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ABSTRACT 

 

 

Asset managers who maintain the infrastructure can improve the efficiency of their 

practices by making use of decision-support frameworks. These models use performance 

data to help maximize the outcomes of maintenance strategies and financial allocations. 

In this research a new decision-support framework for asset managers was developed 

and tested. This framework improves upon existing models in two respects: (a) it 

provides an effective and practical method of accounting for uncertainty/risk, and (b) it 

includes a method for predicting asset performance over time in situations where there is 

limited historical data. 

 

Outcome-based scenario analysis was chosen as the most effective approach to model 

risk in asset management. The proposed framework presents managers with “best-case,” 

“most-likely case,” and “worst-case” scenarios, which are defined by applying quantile 

regression analysis to the asset-performance data. For situations in which there is a lack 

of adequate historical performance data, an elicitation model was developed based on the 

Delphi technique. This approach provides a rigorous method for estimating asset 

performance using information solicited from a panel of experts. The elicited data was 

aggregated by a Bayesian hierarchical model and the Markov Chain Monte Carlo 

algorithm.  
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A case study was conducted to demonstrate the applicability of the decision-support 

model. While the proposed framework is generic and could be used for any type of asset, 

this study involved pavement condition on the city streets of Bryan, Texas. The results 

indicated that using a traditional deterministic model (rather than a scenario-based 

approach) could lead to significant over- or under-estimation of the budgets required to 

achieve certain asset-performance results. This demonstrates the urgent need for asset 

managers to use a practical model that can provide them with information about 

uncertainty and risk in asset-performance assessments. The case study also demonstrated 

the effectiveness of the data-elicitation technique, as the results of this approach were 

shown to be commensurate with historical information about pavement performance 

collected by the city of Bryan. The success of this approach in approximating historical 

performance trends provides evidence for its usefulness in situations where such 

historical data is unavailable.
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CHAPTER I 

INTRODUCTION 

1.1 Background and Motivation of the Research 

Public infrastructure assets are the physical structures, facilities, and networks that 

provide for basic social and economic needs. Roads and other transportation networks, 

energy production and distribution infrastructure, communication networks, schools and 

other public buildings, and waste management facilities are all included under this 

heading. The prosperity of a nation’s economy is closely tied to the quality of its 

infrastructure assets and how well they facilitate trade and other basic human functions 

(Fulmer, 2009; Grigg, 1996; Hudson et al., 1997). 

Infrastructure asset management is the process of managing the operation, maintenance, 

and recycling/disposal of infrastructure assets. In a broad sense, the purpose of this 

endeavor is to achieve the managing organization’s goals during the assets’ life cycle 

(regardless of whether the goal is defined as a for-profit agency, or as a service to 

society). In practice this definition can be scaled down to a more functional concept, 

which is managing the maintenance of infrastructure assets at an acceptable level of 

performance, and the decision-making process to allocate available resources for this 

purpose. Infrastructure assets deteriorate as they age. They need to be regularly 

maintained or replaced if they are to continue to contribute to the well-being of their 
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users. For planning at a broad network level, asset managers need to gauge what types of 

maintenance and rehabilitation should be performed on infrastructure assets each year. 

They need to be able to identify efficient operating practices and to calculate the funds 

that are needed to maintain specific levels of infrastructure functionality. 

 

A significant concern for asset managers is that the effects of investment in 

infrastructure maintenance and rehabilitation play out over the long term, often 

measured in decades. In today’s high-turnover society, both public and private decision-

makers, with a lack of sufficient financial resources, are often loathe to invest in projects 

whose effects are not immediately apparent and whose benefits may not even be traced 

back to the decision-makers’ tenure. The result is an overall decreasing level of funding 

for infrastructure maintenance, which in the U.S. has led to conditions of degraded 

infrastructure and declining performance (American Society of Civil Engineers, 2013). 

 

The troubling deterioration of public infrastructure in the U.S. has been known for 

several decades. Under the Public Works Improvement Act of 1984, a temporary 

advisory council was established from the ranks of the Army Corps of Engineers to 

evaluate the condition of the country’s infrastructure. The council’s report, submitted to 

Congress in 1988 after several years of study, was titled Fragile Foundations. In this 

report the engineers found convincing evidence that the U.S.’s spending on public 

infrastructure had declined to levels that were inadequate to sustain economic progress 
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and social wellbeing over the long run (National Council on Public Works Improvement, 

1988). 

Reduced spending for the maintenance and rehabilitation of public infrastructure does 

not necessarily result in the failure of each individual asset over a short period of time. 

However, insufficient investment in infrastructure gradually erodes the economic 

productivity of the nation. The future costs associated with rebuilding infrastructure that 

has been left to decline are generally much higher than are the costs entailed in adequate 

ongoing upkeep. Furthermore, if infrastructure is left to decline, then it is likely that the 

costs of future rebuilding will have to be assessed at a time of deteriorating economic 

capacity (National Council on Public Works Improvement, 1988). 

To better maintain the nation’s infrastructure, the public-works council suggested both 

an increase in overall spending levels and a more efficient allocation of funds. 

Performance enhancements, rational budgeting processes, the adoption of new 

technologies, and enhancing accountability were recommended as some of the most 

important managerial improvements. A summary list of the council’s recommendations 

is provided in Figure 1-1. 
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Figure 1-1. Summary List of Recommendations Given by the National Council on 

Public Works Improvement in 1988 (Gordon, 1997) 

 

 

 

The council evaluated the country’s infrastructure assets based on the services they 

provided for society. If an asset was not useful or there was no longer a demand for it, 

then its condition was not considered important in the evaluation. The various 

components of the U.S. infrastructure system were rated using a typical academic 

grading scale of A, B, C, D, and F. The 1988 report rated the nation’s overall 

infrastructure as a “C,” indicating an “average” condition. After submitting the report the 

council was dissolved. 

 

More recently, the American Society of Civil Engineers has issued a series of 

infrastructure “report cards” based on the same evaluative methods used in the public-

works council report. As of 2013, the overall U.S. infrastructure grade reported by the 

Society of Civil Engineers was a “D+” (American Society of Civil Engineers, 2013). 

• A national commitment to invest more (a doubling of current investment levels) 

• Accelerated spending of federal trust funds 

• Clarification of federal, state, and local roles 

• Flexible administration of federal and state mandates 

• Greater financing by project beneficiaries 

• Reduction of limits on tax-exempt bonds 

• An acceleration of innovation through research and development (R&D) 

• An acceleration of innovation through more and better training for public works 

professionals 

• Increased incentives for maintenance of existing infrastructure 

• Increased incentives for low-capital techniques for obtaining infrastructure 

• Capital budgeting for all levels of government 
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These reports reveal that the overall condition of the infrastructure falls well short of 

what is needed for long-term economic stability. (For a more detailed description of the 

historical grades and grading methodology, see American Society of Civil Engineers, 

2013.) 

Table 1-1 illustrates the American Society of Civil Engineers’ evaluation of the 

country’s yearly infrastructure-investment needs. It reports a shortfall in all areas, with 

the largest gap in the category of surface transportation. This category was also given 

one of the lowest ratings in the study, earning a “D” and the description of being in 

“poor condition.” “Surface transportation” refers primarily to the condition of roads, 

which are used as a case study in this dissertation. 

Table 1-1. Cumulative Infrastructure Needs by System, Based on Current Trends 

Extended to 2020 (Dollars in $2010 Billions) (American Society of Civil Engineers, 

2013) 

Infrastructures Systems    Total Needs Estimated Funding Funding Gap 

Surface Transportation $1,723 $877 $846 

Water/Wastewater Infrastructure $126 $42 $84 

Electricity $736 $629 $107 

Airports $134 $95 $39 

Inland Waterways & Marine Ports $30 $14 $16 

Dams $21 $6 $15 

Hazardous & Solid Waste $56 $10 $46 

Levees $80 $8 $72 

Public Parks & Recreation $238 $134 $104 

Rail $100 $89 $11 

Schools $391 $120 $271 

TOTALS $3,635 $2,024 $1,611 

Yearly Investment Needed $454 $253 $201 
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The reports from the National Council on Public Works Improvement and the American 

Society of Civil Engineers both reveal a lack of sufficient funds for preserving and 

improving the conditions of roads in the U.S. While an overall increase in infrastructure 

funding remains critical to ensure the country’s future, asset managers in the immediate 

context are confronted with the unenviable task of having to select the most crucial 

maintenance functions to enact within their limited budgets (i.e., the maintenance issues 

that will cause the worst problems in the future if they are left unattended). Allocating 

scarce maintenance funds in a way so as to maximize the benefits to taxpayers is thus 

more crucial than ever. 

 

In an attempt to address the shortcomings of the U.S. transportation system, a bill called 

Moving Ahead for Progress in the 21st Century (MAP-21) was signed into law by 

President Obama in 2012. One of the stipulations of MAP-21 is that individual states 

must implement a rational, risk- and performance-based asset management plan to 

improve the efficiency of their transportation spending. Several years after the creation 

of this law, some states are still struggling to fully grasp what such a plan would look 

like and how their management practices might be improved to increase efficiency. 

Developing processes and offering suggestions toward a more efficient public-

infrastructure asset management decision-making framework is the primary motivation 

of this research. 
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1.2  Problem Statement 

The condition of public infrastructure in the U.S. is degenerating rapidly. Insufficient 

funds for the preservation of infrastructure will lead to decreased productivity and social 

wellbeing over time. To minimize these losses, and to make the most efficient possible 

use of tax dollars, asset managers need rational, evidence-based models to inform their 

decisions about how to allocate limited funds. 

 

For some types of infrastructure preservation, such as the maintenance of road 

pavements, evidence-based decision-support models have been in use for many years. 

For these assets, hard data about the results of specific maintenance regimens has been 

painstakingly gathered over time, allowing the development of good empirical 

performance-prediction models. These models help asset managers to make better 

decisions regarding the maintenance of the assets and the allocation of funds. In this 

research, the terms “historical performance” and “past performance” are used 

interchangeably to describe known asset-performance data gathered over time. 

 

Unfortunately, for many other types of infrastructure there is a gap between large-scale 

budgeting decisions and reliable information about the results of those decisions (Kher 

and Cook, 1985). Part of the reason for this gap is the absence of a rational, structured 

process for decision-making at the highest levels of asset management. Another 

significant factor, however, is that in many cases hard data about the outcome of asset-

management decisions is simply unavailable. For some infrastructure assets, gathering 
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performance data is all but impossible. The asset might be in an inaccessible location, or 

the processes required to extract useful performance data might be too invasive or too 

expensive to carry out on a regular basis. In other cases, the historical information 

needed for modeling purposes is unavailable simply because no one thought to collect it 

in the past. Thus, one of the central problems addressed in this research was how to 

model the effects of management decisions when hard data about historical asset 

performance is limited. 

 

In addition, predictions of future asset performance always entail a degree of 

uncertainty. When hard data about asset performance is limited, the level of uncertainty 

increases. In previous asset-performance research, the uncertainty entailed in these 

predictions was either ignored completely, or else it was minimized using risk-analysis 

methods that were not appropriate for the relevant levels of uncertainty (this is discussed 

in detail in chapter 4). As a result most of the previous asset-management support 

models provided their users with incomplete information about the range of uncertainty 

entailed in the analysis. Accurate descriptions of uncertainty in modeling can be very 

complex. However, overlooking the degree of uncertainty that arises in the modeling 

process can lead to undesirable and unexpected results for the managers who use these 

models. Therefore, the second central problem in this research was to take into account 

the degree of uncertainty in asset management and to appropriately incorporate 

uncertainty and risk into the asset performance model—without entirely bogging down 

the asset managers in an overabundance of information. 
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1.3  Research Questions 

The overall goal of this research was to develop a risk- and performance-based 

infrastructure asset management framework that can (a) effectively incorporate 

uncertainty into the decision-support model, and (b) better account for situations in 

which there is limited historical data about asset performance. These central concerns 

provided the research questions for the study: 

 

Research Question 1. How can the range of uncertainty about asset performance be 

incorporated into a decision-support model and effectively reported to decision makers? 

Research Question 2. How can asset performance be predicted effectively when 

reliable historical data is not available? 

 

1.4  Research Objectives 

To answer the research questions, the following list of specific tasks was created: 

1. Define the levels of uncertainty that are relevant to asset-management decisions. 

2. Evaluate various risk-analysis approaches, and select a practical approach that is 

suitable to the current needs of asset managers. 

3. Develop a method to incorporate the identified risk-analysis approach into the 

asset performance model, and to assess the impacts of risk and uncertainty on the 

final asset management decisions.  

4. Develop a data-elicitation method for defining the performance of assets when 

sufficient historical (past performance) data is not available. 
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5. Using a case study in which historical data is available, assess the applicability of 

the proposed methods by comparing the modeling results with the results from 

actual historical data collected in the field over time. 

6. Develop recommendations for how asset managers can use the decision support 

framework during the course of their practical activities. 

 

1.5  Organization of the Dissertation 

This dissertation is organized in two sections. The first section explains the methods that 

were undertaken to answer the research questions, and provides a description of the 

resulting infrastructure asset management framework. In chapter 2 the existing literature 

on asset management is reviewed, as well as the relevant literature on scenario analysis, 

levels of uncertainty, forecasting methods, and data elicitation. Chapter 3 explains the 

design of the research project in more detail and also discusses some of the more 

technical elements of the research’s significance for the field. 

Chapter 4 then describes the methods that were used to model uncertainty and risk 

(Research Question 1). Chapter 5 describes the data elicitation model that was developed 

for use in cases where there is inadequate historical asset-performance information 

(Research Question 2). 

 

The second section of the dissertation focuses on the application of the infrastructure 

asset management framework in a specific case study. The methods developed in the 

first part of the research were applied to analyze pavement maintenance in the city of 
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Bryan, Texas. Chapter 6 describes the sources of historical data and the procedures used 

to elicit data for this case study. Chapter 7 shows how the data was analyzed using the 

model’s uncertainty framework. In chapter 8 the results of the elicited data and the actual 

historical data are compared, and the value of the framework in supporting asset-

management decisions is demonstrated. Finally, chapter 9 summarizes the research 

findings, along with their limitations and suggestions for future development. 
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CHAPTER II 

LITERATURE REVIEW 

 

 

2.1 Introduction 

The first step in this research was to evaluate the state of the art and practice in the 

infrastructure asset management profession. The resources that were used in this task 

were contemporary journal papers, conference papers, Transportation Research Board 

publications, and national and international asset-management guidebooks. Reviewing 

and synthesizing this information allowed the researcher to develop a general framework 

listing the most common components of infrastructure asset management decision-

making processes. Learning about the process of asset-management in this fashion also 

helped in establishing the study’s central research questions, based on the most critical 

data-modeling needs in the profession. 

 

The second aspect of the literature review involved examining specific topics related to 

the research questions. In the context of Research Question 1 (how to model uncertainty 

and risk), the topics reviewed included levels of uncertainty, known methods for 

incorporating uncertainty into decision-making, and effective methods of presenting risk 

assessments. In relation to Research Question 2 (how to predict asset performance in the 

absence of adequate historical data), the topics that were reviewed included the most 
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current methods of data-forecasting and data-elicitation. The results of all phases of the 

literature review are described in detail in this chapter. 

 

2.2 Infrastructure Asset Management 

Infrastructure asset management is the process of managing the operation, maintenance, 

and recycling/disposal of infrastructure assets. In a broad sense, the purpose of this 

endeavor is to achieve the managing organization’s goals during the assets’ life cycle 

(regardless of whether the goal is defined as a for-profit activity, or as service to 

society). Too (2010) names cost efficiency, capacity matching, meeting customer needs, 

and market leadership as the primary goals of asset management. 

 

2.2.1 Infrastructure Asset Management as a Process 

Infrastructure asset management involves a collection of structured tasks and activities. 

As can be seen from the definitions presented in Table 2-1, most sources define asset 

management as a process relating to business, operations, or decision-making. For 

example, Boshoff et al. (2010) defined asset management as a decision-making process, 

while Vanier and Rahman (2004) viewed it as a business process and decision-support 

framework. However, it is not universally defined as a process, as can be seen in Malano 

et al. (1999), who used the term “strategy,” and in Danylo and Lemer (1998), who 

described it as a “methodology.” The current research steered away from broader notions 

of methodology and strategy, and instead focused on asset management as a specific, 
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well-defined process, one that can be defined by three integral characteristics: target, 

goal, and time-frame. 

Table 2-1. Infrastructure Asset Management Definitions 

Area Definition of Infrastructure Asset Management Source 

Transportation 

“A systematic process of maintaining, upgrading, and 

operating physical assets cost-effectively. It combines 

engineering principles with sound business practices and 

economic theory, and it provides tools to facilitate a 

more organized, logical approach to decision-making. 

Thus, asset management provides a framework for 

handling both short- and long-range planning.”  

FHWA, 

1999 

Hydraulic 

“A strategy for the creation or acquisition, maintenance, 

operation, rehabilitation, modernization, and disposal of 

irrigation and drainage assets to provide an agreed level 

of service in the most cost-effective and sustainable 

manner.” 

Malano 

et al., 

1999 

Distribution/ 

Transmission 

“Operating a group of assets over the whole technical 

life-cycle guaranteeing a suitable return and ensuring 

defined service and security standards.” 

Schneid

er et al., 

2006 

Transportation 

“A business process that incorporates the economic 

assessment of tradeoffs among alternative investment 

options to help make cost-effective investment 

decisions.” 

Cambrid

ge 

Systema

tics, 

2005 

Public Works 

“A methodology to efficiently and equitably allocate 

resources amongst valid and competing goals and 

objectives.” 

Danylo 

and 

Lemer, 

1998 
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Area Definition of Infrastructure Asset Management Source 

Water 

Systems 

“Maintaining a desired level of service for what you 

want your assets to provide at the lowest life-cycle cost. 

Lowest life-cycle cost refers to the best appropriate cost 

for rehabilitating, repairing, or replacing an asset.” 

U.S. 

EPA, 

2012 

Municipalities 

“The process of decision-making, planning, and control 

over the acquisition, use, safeguarding, and disposal of 

assets to maximize their service delivery potential and 

benefits, and to minimize their related risks and costs 

over their entire life.” 

Boshoff 

et al., 

2010 

General 

“Systematic and coordinated activities and practices 

through which an organization optimally and sustainably 

manages its assets and asset systems, [and] their 

associated performance, risk, and expenditures over their 

life-cycles for the purpose of achieving its organizational 

strategic plan.” 

PAS, 

2008 

Transportation 

“Asset management is a business process and decision-

support framework that: (1) covers the extended service 

life of an asset, (2) draws from engineering as well as 

economics, and (3) considers a diverse range of assets.” 

Vanier 

and 

Rahman

, 2004 

Asset managers’ targets are defined as the type of properties or resources they are 

expected to oversee. The target assets can be categorized in different ways. One method 

is to view assets as either current or noncurrent (Bowhill, 2008). In this view, current 

assets are expected to be traded or used within one year (cash, cash equivalents, 

inventory, etc.). Noncurrent assets, in contrast, are unlikely to be traded or converted 

into a current asset during the course of a year. Another method of categorization splits 

assets into tangible and intangible categories (Daum, 2003). Tangible assets in this view 

include all physical properties such as highways, airports, communication networks, 

public facilities, and other civil infrastructures. Intangible assets are non-physical 

Table 2-1. Continued 
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resources such as a trained and assembled workforce, digital resources, and intellectual 

properties such as copyrights, trademarks, or patents. As can be seen, there are a huge 

variety of assets that can be involved in the work of asset managers. The specific nature 

of these resources has a great bearing on the types of activities and accounting 

requirements that need to be implemented. Most typically, however, the properties that 

are the targets of asset managers’ work tend to be long-standing physical infrastructure 

assets (as can be seen in the definitions in Table 2-1). The current research likewise 

focused on the management of long-term physical assets. 

Outlooks on the goals of the infrastructure asset management process are diverse. An 

examination of the definitions in Table 2-1 reveals that most interpretations include 

some kind of cost-related element as a goal (as indicated by phrases such as “efficiency,” 

“cost-effectiveness,” “suitable return,” and “lowest cost”). Another frequently-cited goal 

of asset management is to provide a certain level of service to users—this is described 

with phrases such as “providing an agreed level of service,” “maximizing service 

delivery potential,” or “managing performance.” Additional goals mentioned in the 

asset-management literature include providing a fair resource allocation, minimizing 

risk, and ensuring asset security. 

The final characteristic of the asset-management process is its time-frame. The 

definitions in Table 2-1 all indicate that the process covers the entire “life-cycle” of the 

asset. As viewed from the portfolio-management perspective, the life-cycle includes 
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creation, definition, initiation, planning, execution, start-up, operation, and recycling 

(Woodward, 1997). However, various infrastructure asset management definitions in the 

literature differ on how they interpret the life-cycle. For example, the U.S. EPA (2012) 

indicated that the asset-management process is limited to rehabilitating, repairing, or 

replacing assets, whereas Boshoff et al. (2010) stated that an asset’s life-cycle also 

includes acquisition, use, and disposal. Sources may also invoke different terminologies 

that can imply slight differences in meaning. For example, PAS (2008) used the standard 

term “life cycle,” while Schneider et al. (2006) used the term “whole technical life 

cycle” and Vanier and Rahman (2004) referred to the asset’s “extended service life.” In 

the current research the understanding of the asset-management process’s time-frame 

does not include the planning and initiation stages of the life-cycle, but it does includes 

all of the remaining stages of operation, maintenance, and recycling/disposal. 

2.2.2 Components of Infrastructure Asset Management 

Once the target, goal, and time-frame are established, the asset-management process can 

be described as a set of specific components. Each component is one step of the process. 

