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ABSTRACT 

 

The Lower Fox River is a thirty-nine mile section which supports approximately 

270,000 rural inhabitants across eighteen counties, 303,000 metropolitan residents in 

Green Bay and Appleton, Wisconsin, and several large industrial complexes such as 

paper mills and power plants. The purpose of this study was twofold, a) to characterize 

aliphatic and aromatic hydrocarbon distribution and concentration in the Lower Fox 

River and b) to identify the sources of hydrocarbon contamination. 

To quantify hydrocarbon contamination and distribution, nine cores were 

sampled downstream of the DePere Dam. Samples were analyzed for total organic 

carbon (TOC) using a Leco CR-412 total carbon analyzer and n-alkanes and polycyclic 

aromatic hydrocarbons using a gas chromatography - mass spectrometry (GC/MS). 

Percent TOC values were between 0.73% and 19.9% with an average value of 

6.79%. Total n-alkanes ranged from 3.96 µg/g to 523 µg/g and showed a strong presence 

of odd carbon-numbered n-alkane ratios (range of C25 to C35) which indicates the 

source input from terrestrial biomass. The mean polycyclic aromatic hydrocarbon (PAH) 

concentration was 24,800 ng/g. High molecular weight PAH (HWM PAH) 

concentrations dominated the distribution of hydrocarbon contaminants. River sediment 

samples nearest to the DePere dam contained the highest PAHs levels at 63,600 ng/g and 

56,700 ng/g, respectively. Cross-plots of PAHs were used to compare diagnostic source 

ratios of: benzo[a]pyrene (BaA), chrysene (Chy), fluoranthene (Fl), pyrene (Py), 

anthracene (An), phenanthrene (Phe), indeno[1,2,3-cd]pyrene (PI), and 
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benzo[g,h,i]pyrene (BgP) by depth and area. PAH ratios varied slightly with the core 

depth. Deeper core sections indicated presence of biomass combustion while the upper 

core sections indicated combustion of both petroleum and biomass. PAH distribution 

was irrespective of sampling zones. PAH and n-alkane data established primary influxes 

from both natural and anthropogenic pyrogenic activities. A toxicological evaluation 

quotient (TEQ) was calculated for the Lower Fox River core sections revealing the most 

elevated PAH concentrations at 2295 ng/g-dry (649 ng/g-wet), 1695 ng/g-dry (898 ng/g-

wet), and 2,438 ng/g-dry (829 ng/g-wet). Core section concentrations exceed the 

Comprehensive Environmental Response, Compensation, and Liability Act (CERCLA) 

Method B cleanup level for benzo(a)pyrene of 137 ng/g. A secondary evaluation, using 

the Wisconsin Department of Natural Recourses’ (WDNR) threshold effect 

concentration (TEC), normalized sample concentrations to 1% TOC. After 

normalization, sample concentrations totaled 1520 ng/g-dry, 1073 ng/g-dry, and 492 

ng/g-dry. PAH concentrations did not exceed WDNR TEC for PAHs at 1,610 ng/g at 1% 

TOC implying remediation is not presently required and river sediments currently have 

minimal adverse effects.  
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1. INTRODUCTION

Polycyclic aromatic hydrocarbons (PAHs) are a group of ubiquitous 

environmental compounds with persistent toxic abilities known to bioaccumulate in the 

environment due to slow decomposition. PAHs are classified as persistent organic 

pollutants (POPs) by the United States Environmental Protection Agency (USEPA). 

POPs are defined as any chemical resistant to biodegradation which is produced 

intentionally or unintentionally for agricultural use, disease control, manufacturing, or 

industrial processes; or as a byproduct of industrial processes or combustion (i.e., 

automotive and factory exhaust) (USEPA 2014). 

PAHs are a group of organic contaminants which are the result of incomplete 

combustion of organic materials (Ramírez et al. 2011). The toxic effects of PAHs on 

human health are known to include: mutagenicity, teratogenicity, immunogenicity, and 

carcinogenicity. PAHs such as benzo[a]pyrene can increase the risk of skin, lung, 

bladder, liver, and stomach cancers. Additionally, PAHs have been known to cross the 

placental boundary suggesting that a fetus is 10 times more vulnerable to PAH-induced 

DNA damage than the offspring's mother (Herbstman et al. 2012). Despite the associated 

dangers, several industrial processes produce PAHs and other hydrocarbons during 

manufacturing processes as a byproduct.  

The purpose of this study is twofold, a) to characterize aliphatic and aromatic 

hydrocarbon distribution and concentration in the Lower Fox River and b) to identify the 

sources of hydrocarbon contamination through forensic fingerprinting of chemical 
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constituents. The Lower Fox River is a thirty-nine mile section located in east Wisconsin 

(Figure 1). Starting at the Menasha and Neenah channels, the Lower Fox River flows 

northeast where it discharges into the Green Bay and Lake Michigan basin. The 

watershed of the Lower Fox River supports approximately 270,000 rural inhabitants in 

eighteen counties, 303,000 metropolitan residents, and several large industrial 

complexes within the urban cities of Green Bay and Appleton (USEPA 2013). Despite 

the high probability of hydrocarbon contamination (Uhler et al. 2005), limited literature 

can be found on the distribution of hydrocarbons within the Lower Fox River.  In order 

to identify the hydrocarbon levels and distribution, nine three-foot cores were collected 

from a river location. Cores were sampled below the DePere Dam to analyze for 

hydrocarbons with respect to location and depth. 
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Figure 1: Lower Fox River, Green Bay, Wisconsin Sampling Location. (Google Maps 2015) 



 

4 

 

2. LITERATURE REVIEW 

 

 Due to the prevalent nature of PAH compounds and saturated hydrocarbons, 

identification of their sources can be difficult to determine, particularly adjacent to urban 

areas (Uhler et al. 2005). However, after the United States passed the Clean Water Act in 

1972, the USEPA integrated aspects of hydrocarbon fingerprinting from geochemical 

exploration techniques. These techniques were modified specifically to assist in 

environmental monitoring and evaluation, and to establish a means to assess and 

remediate areas of concern (AOC) (Boehm et al. 1997).  Hydrocarbon evaluations 

classify molecular and isotopic characteristics of pollutants within an AOC by 

examining the progression of weathering and the identification of hydrocarbon source 

(Boehm et al. 1997). Hydrocarbon contamination consists of complex mixtures of PAHs, 

saturated hydrocarbons, and polar compounds. Analysts can chemically fingerprint 

potential hydrocarbon sources by examining the concentration of individual hydrocarbon 

compounds present in organic material and their byproducts (Boehm et al. 1997 and 

Prince and Walters 2007). By evaluating the relative abundance of these compounds, 

differences and similarities can be identified among distinct fuels, refined products, 

manufactured products, and byproducts with respect to product-parent relationships 

(Boehm et al. 1997 and Uhler et al. 2005).   
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2.1. Polycyclic Aromatic Hydrocarbons 

PAHs are a group of ubiquitous compounds generated by the incomplete 

combustion of refined fuel, coal, tar, oil, and other organic material. PAHs are known to 

be produced naturally by organic degradation, forest fires, and volcanic activities. 

However, anthropogenic production such as industrial emissions is the most common 

source of PAHs due to human utilization of petroleum products and combustion of 

organic matter (ATSDR 1995). PAHs are not found in the environment as individual 

compounds, but rather as mixtures consisting of at least two fused carbon-carbon rings 

with alternating double and single bonds (i.e., benzene rings) (Uhler et al. 2005). These 

arrangements can differ with alignment and number of rings. Naphthalene is the most 

basic PAH compound, consisting of two fused benzene rings.  

 

2.1.1. Formation of PAHs 

PAHs are classified as pyrogenic, petrogenic, or biogenic/diagenetic. Pyrogenic 

PAHs are the result of incomplete combustion of coal, petrochemicals, wood, and other 

organic materials at high temperatures over a short period of time. Due to this formation 

process, pyrogenic PAHs tend to have a source signature that contains predominantly 

higher molecular weight (HMW PAHs) and parent PAH analytes.  Pyrogenic alkylated 

PAHs tend to decrease in abundance with respect to an increasing degree of alkylation 

(i.e., C0 (parent) > C1 > C2 > C3 > C4). In contrast to pyrogenic PAHs, petrogenic 

PAHs are the result of a lengthy application of low heat over millions of years. 

Petrogenic PAH sources primarily consist of lower molecular weight PAHs (LMW 
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PAHs) with little to no HMW PAHs. Petrogenic PAHs have a higher concentration of 

alkyl groups in comparison to the parent PAHs (Uhler et al. 2005). Anthropogenic 

activities such as automotive combustion and urbanization are the leading contributors to 

petrogenic and pyrogenic PAH contamination. Biogenic PAHs are produced by 

biological creation and degradation of organisms, a process also known as diagenesis 

(Uhler et al. 2005 and Bastami et al. 2014). Common biogenic PAHs, such as perylene, 

are found in sediments preceding anthropogenic activities. Perylene is a five-ringed PAH 

compound found in high concentrations in early stages of degradation in terrestrial soils, 

river and lake sediments, and anoxic marine environments and swamps. The 

concentration of perylene can be used as a parameter to determine diagenesis and flora 

influx (Iqbal, Overton, and Gisclair 2008a; Iqbal, Overton, and Gisclair 2008b; and 

Boehm et al. 1997).  However, biogenic PAHs have also been discovered in more recent 

deposits due to industrial processes such as petroleum refining (Mount, Ingersoll, and 

McGrath 2003).  

 

2.1.2. Degradation of PAHs 

Sediments tend to show an even distribution of LMW PAHs to HMW PAHs over 

time in sedimentary deposition. However, due to high anthropogenic influxes, six-ring 

and five-ring PAHs have a higher abundance in soils and sediments in major rivers, 

urban areas, and industrial complexes when compared to LMW PAH abundance (i.e., 6-

ring > 5-ring > 4-ring > 3-ring > 2-ring) (Iqbal, Overton, and Gisclair 2008b). Degraded 

samples with high concentrations of HMW PAHs relative to LMW PAHs are a potential 
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indication of pyrogenic activities but, this can also be an indication of highly degraded 

oils or high-rank coals (Yunker et al. 2002 and Liu et al. 2009). In contrast, samples with 

high concentrations of LMW PAHs are a potential indication of petrogenic incursion or 

low-ranking coal (Bence, Page, and Boehm 2007). Like petroleum, some coals are 

dominated by 2-ring PAHs which can lead to misidentification of contributing sources 

due to increased PAH and total petroleum hydrocarbon (TPH) concentrations (Uhler, 

Stout, and Douglas 2007).  

Degradation of PAHs can be attributed to weathering, evaporation, microbial 

degradation, molecular reconfiguration, and photoreactivity. Analytes degrade following 

a reduction in concentration with an increase in alkylation state (Uhler et al. 2005). 

Chemically, parent and alkylated compounds can be a significant indication of source 

based on C0 (parent) - C1 - C2 - C3 - C4 characteristics and abundance. For example, 

biodegradation of crude oils and petrochemical products follow a typical degradation 

pattern with respect to molecular weight and structure (Bence, Page, and Boehm 2007). 

