t)dt and u′(x, t) are the mean and fluctuating values

for the velocity u(x, t), respectively. The RANS equations can be derived after

substituting 4.16, taking the time average, and using properties of the mean operator
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in the N-S equations:



divU = 0

∂U1

∂t
+ div(U1U) = −1

ρ

∂P

∂x1

+ νdiv(grad(U1)) +
1

ρ

[∂(−ρu′1
2)

∂x1

+
∂(−ρu′1u′2)

∂x2

+
∂(−ρu′1u′3)

∂x3

]
∂U2

∂t
+ div(U2U) = −1

ρ

∂P

∂x2

+ νdiv(grad(U2)) +
1

ρ

[∂(−ρu′1u′2)

∂x1

+
∂(−ρu′2

2)

∂x2

+
∂(−ρu′2u′3)

∂x3

]
∂U3

∂t
+ div(U3U) = −1

ρ

∂P

∂x3

+ νdiv(grad(U3)) +
1

ρ

[∂(−ρu′1u′3)

∂x1

+
∂(−ρu′2u′3)

∂x2

+
∂(−ρu′3

3)

x3

]
(4.17)

where the first equation in 4.17 is the continuity equation for the mean flow and

the remaining equations are the time-averaged x1, x2, and x3-momentum equation

respectively. Compared with the N-S equations, the process of time averaging method

generates some extra stress terms which describe the turbulent motion, which are

three normal stresses:

τxixi = −ρu′i
2, i = 1, 2, 3 (4.18)

and three shear stresses:

τxixj = τxjxi = −ρu′iu′j, i, j = 1, 2, 3, i 6= j (4.19)

These six extra stress terms are the Reynolds stresses. Since this process results

in the appearance of additional terms, the Reynolds stresses which are involving

the average of products of the fluctuating velocity (additional terms arise in com-

pressible turbulent flows where the density fluctuates), equations must be developed

to describe the Reynolds stresses of which there are six independent components.
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These are generally differential equations. Hence, turbulence models are here used

to predict the Reynolds stresses in order to close the RANS equations.

The majority of RANS models are based on the concept of a turbulent/eddy vis-

cosity µt. This is a diffusion coefficient, equivalent to the kinematic viscosity of the

fluid, that describes the turbulent mixing or diffusion of momentum. Boussinesq sug-

gested in 1877 that the Reynolds stresses are proportional to mean velocity gradients.

For incompressible flows, the equation can be written as:

τij = −ρu′iu′j = µt

(∂Ui
∂xj

+
∂Uj
∂xi

)
− 2

3
ρkδij (4.20)

where k = 1
2

(
u′1u

′
1 + u′2u

′
2 + u′3u

′
3

)
is the turbulent kinetic energy per unit mass and

δij =

 0 if i 6= j

1 if i = j
is the Kronecker delta. The relation between the Reynolds

stresses and the turbulent viscosity can be represented by ??. The Reynolds stresses

can be solved if we can obtain the turbulent viscosity from other variables in turbu-

lence models. Since the effect of turbulence can be described by a velocity scale ϑ and

a length scale `, Dimensional Analysis shows that the turbulent viscosity involves

the product of a characteristic turbulent velocity and length scale:

µt = Cρϑ`, (4.21)

where C is a dimensionless constant. Two-equation turbulence models, such as the

k − ε and k − ω models, [28] provide these scales. Here ω is the specific dissipation

rate, k and ε were defined earlier. It should be noted that though exact equations can

be developed from the equations of motion for these quantities, additional unknown

terms arise that must be modeled. One RANS approach should be mentioned. It is
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the one equation Spalart-Allmaras model [28]. This involves a differential equation for

the eddy viscosity. It was developed specifically for external aerodynamics problems

and is not based on modeling terms in the exact equations but on a more general

phenomenological approach. These involve equations (including modeled terms) for

the individual Reynolds stress components.

RANS methods involve empirical models with numerous coefficients that must be

specified. In general, these coefficients are valid within a particular class of turbulent

flow: for example wall-bounded or free shear flows. This is because the turbulent

mixing is controlled by the large scale turbulent motions that differ from one class

of flow to another.

4.3.1 Standard k − ε Model

The k − ε model is a two-equation model and the most widely used turbulence

model. The fist k − ε model was developed by Jones and Launder in 1972. The

velocity scale ϑ and the length scale ` can be defined by using k and ε:

ϑ = k1/2 and ` =
k3/2

ε
. (4.22)

By Dimensional Analysis (4.21), the turbulent viscosity is represented as follows:

µt = ρCµ
k2

ε
(4.23)

where Cµ is a dimensionless constant. In order to solve for the turbulent viscosity

µt, two additional equations for k and ε have to be made. By using Boussinesq
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approximation, the transport equations for k and ε in the standard k− ε model are:

∂(ρk)

∂t
+ div(ρkU) = div

[µt
σk

grad k
]

+ 2µtSij · Sij − ρε (4.24)

∂(ρε)

∂t
+ div(ρεU) = div

[µt
σε

grad ε
]

+ C1ε
ε

k
2µtSij · Sij − C2ερ

ε2

k
(4.25)

where the constants σk and σε are the turbulent Prandtl numbers for k and ε, re-

spectively, Sij =
1

2

(∂Ui
∂xj

+
∂Uj
∂xi

)
is the mean component of the rate of deformation

of the fluid, C1ε, and C2ε are constants. In these three equations (4.23, 4.24, 4.25),

there are five adjustable constants: Cµ, σk, σε, C1ε, and C2ε. The values for these

five constants for the standard k − ε model are:

Cµ = 0.09, σk = 1.0, σε = 1.3, C1ε = 1.44, and C2ε = 1.92.