To gain a sense of how in practice asset managers approach the process, the researcher 

examined a spectrum of existing asset-management frameworks and reviewed their 

explanation of the proposed components (Table 2-2). Once these components were 

identified, they were then ranked based on the frequency with which they appeared in 

the literature. The most frequently-cited components of the asset-management process 

are summarized in Table 2-3. 
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Table 2-2. Components of Infrastructure Asset Management Frameworks 

FHWA, 1999 

 Strategic goals

 Inventory of assets

 Valuation of assets

 Quantitative condition and

performance measures

 Measures of how well strategic goals

are being met

 Usage information

 Performance-prediction capabilities

 Relational databases to integrate

individual management systems

 Consideration of qualitative issues

 Links to the budget process

 Engineering and economic analysis

tools

 Useful outputs, effectively presented

 Continuous feedback procedures

Smith, 2005 

 Basic information: Goals,

objectives, policies, and inventory

data

 Performance measures: Condition

assessment and desired levels of

service

 Needs analysis: Performance

modeling and Prediction; action and

funding analysis

 Program analysis: Alternative

analysis and program optimization

 Program delivery: Program

development and program

implementation

Krugler et al., 2007 

 Goals, objectives, and policies

 Data inventory

 Condition assessment

 Desired level of service

 Performance modeling

 Action and funding analysis

 Alternative analysis methodologies

 Program optimization

 Program development

 Program implementation

 Performance monitoring

 Feedback

FHWA, 2007 

 Goals and policies (reflect customer

input)

 Asset inventory

 Condition assessment and

performance modeling

 Alternatives evaluation and program

optimization

 Budget allocations

 Short- and long-range plans (project

selection)

 Program implementation

 Performance monitoring (feedback)
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Malano et al., 1999 

 Management review

 Asset planning strategies

 Asset creation/acquisition

 Asset operation/maintenance

 Asset performance/monitoring

 Asset accounting/economics

 Asset audit

Amadi-Echendu et al., 2010 

 Asset information management

 Asset operation and maintenance

 Asset creation

 Asset planning

 Capacity management

Halfawy, 2008 

 Condition assessment

 Inspection/monitoring

 Risk assessment

 Deterioration modeling

 Performance modeling

 Asset prioritization

 Rehab methods

 Renew planning

OECD, 2001 

 Goals and policies of the

administration

 Data

 Resources and budget details

 Performance models for alternative

strategies and program development

 Project selection criteria

 Implementation program

 Monitoring and feedback loop

Table 2-2. Continued 
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Table 2-3. Frequency of Infrastructure Asset Management Components in the Literature 

 

Identified Component Sources 

determining asset 

conditions/value 

FHWA, 1999; Smith, 2005; Krugler et al., 2007; FHWA, 

2007; Malano et al., 1999; Halfawy, 2008; U.S. EPA, 

2012; Cambridge Systematics, 2002; Cambridge 

Systematics, 2005; PAS, 2008  

reviewing policies, goals, 

and objectives 

FHWA, 1999; Smith, 2005; Krugler et al., 2007; FHWA, 

2007; OECD, 2001; Cambridge Systematics, 2002; 

Cambridge Systematics, 2005; PAS, 2008; Neumann and 

Markow, 2004 

inventory of assets/data 

FHWA, 1999; Smith, 2005; Krugler et al., 2007; FHWA, 

2007; OECD, 2001; Cambridge Systematics, 2002; PAS, 

2008; Neumann and Markow, 2005 

option analysis 

(tradeoffs and 

alternatives) 

Smith, 2005; Krugler et al., 2007; FHWA, 2007; OECD, 

2001; Cambridge Systematics, 2002; Neumann and 

Markow, 2004; Cambridge Systematics, 2005 

performance modeling 

and condition predictions 

FHWA, 1999; Smith, 2005; Krugler et al., 2007; 

Halfawy, 2008; OECD, 2001; Cambridge Systematics, 

2002 

performance 

monitoring/feedback 

FHWA, 1999; Krugler et al., 2007; FHWA, 2007; 

OECD, 2001; Cambridge Systematics, 2002 

resource allocation 

(budgeting) 

FHWA, 1999; FHWA, 2007; OECD, 2001; Cambridge 

Systematics, 2002; Cambridge Systematics, 2005  

defining performance 

measures 

FHWA, 1999; Smith, 2005; Neumann and Markow, 

2004 

setting performance 

targets FHWA, 1999; Krugler et al., 2007 
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Based on the analysis of the common infrastructure asset-management components 

provided in Table 2-3, an overall, general framework of the process was created. These 

asset-management process components are listed below, and then described in greater 

detail in the following sections. 

1. Policy goals and objectives 

1a. Identify goals and objectives 

1b. Define performance measures 

2. Asset inventory and condition survey 

2a. Set up asset inventory 

2b. Perform asset inspection 

3. Analysis of options and trade-offs 

3a. Condition assessment and prediction 

3b. Preservation options determination 

3c. Performance predication for different options 

4. Decision-making and resource allocation 

 

Component 1: Policy Goals and Objectives 

Most of the asset-management processes described in the literature begins with the 

identification of clear goals and objectives. The goals that asset managers are mandated 

to accomplish are usually established in the managing agency’s policy statement, which 

broadly describes the organization’s desired outcomes (Neumann and Markow, 2004). 

For example, one of the Texas Department of Transportation (TxDOT) Strategic Plan 
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goals for 2015–2019 is “To Maintain a Safe System” (Texas Department of 

Transportation, 2014). To meet these broad goals, more specific objectives are then 

developed. Objectives are smaller, concrete tasks that help to determine how the larger 

policy goal will be accomplished. They also serve another purpose: to help quantify the 

progress towards achieving the overall policy goal. One example of an objective that 

supports TxDOT’s broad safety goal is “to improve mobility on highways.”  

 

Performance measures are a way to clearly assess the extent to which goals and 

objectives have been accomplished. Defining these quantifiable expressions of policy 

goals is an important part of the infrastructure asset management process. A good 

performance measure should have two features: quantity, and a unit of measure. So, for 

example, in order to meet TxDOT’s objective of improved mobility on highways, the 

asset manager might create a performance measure called the “Travel-Time Index.” By 

measuring the average time it takes to drive from one point to another, the manager can 

quantify the current road-mobility conditions and the progress that has been made 

toward improving those conditions. (Ramani et al., 2009) 

 

In some cases, specific performance targets may also be defined. For example, reducing 

the average driving time from one side of town to the other to less than fifteen minutes is 

an example of a performance target related to travel time. Such specific targets may not 

always be required, especially when the performance measure involves comparing 

several different improvement options (Hudson et al., 1997).  
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Component 2: Asset Inventory and Condition Survey 

A second component of infrastructure asset management frequently described in the 

literature involves asset inventories and condition surveys. Asset inventory simply 

means keeping a database of assets and their physical characteristics. Information in the 

database may include location, geometrical information, structural information, material 

type, construction background, and preservation records (Hudson et al., 1997). Condition 

surveys are the most costly task in infrastructure asset management. They involve the 

determination of appropriate sampling procedures and measurements in order to assess 

the current condition and state of repair of the assets that are being managed (Shahin, 

2005). 

 

Component 3: Analysis of Options and Trade-offs 

Once the asset inventory is developed and the current condition of the asset is measured 

through a field survey, the next step is to estimate the life-cycle prospects of the asset 

and define the possible preservation options. To analyze budgetary needs, the manager 

must begin with an accurate assessment of the asset’s performance, relative to the 

organization’s goals. For each performance measure (defined in Component 1 of the 

process), the current and possible future levels of asset performance are inventoried. 

 

After assessing the condition and performance of an asset, the manager then considers 

possible options for maintenance and improvement. Ideally, this should begin as an 
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extensive list of possibilities, so that the full array of options can be considered. The 

option of “doing nothing” in regard to maintenance should also be included. 

 

Asset managers are aware that as assets age, their performance degenerates generally in 

a non-linear fashion, while the expense of postponed repairs/upgrades increases. 

Eventually the asset will reach a threshold beyond which it is no longer usable, and/or 

maintenance is no longer economically feasible. Asset managers need to be able to 

evaluate the level of performance that can be sustained by various potential maintenance 

regimes, and to compare the cost of these regimes against the overall life-cycle benefit 

that the asset can provide. It is in this complex evaluation process that evidence-based 

performance models are extremely useful to the manager. Prediction models offer 

forecasts of the future performance of an asset based on its current condition and various 

potential maintenance regimens (including a “doing nothing” alternative) (Paterson, 

1987). Cost of maintenance is an important selection criterion as limited funds challenge 

asset managers to preserve the assets above a desired level of performance (Faghihi et 

al., 2014; Kim et al., 2012)   

 

Component 4: Decision-Making and Resource Allocation 

The last step of the infrastructure asset-management process is to determine if 

maintenance is needed, and if so, what type of maintenance regimen should be 

performed on each section of the asset network over the analysis period. Typically, 

multiple performance measures and the cost of various forms of maintenance will be 
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taken into account in reaching a decision. To quantify this process, multi-criteria 

decision-making methods and advanced modeling techniques are needed. In asset 

management, a cost-effectiveness analysis is commonly implemented to prioritize 

options. Cost-effectiveness analysis is a more general form of cost-benefit analysis; it is 

used in situations where assigning specific monetary value to benefits is not necessary or 

appropriate. Given the complexity of assigning specific financial values to the benefits 

of good infrastructure, asset managers often find it more practical to generalize the value 

of assets in non-financial terms, for example, by analyzing how to maintain the highest 

possible asset “performance value” within a set budget (Udvarhelyi et al., 1992).    

 

Evaluating the cost-effectiveness of a maintenance regimen involves comparing its 

expense against its long-term benefits. The specific cost of each preservation treatment 

depends on the amount of deterioration that has occurred and the amount of 

improvement that is needed to achieve specific performance goals. The effectiveness of 

maintenance can be quantified by calculating the change in the area underneath the 

asset’s performance curve. Performance curves are graphs that describe the past and 

expected future performance of assets. When maintenance is undertaken on an asset, this 

graph will change, hopefully showing an increase in current performance, and therefore 

creating a greater area underneath the curve. An example of a performance curve is 

illustrated in Figure 2-1.  
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In tandem with these specific evaluations of cost and effectiveness, the asset manager 

must consider the total available budget (which, as discussed in chapter 1, is often 

inadequate for all needed maintenance). The cost and effectiveness of any given project 

must be defined, and projects are prioritized based on the cost-effectiveness ratio. 

 

 

 
 

Figure 2-1. Example of an Asset Performance Curve  

 

 

 

2.2.3 Decision Levels in Infrastructure Asset Management 

Asset management incorporates hierarchical levels of decision-making, which are 

interrelated in such a way that lower-level conclusions can provide inputs for higher-

level decisions. Three decision-making levels are widely recognized in the infrastructure 

asset-management literature: the strategic level, the network level, and the project level. 
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The strategic level is the broadest and most inclusive; for decisions at this level all types 

of infrastructure assets in the community are considered, and the goal is to create a 

comprehensive plan for long-term infrastructure resource allocation. However, to 

accomplish this strategic goal, it is necessary for the decision-maker to rely on good 

information and more specific strategies that are developed at lower decision-making 

levels. At the network level, decision-makers determine optimal preservation strategies 

and resource allocation for a specific asset type (for example, the maintenance of a city’s 

road network). At the project level, decision-makers determine the most effective way to 

allocate resources for a specific preservation/maintenance action (Flintsch and Bryant, 

2006; Hudson et al., 1997). The asset-management framework developed in this research 

is structured to support decision-making at the strategic and network levels. 

 

2.3 Modeling Uncertainty 

The first research question in this study was how to model uncertainty in asset 

performance and effectively present uncertainties/risk-levels to decision-makers. After 

reviewing various options in the literature, the method that was selected for analyzing 

uncertainty was outcome-based scenario planning.  

 

2.3.1 Scenario Planning 

Scenarios can be defined as brief snapshots of the potential results of future trends 

(Fontela and Hingel, 1993). They describe hypothetical future conditions, along with the 

histories and decision-trees that might lead to those conditions (Kanhn and Wiener, 



 

 

28 

 

 

 

1967; Pillkahn, 2008). Scenarios allow decision-makers to quickly see possible 

alternative futures in a unified, succinct picture, and to understand how different choices 

can interact to shape the overall terrain of these future scenarios (Martino, 2003). Thus, 

scenario planning is very useful for identifying the systemic implications of management 

choices and devising ways to make the best decisions for a range of possible futures 

(Strauss and Radnor, 2004). 

 

The advantage of scenario planning is that it is not limited to investigating only one 

possible expected outcome. It can take into account multiple events and variables, 

analyzing these factors simultaneously to define the range of what could possibly happen 

(Schwab et al., 2003). Depending on the complexity of the problem, the degree of 

uncertainty, and the number of issues examined, an entire set of potential future 

scenarios can be devised (Schoemaker, 1993). Decision-makers may only need to 

analyze a few different possible scenarios for simple problems, but in the case of 

complex situations, they may need to review many different scenarios.  

 

The technique of scenario planning was primarily developed for use by strategic 

business managers, who need to consider potential ways that the future might unfold and 

how to best react to these possible futures. However, it also has important implications 

for infrastructure asset management. In a sense, it is a more explicit way of expressing 

and developing the mental models that all humans use to anticipate future events 

(Martelli, 2001). Scenario planning allows for an iterative process in which a manger 



 

 

29 

 

 

 

examines possible futures, uses that information to make a decision that will affect/limit 

those possible futures, and then reviews a new set of scenarios that include the previous 

decision as a given. This allows scenario planning to be a powerful tool for 

implementing changes and gradually working towards a better-defined and more 

desirable future.  

 

Another benefit of scenario planning is that scenarios can make many complex situations 

and hypothetical outcomes clearer by separating them into specific, analyzable parts 

(Schoemaker, 1993). This is beneficial because humans are often incapable of 

simultaneously processing the entire range of possible events within a complex system. 

Scenario planning helps to simplify the large number of variables and potential events 

into a more manageable amount of data to use in decision-making processes (Schwenk, 

1984; Schoemaker, 1995). 

 

Scenario planning goes beyond other uncertainty-modeling techniques such as 

contingency planning and computer simulation, in that it takes into account a wider 

range of variables. Whereas contingency planning and computer simulation are useful 

for carefully analyzing a limited set of possibilities, the use of scenarios allows decision-

makers to see the “big picture,” complete with many different hypothetical situations 

(albeit with a slight loss of detail). Scenario planning is therefore most useful for 

analyzing major changes in complex systems where many different and potentially 

unknown variables are in play. 
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Scenario planning can be applied to most situations in which decision-makers want to 

consider potential futures. It has therefore become very widespread as a means of 

analyzing decisions, especially in cases where there are many unknowns. There is a 

correlation between the value of scenario planning in the decision-making process and 

the degree of uncertainty in the decision-making environment. In situations where the 

future becomes more and more unknown as decision-makers project farther into it, the 

broad approach of scenario planning provides an increasingly useful means of analyzing 

these potential futures and their uncertainties (Malaska et al., 1984). 

 

It should be noted that scenario planning is not the same thing as data forecasting (which 

is discussed later in this chapter). Forecasting focuses on one future path and calculates 

risks of deviation along the way. Scenario planning, in contrast, takes into account many 

potential paths and their outcomes (Pillkahn, 2008). Instead of attempting to predict a 

specific future, scenario planning generates a set of potential futures and describes the 

paths that might lead to them. This difference can be seen in the process of scenario 

development, which involves brainstorming various possible scenarios in an attempt to 

identify the wide range of potential ways that the future might unfold (Pillkahn, 2008; 

Schoemaker, 1993). Wilkinson (2009) reviews the differences between forecasting and 

scenario planning in greater detail. 

 

2.3.2 Different Approaches to Scenario Planning 

Scenario planning methods can be broken down into event-based or outcome-based 

approaches. An event-based approach defines the scenario as a set of events that could 
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possibly happen in the future (Pottebaum et al., 2011). For instance, Freedy et al. (2007) 

used event-based scenarios to assess trust in tactical human-robot collaboration. In 

Freedy’s study, potential plans for the U.S. Department of Defense’s “Future Combat 

System,” as well as current uses of robotic systems in combat, are described using event-

based scenarios.  

 

This kind of event-based scenario planning has also been used previously in 

infrastructure asset management support frameworks (Piyatrapoomi et al., 2004). A 

simple example is an approach that considers the available funding levels that an agency 

might have in the next budget cycle. Typical event-based scenarios in this example 

include having full funding in the next cycle for the agency’s total maintenance needs, 

having half-funding for maintenance needs, and having no funding at all for maintenance 

(FAA, 2014). When planning how to allocate the current budget, it is useful to consider 

the decision’s effects in each of these possible futures. The three scenarios given here do 

not describe every possible budgeting future (having five-eighths funding is also a 

possibility); however, the three scenarios allow for a quick and straightforward 

examination of the range of consequences that can occur as a result of these possible 

future events. 

 

In outcome-based scenario planning, in contrast, the scenarios are described based 

purely on possible future conditions, without trying to trace the events that might lead to 

those conditions. This is useful when the range of possible outcomes is known but the 
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event sequences leading to those outcomes are very complex (for example, instances in 

which weather variations affect the decline of assets over time). Outcome-based scenario 

planning is an innovative approach and has only been used in a limited number of 

research studies. An example is Dorofee et al. (2008), who used outcome-based scenario 

analysis to assess different potential mission outcomes in a software application 

development. In the current research, an outcome-based approach to scenario planning is 

used to describe different conditions based on the possible future performance of assets. 

Each scenario represents one possible future performance state of the asset. This will be 

described in more detail in chapter 4.  

 

Another way in which scenario planning approaches are categorized is vision-driven vs. 

decision-support methods. A vision-driven approach explores trends in the environment 

to help develop organizational-level outlooks on possible futures (Chermack and Payne, 

2006). This allows managers to develop a broad and coherent perspective and to 

examine how their assumptions support the long-term goals of the organization. 

Decision-driven scenarios, in contrast, are used to gain understanding about possible 

future environments as they relate to specific, limited problems. This can help managers 

to make better decisions when the uncertainty involved in the situation makes it hard to 

identify the best option. In the current research a decision-driven approach is used. The 

goal is to help asset managers better understand the possible future states of their assets 

and thereby make better budgeting and maintenance decisions. 
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2.3.3 Levels of Uncertainty 

Courtney (2001) and Walker et al. (2003) used a hierarchy of levels to describe the 

extent of uncertainty about future outcomes. While their breakdowns of the various 

levels were slightly different, the basic approach is the same. The four levels described 

by Courtney included: 

1. A clear, single vision of future. 

2. A limited set of possible future outcomes, one of which will occur. 

3. A range of possible future outcomes. 

4. A limitless range of possible future outcomes. (Courtney, 2001) 

 

Managers can operate more effectively if they have a general understanding of these 

levels of uncertainty and how they relate to decision-making. Figures 2-2 and 2-3 

illustrate the levels of uncertainty as defined by Courtney and Walker respectively. 
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Figure 2-2. The Four Levels of Uncertainty (Courtney, 2003)  

 

 

 
Figure 2-3. The Progressive Transition between Determinism and Total Ignorance 

(Walker et al., 2003)  

 

 

 

When the situation is close to Level 1 uncertainty, the range of relevant potential futures 

is narrow. In this case, the different possible future conditions will not have much of an 

impact on the outcomes of the current decision. The decision-maker can assume that the 

problem is deterministic; in other words, an “ideal situation in which we know 
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everything precisely” (Walker et al., 2003). Though a small amount of uncertainty about 

future conditions may be present, decision-makers do not need to account for this 

uncertainty in order to provide analyses that are accurate enough for planning purposes. 

A straightforward, deterministic analysis can be made on the basis of available data 

without worrying about different possible future conditions. 

 

At Level 2 uncertainty, a range of discrete possible futures can be identified that are 

relevant to the outcome of the decision. Furthermore, the probability that each of these 

futures will happen is also known, to a fairly high degree of accuracy. Managers can 

therefore consider the outcome of their decision in each possible future, in an exhaustive 

fashion if necessary. The possible future outcomes can be identified as a mutually 

exclusive, collectively exhaustive set. An example of this kind of uncertainty is when an 

investor is making a decision and the outcome will be strongly influenced by the policies 

of the next U.S. president. If the election is underway in this situation, then there are two 

primary, well-defined futures to consider based on the candidates of the two major 

parties (and possibly other futures at a very low level of probability). 

 

Walker et al. (2003) described this level of uncertainty as “statistical,” since its outcomes 

can be entirely modeled with probabilistic analyses. In such an interpretation, however, 

it is assumed that the identified futures and their likelihood of occurrence are a full, 

exhaustive, and accurate reflection of real-world conditions. If this assumption cannot be 
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demonstrated to be valid then higher levels of uncertainty should be considered (Walker 

et al., 2003). 

 

At Level 3 uncertainty there are more potential futures that are relevant to the decision, 

and due to the complexities of the variables it is not feasible to parse these futures into a 

discrete and exhaustive set of possibilities. Furthermore, the mechanisms leading to 

specific future conditions cannot be readily defined, and therefore the specific 

probability of future outcomes cannot be determined. In this situation, an exhaustive 

statistical analysis of all potentially relevant results cannot be carried out. Nonetheless, 

at this level of uncertainty the total range of the possible future outcomes is definable. In 

such conditions, a scenario-planning approach can be of great benefit. Specific scenarios 

can be chosen from across the range of possible futures, and these various scenarios can 

be evaluated. The result is that the decision-maker gains a reliable overview of the range 

of possible future outcomes. 

 

Walker et al. (2003) described Level 3 uncertainty as “scenario uncertainty,” 

acknowledging that these Level 3 conditions are most effectively handled through the 

use of scenarios. However, this terminology may be somewhat misleading, as scenario-

based approaches can also be applied at other levels of uncertainty. This is especially 

true when the statistical analysis of Level 2 conditions is too complex to be effectively 

carried out. In some situations, managers may prefer a scenario-based overview, even 

when statistical approaches could theoretically be applied. 
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Finally, decision-makers face Level 4 uncertainty when the range of relevant futures is 

unknown and unknowable. Sometimes called “true ambiguity,” this situation occurs 

when there are too many unknown variables to define the limits of what might happen. 

While possible futures can be described, the probability of these events happening and 

the range of other possible outcomes cannot be determined. This level of uncertainty is 

extremely difficult to deal with, and in many cases it may be better to wait for the 

situation to resolve itself toward better-defined conditions before any important planning 

decisions are made on the topic. 

 

2.3.4 Asset Performance Uncertainty 

One of the most important goals of infrastructure asset management is to ensure that the 

performance of assets stays above a certain level. There are many complex variables that 

can have an effect on the performance of assets over time, including the initial 

construction conditions, usage patterns, and ongoing weather conditions. In order to 

make planning decisions and maintain the necessary level of performance, the impact of 

these variables on asset performance needs to be defined. This definition is no easy task, 

and due to the complexity of the variables there is almost always some degree of 

uncertainty in estimating future asset performance levels (Ng et al., 2011). 

 

The methods that asset managers use to model the performance of assets over time are 

either deterministic or probabilistic. Deterministic methods usually involve regression 

analysis, which results in a single estimate of average performance over time. (The asset 
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performance curve shown in Figure 2-1 above is an example of this kind of analysis.) 

However, the average expected asset performance provides only a limited amount of 

information for asset managers to make decisions based on them. It does not convey the 

total range of possible future performance conditions. Furthermore, deterministic 

approaches are prone to making questionable assumptions, because asset behavior often 

changes based on unknown factors that are not revealed by averaging historical data (e.g. 

changing environmental conditions, new patterns of traffic loading, etc.). Because of 

this, the use of deterministic models can lead to poor decisions that fail to maintain 

assets at the required level of performance (Ferreira et al., 2002; Ng et al., 2011). 

 

There have been many attempts to take uncertainty about future conditions into 

consideration in an infrastructure asset management context. Most of the methods for 

doing so involve the use of stochastic prediction models to describe performance over 

time in a probabilistic fashion. One of the most popular methods is the Markov Decision 

Process (MDP). The MDP model accounts for uncertainty by describing the likelihood 

of ending up at different future states after a specific decision or after a given period of 

time. The Markov model relies only on the current state of an asset as the basis of 

predicting its likely futures (i.e., the model does not incorporate historical data). For 

example, if a machine is deteriorating, then its likely condition next week might be 

described with a set of Markov probability vectors, whose sole input will be the state 

that the machine is in currently (Ng et al., 2011; White and White, 1989). 
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The use of MDP in the field of infrastructure asset management was first proposed in the 

early 1970s, and the sophistication of its application grew over the course of the 

following decades (Lemer and Moavenzadeh, 1971). Soon, the MDP model was being 

used to determine the timing of asset maintenance strategies in areas such as road 

resurfacing (Smith, 1976). Arizona was one of the first states in which these policies 

were developed in the early 1980s (Golabi et al., 1982). An MDP model was also used 

by Carnahan and colleagues (1987) to design the decision-making approach of PAVER, 

a pavement-management system developed by the U.S. Army Corps of Engineers’ 

Construction Engineering Research Laboratory. The approach used in PAVER was more 

advanced than previous efforts because it drew from a well-defined Pavement Condition 

Index inventory. It also used dynamic programming to obtain a finite planning horizon, 

while previous efforts such as those developed in Arizona made use of linear 

programming to obtain steady-state solutions (Carnahan, 1988). 