Parent PAH compounds degrade more rapidly in comparison to their alkylated 

counterparts (i.e., C0 > C1 > C2 > C3). The reduction of C0 - C2 indicates degradation 

in each PAH group as individual concentrations decrease in abundance (Prince and 

Walters 2007 and Bence, Page, and Boehm 2007).  

 

2.1.3. Analytical Comparison of PAHs 

The primary indicators of formation are individual PAH analyte concentrations. 

The understanding of formation parameters and degradation patterns allows the analyst 
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to chemically fingerprint potential sources based on their distinct compound signatures 

(Uhler et al. 2005).  Diagnostic ratios of parent components can be used to interpret the 

characteristics of specific PAH isomers based on their stability and the temperature at 

which the analyte was created.  The relative stability of isomers and their associated 

alkylated compounds provide a basis for high versus low heat ratio comparisons, which 

further provide an indication of formation based on their variation (Yunker et al. 2002). 

Concentrations of HMW PAHs such as fluoranthene, pyrene, benzopyrenes, 

indeno[1,2,3-c,d] pyrene, dibenzo[a,h]anthracene, and benzo[g,h,i]perylene are usually 

not detectable or only exist in low concentrations in petrogenic sources. However, 

petrogenic sources are dominated by lower molecular weight 2- and 3-ring PAHs (Uhler, 

Stout, and Douglas 2007). Because LMW PAHs are prevalent within both pyrogenic and 

petrogenic mixtures, the use of HMW PAH compounds are more viable for source 

identification (Uhler, Stout, and Douglas 2007). 

 

2.1.3.1. Methylphenanthrene versus Methylanthracene 

Methylphenanthrene versus methylanthracene (m/z 192) is a viable analytic 

comparison used to identify source. Methylphenanthrenes are formed over long periods 

of time (e.g., geological heating and time scale) (Uhler et al. 2007). In contrast, 

methylanthracenes are produced through rapid heating and are primarily found in 

pyrogenic materials, particularly 2-methylanthracene.  Low-rank coals contain 2-

methylanthracene, but as the coals increase in ranking the concentration of 2-

methylanthracene is decreased in comparison to methylphenanthrenes. The absence or 
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low concentration of 2-methylanthracene is also typical in most crude oils when 

compared to the concentration of methylphenanthrenes. As a result, if the abundance of 

2-methylanthracene is comparable to the abundance of methylphenanthrenes, the 

contamination is an indication of altered petrogenic source (e.g., combustion or 

refinement) (Wilhelms et al. 1998).  Thus, the elevated presence of 2-methylanthracene 

in the cores or sediments would be a significant indication of a pyrogenic PAH source. 

Additionally, the presence of both stable and unstable methylphenanthrenes is an 

example of pyrogenic activity. Generally, the 3- and 2-methylphenanthrene isomers are 

more stable than 9-, 4-, and 1-methylphenanthrene. Thus, the lower the concentration of 

less stable methylphenanthrenes, the greater the likelihood of unrefined, aged fossil fuels 

(i.e., petrogenic incursion) (Uhler et al. 2007).  

Another constituent of PAHs which can assist in the differentiation between 

natural and petrogenic PAH sources is perylene. Perylene is commonly recognized as a 

naturally occurring, diagenetic PAH. The relative abundance of perylene versus Σ5-ring 

PAHs can be used to distinguish between natural hydrocarbon contribution and 

petroleum contamination (Bence, Page, and Boehm 2007). 

 

2.1.3.2. Diagnostic Ratios of PAHs 

 Considering that phenanthrene and anthracene (m/z 178) and fluoranthene and 

pyrene (m/z 202) have relatively the same stability and molecular mass/heat formation 

calculations, the comparative ratios of m/z 178 and m/z 202 can be used to interpret 

PAH source (Yunker et al. 2002). Cross-plotting PAHs is a typical oil geochemistry 
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method developed to identify PAH sources. Commonly, ratios such as anthracene / 

(anthracene + phenanthrene), indeno[1,2,3-c,d]pyrene / (indeno[1,2,3-c,d]pyrene 

+ benzo[g,h,i]perylene), benzo[a]anthracene / (benzo[a]anthracene + chrysene), 

anthracene / (anthracene + chrysene), fluoranthene / (fluoranthene + pyrene) have been 

used to determine source. 

Generally, an An / (An + Phe) ratio is used to distinguish between petroleum 

contamination (less than 0.1) or pyrogenic origin (greater than 0.1).  Fl / (Fl + Py) and PI 

/ (PI + BgP) ratios provide indications of fuel source. A value of less than 0.4 is 

consistent with petroleum pollution; between 0.4 and 0.5 is an indication of petroleum 

combustion (e.g., gasoline and diesel combustion); and greater than 0.5 signals biomass 

combustion (e.g., grasses, wood, or coal combustion) (Yunker et al. 2002). BaA / 

(BaA + Chy) ratio provides an understanding of coal variations. Comparatively, values 

less than 0.23 are an indication of low-weight coal combustion. By contrast, bituminous 

coal has a ratio greater than 0.29. The ratio of BaA / (BaA + Chy) can also be used to 

differentiate between a petrogenic source (less than 0.20) and a pyrogenic source 

(greater than 0.35) (Dvorská, Lammel, and Klánová 2011).   

However, individual analyte ratios are poor indicators of mixed input sources 

(Bastami et al. 2014). Despite the attempt to isolate the primary source of PAHs, single 

ratios can overlap restricting the analyst's ability to distinguish between biomass and 

petroleum combustion. For instance, Fl / (Fl + Py) between 0.20 - 0.50 could include 

indications of gasoline (0.44) and diesel combustion (0.20 - 0.58), wood combustion 

(0.41 - 0.67), transit runoff from road dust and automotive/diesel oils (0.30 - 0.37), and 
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roadway tunnel exhaust (0.41 - 0.49) (Yunker et al. 2002). By implementing a cross-plot 

comparison, multiple single indicators are cross referenced within the same graph which 

provides a more thorough interpretation. By comparing An / (An + Phe) versus Fl / 

(Fl + Py), the two ratios depict a better understanding of primary and secondary PAH 

sources. The cross-plot of  BaA / (BaA + Chy) versus Fl / (Fl + Py) compares two sets of 

ratios to determine whether the source is pyrogenic or petrogenic. The cross-plot of  BaA 

/ (BaA + Chy) versus Fl / (Fl + Py) can also compare individual fuel signatures (i.e., 

gasoline or combusted gasoline, coal or combusted coal). Because of this comparable 

overlap, comprehensive evaluation can specify the individual fuel source (i.e., gasoline 

or combusted gasoline, coal or combusted coal) (Bastami et al. 2014).  

 

2.2. Saturated Hydrocarbons 

 Alkanes are a specific class of saturated hydrocarbons, also known as saturated 

aliphatics (ALI), found in sap, wax, and as a major component of fossil fuels. Alkane 

characteristics, specifically normal alkanes (n-alkanes), provide a valuable tool for 

evaluating potential sources and degradation progression (Wang et al. 2007). For 

example, a predominance of odd carbon-numbered n-alkanes within the range of C25 to 

C35 can be an indication of both terrestrial flora and microalgae input (Lichtfouse et al. 

1994). Due to the physical properties of n-alkanes, degradation occurs more rapidly in 

comparison to the heavier unsaturated and ringed hydrocarbons. The light weight n-

alkanes, n-C1 through n-C12 aliphatics, are most commonly volatilized or removed by 

water flow. As degradation continues, even the heavier n-alkanes begin to break down 
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(Wang et al. 2007). Because hydrocarbons in the environment are subjected to 

weathering, aliphatic fingerprinting can be limited in resolution and accuracy.  

 

2.2.1. Degradation of ALI 

 Accordingly, the loss of individualization of n-alkanes, along with other resolved 

hydrocarbons, causes an increase in unresolved complex mixture (UCM). The UCM is 

comprised of degraded hydrocarbons and bioresistant compounds within organic 

mixtures such as PAHs and polar compounds. Therefore, the larger the UCM the higher 

the degradation which can account for all of the total UCM mass or less than half the 

total mass of detected hydrocarbons (Prince and Walters 2007). UCM in comparison to 

n-alkanes can only provide an understanding of hydrocarbon abundance with respect to 

the complex mixture and the progression of biodegradation (Boehm et al. 1997). The 

UCM concentration, in comparison to total concentration of n-alkanes or PAHs, can 

establish a trend of degradation and an evaluation of contribution to the overall 

contaminant mixture. This alteration of the hydrocarbon complex limits saturated 

hydrocarbons to a general identification based on boiling point ranges, with respect to 

the remaining identifiable n-alkanes (Boehm et al. 1997). 

 

2.2.2. Additional Diagnostic Ratios of ALI 

 Aliphatic hydrocarbons can be used to estimate a timeline of biodegradation. 

Isoprenoids such as pristane and phytane are more resistant to weathering than their n-

alkane counterparts; thus, they provide an understanding of progression of degradation. 
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Pristane and phytane (i-C19 and i-C20) and their counterparts n-heptadecane and n-

octadecane (n-C17 and n-C18) allow for the evaluation of coal and oil maturity, as well 

as the biodegradation progression (Shen and Huang 2007). Both n-C17/Pristane (n-

C17/Pr) and n-C18/phytane (n-C18/Ph) ratios have been widely used as evaluation tools 

in the assessment of oil biodegradation  The n-C17/Pr and n-C18/Ph ratios provide a 

significant assessment tool in evaluating the biodegradation progression based on the 

significant loss or conversion of the n-alkane precursors. The pristane/Phytane (Pr/Ph) 

ratio can be used as an indication of organic origins and formation conditions. The Pr/Ph 

ratio helps to identify marine, organic-rich sediments, marine oils, or the combustion of 

marine oils and sediments under anoxic conditions with a ratio value of less than 0.8. 

The Pr/Ph ratio can also indicate terrestrial organic matter under oxic conditions with a 

ratio value greater than 3 and bituminous coals and terrestrial oils ranging from 5 to 10. 

However, a Pr/Ph ratio of 1.0 should be interpreted cautiously, biological influences 

such as pristane and phytane precursors can easily influence the Pr/Ph ratio (Powell 

1998, Peters and Walters 2005, and Haven et al. 1988).  

 C30-hopane is a conservative analyte used to assess the biodegradation process 

of oil spills (Prince and Walters 2007, and Mills et al. 1999). C30-hopane can be used to 

evaluate degradation within the sediments, oils, coals, and other source materials serving 

as an indicator throughout the bioremediation process. The relative abundance of C30-

hopane versus PAHs within the cores and locations can indicate levels and progression 

of biodegradation at each location and depth.     
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3. OBJECTIVES 

 

Sediment samples will be evaluated based on the hydrocarbon concentration 

relative to the time of historical distribution (based on section depth).  The evaluation of 

core samples from the Lower Fox River will quantitatively focus on hydrocarbon 

concentrations within river sediment to provide distinctive fingerprinting that can be 

used in evaluating the potential discharge source(s). The objectives of this thesis are to:  

 

1)  Determine hydrocarbon distribution and concentration with respect to core 

location and section depth. The AOC consists of the lower dam reservoir and 

undredged river sediment. The analysis of the collected cores could provide 

insight about possible upstream contributions, the redistribution of downstream 

sediment due to dam operations and flooding, and the potential direction of 

hydrocarbon source input. 

