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ABSTRACT 

 

For field development, hydrocarbon recovery is considered as one of the main 

objectives through the whole life cycle of the field. The reservoir management during 

the field development ranges from planning for the field development, drilling and well 

optimization and rejuvenation of the mature field till abandonment. The ultimate goal of 

field development comes down to maximizing profits. Better understanding of the 

reservoir is essential to achieve this goal. Among the many problems of reservoir 

management, well location optimization for maximum recovery and prediction of the 

reservoir performance are important ones to solve. 

We propose a hybrid sampling method for the well placement problem.  To 

decide on the well location, evolutionary algorithms were used and updated starting from 

an initial response surface consisting of the candidate well locations selected using 

random sampling method as well as a dynamic measure probability map serving as an 

indicator of remaining hydrocarbon in the reservoir. We applied this approach to a 

mature field case because the dynamic measure can capture the complex response of the 

reservoir and provide information of sweep and drainage areas. 

 We presented a well placement optimization method for primary depletion in 

green fields. Unlike the complex responses in the mature field, pressure depletion is the 

main recovery mechanism in the green field. For pressure depletion in green fields, we 

adopted diffusive time of flight, instead of convective time of flight for the dynamic 

measure. By using a fast marching method, we can get the propagation of the pressure 
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front very fast with a single non-iterative calculation. This diffusive time of flight was 

consolidated into the dynamic measure probability map which is the starting point of our 

search space, for the evolutionary algorithm. This method was extended to a dual 

porosity model by considering the flow between matrix and fracture. 

 Finally, a structured history matching approach which consists of global 

calibration and local calibration is presented. Key global parameters which heavily affect 

the model response are selected through a sensitivity analysis. Design of experiments and 

response surface methodology with evolutionary algorithms such as genetic algorithm are 

used to calibrate these key global parameters. Then, local calibration using streamline 

based sensitivity and generalized travel time inversion technique is performed.  
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NOMENCLATURE 

 

DM Dynamic Measure 

DM_FMM Dynamic Measure using Fast Marching Method 

DTOF Diffusive Time of Flight 

DM_DP Dynamic Measure for Dual Porosity Model 

DV Drainage Volume 

FMM Fast Marching Method 

GA Genetic Algorithm 

GTTI Generalized Travel Time Inversion  

k Permeability, md  

kro Oil relative permeability 

PV Pore Volume  

So  Oil saturation 

TTOF Total Time of Flight 
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CHAPTER I  

INTRODUCTION 

 

During the field development, hydrocarbon recovery is considered as one of the 

main objectives for the whole life cycle of the field. The reservoir management during 

the field development ranges from planning for the field development, drilling and well 

optimization and rejuvenation of the mature filed through abandonment. The ultimate 

goal of the field development comes down to maximizing profits. Better understanding 

of the reservoir is quite essential to achieve this goal. Among the many problems of 

reservoir management, well location optimization for maximum recovery and prediction 

of the reservoir are important problems to solve. 

 

1.1 Overview 

Finding optimal well locations is one of the significant features of the field 

development problems. In mature field, it is more complex to locate infill well drilling 

locations since there are many existing wells in addition to the heterogeneities in the 

reservoir. It is necessary to capture how the reservoir behaves to find optimal locations 

but it is harder to catch it in mature field. Well placement problems to be solved are 

expressed as optimization problems. Well placement optimization could be a problem of 

maximizing either oil recovery or asset value of the project. In general, the optimization 

problem of well placement is computationally expensive and it is required to deal with 

geologic uncertainty. 
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The optimization methods on well placement problems are traditionally 

categorized into deterministic and stochastic methods. However, in order to take the 

advantage of each algorithm, hybrid methods were implemented. Hybrid methods are 

generally more efficient to find optimal solution. Guyaguler et al. (2002) showed hybrid 

stochastic algorithms with proxy modelling generally converge to reasonable solution 

with fewer evaluations compared to stochastic algorithms. The better proxy model that 

hybrid methods are combined with, the more efficiently the algorithms can find optimal 

solution. 

 Dynamic measure proposed by Taware et al. (2012) is the combination of static 

properties and dynamic properties including Total Time of Flight (TTOF) of streamlines, 

which are considered as the properties regarding remaining oil in the reservoir. It is a 

good indicator of where oil remains in the reservoir and provides a possible new well 

location. However, the point with the highest dynamic measure value is not necessarily 

the optimal location for additional well. Nevertheless, the point with maximum value of 

dynamic measure can be expected to be close to the optimal well location and can be 

used as the starting point for search algorithms. In other words, this dynamic measure 

can be the source of proxy model for stochastic algorithms.  

  In the streamline method, the use of the convective time of flight as a spatial 

variable along streamlines effectively reduces the calculation to only one dimension. For 

pressure depletion and associated reservoir processes, we expect that the use of the 

diffusive time of flight will allow similar advancements in methods and applications. 

The depth of investigation is defined as the propagation distance of peak pressure 
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disturbance. By using asymptotic expansion of the diffusivity equation, the propagation 

of the pressure front for heterogeneous reservoirs, which is in the form of Eikonal 

equation, is obtained. By solving this equation with Fast Marching Method, a diffusive 

time of flight at each and every cell within the domain is calculated. The advantage of 

using Fast Marching method lies in that frontal propagation is obtained very fast with a 

single non-iterative calculation.  For primary depletion field, diffusivity time of flight 

term from fast marching method can be a component of dynamic measure in place of 

convective time of flight from streamlines. 

 To understand the proper geologic characteristics in the reservoir is one of the key 

aspects of reservoir management. However, in the field with the geological complexity, 

the reservoir characterization can be quite challenging because the reservoir fluid 

dynamics are a composite response of the heterogeneous geologic feature and the field 

operations. Most of deterministic approaches generally start with a single initial geological 

model so that they strongly depend on quality of the initial model. There have been many 

cases of misrepresentation of large-scale features such as fault communications and pore 

volumes resulting in unphysical model updates in fine scale reservoir permeability. This 

is due to the local search nature of the deterministic technique and its deficiency in 

handling various scale uncertainties. 

Global search algorithms avoid the problem of convergence to local optimum 

nearest to the initial starting and are able to reconcile multi-scale uncertainties 

simultaneously. Global search techniques have been known to be effective for history 

matching problems. The advantage of these stochastic search techniques is that they 
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require neither complicated differential equations nor a smooth response space. The 

primary challenge is that they require large number of flow simulations, which can be 

computationally prohibitive when the parameter space is very large. Consequently, 

sensitivity analysis is introduced to rank the importance of model parameters and screen 

insignificant ones, and the proxy model is introduced as a surrogate to avoid simulations 

for less likely model candidates (Cheng et al. 2008; Yeten et al. 2005). 

 

1.2 Outline of Dissertation 

In Chapter II, we will present a hybrid sampling method which obtain a proxy 

model built by initial candidate well locations sampled from dynamic measure 

probability map, together with a random sampling (e.g. Latin hypercube sampling) 

technique.   We can take advantage of expanding our search space to cover the regions 

which dynamic measures might miss. We will show how our method identifies the 

optimal solution with faster convergence compared with normal genetic algorithm. The 

efficiency and practical applicability of our proposed approach is validated through 

synthetic and field infill well drilling optimization problems. 

In Chapter III, we will present a new dynamic measure for fields under primary 

depletion. By consolidating the term ‘diffusive time of flight’ from Fast Marching 

Method into this dynamic measure, we get the proxy model for the genetic algorithm 

with hybrid sampling method. This new dynamic measure is validated through the well 

placement optimization problems in green fields. We also extend our approach to dual 

porosity models. In the dual porosity model, flow is assumed to be along the fracture 
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network and transfer between matrix and fracture. We expect to obtain better proxy 

models by incorporating mass transfer term, the flow between matrix and fracture to the 

dynamic measure.  

In Chapter IV, a structured history matching approach which consists of global 

calibration and local calibration is applied to a field case. For the global calibration, our 

goal is development of multiple models which match the field-wide or regional 

performance. Key global parameters which heavily affect the model response such as 

bottom-hole pressure are selected through a sensitivity analysis. Design of experiments 

and response surface methodology with evolutionary algorithms such as genetic 

algorithm are used to calibrate these key global parameters. Then, local calibration using 

streamline based sensitivity and generalized travel time inversion technique is carried 

out to improve well by well match. We utilize streamline-derivative analytic sensitivities 

to determine the spatial distribution and magnitude of the local permeability changes.  
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CHAPTER II 

WELL PLACEMENT OPTIMIZATION FOR WATERFLOODING USING 

DYNAMIC MEASURE PROBABILITY MAP WITH GENETIC ALGORITHM 

 

2.1 Introduction 

During the field development, finding optimal well locations is considered as one 

of the significant features to maximize its recovery or asset value. Dynamic measure 

based on the total streamline time of flight combined with static and dynamic properties 

can give us better idea where the remaining oil in the reservoir, since it incorporates 

unswept and undrained areas of oil from the streamline information. In addition, 

computation of dynamic measure is very efficient so that we can practically deal with 

large models with this streamline based method. However, the point with highest value 

of dynamic measure is not necessarily the optimal well location itself but it is expected 

to be close to well location. 

In this chapter, we propose a method which utilizes the dynamic measure as a 

probability map and uses it as a proxy model for genetic algorithm. Previous work has 

shown us that a hybrid stochastic algorithm with proxy modeling generally converges to 

a reasonable solution with fewer evaluations compared to stochastic algorithms. 

Moreover, if we have a better proxy model, faster convergence will be obtained. Thus, 

building a response surface, which is a proxy model, from dynamic measure probability 

map enables us to reach the optimal solution more efficiently. The initial population 

sampled from the dynamic measure probability map is used for constructing initial 
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response surface. However, if we gain the initial response by random sampling (e.g. 

Latin hypercube sampling) combined with population sampled from dynamic measure 

probability map, we can take advantage of expanding our search space to cover the 

regions dynamic measures might miss. We show how our method identifies the optimal 

solution with faster convergence compared with normal genetic algorithm. In addition, it 

is also shown that we can avoid being trapped in local minima since we have sampled 

initial populations from the dynamic measure map, which is a good indicator of 

remaining oil. The efficiency and practical applicability of our proposed approach is 

validated through synthetic and field infill well drilling optimization problems. 