 

In more recent years the applications of MDP models in infrastructure asset management 

have continued to expand. Guignier and Madanat (1999) used an MDP approach for 

joint optimization in a combined maintenance and improvement task. This had the 

advantage of improving budget allocation among the different components of the 

network. The MDP model that was developed for this case is capable of solving for 

steady-state policies while also relaxing the assumption that a solution will be age-

homogenous with condition-state transition probabilities. Another advantage of the 

model developed by Guignier is that it does not assume the annual budget will be 
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exhausted each year, which means that a portion of the budget can be set aside in cases 

where the money may be spent more efficiently in the future (Guignier and Madanat, 

1999). 

 

Another contemporary application of MDP models is for tracking inspection decisions 

and accounting for uncertainty in the inspection process. There is a basic assumption in 

most inspection outlooks that the process will result in a specific and accurate report of 

facility conditions in a given time-frame. However, there are many ways in which this 

premise can become untrue—for example, when there is a need for flexible inspection 

schedules or when measurement errors are made. Thus, the uncertainty in inspection 

data can be more accurately modeled with a probabilistic approach using latent MDP 

formulations (Madanat and Ben-Akiva, 1994; Guillaumot et al., 2003).  

 

Deterministic and probabilistic methods of modeling asset performance both have their 

pros and cons. Deterministic methods cannot account for the range of uncertainty, and in 

many cases this leaves out information that is crucial to asset managers. On the other 

hand, deterministic models typically define asset performance in more detailed 

quantitative terms, and therefore have the capacity to provide more information about 

specific asset characteristics (such as pavement cracking or rutting) (Ferreira et al., 

2002). Furthermore, large-scale MDP probabilistic models can be non-intuitive and 

challenging to handle. To create a more manageable evaluation process, the complexity 
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of these models often has to be simplified, leading to broader and subjective assumptions 

about future asset performance. 

 

Part of the purpose of the current research was to develop a new method of handling 

uncertainty in asset performance modeling. Instead of using complex MDP statistical 

approaches, a scenario-based approach was used. This allows asset managers to gain a 

quick and intuitive overview of the range of an asset’s potential future performance. The 

details of this approach to uncertainty in infrastructure asset management are discussed 

in chapter 4. 

 

2.4 Data Forecasting 

The second research question in this study was how to predict asset performance in the 

absence of adequate historical data. Tackling this issue requires an understanding of the 

process known as forecasting, which is defined as making specific predictions about 

future outcomes (Armstrong, 2001). Forecasting processes and techniques based on 

rigorous methodology have gradually become more reliable and gained greater 

credibility starting in the 19th century (Hanke et al., 2001).  

 

2.4.1 The Forecasting Process 

The process of data forecasting differs depending on the forecast’s purpose and the topic 

of study. In general, though, the major steps of the process can be listed as: data 

collection, data preparation, model building, and model extrapolation (Hanke et al., 
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2001). The first step, data collection, most often involves obtaining historical records 

about what the object of the forecast has done in the past (Wheelwright and Makridakis 

et al., 2008). In many situations, however, forecasts that are only based on historical data 

have a limited utility. It is entirely possible that the available data might not be extensive 

enough to reveal long-term trends (or that no historical data exists at all). It is also 

possible that a significant change in context has occurred that will affect future trends 

and that cannot be taken into account merely by looking at past observations 

(Makridakis et al., 2008). Thus, the best forecasting methods combine the collection of 

historical data with other information sources, including components of personal 

experience, judgment, and wide-reaching knowledge (Collopy and Armstrong, 1992; 

Bunn and Wright, 1991). 

 

After the data is collected, the next step in forecasting is data preparation. This may 

include steps to “scrub” or “clean” garbled records, duplications, and other errors from 

the data, and/or steps to reduce complex data into a more manageable format (Ross, 

1996; Sumathi and Sivanandam, 2006). Once the data is in a usable state, a forecasting 

model is built by matching the data to predictive mathematical functions. There are 

many such models to choose from, and lack of selection is seldom an issue. More 

frequently, the difficulty in model-building involves deciding which of several possible 

models best fits the data. The choice of the forecasting model is typically based on the 

physical nature of the forecasting problem as well as the closeness of fit to the data. 

Some aspects of model selection ultimately come down to the forecasters’ judgment 
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about which model is most applicable to their problem. During this selection process, 

forecasters also have to balance the benefits of choosing a more complex/sophisticated 

model, which may offer increased accuracy, versus a relatively simpler model, which 

may be easier to implement and explain (Hyndman and Athanasopoulos, 2014). 

 

The fourth and final step in forecasting is using the model to make predictions about 

future outcomes. This process is known as extrapolation. When new data points are 

predicted within the existing data (i.e., between two existing historical measurements), 

the process is called interpolation (Wheelwright and Makridakis, 1985). It is worth 

emphasizing that extrapolation/interpretation is never an exact science, and that 

forecasting can become misleading if it has failed to account for important information 

or changes in conditions. It is thus always advisable to retain a certain skepticism about 

the accuracy of forecasts and to temper them with the ongoing input of both common 

sense and expert knowledge (Makridakis et al., 2008; Hanke et al., 2001). 

 

2.4.2 Qualitative Forecasting Methods 

Quantitative methods make use of concrete historical data and mathematical models to 

generate forecasts. These methods are less successful when there is an absence of 

concrete data or when trends and patterns are expected to change rapidly. In such cases, 

forecasters must rely more exclusively on expert judgments and wide-reaching 

knowledge. When this occurs, the forecasting technique becomes less of a quantitative 

process and more of a qualitative one (Makridakis et al., 2008). 
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The two major types of qualitative forecasting are called “exploratory” and “normative.” 

In exploratory methods, forecasters begin with current knowledge about the problem and 

lead toward future predictions by way of qualitative/judgmental extrapolation from past 

trends. Normative approaches, in contrast, begin by considering desired future outcomes 

and then work backward to determine what steps need to be taken in order to move 

toward those desired outcomes (Twiss, 1992). 

 

2.4.3 Data Elicitation 

When there is a lack of historical data, forecasters must by necessity turn toward expert 

opinions. There are a variety of methods that have been developed to help reduce the 

subjective element this brings into forecasting. Data elicitation techniques can be 

usefully applied in this situation. Elicitation is a rigorous process through which 

forecasters (and other researchers) seek to obtain probabilistic information about specific 

measurements from experts in the relevant area of knowledge (Shephard and Kirkwood, 

1994). The goal of elicitation is to provide a relatively easy way for experts on any given 

topic to give their opinions in probabilistic terms, even though the experts may not know 

a great deal of probability theory (Kadane and Wolfson, 1998). 

 

Research fields that take advantage of data-elicitation methods usually apply the experts’ 

knowledge for analyzing secondary problems that will have a relevant and noticeable 

effect on the outcome of the primary analysis (O’Hagan et al., 2006). In many cases, the 

elicitation methods that are chosen must also be tailored to fit the problem at hand. 
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When creating a specific elicitation process researchers must pay careful attention to the 

nature of the problem, ensuring that it is not too complex for the experts to accurately 

analyze and predict outcomes. The researcher must also accurately understand the 

mathematical principles that underlie elicitation methods in order to achieve the most 

accurate results (Wolfson, 1999). 

 

Elicitation leads to more reliable results when the questions presented to the experts are 

worded in the same way that the expert would naturally express ideas about the problem 

(Kadane and Wolfson, 1998). Thus, it is preferable if the researcher has a solid 

background in the topic of study and is able to formulate questions in the same kind of 

language that the experts would typically use to discuss the topic. Researchers have 

developed many specific methods of eliciting expert opinions in different fields, ranging 

from more theoretical areas of knowledge to the applied sciences. 

 

Most researchers agree on the primary components of the elicitation process, though 

there are some minor differences in the details (for example, there is not yet a firm 

consensus about the order in which the various components should be carried out). 

Clemen and Reilly (2001) described the primary steps in elicitation as: 

1. Background assessment 

2. Identification and recruitment of experts 

3. Motivating experts 

4. Structuring and decomposition 
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5. Probability and assessment training 

6. Probability elicitation and verification 

7. Aggregation of experts’ probability distributions 

 

Phillips (1999) described the steps as: 

1. Collecting experts 

2. Introduction and training 

3. Motivation 

4. Conditioning 

5. Encoding 

 

Garthwaite et al. (2005) included: 

1. Set-up 

2. Eliciting summaries of expert distributions 

3. Fitting a probability distribution 

4. Assessment of the quality of the elicitation  

 

O’Hagan et al. (2006) proposed a five-stage process that included: 

1. Background and preparation 

2. Identifying and recruiting experts 

3. Motivating and training experts 

4. Structuring and decomposition 

5. Elicitation 
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In the current research project, the method of data elicitation that was used is based on 

the Delphi process. This approach was first developed for forecasting purposes by the 

RAND Corporation in 1944, for use by the American military. Its earliest applications 

involved forecasting the effects of technological development on warfare (Sackman, 

1974). The Delphi method is a detailed, enhanced, and time-consuming procedure 

intended to solicit the most accurate possible information from experts. 

 

2.4.4 Overview of the Delphi Method 

In the Delphi method, an iterative process is used to narrow in on accurate data (Rowe 

and Wright, 1999). The moderators of the Delphi process (who include the researcher or 

decision-maker, statistical consultants, and process facilitators) follow a well-defined set 

of steps to obtain accurate information from a panel of experts. The experts evaluate a 

specific aspect of the topic under investigation by responding to questionnaires. These 

questionnaires may be structured or relatively unstructured; in some cases they may 

simply ask for the expert’s broad insight into the topic. The respondents are often 

encouraged to provide extensive explanations and justifications for their answers. The 

moderators then review the results, note the range of responses and the issues that they 

raise, and design a new questionnaire based on the analysis of the first one. The expert 

respondents then receive the second questionnaire along with the moderators’ analysis of 

the overall results from the first round of elicitation. When the experts send back their 

responses to the second questionnaire, the moderators once again review them and, if 
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necessary, create yet another questionnaire. These iterations continue until a consensus is 

reached (Rowe and Wright, 2001). 

 

The Delphi process is based around providing anonymous peer feedback to the expert 

participants. Feedback is an important and sensitive issue in the data elicitation process, 

due to the way in which it may influence an expert. For example, if the researcher or a 

peer provides feedback by saying, “this value seems to be high when compared with 

others,” this response may strongly encourage the expert to reduce the estimate. At the 

same time, however, the absence of peer feedback in data elicitation can lead to less 

accurate results. Thus, the Delphi process is designed to present peer feedback in a 

measured and neutral fashion. When preparing feedback during the Delphi process, the 

moderators should be thoughtful and careful about the manner in which it is presented 

(Campbell et al., 1999; Linstone and Turoff, 1975). 

 

Depending on the nature of the topic, the moderators may present feedback to the expert 

respondents as a statistical summary and/or as a written overview. Two simple statistical 

measures that can be used to provide feedback are the mean and median values of the 

responses. However, using the mean or median may not be a suitable statistical approach 

when the responses are dispersed in a wide range or when there are outliers. For these 

occasions the moderators may decide to present the aggregated results in other statistical 

forms such as quartiles, or to provide a more descriptive summary. If there are outliers in 
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the responses then the moderators may ask those particular respondents to provide 

further reasoning for their answers (Rowe and Wright, 2001).  

 

The Delphi method is a time-consuming process, but it has a number of advantages over 

traditional group-thinking methods such as focus groups and individual solicitation 

methods such as interviews. It was designed to take advantage of the productive 

characteristics of interpersonal interaction—such as including different sources of 

knowledge, encouraging the emergence of new ideas, and conceptual screening, while at 

the same time limiting the negative aspects of group interaction, which can include the 

uncontrolled proliferations of ideas and biased, destructive criticism (Gupta and Clarke, 

1996). 

 

2.4.5 Characteristics and Implementations of the Delphi Method 

The Delphi method is characterized by its iterative process, the anonymity of responses, 

controlled flows of information, and the opportunity to modify responses based on 

feedback. The iterative nature of the method is valuable because the back-and-forth 

transfer of information leads to maturity in the results and decreases the range of 

responses. The participants have the opportunity to consider what others think about the 

problem and to see how others justify their responses (Hsu and Sandford, 2007). 

However, since the expert participants do not directly engage with or recognize the other 

members of the panel, they are less likely to be affected by extraneous social factors 
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(humiliation, intimidation, desire to please, etc.) that might otherwise limit the 

expression of their insights (Clayton, 1997). 

 

The flow of information in the Delphi method is controlled by the researcher, with the 

help of the other moderators. The gathered information is reflected back to the 

participants only in a processed form. This helps to keep the participants focused on the 

task at hand, and also provides the moderators with opportunities to eliminate stubborn 

and discredited outliers in the responses (Clayton, 1997). Once the moderators have 

analyzed and aggregated the results of each round of questions, these results are 

provided to all of the expert participants, giving them the opportunity to consider 

alternative views and adjust their previous replies. This process helps the expert 

respondents to move toward consensus faster, and in a less biased fashion, when 

compared to other methods of group discussion. 

 

The Delphi method is widely used in program planning to achieve one or more of 

following objectives:  

 Defining or developing possible program alternatives 

 Investigating assumptions or information leading to different judgments 

 Soliciting information that has the potential of consensus among the respondents 

 Correlating informed judgments on cross-cutting topics 

 Educating the respondents (Delbecq et al., 1975) 
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In the context of forecasting, the Delphi method has been used in numerous fields 

including public administration, medical science, and construction management 

(Schmidt, 1997; Olumide, 2009; Del Cano and de la Cruz, 2002). Many previous 

researchers have employed this method to elicit data from experts for the purposes of 

evaluating risk and uncertainty. De la Cruz et al. (2006) used the Delphi method to 

identify risk factors and risk responses in civil-service construction projects. Olumide 

(2009) defined ranges of highway construction cost over different project development 

phases by conducting a Delphi study. In the area of transportation planning, Robinson 

(1991) implemented a Delphi approach to forecast infrastructure funding needs and 

patterns. The method has been used in other areas of construction management to elicit 

data about delivery processes and to identify highway construction research and 

development needs (Gunhan and Arditi, 2005; Damron, 2001). 

 

2.4.6 Selection of the Expert Panel 

An important aspect of the Delphi process is that it is designed to establish a consensus 

among a panel of experts. Determining who does and does not fit the description of 

being an “expert” can be a complex process. The central literature about the Delphi 

method loosely defines “experts” as those who have ample knowledge or experience to 

provide insight into the topic under investigation (Clayton, 1997; Cantrill et al., 1996; 

Rowe and Wright, 2001). One general guiding principle for defining “expertise” might 

be that the expert has spent a much larger amount of time thinking about or participating 

in the subject area as compared to the average person. However, the exact definition of 
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an “expert” may vary among different fields (Brown, 1968). The method in which such 

experts are identified and selected requires a more specific analysis related to the 

particular field of study. 

 

In some implementations of the Delphi method, the goal of obtaining the most 

knowledgeable experts as respondents may be intentionally compromised in order to 

include representative perspectives from the full range of stakeholders in the topic under 

discussion. This is particularly important when the successful implementation of the 

outcome requires the willing cooperation of a wide range of participants, in which case 

the Delphi process can act as an initial exercise in building community consensus. For 

these representative purposes, the participants in the Delphi panel may be selected using 

probability sampling techniques (Clayton, 1997). 

 

In most cases, however, the selection should be made based purely on expertise. In these 

cases the researcher is seeking individuals who have a demonstrated knowledge. 

Purposive sampling or criterion sampling is the most effective way to select such panel 

members (Hasson et al., 2000). In purposive sampling, the participants are selected 

based on the researcher’s judgment of their suitability for the study (Tongco, 2007). In 

criterion sampling, the participants are selected based on a predetermined benchmark 

that designates their suitability (Patton, 1990). In either case, one of the ways to identify 

potential participants is to contact trusted, well-known specialists in the field and ask 

them to recommend other experts. Since the iterative nature of the Delphi method makes 
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it a lengthy process, the selected experts should be made aware of the time-factor 

involved. The researcher should seek to verify that the expert participants are motivated 

enough to complete the entire process. 

 

The researcher may decide to ask the experts to rate their own level of expertise in the 

area under investigation, and then use these evaluations to weigh responses when 

analyzing the questionnaire results (Mullen, 2003). However, assigning weights to the 

expert responses based on self-ratings is a somewhat questionable approach. Clear 

instructions and solid criteria must be provided when asking people to rate their own 

expertise, and even when this is done, different experts may have different biases when 

it comes to rating themselves. Nonetheless, even a flawed comparative assessment of 

expertise might be helpful in some situations, for example when the researcher is 

seeking to analyze outlying responses. 

 

2.4.7 Attrition 

Due to the length and complexity of the Delphi process researchers may face low 

response rates and high participant attrition. Scholars have found that the most important 

factors in motivating participants to remain involved in Delphi studies are the 

importance of the research to the participants and the persistence of the researchers 

(Cantrill et al., 1996; McKenna, 1994). The size of the panel of experts also has an effect 

on the length and complexity of the process and thereby on the attrition rate (with larger 

panels having higher attrition) (Mullen, 2003). Another issue identified by Hill and 
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Fowles (1975) is that “many respondents clearly find the exercise more burdensome than 

anticipated,” and therefore drop out of the process. To help avoid this, researchers 

should clearly and emphatically describe the process and the time investment that it 

entails to potential participants. This allows the expert participants to adjust their 

expectations and consider their commitment more realistically. 

 

2.4.8 Consensus 

In the conventional Delphi method the objective of the process is to generate a 

consensus of opinion among the participants. It should be noted that this is not always 

the case in some of the method’s more contemporary variations. For example, “Policy 

Delphi” involves brainstorming research into new scenarios and alternatives, and coming 

to an agreement about the best one is not considered an important part of the process. 

Likewise, some implementations of the method in the areas of strategic planning, risk 

identification, and resource allocation do not require a unitary consensus as an end result 

(Linstone and Turoff, 1975). 

 

For the purposes of forecasting, however, obtaining a consensus in the traditional 

fashion remains an important part of the process (Linstone and Turoff, 1975). This 

consensus should be obtained by the sharing of knowledge and mutual education during 

the course of the iterative feedbacks (Sackman, 1974). This results in a relatively 

“authentic” consensus and avoids the pitfall of mere social acquiescence to a dominant 

perspective. 



 

 

55 

 

 

 

There are, however, still some situations in which the process must be terminated before 

full, authentic consensus is achieved. Hasson et al. (2000) pointed out that if the number 

of participants is decreasing significantly every round due to attrition, then the Delphi 

process should be halted. In such a situation it is likely that the departing members 

believe their input is not being heard, and continuing the process will therefore likely 

lead to a biased result. 

 

There is no overall agreement in the literature about the specific criteria for consensus in 

the Delphi method. One approach is to consider the variation of the responses in 

successive rounds. If the results have become stable then the researcher may conclude 

that a consensus has been obtained (Hasson et al., 2000). Another possible criterion is to 

measure the percentage of responses which fall into a designated range of variation on a 

predefined scale (Hsu and Sandford, 2007). 
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CHAPTER III 

RESEARCH DESIGN 

 

 

The overall goal of this research was to develop a risk- and performance-based 

infrastructure asset management framework. The literature review described in the 

previous chapter was the starting point for this work; it involved an assessment of 

current asset management tools, methods of representing uncertainty in decision-making, 

and various forecasting and data-elicitations methods. There are currently two major 

challenges for implementing a risk- and performance-based infrastructure asset 

management framework: first, there is a lack of a practical method for incorporating 

uncertainty into the model, and second, in many cases there is a lack of appropriate data 

for how assets perform over time. 

 

To address these issues, the research study was broken down into six sequential tasks: 

1. Define the levels of uncertainty that are relevant to asset-management decisions. 

2. Evaluate various risk-analysis approaches, and select a practical approach that is 

suitable to the current needs of asset managers. 

3. Develop a method to incorporate the identified risk-analysis approach into the 

asset performance model, and to assess the impacts of risk and uncertainty on the 

final asset management decisions.  
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4. Develop a data-elicitation method for defining the performance of assets when 

sufficient historical (past-performance) data is not available. 

5. Using a case study in which historical data is available, assess the applicability of 

the proposed methods by comparing the modeling results with the results from 

actual historical data collected in the field over time. 

6. Develop recommendations for how asset managers can use the decision support 

framework during the course of their practical activities. 

 

To accomplish Tasks 1, 2, and 3, the method of scenario analysis was used to develop a 

practical model of uncertainty. Drawing from the analysis of levels of uncertainty in 

Courtney (2001) and Walker et al. (2003), the researcher first analyzed what kind of 

uncertainty is present in infrastructure asset management. This analysis helped to 

indicate the appropriate approach for modeling uncertainty and risk. The method chosen 

was a three-part, outcome-based scenario analysis—for convenience these scenarios 

were called the “best case,” the “most likely case,” and the “worst case” for asset 

performance. The value of this approach for asset management is that the construction of 

such scenarios enables decision-makers to draw conclusions about the range of potential 

impacts of their decisions, while, at the same time, the model’s relative simplicity avoids 

bogging decision-makers down in an excess amount of data. This allows decision-

makers who are using the infrastructure asset management tool to quickly see how their 

allocation of funds is likely affect the overall conditions of their asset network. The 
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explanation of how this approach to risk and uncertainty was selected and developed is 

described in detail in chapter 4. 

 

To accomplish Tasks 4, it was necessary to determine a method for estimating the 

performance of assets in the absence of adequate historical (past-performance) data. 

After examining various forecasting and data-elicitation methods, the researcher 

developed an approach based on the “Delphi technique,” which involves an iterative and 

interactive analysis by a panel of experts. This robust technique to elicit estimated 

performance data can be used to reliably fill in the gaps when actual historical data about 

asset performance is impossible to obtain. Chapter 5 describes in detail how this 

technique of data elicitation was selected and developed for use in asset-management 

contexts. 

 

To accomplish Task 5 the researcher conducted a case study and tested the practical 

implementation and accuracy of the model. The case study that was selected involved 

street maintenance in the city of Bryan, Texas. While the proposed asset-management 

framework is generic and could be used for any type of asset-management situation, in 

this research the pavement condition index (PCI) of the Bryan road system was used as 

the relevant measure of performance. The case study was focused on the deterioration of 

PCI over time, an important consideration for asset managers who need to evaluate the 

timing and cost of pavement maintenance treatments. 
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To test the proposed data-elicitation method, pavement samples from varied locations in 

the city were selected and provided to a panel of road-condition experts. The condition 

of these samples (their PCI) was measured, and then the experts were asked to evaluate 

the age of the pavement in the various samples. The data elicited from the experts was 

aggregated using a Bayesian hierarchical model. Finally, based on the resulting data, the 

researcher developed a scenario-based model for defining how pavement conditions in 

the city deteriorated over time. Quantile regression analysis was used to define the 

performance curve for each of the three possible scenarios (the “best case,” “most likely 

case,” and “worst case”).  

 

Meanwhile, actual historical (past-performance) data was obtained from the city of 

Bryan, in the form of road construction records and PCIs measured during city 

inspections. The existence of actual historical data in this case study allowed for a 

comparison in which the model based on data-elicitation was measured against a similar 

model derived from the city’s records. The process of data elicitation/collection and 

analysis in the case study is described in detail in chapters 6 and 7. 