 

2)  Evaluate the toxicity of hydrocarbon analytes within sediment (i.e., parent and 

alkylated constituents). A toxicology report by the U.S. Department of Health 

and Human Services (USDHHS), Agency for Toxic Substances and Disease 

Registry  (ATSDR) in 1995 Toxicological Profile for Polycyclic Aromatic 

Hydrocarbons, report number 1995-639-298 defines the following seven PAHs 

categorized as class B2 human carcinogens: benz[a]anthracene, benzo[a]pyrene, 

benzo[b]fluoranthene, benzo[k]fluoranthene, chrysene, dibenzo[a,h]anthracene, 
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and indeno[1,2,3-c,d]pyrene (ATSDR 1995). Analysis of 88 PAH analytes, 

which includes seven carcinogenic PAH components, will be quantified using 

Gas Chromatography-Mass Spectrometry (GC/MS) Selective Ion Monitoring 

(SIM). 

 

3)  Determine hydrocarbon source through forensic fingerprinting of the chemicals 

within sediment in the Lower Fox River. Quantified hydrocarbon analytes will be 

used to generate histograms and cross-plots in order to determine potential 

hydrocarbon source input.   
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4. METHODS AND MATERIALS 

 

 Sediment samples were provided by a third party group from Wisconsin, Natural 

Resource Technologies (NRT). These samples were collected upstream from US Paper 

and Georgia-Pacific paper mills within the metropolitan area of Green Bay, Wisconsin. 

To ensure good representation of hydrocarbon input, sample sites were selected in areas 

that had not been influenced by discharge zones. In the lower quadrant, sampling areas 

such as US Paper Mills and Georgia-Pacific were avoided due to the potential high 

concentration of hydrocarbon refuse. Dredging was conducted in the lower river 

quadrant to remove high concentrations of polychlorinated biphenyls (PCBs) from 2009 

through 2012 in order to fulfill the Fox River remedial action (RA) requirements set by 

USEPA. Viable sampling locations were selected in areas that had not been dredged. 

 

4.1. Sampling 

 Cores were obtained from a sampling zone below the DePere Dam and consisted 

of three different sampling areas (e.g., area 1, area 2, and area 3) (Figure 2). Three cores 

were collected from each area of interest using a vibracore system. Each core collected 

had to surpass the required minimum length of three feet four inches. If the core length 

was not satisfactory, the sample was discarded and the disposable core liner was 

replaced. The core liner was then rinsed with river water prior to relocation and further 

sample acquisition.  

 



 

17 

 

 
 

Figure 2: Lower Fox River Sampling Areas and Core Sites. (Google Maps 2015) 
 
 
 
 
 The purpose of these core samples was to establish current and historical input of 

anthropogenic and natural hydrocarbons, concentration, and source input. Cores were 

divided into three, one-foot sections and labeled  "Fox River Department of Justice 

(FRDJ) - Matrix (SED) -"area#"-"core#"-"section starting inch mark" (i.e., area 1, core 1 

top section = ID: FRDJ-SED-1-01-01). If the collected core was longer than three feet 
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and four inches the remainder was labeled '3T'. Each section was placed into a gallon 

Ziploc bag and labeled by: core identifier, section number, site location, and collection 

date. Samples were frozen and shipped via FedEx. Samples were received by the 

laboratory on 26 July 2012. Custody seals were present and intact upon receipt, and 

chain of custody (CoC) records accompanied each cooler. The coolers did not contain a 

temperature blank; however, the internal temperatures of the coolers ranged from -0.2 - 

0.0°C, well within the acceptable range for sediments of 4°C ± 2°C. Samples were 

stored in a -20°C freezer prior to analysis. 

 

4.2. Sample Processing and Dry Weight Determination 

Samples were homogenized prior to subsampling. Pre-cleaned sixteen ounce 

clear jars were used for the 'wet' sample aliquot and pre-cleaned eight ounce clear jars 

were used for 'dry' aliquot. The original sample and 'wet' aliquot were then returned for 

archive in a -20°C freezer. Wet weight determination was obtained by pre-weighing a 

57mm aluminum pan (recorded), and weighing approximately one gram of sample into 

the pan. Samples were then dried at 105°C and checked twice over the next two days 

(recorded) (Table 1). After percent moisture was determined, a subsample of each 

sample was placed in a 40°C forced-air oven until dry. Due to the polar nature of the 

extraction solvent, dichloromethane (DCM), water within the samples is removed prior 

to extraction. Samples were then pulverized using a mortar and pestle. 
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Table 1: Sample Extract Parameters: PAH, ALI-TPH, and EOM Analysis. % dry weight, and % wet 
weights with no wet weight, % dry weight, or % wet weight is available for FRDJ-SED2-03A-01U.  
 

Sample Name 
Sample Dry 

Weight (g) 

Sample Wet 

Weight (g) 
% Dry % Moisture 

FRDJ-SED-1-01-01 15.1 24.4 38 62 

FRDJ-SED-1-01-12 15.0 24.6 38 62 

FRDJ-SED-1-01-23 15.0 34.8 30 70 

FRDJ-SED-1-02-01 15.0 32.7 32 68 

FRDJ-SED-1-02-12 15.1 41.1 27 73 

FRDJ-SED-1-02-23 15.1 46.6 24 76 

FRDJ-SED-1-03-01 15.0 56.6 21 79 

FRDJ-SED-1-03-12 15.0 39.0 28 72 

FRDJ-SED-1-03-23 15.2 31.9 32 68 

FRDJ-SED-2-01-01 15.0 35.5 30 70 

FRDJ-SED-2-01-12 15.1 31.8 32 68 

FRDJ-SED-2-01-23 15.2 40.0 28 72 

FRDJ-SED-2-02-01 15.0 36.2 29 71 

FRDJ-SED-2-02-12 15.1 40.0 27 73 

FRDJ-SED-2-02-23 15.1 35.1 30 70 

FRDJ-SED-2-02-3T 15.1 38.1 28 72 

FRDJ-SED-2-03A-01 15.2 19.5 44 56 

FRDJ-SED-2-03A-12 15.0 28.4 35 65 

FRDJ-SED-2-03A-23 15.1 17.1 47 53 

FRDJ-SED-2-03A-3T 15.0 25.1 37 63 

FRDJ-SED-3-01-01 15.1 7.90 66 34 

FRDJ-SED-3-01-12 15.1 16.2 48 52 

FRDJ-SED-3-01-23 15.1 5.60 73 27 

FRDJ-SED-3-01-3T 15.1 10.7 59 41 

FRDJ-SED-3-02-01 15.0 27.2 36 64 

FRDJ-SED-3-02-12 15.2 15.8 49 51 

FRDJ-SED-3-02-23 15.1 13.8 52 48 

FRDJ-SED-3-02-3T 15.1 5.50 73 27 

FRDJ-SED-3-03-01 15.1 50.8 23 77 

FRDJ-SED-3-03-12 15.0 28.9 34 66 

FRDJ-SED-3-03-23 15.2 8.10 65 35 

FRDJ-SED-3-03-3T 15.0 18.0 45 55 

FRDJ-SED-2-03A-01U 0.80 N/A N/A N/A 
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4.3. Extraction Process 

Using a top loading balance, 15 grams of dry sediment were weighed into a 

stainless steel extraction cell (Table 1). 100 µl of PAH and aliphatic (ALI) surrogates 

were added to each sample prior to extraction. PAH-saturated biomarker surrogate 

contained naphthalene-d8, acenaphthene-d10, phenanthrene-d10, chrysene-d12, 

perylene-d12, and 5β (H)-cholane. ALI surrogate contained n-dodecane-d26, n-eisocane-

d42, and n-triacontane-d62. Quality control samples (method blank, matrix spike, matrix 

spike duplicate, and laboratory duplicate sample) and National Institute of Standards and 

Technologies (NIST) SRM 1941b were also prepared with the appropriate surrogate and 

spike volumes. Using an Automated Solvent Extractor (Automated Solvent Extractor 

200, Thermo Scientific Dionex, CA) samples were extracted using 100% DCM  

(>99.8% purity chromatography grade, ECD Millipore Corporation, Darmstadt, 

Germany) at 100°C and 1500 PSI into pre-cleaned 60 mL collection vials. Extracts were 

concentrated to 3-5 mL using a hot water concentration bath. Copper was used to 

remove sulfur. Extracts were then transferred into Kuderna-Danish (K-D) concentration 

tubes and the copper and vial were rinsed with DCM a minimum of three times to 

remove any residual extract. K-D tubes were returned to a water bath to reduce the 

extract volume to 3 mL.  
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4.3.1. Extracted Organic Material Determination 

Extracted Organic Material (EOM) determination was obtained by verifying each 

sample at a volume of 3 mL. VWR 2.4 cm glass microfiber filters were placed in a 40°C 

oven on solvent cleaned stainless steel screens. Accuracy and range were verified by 

checking a DCM solvent blank. A filter was pre-weighed on a microbalance, with 

sensitivity to approximately 0.001 mg and the initial weight was recorded. The filter was 

placed in a 40°C oven and 100 µl of DCM was applied to the filter. The filter remained 

in the oven for two minutes after which the filter was then weighed a second time, 

verifying a weight equal to 0.000 mg. An EOM standard was used to check high range 

by pre-weighing a filter. The initial weight was recorded. The filter was placed in the 

40°C oven and 100 µl of oil solution was applied to the filter. The filter remained in the 

oven for two minutes and the filter was weighed a second time, verifying a weight equal 

to 10.000 mg ± 0.500. Each extracted sample was processed accordingly. The method 

blank was verified with required criteria of 0.000 mg + 0.003. EOMs were calculated 

using Equation 1. Duplicate relative percent difference (RPD) was recorded to within 

25%.  

 

(Equation 1) ���	�μg/g	 = [��	x	��	/	���	x	��	]	x	�1000μg	/	1mg	 

 

Where: We is the residual weight of EOM aliquot (mg), Ws is sample weight (g), and Vf 

is volume of sample extract (3000 µL), and Va is volume of aliquot (100 µL).  
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4.3.2. Sample Cleanup and Final Concentration 

 To remove interferences such as pigments, sulfur oxide residuals, and large non-

polar residues, samples were passed through silica gel, alumina, copper, and sodium 

sulfate. Extracts were run through a 6 mL solid phase extractor column (Resprep Normal 

Phase SPE Cartridge 6 mL 1000 mg silica, Restek, Belleforte, PA) layered with one 

gram of alumina, one gram of silica gel, one centimeter of sodium sulfate, and one 

centimeter of copper. Using a vacuum pump system, the extract was processed through 

the cleanup column followed by 40 - 50 mL of DCM. Extracts were collected in pre-

cleaned 60 mL collection vials. Filtered extracts were concentrated to 3 - 5 mL using a 

hot water concentration bath and transferred to K-D tubes. K-D tubes were returned to 

the water bath to reduce the extract volume to 800 µL. Internal Standards were added to 

each sample. PAH-saturated biomarker internal standards were fluorene-d10, pyrene-

d10, and benzo[a]pyrene-d12. ALI internal standards were n-hexadecane-d34 and 5α-

androstane. Extracts were adjusted to a final volume of 1 mL and then transferred to 

graduated 2 mL amber vials. Extracts that contained high EOM concentrations were 

adjusted by dilution using dichloromethane before GC/MS analysis. Additional 

surrogates and internal standards were added based on dilution factors. 