The Reynolds stresses can be computed by Boussinesq approximation:

−ρu′iu′j = 2µtSij −
2

3
ρkδij (4.26)

This model is very useful in free-shear layer flows away from boundaries and

wake regions. For flows in these situations such as flow with large adverse pressure

gradients, unconfined flows, curved boundary layers,and rotating flows, this model

performs poorly.

4.3.2 Standard k − ω Model

The standard k − ω model has two model equations, one for k and one for ω. It

was originally proposed by Wilcox in 1988 and he introduced the concept that the

turbulence frequency ω = ε
k

which has dimension of (second)−1. The length scale l
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can be written by k and ω:

` =
k1/2

ω
. (4.27)

Hence, the turbulent viscosity is modeled:

µt = ρ
k

ω
. (4.28)

The transport equations for k and ω in the standard k − ω model are:

∂(ρk)

∂t
+ div(ρkU) = div

[(
µ+

µt
σk

)
grad (k)

]
+ Pk − β∗ρkω (4.29)

∂(ρω)

∂t
+ div(ρεU) = div

[(
µ+

µt
σω

)
grad (ω)

]
+ γ1

(
2ρSij · Sij −

2

3
ρω
∂Ui
∂xj

δij

)
− β1ρω

2 (4.30)

where Pk = 2µtSij · Sij −
2

3
ρk
∂Ui
∂xj

δij. For the standard k − ω model, the values for

five adjustable constants are:

σk = 2.0, σω = 2.0, γ1 = 0.553, β1 = 0.075, and β∗ = 0.09.

The Reynolds stresses are computed as usual in (4.26).

This model does not need to use damping function near the wall region so it

is known to perform well in the boundary sublayer. It also allows simple Dirichlet

boundary conditions to be applied on some specified walls. Hence, we could use this

model throughout the boundary layer. However, outside the boundary layer, this

model has a quite high sensitivity to the freestream values of ω.
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4.3.3 Spalart-Allmaras Model

The Spalart-Allmaras model involves one model equation for kinematic eddy

viscosity parameter ν̃. This model was introduced by Spalart and Allmaras in 1992

and it was designed specifically for aerospace application. The turbulent viscosity is

computed by:

µt = ρν̃fν1 (4.31)

where ν =
µt
ρ

is the kinematic eddy viscosity with dimension m2/s, fν1 =
χ3

χ3 + C3
ν1

is the wall damping function, and χ =
ν̃

ν
. fν1 approaches to unity for high Reynolds

numbers and zero at the wall. The transport equation for ν̃ in the standard Spalart-

Allmaras model is:

∂ν̃

∂t
+ uj

∂ν̃

∂xj
= Cb1(1− ft2)S̃ν̃ −

[
Cw1fw1

Cb1
κ2

ft2

]( ν̃
d

)2

+
1

σ

[ ∂

∂xj

(
(ν + ν̃)

∂ν̃

∂xj

)
+ Cb2

∂ν̃

∂xi

∂ν̃

∂xi

]
(4.32)

where

S̃ = Ω +
ν̃

κ2d2
fν2

Ω =
√

2ΩijΩij is the magnitude of the vorticity

d is the distance to the closest wall

Ωij =
1

2
(
∂Ui
∂xj
− ∂Uj
∂xi

)

fν2 = 1− χ

1 + χfν1

fw = g
[ 1 + C6

w3

g6 + C6
w3

]1/6

g = r + Cw2(r6 − r)
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r = min
[ ν̃

S̃κ2d2
, 10
]

ft2 = Ct3exp(−Ct4χ2).

The value for these ten adjustable constants in the standard Spalart-Allmaras model

are:

σ =
2

3
, Cb1 = 0.1355, Cb2 = 0.622, κ = 0.41, Cw2 = 0.3,

Cw3 = 2, Cν1 = 7.1, Ct3 = 1.2, Ct4 = 0.5, Cw1 =
Cb1
κ2

+
1 + Cb2
σ

.

This model has a good performance in boundary layers with adverse pressure

gradients. It is unsuitable for general internal flows and is insensitive for the processes

of transport in rapidly changing flows. However, this model has convincing results

for turbomachinery application.

4.4 Conclusion

For these three basic turbulence models in this Section, DNS, LES, and RANS,

there are pros and cons. Table 1 is the comparison among these models.
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Table 4.1: Comparisons among DNS, LES, and RANS.

Turbulence models Advantages Disadvantages
DNS Most accurate. Doesn’t need

empirical correlations. Capa-
ble of characterizing all the
flow details.

Highly computationally ex-
pensive. Difficult to include
accurate initial and bound-
ary conditions for engineer-
ing applications.

LES Capable of capturing the dy-
namics of the dominant ed-
dies in the system. Rela-
tively more economical than
DNS. More accurate than
RANS.

Still computationally inten-
sive. Some difficulties in rep-
resenting flow in complex ge-
ometries.

RANS Suitable for engineering
problems. Computational
cost is modest.

Incapable of capturing flow
details. High dependence on
empirical correlations.
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5. NUMERICAL SIMULATION ∗

5.1 Comparison among Three Turbulence Models DNS, LES, and RANS by 2D

and 3D Lid-Driven Flow

In this section, to compare the simulation capability of the three basic turbulence

modeling strategies, i.e., DNS, LES, and RANS, a simple lid-driven flow is simulated

in both two- (2D) and three-dimension (3D) in Cases 1 and 2 ([5]). The lid-driven

cavity flow [18] is a classical test problem for N-S codes and benchmarks. Its geometry

and boundary conditions are indicated in Fig. 5.1.