 

Finally, to accomplish Task 6 the researcher examined the implementation of the case 

study and developed practical recommendations for when and how the proposed 

infrastructure asset management framework can best be applied during the course of 

everyday professional activities. These recommendations are provided in the concluding 

chapter 8 of the dissertation.  
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CHAPTER IV 

SCENARIO PLANNING IN INFRASTRUCTURE ASSET MANAGEMENT 

 

 

4.1 Introduction 

In recent years scenario planning has become a commonly used technique to support 

decision-making in uncertain environments. Scenario planning is most useful when the 

situation involves unknown or hard-to-predict variables and a diverse range of possible 

future events or outcomes. It allows managers to evaluate several representative possible 

futures during the course of their decision-making process, and is therefore very 

beneficial for organizations that are attempting to prepare medium- and long-range plans 

that can be affected by differing future conditions. Scenario-based approaches to 

planning involve considering a set of alternative possible futures and evaluating what 

effects the current decision will have on each of those possible futures. 

 

In general, a scenario can be defined as a cohesive description and clarification of a 

possible future state of affairs. It also sometimes includes a description of hypothetical 

events leading up to that future and the potential implications of the events. Part of the 

process of defining scenarios is the identification of uncertain and uncontrolled factors 

that decision-makers may have assumed to be static. Thus, scenario planning involves 

challenging the existing mindset of decision-makers, and breaking the status quo by 

suggesting possible futures that may not have been adequately considered. 
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The scope of scenario planning extends to virtually any situation in which the decision-

maker confronts a state of uncertainty about relevant future conditions. The strength of 

scenario-based approaches is to clarify and delimit the broad range of future 

possibilities, which if considered all together as a whole can overwhelm human capacity 

for analysis. Unlike other popular methods of uncertainty analysis, such as contingency 

planning and computer simulation, scenario-based approaches are able to take into 

account a very wide range of unknown variables. Traditional probabilistic analyses of 

uncertainty can, in theory, be seen as considering every possible future event as a 

scenario, but this approach becomes ever more impractical as the range of relevant 

variables increases. Scenario analysis makes use of a limited number of representative 

scenarios so that decision-makers can more quickly and effectively comprehend the 

overall range of possible futures. The scenarios are not assigned a level of probability, 

thus helping to counter the natural human tendency to ignore outlying possibilities. This 

encourages managers to more seriously contemplate the full range of possible future 

conditions (Bishop et al., 2007). 

 

Scenario planning methods can be categorized as event-based or outcome-based. Event-

based approaches are oriented around a set of divergent future happenings (for example, 

receiving full maintenance funding in the upcoming year, receiving half maintenance 

funding, or receiving no maintenance funding). This kind of event-based scenario-

planning approach has been used previously in infrastructure asset management support 

frameworks (Piyatrapoomi et al., 2004). In contrast, outcome-based scenarios describe 
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possible future conditions, without attempting to specify what events led to those 

conditions. This approach is more useful when the range of possible future outcomes can 

be defined, but the event sequences leading to those future outcomes are very complex 

(for example, instances in which variations in weather conditions affect the decline of an 

asset over time). 

 

In chapter 2, a more detailed description and review of the previous literature on 

scenario planning was provided. In this chapter, an outcome-based scenario-planning 

approach is used to address Research Question 1 of the current study (how to best 

incorporate uncertainty into a decision-support framework for infrastructure asset 

management). This chapter includes a discussion of why outcome-based scenario 

planning is a novel and valuable solution in infrastructure asset management. It also 

describes how levels of uncertainty are relevant to implementing scenario analysis, and 

how specific scenarios can be developed for describing possible future asset-

performance levels. 

 

4.2 Dimensions of Uncertainty 

The first step in structuring a scenario-planning process is to define the purpose of using 

this method and what it can accomplish for the topic at hand. Asset management is a 

natural candidate for scenario analysis, due to the frequency with which asset managers 

have to enact planning decisions in an uncertain environment. However, to more closely 

define the utility of scenario planning and to select the most appropriate approach, it is 
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important to specify the exact dimensions of uncertainty that need to be handled in asset-

management contexts. 

 

Walker et al. (2003) identified three dimensions of uncertainty as its location, nature, 

and level. The location of uncertainty refers to the specific variables that cannot be 

deterministically modeled. There are many different locations of uncertainty that can be 

identified in infrastructure asset management, ranging from variations in future funding, 

to the accuracy of asset inventories, to the rate with which assets degrade. In this 

research, the location of the uncertainty that will be examined is in the performance of 

assets over time. This central measure is of great importance to all asset managers, and it 

combines many elements of uncertainty arising from different sources (data accuracy, 

future weather/environmental conditions, the variable quality of maintenance work, the 

amount of traffic, etc.) 

 

The performance of assets over time is frequently expressed using performance curves, a 

concept that was introduced in chapter 2. By constructing a graph with performance 

ratings on the vertical axis and time on the horizontal axis, it is possible to quickly see 

the utility that an asset will provide over the course of its remaining life. Different 

maintenance decisions will affect the performance curve of an asset in specific ways. 

However, there is always a degree of uncertainty when defining performance curves for 

the future of an asset, because this future performance can be subtly affected by many 

unknowable variables. This uncertainty is further increased when there is limited 
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historical data on which to base the projections, or in cases where environmental 

conditions and usage patterns are expected to change rapidly. 

 

The nature of uncertainty, in Walker’s (2003) schema, refers to whether the uncertainty 

is due to a lack of knowledge about the problem or to natural variability in the 

environment and other causal effects. In reality this is something of a spectrum, but the 

importance of the distinction is to clarify how easy it would be to reduce uncertainty by 

enhancing the state of knowledge about the problem. In the case of future asset 

performance, the uncertainty is caused by complex phenomena (such as weather patterns 

and the variable properties of materials) that are extremely difficult, if not impossible, to 

predict. Thus, it is unlikely that this uncertainty will ever be fully eliminated. 

 

The third dimension in Walker’s (2003) schema is the level of uncertainty. This 

dimension has been largely neglected in previous asset-management research. However, 

the level of uncertainty has an important bearing on selecting the most suitable risk 

analysis tools and techniques. The levels of uncertainty in infrastructure asset 

management are discussed in detail in following section. 

 

4.3 Levels of Uncertainty in Infrastructure Asset Management 

To implement the best possible risk analysis approach, the level of relevant uncertainty 

in the situation must first be determined. As was discussed in chapter 2, researchers have 
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frequently divided uncertainty into four categories or levels (Courtney, 2001; Walker et 

al., 2003). To review, these four levels are: 

 

Level 1: A clear, single vision of the future. The range and impact of relevant possible 

futures is so narrow that it is acceptable to consider the problem deterministically, 

without worrying about multiple future scenarios. 

 

Level 2: A limited set of possible future outcomes, one of which will occur. At this 

level the uncertainty can be expressed as several discrete possible future outcomes. The 

probability that each of these future outcomes might occur is also known to a fairly high 

degree of accuracy. All of the relevant possible future outcomes can be expressed as a 

mutually exclusive, collectively exhaustive set. 

 

Level 3: A range of possible future outcomes. Due to the complexity of the variables it 

is no longer feasible to identify and analyze every possible future outcome. However, the 

total range of the possible future outcomes can be described. 

 

Level 4: A limitless range of possible future outcomes. At this level of “true 

ambiguity,” it is impossible to define the limits of what might happen, or to estimate the 

probability of any given scenario. 
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These levels of uncertainty were primarily developed for use in strategic planning. 

However, they also have important implications for decision-making in infrastructure 

asset management. For example, a typical asset performance curve is presented in a 

deterministic fashion, mirroring Level 1 uncertainty. A single curve is shown, with no 

attempt to represent variability in future performance (Figure 4-1). This is the traditional 

approach to modeling performance in asset management, and several major asset-

management decision support frameworks incorporate such models (Santos and Ferreira, 

2013). However, assuming a deterministic level of uncertainty in asset performance is 

questionable, since numerous unknown and complex variables can have important 

effects on the actual performance of real-world assets (Ng et al., 2011). Deterministic 

models are fairly easy to interpret, but they include no information about the range of 

uncertainty and risk. 
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Figure 4-1. Example of a Traditional Asset Performance Curve (Level 1 Uncertainty)  

 

 

 

To adopt a Level 2 uncertainty approach in infrastructure asset management, it is 

necessary to predict performance in a discrete, exhaustive set of possible future 

outcomes. Since the 1970s, researchers have attempted to develop statistical models to 

provide such an analysis. One example is the stochastic performance models that are 

frequently used in pavement management, such as the Markov Decision Process (Figure 

4-2). In this method the probability of degrading from one state of performance to 

another over a given time-frame is defined by a transition matrix. In theory, it is possible 

to model the life-cycle of an asset by considering all of its identifiable futures, and then 

assigning a probability to each path. However, in practice, because of the complexity of 

the variables involved and the difficulty of modeling all identifiable futures, this 
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approach is seldom fully implemented. Furthermore, the amount of information in the 

matrix makes these models rather awkward and non-intuitive to use. 

 

 

 
 

Figure 4-2. Example of a Markov Model (Level 2 Uncertainty) (Carter, 2002) 

 

 

 

Level 3 uncertainty is arguably the best interpretation of the decision-making 

environment for asset managers. Typically, the factors that can affect future asset 

performance are too complex to allow all relevant future outcomes to be defined in an 

exhaustive fashion. Attempts to do so (such as the Markov model described above) are 

inevitably incomplete and imprecise in their attempts to assign probabilities. The 

modeling assumption that all possible future paths can be exactly and precisely defined 

in an event-probability matrix is not really true in the practical context of asset 

performance. Thus, models based on a statistical, Level 2 uncertainty approach end up 

presenting definitive probabilistic results that obscure the actual uncertainty in the data. 

At the same time, the complexity that is entailed in this statistical approach, as it tries to 
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become ever more accurate by defining greater and greater numbers of possible futures, 

makes the model increasingly cumbersome for decision-makers to use. 

 

In the context of infrastructure asset management decisions, it is difficult to describe 

every single possible performance future. However, the overall range of potential asset 

performance is relatively easy to define. This range of possible future conditions can be 

described with an upper bound (best-case scenario), a lower bound (worst-case 

scenario), and a median line (most likely scenario). This is an accurate description of 

Level 3 uncertainty. Instead of attempting to statistically analyze all possible futures, it 

can be more effective in this situation for decision-makers to consider a few 

representative scenarios from within the overall range of uncertainty (Figure 4-3). This 

form of scenario-based planning has obtained widespread application in other areas of 

strategic decision-making, but it has not yet been implemented in infrastructure asset 

management, despite its excellent fit with the level of uncertainty that asset managers 

commonly encounter. 
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Figure 4-3. Multiple Performance-Curve Scenarios Displaying the Range of Uncertainty 

(Level 3 Uncertainty) 

 

 

 

The drawback of using scenario planning based on Level 3 uncertainty (compared to 

statistical analysis based on Level 2), is that scenarios do not provide exact probabilities 

or an exhaustive accounting of future events that would allow for a definitive 

mathematical/statistical solution. However, as argued above, this goal of statistical 

precision is difficult if not impossible to accurately accomplish in the context of 

predicting future asset performance. In this context, it can be more useful and effective 

for decision-makers to examine a small set of scenarios covering the range of possible 

futures. 
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Regardless of the level of uncertainty, only one of the many possible future outcomes 

will actually occur. Considering this helps us to understand another advantage of 

scenario analysis. Probabilistic approaches are generally oriented toward determining the 

decision with the greatest statistical utility, given the likelihood of different future 

events. Maximizing statistical utility, however, is not the only information that decision-

makers need to consider. They also need to consider what the outcome will be if an 

unlikely future comes to pass, and whether or not that potential outcome is acceptable. 

Examining “worst case” and “best case” scenarios, as well as the more likely scenarios, 

encourages managers to take this information into account. 

 

The ability to define a “best case” and “worst case” performance scenario is also what 

distinguishes the situation of infrastructure asset management from the true ambiguity of 

Level 4 uncertainty. At Level 4, future events are pretty much impossible to model. The 

range of what might happen is unknown and unknowable. Fortunately, this is not the 

case in most situations related to asset performance, because the overall range of 

performance possibilities can be described with reasonable accuracy. Assets have a 

maximum performance at the beginning their life cycle, and this performance decreases 

as the asset deteriorates over time. Many complex factors affect the rate of decrease, but 

its general “best case” and “worst case” parameters are knowable. Thus, in most cases 

the true ambiguity of Level 4 uncertainty is not the situation of asset managers. 
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4.4 Developing and Representing Scenarios for the Performance of Assets 

After deciding to adopt a scenario planning approach, based on the Level 3 uncertainty 

typically faced by asset managers, the next step in this research was to determine how 

the relevant scenarios should be selected and defined. For the sake of simplicity, it was 

decided that three scenarios for future asset performance would be considered. This is 

actually the smallest number of scenarios that can be usefully employed in such an 

approach, as it allows for a presentation of an upper bound, a lower bound, and a median 

in regard to possible future performance. The use of three scenarios is a common feature 

of scenario planning in strategic decision making (Chen, 2003). The three scenarios used 

in this framework are not assigned specific probabilities of occurrence. Decision makers 

may generally assume that the upper- and lower-bound scenarios are less likely to occur 

than the median scenario; however, the lack of assigned probabilities encourages them to 

weigh each of the scenarios with more equal importance and thereby broaden their view 

toward the range of potential consequences of their decisions. This helps to counter the 

natural human tendency to dismiss outlying possibilities (Bishop et al., 2007). 

 

Finally, the specific manner of defining the three scenarios had to be determined. The 

main basis for representing uncertain outcomes is probability distribution, which is also 

the most familiar method used in decision analysis (Durbach and Stewart, 2011). 

However, it is more practical (and a necessary component of scenario analysis) to use 

summaries of the probability distribution to capture particular features of interest. The 

most important probability distribution summaries are individual probabilities, quantiles, 
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intervals, location measures (median, mode, and mean), measures of scale or dispersion, 

and measures of shape (O’Hagan et al., 2006). 

 

In this research the goal was to provide “best case”, “worst case”, and “median case” 

scenarios. The most suitable distribution summary to use for this purpose is statistical 

quantiles. As defined by Gilchrist (2000), “a quantile is “simply the value that 

corresponds to a specific portion of a sample or population.” In other words, it is the data 

value below which a given portion of the observations fall. The portion of observations 

that fall below a quantile is called the percentile. For example, at the 20th percentile, 

20% of the data observations fall below this number. The actual data number at the 20th 

percentile is called the quantile.  

 

For the purposes of this study, the “worst case” or lower-limit scenario was defined as 

the 5th percentile. This means that there is less than 1 in 20 chance that the actual 

condition of the asset will fall below the lower limit. Likewise, the “best case” or upper-

limit scenario was defined as the 95th percentile, meaning that there is less than 1 in 20 

chance that the actual condition of the asset will be above the upper limit. (Technically, 

these percentiles do not represent the absolute “worst” and “best” situations that could 

happen; these are terms of convenience.) The median scenario was defined as the 50th 

percentile, the center-point of the data’s probability distribution. 
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CHAPTER V 

A MODEL FOR ELICITING EXPERT OPINIONS 

 

 

5.1 Introduction 

To address Research Question 2 of the current study (how to predict asset performance 

in the absence of adequate historical data), it was necessary to select the most 

appropriate method of qualitative forecasting. Then, these approaches were used to 

develop a model specifically tailored for application in infrastructure asset-management 

contexts. As was discussed in chapter 2, data forecasting processes and techniques are 

designed to make the most accurate possible predictions about specific future outcomes. 

These methods have become increasingly rigorous and credible over the past century 

(Hanke et al., 2001). Forecasting methods incorporate historical data wherever possible 

to help predict future trends. However, relying solely on historical data in forecasting 

analyses has a limited utility. Forecasters must also consider potential changes in the 

environment and draw from a wider range of knowledge in order to assess the likelihood 

that recorded trends will continue in a set pattern. In cases where there is limited 

historical data or when trends are expected to change rapidly, these qualitative aspects of 

forecasting become increasingly important. 

 

In the absence of robust historical data, drawing from the opinions of experts is one of 

the best ways to improve the accuracy of forecasting. Through a process known as data 
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elicitation, researchers can fill in unknown data points by consulting individuals who 

have expert knowledge of the topic that is being studied. Several rigorous methods have 

been developed that can increase the accuracy of forecasting and data elicitation and 

limit their subjective elements. One of the most sophisticated approaches is known as the 

Delphi method, and it was this approach that was selected for use in the current research. 

The details of forecasting, data elicitation, and the Delphi method were described more 

fully in chapter 2. In this chapter, an application of the Delphi method was developed to 

create a model for eliciting data about asset performance. 

 

5.2 Using the Delphi Method to Elicit Data on Asset Performance 

The Delphi method is an iterative process that allows the researcher to narrow in on 

accurate information from a panel of experts. Through multiple rounds of questionnaires, 

the experts have an opportunity to review summarized analyses from their peers, thereby 

obtaining feedback and refining their outlooks until a consensus is reached. The flow of 

information is controlled by the researcher/moderator, and the peer analyses are 

distributed in an anonymous fashion. This helps to reduce the impact of undesirable 

social factors such as destructive criticism, intimidation, face-saving, the desire to 

please, and so forth. Although the Delphi method is a time-consuming process, it can 

lead to better results than other methods of data elicitation, such as focus groups or 

interviews. 
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The Delphi method was chosen for use in this research for three reasons. First, it does 

not require the experts to meet the researcher in person. The questionnaires can be 

completed at the experts’ convenience, which greatly improves the logistics of 

conducting the elicitation and allows for more flexibility in the selection of expert 

participants. Secondly, the anonymity that the method provides to the expert participants 

is very useful in a professional field where many of the experts may interact with one 

another outside of the study. This is particularly critical because of the possibility that 

some respondents might be employed at different ranks of the same organization. 

Finally, using the Delphi method in this research allowed for feedback and discussion 

among the participants, which is not possible in other anonymity-preserving approaches. 

The use of feedback and discussion is a very powerful tool for increasing the accuracy of 

data elicitation (Jenkinson, 2005).  

 

Twelve steps were identified in the data-elicitation model. These steps are listed below, 

and then discussed in detail in the following sections. In some of the discussion, 

examples from the implementation of the model in the city of Bryan, Texas are provided 

in order to better illustrate the processes involved in using the method. These 

illustrations are only for the sake of clarity. In practice, this model for data-elicitation 

can be adapted for use in a wide range of infrastructure asset-management contexts. 

1. Select the moderators 

2. Define the parameters of the data elicitation 

3. Select samples from the current asset 
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4. Gather information on the samples 

5. Select the panel of experts 

6. Develop the questionnaire package for the first round 

7. Run a pilot test 

8. Conduct the first round of the elicitation 

9. Analyze the responses from the first round and provide controlled 

feedback 

10. Develop the questionnaire package for the subsequent round 

11. Conduct the subsequent round of the elicitation 

12. Review and analyze the responses from the subsequent round 

 

1. Select the Moderators 

When applying the Delphi method to the data-elicitation process, there are several 

different roles that need to be considered. These roles fall into two major categories. The 

first is a panel of moderators, which will be discussed in this section. The second is a 

panel of experts, which will be described in Step 5 below. The first step is to select the 

panel of moderators. The members of this panel should include the primary researcher 

(or decision-maker), statisticians, and facilitators (O’Hagan et al., 2006). The researcher 

or decision-maker is the ultimate client of the elicitation process. This person oversees 

the design and implementation of the method in order to obtain needed information. 

Statisticians provide technical consultation for the statistical aspects of the process. This 

often includes helping to develop questionnaires and analyze data. Facilitators assist in 
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the implementation of the data-elicitation process. Their responsibilities often include 

contacting the panel of experts, gathering information from the experts, and conducting 

analyses under the supervision of the primary researcher and statisticians. Depending on 

the size of the research project, it is possible that one person might serve multiple roles 

on the panel of moderators. 

 

When selecting the panel of moderators, a degree of expertise in the knowledge-area of 

the elicitation is important. At a minimum, the primary researcher should have a high 

level of expertise in the relevant subject area. 

 

2. Define the Parameters of the Data Elicitation  

This is one of the most important steps in data elicitation process. The selection of the 

parameters to elicit information about is based on the objectives of the elicitation process 

and the extent to which the available experts are familiar with the parameters. For 

example, for eliciting data about the performance of road pavements over time, two 

parameters could be identified as: (1) the age of the pavement; and (2) an indicator of 

performance. In the first option, experts would be asked to provide their assessment of 

performance given information about the age of pavement samples. In the second option, 

experts would be given information about the road performance and asked to assess the 

age of the samples. Both processes would lead to the same information—data about 

performance at a particular time. When deciding what parameters to use, the researcher 

should focus on what forms of evaluation would be easiest for the expert participants to 
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make. It should also be mentioned that different parameters may affect the complexity of 

the statistical analysis that will need to be applied to the data. 

 

In the context of asset performance, it is generally desirable for the experts to provide 

their data estimates as a range. The performance of assets over time is not deterministic, 

but depends on many unknown variables (weather conditions, etc.). Moreover, when an 

expert reviews an asset sample, it is merely representative of the asset’s overall 

condition, which may vary from place to place within the asset. A pavement sample, for 

instance, does not exhaustively demonstrate the conditions along the entire road. For this 

reasons, experts who provide data in asset-performance contexts are usually more 

comfortable estimating a range of possible conditions rather than a specific outcome. For 

the model developed in this research, the experts were asked to provide their evaluations 

in the form of quantiles. 

 

3. Select Samples from the Current Asset 

In the absence of any other motivating factors, the samples taken from the current asset 

should be selected randomly. If possible, they should cover a complete range of the 

performance. It is preferable if the samples are spaced evenly across the range of 

performance (however, in practice this is often impossible). The other consideration in 

selecting the asset samples is that they should represent the average performance of the 

network. 
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4. Gather Information on the Samples 

When the asset samples are selected, related information about the performance of the 

samples may also be obtained. This information will be provided to the experts as part of 

the questionnaire package. The purpose of this step is to provide as much data as 

possible to help inform the experts’ evaluation. The information may include visual 

descriptions of the sample location (pictures and video recordings), field condition 

surveys, physical specifications, and any available historical information. 

 

5. Select the Panel of Experts 

The panel of experts consists of individuals who have a great familiarity with the topic 

under investigation. These experts should have adequate knowledge to provide a reliable 

assessment of the asset and its performance. A more detailed discussion of who qualifies 

as an expert was given in in chapter 2. There are several ways to identify candidates for 

the panel of experts. One practical method is to select them from the local pool of 

experienced professionals in the field of study. During this step of the elicitation process, 

a clearly defined criterion for evaluating the knowledge of prospective experts should be 

defined. This criterion may vary in different infrastructure asset management contexts; 

one broadly applicable criterion might be the number of years of experience that the 

expert has in the field of study. 

 



 

 

81 

 

 

 

6. Develop the Questionnaire Package for the First Round 

The main instrument that is used in the elicitation process is the questionnaire package. 

The purpose of the package is to provide the expert participants with a user-friendly 

environment through which they can provide their inputs. Elements of the package may 

include an invitation letter, an information sheet, a description of the Delphi process, the 

questionnaire itself, and a demographic form. The package should be developed using a 

format that the experts are familiar with and are comfortable working within. For 

example, a simple platform such as Microsoft Office may work better than sophisticated 

statistical packages or researcher-designed input applications. 

 

7. Run a Pilot Test 

To improve the questionnaire package, the researcher should conduct a pilot test. A 

volunteer participant from the panel of experts should be instructed to fill out the pilot 

questionnaire. In addition to the normal questionnaire answers, this participant is asked 

to comment on the clarity of the questionnaire instructions, the utility of the included 

information, the method of response, and the overall format. After feedback is received 

from the pilot test, the questionnaire package may need to be adjusted. 