 

2.2 Background 

2.2.1 Application of Optimization Methods 

Finding optimal well locations is one of significant features of the field 

development problems. In mature field, it is more complex to locate infill well drilling 

locations since there are many existing wells in addition to the heterogeneities in the 

reservoir. It is necessary to capture how the reservoir behaves to find optimal locations 

but it is harder to accomplish it in mature field. Well placement problems to be solved 

are expressed as optimization problems. Well placement optimization could be a 

problem of maximizing either oil recovery or asset value of the project. In general, the 

optimization problem of well placement is computationally expensive and it is required 

to deal with geologic uncertainty. 
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Many optimization techniques were introduced and used for various applications. 

In the reservoir management, well placement optimization is one of the most interesting 

areas. The optimization methods on well placement problems are traditionally 

categorized into deterministic and stochastic methods. However, in order to take the 

advantage of each algorithm, hybrid methods were implemented here. 

 

2.2.1.1 Deterministic Methods 

 In the area of deterministic methods, descent algorithms were widely used with 

the adjoint methods to compute the gradients. Direct pattern search methods and simplex 

methods are also included in deterministic methods. Deterministic methods can converge 

very fast with high precision on the condition they are given a good initial guess for the 

global optimum. But if the initial guess is far away from the global optimum, they are 

likely to get trapped in local optima. To use deterministic methods, the model of the 

function should be necessarily smooth enough. 

Sarma et al. (2008) calculated the gradient of an objective function, Net Present 

Value (NPV), with respect to x, y locations of wells using adjoint methods. They found 

optimal well location for a synthetic case but they knew that their method is likely to get 

caught in local minima.  

Moreover, the adjoint methods are known for their implementation difficulties and 

needs to access to simulator source code. Because of these weakness, large scale field 

applications are limited with deterministic methods.  
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2.2.1.2 Stochastic Methods 

Stochastic methods are based on generation of random variables. These methods 

have been introduced to mitigate the flaws of deterministic methods. To optimize the 

objective functions such as non-smooth and multi-modal, these methods are particularly 

useful. Particle swarm optimization (PSO), simulated annealing (SA), simultaneous 

perturbation stochastic algorithms (SPSA) and evolutionary algorithms (EA) are 

examples of stochastic methods.  

Artus et al. (2006) used genetic algorithm for the placement of monobore and 

dual lateral wells. Emerick et al. (2009) also used genetic algorithm to optimized field 

development scenarios. Number of horizontal wells, their types and locations are the 

variables for the scenarios.  

Typically, stochastic methods may require many more simulations than 

deterministic methods since stochastic methods rely on random generation and re-trials 

to identify the parameter intervals to obtain the optimal solution. However, even though 

stochastic methods are not computationally efficient to find the precise optimum, they 

generally have good ability to get closer to the global optimum.  

 

2.2.1.3 Hybrid Methods 

Hybrid methods are the combined methods from two or more algorithms to take 

advantage of the merits of each algorithm. Hybrid methods generally are designed to 

have the strong points from multiple algorithms, so the performance is better than each 

individual algorithm.  
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Bittencourt et al. (1997) used hybrid methods composed of genetic algorithm 

(GA), TABU and polytype algorithm for optimizing numbers of vertical horizontal 

wells. Guyaguler et al. (2002, 2004) optimized infill well drilling locations using the 

hybrid optimization scheme consisting of genetic algorithm (GA), artificial neural 

network (ANN), polytype algorithm and kriging. They found that GA with these helper 

methods reduced the computations, which is the number of simulation needed. The use 

of hybrid methods are also found in the work of Yeten et al. (2003). They used genetic 

algorithms with hill climbing algorithm to optimize well type. 

To be more computationally efficient, search algorithms using proxy modelling 

are used. In the literature, proxy modelling are also called surrogates or meta-modelling. 

Proxy model is an approximate model which replaces the true objective function to 

reduce the number of simulations needed. Proxy model can be obtained from kriging 

with least squares, basis function, quality maps and multiple regression methods.  

 

2.2.2 Dynamic Measure 

Dynamic measure is a kind of quality maps which indicates oil producing 

potential in the reservoir. First, we go into quality maps and we will review the dynamic 

measure and its rationale in the following section. 

 

2.2.2.1 Quality Maps 

The reservoir quality maps are usually based on static and dynamic properties of 

the reservoir. Permeability, porosity and net thickness were used for static properties. On 
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the other hand, dynamic properties such remaining oil, well productivity, pressure and 

cumulative oil production of the reservoir were other components of the quality maps. 

The regions with high values on these quality maps are the interested areas for the well 

locations. The objective functions to be maximized in the well placement problems are 

typically cumulative oil or net present value (NPV). 

Kharghoria et al. (2003) proposed the productivity potential maps to optimize 

well trajectory using heuristic methods. This map is the combination of static properties 

like porosity, permeability, dynamic properties such as oil saturation and geometric 

parameter, distance from well boundaries. Da Cruz et al. (2004) proposed quality maps, 

2D representation of cumulative oil production. 3D maps were converted to 2D maps by 

the assumption that wells are perforated though all layers. They simulated some fraction 

of the reservoir and non-simulated cells got interpolation values from kriging.   Liu et al. 

(2006) modified productivity maps proposed by Kharghoria et al. (2003) to include 

effective pore pressure and mobile oil saturation.  

 

2.2.2.2 Review of Dynamic Measure 

Dynamic measure was recently proposed by Taware et al. (2012). Like quality 

maps, it is composed of static and dynamic properties about remaining oil in the 

reservoir. Unlike previous quality maps which didn’t consider some factors affecting 

field production, reservoir drive mechanisms, drainage and sweep areas, they added 

Total Time of Flight (TTOF) term to the dynamic measure. By adding total time of flight 
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(TTOF) of streamline simulation to the dynamic properties, structure of the reservoir, 

geometry of existing well patterns and drive mechanisms can be honored. 

 The rationale of the dynamic measure were explained as follows. Dynamic 

measure was derived heuristically. By definition, dynamic measure (DM) is the 

multiplication of static properties, permeability (k) and pore volume (PV) and dynamic 

properties such as oil saturation (So), oil relative permeability (kro) and the total time of 

flight (TTOF). All these properties are rank normalized to remove the influence of the 

absolute values of each property.  

 The dynamic measure is, 

 

   RNRNRNRNRN krokporevolumeSoTTOFDMMeasureDynamic     (2.1) 

 

  The rationale begins from the oil volumetric flux qo.  qo for a given grid cell is, 
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Where, kro(So) is relative oil permeability at each grid cell.  Po  
is oil viscosity 

and  PBo  
is oil formation volume factor. These are function of average reservoir 

pressure.  Because one is interested in relative oil productivity for a given drawdown, 
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parameters common to the grid blocks such as  Po  
and  PBo  can be factored out 

(Kharghoria et al. 2003). Also, qo represents volumetric oil flux and contains no 

information about the total oil volume associated with it. Hence,  OS  is added to 

incorporate the oil volume (Kharghoria et al. 2003). Therefore, the dynamic measure can 

be heuristically represented as,  

 

 OroO SkkSNTGzDM            (2.4) 

 

The oil bearing capacity OSNTGz   can be replaced by OSporevolume . 

Total time of flight (TTOF) is the term highlighting the areas that are poorly drained and 

swept. Hence, the dynamic measure is computed as follows (Fig. 2.1), 

 

    TTOFSkkSPorevolumeDMMeasureDynamic OroO       (2.5) 

 

Using rank normalization to remove the influence of absolute values of each 

property, 

 

   RNRNRNRNRN krokPorevolumeSoTTFTDMMeasureDynamic     (2.6) 
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Fig. 2.1 Total time of flight (TTOF) in Dynamic Measure (Taware et al. 2012) 

 

 

2.2.3 Evolutionary Strategy 

2.2.3.1 Genetic Algorithm 

As we reviewed in previous section, genetic algorithms are most widely used 

methods for derivative-free optimization. The genetic algorithm imitates the biological 

principles of evolution, survival of the fittest. The fitness of each individual is evaluated 

based on their performance, measured as a fitness function. The genomes or 

chromosomes, which are the full binary string containing all variables, start from a 

randomly generated population and multiple individuals are stochastically selected to be 

directly manipulated through crossover and mutation, to generate a new generation. For 

genetic algorithm, crossover is the dominant operator while mutation is mainly used for 



 

15 

 

keeping the genetic diversity of the population (Cheng et al. 2008). Commonly, the 

algorithm terminates when a satisfactory fitness level or the maximum number of 

generations has been reached. 

In genetic algorithm, the parameters are generally expressed as binary strings of 

0’s and 1’s, called genotype. When evaluating their fitness, the binary strings should be 

decoded into phenotype and then, the objective function can be calculated. Imitating the 

biological principles of evolution, which is the survival of the fittest, the parameter sets 

with smaller data misfit have larger fitness.  

 

 

 

Fig. 2.2 The basic cycle of genetic algorithms (Weise 2008) 
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To start with, a diverse set of models comprising the initial population is created 

either randomly or within an experimental design framework (e.g. Latin hypercube 

sampling). The objective function of the current population is calculated, and then fitness 

values are assigned to each sample according to their objective values. The genetic 

algorithm selects a percentage of the population based on the value of fitness for breeding 

a new generation. The selection process is stochastic and random in nature. Genetic 

operators, mutation and/or crossover, are then utilized to reproduce a new generation. This 

process is repeated, as shown in Fig. 2.2  

Crossover is the key process of creating new samples, or offspring, by recombining 

old samples. It is assumed that recombination of fitter parents will reproduce well and 

even better performing offspring, thus accomplishing the major objective of increasing the 

fitness function. This operator randomly chooses locations and exchanges the 

subsequences before and after those locations between two parameter vectors. There are 

typically three types of crossover operation, as shown in Fig. 2.3, single-point crossover, 

multi-point crossover and uniform crossover. For single-point crossover, one single 

position is randomly chosen and parents swap their binary bits with each other; in multi-

point crossover, genome are partitioned into several segments and each of these segments 

(except for the first segment) take a crossover probability to swap with the same segment 

of the other genome; and for uniform crossover, each pair of bits form two parents will 

take a probability to swap. Generally speaking, the uniform crossover introduces diversity 

faster than multi-point or single-point crossover.  
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Fig. 2.3 (a) Single-point crossover; (b) Multi-point crossover; (c) Uniform crossover 

(from the top) 

 

 

Mutation imitates “asexual” influences to a genome by, for example, environmental 

change. It is a key component to introduce new diversity to the generation though mutation 

is commonly paradoxical because most of them are harmful or at most neutral (Sawyer et 

al. 2007). This operator randomly flips some of the bits in binary form parameters (Fig.16). 