The parameter values of this problem are summarized in Table ??. The turbulent

viscosity sub-models chosen for RANS and LES are standard k − ε model and k-

equation eddy-viscosity model, respectively in OpenFOAM [37], [36]. Wall functions

[28, pp. 76-78] are applied to turbulent viscosity at all wall types. Computations for

all three Cases 1-3 were run on Texas A&M Supercomputing Facility’s Eos, an IBM

iDataPlex Cluster 64-bit Linux, Intel Nehalem processors.

Case 1. 2D lid-driven flow Graphical results are displayed in Fig. 5.2. The

numerical data agree favorably with those in the literature (but we omit the details

of comparisons here for lack of space). �

Case 2. 3D lid-driven flow The 3D DNS requires huge resources. Here we

used 1024 cores for parallel computing at TAMU Supercomputing Facility to run

this case. It took 64 hours to run for the numerical simulation for just 0.15 second.

∗Reprinted with permission from “OpenFOAM for Computational Fluid Dynamics” by Goong
Chen and Qingang Xiong and Philip J Morris and Eric G Paterson and Alexey Sergeev and Yi-Ching
Wang, 2014. Notices of the AMS, 61(4): 354-363, 2014, Copyright [2014] by American Mathematical
Society, and Reprinted with permission from “Malaysia Airlines Flight MH370: Water Entry of an
Airline” by Goong Chen, Cong Gu, Philip J Morris, Eric G Paterson, Alexey Sergeev, Yi- Ching
Wang, and Tomasz Wierzbicki, 2015. Notices of the AMS, 62(4):330-344, 2015. Copyright [2015]
by American Mathematical Society.
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Figure 5.1: Geometry and boundary conditions for a 2D lid-driven cavity, where
(u, v) are the components of flow velocity. The case for 3D is similar. Note that
the upper “lid” has a constant horizontal velocity U . Note, however, for the 3D

DNS computations, because a huge memory space and CPU time are required, the
domain has been reduced to the size of [0, 0.1]×[0, 0.1]×[0, 0.01].

Table 5.1: Physical and geometrical parameters for the lid-driven flow simulation.

Length L 0.1 m

Height H 0.1 m

Width W 0.1 m

Kinematic viscosity ν 0.00001 m2s−1

Lid velocity U 1 m/s

Grid length in RANS, LES and DNS ∆x 0.005 m, 0.001 m, 0.0002 m

Unit time step in RANS, LES and DNS ∆t 0.005 s, 0.001 s, 0.0002 s

The streamline flow pattern computed by DNS at t=0.15 can be seen in Fig. 5.3

part (a).

For 3D RANS and LES computations, we are able to compute flow fields up to

t=20 sec; see their flow patterns in parts (b) and (c) of Fig. 3.

To visualize the dynamics of fluid motion, we have made three short animation

videos. The dynamic motion of the fluid computed by DNS can be seen by clicking

(or pasting)
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Figure 5.2: 2D lid-driven flow calculations by OpenFOAM.

(a) Flow streamlines at t=20 sec ob-
tained by DNS [35].

(b) Flow streamlines at t=20 sec ob-
tained by RANS [37].

(c) Flow streamlines at t=20 sec ob-
tained by LES [36].
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Figure 5.3: 3D lid-driven flow calculations by OpenFOAM. Note that the
snapshot of the DNS case in part (a) is at t=0.15, while those in parts (b) and

(c) are at t=20. One can rank the richness of fine features of flow in the order of
(a), (c) and (b).

(a) Flow field at t=0.15 sec obtained
by DNS [35]. (Note that the domain
here is [0, 0.1]×[0, 0.1]×[0, 0.01], not
a cube as in subcases (b) and (c))

(b) Flow field at t=20 sec obtained
by RANS [37].

(c) Flow field at t=20 sec obtained by
LES [36].
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https://www.dropbox.com/s/htoms253d3ckt0n/DNS3Dstreamline2.avi/,

while that by OpenFOAM RANS, containing two different graphical representations:

field and streamlines, can be viewed by clicking

https://www.dropbox.com/s/6cwjsdxrmcnud3o/RANS3Dfiledstreamline.wmv/.

The counterpart, computed by OpenFOAM LES, can be seen by clicking https:

//www.dropbox.com/s/6hzz3ct1wljur9n/LES3Dfiledstreamline.wmv/. �

5.2 Computational Examples for Wind Turbines

5.2.1 One Wind Turbine with Fixed Angular Velocity

In this section, we consider one wind turbine case with fixed angular velocity.

We set up the wind speed to be 8 m/s and angular velocity of the wind turbine to

be 75 deg/s. All details of CFD settings in FLUENT and OpenFOAM have been

described in Section 2 and 3. A rotating wind turbine is simulated with RANS k-ε

turbulence modeling.

Case 1. Simulation by OpenFOAM The snapshot of velocity plot at t = 10 s

is shown in Fig. 5.4.