 

4.4. Total Organic Carbon Analysis 

TOC analysis is used to evaluate the percent of organic carbon in soils and 

sediment samples. Organic carbon input is generated by several sources: hydrocarbons, 

coals, vegetation (humic acid), microorganisms, and anthropogenic input. TOC is 
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determined using a carbon analyzer (CR-412 Total Carbon Analyzer, Leco, St. Joseph, 

MI). NRT sediment samples were dried at 105°C to remove interstitial water. Dry 

sediment was then weighed at 350 mg into carbon-free, tared ceramic crucibles. A 

diluted phosphoric acid solution (50% by volume ratio) was added to remove any 

inorganic carbon within the material, such as calcium carbonate (CaCO3) within the 

material. Samples were then returned to the oven for a minimum of 16 hours to remove 

the excess water. Following quality assurance (QA) and quality control (QC) criteria, 

method blanks, SRMs, duplicates and continuous calibration checks (CCC) were used to 

ensure quality and accuracy. Each sample was individually analyzed at 1350°C for a 

maximum duration of 180 seconds. The Leco CR-412 produced results in percent carbon 

(%C) based on sample weight and response (area times peak). Data was converted into 

an Excel report file calculating milligrams of carbon based on percent carbon and sample 

mass. 

 

4.5. Gas Chromatography - Mass Spectrometry 

 After final concentration was attained, extracts were analyzed for PAH and 

aliphatic hydrocarbon concentrations using a HP5890 gas chromatograph (HP5890, 

Hewlett Packard Company, Wilmington, DE) coupled with an Agilent 5972 mass 

spectrometer  (Agilent 5972, Agilent Technologies, Santa Clara, CA). A HP-5MS 

capillary column (Agilent HP-5MS 60 m long with an interior diameter of 0.25 mm and 

0.25 µm film thickness, Agilent Technologies, Santa Clara, CA) was used to 

chromatographically separate PAHs and n-alkanes analytes.  The initial temperature of 
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the injection port was held at 285°C, vaporizing the injected extract prior to entering the 

capillary column.  The oven was initially set to 60°C. After injection, the oven was 

programmed to increase in temperature at a rate of 7°C/min until it reached the final 

holding temperature of 310°C with a final holding time of 22 minutes. Aliphatic 

hydrocarbons (ALI) were determined using full scan mode. Full scan utilizes computer 

libraries to compare unknown analyte spectrums within the entire range of ions 

generated, providing information to resolve or confirm peaks qualitatively, pattern 

recognition, and structural elucidation (Wang et al. 2007). Full scan was used to identify 

ALI concentrations such as n-C9 through n-C44 (including isoprenoids: i-C13, i-C14, i-

C15, and i-C18), and determine total resolved hydrocarbons (TRH), total petroleum 

hydrocarbons (TPH), and unresolved complex mixture (UCM).  Selected ion monitoring 

mode (SIM) was used to identify and quantify PAH components. The use of SIM 

enables the determination of analytes of interests and improves the ability to measure 

highly specific compounds that occur at lower concentrations within the extract. Data 

generated by GC/MS was quantified using the ChemStation program (ChemStation 

software, Agilent Technologies, Santa Clara, California).   

4.6. Quality Assurance and Quality Control 

Quality assurance (QA) and quality controls (QC) were in place to verify and 

determine recovery losses, potential contamination carry-over, and sample adjustments 

during the extraction and instrumentation process. To establish retention times, NIST 

SRM 1941b, Organics in Marine Sediment was used. To ensure data reliability and 
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integrity, quality control measures were followed. The GC/MS quality control measures 

included: a system tune, six-level initial calibration (ICal), independent calibration 

verification solution (ICV), continuing calibration checks (CCC), reference oils (SRM 

1582, and SRM1779), method blank, matrix spike (MS) and matrix spike duplicate 

(MSD), and duplicate sample (Dupl.). Extract concentration (Ce) was calculated based 

on: 

 

(Equation 2)   Ce = ((AA) x (CeIS)) / ((A_IS) x (RRF_I))  

 

where: Aa = analyte area, CeIS = concentration of internal standard added to the extract 

(µg/mL), A_IS = area of internal standard, and RRF_I = relative response factor of initial 

calibration. Actual concentration (C) of extract is then calculated as  

 

 (Equation 3)   C = Ce × (Ve / W) × DF  

 

where:  Ve = final volume of the extract (mL), W = original dry weight of the extract (g), 

and DF = dilution factor.  

 

 QA and QC are important during the quantification stage; however, it is 

important to note the limitations of QA and QC in this project. The ICal analytes were 

quantified to within 25% of actual analyte values for PAH and ALI analysis. CCC values 

provided a periodic check amid the instrument analysis for consistency. It also provided 
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a range of 50 - 200% of internal standard response for individual samples to be 

compared. Analyte concentrations were based on internal and surrogate recoveries and 

were adjusted based on these recovery percentages.  

 MS and MSD samples exceeded the fifty-times known recovery values due to 

dilutions and high hydrocarbon concentrations for both analyses. Adjustments did not 

account for spiking solutions, which caused diluted MS and MSD responses to be 

unreliable. However, due to the high concentrations of hydrocarbon analytes within the 

samples, the ability to extract analytes of interest with efficiency was not impacted. 

Duplicates were quantified to within 20% relative difference; however, seven total 

analytes were outside the 20% relative difference and above the minimum detection 

limit. 

 SRM1941b was quantified only for PAH analysis providing retention times for 

analytes not contained within the ICal and CCC solutions.  Four analytes were outside 

the 50% recovery window for PAH extractions. SRM1941b does not contain certified 

aliphatic reference values, thus SRM1941b was not quantified for aliphatic 

hydrocarbons. For SRM2779, all aliphatic analytes were within 50% of known value, 

with the exception of six analytes (n-C9, n-C10, n-C11, n-C12, n-C13, i-C12, and i-

C13). For PAH analysis, three analytes were outside 50% recovery and above the 

minimum detection limit for both PAH extraction sets. SRM2779 was used to define 

analytic retention times for aliphatics and assess the quantification process for both 

analyses. The limited recoveries of the more volatile analytes did not impede the quality 

of the data due to the limited presence of the six outlying analytes within the sample 
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extracts. SRM1582 was quantified for only the PAH analysis. All analytes were within 

50% of known values above the minimum detection limit. Method blanks were 

monitored for potential contamination that occurred during the extraction process. 

GC/MS analyses determined that the method blank contained analyte concentrations 

exceeding three times the minimal detection limit within the second extraction set 

(NRT0017 through NRT0032). In contrast to the concentration levels in the samples, the 

contamination levels seen in the method blank would not impact the sample data 

concentrations. 

 

4.7. Toxicological Evaluation 

 PAHs are generated by both natural and anthropogenic processes and are not 

found in the environment as individual compounds, but rather as mixtures (ATSDR 

1995). Humans and wildlife are rarely exposed to individual analytes, but rather to the 

potentially harmful mixtures which generate acute, chronic, individual, synergistic, and 

antagonistic responses (USEPA 2003b).  As a result of human activities both intentional 

and unintentional, PAH mixtures are released into the environment and pose potential 

toxicological risks. These risks can be assessed by using the equilibrium partitioning 

sediment benchmark toxic unit (ESBTU), toxic evaluation factors (TEF), and TEQ to 

better understand the hazardous levels posed by mixtures within an AOC (USEPA 2003a 

and USEPA 2003b). 

 The equilibrium partitioning sediment benchmark (ESB) evaluation was used to 

account for the presence of benthic organisms and varying biological availability of 
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chemicals in the sediment. However, ESB calculations are limited because they do not 

take into account the antagonistic, additive, or synergistic effects potentially caused by 

PAH mixtures or bioaccumulation transfer (USEPA 2003a). Due to these limitations, a 

TEF toxicity evaluation was used to conduct an evaluation of seven carcinogenic and ten 

non-carcinogenic analytes in the river sediment. TEFs are conservative estimations 

based on scientific judgment with respect to uncertainties of the analyte specific potency 

relative to the toxicity of an index chemical (Reeves et al. 2001 and USEPA 2003b).  

Analytes are prioritized based on the potential harm posed by an individual PAH present 

in the medium. PAHs are evaluated based on their relative potency with respect to 

benzo[a]pyrene, the index chemical for PAHs. Analytes, which are classified as 

carcinogens, receive higher TEF values compared to non-carcinogens (i.e., 1.0, 0.1, or 

0.01) (Nisbet and Lagoy 1992).  

 The toxic equivalency quotient (TEQ) and analyte concentrations (ng/g) 

determine the level of toxicity within the core sediment with respect to benzo[a]pyrene 

potency (1.0) (Wickliffe et. al 2014, Nisbet and Lagoy 1992 and Eguvbe et al. 2014).  

Because dibenzo(a,h)anthracene potency is intensified when in the presence of 

benzo[a]pyrene, as is the case with most PAH mixtures, the conservative TEF value of 

5.0 is used (Nisbet and Lagoy 1992). The concentration of the individual PAHs (C) are 

multiplied by the TEF to normalize the concentration of the analyte in terms of 

benzo[a]pyrene equivalence. TEQ is calculated by summing the benzo[a]pyrene 

equivalency values and the sum of potential toxicity within the present mixture 

(Equation 4). This value can be used to evaluate benzo[a]pyrene dose response data and 
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can be used to address the potential risk of exposures to mixtures of benzo[a]pyrene and 

PAHs with respect to the individual concentration of analytes (Nisbet and Lagoy 1992). 

TEQs can also be used to describe the risk posed by an AOC and to identify potential 

high risk areas in the AOC. 