 

8. Conduct the First Round of the Elicitation 

After conducting the pilot test and making any necessary changes, the questionnaire 

package is sent to each member of the panel of experts. Typically, the package may be 

sent via e-mail. The expert participants should be instructed to inform the researchers if 
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they need any further information, or if they wish to meet with a facilitator in person for 

further discussion of the process or the questionnaire. 

 

9. Analyze the Responses from the First Round and Provide Controlled Feedback 

The first step in analyzing the experts’ responses is to review all returned questionnaires 

for reliability and consistency. The moderators should confirm that each expert appears 

to fully understand the concepts and the elicitation process. A useful approach to this 

review is to plot the responses and compare the range of answers, which allows the 

moderators to identify outlying responses. The moderators may decide to discard the 

outliers or to contact those respondents for further clarification. After this review, the 

moderators should summarize and aggregate the responses from the experts. Ouchi 

(2004) provided a detailed review of different aggregation methods that can be used. The 

aggregated results of the first round of elicitation will be provided to the experts as part 

of the second-round questionnaire package. 

 

10. Develop the Questionnaire Package for the Subsequent Round 

The questionnaire for the subsequent rounds of the Delphi process is developed based on 

the results of the first round. The moderators may repeat questions from the first round 

and allow the experts a chance to adjust their responses. Additional questions may be 

added based on issues that the moderators identified as critical in the first-round 

responses, thereby encouraging the experts to elaborate, reconsider, or confirm their 

view of those topics. The new questionnaire package also includes feedback from the 
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previous round of elicitation. This use of anonymous feedback is a very important aspect 

of the data-elicitation model (Wolfson, 1999). Two recommended forms of feedback are: 

(1) the aggregated results of the previous rounds using one of the statistical methods 

described above; and (2) selected samples of the responses from the previous round. The 

panel of moderators should work together to define which new questions to add and 

what combination of feedback best suits the needs of the project. It is important to select 

the feedback carefully to avoid overwhelming or frustrating the experts, and to avoid 

introducing bias into the process. 

 

11. Conduct the Subsequent Round of the Elicitation 

The elicitation process for subsequent rounds is similar to the first round. Each member 

of the expert panel should receive the new questionnaire package, and should be 

instructed to contact the researcher if there are any questions or concerns. It is important 

when sending the new questionnaire package to clearly indicate to the experts that this is 

a new round of elicitation, and to describe its importance and its differences from the 

previous round. 

 

12. Review and Analyze the Responses from the Subsequent Round 

The results of subsequent elicitation rounds are reviewed and analyzed in a fashion 

similar to the first round. At the end of the analysis the moderators determine whether or 

not there is a need to conduct a further round of elicitation (if so, they return to Step 10 

of the process). If the moderators determine that a consensus has been reached in the 
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experts’ replies, or that further rounds of elicitation would be unproductive, then they 

end the process. Chapter 2 includes a more detailed discussion of how consensus may be 

defined and other criteria that moderators may consider when determining the need for 

another round of elicitation. 
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CHAPTER VI 

DATA COLLECTION FOR A CASE STUDY IN THE CITY OF BRYAN, TEXAS 

 

 

6.1 Introduction 

The previous chapters of this dissertation described the infrastructure asset-management 

framework and model that was developed during the current research. This framework 

was created to help meet two of the most critical information-modeling needs in the 

asset-management context—how to report uncertainty and risk, and how to predict asset 

performance in the absence of adequate historical and past performance data. The second 

portion of the research, which is described starting in this chapter, was conducted to test 

the applicability and implementation of the proposed asset-management framework. 

 

For the purpose of testing the new model, a case study was conducted. The asset 

performance measure that was chosen for evaluation was pavement conditions on the 

city streets of Bryan, Texas. Pavement performance is a paradigmatic maintenance 

concern for asset managers, and one that is fairly conspicuous to the public. It is 

commonly quantified using a measure called the Pavement Condition Index (PCI), 

which ranges from 0 to 100. Pavement with a PCI of 0 is regarded as “failed” and 

incapable of providing satisfactory service to users, while pavement with a PCI of 100 is 

in immaculate condition. PCI evaluations take into account both the structural integrity 

of the pavement and its surface operational conditions (though some structural 



 

 

86 

 

 

 

characteristics, such as skid resistance and weight-bearing capacity, are not considered in 

PCI evaluations) (Shahin, 2005). For maintenance purposes, mapping the changes in a 

road’s PCI over time provides a good description of the rate of pavement deterioration. 

 

For testing purposes, data about the PCI over time in Bryan, Texas, was obtained from 

two different sources. The first source of information was data elicitation from experts, 

following the model described in chapter 5 of this dissertation. This is the proposed 

method for obtaining predictions of asset performance in the absence of robust historical 

information. In this case study, however, an infrastructure asset-management context 

was chosen in which a good amount of past performance data was in fact readily 

available. The second source of data, obtained for comparative purposes, was past 

performance records from pavement surveys conducted by the City of Bryan. 

 

This chapter describes the two sources of the data that were used in the case study, and 

the processes used to collect and prepare the data for analysis. The details of the data 

analysis are then provided in chapter 7. 

 

6.2  Institutional Review Board (IRB) Approval 

The data-elicitation process involves human subjects (the expert participants) who could 

potentially be affected by the research. Therefore, as mandated by Texas A&M 

University and the U.S. Department of Health and Human Services, the design for this 

case study was submitted for IRB review and approval. This research was filed for 
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review under the Study Number IRB2014-0241, and the waiver was approved by the 

Institutional Review Board. A copy of the approval letter is provided in Appendix A. 

 

6.3 Data Elicitation from Experts 

To elicit data about pavement performance over time in the city streets of Bryan, Texas, 

the model described in chapter 5 was implemented. The theoretical background and 

design of this model were described in previous chapters. However, reviewing how this 

model was applied in a case study can be a very useful exercise for asset managers who 

are working to adapt the framework to their own unique contexts and asset 

responsibilities. 

 

As described in chapter 5, the elicitation model is based on the Delphi method and 

includes twelve steps: 

1. Select the moderators 

2. Define the parameters of the data elicitation 

3. Select samples from the current asset 

4. Gather information on the samples 

5. Select the panel of experts 

6. Develop the questionnaire package for the first round 

7. Run a pilot test 

8. Conduct the first round of the elicitation 
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9. Analyze the responses from the first round and provide controlled 

feedback 

10. Develop the questionnaire package for the subsequent round 

11. Conduct the subsequent round of the elicitation 

12. Review and analyze the responses from the subsequent round 

 

In the following sections, the implementation of each of these steps in the case study is 

explained. 

 

1. Select the Moderators 

The first step of the data-elicitation process was to select the panel of moderators. The 

relevant roles to be filled included that of primary researcher, statisticians, and 

facilitators. In this small case study, the dissertation author served to fulfill all the 

required roles (thus, in the rest of this chapter the terms “moderator” and “researcher” 

are used interchangeably).  

 

2. Define the Parameters of the Data Elicitation 

The purpose of the data elicitation was to model levels of pavement performance (in 

PCI) over time. Thus, the researcher had two choices for how to proceed. The experts 

could be presented with pavement samples of a known age, and then asked to estimate 

the samples’ PCI. Alternatively, the researcher could present the experts with pavement 
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samples of a known PCI, and then ask them to estimate the age of the samples. Either 

approach would allow the researcher to elicit the PCI-vs.-age relationship. 

 

In this study, either approach would also have been pragmatically feasible (this might 

not always be the case, for example in situations where current performance indicators 

cannot readily be surveyed). Thus, the primary consideration in this case study was what 

form of evaluation would be easiest and most convenient for the experts to make. The 

researcher determined that estimates of pavement age based on known PCI were more 

straightforward and accurate. It was decided that the experts would be provided with 

information about the pavement samples’ condition, including their calculated PCI and 

photographs of the sample locations. However, the experts would not be told the age of 

the pavement in the samples; the age variable would be treated as an unknown and 

elicited from the experts. 

 

Another important constraint in this study was the type of streets that were examined. 

The researcher decided to limit the scope of the study to asphalt concrete pavements and 

to residential streets. This decision helped to focus the accuracy of the elicitation and to 

simplify the data-collection process. 

 

3. Select Samples from the Current Asset 

Since PCI was defined as the independent variable in this study, the strategy of 

pavement sampling was designed to cover the full range of current pavement conditions. 
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The researcher began by examining an aerial map of the city of Bryan and selecting 

potential sampling sites. Field visits were also conducted to gain an overview of the 

street conditions and the major types of pavement distresses that were present 

(longitudinal cracking, raveling, etc.) (Shahin, 2005). For convenience, the range of 

pavement performance was divided into five intervals: 

PCI 0–40 “Failed” 

PCI 41–55 “Poor” 

PCI 56–70 “Fair” 

PCI 71–85 “Good” 

PCI 86–100 “Excellent” 

 

Pavement samples were selected from each of these performance intervals. Furthermore, 

the researcher identified the major types of pavement distress that were present within 

each PCI interval, and samples were selected to include each of these different distress 

types. 

 

A total of nine pavement samples were selected for the elicitation. This was the 

minimum number of samples that satisfied the criteria given above. While additional 

samples could potentially increase the accuracy of the data elicitation, the researcher was 

also concerned that a large number of samples might overwhelm the experts and 

decrease their enthusiasm for the elicitation process. It was therefore necessary to find a 

careful balance between these two concerns. 
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While narrowing in on potential sampling sites, the researcher reviewed photos obtained 

from the Google Streetview platform. These pictures provided more details about the 

pavement conditions and the kinds of distress that were present at each site, as well as 

possible obstacles that might inhibit field inspections. The last step of the selection 

process was to visit each sample site, confirm that it met the intentions of the survey, and 

obtain detailed and precise information. A list of the selected pavement sample locations 

is provided in Table 6-1. 

 

 

Table 6-1. Name and Location of Selected Pavement Samples in Bryan, Texas 

 

Sample Number Location 

201 Esther Blvd. (at Wayside Dr.) 

202 Windowmere St. (Enfield St. to North Ave.) 

203 Tanglewood Dr. (Southview Cr. to Barak Ln.) 

204 Forestwood Dr. (Wedgewood Cir. to Verde Dr.) 

205 Forestwood Dr. (Mistywood Cir. to Crestwood Dr.) 

206 5th St. (E North Ave. to College View Dr.) 

207 Ethel Blvd. (Morningside Dr. to Burton Dr.) 

208 Cambridge Dr. (Manchester Dr. to Windsor Dr.) 

209 Bristol St. (Ruskin Dr. to 2303 Bristol St.) 

 

 

 

4. Gather Information on the Samples 

Once the pavement samples were selected, the researcher compiled as much relevant 

information as possible to present to the experts. In this case study the relevant 

information included the PCI calculations, multiple pictures of each pavement sample, 

the sample locations and dimensions, and a description of observed distresses from the 
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field survey. (As noted above, any available information about the age of the pavement 

in the samples was intentionally omitted.) 

 

The relevant information about pavement performance was gathered by implementing a 

visual pavement condition survey for each sample location. This standardized method 

for recording pavement conditions data and calculating PCIs is provided in the Standard 

Practice for Roads and Parking Lots Pavement Condition Index Surveys (ASTM D6433 

– 11). After reviewing the available maps, pictures, and city information about the site, 

the researcher conducted an in-person inspection with the help of a student worker. The 

first task was to review the site and ensure that it was reasonably representative of the 

street as a whole—for example, to verify that the location was not at a street intersection 

or other position where higher-than normal volumes of traffic might lead to 

unrepresentative results. When the suitability of a sampling site was confirmed, the 

location was marked using spray paint. This facilitated the inspection process and 

ensured that the site could be readily located again in the future. Clearly identified 

sample locations can be very useful, both for reviewing/confirming the study results and 

for any future studies that may want to investigate changes over time in the same area. 

 

Prior to conducting the inspections, the researcher undertook a day-long training session 

with a professional pavement surveyor. The appropriate measurement tools were 

employed following the recommendations of ASTM D6433 – 11; these included 

standardized data sheets, a hand odometer wheel, a string line, and a scale (Figure 6-1). 
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The type and severity of distresses throughout the pavement sample were measured and 

recorded, and then this data was verified through a second examination.  

 

The StreetSaver® software package was used to store the collected data and to calculate 

the PCI for each pavement sample. Pictures of the sample site were also taken to better 

communicate the condition of the samples to the experts. This included one overall 

picture of pavement condition, several pictures of individual distresses, and several 

pictures of the surrounding environment (Figure 6-2). These pictures were provided to 

the panel of experts as part of the elicitation process. 

 

 

 
 

Figure 6-1. Apparatus Used in the Field Inspection 
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Figure 6-2. Pictures of Pavement Sample 202 

 

 

5. Select the Panel of Experts 

The expert participants in the data-elicitation process were selected from the pool of 

local pavement and maintenance professionals. The researcher consulted with trusted 

contacts in the profession to help compile and expand the list of potential candidates. 

The minimum qualifications for expertise were established as having at least two years 

of experience in pavement engineering or road maintenance, as well as having a 

familiarity with the network of streets under investigation. After the list of potential 

candidates was compiled, invitation letters were sent via e-mail. These letters provided a 

brief background of the study and described the process that would be used to elicit data. 

They explained the extent of the time involvement required, potential risks and benefits, 

the participants’ rights, and the fact that there was no financial reimbursement for 

participation. The package also included a response form to indicate willingness to 
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participate, and a profession-oriented survey intended to confirm that the participants 

possessed the relevant experience to make accurate judgments. 

 

Five professionals agreed to participate in the study as experts. Their levels of 

experience in pavement maintenance ranged from five to thirty years. These experts 

received a follow-up letter thanking them for their participation in the study and 

affirming the importance of their expert opinion to the outcome of the research. They 

were also provided with the date on which they would receive the first questionnaire 

package. All five of the experts responded to the first-round questionnaire. One expert 

dropped out of the study during the second round of elicitation; therefore, the second 

round was conducted with only four experts. This level of attrition is not unusual or 

particularly troubling for the success of the Delphi process. While the total number of 

experts in the second round was less than the recommended minimum in the literature, 

the purpose of the case study was merely to demonstrate the applicability and 

implementation of the proposed models. No conclusive recommendations were made to 

the city on the basis of this research, and so maintaining the minimum number of experts 

was not a crucial concern. 

 

6. Develop the Questionnaire Package for the First Round 

The purpose of the questionnaire package was to supply the participants with a 

convenient and user-friendly environment through which they could provide their inputs.  
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The package included an information sheet, the questionnaire itself, and the forms used 

to provide responses. 

 

Most of the relevant information about the pavement samples was included directly in 

the questionnaire package. The pictures of the samples were located on cloud storage, 

and could be accessed by clicking on provided hyperlinks. Instructions were included 

about how to fill out the data forms. The package also provided detailed information 

about the process and purpose of the Delphi method. 

 

For simplicity and ease of access, the participants were asked to submit their estimates of 

pavement age using the provided forms in Microsoft Excel. An example of these 

response forms is shown in Figure 6-3. (The entirety of the first round questionnaire 

package is included in Appendix B). 

A separate response form was provided for each pavement sample. In each form, the 

following information was listed: 

 Sample number 

 Pavement type 

 Location of the sample 

 Length and width of the pavement sample 

 Hyperlink to pictures of the sample 

 PCI calculated during the field survey 

 Types and severity of distresses in the sample 
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The participants were asked to fill in their estimates for the possible range of the 

pavement’s age. These estimates were provided by indicating the 5th percentile (the 

“lower limit” of the possible age range), the 50th percentile (the “best estimate” of the 

pavement’s age), and the 95th percentile (the “upper limit” of the possible age range). 

The definition of percentiles and an example were provided in the questionnaire 

package. An optional section on the data forms allowed the experts to provide comments 

about their age estimates. 

 

 

 
 

Figure 6-3. First-round Questionnaire Response Form 
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7. Run a Pilot Test 

To improve the questionnaire, the researcher conducted a pilot test. One of the five 

experts volunteered to fill out the initial questionnaire and to comment on the clarity of 

the instructions, the sufficiency of the provided information, and the coherence of the 

response forms. The comments received during this pilot test helped the researcher to 

create a more user-friendly questionnaire package. In addition, the pilot test responses 

were reviewed to determine if there were any unexpected answers or difficulty in 

assessing the data. 

 

8. Conduct the First Round of the Elicitation 

The round-one questionnaire was sent to the panel of experts via e-mail. The participants 

were asked to inform the moderator if they needed any additional in-person instructions 

to help them understand and fill out the questionnaire. One of the five expert participants 

did request additional in-person assistance. The experts were asked to carefully review 

the questionnaire instructions and the description of the Delphi method. They were also 

encouraged to review the Standard Practice for Roads and Parking Lots Pavement 

Condition Index Surveys (ASTM D6433 – 11) if needed to refresh their knowledge about 

the distress survey method and the different kinds of pavement distresses. Finally, the 

experts were instructed to open the Excel forms, review the information and pictures 

provided for each pavement segment, and contribute their age estimates and comments. 

Having filled out their assessments for each of the nine pavement samples, they saved 

the Excel file and e-mailed it back to the moderator. 
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9. Analyze the Responses from the First Round and Provide Controlled Feedback 

The first step in analyzing the responses was to verify that all sections of the 

questionnaires were filled out correctly. The moderator discovered that one respondent 

had provided only the 50th percentile assessment for the pavement ages, leaving the 

fields for the 5th and 95th percentiles blank. Therefore, the moderator contacted the 

respondent and explained the missing information.  This expert expressed a desire to 

meet with the moderator in person and get better instructions. After the meeting the 

expert was able to return the questionnaire with all of the necessary information 

completed. 

 

Once the completeness of the information was verified, the second step in the analysis 

was to identify outlying responses. In this step, only strong outliers were automatically 

removed from the data set (Eriksson et al., 2013). To define these outliers the data 

related to each percentile (5th, 50th, and 95th) was treated separately. For each 

percentile, the data was examined using a modified version of Lockhart’s 

(1998) outliers’ identification by interquartile range (IQR) analysis, which measures the 

relative distance of a data point from others in the set. IQR is defined as the range 

between the first quartile and third quartile of the data. Therefore, if Q1 is the first 

quartile, and Q3 is the third quartile, then: 

IQR =  Q3 - Q1 
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Strong outliers were defined as data points that diverged from the first and third quartile 

by more than three times the IRQ: 

Lower limit of acceptable data = Q1 - (3.0 x IQR) 

Upper limit of acceptable data = Q3 + (3.0 x IQR) 

 

Weak outliers were also identified, but were not automatically removed from the data. 

These were defined as data points that diverged from the first and third quartile by more 

than 1.5 times the IRQ: 

Lower limit of the data for defining weak outliers  = Q1 - (1.5 x IQR) 

Upper limit of the data for defining weak outliers = Q3 + (1.5 x IQR) 

 

In the case of weak outliers, the experts who provided the data were contacted and asked 

to reconfirm their estimates and explain the reasons why these data points should be 

included in the set. 

 

After addressing the outliers in the data, the overall results were aggregated into a format 

that could be returned to the expert participants as feedback. Several viable aggregation 

methods were described by Ouchi (2004); in the current research Bayesian hierarchical 

modeling was the chosen technique. The details of this data-aggregation process are 

described in chapter 7. 
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10. Develop the Questionnaire Package for the Subsequent Round 

Once the data was aggregated the second-round questionnaire was prepared. The 

moderator took the opportunity to make several improvements. First, the layout of the 

questionnaire was changed so that feedback from the first round could be provided in an 

intuitive and user-friendly fashion. This feedback included the aggregated data from the 

Bayesian analysis, as well a simple statistical average of the first-round results. 

 

Second, the ordering of the pavement samples was revised to follow the descending 

order of their PCI number. This was done so that the experts could better gauge their 

responses in comparison to what they had said about the other samples.  

 

During the analysis process of the first-round questionnaire the moderator determined 

that the model would perform better if the experts were to define the general shape of the 

distribution curve in their responses. Thus, a third change was made to the questionnaire 

to allow the experts to describe whether they believed the distribution was normal, or 

skewed toward the lower or upper bounds (see Figure 6-5). 

 

Finally, during the analysis of the first-round questionnaire the moderator determined 

that it would be useful to elicit information about the marginal probability distribution of 

the current performance of the street network in Bryan. To achieve this purpose, a fourth 

change was made to the questionnaire to allow the experts to estimate what percentage 

of the city’s street network was in better condition than the current pavement sample. 
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New, detailed instructions were written to inform the experts how to fill out the second-

round questionnaire. Figures 6-4 and 6-5 show sample response forms from this second 

round of data elicitation. (The entirety of the second round questionnaire package is 

included in Appendix C). 

 

 

 

 
 

Figure 6-4. Second-round Questionnaire Response Form, Sheet 1 
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Figure 6-5. Second-round Questionnaire Response Form, Sheet 2 

 

 

11. Conduct the Subsequent Round of the Elicitation 

The implementation of the second-round questionnaire was similar to the first round. 

However, as noted above, one of the five experts dropped out of the process and failed to 

return the second-round questionnaire. The researcher several times attempted to contact 

the participant to inquire about the reason for dropping out of the process, but these 

attempts were not successful. Another of the respondents did not fully understand the 

instructions and returned the questionnaire incomplete. The researcher contacted this 

expert and provided more detailed explanations, which ultimately allowed the 

respondent to fill out the forms correctly. At the end of the process, four of the five 

experts were able to return completed questionnaires. 
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12. Review and Analyze the Responses from the Subsequent Round 

Data obtained during the second round was analyzed in a similar fashion to the first 

round (the details of this process are explained in chapter 7). After completing this 

analysis the researcher determined that the variation among the responses had narrowed 

to such an extent that a consensus could be reasonably declared. The measure that was 

used for this purpose was reaching a standard deviation of 1 in the estimated ages 

provided by the experts for each sample. The researcher therefore ended the elicitation 

process and sent the appropriate notes of completion and gratitude to the participants. 

 

6.4 Past Performance Data 

To determine the effectiveness of the elicitation model, the data obtained from the 

experts was compared against actual past performance information from the city of 

Bryan. The city conducts pavement-performance surveys on a biannual basis, and also 

tracks maintenance actions and new construction activities in a database. These records 

were provided to the researcher by the city. A portion of the spreadsheet that contains 

this data is shown in Figure 6-6. The records include the name of the pavement sections 

surveyed, a section ID number, the last construction date on that street (LCD), the 

pavement type (SurTyp), the city zone where the segment is located (Rank), the sample 

size (Area), the last inspection date (Insp Date), the number of samples from the section 

(# Samps) and the PCI that was calculated during the most recent inspection.  
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Figure 6-6. Sample of the Data Obtained from City of Bryan 

 

 

After reviewing this data, the researcher extracted the sections that were relevant to the 

current research. Part of the parameters of this case study were that it was limited to 

asphalt concrete pavements and to residential streets. By visual inspection it is usually 
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impossible to tell if the asphalt concrete pavement is asphalt overlay or new 

construction. Therefore, all records pertaining to asphalt overlays (SurType = ACC) and 

asphalt concrete pavements (SurType = AC) were selected. These records were further 

narrowed down by selecting only those in residential zones. 

 

Once the relevant records were identified, the age of the pavement at the time of 

inspection was calculated based on the difference between “Last Construction Date” and 

“Inspection Date.” This measure of pavement age, combined with the PCI at the time of 

the inspection, provided the relevant data points to measure performance versus time. 