Case 2. Simulation by FLUENT The snapshot of velocity plot is shown in

Fig. 5.5. The animation can be viewed at the following link:

https://www.dropbox.com/s/nj566uyvrkxjuax/ansys1.avi?dl=0

We compare the results of velocity between Cases 1 and 2 along the line y =

30, z = 0. The snapshot of velocity plot at t = 70.59 s can be seen in Fig 5.6. The

animation can be viewed at the following link:

https://www.dropbox.com/s/i8dn60wu1m4ykvz/comparison.avi?dl=0

We can see velocity distribution for a rotating wind turbine calculated by Open-

FOAM and ANSYS in the video. When we use the same physical and modeling
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parameters in OpenFOAM and FLUENT, both software perform close results.

Figure 5.4: A snapshot of velocity plot of a rotating wind turbine with fixed angular
velocity at t = 10 s calculated by OpenFOAM.

5.2.2 One Wind-Driven Wind Turbine

In this section, we consider one wind-driven wind turbine case. The formula

ωk = ωk−1 + (
180

π
)× (

τk−1

I
)×4t (5.1)

is used to make this wind-driven case, where ωi, τi, and I are the angular velocity,

torque, and moment of inertia of the wind turbine, respectively. The unit of the

angular velocity in FLUENT is deg/s so the value 180
π

is added to the formula to

97



Figure 5.5: A snapshot of velocity plot of a rotating wind turbine with fixed angular
velocity calculated by FLUENT.

convert this unit to rad/s. In our case, we use moment of inertia 107 and wind speed

8 m/s and 16 m/s. The size of time step is 0.005. The CFD settings of Fluent and

OpenFOAM are the same.

Case 1. wind speed 8 m/s For this case, the angular velocity of the wind

turbine converges to 14.5 m/s in 17 seconds in FLUENT and 13.9 m/s in 26.6

seconds in OpenFOAM. The snapshots of velocity and pressure plots calculated by

Fluent at t = 20 s are shown in Fig 5.7 and Fig 5.8, respectively.

The snapshots of velocity and pressure plots calculated by OpenFOAM at t = 10 s

and t = 14.06 s are shown in Fig 5.9 and Fig 5.10, respectively.

The comparison of the angular velocity of the wind turbine between FLUENT

and OpenFOAM is shown in Fig 5.11.

Case 2. wind speed 16 m/s For this case, the angular velocity of the wind
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Figure 5.6: A snapshot of the comparison of velocity of a rotating wind turbine with
fixed angular velocity calculated by FLUENT and OpenFOAM at t = 70.59 s.

turbine converges to 29.3 m/s in 9 seconds in Fluent and 27.9 m/s in 19.6 seconds

in OpenFOAM. The snapshots of velocity and pressure plots calculated by Fluent at

t = 20.5 s are shown in Fig 5.12 and Fig 5.13, respectively.

The snapshots of velocity plot calculated by OpenFOAM at t = 20 s is shown in

Fig 5.14.

The comparison of the angular velocity of the wind turbine between Fluent and

OpenFOAM is shown in Fig 5.15.

5.2.3 Two Serial Wind Turbines with Fixed Angular Velocity

In this section, we consider two wind turbines in serial alignment with the distance

60 m. The wind speed is 8 m/s and angular velocity of both two wind turbines are

75 deg/s. The CFD settings are the same as Case 1 in Section 5.2.1.

A snapshot at t = 30 s is shown in Fig 5.16. The animation can be viewed at the
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Figure 5.7: A snapshot of velocity plot calculated by FLUENT for wind speed 8 m/s at
t = 20 s.

following link:

https://www.dropbox.com/s/9jqmuzexqzpypqo/ansys2.avi?dl=0

In the video, we can see that the wake of the front wind turbine reaches the rear

one at t = 7 s. The wake interaction of these two in-line rotating wind turbines is

diffusing.

The residuals at various iterations can be seen in Fig 5.17. The residual of

continuity equation drops to 10−3, while the residuals of equations of x-, y- and z-

components of the moment equations reach around 10−6. This level of convergence

criterion is considered to be sufficient for our flow simulation.
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Figure 5.8: A snapshot of pressure plot calculated by FLUENT for wind speed 8 m/s at
t = 20 s.

5.3 Simulation of Ditching/Crashing of an Airliner into Water and Mountain

5.3.1 The Water Entry Problem

The problem was motivated by the air incident, Malaysia Airlines Flight MH370

disappeared in the Southern Indian Ocean in March 8, 2014. The prerequisite of this

problem is the water entry problem.

The water entry problem is a classical problem in applied mathematics and fluid

dynamics. It considers the dynamic motion of an object upon its entry into the water.

The problem was motivated by several applications: the landing of a hydroplane,

the entry into water of a rocket or the Apollo module returning from space, and the

ditching or crashing of aircraft.

A major contribution to this field was made by the celebrated applied mathe-
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Figure 5.9: A snapshot of velocity plot calculated by OpenFOAM for wind speed 8 m/s
at t = 10 s.

matician and fluid dynamicist Theodore von Karman (1881-1963). He developed the

idea of “added mass” (a mass of the fluid that is co-moving with the body) to study

the problem [29]; see Figure 5.18. Von Karman inferred that the impact force on the

body is related to the instantaneous change of total momentum of the body with

its own mass but with an extra mass augmented by the “added mass” of the fluid

around the submerged portion of the body. That is,

d

dt

[
(M +m(t))ζ̇(t)

]
= Mg − FB − FC − FD (cf. [2, eq.(2.3)]) (5.2)

where M =mass of the projectile, m(t) = “added mass”, FB = buoyancy force, FC =

capillary force, FD = steady-state drag force, and ζ(t) = depth of penetration into fluid.