Mutation can occur at each bit position in a string with some probability, which is usually 

very small. The mutation step typically follows crossover for each combined sample of 

string. For an optimization process, most of the hill climbing is via crossover while 

occasional mutation forces trial over all space, providing chances to find the global 

optima.  

 

 

Fig. 2.4 Uniform mutation 
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2.2.3.2 Genetic Algorithm with Proxy Modelling 

As we reviewed in previous section, hybrid methods are generally more efficient 

to find optimal solution. Guyaguler et al. (2004) showed hybrid stochastic algorithms 

with proxy modelling generally converge to reasonable solution with fewer evaluations 

compared to stochastic algorithms 

For this research, we utilized our group’s software, GLOBAL. The flowchart of 

GLOBAL is shown in Fig. 2.5. In order to more effectively select the large amount of 

samples proposed by genetic algorithm, a proxy model is used.  

Experimental design is used to generate a response surface. Genetic algorithm 

generation are initialized and updated with genetic operators implemented. Instead of 

evaluating each sample by running simulation, the proxy checks samples before going to 

the simulation step. The proxy check process estimates the objective function value from 

the response surface. The samples, whose estimated values satisfy the fitness criteria, will 

proceed to simulation. Other samples that fails to pass the proxy check are discarded, 

making the genetic algorithm work more efficiently. After evaluating one whole 

generation, a converge criteria is checked. If the convergence is not satisfied, then these 

evaluated samples are added into the proxy pool, thus proxy is updated, and then the GA 

process is repeated until convergence or satisfactory reservoir models are found. 
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Fig. 2.5 Workflow of Hybrid Genetic Algorithm 

 

 

2.3 Approach 

The better proxy model that hybrid methods are combined with, the more 

efficiently the algorithms can find optimal solution. Dynamic measure combines static 

properties and dynamic properties including Total Time of Flight. It is a good indicator 

of where oil remains in the reservoir and provides a possible well new location. 

However, the point with the highest dynamic measure value is not necessarily the 

optimal location for additional well. Nevertheless, the point with maximum value of 

dynamic measure is reasonably expected to be close to the optimal well location.  
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We can take advantage of dynamic measure to reach the optimal solution more 

efficiently. If we sample candidate well locations from the dynamic measure map and 

construct response surface with these locations, we expect to get the optimal solution 

with fewer evaluations. We used dynamic measure as a probability map. It means the 

points with higher value has more possibility to be selected for the initial response 

surface. We built a response surface from this probability map and used with genetic 

algorithm.    

We proposed two new approaches to obtain global optimum of the objective 

function. We will compare two new approaches in a later section with the simulation 

results and discuss what advantages our approach have over normal sampling. In this 

research, our objective function is cumulative oil production, however, we can solve this 

optimization problem for maximizing Net Present Value (NPV) also.  

 

2.3.1 Dynamic Measure Sampling 

In our first proposed approach, we sampled candidate well locations from the 

dynamic measure probability map according to their values. It is more probable that the 

cells with higher dynamic measure value are sampled for candidates. Then we 

constructed response surface for the genetic algorithm (GA) with the initial candidate 

well locations whose parameters are (i, j) locations in the reservoir model. Then, we 

updated the well locations using this response surface with genetic operators such as 

crossover, mutation and replacement. We called this proposed approach as ‘genetic 
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algorithm (GA) with Dynamic Measure (DM) sampling’. The workflow is shown in Fig. 

2.6.  

   

 

Fig. 2.6 Workflow of Genetic Algorithm with Dynamic Measure Sampling 

 

 

2.3.2 Hybrid Sampling 

 Second, we proposed a hybrid sampling scheme for the initial response surface. 

This approach is different from the first proposed approach in the way of sampling 

candidate well locations for the initial response surface. In this approach, we construct 

the initial surface from the initial population by random sampling together with the 
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initial population from the dynamic measure probability map (Fig 2.7). By adding this 

random sampling to dynamic measure sampling, we expect to expand the searching 

space that the dynamic measure might miss. We just added small number of initial 

candidate well location so as not to sacrifice computational efficiency. In our research, 

we sampled equal number of candidate well location from dynamic measure probability 

map and random sampling. We will show why we need this hybrid sampling with an 

example in a later section. 

 

 

Fig. 2.7 Workflow of Genetic Algorithm with Hybrid Sampling 
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2.4 Application 

2.4.1 Synthetic Case 

First, we applied our workflow to a 2D synthetic model case. The dimension of 

the model is 50 by 50 and we assumed a 2 phase, oil and water, reservoir. One producer 

and one injector were initially drilled as shown in Fig. 2.8. Producer was placed in upper 

left corner and injector is located at the center of the reservoir. In this model, oil has 

been produced for 2,000 days and we want to find the optimum infill well location for 

maximizing total cumulative oil production at 4,000 days.  

 

 

 

Fig. 2.8 Permeability distribution of a synthetic case 

 

 

As explained, dynamic measure map is obtained from one single reservoir 

simulation. From this simulation, we got all property values for each grid cell and 

combine these properties to get dynamic measure value for all possible well locations. 
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Fig. 2.9 Dynamic Measure map for 2-D synthetic case 

 

 

Fig. 2.9 shows the results of dynamic measure map for 2-D synthetic case. As 

shown in the figure, the location with the maximum values is in the upper right part of 

the reservoir. 

To compare the dynamic measure map with the actual simulation results, we ran 

about 2,500 (50 by 50) simulations for all possible candidate well locations and obtained 

cumulative oil production values for each cell. We called this map as exhaustive 

calculation map since these simulations covered all the grid cells.  Fig. 2.10 showed us 

the total oil production for all possible well locations.  As shown in the figure, the 

maximum total oil production is obtained in the upper right part of the reservoir. Both 

the location of the highest dynamic measure value and the optimum well location from 

exhaustive simulation results are in the upper right of the reservoir and these two 

locations are fairly close.  
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Fig. 2.10 Exhaustive Calculation Map shows Total oil production for all candidate well 

locations at 4,000 days 

 

 

 

But, when we look at the overall trends of dynamic measure map and exhaustive 

calculation map (Fig.2.10), we find the correlation between the two maps is not so 

strong. It means the overall trends are similar but a bad location of the dynamic measure 

map is not necessarily a bad spot in actual simulation results. Dynamic measure map 

itself can be a good starting point for locating best well location, it would be more 

accurate with the help of randomness. 

 We optimized well placement problems with three approaches and compared one 

another. Firstly, we ran the genetic algorithm with random sampling, Latin Hypercube 

Sampling (LHS) in this research, of initial population to construct response surface. 

Secondly, we sampled initial population from dynamic measure probability map and 

genetic algorithm was used also. Thirdly, we construct initial response by random 

sampling and dynamic measure sampling. 
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Fig. 2.11 Comparison between dynamic measure map (on the left) and exhaustive 

calculation map (on the right) 

 

 

Fig. 2.11 shows the results of each approach. The red circles represents the 

region around optimal solution. For the case of first approach, we might miss the optimal 

solution if we don’t provide enough randomness to genetic algorithm. The result of first 

approach in Fig. 2.12 is an example of missing the optimal solution. Generally, genetic 

algorithm is known to be useful for solving multi-modal and non-smooth problems, but 

we need to sacrifice computational efficiency to get the optimal solution. Even though 

genetic algorithm is combined with proxy model, there is trade-off between the quality 

of proxy model and the computational cost of the optimization. So, if we want to find 

optimal solution with less simulation (i.e. the number of population for the genetic 

algorithm needs to be small), then we need better proxy model than the one from random 

sampling. 
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(a) 

 
(b) 

 
(c) 

Fig. 2.12 An example of results from sampling techniques 

 

 

The second approach shows that the algorithm converges to the optimal location. 

Red dots in each approach are initial population which are candidate well locations and 

blue colored means that the candidate well locations come from the dynamic measure 

sampling.  If we look at the initial population of second approaches, we can find the 

initial candidate well locations are mostly distributed on the spots which we can get 

higher total oil production (Fig. 2.12). It means that we don’t need lots of generations for 
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genetic algorithm and can save lots of simulation since we have initial populations close 

to optimal solution. 

For the third approach, we have two initial population coming from random and 

dynamic measure sampling which are depicted in first and second map in Fig.2.12 (c) 

respectively. We add randomness to our first proposed approach by randomly sampling 

initial candidate well locations. As shown as in blue colored picture of Fig. 2.12 (c), we 

obtained a candidate location which is in the vicinity of optimal location for the initial 

population with the help of dynamic measure sampling. It enabled genetic algorithm to 

start searching from better locations. Also, we got more information from the wells 

sampled from random sampling. 

 

2.4.2 Field Case 

We applied our proposed approaches to a field case model whose dimension is 

58 by 53 by 10. This reservoir is a mature field in which there are 33 producing wells 

and 10 water injecting wells. The objective function is total oil production and we 

calibrate the location of a new infill well to achieve maximum total oil production. A 

vertical well is drilled at 3,840 days and dynamic measure probability map was 

generated from the simulation result at 3,840 days. Fig 2.13 shows the permeability 

distribution of the field. 
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Fig. 2.13 Permeability distribution of water flooding field 

 

 

 For this field case, we assumed a vertical well which is perforated all along the k 

direction, so the value of each grid (i, j) is summed up in the k direction. Dynamic 

measure map in Fig. 2.14 is depicted as 2D by the summation. The picture on the right in 

Fig. 2.14 show that we can get the optimal well location in the upper right part of the 

field. The good points on the dynamic measure probability map correlate to total oil 

production on the right except for the points in the top edge. From this point, the initial 

response surface by random sampling is necessary to expand the search space to the 

regions like top edge of the reservoir. 
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(a)                                                                      (b) 

 

Fig. 2.14 (a) Dynamic measure probability map; (b) Total production from 

exhaustive calculation 

 

  

Fig. 2.15 shows the result of each approach. As the results in synthetic case, our 

proposed approaches gives good convergence with fewer evaluations. In a previous 

section, there is no significant difference between the results of dynamic measure 

sampling and hybrid sampling (Fig. 2.12).  For this field case, the correlation between 

dynamic measure and total oil production results is not strong as the synthetic case in 

previous section. Dynamic measure probability map provide with good starting points by 

itself, but initial candidate well locations by random sampling can give us good 

information dynamic measure might miss.  

As shown in Fig. 2.15, hybrid sampling gave good convergence with fewer 

simulations compared to dynamic measure sampling technique. The advantage of hybrid 

sampling technique can be summarized as follows: 
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(1) Since it is based on genetic algorithm method, it can avoid being trapped in 

local minima if it has sufficient number of populations. 