 

The resulting raw past performance data was processed using a heuristic data-

cleaning algorithm for pavement performance. This algorithm is based on the natural 

characteristics of pavements (such as the maximum and minimum rates of deterioration 

over time), and it is frequently used in the profession. Figure 6-7 demonstrates the 

results from the cleaned past performance data. 
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Figure 6-7. Pavement Deterioration over Time in the City of Bryan, Texas (From 

Historical Records) 

 

 

 

 

 

  

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30 35

P
av

em
en

t 
C

o
n

d
it

io
n

 In
d

ex
 (

P
C

I)

Age (years)

PCI



 

 

108 

 

 

 

CHAPTER VII 

MODEL DEVELOPMENT  

 

 

7.1 Introduction 

In the first phase of this research, a new infrastructure asset-management framework was 

proposed in response to two primary research questions: 

 

Research Question 1. How can the range of uncertainty about asset performance be 

incorporated into a decision-support model and effectively reported to decision makers? 

 

Research Question 2. How can asset performance be predicted effectively when 

reliable historical data is not available? 

 

Chapter 4 explained how the proposed infrastructure asset-management model was 

developed to address the first research question by using an outcome-based scenario-

planning approach. Information about the range of uncertainty is incorporated into the 

model by defining asset performance in terms of the “worst case,” “most likely case,” 

and “best case” scenarios. 

 

Chapter 5 explained how the proposed infrastructure asset-management model was 

developed to address the second research question by eliciting data about the 
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performance of assets over time from experts in the relevant field. Drawing from the 

previous literature on forecasting and data-elicitation techniques, a rigorous process for 

obtaining performance data from experts was developed and tailored specifically for use 

in infrastructure asset management contexts. 

 

The second phase of the research focused on testing the proposed model and its 

implementation through a case study. The performance of pavement surfaces on the city 

streets of Bryan, Texas, was selected as a paradigmatic example of an infrastructure 

asset-management context in which the proposed model could be implemented. Chapter 

6 of the dissertation explained how two separate sources of data were gathered in the 

case study. First, information about pavement performance over time in the city was 

obtained from pavement experts following the proposed method of data-elicitation in the 

new asset-management model. Second, actual historical records about the pavement 

performance were obtained from the city archives. The existence of historical records in 

this case study allows for a comparative examination of how successful the data-

elicitation model was in providing accurate information. 

 

This chapter explains the statistical techniques that were used to analyze each source of 

data in the case study. The goal of the data analysis was to define the performance of the 

asset (in this case, pavement performance) over time. In the case study there were two 

separate data sets to be examined—one from the expert elicitation and another from the 

historical records. 
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7.2 Statistical Model Development  

To analyze the data, two models were developed using the R programming language. R 

language is a specialized software package designed for statistical computing, modeling, 

and visualization (R Core Team, 2000).  

 

The first model that was developed in R (Model #1) was used to define the asset 

performance curve in each of the three scenarios (the “worst case,” “most likely case,” 

and “best case”). This model was applied to both data sets. For the historical data, 

quantile regression analysis was used. This was a relatively straightforward process of 

establishing the three performance scenarios based on the 5th percentile, 50th percentile, 

and 95th percentile of the existing historical data. Using this analysis method, it is 

possible to define the performance curve for any desired quantile.  For the performance 

data obtained through elicitation from the experts, however, further processing had to be 

applied to convert the information into a form suitable for input into a quantile 

regression analysis. 

 

The second model that was developed in R (Model #2) was created for the purpose of 

processing the data from the experts (in other words, converting it into a form that could 

be used in Model #1). The most important part of this process was to aggregate the data 

obtained from different experts. Once this was done, the model could simulate data 

points comparable to the historical records for use in the quantile regression analysis. 
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In the next four sections, the statistical concepts that were used in the modeling process 

are described. These concepts include quantile regression, Bayesian hierarchical 

modeling, and the Markov-chain Monte Carlo algorithm. Once these concepts have been 

introduced, the remainder of the chapter describes their specific application in creating 

the models for asset-performance data analysis. 

 

7.3 Quantile Regression 

Quantile regression is a semi-parametric method for estimating relationships between 

variables. The goal of using this method is to estimate the quantiles of a distribution 

rather than the mean (which is most commonly used in linear regression). By using 

quantiles, two benefits are immediately realized: 

 The effects of outliers, especially extreme outliers, are mitigated 

 Normality is not required 

 

Because of the manner in which the quantiles are evaluated, for a regression line (y = mx 

+ b), the resultant y is actually based on multiple reference points of the predictor x. This 

is fundamentally different from classic regression in which y is based on a single point 

on x. This outcome is due to the mathematics behind quantile regression being matrix-

based, while classical linear regression is vector-based. Since multiple x-points are used 

in each calculation of y, the focus is not restricted to the conditional mean. Instead, it can 

approximate the whole conditional distribution of the response variable. 
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Quantile regression was first introduced by Koenker and Bassett (1978) as an extension 

of classical linear regression (based on the method of least squares estimation) for 

conditional models. Koenker (2001) stated that quantile regression can also be 

approached by estimating conditional quantile functions as an optimization problem, 

which allows for the use of the same mathematical tools that are used to solve 

conditional mean functions. 

 

The quantile regression model, as introduced by Koenker and Basset (1978), is: 

'

it it ity x u  
 with  

  '|it it itQuant y x x 
 

 

where: 

yit is the dependent variable 

x is the vector of regressors  

β is the parameter vector to be estimated 

u is the vector of residuals 

 |it itQuant y x   is the  
th  conditional quantile of yit given xit 

 

Solving this equation directly is difficult. However, by treating it as an optimization 

problem the necessary mathematical tools can be simplified. Given that quantiles are 

positive and can be expressed as a decimal between zero and one: 

 0,1 
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With n observations of the independent predictor xi (and the resultant yi) the th 

parametric quantile b for the regression can be expressed as: 

 

 
1

min i
p

n
T

i

ib

y x b



 

 

where: 

    0u u I u   
 

 

Koenker and Ng (2004) reduced the minimized solution of this linear equation to: 

 

     2

, ,
min 1 | , , ,
T T T

T T T T T n p

u v b
e u e v Xb u v y u v b       

 

 

where:  

e is an n-sized identity vector 

u and v are regression residuals, both positive and negative. 

 

This transformation was required in order to be able to implement a practical 

algorithmic/computational solution to the quantile regression equation. This minimized 

solution is the basis for the implementation of quantile regression in statistical 

computing software, including the R programming language and the SAS statistical 

package, among others (Chen, 2005; Koenker, 2015). 
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7.4 Methods of Aggregating Experts’ Opinions 

Ouchi (2004) argued that there are three primary mathematical modeling approaches that 

have been well-developed for aggregating data derived from expert opinions. These 

three approaches are known as (a) the non-Bayesian axiomatic models, (b) the Bayesian 

models, and (c) the psychological scaling models. 

 

The non-Bayesian axiomatic models for aggregating expert opinions were prevalent in 

the early days data aggregation. In this approach, specific variables and regularity 

conditions (“axioms”) for the aggregation of probability distributions are established. 

Thus, this approach requires that the relationships established in each expert’s opinion, 

as well as the combined data, satisfy the pre-existing set of axioms. Typically these 

axiom-based models establish some type of “weights” to use as data parameters (Morris, 

1983; Ouchi, 2004). Axiom-based approaches are somewhat controversial today, largely 

due to the fact that axioms are not universal. In addition to the ongoing disagreement 

about the applicability of different axioms, there are also issues with proper axiomatic 

notation (Winkler, 1986). 

 

The Bayesian models are widely considered to be the most robust method for 

aggregating expert opinions. In these models the experts’ probability assessments are 

used in order to obtain a better understanding about the probability distribution of an 

unknown quantity. The Bayesian models operate in accordance to Bayes’ Theorem, 

which describes the best means of updating prior probabilities in the light of new 
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information (Ouchi, 2004). The Bayesian approach is ideal for most situations in which 

existing understandings of the topic are normative and well-developed. However, there 

are also some disadvantages to Bayesian models. The main disadvantage is that they can 

be mathematically complex and thus impractical to use in certain real-world tasks. In 

addition, coming up with an appropriate likelihood function for an expert opinion 

typically involves guesswork, which means that accuracy can be a concern. These 

limitations have been partially overcome in recent years as researchers have developed a 

means of using the Markov Chain Monte Carlo method to evaluate more complex 

distributions (described in section 7.6 below) (Jacobs, 1995). 

 

Psychological scaling models for aggregating expert opinions begin with the assumption 

that experts have personal values attached to the variable of interest. In this outlook, 

experts are only capable of providing qualitative input (not quantitative). Psychological 

scaling approaches involve the researcher or decision-maker asking experts about their 

personal preferences regarding pairwise comparisons. This approach originated in a 

study where researchers attempted to estimate intensities of physical stimuli, but found 

that they were actually estimating the relative intensities of psychological stimuli in the 

experts that they consulted (Hogarth, 1977; Ouchi, 2004). In the current research, it is 

assumed that the experts do not have strong personal values attached to their evaluations 

of asset performance; therefore, a Bayesian approach to data aggregation can be used. 
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7.5 Bayesian Hierarchical Modeling 

The Bayesian approach allows for a hierarchical model in which ample parameters can 

be employed to fit the data, while also avoiding the problem of overfitting. In 

nonhierarchical approaches all parameters have the same weight; thus attempting to 

incorporate more detailed structures into the model can lead to overfitting for some 

parameters. Hierarchical models, in contrast, are capable of nesting dependencies among 

several model parameters. This structure provides a means to update the prior model 

with new levels of observed data, therefore arriving at a more refined posterior 

distribution (Schmid and Brown, 2000). 

 

By using Bayes’ Theorem it is possible to update a prior distribution, π(θ), once new 

information is obtained, π(x|θ), in order to define the posterior distribution, π(θ|x). The 

mathematical expression of the Theorem is as follows: 

 

π(θ|x) = 
π(x|θ) π(θ)

∫ π(x|θ) π(θ)𝑑θ
 

  

In the Bayesian hierarchical model for data aggregation, this formula is used to 

progressively update the model’s distribution parameters. An initial (prior) distribution is 

formed, and then after obtaining additional information for this distribution, the prior 

model is reassessed and re-defined to incorporate new parameters and form a posterior 

distribution. The update of the prior distribution can be initiated from any of the previous 
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levels of the model. Consequently, this update could result in changing one or more of 

the higher levels. 

 

One practical use for applying a Bayesian hierarchical model is in a case where several 

sets of observed data are known to follow a distribution with unknown parameters. 

These unknown parameters also follow a general distribution for a universal class of 

data. In this setting an inference about one set of parameters will affect the inferences 

about the other sets of parameters. Therefore, each of these distributions could be 

structured as one level of a hierarchical Bayesian model. Bayes’ Theorem describes the 

relationship between these different levels, as well as the uncertainty involved in the 

outcome. A more detailed discussion about the Bayesian hierarchical model and its 

applications is provided by Schmid and Brown (2000) and Banerjee et al. (2014). 

 

7.6 The Markov Chain Monte Carlo Algorithm 

The Markov Chain Monte Carlo (MCMC) algorithm is a practical method developed in 

recent years to define the posterior distribution parameters in a Bayesian hierarchical 

model. In this method a Markov chain is developed for sampling from a probability 

distribution, meaning that samples for the new distribution are drawn from the previous 

one. After multiple iterations the chain provides the target distribution. 

 

There are several types of MCMC algorithms available, depending on the method of 

sampling. Two sampling methods used in this research were Gibbs sampling and 
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Metropolish-Hastings sampling. One of the most widely applied approaches in MCMC 

is the Gibbs sampling method (Gelfand and Smith, 1990). The most important feature of 

Gibbs sampling is that it only considers the univariate conditional distribution. This 

means that only one variable is considered random, while all others are assigned fixed 

values (Walsh, 2004). Another, more general, sampling method for MCMC is the 

Metropolish-Hastings method. This approach is used for more complex probability 

distributions where no known method of drawing a random number from the distribution 

is available. (Walsh, 2004). 

 

7.7 Defining Scenario-based Performance Curves Using Quantiles (Model #1) 

As described at the start of this chapter, the first task in the data analysis was to create a 

model to define the asset performance curves in each of three scenarios (the “worst 

case,” “most likely case,” and “best case”). The quantile regression analysis method was 

used to create this model. The input for Model #1 is data points describing the age and 

condition of asset samples. In the Bryan, Texas, case study this input took the form of a 

pavement sample’s age and its Pavement Condition Index (PCI) number. 

 

The main reason that quantile regression is a suitable approach for this research is that it 

can describe the entire conditional distribution of the dependent variable. Therefore, it 

enables the model to define any desired quantile of the performance of the asset at any 

given time. This is in contrast to conventional regression analysis, where only the mean 

of the asset performance is definable. The use of quantile regression thus allows for a 
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representation of the range of uncertainty in the model by describing the “best case” 

(95th percentile), “most likely case” (50th percentile) and “worst case” (5th percentile) 

from the distribution. 

 

As described in section 7.3 above, the general objective of quantile regression is to 

minimize this equation: 

 

 
1

( )min
p

n

i i

ib

y F x


  

 

The values relevant to the infrastructure asset-management problem at hand were 

incorporated into the general quantile regression model. In this research it was assumed 

that performance of pavement over time generally follows the sigmoidal equation below. 

This equation is often used in pavement analysis and is considered an accurate reflection 

of how pavement performance declines over time (Deshmukh, 2009): 

𝑦𝑖 = 𝑃𝐶𝐼𝑖 = 100 −  
𝜌

[𝑙𝑛 (
𝛼

𝐴𝑔𝑒𝑖
)]

1
𝛽

 

 

where: 

Age is the age of the current pavement surface 

ln is the natural logarithm 

α, β, and  are regression constants. 
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Based on this equation, the loss function L(α, β, ) can be written as follows: 

 

ei(α, β, )  =  yi(α, β, ) - ŷi(α, β, ) 

 

L(α, β, )  =  (τ – 1) ∑ 𝑒𝑖
𝑛
𝑖=1 (α, β, ) 1(ei < 0) + τ  ∑  𝑒𝑖(α, β, )𝑛

𝑖=1  1(𝑒𝑖  ≥  0) 

 

where: 

1(ei < 0)  is the indicator function and is defined as: 

 

1(ei < 0) = {
1 𝑖𝑓 𝑒𝑖 < 0
0 𝑖𝑓 𝑒𝑖 ≥ 0

 

 

α, β, and  are the regression constants in the sigmoidal equation 

τ is the quantile under investigation. 

 

 

 

The three quantiles that were considered in this research are: 

τ = 0.05  5th percentile performance curve 

τ = 0.5  50th percentile (median) performance curve 

τ = 0.95 95th percentile performance curve 

 



 

 

121 

 

 

 

The objective in the quantile regression analysis was to find values for α, β, and  that 

minimize the loss function L(α, β, ) for each relevant quantile, and therefore indicate 

the best fitted performance curve for that quantile. This is a nonlinear programming 

problem, which was solved using a grid-search method. 

 

7.8 A Model for Aggregating Experts’ Opinions (Model #2) 

The second model that was developed in this analysis was used to aggregate the data 

gathered from the expert participants as described in chapter 6, and then based on that 

information to simulate data points suitable for incorporation into Model #1. 

 

The approach to data aggregation that was adopted in this research is based on the 

Bayesian hierarchical modeling method (Schmid and Brown, 2000). The model assumed 

a non-informative prior distribution for the age of the pavement samples. This 

distribution was updated with the new information obtained from the experts using the 

Bayesian Theorem to define the posterior distribution. Choosing a non-informative prior 

distribution gives the model the flexibility to take any possible quantity as a candidate 

value. 
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The notations used in the aggregation model are defined as follows: 

i = a number assigned to each pavement sample (1–9) 

j = a number assigned to each expert (1–5) 

k = a number assigned to each of the three quantiles (5th, 50th, and 95th percentile) 

(1–3) 

PCIi is the condition of sample i, as calculated during the field condition surveys  

Xijk is the kth quantile age of ith sample provided by jth expert 

 

It is assumed in the model that the experts’ assignment of X (the possible age of the 

pavement sample) was intended to follow a normal distribution pattern. This assumption 

was confirmed by the experts in the second-round questionnaire. Thus, for each quantile: 

Xij ~ N (μi, Si
2) 

 

where μi is the mean of the true age of the sample and Si
2 is the variance of the true age.  

 

Also, it is assumed in the model that the experts’ assignment of X includes a range of 

error (e), which also follows a normal distribution pattern: 

eijk ~ N (0, σj
2) 
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Based on these variables, the relevant Bayesian hierarchical model levels are described 

as follows: 

 

Level 1 

Based on the normal distribution assumption for each sample the estimated age would 

be: 

 

Xij1 ~ N (μi – 1.65 Si
 , σj

2) 

Xij2 ~ N (μi, σj
2) 

Xij3 ~ N (μi + 1.65 Si
 , σj

2) 

 

Level 2 

In the second layer of the hierarchical model it was assumed that the true age of the 

samples (μi) follows a normal distribution pattern. It was also assumed that the variance 

of the true age (Si
2) and the variance of the estimate error (σj

2) for each expert follow 

the inverse gamma distribution: 

μi ~ N (μ0, σμ
2) 

Si
2 ~ IG (α1, β1) 

σj
2 ~ IG (α2, β2) 
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Level 3 

If the value of μ0 is specified in the second level then it provides strong prior information 

about μi’s, which is not desired. Therefore, instead it is assumed that μ0 follows a 

uniform distribution. This allows the model to incorporate the μ0 value that maximizes 

the whole likelihood function: 

 

μ0 ~ U (0, ∞) 

σμ
2 ~ IG (0.001, 0.001) 

α1 ~ exp(1) 

β1 ~ exp(1) 

α2 ~ exp(1) 

β2 ~ exp(1) 

 

where, 

 exp(1) = f(X=x) = e-x 

 

Now, to apply the Markov-chain Monte Carlo algorithm, 50,000 values were generated 

from the marginal distribution of μi: 

π(μi | data, other parameters) 
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Similarly, random values were generated from π(Si
2

 | data, other parameters) and π(σj
2

 | 

data, other parameters). The estimate of μi  is the center of the posterior distribution: 

 

μ̂i = mean of π (μi | data, other parameters) 

σ̂i = mean of π (σi
’2

 | data, other parameters) 

 

For each given performance rating (PCIi, where i = 1, 2, … 9), the distribution of the age 

estimated by the experts (μ̂i  and  Ŝi) were defined using this process. Then, the next step 

was to define the distribution of the age for the whole range of performance (PCI = 0 to 

100). For this purpose two assumptions were made. First, it was assumed that the 

relationship between the pavement age and performance followed the sigmoidal 

equation shown in section 7.7. The second assumption was that the variance of age had a 

linear relationship with the condition of the pavement (the possible age range of a 

pavement sample with higher PCI has less variance, while the possible age range of a 

more deteriorated pavement sample has a higher variance). Based on these two 

assumptions and the marginal distribution of pavement performance (PCI), data suitable 

for use in Model #1 was simulated for the performance of the pavement over time. 
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CHAPTER VIII 

 MODEL ANALYSIS AND RESULTS 

 

 

8.1 Introduction 

In this chapter the process of model analysis and the results of the analyses are 

presented. The models described in chapter 7 were run to create scenario-based 

performance curves using both the historical (past performance) data and the data 

elicited from experts. First, the experts’ estimates were aggregated using Model #2. 

Then, the aggregated experts’ estimates and the historical data were each processed 

using Model #1. Finally, the results from the aggregated experts’ estimates and the 

historical data were compared against each other. The final section of this chapter shows 

how the framework can be used by asset managers during the decision-making process. 

 

8.2 Aggregated Experts’ Opinions 

Model #2 was employed to aggregate the experts’ estimates of the age of the pavement 

samples using Bayesian hierarchical modeling (BHM). For comparison, the simple 

arithmetic average of the experts’ estimates was calculated as well. This data 

aggregation took place after each round of the data-elicitation process (a total of two 

rounds). The results of this aggregation are shown in Tables 8-1 through 8-4. 
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Table 8-1. Aggregated Estimated Age of Samples (BHM Method, First Round) 

 

Sample Number  PCI 
Estimated Age 

5th Percentile 50th Percentile 95th Percentile 

202 81 4.83 8.28 11.73 

201 73 5.93 9.91 13.88 

207 73 7.82 11.81 15.80 

203 72 5.93 9.89 13.84 

209 57 9.77 13.75 17.74 

208 56 8.78 14.21 19.65 

206 45 5.97 9.98 13.98 

204 26 9.86 13.85 17.85 

205 11 8.79 13.31 17.83 

 

 

 

Table 8-2. Aggregated Estimated Age of Samples (Arithmetic Average Method, First 

Round) 

 

Sample Number  PCI 
Estimated Age 

5th Percentile 50th Percentile 95th Percentile 

202 81 3.20 6.00 9.40 

201 73 3.80 7.00 11.60 

207 73 4.20 7.20 12.00 

203 72 3.80 7.40 11.60 

209 57 6.80 11.20 15.80 

208 56 9.60 13.60 18.60 

206 45 4.40 8.00 13.80 

204 26 8.00 12.60 17.40 

205 11 8.60 15.00 20.40 
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Table 8-3. Aggregated Estimated Age of Samples (BHM Method, Second Round) 

 

Sample Number  PCI 
Estimated Age 

5th Percentile 50th Percentile 95th Percentile 

202 81 4.90 7.96 11.02 

201 73 6.63 10.14 13.66 

207 73 6.71 10.20 13.69 

203 72 6.62 10.20 13.79 

209 57 9.79 13.83 17.87 

208 56 9.99 14.94 19.90 

206 45 6.04 9.99 13.93 

204 26 11.75 14.90 18.05 

205 11 9.93 15.02 20.11 

 

 

 

Table 8-4. Aggregated Estimated Age of Samples (Arithmetic Average Method, Second 

Round) 

 

Sample Number  PCI 
Estimated Age 

5th Percentile 50th Percentile 95th Percentile 

202 81 4.00 7.25 11.50 

201 73 5.25 8.25 13.50 

207 73 6.00 8.75 13.50 

203 72 5.00 8.75 13.75 

209 57 7.75 11.50 16.75 

208 56 9.75 13.75 20.00 

206 45 6.50 9.50 13.75 

204 26 10.25 13.25 19.00 

205 11 10.00 14.00 21.00 

 

 

The performance of the BHM method for aggregating the elicited data was compared 

against the simple arithmetic average. For each of the elicited percentiles, and for each 

round of data elicitation, the difference between the results of the two aggregation 

methods was calculated. In the first round of data elicitation the BHM approach resulted 

in a higher estimate of the sample ages in 89% of the aggregated responses. In the 
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second round of data elicitation the BHM approach resulted in higher estimates in 78% 

of the aggregated responses. 

 

The extent to which the two methods diverged was much smaller in the second round of 

data elicitation (max. difference = 2.33 years; average difference = 0.72 years) than in 

the first round of the process (max. difference = 4.61 years; average difference = 1.63 

years). In the elicitation process the feedback was structured to help the experts consider 

the possibility of symmetry in the responses. The smaller difference in the second round 

is likely due to the fact that the experts provided more consistent and symmetric 

estimates after receiving feedback (Tables 8-5 and 8-6). 