(Equation 4) ��� = ∑ ��	x	���	�
���  

4.8. Diagnostic Comparisons 

After extraction and quantification, histograms, single ratio, and cross-plots were 

used to identify potential source of hydrocarbon contamination. Chromatography 

profiles with m/z responses provided an understanding of these sources (i.e., m/z 178, 

m/z 191, and m/z 202). Fingerprint profiles of the suspected source in the samples were 

examined graphically by reviewing PAH concentrations of parent and alkylation 

abundance to display their relative slope (decrease, increase, or bell-shaped). Diagnostic 

ratios were used to identify a probable match (Dević and Jovanĉićević 2008). PAH 

diagnostic ratios of PAHs (Table 2) were used to determine petrogenic or pyrogenic 

sources and potential input sources (Short et al. 1998 and Crane 2014). Diagnostic ratios 

of n-Alkanes (Table 3) were used to determine potential environmental and 

anthropogenic sources. Other diagnostic ratios (Table 4) were used to determine the 

total contribution of hydrocarbons within the extracts with respect to other organic 

materials and degradation. 
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Table 2: Polycyclic Aromatic Hydrocarbon Ratios 

Diagnostic PAH Ratios 

PAHs Abbreviation PAHs Abbreviation Formula 

Fluoranthene Fl Pyrene Py Fl / (Fl + Py) 

Phenanthrene Phe Anthracene An Phe / An 

Phenanthrene Phe Anthracene An 
Phe / (An + 

Phe) 

Benzo[a]anthracene BaA Chrysene Chy 
BaA / (BaA + 

Chy) 

Indeno[1,2,3-cd]pyrene PI Benzo[g,h,i]perylene BgP PI / (PI + BgP) 

2-methylanthracene 2-mAn 2-methylphenanthrene 2-mPhe 
2-mAn /2-

mPhe 

Perylene Pe Σ5-ring PAHs Σ5-ring PAHs 
Pe / Σ5-ring 

PAHs 

Sum 2-3 ring PAHs 
∑LMW 
PAHs 

Sum 4-6 ring PAHs 
∑HMW 
PAHs 

∑LMW / 
∑HMW 

9-, 4-, and 1-
methylphenanthrene 

1-,4-,9-mPhe 
3- and 2-
methylphenanthrene 

3-,2-mPhe 
1,4,9-mPhe / 
3-,2-mPhe 

 

 
 
 
    

 

Table 3: Aliphatic Hydrocarbon Ratios 

Diagnostic n-Alkanes Ratios 

n-Alkane Abbreviation n-Alkane Abbreviation Formula 

odd-numbered n-
Alkanes 
(n-C19 through n-C39) 

odd n-C 
even-numbered n-Alkanes 
(n-C20 through n-C40) 

even n-C 
odd n-C / 
even n-C 

Phytane Ph Pristane Pr Ph / Pr 

Total Petroleum 
Hydrocarbons 

TPH Total n-Alkanes ALI TPH / ALI 

n-Heptadecane n-C17 Pristane Pr n-C17 / Pr 

n-Octadecane n-C18 Phytane Ph n-C18 / Ph 
Total Petroleum 
Hydrocarbons (Log10) 

log TPH 
Total Resolved 
Hydrocarbons (Log10) 

log TRH 
log TPH / 
log TRH 
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Table 4: Other Diagnostic Ratios 

Other Diagnostic Ratios 

Name Abbreviation Name Abbreviation Formula 

Total Petroleum 
Hydrocarbons (log10) 

log TPH 
Extracted Organic Material 
(log10) 

log EOM 
log TPH /  
log EOM 

Total Polycyclic 
Aromatic Hydrocarbons 

TPAH Total Organic Carbon TOC 
TPAH / TOC 

Total n-Alkanes ALI Total Organic Carbon TOC ALI / TOC 
Total Polycyclic 
Aromatic Hydrocarbons 

TPAH Extracted Organic Material EOM 
TPAH / EOM 

Total Aliphatic 
Hydrocarbons 

TALI Extracted Organic Material EOM 
TALI / EOM 

C30 Hopane C30 
Total Petroleum 
Hydrocarbons 

TPH 
C30 / TPH 

 
 
 

TOC provides an indication of nonspecific organic influx by a weight/weight 

(mg/g) ratio and a percent carbon value. PAH/TOC or n-alkane/TOC ratios can be used 

to determine the input of PAHs or n-alkanes with respect to the total organic 

concentration. Low ratio values are an indication of low PAH or n-alkane contribution to 

the total organic carbon.  

To calculate UCM, total petroleum hydrocarbon (TPH) and total resolved 

hydrocarbon (TRH) concentration values are needed. TRH concentration should always 

be higher than the total n-alkane concentration because TRH includes all peak values, 

which are individualized, not solely the selected n-alkane analytes. TPH is the sum of all 

peak area above the baseline of the chromatograph. TPH concentrations should always 

be less than EOM concentrations because of sample clean-up. TPH concentration 

includes the TRH and UCM, which are the bioresistant compounds of the organic 

mixture, and thus, UCM equals the difference between TPH and TRH. 
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5. RESULTS AND DISCUSSION 

 

5.1. Total Organic Carbon 

 TOC analysis provides an indication of nonspecific organic influx based on a 

sum concentration of all organic carbon molecules within a given sample (i.e., 

milligrams of carbon detected within grams of the sample). High TOC ratios and 

percentages are typically an indication of large organic influx such as biomass, 

petrochemicals, coal, or other hydrocarbon based constituents (i.e., PAHs, n-alkanes, 

etc.). As shown in Table 5, the NRT total organic carbon data averaged 6.8% TOC 

(excluding FRDJ-SED-2-03A-01U). The graphite-like material removed from core 

section FRDJ-SED-2-03A-01 (denoted as FRDJ-SED-2-03A-01U) was 85.2% TOC. 

Cores sections ranged from 0.7% TOC (FRDJ-SED-3-01-23) to 19.9% TOC (FRDJ-

SED-2-03A-23). FRDJ-SED-2-03A-23 contained significant amounts of the graphite-

like material which may explain the high carbon values found in this sample. Core 

sections were averaged to obtain a TOC measurement for each core. Total organic 

carbon data per core ranged from 10.9% TOC (FRDJ-1-03) to 2.0% TOC (FRDJ-3-01). 

 

5.2. Extracted Organic Material 

 Extracted organic material (EOM) determination is the concentration of 

measurable organic matter extracted from a know weight of material. EOM analysis 

provides an ug/g concentration value which can be used to prepare adjustments 

preventing column overload for better peak resolution. EOMs also provide an 
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understanding of chromatography responses of unknown sample contamination such as 

EOM versus hydrocarbon contribution. And finally, EOMs can justify results of low or 

high UCM, TPH, TRH, and PAH concentrations versus unknown sample contamination 

levels. EOM results are unfiltered extract values, whereas final extracts are filtered and 

potentially diluted. EOM determination of core data averaged 5663 µg/dry g, as shown 

in Table 5. The graphite-like material removed from core section FRDJ-SED-2-03A-

01U was 286 µg/dry g. Sample extracts were less than 0.08% organic by weight. 

 

5.3. Saturated Hydrocarbons 

 Core sediments were analyzed using GC/MS. Aliphatic hydrocarbon (n-alkanes 

and isoprenoids) data was adjusted according to dilution factors and surrogate corrected 

to 100% recovery. As shown in Table 5, total n-alkanes range from 3.96 µg/g (FRDJ-

SED-3-02-3T) to 523 µg/g (FRDJ-SED-1-03-23).  The predominant aliphatic 

hydrocarbons in the samples were pristane, phytane, n-C27 and n-C29. Aliphatic 

odd:even ratio depicted a strong presence of odd carbon-numbered n-alkanes ratios 

(range of C25 to C35), with one exception--FRDJ-SED-2-03A-3T (Appendix B). The 

strong presence of odd carbon numbered n-alkanes within the range of C25 to C35 is an 

indication of terrestrial plant waxes and microalgae (Lichtfouse et al. 1994). However, 

FRDJ-SED-2-03A-3T contained an elevated concentration of n-C24 contributed by an 

unknown source. If n-C24 was excluded from the FRDJ-SED-2-03A-3T data, the ratio 

value would increase from 0.78 to 1.92, more closely resembling the other extract ratios.  
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Table 5: Distribution of Contaminants 

 

Sample Name 
∑Alkanes 

(µg/g) 

∑PAHs 

(µg/g) 

∑LMW-PAH  

(µg/g) 

∑HMW-PAH  

(µg/g) 

UCM  

(mg/g) 

TOC 

(%) 

EOM 

(mg/g) 

 
FRDJ-SED-1-01-01 29.2 26.4 4.11 22.3 0.914 6.82 3.86 

FRDJ-SED-1-01-12 39.2 18.4 3.70 14.2 1.68 7.18 6.47 

FRDJ-SED-1-01-23 57.3 37.7 9.16 27.8 2.05 7.38 6.58 

FRDJ-SED-1-02-01 46.1 19.6 4.48 14.3 2.08 7.89 8.60 

FRDJ-SED-1-02-12 62.1 21.5 6.54 14.2 2.02 6.97 7.00 

FRDJ-SED-1-02-23 83.5 25.0 7.30 15.6 3.58 8.15 9.61 

FRDJ-SED-1-03-01 117 52.7 11.8 38.8 3.16 11.5 11.9 

FRDJ-SED-1-03-12 86.5 60.4 9.57 50.2 3.15 11.7 9.28 

FRDJ-SED-1-03-23 69.8 36.3 6.80 28.8 3.25 9.64 8.84 

FRDJ-SED-2-01-01 33.9 22.8 3.84 18.8 1.02 6.95 5.24 

FRDJ-SED-2-01-12 58.6 22.2 5.74 15.7 2.25 6.20 6.18 

FRDJ-SED-2-01-23 60.2 20.1 6.63 12.0 2.83 7.18 8.36 

FRDJ-SED-2-02-01 42.2 27.0 5.18 21.6 1.48 8.69 7.16 

FRDJ-SED-2-02-12 53.2 39.0 7.40 31.3 2.09 9.61 5.88 

FRDJ-SED-2-02-23 52.8 26.3 6.12 19.3 1.86 6.73 6.76 

FRDJ-SED-2-02-3T 46.8 23.2 5.29 16.9 2.27 7.13 8.73 

FRDJ-SED-2-03A-01 11.7 15.8 1.98 13.9 0.648 3.77 3.56 

FRDJ-SED-2-03A-12 29.8 25.0 3.96 20.7 1.64 5.93 4.95 

FRDJ-SED-2-03A-23 66.7 48.7 9.86 38.1 3.01 19.9 7.96 

FRDJ-SED-2-03A-3T 85.4 40.0 7.17 31.7 4.08 8.19 11.4 

FRDJ-SED-3-01-01 6.80 5.59 0.991 4.62 0.299 1.42 0.751 

FRDJ-SED-3-01-12 14.5 2.61 0.474 2.35 0.295 3.41 0.731 

FRDJ-SED-3-01-23 3.51 0.463 0.135 0.346 0.148 0.730 0.423 

FRDJ-SED-3-01-3T 7.22 0.861 0.129 0.705 0.209 2.48 1.04 

FRDJ-SED-3-02-01 26.6 25.7 3.95 21.4 1.51 6.57 5.69 

FRDJ-SED-3-02-12 15.4 7.75 1.43 6.20 0.816 3.65 1.96 

FRDJ-SED-3-02-23 10.7 4.27 0.718 3.64 0.329 3.57 1.21 

FRDJ-SED-3-02-3T 3.96 0.245 0.067 0.155 0.141 0.842 0.484 

FRDJ-SED-3-03-01 43.2 28.2 8.44 18.9 1.72 7.62 8.66 

FRDJ-SED-3-03-12 46.3 53.4 10.3 42.0 2.18 8.59 7.90 

FRDJ-SED-3-03-23 7.70 6.38 1.24 5.13 0.462 2.25 1.40 

FRDJ-SED-3-03-3T 16.4 17.5 3.54 14.0 0.947 7.17 2.71 

FRDJ-SED-2-03A-01U 43.6 34.7 17.6 15.2 3.05 85.2 0.286 
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 Pristane/phytane ratios varied from 0.88 to 1.50, with an outlier at 6.67 (FRDJ-

SED-2-03A-12), and a mean of 1.30. With the pristane/phytane ratios close to 1.0, 

pristane and phytane contributions may be a result of microbial activities in the river 

(Powell 1998, Peters and Walters 2005, and Haven et al. 1988).  However, the abrupt 

changes in concentrations of pristane and phytane with an equivocal ratio may also 

indicate presence of diffused residual petroleum in limited or degraded form, such as 

those contained in surface runoff (Hamilton and Cline 1981).   The n-C17/Pr ratios range 

from 0.29 to 2.33 with a mean of 0.88. The n-C18/Ph ratios range from 0.11 to 4.20 with 

a mean of 0.65. Both n-C17/Pr and n-C18/Ph indicate biodegradation of the hydrocarbon 

substrate with ratios less than 1.   