(2) Combined with proxy modelling, it can converge to reasonable solution with 

fewer evaluations. Dynamic measure probability map is a good source of 

proxy model for the genetic algorithm so that it reduces the number of 

simulations to reach optimal solution. 

(3) Hybrid sampling technique can provide more efficiency compared to 

dynamic measure sampling only when dealing with more complex case. 

  

 

Fig. 2.15 An example of results from sampling techniques 
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 From the study of synthetic and field cases, we found that the correlation 

between dynamic measure and total oil production in the field case appears not as strong 

as the synthetic cases. If we compare the possibility that the population sampled from 

dynamic measure hit the upper 20% rank of actual total production location, the field 

case shows about 40 to 50 % level of the synthetic case. We can think this is because the 

reservoir responses get more complex for field cases and even more complicated with 

drilling more wells during the field development.  

Also, we found that oil saturation and oil relative permeability tend to show 

better correlation with actual simulation results than total time of flight for the reservoir 

in early stage with less number of wells, whereas total time of flight better contribute to 

the correlation in the relatively mature reservoir with many wells. More detailed and 

quantitative study might be necessary to analyze the contribution of each parameter to 

the correlation for more types of reservoir. However, parameters can play their roles 

more effectively when they are combined one another. 

 For 3D cases, we summed up dynamic measure value along the k direction and 

generated 2D map for the well placement because we consider a vertical well case. It 

means that we choose arithmetic average of dynamic measure in a column. We might 

use geometric average, but the dynamic measure map generated using geometric average 

usually shows worse correlation with the simulation results (Figure 2.16). 
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Fig. 2.166 Dynamic measure using geometric average along k direction 

 

 

2.5 Summary and Conclusions 

In this chapter, we proposed a hybrid sampling workflow using genetic algorithm 

and response surface, to obtain the global optimum solution for the well placement 

problems. Dynamic measure which is an indicator of remaining oil in the reservoir is 

combined with the hybrid sampling method and used as proxy model for the well 

placement optimization.  

Our workflow is based on hybrid optimization method in which genetic 

algorithm is associated with proxy modelling. Genetic algorithm proved to be a good 

tool for the well placement optimization. We can take advantage of avoiding being 

trapped in local minima using genetic algorithm. 

Candidate well locations from dynamic measure sampling technique is used to 

construct response surface to search the optimal well location. Proxy model sampled 

from dynamic measure probability map enabled genetic algorithm to converge to 

optimal solution with fewer evaluation. 
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 Hybrid sampling method is a combined sampling technique composed of 

dynamic measure sampling and random sampling. Randomly sampled candidate well 

locations can cover the region dynamic measure sampling might miss. Hybrid sampling 

method is considered to be more efficient than dynamic measure sampling. 
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CHAPTER III 

WELL PLACEMENT OPTIMIZATION FOR GREEN FIELD USING FAST 

MARCHING METHOD 

 

3.1 Introduction 

Contrary to the reservoirs which have matured to a production plateau or been 

declining and need fluid injection for improved recovery, primary depletion reservoirs, 

known as green fields, are mainly dependent on pressure depletion from producing wells. 

For primary depletion field, we can take advantage, in term of cost of computation, of 

using Fast Marching Method with which we can get diffusive time of flight. This diffusive 

time of flight term is analogous to convective time of flight in streamline simulation. 

The depth of investigation is defined as the propagation distance of peak pressure 

disturbance for an impulse source. By using asymptotic expansion of the diffusivity 

equation, we can obtain the propagation of the pressure front for heterogeneous reservoirs, 

which is in the form of an Eikonal equation. We can solve this equation with Fast 

Marching Method and get a diffusive time of flight at each and every cell within the 

domain. The advantage of using the Fast Marching Method is that we can get the frontal 

propagation very fast with a single non-iterative calculation.  

By consolidating the diffusive time of flight from Fast Marching Method into a 

new proposed dynamic measure for primary depletion field, we can get the proxy model 

for the genetic algorithm with hybrid sampling which is proposed in the previous chapter. 
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This new dynamic measure which is for the primary depletion field is validated through 

the well placement optimization problems in green field. 

We also extended our approach to dual porosity models. In dual porosity model, 

flow is assumed to be along the fracture network and between matrix and fracture. By 

incorporating mass transfer term which is the flow between matrix and fracture to the 

dynamic measure, we can derive an improved proxy model to get the optimal solution for 

the well placement problem in dual porosity model.  

 

3.2 Background 

We first review pressure front propagation equation from the depth of investigation 

and the fast marching method (FMM) which is a single-pass method. FMM is used to 

solve the Eikonal equation which is derived from the diffusivity equation. 

 

3.2.1 Propagation of Pressure Front 

Lee (1982) defined that ‘radius of investigation’ is the propagation distance of a 

‘peak’ pressure disturbance for an impulse source or sink. In heterogeneous reservoir, the 

pressure front is not expected to be uniform in all directions, so the “depth of 

investigation” is introduced in lieu of “radius of investigation”. To obtain the depth of 

investigation, an asymptotic solution for the diffusivity equation has been obtained (Vasco 

et al. 2000; Datta-Gupta and King 2007; Kim et al. 2009).  

The followings are the derivation of the pressure front propagation. We start from 

the multi-dimensional diffusivity equation for a heterogeneous system,  
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where, ϕ(x) is porosity and k(x) is permeability. We assumed constant fluid properties, 

viscosity (µ) and compressibility (ct). 

By applying a Fourier transform to this equation, it becomes the following in the 

frequency domain: 
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The asymptotic solution to this equation can be obtained by considering the 

following pressure solution in terms of inverse powers of i . 
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where, τ(x) is the diffusive time of flight denoting the propagation time of the pressure 

front, and )(xAj is the pressure amplitude at the j-th order. The leading order high 

frequency term in the asymptotic expansion determines the pressure front propagation as 

shown below, 

  

     xi
o exAxp 


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,~                                                        (3.4) 

 

By substituting this solution in Eq. (3.4) and collecting the terms with the highest 

order of i . Eq. (3.5) can be obtained for the pressure front propagation. 
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    1 xx                                                                                         (3.5) 

 

Where, α(x) is diffusivity term and is defined as, 
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Equation (3.5) is in the form of an Eikonal equation. It implies that the pressure 

front propagates in the reservoir with a velocity of the square root of diffusivity, α(x). 

Diffusive time of flight, τ(x) has the unit of square root of time which is consistent with 

scaling behavior of pressure diffusion. The pressure front propagation only depends on 

reservoir properties and fluid properties. Flow rates are not related with pressure front 

propagation. 

 

3.2.2 Fast Marching Method 

After deriving the pressure front propagation equation in the Eikonal equation 

form, the next step is how to solve this Eikonal equation efficiently. Instead of computing 

the diffusive time of flight by integrating along the pressure trajectories, we introduced a 

class of front tracking method, called the fast marching method (FMM) (Sethian 1999) to 

calculate the values of )(x


 . FMM is a single-pass method utilizing the concept that )(x


  

for the first-order PDE depends only on the value of  along the characteristics passing 

through the point x


 (Sethian 1996). Thus, the solution of   can be constructed in an 
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orderly one-pass fashion from smaller values of   to larger values. The basic framework 

for the fast marching method is as follows (Sethian 1999): 

(1) Label all grid nodes as unknown; 

(2) Assign values (usually zero) to the nodes corresponding to the initial position of 

the propagating front and label them as accepted; 

(3) For each node that is accepted, locate its immediate neighboring nodes that are 

unknown and label them as considered; 

(4) For each node labeled considered, update its value based on its accepted 

neighbors using the minimum of local solutions of Eq. (3) discussed later; 

(5) Once all nodes labeled considered have been locally updated, we pick the node 

which has the minimum value among them and label it as accepted; 

(6) Go to step (3) until all nodes are accepted. 

 

In a 5-stencil Cartesian grid, these steps are illustrated in Fig. 3.1. We put the initial 

source point for the propagating front and label it as accepted (solid red circle) as shown 

in (a). Then its immediate neighbors A, B, C, and D are marked as considered (circle), 

and the diffusive time of flight it takes for the pressure front to arrive at these four points 

are updated as shown in (b). The numbers on the lines indicate the diffusive time of flight

 it takes for pressure to propagate between the two adjacent nodes and the numbers inside 

the circles are the cumulative for the pressure to propagate to these nodes from the 

source.  
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Fig. 3.1 Illustration of FMM in 5-stencil Cartesian grid 

 

 

We pick up the smallest one (point A in this case), and make it as accepted as show 

in (c). Then its neighbors E, G and F are added into the considered and the for them will 

be updated as shown in (d).These steps will repeat for the next accepted point (like point 

D and then point H) as shown in (e) and (f). Basically, each time the new accepted point 

comes from the considered pool and has the smallest value of among all the considered 

points. If more than one point has the same smallest value of , we just accept them all at 

the same time. This process is repeated until the pressure front propagates the entire field.  

For 5-stencil Cartesian grid, we can directly update the cumulative value by writing Eq. 

3.7 in a standard finite difference notation as (Sethian 1996): 
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Here, the standard finite difference operator D  for ±x directions can be written as 

xD jiji

x

ij  

 /)( ,1,   and xD jiji

x

ij  

 /)( ,,1  . Similar equations hold for ±y 

directions. In Eq.6,  values at unknown points are regarded as infinity and the “max” 

function is used to guarantee the “upwind” criteria. Eq. 6 leads to a quadratic equation and 

its minimum positive root gives us the  value at point (i, j). 

Alternatively, for a lattice we can calculate the  values from each of the four 

quadrants (bottom-left, bottom-right, top-left, and top-right) and take the minimum 

value obtained. To locally calculate the diffusive time of flight it takes for front to 

propagate between two nodes separated by r , we can just use the following expression.  
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3.3 Dynamic Measure for Green Field 

In the previous chapter, dynamic measure is defined as the rank normalization of 

the static properties and the dynamic properties including Total Time of Flight (TTOF) 

of streamlines. For the green field case which is primary depletion reservoir, pressure 

best depicts the dynamic response of the reservoir. Consequently, diffusive time of flight 

term can take the place of convective time of flight term applied to water flooding, for 

the well placement optimization of green field case.  It is easily understood because 
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diffusive time of flight is a direct analogue for diffusive processes of convective time of 

flight, which provides the underlying technology for streamlines. 

As we reviewed in previous section, fast marching method is a very efficient tool 

to calculate the pressure front from source or sink. Therefore, we can get the value of 

diffusive time of flight in each and every grid cell from fast marching method. Like the 

time of flight of streamlines, the values of diffusive time of flight in cells give us the 

idea of where more hydrocarbon is remaining.  