 

 

Table 8-5. Differences between the BHM Method and the Arithmetic Average Method 

for Aggregating Experts’ Estimates (First Round) 

 

Sample Number  PCI 
Difference of Estimated Age 

5th Percentile 50th Percentile 95th Percentile 

202 81 1.63 2.28 2.33 

201 73 2.13 2.91 2.28 

207 73 3.62 4.61 3.80 

203 72 2.13 2.49 2.24 

209 57 2.97 2.55 1.94 

208 56 -0.82 0.61 1.05 

206 45 1.57 1.98 0.18 

204 26 1.86 1.25 0.45 

205 11 0.19 -1.69 -2.57 

Max =  4.61 

    Average = 1.63 
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Table 8-6. Differences between the BHM Method and the Arithmetic Average Method 

for Aggregating Experts’ Estimates (Second Round) 

 

Sample Number  PCI 
Difference of Estimated Age 

5th Percentile 50th Percentile 95th Percentile 

202 81 0.90 0.71 -0.48 

201 73 1.38 1.89 0.16 

207 73 0.71 1.45 0.19 

203 72 1.62 1.45 0.04 

209 57 2.04 2.33 1.12 

208 56 0.24 1.19 -0.10 

206 45 -0.46 0.49 0.18 

204 26 1.50 1.65 -0.95 

205 11 -0.07 1.02 -0.89 

Max =  2.33 

    Average = 0.72 

     

 

 

To measure the convergence of the experts’ estimates between the first round of data 

elicitation and the second round, the standard deviation of the responses was evaluated. 

In each round, the standard deviation was calculated for each of the elicited percentiles 

of each sample, and then the overall results for each percentile were averaged. When 

using iterative rounds of elicitation based on the Delphi method, it is expected that the 

feedback provided to the respondents will result in less diverse responses in latter 

rounds. This was confirmed in the current study, as the results showed that the average 

standard deviations were considerably lower in the second round. This demonstrates the 

effectiveness of feedback in the data-elicitation process (Table 8-7). 

 

One interesting feature of the standard deviations is that the 95th percentile estimates had 

a larger average standard deviation than the 5th percentile estimates, in both rounds of 
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the data elicitation. This indicates that the experts had a less diverse opinion about the 

minimum possible age of the samples as compared to the maximum possible age. 

 

For the purposes of data elicitation, the researcher defined reaching an average standard 

deviation of 1.00 as the measure of adequate consensus among the experts. Based on the 

second-round standard deviations it was determined that this measure had been 

acceptably reached, and thus a third round of feedback and elicitation was deemed 

unnecessary. 

 

 

 

Table 8-7. Standard Deviation of Responses Averaged over All Samples for the First 

and Second Rounds 

 

Standard 

Deviation of 

Estimates 

5th Percentile 50th Percentile 95th Percentile 

First Round 1.90 2.56 2.80 

Second Round 0.99 1.24 1.18 

 

 

 

Another way of comparing the first and second round of data elicitation is to examine 

the change in the median (50th percentile) estimate, and the change in the interval 

between the lower and upper limit estimates (95th percentile - 5th percentile). The experts 

provided a slightly higher estimate for the median age in the second round of the data 

elicitation (+0.24 years).  

Meanwhile, the interval of the assessed ages decreased in the second round (-0.55 years). 

The details of these evaluations are provided in Table 8-8. 
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Table 8-8. Comparison of the Median and the Interval of the Estimated Age of Samples 

from the First and Second Rounds of Data Elicitation 

 

Sample 

Number  
PCI 

First Round Age 

Estimates 

Second Round 

Age Estimates 
Difference 

of Median 

Difference 

of 

Interval Median Interval Median Interval 

202 81 8.28 6.90 7.96 6.12 -0.32 -0.78 

201 73 9.91 7.95 10.14 7.03 0.23 -0.92 

207 73 11.81 7.98 10.20 6.98 -1.61 -1.00 

203 72 9.89 7.91 10.20 7.17 0.31 -0.74 

209 57 13.75 7.97 13.83 8.08 0.08 0.11 

208 56 14.21 10.87 14.94 9.91 0.73 -0.96 

206 45 9.98 8.01 9.99 7.89 0.01 -0.12 

204 26 13.85 7.99 14.90 6.30 1.05 -1.69 

205 11 13.31 9.04 15.02 10.18 1.71 1.14 

     

Average:   0.24 -0.55 

     

Median = 50th percentile 

   Interval = 95th percentile  -  5th percentile     

 

 

 

The final assessment of the aggregated expert data was a comparison of changes in the 

lower and upper limits (the “worst case” and “best case” scenarios). Comparing the 5th 

percentile responses for the first and second round of elicitation revealed that the average 

lower-limit estimate of the age of the samples was higher in the second round (+.052 

years). This increase is similar to the increase of the median in the second round as 

described above, but it is more than twice as large. Meanwhile, there was very little 

difference in the average upper-limit age estimate in the first and second rounds of data 

elicitation (-0.03 years). The decrease of the interval between round one and round two 

is thus mainly a result of the higher estimates for the lower limit. Table 8-9 shows the 

analysis of the lower and upper limits for each round of data elicitation. 
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Table 8-9. Comparison of the Lower and Upper Limits of the Estimated Age of Samples 

from the First and Second Rounds of Data Elicitation 

 

Sample 

Number  
PCI 

First Round Estimates 
Second Round 

Estimates 

Difference 

of Lower 

Limit of 

Estimated 

Age 

Difference 

of Upper 

Limit of 

Estimated 

Age 

5th 

Percentile 

95th 

Percentile 

5th 

Percentile 

95th 

Percentile 

202 81 4.83 11.73 4.90 11.02 0.07 -0.71 

201 73 5.93 13.88 6.63 13.66 0.70 -0.22 

207 73 7.82 15.80 6.71 13.69 -1.11 -2.11 

203 72 5.93 13.84 6.62 13.79 0.69 -0.05 

209 57 9.77 17.74 9.79 17.87 0.02 0.13 

208 56 8.78 19.65 9.99 19.90 1.21 0.25 

206 45 5.97 13.98 6.04 13.93 0.07 -0.05 

204 26 9.86 17.85 11.75 18.05 1.89 0.20 

205 11 8.79 17.83 9.93 20.11 1.14 2.28 

        

Average: 

     

0.52 -0.03 

 

 

 

8.3 Simulated Experts Data 

After the information obtained from the experts was aggregated, the next step was to 

simulate data points suitable for use in Model #1. As described in chapter 7, this was 

implemented using Bayesian hierarchical modeling and the Markov Chain Monte Carlo 

algorithm. The resulting data set is shown in Figure 8-1. This experts’ data was used as 

one of the two sets of input for Model #1.  
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Figure 8-1. Simulated Experts’ Data, Ready for Use in Model #1 

 

 

 

8.4 Historical Performance Data 

The second data set used as an input for Model #1 was the historical pavement-

performance information obtained from the city of Bryan, Texas. The manner of 

obtaining, vetting, and cleaning this data was described in chapter 6. The historical data 

set, cleaned and ready to use in Model #1, is illustrated in Figure 8-2.  
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Figure 8-2. Historical Performance Data, Cleaned and Ready for Use in Model #1 

 

 

 

When analyzing this historical data it was determined that further processing would be 

necessary. The use of this data in Model #1 led to significant aberrations, with the age of 

the pavement in the performance curves being much higher than the expected 

performance life of asphalt pavements. The general range of this performance life is 

well-established, and barring the development of new materials, or the application of 

unrecorded maintenance treatments, it is unlikely to change in such a drastic fashion. 
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The researcher therefore concluded that some of the historical data obtained in this study 

was unreliable. 

 

In practice, there is a high chance that historical data about very old, unmaintained 

pavement or simply the result of maintenance treatments on that pavement is not being 

accurately recorded. It is uncommon for roads to go for 25 or 30 years without pavement 

maintenance; therefore, the historical data points at that end of the age spectrum are 

more likely to be either biased as the result of aberrant usage conditions or simply an 

outcome of data-reporting mistakes. Therefore, it is safe to assume that the data points at 

the lower end of the age range are more accurate/realistic representations of the rate of 

pavement decline. 

 

Working under this assumption, the researcher decided to perform a staged analysis of 

the data set. The available data was split into sections based on the age of the samples. 

First, all observations of pavement less than five years old were considered. When this 

data was used in Model #1 the results were well within the expected parameters of 

deterioration based on the known characteristics of asphalt pavements. Next, the 

researcher examined whether or not it would be possible to expand the data set by 

considering observations of pavement up to ten years old. This results from this 

expanded data set also fit within the expected parameters. 
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Following this iterative process, it was eventually determined that data indicating a 

maximum pavement age of 15 years would be used in the analysis. Incorporating 

observations of pavement ages older than this range led to unacceptably aberrant results 

in the model. (By examining the data in Figure 8-2, it is possible to visually confirm how 

the data at ages of greater than 15 years diverges from the trend established in the lower 

age range. The pattern of data points above 15 years reveals an inconsistent shift toward 

higher PCIs, which again was most likely caused by bias and/or error in the data 

reporting.) 

 

In summary, it was determined that for the greatest accuracy only observations of 

pavement ages less than 15 years would be included in the historical data set. This 

information was labeled as the “First Split” of the historical data, and it is illustrated in 

Figure 8-3. This data was used as the second set of input for Model #1, for the purposes 

of comparison against the data set elicited from the experts. 
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Figure 8-3. First Split of the Historical Performance Data (Final Input for Model #1) 

 

 

 

8.5 Creating Scenario-based Performance Curves 

The purpose of Model #1 was to define the asset performance curve in each of three 

scenarios (the “worst case,” “most likely case,” and “best case”). This model was 

implemented for each of the two data sets (the experts’ data and the historical data). As 

described in chapter 7, it can be assumed that performance of pavement over time 

generally follows the sigmoidal equation below: 
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𝑦𝑖 = 𝑃𝐶𝐼𝑖 = 100 −  
𝜌

[𝑙𝑛 (
𝛼

𝐴𝑔𝑒𝑖
)]

1
𝛽

 

where: 

Age is the age of the current pavement surface 

ln is the natural logarithm 

α, β, and  are regression constants. 

 

The results of Model #1 were in the form of equation parameters for use in this 

sigmoidal formula. These results are shown in Table 8-10.  

 

 

 

Table 8-10. Performance Curve Parameters for Historical Data and Experts’ Data 

 

Parameters 

“Worst Case” 

Performance Scenario 

“Most Likely Case” 

Performance Scenario 

“Best Case” 

Performance Scenario 

Historical 

Data 

Experts’ 

Data 

Historical 

Data 

Experts’ 

Data 

Historical 

Data 

Experts’ 

Data 

Α 50 70 88 70 135 70 

Β 0.6 0.56 0.48 0.38 0.24 0.28 

Ρ 170 190 200 170 390 140 

 

 

 

Once these parameters were determined the curves were drawn using the conventional 

pavement-performance sigmoid equation. After examining the curves from the historical 

data set it was discovered that the lack of data points above age 15 was causing the far 

end of two scenario curves (“most likely” and “best case,” for ages > 25) to behave in an 
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aberrant fashion. Therefore, the parameters for these curves were slightly modified so 

that they behaved similarly to the “worst case” curve for the historical data. 

 

Figures 8-4 and Figure 8-5 show the resulting scenario-based performance curves for the 

experts’ data and the historical data. As a reminder, the “worst case” is defined as the 5th 

percentile of the performance of the asset at a given age. The “most likely case” is the 

50th percentile (median) of the performance of the asset at a given age. The “best case” is 

the 95th percentile of the performance of the asset at a given age.  

 

The quantiles used to define the performance curves should not be confused with the 

quantiles elicited from the experts. In the elicitation process the quantiles given by the 

experts described the range of age of samples with specific PCI. In the performance 

curves, however, quantiles are used to describe the range of PCI for a specific age. These 

quantiles are not the same since the distribution of the ages is not the same as the 

distribution of the PCI at any given point. This difference is the reason why it was 

necessary to simulate data points from the experts’ evaluation for use in the quantile 

regression analysis of Model #1. 
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Figure 8-4. Scenario-based Pavement Performance Curves, from Historical Data 
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Figure 8-5. Scenario-based Pavement Performance Curves, Data Elicited from Experts 

 

 

 

To compare the performance curves from the elicited data against those from the 

historical data, the area underneath each performance curve was measured. This area 

measurement is a common quantifier used as a performance measure in infrastructure 

asset management to evaluate the cost-effectiveness of an asset. As discussed in chapter 

2, cost-effectiveness analysis is similar to cost-benefit analysis, but it is simpler in that it 

does not require assigning a specific dollar value to the benefits of an asset (Garber and 

Phelps, 1997). It is only necessary to note that an asset with a higher area under the 

performance curve provides more value to the network, compared to a similar asset with 

less area under the performance curve. Since roads are seldom left to degenerate to a PCI 

0

10

20

30

40

50

60

70

80

90

100

0 5 10 15 20 25 30

Pa
ve

m
e

n
t 

C
o

n
d

it
io

n
 In

d
ex

 (
P

C
I)

Age (years)

Pavement Performance Curves - Experts' Data

Worst Case Scenario

Most Likely Scenario

Best Case Scenario



 

 

143 

 

 

 

of zero, the base-line for these area-under-the-curve measurements was set at a PCI of 

25. 

 

Figure 8-6 shows the cumulative area under the performance curves for each scenario, in 

each data set. This graph demonstrates several interesting results. First, by comparing the 

upper and lower limits it can be seen that the curves obtained from the past performance 

data had a wider range compared to the curves from the experts’ data. The best-case 

scenario from the historical data had higher value for the performance measure than 

what was predicted by the experts, and the worst-case scenario from the historical data 

had lower value for the performance measure than what was predicted by the experts. 
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Figure 8-6. Cumulative Area under the Performance Curves for Each Scenario 

 

 

 

For the median (“most likely”) performance curves, the behavior is similar to the worst-

case scenario; the experts predicted a better median result than the historical information 

revealed. Thus, it was only in the upper limit (“best-case” scenario) that the experts’ 

predictions were more conservative than the historical performance records. 

 

As discussed in previous chapters, an important purpose in developing this approach to 

infrastructure asset management was to incorporate a representation of risk and 
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uncertainty into the model. This was implemented through the use of the three outcome-

based performance scenarios (“best case,” “most likely case,” and “worst case”). 

Comparing the results of this approach to conventional deterministic modeling is 

therefore an important part of the analysis. 

 

Conventionally, when using a deterministic (single-curve) representation of asset 

performance either the mean or median of the data is presented. The median 

performance curve would be equivalent to the “most likely case” in the current analysis. 

Using the performance measures (area under the curves) from Figure 8-6, a calculation 

was performed to determine how far off the median curve was from the “best case” and 

“worst case” scenarios. This provides a measure of the expanded range of information 

that is included in the scenario-based analysis. 

 

Table 8-11 shows the results of this measurement for both the historical data set and the 

elicited data set. The ratio H50/H5 indicates how far the area under the 5th percentile 

curve diverged from the area under the median curve in the historical data set. Likewise, 

the ratio H50/H95 indicates how far the area under the 95th percentile curve diverged 

from the area under the median curve in the historical data set. The ratios E50/E5 and 

E50/E95 convey the same information for the elicited data. 

 

The results from this analysis indicate that if asset managers assume deterministic 

behavior for the performance of pavement, using the median performance curve, then 
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there is a possibility of up to 66% overestimation of cost-effectiveness compared to the 

worst-case scenarios (based on the maximum E50/E5). There is also a possibility of up 

to 42% underestimation of cost-effectiveness compared to the best-case scenarios (based 

on the minimum H50/H95).  

 

 

 

Table 8-11. Ratio of Area Under Performance Curves, Deterministic Median vs. 

Scenario-based Analysis 

 

Year H50/H5 H50/H95 E50/E5 E50/E95 

1 1.11 0.92 1.13 0.97 

2 1.15 0.89 1.17 0.96 

3 1.19 0.87 1.21 0.95 

4 1.23 0.85 1.24 0.94 

5 1.27 0.83 1.27 0.93 

6 1.32 0.81 1.31 0.92 

7 1.38 0.79 1.35 0.91 

8 1.45 0.77 1.39 0.9 

9 1.54 0.75 1.43 0.88 

10   0.73 1.48 0.87 

11   0.71 1.53 0.86 

12   0.69 1.59 0.85 

13   0.67 1.66 0.83 

14   0.65   0.82 

15   0.62   0.8 

16   0.6   0.78 

17   0.58   0.77 

 

 

 

Finally, to analyze the success of the elicitation process, the experts’ predictions were 

compared against the historical data. It was assumed that the historical performance 

curves represent what actually happened in the field in reality. Using the area under 
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these historically-based curves (from past performance data) as a benchmark, ratios were 

calculated to determine the divergence of the elicited predictions. 

 

Table 8-12 shows the results of these calculations. The ratio E50/H50 is the comparison 

of the elicited and historical median performance. By comparing E50/H50 it was 

revealed that relying on elicited data could result in up to 20% overestimation of cost-

effectiveness in the most-likely (median) performance scenario. 
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Table 8-12. Ratio of Area Under Performance Curves, Elicited Data vs. Historical Data 

 

Year E50/H50 E5/H5 E95/H95 E5/H95 E95/H5 

1 1.06 1.04 1 0.86 1.21 

2 1.07 1.05 1 0.82 1.29 

3 1.09 1.07 0.99 0.78 1.36 

4 1.10 1.09 0.99 0.75 1.44 

5 1.11 1.11 0.99 0.72 1.52 

6 1.12 1.13 0.99 0.69 1.62 

7 1.13 1.16 0.98 0.66 1.73 

8 1.14 1.2 0.98 0.63 1.85 

9 1.15 1.24 0.98 0.6 2.01 

10 1.16  0.97 0.57   

11  1.17  0.97 0.54   

12  1.18  0.96 0.51   

13  1.19  0.95 0.48   

14  1.20  0.94     

15  1.20  0.93     

16  1.20  0.92     

17    0.91     

18    0.89     

19    0.87     

20    0.85     

21    0.83     

 

 

 

The values in the E5/H5 column of Table 8-12 indicate that relying on experts’ data 

could result in up to 24% overestimation in cost-effectiveness analysis in the worst-case 

performance scenario. Similarly, by comparing E95/H95 it was revealed that relying on 

elicited data could result in up to 17% underestimation of cost-effectiveness in the best-

case performance scenario. 
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The final two columns of the Table 8-12 represent the extreme situations in which the 

worst-case scenario happened in reality and the best-case expert prediction was used for 

planning purposes (or vice-versa). In these cases it is possible that the predictive 

scenario could underestimate the cost-effectiveness by up to 52%, or underestimate it by 

up to 100%. Asset managers should be advised to keep these numbers in mind as they 

consider the range of uncertainty presented in the scenario-based model. 

 

8.6 The Asset-Management Framework in Practical Decision-Making 

To demonstrate the usefulness of the scenario-based asset-management framework in 

practical decisions, the model was tested using a popular commercial asset-management 

software package, known as StreetSaver®. StreetSaver® was developed by Metropolitan 

Transportation Commission (MTC) in the San Francisco Bay Area, California. This 

package is used to develop pavement maintenance and rehabilitation strategies and to 

estimate expenses. Performance curves for various segments of a city’s streets are used 

as input by the StreetSaver® software. These curves follow the pavement-oriented 

sigmoidal equation that was introduced in chapter 7, which means that the regression 

constants (α, β, and ) are the primary input values (Wang el al., 2014; Cheng, 2010). In 

the sample test conducted here, the various scenarios developed to predict pavement 

performance in Bryan, Texas, were used to estimate how much it would cost the city to 

improve the overall PCI of its road network from 55 to 75, over the course of 20 years 

and in a linear fashion. However, the network model used was the test model provided 

by StreetSaver® for testing and research purposes. In this test model the length of 



 

 

150 

 

 

 

pavement sections are unrealistically short to better control the process and compare the 

results.   

 

In this analysis each source of data (the scenarios derived from historical performance 

and elicited experts’ data) was considered as a separate case. The performance curves for 

each scenario were inserted into the software by defining the α, β, and  values of the 

sigmoidal equation. Then, a target-driven analysis was performed using the software, 

which resulted in a report of the cumulative costs required to reach the desired network 

PCI. The graphs of these cumulative costs over time, based on the different estimated 

performance curves, are illustrated in Figures 8-7 and 8-8. 

 

 

 
Figure 8-7. Cumulative Preservation Cost for Each Scenario to Reach PCI=75 (Experts’ 

Data) 
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Figure 8-8. Cumulative Preservation Cost for Each Scenario to Reach PCI=75 

(Historical Data) 

 

 

 

The total budget that would be required to increase the overall network PCI from 55 to 

75 over 20 years, based on different possible performance scenarios, is reported in Table 

8-13.  

 

 

 

Table 8-13. Required Budget to Reach PCI=75 in Different Performance Scenarios 

 

Worst Case 

Scenario 

Most Likely Case 

Scenario 

Best Case 

Scenario 

Experts’ Data $1,540,071 $748,874 $659,395 

Historical Data $2,256,262 $817,922 $559,592 
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Analyzing this table reveals the significant amount of new information that a scenario-

based asset management framework can provide for the decision-making process. 

Relying on a simple deterministic model to estimate the most likely asset performance 

would result in a straightforward predicted budget of roughly $750,000 (using the 

experts’ data) or $820,000 (using the historical data). However, by including the “worst 

case” and “best case” scenarios, decision-makers can see that the potential range of the 

costs required to reach the desired performance level is actually quite large—especially 

in the direction of potentially increased expenses. In the worst-case scenario for both the 

expert and historical data, the budget required to meet the target performance is more 

than double the mainline estimate. Many factors beyond the manager’s control, 

including weather conditions, material properties, and variations in usage patterns, can 

result in divergent outcomes. Understanding the range of this uncertainty can be vitally 

important in providing a broader perspective for asset managers who are making 

decisions about budget allocations and performance targets. 
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CHAPTER IX 

SUMMARY AND CONCLUSIONS 

 

 

9.1 Overview 

The goal of this research was to develop a risk- and performance-based infrastructure 

asset management framework that can be used to support rational and effective decision-

making by the professionals charged with the critical task of maintaining the 

infrastructure. Two major concerns were identified in the previously existing asset-

performance models. First, there is a need for a practical method of incorporating 

uncertainty and risk into the model. This is because without information about the 

uncertainty entailed in asset performance predictions, managers who rely on these 

predictions may experience unanticipated and unfortunate results. Second, in many cases 

there is a lack of appropriate data about how assets perform over time. To build a useful 

predictive model, a robust technique is needed for estimating this performance data in 

cases where the historical asset-performance records are unreliable or non-existent. 

 

The framework developed in this research employs an outcome-based scenario analysis 

to report uncertainty and risk. Rather than providing a single deterministic prediction of 

asset performance, the model provides a “best-case scenario,” “most-likely scenario,” 

and “worst-case scenario.” The levels of asset performance over time in these scenarios 

were defined by conducting a quantile regression analysis on the asset-performance data.  
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For situations in which there is a lack of historical performance data, an elicitation model 

was developed based on the Delphi technique. This approach provides a rigorous process 

for obtaining data from a panel of experts. The elicitation proceeds in a series of iterative 

rounds. First, each expert provides an independent and anonymous estimate of the data 

that being elicited. Then, in subsequent rounds, the experts receive feedback based on 

the overall aggregated results, and they are given an opportunity to revise or defend their 

previous estimates. The goal is to encourage the experts to narrow in on a reasonable 

consensus around the most accurate data estimations. Using this technique, an elicitation 

process was developed tailored to the specific needs of infrastructure asset management. 

In the proposed elicitation model, the experts provide information about the performance 

of the asset over time in the form of quantiles. This allows the researcher or decision-

maker to obtain information about the overall range of possible performance outcomes. 