 TPH and TRH were compared by normalizing the large range of response values 

using a logarithmic scale (log10). This comparison provided an indication of weathered 

versus non-weathered saturated hydrocarbon influx. Because the concentration of TRH, 

with respect to TPH, shows linearity, hydrocarbon degradation is consistent throughout 

(Figure 3a). The large variation in TPH and TRH concentrations depicted in Table 5 

indicates low concentrations of resolved hydrocarbons are present within the more 

bioresistant organic substrate (i.e., limited biodegradation). Similarly, C30-hopane 

concentration versus TPH can be used to interpret degradation of hydrocarbons (Figure 

3b). A detectable linear trend provides an understanding of the current distribution and 

concentrations, or status, of hydrocarbon contamination with respect to C30-hopane. To 

determine organic influx, particularly petroleum incursion, EOM was compared to the 
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UCM concentration (Figure 3c). When the UCM concentrations were cross-plotted with 

EOM concentrations, the plot showed a linear correlation. 

 UCM versus EOM depicted a relatively low percentage of hydrocarbon-based 

material present in comparison to the total extracted material (Figure 3c). UCM 

concentrations accounted for approximately 33% of total EOM extracted indicating a 

large deposition of non-specific, non-petroleum based organic material within the 

sampling areas.  

EOM concentrations were also cross-plotted with TPH to compare total 

extractable material versus degraded and non-degraded hydrocarbons within the 

extractable range (Figure 3d). After EOM and TPH were normalized using a log10 base 

comparison, the plot provided an observation of a potential contribution of hydrocarbon-

based contamination within the overall organic substrate. Log10 EOM versus log10 TPH 

shows all core sections to have almost identical contributions of hydrocarbon-based 

composition with limited petroleum influx.  
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Figure 3: Total Petroleum Hydrocarbon Cross-plots. Figure 3 depicts petroleum hydrocarbon abundance 
versus distribution and degradation. (Figure 3a) Total Residual Hydrocarbon (TRH) versus Total 
Petroleum Hydrocarbon (TPH), (Figure 3b) C30-hopane versus TPH, (Figure 3c) Unresolved Complex 
Mixture (UCM) versus extracted organic material (EOM) and (Figure 3d) EOM versus TPH. Cross-plots 
depict degradation, abundance, and trends; assisting in deciphering hydrocarbon influx source(s). 
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Figure 3: Continued 
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Total n-alkanes and identified TRH analytes provided a specialized tool in source 

identification. Although n-alkanes are subjected to weathering, the retained 

concentrations of identifiable n-alkanes provide an understanding of influx source. As 

shown in Figure 4, total n-alkane concentrations within the core sections vary with TPH 

concentration. The linearity of the total n-alkanes versus TPH depicts limited 

degradation of the n-alkanes.  

 

 
 

Figure 4: Total n-Alkanes versus Total Petroleum Hydrocarbons. Figure 4 depicts the abundance of 
total n-alkanes versus TPH indicating limited degradation 
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5.4. Polycyclic Aromatic Hydrocarbons  

The PAH data was adjusted according to dilution factors and surrogate corrected 

to 100% recovery. The predominant PAH analytes were: chrysenes, pyrene, 

fluoranthene, and C4-phenanthrenes/anthracenes. The mean total PAH concentration 

was 24,800 ng/g with FRDJ-SED-1-03-12 and FRDJ-SED-1-03-01 sections showing the 

highest concentrations at 63,600 ng/g and 56,700 ng/g, respectively. Both sections 

represent core FRDJ-SED-1-03 in the upper twenty-three inches. Core FRDJ-SED-3-01 

subsections were the lowest values with a range of 519.3 ng/g to 5,802 ng/g. The mean 

values for the seven PAHs classified as B2 carcinogens present in the river sediment 

were: benzo[a]anthracene (540 ng/g), benzo[a]pyrene (426 ng/g), benzo[b]fluoranthene 

(484 ng/g), benzo[k]fluoranthene (157 ng/g), chrysene (660 ng/g), 

dibenzo[a,h]anthracene (107 ng/g), and indeno[1,2,3-c,d]pyrene (249 ng/g), which 

equaled 10% of the total PAH concentration. Cores FRDJ-SED-1-03, FRDJ-SED-2-

03A, and FRDJ-SED-2-02 contain the highest concentration of PAHs with respect to the 

upper three sections (see Table 5, page 34).  FRDJ-SED-1-03, FRDJ-SED-2-03A, and 

FRDJ-SED-2-02 collection areas were located closest to the DePere Dam, upstream 

from the US Paper Mills and Georgia Pacific. Subsequently, the lowest PAH 

concentrations were located furthest downstream of the DePere Dam at FRDJ-SED-3-01 

and FRDJ-SED-3-02. PAH concentrations were highest closest to the center of the river 

and lowest towards the shore. 

 Core sections show an uneven distribution of LMW PAHs to HMW PAHs 

(Table 5, page 34 and Figure 5). HMW PAHs were predominant over LMW PAHs with  
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Figure 5: Ring Distribution of PAHs as Percent Total PAHs by Core Section.
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high concentrations of C0, C1, and C2 alkylated analytes indicating pyrogenic activities 

(Appendix A).  LMW PAH and HWM PAH analytes are both depicted as a downward 

slope to bell-shape curve with C2 as the predominant alkylation (e.g., C2-

Fluoranthenes/Pyrenes). The elevated presence of parent PAH analytes is an indication 

of recent deposition of pyrogenic PAH contamination. The high concentration of HMW 

PAHs such as 4-ring, 5-ring and 6-ring PAHs is typical of an urban region.  

C2 abundance, with respect to other alkylation levels, is an indication of combustion of 

both petroleum (LMW) and biomass (HMW) (Wagener et al. 2010). C2- and C3- 

anthracene/phenanthrene concentrations suggest an incursion of petrogenic residues in 

addition to pyrogenic PAH, typical of urban runoff (Uhler et al. 2005). 

 The presence and abundance of 2-methylanthracene (m/z 192) in comparison 

with methylphenanthrenes can indicate refined petrochemicals (e.g., combustion or 

byproducts) (Wilhelms et al. 1998). This presence of 2-methylanthracene in the cores is 

an indication of a pyrogenic PAH source (Figure 6 and Table 6). Further, the presence 

of both stable and unstable methylphenanthrenes is another example of pyrogenic 

activities. Generally, 3- and 2-methylphenanthrene isomers are more stable than 9-, 4-, 

and 1-methylphenanthrene. Therefore, the higher concentration of less stable 

methylphenanthrene isomers is an indication of pyrogenesis. The sample extracts 

contained significant concentrations of 2-methylanthracene and 9-, 4-, and 1-

methylphenanthrenes, with respect to 3- and 2-methylphenanthrene. 

  

  



Figure 6: Alkylated Methylphenanthrenes and 2

FRDJ-SED-3-03-23 chromatograph
2-methylanthrecene (m/z 192) depict pyrogenic sources.

43 

enanthrenes and 2-Methylanthrecene. Analytes in Figure 6

chromatograph. Presence of alkylated unstable 9-, 4-, and 1-methylphenanthrene
depict pyrogenic sources. 

Figure 6 are from 
methylphenanthrene and 
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Table 6: Methylphenanthrene and 2-Methylanthracene with Ratios 

 

Sample Name 
2-mPhe 

(µg/g) 

2-mAn 

(µg/g) 

2-mAn/ 

2-mPhe 

9-,4-,1-Phe 

(µg/g) 

3-,2-Phe 

(µg/g) 

9-,4-,1-Phe/ 

3-,2-Phe 

FRDJ-SED-1-01-01 332.8 97.67 0.29 452.9 594.7 0.76 

FRDJ-SED-1-01-12 211.2 48.55 0.23 271.1 402.7 0.67 

FRDJ-SED-1-01-23 560.3 78.44 0.14 506.8 910.8 0.56 

FRDJ-SED-1-02-01 238.8 50.23 0.21 293.0 459.1 0.64 

FRDJ-SED-1-02-12 298.9 78.50 0.26 364.9 515.7 0.71 

FRDJ-SED-1-02-23 310.3 38.95 0.13 354.8 561.7 0.63 

FRDJ-SED-1-03-01 606.2 89.36 0.15 819.9 1001 0.82 

FRDJ-SED-1-03-12 789.6 96.14 0.12 930.1 1295 0.72 

FRDJ-SED-1-03-23 455.5 76.40 0.17 592.6 880.1 0.67 

FRDJ-SED-2-01-01 314.1 73.08 0.23 370.2 494.6 0.75 

FRDJ-SED-2-01-12 335.5 56.13 0.17 338.6 519.3 0.65 

FRDJ-SED-2-01-23 276.6 48.64 0.18 303.9 509.9 0.60 

FRDJ-SED-2-02-01 364.7 74.53 0.20 436.8 588.4 0.74 

FRDJ-SED-2-02-12 450.2 79.50 0.18 536.5 712.9 0.75 

FRDJ-SED-2-02-23 369.6 67.22 0.18 393.0 606.5 0.65 

FRDJ-SED-2-02-3T 315.3 49.75 0.16 354.9 559.5 0.63 

FRDJ-SED-2-03A-01 124.7 42.36 0.34 210.3 262.7 0.80 

FRDJ-SED-2-03A-12 280.9 52.40 0.19 411.1 585.2 0.70 

FRDJ-SED-2-03A-23 434.5 66.49 0.15 753.8 912.4 0.83 

FRDJ-SED-2-03A-3T 360.4 62.20 0.17 485.5 674.1 0.72 

FRDJ-SED-3-01-01 96.91 24.09 0.25 130.2 155.1 0.84 

FRDJ-SED-3-01-12 31.59 10.98 0.35 63.48 55.71 1.14 

FRDJ-SED-3-01-23 6.031 6.333 1.05 6.831 9.454 0.72 

FRDJ-SED-3-01-3T 5.828 5.070 0.87 15.59 12.60 1.24 

FRDJ-SED-3-02-01 278.2 61.31 0.22 428.4 572.8 0.75 

FRDJ-SED-3-02-12 85.69 28.80 0.34 154.8 177.1 0.87 

FRDJ-SED-3-02-23 58.24 24.46 0.42 109.9 101.4 1.08 

FRDJ-SED-3-02-3T 1.705 4.624 2.71 1.897 3.475 0.55 

FRDJ-SED-3-03-01 470.6 102.5 0.22 525.1 764.8 0.69 

FRDJ-SED-3-03-12 891.2 106.5 0.12 878.9 1381 0.64 

FRDJ-SED-3-03-23 104.1 27.83 0.27 164.4 201.3 0.82 

FRDJ-SED-3-03-3T 259.4 100.3 0.39 478.9 539.1 0.89 

FRDJ-SED-2-03A-01U 669.3 331.2 0.49 1440.2 1687 0.85 
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 Perylene is a constituent of PAH mixtures which can assist in the differentiation 

between natural and anthropogenic PAH sources. The abundance of Σ5-ring PAHs with 

respect to perylene concentration indicates pyrogenesis. When perylene is compared to 

total PAHs, the provenance of perylene within sediments is identified as diagenetic when 

the ratio is larger than 0.1 (Readman et al. 2002).  Perylene concentration within 

sampling area 3, with respect to total PAHs, exceeds 0.1. This indicates that the perylene 

source for area 3 is predominantly biogenic. The abundance of perylene elsewhere, less 

than 0.1, is an indication of pyrolytic contribution of PAHs. 