Our proposed new dynamic measure is also composed of static and dynamic 

properties. Permeability and pore volumes are included in static properties and diffusive 

time of flight is used for dynamic measure. Other dynamic properties such as 

hydrocarbon saturation and its relative permeability are not considered here. It is because 

we assumed our reservoir model is single-phase and also has uniform saturation for the 

simplification purpose. 

So, the dynamic measure for green field using fast marching method is expressed 

as follows, 

 

   RNRNRN kPoreVolumeDTOFFMMDMMeasureDynamic _  (3.9) 

 

And, we obtain dynamic measure values for all grid cells. 

 We have also attempted other approaches to implement dynamic measure with 

fast marching method using drainage volume calculation. These are described in the 

Appendix C. 

 



 

43 

 

3.4 Application to Green Field 

We applied our new dynamic measure (DM_FMM) to a primary depletion 

reservoir. The field model in Chapter II was modified for the green field simulation. We 

assumed an undersaturated oil reservoir model with two existing producers. Our 

objective function is to maximize cumulative oil production by placing a new vertical 

well in the optimal location. The permeability of the field is shown as below (Fig. 3.2). 

 

 

 

Fig. 3.2 Permeability distribution of the green field 

 

 

Existing wells are assumed to be drilled initially and a new vertical well is to be 

drilled at 400 days. In this model, the diffusive time of flight (DTOF) is calculated from 

the existing two wells. DTOF value for each cell takes the minimum value of the values 

obtained from two existing wells. 
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We assumed a vertical well which is perforated all along the k direction for this 

research.  Therefore, the value of each grid (i, j) is summed up in the k direction as is in 

the previous chapter.  Dynamic measure map in Fig. 3.3 (a) is the 2D representation of 

the summation of dynamic measure. We also ran the simulation for every possible 

candidate well location with commercial reservoir simulator for the purpose of 

comparison with dynamic measure map. The optimal well location is located in the 

upper part of the reservoir (Fig. 3.3(b)).  

 

 

                   

(a)                                                              (b) 

Fig. 3.3 (a) Dynamic measure (b) Total oil production from exhaustive 

calculation 

 

 

 

Fig. 3.4 shows the convergence of candidate well location for random sampling 

method and hybrid sampling method. The second picture of Fig. 3.4 (b) represents the 

candidate well location using dynamic measure sampling. The correlation between 

dynamic measure and total oil production obtained from exhaustive simulation is fairly 
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good (Fig. 3.3) in this case. Therefore, some initial candidate wells sampled from 

dynamic measure probability map are very close to the optimal solution.  

Fig 3.4 (a) shows an example that random sampling method with small number 

of population can converge to local optimal location. To avoid this, genetic algorithm 

needs more initial population which results in increasing in the computational expenses. 

By using hybrid sampling method, genetic algorithm can converge with fewer 

simulations while avoiding local optima problem as shown as Fig. 3.4(b).  

 

 

 

(a) 

 

(b) 

Fig. 3.4 Comparison the results of (a) random sampling and (b) hybrid sampling 
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3.5 Application to Dual Porosity Model 

3.5.1 Review of Dual Porosity Model 

Naturally fractured reservoir is characterized by a presence of two distinct porous 

systems which are fractured porous networks and fine grained matrix blocks. In naturally 

fractured reservoirs, the mass transfer between matrix and fracture is an important 

component due to their geological characteristics. While the matrix system has low 

conductivity with large storage capacity relative to the fracture, the fracture network has 

high conductivity with very little storage because of its very low porosity. The concept 

of dual porosity and single permeability (DPSP) model is comes from that the two 

overlapping continua, which are fracture system and matrix system, exist and interact 

each other (Warren and Root 1963, Kazemi 1979). The fluid transport equation in the 

fracture system is given by an ordinary porous medium with an additional connection to 

the matrix block, whereas the matrix blocks act only as a source to the fracture system.  

Dual porosity modeling is computationally inexpensive compared with the 

Discrete Fracture Network (DFN) method which incorporates all fractures with complex 

fracture geometries. Fig. 3.5 are the illustrations of the fracture geometries in actual 

reservoir and the simplified grid block geometries in the dual porosity model. The dual 

porosity modeling has been traditionally utilized to model the fluid flows on the various 

scale medium using two simple coordinate systems (Blair 1964, Kazemi et al. 1979, 

Dean and Lo 1988).  
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Fig. 3.5 Discretization of the fractured porous medium (Warren and Root 1963) 

 

 

Warren and Root (1963) used pseudo-steady state equation to complete the dual 

porosity formulation. Their mass balance equation in the fractured system is expressed 

as a general mass balance equation with a matrix-fracture mass exchange term (Eq.3.10). 

 

 
𝜕(𝜌𝜙𝑓)

𝜕𝑡
= 𝛻 • (𝜌

𝑘𝑓

𝜇
𝛻𝑃𝑓) − 𝜌Γ + 𝜌𝑞𝑓 (3.10) 

 

where 𝜙𝑓 represents the fracture porosity, 𝑘𝑓 denotes the fracture permeability, and Γ 

represents the matrix-fracture volume transfer function. The sink or source term 𝑞𝑓 is 

imposed on the inner boundary condition of the fracture flow equation. 

  The transfer function is given by the Darcy equation-like form (Kazemi et al. 

1976) as follows, 

 

 Γ = 𝜎
𝑘𝑚
𝜇𝑢𝑝

(𝑃𝑓 − 𝑃𝑚) (3.11) 
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where 𝜎 denotes the shape factor (fracture density) that defines the connectivity between 

the matrix block and the surrounding fracture network. It is reasonable assumption that 

the matrix-fracture volume transfer is always governed by the matrix permeability (𝑘𝑚) 

due to its low conductivity 

 The flow equation for fracture system is, 

 

 
𝜕(𝜌𝜙𝑓)

𝜕𝑡
= 𝛻 • (𝜌

𝑘𝑓

𝜇
𝛻𝑃𝑓) − 𝜎𝜌

𝑘𝑚
𝜇
(𝑃𝑓 − 𝑃𝑚) + 𝜌𝑞𝑓 (3.12) 

 

And, the matrix flow equation is, 

 

 
𝜕(𝜌𝜙𝑚)

𝜕𝑡
= 𝜎𝜌

𝑘𝑚
𝜇
(𝑃𝑓 − 𝑃𝑚) (3.14) 

 

where 𝜙𝑚 and 𝑘𝑚 represent the matrix porosity and permeability, respectively. On the 

matrix coordinate system, the both inner and outer boundary conditions are imposed as 

no-flow boundary, thus the well term is absent in Eq. 3.14. The matrix system only plays 

as an additional source to the fracture system driven by the differential pressure between 

fracture and matrix blocks. 

 

3.5.2 Dual Porosity Model Simulation using Fast Marching Method 

Zhang et al. (2013) proposed a diffusive time of flight (DTOF) based numerical 

simulation associated with the transformation of a fluid transport coordinate from the 

physical 3-D space to the 1-D DTOF space. As in the Convective Time of Flight 
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(CTOF) applied to the streamline simulation, the DTOF embodies geological 

heterogeneities and reduces 3-D heterogeneity to a 1-D homogeneous problem along its 

coordinate. This dimension reduction results in substantial savings in computational time 

and allows for high resolution reservoir simulation. 

Yusuke (2014) extended this DTOF formulation to the dual porosity modeling 

for single-phase fluid flow problems. The additional coordinate, which is matrix system 

in dual porosity model, is added to the 1-D fracture system under following assumptions: 

(a) The FMM calculation only involves the fracture coordinate system. This means 

that the FMM calculates the front of the pressure propagation based on the 

fracture heterogeneities (𝑘𝑓  and  𝜙𝑓).  

(b) For simplifying assumption, the matrix properties (i.e. matrix porosity, 

permeability, shape factor) are assumed to be homogeneous and isotropic, 

because the geological heterogeneities of the matrix system are not accounted for 

the DTOF  

(c) These treatments will be valid when the fracture network is the system in which 

the pressure front primarily propagates through and when the matrix serves only 

as fluid source to the fracture system.  

In our research, we followed these assumptions using fast marching method. Fig. 3.6 

shows the illustration of the schematic of the DTOF-based dual-porosity model on the 1-

D DTOF coordinate. 
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Fig. 3.6 Dual-porosity model on the 1-D DTOF coordinate. (Yusuke 2014) 

 

  

3.5.3 Dynamic Measure for Dual Porosity Model 

In the previous section, dynamic measure for green field using fast marching 

method (DM_FMM) is defined as the rank normalization of permeability, pore volume 

and diffusive time of flight obtained from fast marching method. 

Unlike single porosity models we dealt with in previous section, dual porosity 

model has two system, fracture and matrix system, and there are transfers between 

fracture network and matrix blocks. This transfer function in single phase is expressed as 

follows: 

 

 
fm

m

mf pp
k

q 



        (3.15) 

 

As we reviewed in prior section, we followed the assumption that matrix 

properties (i.e. matrix porosity, permeability, shape factor) are homogeneous and 

isotropic. Therefore, the difference between matrix pressure and fracture pressure 

became our main concern in this research.  
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We incorporated the transfer term between fracture network and matrix blocks by 

adding pressure difference (pm – pf), to DM_FMM. So, the dynamic measure for dual 

porosity model using fast marching method (DM_DP) is expressed as follows, 

 

   RNRNRNmfRN kPoreVolumePDTOFDPDMMeasureDynamic _  (3.16) 

 

where, ΔPmf is the pressure difference between matrix and fracture. 

 

3.5.4 Dual Porosity Model Case 

We applied the new dynamic measure (Eq. 3.9) to dual porosity model. We 

demonstrated the naturally fractured gas reservoir with one initial vertical well (Fig 

3.7(a)).  The dimension of this model is 50 by 50 by 5 and the existing producer is at the 

center of the reservoir.  

Fig. 3.7 shows the distribution of matrix permeability and fracture permeability 

of dual porosity model. Each grid cell is depicted as a sugar cube composed two 

distinctive domains (Fig.3.7 (b)). The domain at center represents matrix system and the 

remaining part of the cell surrounding center cube depicts fracture system. According to 

our assumption, the matrix permeability is set as constant (1×10-4 md) and the matrix 

porosity is also homogeneous (0.1).  
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(a)                                                              (b) 

Fig. 3.7 (a) Sugar Cube Display of Permeability Distribution; (b) Left Lower section 

view 

 

 

       

(a) Permeablilty I                            (b) Permemalibity Z 

Fig. 3.8 Distribution of Fracture permeability of Layer 3 
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 According to our new dynamic measure for dual porosity model (DM_DP), we 

generated dynamic measure map (Fig. 3.9). 