We note that the precise value of added mass m(t) is not known. For small time or
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Figure 5.10: A snapshot of pressure plot calculated by OpenFOAM for wind speed 8
m/s at t = 14.06 s.

submerged depth upon entry of the body into the water, von Karman estimated the

added mass to be half that of a flat plate with the same area as the instantaneous

still water-plane of the body. Wagner [30] further improved von Karman’s work

by including the effect of the pile up of the water and by associating the added

mass with the wetted water-plane. Further work such as [7] took account of the

submerged geometry for the estimation of the added mass. The analysis and results

from these simple approaches are found to compare favorably with experiments for

simple geometries such as a wedge or a cone. They also helped the designs of air-to-

subsea anti-submarine missiles, for example.

On the mathematical side, papers studying the water entry problem for a two-

dimensional (2D) wedge were written by Shiffman and Spencer [27] for a normal

incidence problem, and by Garabedian [9] for oblique incidence, for example. These
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Figure 5.11: The comparison of angular velocity between FLUENT and OpenFOAM for
wind speed 8 m/s.

papers treated the case of 2D incompressible, irrotational, inviscid flow by complex

variables and potential theory and offered rigorous analysis.

A comprehensive survey of water entry problems (up to the year 2011) can be

found in [2], where 476 references are listed, and where a dozen more mathematical

(-oriented) papers than [27] and [9] can also be found.

The contributions made by von Karman, Wagner, and others were truly remark-

able, and they continue to be used today. However, the physics of water-entry is far

more complex to model than the idea of “added mass” alone. In reality, there are

several phases of water entry that have been observed in experiments [15]: (1) cavity-

opening and jet splashing; (2) cavity-closing and formation of an air pocket; and (3)

cavity-detachment and cavitation; see Figure 5.19. A good way to capture the rich

physics is through state-of-the-art computational fluid dynamics (CFD). The CFD

104



Figure 5.12: A snapshot of velocity plot calculated by FLUENT for wind speed 16 m/s
at t = 20.5 s.

approach will enable us to simulate water entry for complex, general geometries than

the simplified ones such as cones, cylinders and wedges treated in the early era by

encompassing (5.2) naturally into the two-phase fluid-structure interaction models.

5.3.2 Damage and Breakup

Aircraft crashworthiness and human survivability are of utmost concerns in any

emergency landing situation. The earth is covered 71% by water and many major

airports are situated oceanside. Therefore, the Federal Aviation Administration

(FAA) requires all aircraft be furnished with life vests and the pilots be given water-

landing guidlines and manuals.

Assume that an aircraft such as MH370 did not have a mid-air explosion. Then

all available signs indicate that it crashed somewhere in the Indian Ocean. This is

an aircraft water-entry problem.
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Figure 5.13: A snapshot of pressure plot calculated by FLUENT for wind speed 16 m/s
t = 20.5 s.

The underpinning subject of this study is continuum mechanics, including the

water-entry problem first as fluid-structure interaction with a free fluid-gas interface

and the subsequent impact and structural failure analysis.

As described in the Introduction, not all emergency water landings end in disaster.

The dramatic successful landing in the “Miracle on the Hudson” is such a case. The

fact that no lives were lost is a testament to the experience and fast thinking under

pressure of the captain and crew. The aircraft had a hole ripped open but was

otherwise structurally virtually intact. The speed of the aircraft at ditching was

estimated to be 150 mph (240 km/hr or 67 m/sec). It was deemed by NTSB as “the

most successful ditching in aviation history.” [42]

In addition to the Comoros Island air disaster, there is another ditching effort,

whose outcome was not so fortunate as the US Airways flight 1549. On August 6,
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Figure 5.14: A snapshot of velocity plot calculated by OpenFOAM for wind speed 16
m/s at t = 20 s.

2005, a Tuninter Airlines Flight 1153 ATR-72 aircraft, flying from Bari International

Airprt, Bari, Italy, to Djerba-Zarzis Airport, in Djerba, Tunisia, ran out of fuel and

ditched into the Mediterranean 43 km northeast of Palermo, Italy. Upon impact, the

aircraft broke up into three pieces. Sixteen persons out of the thirty nine passengers

and crew died. Eight of the deaths were actually attributed to drowning after the

bodily injuries from impact.

The effect of Rupture and structural disintegration are almost certain to happen

upon the entry of the aircraft into water when the speed is sufficiently high. This

happened even in the miracle on the Hudson case with smooth gliding. The study

of impact damage and breakup belongs to a field called impact engineering, which

is based on the plasticity and fracture properties of solids that are totally different

from fluid dynamics.
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Figure 5.15: The comparison of angular velocity between FLUENT and OpenFOAM for
wind speed 16 m/s.

For impact effects, one famous example, the disaster of the Space Shuttle Chal-

lenger, can be used to understand what may happen, based on the analysis of one of

the coauthors (Wierzbicki) in [32, 31].

The airframe of the Space Shuttle Challenger, an assemblage of ring and stringer-

stiffened panels, was constructed essentially like a wide-body Boeing 747 airliner.

This in turn is similar to a wide-body aircraft such as the example Boeing 777 under

discussion here. Thus, we expect that much of the material and structural failure

analysis performed in [32, 31] for Challenger continues to hold.

There is a distinction between the following:

(i) global failure mode of fuselage, caused by large contact forces between water

and structure;

(ii) local failure mode due to excessive pressure.
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Figure 5.16: A snapshot of the flow of two in-line rotating wind turbines at t = 30 s.