The An / (An + Phe) ratio is used to distinguish between petrogenic (less than 

0.1) or pyrogenic origin (greater than 0.1) (Yunker et al. 2002 and Bastami et al. 2014). 

The majority of sections contained a ratio greater than 0.1 indicating a pyrogenic source 

(Table 7).  The Fl / (Fl + Py) ratio provides an indication of source (Table 7). Sample 

extracts contained a Fl / (Fl + Py) ratio with a range of 0.32 -0.62 and a mean of 0.46.  

The majority of the sample ratios fell between 0.4 - 0.5, indicating a mixture of 

combusted and non-combusted petrol fuels in conjunction with biomass combustion and 

degradation (Yunker et al. 2002 and Bastami et al. 2014). 
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Table 7: PAH Diagnostic Ratios for Benzo[a]pyrene (BaA), Chrysene (Chy), Fluoranthene (Fl), Pyrene 

(Py), Anthracene (An), Phenanthrene (Phe), Indeno[1,2,3-cd]pyrene (PI), and Benzo[g,h,i]pyrene 

(BgP) 
 

Sample Name BaA/(BaA+Chy) Fl/(Fl+Py) An/(Phe+An) PI/(PI+BgP) 

FRDJ-SED-1-01-01 0.44 0.47 0.20 0.44 

FRDJ-SED-1-01-12 0.42 0.54 0.16 0.34 

FRDJ-SED-1-01-23 0.47 0.34 0.14 0.30 

FRDJ-SED-1-02-01 0.42 0.52 0.14 0.30 

FRDJ-SED-1-02-12 0.44 0.34 0.10 0.30 

FRDJ-SED-1-02-23 0.43 0.49 0.12 0.27 

FRDJ-SED-1-03-01 0.49 0.35 0.14 0.32 

FRDJ-SED-1-03-12 0.46 0.36 0.15 0.30 

FRDJ-SED-1-03-23 0.45 0.50 0.16 0.28 

FRDJ-SED-2-01-01 0.44 0.41 0.17 0.42 

FRDJ-SED-2-01-12 0.44 0.37 0.14 0.34 

FRDJ-SED-2-01-23 0.44 0.53 0.09 0.30 

FRDJ-SED-2-02-01 0.47 0.38 0.17 0.39 

FRDJ-SED-2-02-12 0.44 0.40 0.16 0.35 

FRDJ-SED-2-02-23 0.47 0.32 0.14 0.30 

FRDJ-SED-2-02-3T 0.45 0.50 0.14 0.31 

FRDJ-SED-2-03A-01 0.46 0.60 0.17 0.45 

FRDJ-SED-2-03A-12 0.41 0.47 0.13 0.30 

FRDJ-SED-2-03A-23 0.38 0.46 0.10 0.29 

FRDJ-SED-2-03A-3T 0.48 0.51 0.14 0.33 

FRDJ-SED-3-01-01 0.55 0.37 0.19 0.41 

FRDJ-SED-3-01-12 0.52 0.41 0.13 0.38 

FRDJ-SED-3-01-23 0.38 0.44 0.08 0.30 

FRDJ-SED-3-01-3T 0.44 0.56 0.13 0.39 

FRDJ-SED-3-02-01 0.40 0.50 0.15 0.35 

FRDJ-SED-3-02-12 0.48 0.57 0.16 0.45 

FRDJ-SED-3-02-23 0.53 0.37 0.17 0.46 

FRDJ-SED-3-02-3T 0.40 0.62 0.10 0.39 

FRDJ-SED-3-03-01 0.44 0.36 0.12 0.34 

FRDJ-SED-3-03-12 0.45 0.33 0.13 0.31 

FRDJ-SED-3-03-23 0.49 0.56 0.19 0.44 

FRDJ-SED-3-03-3T 0.51 0.58 0.21 0.49 

FRDJ-SED-2-03A-01U 0.38 0.53 0.09 0.38 
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The BaA / (BaA + Chy) ratio can also be used to indicate a petrogenic or a 

pyrogenic source (Table 7). The BaA / (BaA + Chy) ratios range from 0.38- 0.55 with a 

mean of 0.45 indicating pyrogenic sources (greater than 0.35) (Dvorská, Lammel, and 

Klánová 2011). This range could indicate pyrogenic combustions of coals, biomass, and 

petrol fuels with a potential mixture of lubricants and road runoff.  PI / (PI + BgP) ratios 

provide an indication of source (Table 7). The PI / (PI + BgP) ratio has a range of 0.27 - 

0.49 with a mean 0.35, which indicates pyrogenic combustion, automotive residues, and 

road runoff (Yunker et al. 2002 and Bastami et al. 2014). However, similar to BaA / 

(BaA + Chy) ratio, the PI / (PI + BgP) ratio range can include multiple potential sources. 

To identify potential PAH sources, PAH analyte ratios were plotted using a 

typical oil geochemistry correlation cross-plot. By comparing An / (An + Phe) versus Fl 

/ (Fl + Py), a better understanding of primary and secondary PAH sources is achieved 

(Figure 7). This cross-plot indicates a complexity of parameters with multiple PAH 

contributions from the surrounding environment. The core sections are comprised of 

organic sediments mixed with different PAH constituents from different sources. These 

disparate sources can be identified as pyrogenic with values representing the combustion 

of petroleum and combustion of biomass. 

 
 



48 

Figure 7: PAH Diagnostic Cross-plots; Indications of PAH Source. An / (An + Phe) ratio <0.1 
petrogenic or >0.1 pyrogenic. Fl / (Fl + Py) ratio <0.4 petrogenic; 0.4 - 0.5 petroleum combustion (e.g., 
combustion engines, and furnaces); >0.5 biomass combustion (e.g., grasses, wood, or coal combustion). 
BaA / (BaA + Chy) ratio can <0.2 petrogenic or >0.35 pyrogenic. PI / (PI + BgP) ratio <0.2 petrogenic; 
0.4 - 0.5 petroleum combustion; and >0.5 biomass combustion.  
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Figure 7: Continued 
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Fl / (Fl + Py) versus BaA / (BaA + Chy) were compared (Figure 7) to 

differentiate combustion of different biomass materials (Bastami et al. 2014). This 

contrast provided an indication of the type of biomass that has been combusted (e.g., 

coal, wood, or grasses). However, despite an attempt to isolate the primary source of 

PAHs through combustion, distribution indicates some petroleum combustion. Biomass 

and coal ranges (0.35 -0.77) for Fl / (Fl + Py) and BaA / (BaA + Chy) overlap: gasoline 

(0.44) and diesel (0.20 - 0.58) combustion, roadway runoff and automotive/diesel oils 

(0.30 - 0.37), and roadway tunnel exhaust (0.41-0.49) (Yunker et al. 2002). This overlap 

limits the ability to identify a single source influx. 

PI / (PI + BgP) versus Fl / (Fl + Py) compares potential source PAHs with similar 

ranges (Bastami et al. 2014). Figure 7 shows PI / (PI + BgP) ratio and Fl / (Fl + Py) ratio 

indicates multiple sources of PAH influx. However, both ratios identify petroleum 

combustion and biomass combustion as main contributors. PI / (PI + BgP) versus BaA / 

(BaA + Chy) was used to compare fossil fuel types. The cross-plots provide an 

understanding of coal grades and fuel variations. The cross-plot of PI / (PI + BgP) versus 

BaA / (BaA + Chy), as with An / (An + Phe) versus Fl / (Fl + Py), indicates a complexity 

of sediments containing various PAH constituents from different pyrogenic sources, 

including the combustion of higher ranking coals and petroleum. 

To understand the distribution and concentration of hydrocarbon sources, core 

sections were grouped by depth and location. PAH analytes were cross-plotted based on 

depth. An / (An + Phe) versus Fl / (Fl + Py) and An / (An + Phe) versus PI / (PI + BgP) 

display a deposition of PAH residues within the Lower Fox River sediments (Figure 8 
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and Figure 9). These cross-plots visually indicate that over a period of time, changes in 

PAH source input have occurred, with a shift from biomass combustion in the lower core 

sections to more petroleum combustion and automotive discharge in the upper two core 

sections.   