 

 

 

Fig. 3.9 Dynamic Measure Map 

 

 

As shown in Fig. 3.9, the possible candidate locations can be largely grouped in three 

regions. We can expect to find optimal well location close to these areas. Fig 3. 10 

shows how transfer term affects dynamic measure. Without transfer term, dynamic 

measure shows higher values around boundaries (Fig. 3.10 (b)). By adding transfer term, 

which is the pressure difference between fracture network and matrix blocks, the region 

with higher dynamic measure value shift a little toward the center. 
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(a)                                                              (b) 

 

Fig. 3.10 Dynamic measure (a) with transfer term; (b) without transfer term 

 

 

 

To validate our dynamic measure for dual porosity model, we simulated for all 

possible well locations of candidate well with commercial simulation software. The total 

gas production for candidate well from is shown in Fig. 3.11 (b). The overall trends are 

very similar each other and the candidate optimal regions (red and yellowish area) in 

dynamic measure probability map shows good match with the regions showing high gas 

production in Fig. 3.11(b).  
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(a)                                                         (b) 

 

Fig. 3.11 Comparison of (a) Dynamic Measure (b) Exhaustive Simulation 

 

 

The following figure shows how genetic algorithm converges to the optimal well 

location. As expected, hybrid sampling is more efficient to converge to global optimal 

solution.  

 

 

Fig. 3.12 An example of results from (a) random sampling and (b) hybrid sampling 
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3.6 Summary and Conclusions 

 In this chapter, we proposed new dynamic measure for primary depletion 

reservoir. For primary depletion reservoir, we introduced diffusive time of flight term 

instead of the convective time of flight term used in waterflooding. Diffusive time of 

flight is a direct analogue for diffusive process of convective time of flight, which 

provides the underlying technology for streamlines.  

 Fast marching method (FMM) is used to calculate the diffusive time of flight 

(DTOF). Starting from asymptotic expansion of the diffusivity equation, we can obtain 

the propagation of the pressure front for heterogeneous reservoirs, which is in the form 

of Eikonal equation. This Eikonal equation is solved efficiently by applying FMM. This 

algorithm provides DTOF values from the source in every grid cells. 

 The new dynamic measure which is composed of permeability, pore volume and 

DTOF shows good correlation with exhaustive simulation results. As we showed in 

previous chapter, better initial candidate locations for constructing response surface for 

genetic algorithm give faster convergence to the global optimal solution with fewer 

number of simulations. 

 We extended the dynamic measure using fast marching method to dual porosity 

model. In dual porosity model, flow is assumed to be along the fracture network and also 

between matrix system and fracture system. Therefore, we considered the transfer 

between matrix and fracture in addition to the flow in the fracture network. For dual 

porosity model, we were able to take advantage of 1-D DTOF coordinate. Consequently, 
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we reduce computational expenses not only from hybrid sampling technique but also 

from fast marching method associated with 1-D DTOF coordinate. 
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CHAPTER IV 

RESERVOIR CHARACTERIZATION USING A STRUCTURED HISTORY 

MATCHING TECHNIQUE 

 

 4.1 Introduction 

Understanding the proper geologic characteristics in the reservoir is one of the 

key aspects of reservoir management, especially in terms of the water flood optimization 

or the infill location determination. However, in the field with geological complexity, 

detailed reservoir characterization will be quite challenging because the reservoir fluid 

dynamics are composite responses of the heterogeneous geologic features and the field 

operations.  

A structured history matching approach which consists of global calibration and 

local calibration is used for this study. For the global calibration, development of 

multiple models which match the field performance is our goal. Key global parameters 

which heavily affects the model response like bottom-hole pressure are selected through 

a sensitivity analysis. Design of experiments and response surface methodology with 

evolutionary algorithms such as genetic algorithm are used to calibrate these key global 

parameters. Then, local calibration using streamline based sensitivity and generalized 

travel time inversion technique are performed. We utilize streamline-derived analytic 

sensitivities to determine the spatial distribution and magnitude of the local permeability 

changes.  
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4.2 Background 

We review the optimization methods for history matching in this section and 

explain the workflow of streamline-based generalized travel time inversion (GTTI) 

technique as well as response surface methodology. 

 

4.2.1 History Matching Overview 

Calibrating reservoir models to match the history data is essential to predict 

future reservoir behavior with confidence. Also, it is important to perform computer 

experiments on methods of managing the reservoir (Oliver and Chen 2011). By 

calibrating the reservoir models, we intend to adjust the values of the model parameters 

so that the mathematical model of the reservoir can reproduce the observed behavior as 

close as possible. It generally involves an inverse problem, which is a history matching 

process. 

In manual history matching, a structured approach is widely used where the 

sequence of scales of adjustments has been from global, then to flow units which is 

regional, followed by local changes in model parameters (Cheng et al. 2008). The 

quality of manual history matching result largely depends on the experience of the 

reservoir engineers. For large fields, this process becomes very hard to investigate 

relationships between the model responses and variations of different reservoir 

parameters.  

There have been marked progresses in the ability to generate simulation models 

to match large amounts of production data by assisted history matching methods in the 
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last several decades. It is basically similar to manual history matching, except computers 

and software tools are employed to adjust the reservoir parameters rather than direct 

intervention of reservoir engineers. Assisted history matching can be treated as a 

minimization problem, whose objective generally includes a predefined data misfit 

function and penalty terms to match the observed response. There are several approaches 

to such minimizations (Yang and Watson 1987; Bissell et al. 1992; Reynolds et al. 1996; 

Oliver et al. 1997; Datta-Gupta et al. 2001; Cheng et al. 2008) and they can be broadly 

classified into three categories: gradient-based, sensitivity-based, and derivative-free or 

direct search methods, respectively.  

The gradient-based methods, such as Gauss-Newton method, are intuitive as long 

as a mathematical minimization of the objective function is well defined. But they 

generally converge slowly (Bissell et al. 1992) and easy to lead to the nearest local 

minimum from the starting point instead of the global minimum (Williams et al. 2004; 

Landa et al. 2005).  

Sensitivity-based methods, such as LSQR, have drawn attention due to their 

faster convergence compared to the gradient-based methods. However, it can be 

computationally expensive to calculate sensitivity coefficients, which are the partial 

derivatives of the production response with respect to the reservoir parameters of 

interest.  

The streamline-based generalized travel time inversion (GTTI) technique has 

proven to be an effective method for calculating the parameter sensitivities (Datta-Gupta 

et al. 2001; Cheng et al. 2005). It can analytically compute the parameter sensitivities 
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involving 1D integration along streamlines, which can be generated from either a 

streamline or a finite-difference simulator.   

However, most of deterministic approaches mentioned above generally start with 

a single initial geological model so that they strongly depend on quality of the initial 

model. There have been many cases of misrepresentation of large-scale features such as 

fault communications and pore volumes resulting in unphysical model updates in fine 

scale reservoir permeability. This is due to the local search nature of the deterministic 

technique and its deficiency in handling various scale uncertainties. In contrast, global 

search algorithms avoid the problem of convergence to local optimum nearest to the 

initial starting point (Cheng et al. 2008) and are able to reconcile multi-scale 

uncertainties simultaneously. Global search techniques such as simulated annealing (SA) 

(Galassi 2009; Ouenes and Bhagavan 1994), Markov chain Monte Carlo (MCMC) (Ma 

et al. 2006; Sambridge 2002) and genetic algorithms (GA) (Holland 1992) have been 

known to be effective for history matching problems. The advantage of these stochastic 

search techniques is that they require neither complicated differential equations nor a 

smooth response space. The primary challenge is that they require large number of flow 

simulations, which can be computationally prohibitive when the parameter space is very 

large. Consequently, sensitivity analysis is introduced to rank the importance of model 

parameters and screen insignificant ones, and the proxy model is introduced as a 

surrogate to avoid simulations for less likely model candidates (Cheng et al. 2008; Pan 

and Horne 1998; White and Royer 2003; Yeten et al. 2005; Yeten et al. 2002). 
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4.2.2 Genetic Algorithm with Proxy Modeling for History Matching 

 We have applied experimental design and response surface methodologies with 

evolutionary algorithm for calibration of parameters and to history match production 

data. The workflow for assisted history matching using proxy and Genetic Algorithm 

(GA) is similar to the one used in Chapter II. A set of key parameters are selected by 

sensitivity analysis. The objective functions with respect to selected key parameters are 

used to generate a response surface proxy using experimental design and response 

surface methodology. The proxy model is constructed to filter the model whose 

objective function is higher than unacceptable threshold without running the actual 

simulation. The evolution is initialized from a set of randomly generated potential 

individuals. In each generation, the objective function of each individual in the 

population is evaluated with proxy check. Individuals are randomly selected from 

current population and modified via GA operators (selection, crossover and mutation) to 

generate a new population for next iteration. The iteration stops when the maximum 

number of generations has been reached or satisfactory solution has been achieved. 

 

4.2.3 Streamline-Based Generalized Travel Time Inversion (GTTI) 

The goal of GTTI is to calibrate geological model parameter such as permeability 

or porosity distributions to historical dynamic data. The complete GTTI approach 

workflow is outlined in Figure 4.1. 
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Fig. 4.1 History matching work flow using GTTI 

 

 

For this kind of inversion problem, the following penalized misfit function is 

minimized:  

 

RLRRSd  21           (4.1) 

 

In the above expression, δd is the data residual vector. It quantifies the difference 

between the observed and calculated production response and will be expressed by GTT 
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as discussed later. S is the sensitivity matrix that accounts for the change in production 

response because of a small perturbation in reservoir properties such as permeability or 

porosity. In other words, sensitivity is simply the partial derivative of production response 

such as the water front arrival time with respect to the permeability of each grid cell. Also, 

δR corresponds to the change in the reservoir property and it will be solution of this 

inversion problem. L is a second spatial difference operator. The first term is called the 

‘data misfit’ term that minimizes the difference between the observed and calculated 

production response. History matching approach can be diverse according to this data. In 

this project, data misfit is represented by GTT of water-cut profile at the individual well. 