Both such contact forces and pressure vary spatially and temporally. They are

obtained from the CFD part of the solution in the preceding Section and used to

assess the damage. In the analysis of global failure, simple structural models of beams

and rods are used for the fuselage. In what follows, we give a quick review of how

to study structural breakup upon impact, but defer the more technical study to a

sequel.

A flying aircraft was modeled in [32] as a free-free beam and with known spatial

and temporal variation of external loading, where the distribution of bending mo-

ments can be uniquely found from the equations of dynamic equilibrium. Thence,

the maximum cross-sectional bending moment can be compared with the fully plastic

bending capacity of the fuselage. This will indicate the onset of structural collapse

and break up.

The local failure mode is composed of tearing of fuselage skin, tensile and shear
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Figure 5.17: Residues at various iterations.

Figure 5.18: Von Karman’s idea of “added mass” for the water entry problem, which is
an idealization and simplification. Here the red region represent “added mass”. This is
the mass moving together with the mass of the wedge projectile. The portion of the (red)
added mass lying above the still water surface is called the “pile up”.

rupture of the system of stringers and ring frames; cf. Figure 5.20. Depending on

the impact velocity, the local failure can involve progressive buckling and folding of

the fuselage or fragmentation. Such failure modes occur at low impact velocities, as

has been demonstrated with a real model of a retired aircraft in DYCAST (Dynamic

Crash Analysis of Structures) by NASA [8]. These findings were published nearly
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a

b

c

Figure 5.19: The several phases of a projectile entering water according to Mackey [15]:
a a cavity of air opens; b a cavity of air pocket encloses the projectile when it is totally
submerged; and c the cavity begins to be detached from the projectile, leaving it totally
surrounded by water. Some water vapor may exist in the cavity, and cavitation usually
happens. (Adapted from [2, p. 060803-2])
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a

b c

Figure 5.20: Three modes of structural failure for a wide-body airliner: a flexural failure
of rings; b tearing fracture; and c shear of the longitudinally stiffened shell. (Adapted from
[32, p. 651])

three decades ago but remain valid today.

Fracture failure mode is estimated to happen when the vertical component of

velocity exceeds certain critical value Vcr. Rupture of fuselage and wings as shear

and tensile cracks will be initiated and then propagate through the stiffened shell,

leading to global structural failure. This is a dynamic process whose analysis is very

challenging. Nevertheless, a simple estimate on the onset of local failure can be given

using the condition of dynamic continuity in uniaxial wave propagation along a rod

based on the equation

[σ] = ρc[u], (5.3)

where [σ] and [u] denote jump discontinuities across the water-structure interface,
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ρ = 2.8 g/cm3 is the mass density of the aluminum fuselage and c =
√
E/ρ is

the speed of the uniaxial wave propagation in an elastic rod with elastic modulus

E = 85 GPa (i.e., 109 Pascal). The critical impact velocity Vcr (vertical component

only) is reached where the stress equals to the yield stress of the material σy. Thus,

from (5.3) one gets the following estimate on Vcr:

Vcr =
σy
E
c. (5.4)

Depending on the material, the critical descending speed of aircraft is normally in

the range of Vcr = 15–20 m/sec. A common fuselage material is 2024 T351 aluminum

alloy with the yield stress of σy = 324 MPa (106 Pascal). The critical impact velocity

is thus Vcr = 22 m/sec, which is close to the value 18.8 m/sec predicted for the water

ditching of the Space Shuttle Challenger, but using a different approach in [32].

The vertical component Vcr of V0, the aircraft speed at ditching, is related through

the angle of approach β by

sin β =
Vcr
V0

. (5.5)

Therefore, it is essential to keep the angle of approach small, especially when ditching

with a high speed.

In addition to structural rupture and disintegration, the acceleration due to free

fall and the deceleration due to the impact of the structure are important for human

survival in a crash. In [32], it was analyzed that if the vertical component of the

terminal impact velocity lies in the range of 62.5 m/sec and 80.5 m/sec, maximum

decelerations could reach in the order of 100g to 150g (g is the gravitational acceler-

ation constant) over a short period of time, within a regime labeled “severe injuries”

[32, 16] by NASA.
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Figure 5.21: Angle θ here is the pitch angle signified and β is the angle of approach. The
speed of the aircraft denotes the speed of its center of mass.

Aviation experts generally agree that how the airliner enters the water determines

its breakup, which then gives major clues and directions of the search operations [25].

In [4], the assessment is the nose-dive water-entry, or a water-entry with a steep pitch

angle , is the most likely scenario for the final moments of Flight MH370.

On March 24, 2015, one deliberate air incident, Germanwings Flight 9525, an

Airbus A320-200, crashed into the French Alps during the fight from Barcelona to

Düsseldorf. The co-pilot locked the captain out of the cockpit during the flight and

began a rapid descent intensionally. The aircraft descended from 38000 ft to 6000

ft in 8 minutes and crashed into the mountain peak with 430 mph. Due to this high

speed, the impact was very hard so there were no big pieces like wings or cockpit,

only a lot of little pieces in the crash site. All 150 passengers and crew members

were killed in this crash. The objective is to conduct numerical simulations of aircraft

crashing into a wall by using ANSYS Explicit Dynamics and LS-DYNA.