PAH analytes were cross-plotted based on sampling area. An / (An + Phe) versus 

Fl / (Fl + Py) and An / (An + Phe) versus PI / (PI + BgP) show differences in PAH 

source (Figure 10, Figure 11, and Table 8). Area 1 and area 2 display lower ratio 

groupings with a higher density of points in the petroleum combustion zone. However, 

in area 2, some presence of biomass combustion is observed. Area 3 displays more 

source diversity, with Fl / (Fl + Py) and PI / (PI + BgP) ratios between 0.2 and 0.4 and 

some distributions greater than 0.4. All areas contain outliers below the Fl / (Fl + Py) 0.4 

intercept; however, this does not indicate petroleum incursion. The residual PAHs are 

more consistent with diesel combustion (0.20 - 0.58) from automotives in the 

metropolitan area with respect to PI / (PI + BgP) ratios. This area comparison indicates 

that over the course of the river, changes in PAH source input occurs with a shift from 

upstream petroleum combustion and automotive discharge to an even distribution of 

both petroleum combustion and biomass combustion downstream. 
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Figure 8: Diagnostic Cross-plot of An/(An+Phe) versus Fl/(Fl+Py) by Depth. 0-12", 12-23", 23-36", 
and >36" sectional depths. An / (An + Phe) ratio <0.1 petrogenic or >0.1 pyrogenic. Fl / (Fl + Py) ratio 
<0.4 petrogenic; 0.4 - 0.5 petroleum combustion (e.g., combustion engines, and furnaces); >0.5 biomass 
combustion (e.g., grasses, wood, or coal combustion).  
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Figure 9: Diagnostic Cross-plot of An/(An+Phe) versus PI/(PI+BgP) by Depth. 0-12", 12-23", 23-36", 
and >36" sectional depths. An / (An + Phe) ratio <0.1 petrogenic or >0.1 pyrogenic. PI / (PI + BgP) ratio 
<0.2 petrogenic; 0.4 - 0.5 petroleum combustion; and >0.5 biomass combustion. 
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Table 8: Diagnostic Cross-plot of Fl/(Fl+Py), An/(An+Phe), and PI/(PI+BgP) by Area 

 

Sample Name Flu/(Flu+Py) An/(Phe+An) PI/(PI+BgP) 

Area 1 

FRDJ-SED-1-01-01 0.47 0.20 0.44 

FRDJ-SED-1-01-12 0.54 0.16 0.34 

FRDJ-SED-1-01-23 0.34 0.14 0.30 

FRDJ-SED-1-02-01 0.52 0.14 0.30 

FRDJ-SED-1-02-12 0.34 0.10 0.30 

FRDJ-SED-1-02-23 0.49 0.12 0.27 

FRDJ-SED-1-03-01 0.35 0.14 0.32 

FRDJ-SED-1-03-12 0.36 0.15 0.30 

FRDJ-SED-1-03-23 0.50 0.16 0.28 

Area 2 

FRDJ-SED-2-01-01 0.41 0.17 0.42 

FRDJ-SED-2-01-12 0.37 0.14 0.34 

FRDJ-SED-2-01-23 0.53 0.09 0.30 

FRDJ-SED-2-02-01 0.38 0.17 0.39 

FRDJ-SED-2-02-12 0.40 0.16 0.35 

FRDJ-SED-2-02-23 0.32 0.14 0.30 

FRDJ-SED-2-02-3T 0.50 0.14 0.31 

FRDJ-SED-2-03A-01 0.60 0.17 0.45 

FRDJ-SED-2-03A-12 0.47 0.13 0.30 

FRDJ-SED-2-03A-23 0.46 0.10 0.29 

FRDJ-SED-2-03A-3T 0.51 0.14 0.33 

Area 3 

FRDJ-SED-3-01-01 0.37 0.19 0.41 

FRDJ-SED-3-01-12 0.41 0.13 0.38 

FRDJ-SED-3-01-23 0.44 0.08 0.30 

FRDJ-SED-3-01-3T 0.56 0.13 0.39 

FRDJ-SED-3-02-01 0.50 0.15 0.35 

FRDJ-SED-3-02-12 0.57 0.16 0.45 

FRDJ-SED-3-02-23 0.37 0.17 0.46 

FRDJ-SED-3-02-3T 0.62 0.10 0.39 

FRDJ-SED-3-03-01 0.36 0.12 0.34 

FRDJ-SED-3-03-12 0.33 0.13 0.31 

FRDJ-SED-3-03-23 0.56 0.19 0.44 

FRDJ-SED-3-03-3T 0.58 0.21 0.49 
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Figure 10: Diagnostic Cross-plot of An/(An+Phe) versus Fl/(Fl+Py) by Area. Figure 10 display PAH 
sources based on regional input. An / (An + Phe) ratio <0.1 petrogenic or >0.1 pyrogenic. Fl / (Fl + Py) 
ratio <0.4 petrogenic; 0.4 - 0.5 petroleum combustion (e.g., combustion engines, and furnaces); >0.5 
biomass combustion (e.g., grasses, wood, or coal combustion). 
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Figure 10: Continued. 
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Figure 11: Diagnostic Cross-plot of An/(An+Phe) versus PI/(PI+BgP) by Area. Figure 11 display PAH 
sources based on regional input. An / (An + Phe) ratio <0.1 petrogenic or >0.1 pyrogenic. PI / (PI + BgP) 
ratio <0.2 petrogenic; 0.4 - 0.5 petroleum combustion; and > 0.5 biomass combustion. 
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Figure 11: Continued 

5.5. Toxicological Evaluation 

A TEF toxicity evaluation was conducted for seven carcinogenic and ten non-

carcinogenic analytes for core section FRDJ-SED-3-03-12 (Table 9). The 

benzo[a]pyrene equivalency quotient was summed for these seventeen analytes, totaling 

2,435 ng/g-dry. The calculated carcinogenic potency of dibenzo[a,h]anthracene and 

benzo[a]pyrene are 46.6% and 39.4% of the PAH concentrations within core section 

FRDJ-SED-3-03-12.  

In accordance with the Wisconsin governmental standards issued by the 

Wisconsin Department of Natural Resources, the PAH concentrations are normalized to 

1% TOC for PAHs of interest (WDNR 2003). After normalization the new PAH value is 

1,520 ng/g-dry at 1% TOC.  
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Table 9: Toxic Equivalency Factors for Lower Fox River Core Section FRDJ-SED-3-03-12 (Area 3) 

 

PAHs of Interest 

Sediment 

Concentration 

 (ng/g dry) 

Toxic Equivalency 

Factor (TEF) 

Benzo(a)pyrene 

Equivalent Quotient  

(ng/g dry wt.) 

Sediment Concentration 

at 1% TOC (ng/g dry 

wt.) [TOC = 8.6%] 

Dibenzo(a,h)anthracene 213.8 5.0 1,069 24.86 

Benzo(a)pyrene 904.9 1.0 904.9 105.2 

Benz(a)anthracene 1,279 0.1 127.9 148.8 

Benzo(b)fluoranthene 802.6 0.1 80.26 93.32 

Benzo(k,j)fluoranthene 317.8 0.1 31.78 36.96 

Chrysene/Triphenylene 1,575 0.1 157.5 183.2 

Indeno(1,2,3-c,d)pyrene 447.2 0.1 44.72 51.99 

Anthracene 225.5 0.01 2.255 26.22 

Benzo[g,h,i]peryIene 1,008 0.01 10.08 117.2 

Acenaphthene 87.36 0.001 0.0874 10.16 

Acenaphthylene 140.5 0.001 0.1405 16.34 

Fhroranthene 1,020 0.001 1.020 118.6 

Fluorene 207.5 0.001 0.2075 24.13 

2-Methylnaphthalene 630.4 0.001 0.6304 73.30 

Naphthalene 627.3 0.001 0.6273 72.95 

Phenanthrene 1,541 0.001 1.541 179.2 

Pyrene 2,044 0.001 2.044 237.7 

Sum of 17 PAHs 12,860 2,435 1,520 
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 Subsequently, TEF values were also calculated for core sections from area 1 and 

area 2 which contained high PAH concentrations. FRDJ-SED-1-03-12 (area 1) and 

FRDJ-SED-2-03A-23 (area 2) TEF values were 2,294 ng/g-dry (1,073 ng/g-1% TOC) 

and 1,694 ng/g-dry (491.8 ng/g-1% TOC), respectively. These three core sections exceed 

the Comprehensive Environmental Response, Compensation, and Liability Act 

(CERCLA) Method B cleanup level for benzo(a)pyrene of 137 ng/g. However, based on 

normalization to 1% TOC, the cores do not exceed the Wisconsin Department of Natural 

Resources’ (WDNR) threshold effect concentration (TEC) for PAHs which is 1,610 ng/g 

at 1% TOC.  

   



61 

6. CONCLUSIONS AND IMPLICATIONS OF RESEARCH

Extracts of the NRT core sections contained signatures of parent and alkylated 

PAHs. The source of PAH influx is primarily pyrogenic with a complex mixture of coal, 

biomass, and petroleum combustion residuals. All core sections contained an elevated 

concentration of chrysenes, pyrenes, fluoranthenes, and C4-phenanthrenes/anthracenes -- 

classic indicators of conifer trees, coal tar, industrial manufacturing, transportation, and 

paper mill refuse (Koistinen et al. 1998). PAH ratios suggest a correlated high influx of 

petroleum combustion and biomass combustion sources which are indicated by the 

distribution of HMW PAHs and cross-plots of anthracene / (anthracene + phenanthrene), 

indeno(1,2,3-c,d)pyrene / (indeno(1,2,3-c,d)pyrene + benzo(g,h,i)perylene), 

benzo[a]anthracene / (benzo[a]anthracene + chrysene), anthracene / 

(anthracene + chrysene), and fluoranthene / (fluoranthene + pyrene).  

The presence of C0, C1, and C2 alkylated analytes are a strong indication of 

combustion with a limited degree of degradation. Total carbon, EOM, and saturated 

hydrocarbon data supports the PAH data indicating high inputs of organic substrate with 

odd-numbered n-alkanes suggesting terrestrial or aquatic plant origin.  

The TEQ of PAH concentrations within the river sediments (area 1, area 2 and 

area 3) exceed the CERCLA Method B levels of 137 ng/g due to high influxes of the 

seven PAHs classified as B2 carcinogens present in the river sediment: 

benzo[a]anthracene, benzo[a]pyrene, benzo[b]fluoranthene, benzo[k]fluoranthene, 

chrysene, dibenzo[a,h]anthracene, and indeno[ 1,2,3-c,d]pyrene, as well as non-
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carcinogens such as phenanthrene, pyrene, and naphthalenes. However, based on 

normalization to 1% TOC the cores do not exceed the WDNR threshold effect 

concentration (TEC) for PAHs.  

To prevent concentrations from exceeding the TEC, continual monitoring and 

further research of PAH concentrations is required. Future sample collections should 

allow for a comparison to this research. This study incorporates biomarker 

fingerprinting, source identification, and toxicological evaluation tools to investigate 

hydrocarbon concentrations within the Lower Fox River sediments. The use of this 

research may provide useful and relevant information in similar environments and 

situations with samples containing unknown concentrations of hydrocarbon 

contamination. 

To better understand past, present, and future distribution-accumulation of 

hydrocarbons within the Lower Fox River, additional sampling is required. Runoff 

from urban and rural roadways, diesel and gasoline combustion engines, household 

heating, and commercial-industrial byproducts accumulate within Lower Fox River 

sediments. Future monitoring is needed to examine the extent of the incursion and 

toxicological effects posed by hydrocarbon concentrations within the Lower Fox 

River basin. Future sample collections would allow for a comparison of PAHs, ALI, 

UCM, TPH, and C30-hopane concentrations to this research in order to gain insight 

into hydrocarbon migration, influx, accumulation, degradation and depletion within 

the Lower Fox River. 



63 

 Based on this research, the following recommendations are proposed: 1) Future 

confirmation analysis of river sediments within the Lower Fox River; and 2) More 

stringent efforts are needed to reduce or prevent hydrocarbon contamination from 

entering and accumulating in Lower Fox River sediments. Due to the limited literature 

available, these recommendations are based on a single coring event. In order to 

establish and confirm a trend, future analysis and continual monitoring of the Lower Fox 

River basin is necessary. Runoff, refuse, discharge, and spills should be monitored and 

remediated. Efforts by the state of Wisconsin to establish additional measures would 

help to reduce hydrocarbon accumulation within the Lower Fox River remediation zone 

which is currently focused on PCB contamination.  
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