The second term, ‘norm constraint’ ensures that the final model is not significantly 

different from the initial model. This is justified because our initial or prior model already 

contains sufficient geological and static information related to the reservoir. Finally, the 

third term, ‘roughness penalty’ simply recognizes the fact that production data are an 

integrated response and are, thus, best suited to resolve large-scale structures rather than 

small-scale property variation. In order to carry out history matching project, data misfit 

and sensitivity matrix are integral information and thus they need to be computed. GTTI 

consists of following steps. 

 

4.2.3.1 Computation of Data Misfit 

Data misfit is expressed by a GTT at each producing well. GTT is computed by 

systematically shifting the computed production response toward the observed data until 

the cross correlation between the two production profiles is minimized. By defining GTT, 
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we effectively reduce the data mismatch at a well into a single travel-time shift. We are 

also able to retain many of the desirable properties of travel-time inversion such as a quasi-

linear relationship between production response and model parameters. This is explained 

more in detail in Appendix A.  

 

4.2.3.2 Streamline-Based Sensitivity Computations  

Streamline trajectories can be acquired directly from the streamline simulator or 

can be calculated from the fluid fluxes obtained from the finite-difference simulator with 

time of flight. Streamlines can account for complex geometry and faulted systems such as 

non-neighbor connection. The time of flight is then used to compute the sensitivity of GTT 

with respect to reservoir model parameters. Note that the sensitivity computations require 

a single flow simulation regardless of the number of parameters. This is explained in detail 

in Appendix A. 

 

4.2.3.3 Reservoir Model Updating by GTT 

This step involves computing the changes in the model parameters by minimizing 

Eq.(4.1) with a least-squares minimization technique that uses the streamline-derived 

sensitivity coefficients. Additional constraints are imposed to penalize deviation from a 

prior or initial model to preserve geologic realism and to restrict permeability changes to 

large-scale trends consistent with the low resolution of the production data.  
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4.3 Approach 

 The history matching process for this research consists of two major steps. First, 

reservoir energy balance is checked field wide by the given bottom hole pressure data. 

Second, the well production data are matched using streamline based Generalized Travel 

Time Inversion (GTTI) technique by modifying local permeability near the wells. 

 In the global calibration, we use design of experiments and with response surface. 

The global calibration workflow follows the steps outlined by Schulze-Riegert et al. 

(2002), Cheng et al. (2008), Yin et al. (2010) and Yin et al. (2011). The global objective 

function is defined as the sum of logarithms of multiple misfits between simulated and 

observed data which quantify reservoir energy and flow at a global level, such as field 

total fluid productions (total liquids, total water, and total gas), well shut-in bottom hole 

pressures (SBHP). The outcome of the global calibration is an ensemble of plausible 

geological models matched to the reservoir energy and large scale connectivity. 

 

 

Fig. 4.2 Overview of hierarchical history matching (Yin et al. 2011) 

 

 

The global updates are followed by local calibration where local parameter 

sensitivities are used to match water-cut development and well by well response. 
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Specifically, grid-scale permeability will be adjusted for each ensemble member of the 

global match in order to match the water-cut, gas-oil-ratio and flowing bottom-hole 

pressure.  

 

4.4 Geologic Model 

The field data have been provided by an oil and gas company for the purpose of 

research and education. Citations of information from field related literature are not 

offered for the sake of confidentiality. 

The field is producing oil from Miocene reservoirs. Our main interest is in the 

deeper reservoir of the two Miocene reservoirs. This reservoir is characterized as sand-

field channels and overbank deposits in the combination of structural and stratigraphic 

traps. A major west-east fault dipping to the north and stratigraphic pinch out is in the 

northeastern and eastern parts. The oil-water contact (OWC) of the main part of the 

reservoir is estimated at 14,300 ft according to literature review.  
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Fig. 4.3 The structure of the reservoir 

 

 

There are 7 producers and 2 water injectors in this reservoir model. Our 

geological model has 50 by 30 by 20 dimension and there are 7 geological regions which 

are divided according to seismic amplitude difference in 6 years. If we have dimming 

seismic amplitude, we can attribute it to increasing water saturation. Therefore, the 

amplitude outline gives a good indication of the extent of the sand in north-south 

direction. 
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Fig. 4.4 Seven geological regions by seismic amplitude change 

 

 

 After literature review of turbidite reservoir characterization, multiple geologic 

models were generated by three chosen criteria, architecture, net sand thickness and 

connectivity. We built low, mid and high cases for each criterion. For example, low 

amalgamated, mid amalgamated and high amalgamated models were generated for the 

criterion of architecture. Each of the 27 geologic models was calibrated using proxy GA 

to condition well data including shut-in bottom-hole pressures and cumulative liquid 

productions. Each updated ensemble of geologic model realization provides an 

estimation of STOIIP. Specifically, for each geologic model, regional and inter-regional 

uncertainties were introduced and analyzed including pore volume multipliers and 
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horizontal permeability multipliers, and aquifer strength. Table 4.1 shows the final list of 

key global variables for GA after sensitivity analysis of a selected geologic model, and 

the right column shows a realization of updated multipliers. 

 

Table 4.1 List of key global variables and their ranges from sensitivity analysis 

Variable Multiplier Min Max Result 

PERMX3 0.1 1.0 0.497 

PERMX5 0.1 2.0 0.521 

PERMX6 0.1 1.0 0.232 

Kv/Kh 0.05 1.0 0.191 

PORV2 0.1 1.0 0.389 

PORV5 0.1 1.5 0.595 

AQUIFER 100 500 172 
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Fig. 4.5 Global pressure match 
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4.5 Simulation Results 

4.5.1 Global Pressure Match 

 Fig. 4.5 shows the well bottom hole pressure match for one selected geologic 

model after global update. Black dots are actual history data of bottom-hole pressure, 

blue lines represents the bottom-hole pressure of initial model and red lines are updated 

bottom-hole pressure after global match. The overall pressure has been lowered after we 

updated global parameters. We checked the adjusted simulation model with actual data. 

The overall pressure match has been improved. 

 

4.5.2 Local Saturation Match 

The well-level history matching results are shown in Figure 4.6. Let’s discuss the 

history matching procedures with well A2 results in this figure. GTTI investigates the 

water front movement and its arrival time via the well water cut profile. In Figure 4.6, 

the initial simulation model results (blue dashed line) show the earlier water 

breakthrough and consequently has less oil production than the field history. In order to 

mitigate this time discrepancy, GTTI defines the sensitivity coefficient using streamline 

trajectories. With streamline trajectories, we can easily define the effective region for the 

water production of a well and also can compute the sensitivity value analytically. Then, 

connectivity or permeability between the producer, A2, and injectors nearby or water 

influx are updated based on the data misfit. In the A2 case, the permeability around 

CM109 decreased to move the water front arrival backward. The oil production rate 

match concurrently improved as a result of the water cut matching. 
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Basically, the GTTI considers the water breakthrough time in the water cut 

profile as data for the history match. However, often the water cut mismatch between 

production history and the simulation results is not due to the connectivity between the 

producer and injectors. Other reasons such as locally low reservoir pressure or a small 

productivity index may cause the water cut misfit. If we modify the well connectivity 

carelessly in those cases, the reservoir characterization may deteriorate. 

 

 

       

 

Fig. 4.6 Local saturation match (Well water cut) 
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Fig. 4.7 Permeability change after local update (a) layer 4, (b) layer 5, (c) layer 7, (d) 

layer 14, (e) layer 15 

 

 

 Fig. 4.7 shows the permeability changes in several layers through the local 

saturation updates. Red color represents that permeability has been decreased via 

updates, whereas blue color shows permeability has been increased during the updates. 

Overall, red color dominates blue color throughout the layers. It means our connectivity 
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level may be higher than actual field data. The red colors are around A7 and between A5 

and A7. It means the transmissibility between A7 and A5 are lower than our initial 

geologic model. It might be the evidence that the channels are not as much amalgamated  

with each other as we originally thought. However, if we start from a different 

geological realization with less amalgamated model, the permeability changes would be 

different and we may see increased transmissibility probably between the producing 

wells through the updates. We need to be more cautious when we select the parameters 

and analyze how they are sensitive to our objective function.  

 

4.6 Summary and Conclusions 

In this chapter, we presented a workflow of structured history matching approach 

and applied it to a turbidite reservoir. The hierarchical workflow composed of global and 

local calibration will provide a useful tool for reservoir characterization.  

 A hybrid stochastic approach based on the genetic algorithm combined with a 

proxy model for the objective function more effectively finds preliminary solutions for 

global parameters by matching pressure response. Then, solutions acquired from global 

calibration are used for the local updates. 

 Streamline-based sensitivity and Generalized Travel Time Inversion (GTTI) 

algorithms are used for local calibration. Streamline-derived analytic sensitivities are 

used to determine and update distribution and magnitude of permeability near wells. 

With the reservoir energy level calibrated from global updates, the GTTI technique finds 

solutions very quickly for global updated models.  
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  Within the GTTI algorithms, the local permeability changes are regularized by 

the term of nom constraint such that the final model is not significantly different from 

the globally updated models. Therefore, we can match the local distribution while 

keeping the global energy level. 

 

 

 

 

 



 

77 

 

CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

In this work, we have presented the applications of hybrid optimization methods 

to the problems of field development. During the field development, finding optimal 

well locations and prediction of the reservoir responses are very crucial to make the 

project successful one. Reliable models obtained through the history matching processes 

helps to understand how the reservoir performance will be and to select optimal well 

location plan for the future development. 

First, we proposed the workflow of a hybrid sampling method associated with 

genetic algorithm and applied it to waterflooding field case. The response surface 

methodology combined with dynamic measure sampling technique provides the proxy 

model for the genetic algorithm. Also, we combined initial candidate well locations 

sampled from design of experiments for the purpose of exploring the regions dynamic 

measure sampling might miss.  

Second, we presented a new dynamic measure for fields under primary depletion. 

Instead of the convective time of flight term used for the waterflooding field case, we 

introduced the diffusive time of flight term calculated from the fast marching method. 

Diffusive time of flight is a direct analogue for diffusive processes of convective time of 

flight, which provides the underlying technology for streamlines. We also extended our 

approach to the dual porosity model. In dual porosity model, flow is assumed to be along 
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the fracture network and between matrix and fracture. Therefore, we added the transfer 

term between matrix and fracture to dynamic measure to incorporate the inter-porosity 

flow. 

Third, a structured history matching approach which consists of global 

calibration and local calibration was presented. Key global parameters which heavily 

affect the model responses are selected through a sensitivity analysis. Design of 

experiments and response surface methodology with evolutionary algorithms such as 

genetic algorithm are used to calibrate these key global parameters. Then, local 

calibration using streamline based sensitivity and generalized travel time inversion 

technique are performed. We utilize streamline-derived analytic sensitivities to 

determine the spatial distribution and magnitude of the local permeability changes.  