5.3.3 Results and Simulation

The representative aircraft model we use here is Airbus A320. We use the aircraft

speed 200 m/s. The physical parameter values of the aircraft are listed in Table 5.2

114



([33]). A common fuselage material is 2024 T351 aluminum alloy. For our cases, we

add three material models, Density, Isotropic Elasticity, and Johnson-Cook Strain

Model ([3] and [26]). The values of these material parameters are listed in Table 5.3

5.3.3.1 ANSYS Explicit Dynamics

ANSYS Explicit Dynamics is a computational structural dynamics (CSD) soft-

ware package developed by vendor ANSYS to simulate the impacts or short-duration

high-pressure loadings problems. It uses the Finite Element Method to solve the gov-

erning equations.

The values of Aluminum 2024 T351’s properties need to be entered in Engineering

Data. After adding the name of new material, we need to define this new material

model. Three physical properties, Density, Isotropic Elasticity, and Johnson-Cook

Strength Model ([3] and [26]), are included to complete the material definition (Fig.

5.24). The material concrete can be added from General Materials in Engineering

Data Sources.

We build geometry of the aircraft and a mountain in Gometry panel under Ex-

plicit Dynamics. The geometry of the aircraft can be seen in Fig. 5.22. After

completing the aircraft geometry file in Geometry panel, all values of parameter for

the model can be set up in Model panel. In Mechanical panel, the materials for the

aircraft and the mountain can be chosen from Assignment under Material in Details

of those geometry files (Fig 5.25). Under Mesh branch, several methods can be cho-

sen to generate mesh for the geometry files (Fig 5.26). We use Face Sizing method

with element size 0.1 m to make mesh for the aircraft and Body Sizing method with

element size 0.4 m for the wall. The snapshot of the mesh layout for this model is

shown in Fig 5.23. The total nodes and elements are 803993 and 776687, respectively.

We insert Fixed Support and Velocity under Explicit Dynamics setting. The body
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of the mountain is chosen in Fixed Support. In Velocity, we choose the geometry

to be the aircraft and set X, Y, and Z Components to be 200 m/s, Free, and Free,

respectively.

Step controls, solver control, erosion control, and output control can de defined

under the Analysis Settings (Fig 5.27). We only set up the end time and keep all

other values of parameters as default values.

The plot requests of deformation, strain, and stress can be inserted under the

Solution branch for the postprocessing of calculation (Fig 5.28). After adjusting the

settings in each branch, the simulation can be solved by hitting the Solve icon. The

calculation process can be observed and monitored by selecting Solver Output and

Energy Summary under Solution Information.

All computations and simulations were performed on Texas A&M Supercomput-

ing Facility’s Eos which is an IBM iDataPlex Cluster 64-bit Linux with Intel Nehalem

processors. It takes 30 CPU hours to calculate 0.03 second with 8 CPUs for these

cases.

We consider three cases here, the angle of approach β = 0◦, β = 15◦, and β = 30◦.

A snapshot of comparison of the Total Deformation, and Equivalent Elastic Strain

presentations of postprocessing for these three cases are shown in Fig 5.29, Fig 5.30,

and Fig 5.31, respectively. A snapshot of comparison of mesh layout of postprocessing

for these three cases can be seen in Fig 5.32. The comparison of total deformation,

equivalent elastic strain, and equivalent stress curves of postprocessing are shown

in Fig 5.33, Fig 5.34, and Fig 5.35, respectively. The comparison of energy and

momentum among these three cases are shown in Fig. 5.36 and Fig. 5.37. The

dynamic motions of the animation videos for these three cases can be viewed in the

following link:

https://www.dropbox.com/s/yli3sv3pihdiu4o/case1g.wmv?dl=0
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Figure 5.22: The geometry of Airbus A320 and a wall.

Total weight 6.45× 104 kg
Wing span 35.8 m
Height 11.76m
Overall length 37.57 m

Table 5.2: Physical parameters for Airbus A320 used in CSD calculations.

https://www.dropbox.com/s/0f8t8mnqj7b2yi4/case2.wmv?dl=0

https://www.dropbox.com/s/lcm84217e7weeap/case3.wmv?dl=0

In the videos, we didn’t see too much breakup of aircraft. We still need to adjust

parameters of Aluminum Alloy 2024 T351 material models to make our cases more

close to the real case.

5.3.3.2 LS-DYNA

LS-DYNA is a finite element analysis software package developed by Livermore

Software Technology Corporation (LSTC) to solve complex real world problems. It

combines both implicit and explicit solvers. It provides the capabilities to simulate
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Figure 5.23: The mesh layout of Airbus A320 and a wall.

Density 2770 kg m−3

Isotropic Elasticity
Young’s Modulus 7.31E+10 Pa
Poisson’s Ratio 0.33
Specific Heat 875 J kg−1 C−1

Johnson-Cook Strength
Strain Rate Correction First-Order
Initial Yield Stress 3.69E+08 Pa
Hardening Constant 6.84E+08 Pa
Hardening Exponent 0.73
Strain Rate Constant 0.0083
Thermal Softening Exponent 1.7
Melting Temperature 502 C
Reference Strain Rate (/sec) 1

Table 5.3: Material parameters chosen in CSD calculations .
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Figure 5.24: The physical properties of aluminum alloy in engineering data.

Figure 5.25: Material settings of the geometry files.
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Figure 5.26: Methods for mesh generation.

Figure 5.27: Analysis settings.
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Figure 5.28: Postprocessing.

different engineering problems in the automobile, aerospace, construction, military,

manufacturing, and bioengineering industries.

We use the same geometry, material models, and aircraft speed as previous sec-

tion. All models need to be set up in an input file (.k). The formats of settings of

time step, initial speed, and parameters of material models in .k file are shown in

Fig. 5.38, Fig. 5.39, and Fig. 5.40, respectively.