 

To test the implementation and applicability of the proposed framework, a case study 

was conducted in the City of Bryan, Texas. While the proposed infrastructure asset-

management framework is generic and could be used for any type of asset-management 

situation, in this research the pavement condition index (PCI) of the Bryan road system 

was used as the relevant measure of performance. The case study was focused on the 

deterioration of PCI over time, an important consideration for asset managers who need 

to evaluate the timing and cost of pavement maintenance treatments. In this case study, 

actual historical data about pavement performance was available from the city of Bryan, 

in the form of road construction records and PCIs measured during city inspections. The 



 

 

155 

 

 

 

existence of these records allowed the researcher to test the success of the data-

elicitation model, by comparing its results against the actual historical (past-

performance) information. 

 

9.2 Conclusions 

This research expanded the body of knowledge in the area of infrastructure asset-

management in the following respects: 

 Defining four levels of uncertainty in asset management shows how a 

consideration of these levels of uncertainty, ranging from deterministic situations 

to truly ambiguous situations, can help asset managers to choose the most 

suitable decision-support framework for their needs. Previous models have 

tended to adopt a deterministic or discrete-probability outlook on uncertainty; 

however, most infrastructure asset-management contexts involve higher levels of 

uncertainty that are more adequately handled using a scenario-based approach. 

The use of deterministic performance models, in particular, was shown in this 

research to lead to potential overestimation or underestimation of the value of 

different treatment alternatives (as much as 66% overestimation or 42% 

underestimation, in the Bryan, Texas, case study). Furthermore, both 

deterministic and discrete-probability models have the liability of presenting 

definitive conclusions and thereby obscuring the true level of uncertainty that 

exists in the data-modeling process. This research suggests that scenario-based 

approaches can be very useful for helping asset managers to understand the full 
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range of uncertainty and risk that is present in the model. At the same time, the 

scenario-based approach provides intuitive and easy-to-use results, which is not 

the case in complex probabilistic models (such as the Markov Decision Process). 

 

 The models and the case study developed in this research demonstrate that an 

outcome-based scenario analysis for infrastructure asset-management can be 

successfully implemented in practice. Describing the boundaries of asset 

performance (in the form of the “worst-case scenario” and the “best-case 

scenario”) can be a very useful tool for encouraging asset managers to 

incorporate evaluations of uncertainty and risk into their planning—without 

becoming entirely bogged down in an overabundance of information. This gives 

asset managers a better understanding of the fact that factors beyond their control 

or knowledge—including weather conditions, material properties, and unforeseen 

load and usage patterns—will often cause real-world results to deviate from the 

“most-likely scenario.” This approach, therefore, helps them to more accurately 

interpret the model as expressing of a range of asset-performance possibilities. 

Outcome-based asset-performance scenarios allow the managers to define 

possible futures and consider the consequences on their planning and 

programming decisions in each of those futures, without needing to bother 

themselves with attempts to trace the complex chains of events that might lead to 

a particular performance outcome. Using quantile regression analysis to define 

the range of possible performance scenarios is a novel approach that was 
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introduced to the infrastructure asset-management context for the first time in 

this work. 

 

 The data-elicitation model provides a new tool, tailored specifically for the needs 

of asset managers, to obtain estimated asset-performance information. This 

rigorous approach to estimating data will be invaluable in situations where there 

are no reliable or adequate records of the past performance of assets. While the 

existence of robust historical data is the ideal situation for creating models of 

asset performance, the case study in this research provides evidence that data 

obtained through a rigorous elicitation process can provide an accurate-enough 

input for modeling purposes. In some cases, when the existing empirical data has 

not been rigorously collected, data elicited from experts may be even more 

accurate than historical records, as was shown by the anomalous results and need 

for repeated data-cleaning attempts in processing the city’s historical 

maintenance records in this study. Furthermore, in cases where reliable historical 

data is available for only a limited duration of the asset’s life-cycle, the data-

elicitation model can be used to estimate the asset’s performance over a broader 

range of time. 

 

 The statistical model developed in this research offers a specific method of data 

aggregation for infrastructure asset management based on Bayesian hierarchical 

modeling and the Markov Chain Monte Carlo algorithm. This approach to 
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aggregating the data elicited from experts captures their estimated probability 

distributions for the performance of the asset. Moreover, the Bayesian structure 

of this model enables asset managers to easily update the resulting asset-

performance curves when new information is obtained. 

 

 Overall, the asset-management framework developed in this research provides a 

powerful and yet flexible approach toward risk analysis that asset manager can 

implement in conjunction with current software packages to better support their 

decision-making processes in uncertain environments.    

 

9.3 Limitations 

The infrastructure asset-management framework that was developed in this research has 

a generic form, and the intent was to create a model that can be used for any type of 

asset to support decisions at the strategic and network levels. However, only one case 

study was conducted to test this approach to asset-performance modeling, and the 

development of the framework within this case study included a great deal of contextual 

information related specifically to pavement maintenance. Furthermore, the sample size 

in the case study’s data-elicitation process was limited in relation to both the number of 

experts consulted and the number of pavement samples selected. Therefore, caution 

should be employed in generalizing the results of the case study to other assets-

management contexts. More research is needed to further test and develop the 

applicability of the model. 
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Another limitation of the study was the use of raw historical data from the city of Bryan, 

which was collected under unknown conditions. Although the data was cleaned using 

conventional data-scrubbing algorithms, it still resulted in anomalous results, requiring 

the researcher to conduct a second round of processing and to ultimately discard all 

historical observations of pavement conditions older than 15 years. The questionability 

of this data set means that its utility for calibrating/confirming the elicitation model is 

limited. Further comparative studies should be undertaken in situations where robust 

historical data is available. 

 

Finally, it is worth noting that the framework in its current implementation does not 

include the kind of detailed information that is necessary to evaluate maintenance and 

rehabilitation treatments at the project level. Instead, it merely incorporates data about 

the average results of those project-level efforts in order to assist with broader strategic 

and network planning. Additional efforts can and should be made to help improve 

financial efficiency at the project level. 

 

9.4 Recommendations for Future Research 

In addition to the research directions described in the previous section, there are several 

other areas in which this work could be expanded. One possibility is to use the 

framework and elicitation model to generate broad recommendations for effective 

practices in infrastructure asset management decision making at the strategic and 

network levels. These best-practice recommendations could be tailored to specific types 
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of assets and specific geographical regions. Another potential direction of research is to 

conduct empirical studies comparing the results of using outcome-based scenario 

planning against the results achieved by using conventional probabilistic asset-

management frameworks such as the Markov Decision Process. 
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APPENDIX B 

FIRST ROUND QUESTIONNAIRE PACKAGE 

Invitation Follow-up Letter 

<Date> 

<Title> <First Name> <Last Name> 

<Company name> 

<Company Address> 

 

Invitation to participate in a Delphi Study 

Dear <Title> <Name>, 

Thank you for volunteering to participate in this research study regarding a method to 

predict pavement condition over time using expert opinion. As mentioned in the email 

invitation you received on <date> you will be required, using your expert judgment, to 

provide an appropriate estimate for age of the pavement samples. You are asked to give 

your estimates as ranges. The first round query would be emailed to you with 

instructions on <date>. Typically, one to two more rounds are required to achieve 

consensus among the expert panel. The input for each round should be completed in 

approximately 20 minutes. 

Once again, thank you for your time, interest and cooperation. For more information 

contact Dr. Stuart Anderson by email to s-anderson5@tamu.edu or Amir Hessami by 

email to hessami_amir@tamu.edu. 

 

Sincerely, 

Amir Hessami 

Graduate Research Assistant, CEM Program 

Texas A&M University 

  

mailto:s-anderson5@tamu.edu
mailto:hessami_amir@tamu.edu
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Questionnaire – Round 1 

Background and Instructions 

You are receiving this questionnaire because you volunteered to participate in this 

research project.  The questionnaire package is comprised of Questionnaire – Round 1 

(current document), Attachment A (Participant Information Form), Attachment B 

(Method Description), Attachment C (Forms) and soft copy of ASTM D 6433 – 11 

“Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys.” The 

pictures for the pavement samples are located on a shared drive. You can access the 

pictures by clicking on the hyperlinks provided in the forms (Attachment C).  

The next sections provide the background and instructions to complete the forms.  

 

Background 

This questionnaire is prepared as part of a research study titled “A Risk-based 

Performance-based Model for Infrastructure Management Planning”. The goal of this 

research is to develop a performance-based infrastructure management framework at the 

network planning level that incorporates the network condition uncertainty in 

maintenance decision making. One of the research objectives of this project is 

developing a method for defining pavement performance curves using expert opinion as 

input data. The developed method incorporates the uncertainty in predicting the future 

performance in order to define the upper and lower limits of performance over the life 

cycle of the infrastructure segment.  

A total of five participants from the pavement industry make up the panel of experts for 

this study using the Delphi technique. Your input will be vital in determining the ranges 

of pavement performance over time.  

 

Instructions 

The researchers gathered condition data for several pavement segments in the City of 

Bryan network. This information was used to define the Pavement Condition Index 

(PCI) for these segments. PCI is a number between 0 and 100 which is used to indicate 

the general condition of a pavement. A PCI of 100 represents the best possible condition 

and a PCI of 0 represents the worst possible condition. 

You have been provided with the information of each pavement segment including its 

location, segment size, the pavement distresses, calculated PCI for the segment, along 
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with several pictures for each segment showing the condition of that segment. You are 

asked to answer questions about the range of the age of pavement segments over a range 

of pavement conditions in a structured survey using the Delphi method. The Delphi 

method is an iterative method to solicit the appropriate data from expert participants 

involved in this research project. You will provide your opinion by responding to 

questionnaires. The current document is the first questionnaire. Once you provide your 

responses to this questionnaire and return it to the research team, the research team will 

review the answers and design a new questionnaire. You will have a chance to modify 

your first round answers based on the analysis of the results of the first round by the 

research team. These iterations will continue until consensus reached. The questions 

would help to define the condition curves. In the Delphi method, at least two rounds of 

data collection through the survey would be implemented. 

The method of condition survey and calculating the PCI is based on ASTM D 6433 – 11 

“Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys.” A 

soft copy of this standard is provided for your information in case you would like to 

refresh or enhance your knowledge about this method and the definition of the 

distresses.   

You are asked to give your estimate of the pavement age of the segments as 5th, 50th and 

95th percentiles. The definition of percentiles and a simple example are provided in the 

Attachment B of this document.  

Once you reviewed the attached documents, begin responding to the questionnaire as 

instructed below: 

Open the excel file with the file name “Attachment C”. Open Sheet 1 which is titled 

“Sample Number 201”. In this worksheet you are provided with the following 

information: 

 Sample Number 

 Pavement Type 

 Location (location of the sample in City of Bryan) 

 Length and Width of the sample 

 Pictures (link to the folder containing pictures for the sample) 

 PCI (calculated PCI based on the field survey) 

 Distresses  

Review these information along with the pictures of the sample and in the same 

worksheet answer the following questions in the same worksheet: 
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Estimated Age of Pavement - Lower Limit (5th Percentile) 

Estimated Age of Pavement - Best Estimate (50 Percentile) 

Estimated Age of Pavement - Upper Limit (95th Percentile) 

Once you have provided your estimated answer for the first worksheet, open the second 

worksheet which is titled “Sample Number 202”. For this sample, follow the process 

described above. Please do the same for the rest of the worksheets. After completing all 

the worksheets, save the excel file on your personal computer and email it to the 

following email address: hessami_amir@tamu.edu 

Please direct any questions you may have to: 

Amir Hessami 

Graduate Research Assistant,  

CEM Program, Department of Civil Engineering 

3136 TAMU 

Texas A & M University 

College Station 77843-3136 

Phone: (979) 229-4334 

Email: hessami_amir@tamu.edu 

 

  

mailto:hessami_amir@tamu.edu
mailto:hessami_amir@tamu.edu
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Attachment A 

Participant Information Form 

Name: 

Organization: 

Number of years in the Transportation Industry: 

Position: 

Years in current position: 

Email: 

In what area(s) of the Transportation Industry have you worked within the last 10-15 years, and how 

many years in each. Please specify below: 

Area of primary responsibility Number of years 

Pavement Maintenance and Management  

Pavement Maintenance   

Pavement Engineering\Construction  

Pavement Management   

  

 

 

Please provide any additional comments about your experience in the space provided below: 

 

 

 

 

The information requested here is intended to ascertain the level of professional experience of the 

participants in areas of expertise relevant to this study. All information provided by participants during 

this study is considered confidential and will be used solely for the purpose of this study.  

  

Would you qualify  your exposure to Pavement 

Engineering, Maintenance and Management Practices 

(during those  years as indicated above) 

 

Level of Exposure to Practices (LOW, 

MIEDIUM or HIGH) 

Pavement Maintenance   

Pavement Engineering\Construction  

Pavement Management   
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Attachment B - Method Description 

Delphi Method 

The Conventional Delphi technique is a method used to gather opinions from a group of 

individuals. This information is analyzed and used to solve problems for which there is 

little or no empirical evidence. Therefore, this technique relies more on the judgment of 

experts to achieve results. 

The iterative process of information gathering is achieved by administering a series of 

questionnaires called rounds to a panel of experts and giving controlled feedback to the 

respondents after each round. The aim of the Delphi technique is to achieve a consensus 

among the group of experts. The number of rounds could vary but is typically a 

minimum of two rounds. The first round is typically more exploratory and identifies 

issues which would be further addressed in subsequent rounds. Responses from the first 

round are compiled and form the basis for the second round; they are presented to the 

participants who would then have an opportunity to revise their earlier judgment/opinion 

if necessary in the light of new information from the aggregated results of the previous 

round. Subsequent rounds if required are conducted in a similar manner until consensus 

is achieved. 

One key feature of the Delphi process is anonymity among the expert panel; panelists 

would not necessarily know one another nor would they know the source of each of the 

other responses. This eliminates intimidation, persuasion, individual dominance, conflict 

and the effects of status, and other drawbacks of face-to-face interaction. The use of 

controlled feedback to the participants ensures that panelists can revise their earlier 

opinions easily in the light of new evidence. 

 

Ranges of Pavement Age 

The condition of the pavement at specific point in time is not deterministic. There are 

several factors such as weather condition, the quality of construction and traffic load that 

may cause the pavement to deteriorate more than or less than what is typically expected. 

Because of this indeterministic feature of pavement condition it is more suitable to 

present the condition as a range instead of a single number. Here a method of presenting 

the condition as a range is presented.  

One way of defining the ranges of condition is to use the concept of percentile in 

statistics. A percentile is a measure used in statistics indicating the value below which a 

http://en.wikipedia.org/wiki/Statistics
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given percentage of observations in a group of observations fall. For example, the 20th 

percentile is the value (or score) below which 20 percent of the observations may be 

found. In this research the lower limit of condition is defined as the 5th percentile. This 

means that there is less than 1 in 20 chance that the actual condition of the pavement will 

be below the lower limit which is estimated by the experts. Similarly the upper limit of 

condition is defined as the 95th percentile. This means that there is less than 1 in 20 

chance that the actual condition of the pavement will be above the estimated upper limit. 

The experts are also asked to provide the best estimate. The best estimate is the 50th 

percentile, which is the median of the data.  

The following simple practical example helps to better understand this concept.  

For a project the estimator’s estimation of the cost of the project is $380M. However, the 

estimator cannot definitely tell what the final cost of construction will be. There are 

ranges of uncertainty in the estimate of cost. Therefore, it is appropriate that the 

estimator presents the cost estimate as a range, with the limits and the “best estimate”. In 

this example, the best estimate of the cost is $380M. Now consider the lower limit 

scenario. To define the lower plausible limit of the cost estimate the estimator should ask 

what cost of the project is for which there is only 1 in 20 chance that the final cost will 

fall below. This is the 5th percentile. In the case of this example, this lower limit is 

$250M. Similarly, the upper limit of possibility of the cost of the project is defined. The 

plausible upper limit is the cost that in the estimator’s opinion there is only 1 in 20 

chance that the final cost will exceed it. This is the 95th percentile. For the example 

provided in Figure B-1, the upper limit is $450M.  

The interpretation of the lower limit and the upper limit is that there is very unlikely the 

final cost of the project will be out of this range.  

 

Figure B-1. Ranges of Cost Estimate for a Hypothetical Construction Project   

 

http://en.wikipedia.org/wiki/Percentage
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Questionnaire Attachment C – Forms 

         

         

     
Please provide your estimated age for this sample: 

 Sample Number 
    

Estimated Age of Pavement 
 Pavement Type 

    
Lower Limit  Best Estimate  Upper Limit 

 Location 
    

(5th Percentile) (50 Percentile)  (95th Percentile) 
 Length (ft) 

           Width (ft) 
     Pictures 
   

Comments 
       PCI 

        
       

         Distresses   
       Distress Type Severity Quantity 

     

         

         

         

               
      Once you provided your estimate for this sample please move to the next 

worksheet. 
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APPENDIX C 

 

SECOND ROUND QUESTIONNAIRE PACKAGE  

Questionnaire – Round 2 
 

 

Background and Instructions 

You are receiving this questionnaire because you volunteered to participate in this 

research project. You have responded to the first round questionnaire. This is the second 

round questionnaire. The questionnaire package for the second round is comprised of 

Questionnaire – Round 2 (current document) and Attachment A (Forms). The pictures 

for the pavement samples are located on a shared drive. You can access to the pictures 

by clicking on the hyperlinks provided in the forms (Attachment A). 

Next sections provide the background and instructions to complete the forms.  

 

Background 

This questionnaire is prepared as part of a research study titled “A Risk-based 

Performance-based Model for Infrastructure Management Planning”. The goal of this 

research is to develop a performance based infrastructure management framework at the 

network planning level that incorporates the network condition uncertainty in 

maintenance decision making. One of the research objectives of this project is 

developing a method for defining pavement performance curves using expert opinion as 

input data. The developed method incorporates the uncertainty in predicting the future 

performance in order to define the upper and lower limits of performance over the life 

cycle of the infrastructure segment.  

The researchers gathered condition data for several pavement segments in the City of 

Bryan network. This information was used to define the Pavement Condition Index 

(PCI) for these segments. PCI is a number between 0 and 100 that is used to indicate the 

general condition of a pavement. A PCI of 100 represents the best possible condition and 

a PCI of 0 represents the worst possible condition. 

In the first round, you were provided with the information of each pavement segment 

including its location, segment size, the pavement distresses, calculated PCI for the 
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segment along with several pictures for each segment showing the condition of that 

segment. In that round, you were asked to answer questions about the range of the age of 

pavement segments over a range of pavement conditions. The current document is the 

second round questionnaire. The research team reviewed the answers of the first round 

and designed this questionnaire. In this round, you have a chance to modify your first 

round answers based on the analysis of the results of the first round by the research team.   

The method of condition survey and calculating the PCI is based on ASTM D 6433 – 11 

“Standard Practice for Roads and Parking Lots Pavement Condition Index Surveys.” A 

soft copy of this standard is provided for your information in case you would like to 

refresh or enhance your knowledge about this method and the definition of the 

distresses.   

A total of five participants from the pavement industry make up the panel of experts for 

this study using the Delphi technique. Your input will be vital in determining the ranges 

of pavement performance over time.  

 

Instructions 

Open the excel file with the file name “Attachment A - Round 2”. The questionnaire has 

two sections. Open Sheet 1 which is titled “Section 1”. Section 1 has nine subsections: 

Q1-Q9. Each of the subsections is about one of the pavement samples.  

In these subsections you are provided with the following information: 

 Sample Number 

 PCI (calculated PCI based on the field survey) 

 Pictures (link to the folder containing pictures for the sample) 

In worksheets 3-12, the detailed characteristics of the samples along with the pavement 

distresses are provided.   

For each sample you are also provided with the results of the estimated age of the 

samples from the first round. Three different types of results are provided. The first type 

is titled “Age of Sample (Aggregated Responses of First Round)”. These are the results 

after the responses from all participants are statistically aggregated. In the aggregation 

process it is assumed that the estimated age of a sample has a normal distribution. This 

means that the estimated age for the 5th percentile and the 95th percentile are symmetric 

about the estimated age for the 50th percentile. You may not agree with this assumption. 

The second type of results is titled “Age of Sample (Average of Responses of First 
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Round)”. This is the simple average of the estimated age of the sample from all 

respondents. The third type of results is titled “Your First Round Response”. This is your 

responses for the first round. 

 

Review these results, the PCI and the pictures of the sample and decide if you would like 

to modify your answers for the first round. Fill in the boxes in the table titled “Your 

Estimate of the Age for this round”. Similar to the first round, you are asked to give your 

estimate of the pavement age of the segments as 5th, 50th and 95th percentiles in each of 

these subsections.   

You are also asked to answer the following question for each sample: 

“What percentage of the pavements in the network do you think have a better condition 

than this sample?" 

In the last part of Section 1 of the questionnaire provide your comments.   

Complete subsections Q1-Q9.  

Now open Sheet 2 which is titled “Section 2”. There is one question in this section. The 

goal of this question is to define if you believe the answers should be symmetric or not. 

Review the provided figure in Section 2 and define which answer is the best description 

of your responses in Section 1. After completing all the questionnaire save the excel file 

on your personal computer and email it to the following email address: 

hessami_amir@tamu.edu 

Please direct any questions you may have to: 

Amir Hessami 

Graduate Research Assistant,  

CEM Program, Department of Civil Engineering 

3136 TAMU 

Texas A & M University 

College Station 77843-3136 

Phone: (979) 229-4334 

Email: hessami_amir@tamu.edu 

 

mailto:hessami_amir@tamu.edu
mailto:hessami_amir@tamu.edu
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Questionnaire – Round 2  

Summary of Instructions: 

Open the excel file with the file name “Attachment A - Round 2”. The questionnaire has 

two sections. Open Sheet 1 which is titled “Section 1”. Section 1 has nine subsections: 

Q1-Q9. Each of the subsections is about one of the pavement samples.  

In these subsections you are provided with the following information: 

 Sample Number 

 PCI (calculated PCI based on the field survey) 

 Pictures (link to the folder containing pictures for the sample) 

In worksheets 3-12, the detailed characteristics of the samples along with the pavement 

distresses are provided.   

For each sample you are also provided with the results of the estimated age of the 

samples from the first round. Three different types of results are provided. The first type 

is titled “Age of Sample (Aggregated Responses of First Round)”. These are the results 

after the responses from all participants are statistically aggregated. In the aggregation 

process it is assumed that the estimated age of a sample has a normal distribution. This 

means that the estimated age for the 5th percentile and the 95th percentile are symmetric 

about the estimated age for the 50th percentile. You may not agree with this assumption. 

The second type of results is titled “Age of Sample (Average of Responses of First 

Round)”. This is the simple average of the estimated age of the sample from all 

respondents. The third type of results is titled “Your First Round Response”. This is your 

responses for the first round. 

Review these results, the PCI and the pictures of the sample and decide if you would like 

to modify your answers for the first round. Fill in the boxes in the table titled “Your 

Estimate of the Age for this round”. Similar to the first round, you are asked to give your 

estimate of the pavement age of the segments as 5th, 50th and 95th percentiles in each of 

these subsections.   

You are also asked to answer the following question for each sample: 

“What percentage of the pavements in the network do you think have a better condition 

than this sample?" 

In the last part of Section 1 of the questionnaire provide your comments.   
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Complete subsections Q1-Q9. Now open Sheet 2 which is titled “Section 2”. There is 

one question in this section. The goal of this question is to define if you believe the 

answers should be symmetric or not. Review the provided figure in Section 2 and define 

which answer is the best description of your responses in Section 1. 
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Attachment A – Forms 
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