The computation and simulation was performed on Texas A&M Supercomputing

Facility’s Ada which is an an IBM NeXtScale Cluster 64-bit 10-core Linux with

IvyBridge processors. It takes 24 CPU hours to calculate 0.19 second with 20 CPUs

for this case.

We consider one case which is the angle of approach β = 0◦. The animation
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Figure 5.29: A snapshot of comparison of the total deformation presentation for
the aircraft crashing into a mountain with the angle of approach 0◦, 15◦, and 30◦.

(a) The angle of approach 0◦.

(b) The angle of approach 15◦.

(c) The angle of approach 30◦.
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Figure 5.30: A snapshot of comparison of the equivalent strain presentation for
the aircraft crashing into a mountain with the angle of approach 0◦, 15◦, and 30◦.

(a) The angle of approach 0◦.

(b) The angle of approach 15◦.

(c) The angle of approach 30◦.
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Figure 5.31: A snapshot of comparison of the equivalent stress presentation for
the aircraft crashing into a mountain with the angle of approach 0◦, 15◦, and 30◦.

(a) The angle of approach 0◦.

(b) The angle of approach 15◦.

(c) The angle of approach 30◦.
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Figure 5.32: A snapshot of comparison of the mesh layout for the aircraft
crashing into a mountain with the angle of approach 0◦, 15◦, and 30◦.

(a) The angle of approach 0◦.

(b) The angle of approach 15◦.

(c) The angle of approach 30◦.
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Figure 5.33: The comparison of the total deformation curves for these three
cases.

(a) The angle of approach 0◦.

(b) The angle of approach 15◦.

(c) The angle of approach 30◦.
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Figure 5.34: The comparison of the equivalent elastic strain curves for these
three cases.

(a) The angle of approach 0◦.

(b) The angle of approach 15◦.

(c) The angle of approach 30◦.
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Figure 5.35: The comparison of the equivalent stress curves for these three
cases.

(a) The angle of approach 0◦.

(b) The angle of approach 15◦.

(c) The angle of approach 30◦.
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Figure 5.36: The comparison of energy for these three cases.

(a) The angle of approach 0◦.

(b) The angle of approach 15◦.

(c) The angle of approach 30◦.
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Figure 5.37: The comparison of momentum for these three cases.

(a) The angle of approach 0◦.

(b) The angle of approach 15◦.

(c) The angle of approach 30◦.
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Figure 5.38: Settings of time step in .k file of aircraft crash problem.

Figure 5.39: Settings of initial speed of aircraft in .k file of aircraft crash problem.

videos from different angles can be viewed in the following links:

https://www.dropbox.com/s/oh11l097e21ocft/movieAB00_000.avi?dl=0

https://www.dropbox.com/s/gq6rzyie9xjwrci/movieAB00_003.avi?dl=0

In the video, we didn’t see wall damages. We need to add and adjust parameters

of concrete material models to make our case close to the realistic incident.

131

https://www.dropbox.com/s/oh11l097e21ocft/movieAB00_000.avi?dl=0
https://www.dropbox.com/s/gq6rzyie9xjwrci/movieAB00_003.avi?dl=0


Figure 5.40: Settings of parameters of material models for both aircraft and wall in .k
file of aircraft crash problem.
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6. CONCLUSIONS AND FUTURE RESEARCH ∗

In this dissertation, we use ANSYS FLUENT and OpenFOAM to simulate two

problems:

• Compare the simulation capability of three turbulence modelings, DNS, LES,

and RANS by using a lid-driven flow in both two- (2D) and three-dimension

(3D)

• Compare the numerical results of the airflow interaction of one wind turbine

with both fixed angular velocity and wind-driven angular velocity, and two

wind turbines in serial alignment

We plan to simulate wind-driven turbine cases and interaction of multiple wind-

driven turbines such as wind farm, and also include power generation system in wind

turbines.

We use ANSYS Explicit Dynamics and LS-DYNA to simulate Airbus A320 crash

problem. For our cases, we still need to adjust material models to get more reasonable

damage of aircraft and wall. Our computer simulation has not included wind speed

and ocean surface conditions. We also need to add more structures of aircraft such

as rings, seats, engine, and fuel tank. The explosion caused by fuel tank during

the crash needs to be considered as well. We would also like to include cases with

different pitch angles and velocities. Our simulations still need to be improved to be

close to the real case.
∗Reprinted with permission from “OpenFOAM for Computational Fluid Dynamics” by Goong

Chen and Qingang Xiong and Philip J Morris and Eric G Paterson and Alexey Sergeev and Yi-Ching
Wang, 2014. Notices of the AMS, 61(4): 354-363, 2014, Copyright [2014] by American Mathematical
Society, and Reprinted with permission from “Malaysia Airlines Flight MH370: Water Entry of an
Airline” by Goong Chen, Cong Gu, Philip J Morris, Eric G Paterson, Alexey Sergeev, Yi- Ching
Wang, and Tomasz Wierzbicki, 2015. Notices of the AMS, 62(4):330-344, 2015. Copyright [2015]
by American Mathematical Society.
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The CFD approach is advantageous in saving long and expensive processes of

laboratory setup and measurements. Now, with the availability of more abundant

free and open-source computational tools and user-friendly software, it has become

much easier for mathematicians to conduct interdisciplinary collaboration with en-

gineers and physicists for the modeling and computation of complex, “real world”

problems, just as this dissertation has hoped to demonstrate.
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