In conclusion, dynamic measure, an indicator of remaining oil in the reservoir, is 

consolidated with the hybrid sampling method and used as a proxy model for the well 

placement optimization. Genetic algorithm proved to be a good tool for the well 

placement optimization since it avoids trapping in local minima. Proxy model sampled 

from dynamic measure probability map enabled genetic algorithm to converge to 

optimal solution with fewer evaluation. Hybrid sampling method is a combined 

sampling technique composed of dynamic measure sampling and random sampling. 

Randomly sampled candidate well locations can cover the region dynamic measure 

sampling might miss. Hybrid sampling method proved to be more efficient than dynamic 

measure sampling. 
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For primary depletion reservoir, the new dynamic measure which is composed of 

permeability, pore volume and DTOF showed good correlation with exhaustive 

simulation results. As we shown in the chapter II, better initial candidate locations for 

genetic algorithm give convergence to the global optimal solution with fewer number of 

simulations. Also, we extended dynamic measure using fast marching method to dual 

porosity model. By considering the transfer between matrix and fracture in addition to 

the flow in the fracture network, we obtained better correlation. For dual porosity model, 

we were able to take advantage of 1-D DTOF coordinate. Consequently, we reduced 

computational expenses not only from hybrid sampling technique but also from fast 

marching method associated 1-D DTOF coordinate. 

The hierarchical workflow composed of global and local calibration has several 

advantages. First, a hybrid stochastic approach based on the genetic algorithm combined 

with a proxy model for the objective function more effectively finds preliminary 

solutions to match global parameters like bottom-hole pressure. Second, streamline-

derived analytic sensitivities are used to determine and update distribution and 

magnitude of permeability near wells. With the reservoir energy level calibrated from 

global updates, this GTTI technique finds solutions very quickly for global updated 

models. Third, within the GTTI algorithms, the local permeability changes are 

regularized by the term of nom constraint such that the final model is not significantly 

different from the globally updated models. Therefore, we can match the local 

distribution while keeping the global energy level. 
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5.2 Future Work and Recommendations  

In our study, genetic algorithm (GA) is used to establish workflows to 

accomplish model calibration and data integration. For hybrid stochastic methods, there 

are some other stochastic algorithms such as Particle Swarm Optimization (PSO) used 

for optimization problems in field development. We may try which optimization 

methods will be more suitable for each kind of optimization. If we find more suitable 

algorithm for a specific optimization, we will find solutions more efficiently. Even with 

genetic algorithm, we may find better set of GA operators through sensitivity analysis. 

In this work, we assumed a vertical well for the well placement optimization 

problems. Our work can be applied to conventional type of wells. However, it is 

necessary to extend our work to non-conventional type well problems. More studies 

about well types and well patterns will be needed to solve the optimization problems for 

non-conventional wells which have now become very common. 

 The proposed dynamic measure in Chapter III is applied to single phase 

reservoir. It can be extended to multi-phase reservoir with the advent of more elaborate 

application of fast marching method. 

 For dual porosity model, we can further explore the effect of other parameters 

which can affect the flow rate, such as interporosity flow coefficient and storativity ratio. 

The effect of these two terms doesn’t appear significant in our study. However, if we 

apply this method to different types of reservoir, such as extremely tight reservoir, the 

effect might be significant. 
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APPENDIX A 

GENERALIZED TRAVEL TIME INVERSION 

 

GTT and Data Misfit 

Geologic model calibration via Generalized Travel Time Inversion (GTTI) 

requires minimization of  the data misfit in  

 

RLRRSd  21            (A.1) 

 

As shown in Figure A.1, we systematically shift the simulated WWCT curve and compute 

the correlation coefficient between the observed WWCT curve and shifted simulated 

WWCT curve. For instance, suppose that we shift 360 days the original simulation 

WWCT. The shifted WWCT curve will be located as shown in Figure 1(a), and then 

correlation coefficient with the observed history is computed. This calculated correlation 

coefficient consists of one point in Figure 1(b). Similarly we repeat the shifting and 

correlation coefficient calculation within entire production range. The ‘optimal’ shifting 

time, which we call GTT, is given at the maximum correlation coefficient. In the example 

in Figure 1, GTT is 560 days. In GTTI approach we handle a single data misfit value an 

individual well. This aspect facilitates a quasi-linear behavior during inversion process 

more than the case of the amplitude misfit of individual WWCT point. In other words, the 

relationship between the well production performance given by GTT and reservoir model 

parameter is more linear than that between individual WWCT point and parameters. This 
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quasi-linear behavior is a favorable characteristic for inversion process and is encapsulated 

by sensitivity coefficient of each grid property as discussed in next section. 

 

 

             

Fig. A.1 Example of Determination of GTT 

 

Streamline-Based Sensitivity Coefficient 

Sensitivity Coefficient 

Sensitivity is simply the partial derivative of the well production performance 

which is represented by GTT with respect to the model property of each grid. It is more 

demonstrative when we review the sensitivity matrix and its component in Eq. A.2 

(a) Shifting of WWCT curve (b) Correlation Coefficient 
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Where, 

N: the number of dynamic data 

M: the number of model parameters (i.e. number of permeability (grid block)) 

d: dynamic data (i.e. GTT of WWCT) 

m: model parameter (i.e. permeability) 

 

For instance, d1 is the GTT of WWCT in well #1, and ∂d1/∂m2 is the change of the 

arrival time of the water front in well #1 resulting from a perturbation in the permeability 

of grid block #2.  

The next basic concept for streamline based formulation is coordinate 

transformation from physical space to time-of-flight.  
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Fig. A.2 Time of Flight as a Coordinate System 

 

 

Figure A.2 describes the concept of time of flight as a coordinate system. We can 

locate the position when time of flight is known along specific streamline. This can be 

expressed by following mathematical formulation: 
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We can derive the sensitivity of time-of-flight as shown in Eq. A.4  
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Thus, the time of flight sensitivity of a certain grid can be simply computed by the time of 

flight after streamline tracing since the time of flight is also computed during calculation 

of the streamline trajectories. This time of flight sensitivity makes a great role in dynamic 

data integration afterward. 

 

Water-cut Sensitivity 

In this section we will review the sensitivity of Well Water Cut (WWCT) in the 

incompressible case for convenience of derivation. Using incompressibility and the 

operator identity in Eq. A.5 the continuity equation for the water phase is simplified as 

follows: 
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Eq. A.5 is the Buckley-Leverett equation for incompressible flow in the time of flight 

coordinate system. We can rewrite Eq. A.6, 

 

w

w

Sw dS

df

t





          (A.6) 

 

The physical meaning of Eq. A.7 is the velocity of a given saturation contour 
wS  along a 

streamline. Thus, the arrival time of the saturation front is 

 

w

w

dS

df
t             (A.7) 

 

Finally, the sensitivity of the saturation arrival time with respective to reservoir parameter 

m is computed with Eq. A.4 as 
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The time of flight sensitivity in Eq. A.4 plays a critical part of the analytical formulation 

of GTT of WWCT sensitivity.  
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APPENDIX B 

FAST MARCHING METHOD 

 

 

Figure B.1 Schematic description of the fast marching method showing the propagation 

of pressure waves in an orthogonal mesh grid 

 

 

Figure B.1 shows an illustration of the Fast Marching Method, where the well location is 

first labeled as ‘accepted’ points (τ=0). Their adjacent nodes are labeled as ‘neighbor’ 

points and the rest nodes are called ‘far-away’ points. Now to calculate the arrival time at 

each point, the following procedure is applied: 

 

1. Start from the ‘accepted’ points, 

2. Calculate the arrival time of their ‘neighbor’ points (A, B, C, D, etc.) using the finite 

difference approximation 
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3. Pick the minimum arrival time in the current ‘neighbor’ points, 

o Label it as ‘accepted’ (e.g., Point A in B-1b) 

o Add its neighbors that are in ‘far-away’ as ‘neighbors’, (e.g., Points E, F 

& G in B-1d) 

4. Repeat steps 2 and 3 until all the points in the domain are labeled as ‘accepted’. 
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APPENDIX C 

DYNAMIC MEASURE THROUGH DRAINAGE VOLUME CALCULATION 

WITH FAST MARCHING METHOD  

 

In chapter II, we showed how we formulate the dynamic measure for green field. 

The proposed dynamic measure is composed of static and dynamic properties which are 

permeability, pore volume and diffusive time of flight (DTOF) and it is expressed as 

follows, 

 

   RNRNRN kPoreVolumeDTOFFMMDMMeasureDynamic _    (3.9) 

 

Here, the term, DTOF, is the measure of how fast the pressure front from source or sink 

spreads out in the reservoir. In other words, it can be a way of calculating the drainage 

volume from the well. As we discussed in chapter II, we can obtain the pressure front 

propagation arrival time at each grid by applying the fast marching method. When the 

pressure front arrives at that grid, it indicates that this grid is starting to be drained. The 

mesh grids which have smaller values of arrival time than the considered time have 

already been drained. Therefore, the drainage volume at any time can easily be estimated 

by summing up the pore volumes of the mesh grids within that time contour. So, if we 

know the physical propagation time from the well, then we can calculate the drainage 

volume of the well at the considered time. It is explained how the physical propagation 

time is obtained from DTOF value in Xie et al. (2012)’s work. 
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 The following pictures shows you that how we calculate drainage volume (DV) 

from the two wells drilled at different time. 

 

(a)                                    (b)                                (c)                            (d) 

Figure C.1 Calculation of drainage volume from two wells 

 

 

Suppose well 1 (W1 in the figure C.1) was drilled initially and we are looking for the 

optimal well location for the new well 2 (W2 in the figure C.2) at time, t1. Since well 1 

has been producing until the time t1, well 1 has drainage volume from the well 1 itself to 

the contour of physical propagation time of t1 (figure C.1 (a)). After the time t1, we need 

to calculate drainage volume of two wells. During the time period from t1 to t2 (the 

considered time), the propagation of well 1 starts from the contour of well 1 at the time 

of t1 and the propagation of the well 2 starts from well 2 itself. The cells in the reservoir 

will have two propagation time values from two wells. At this time, we should compare 

the incremental propagation time (which is t2 – t1) from the contour of well 1 from t1, 
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with the incremental propagation time from the well 2. Figure C.1 (b) and (c) shows the 

drainage volume for each well during the time span, t1 to t2. For overlapped regions, if a 

cell has the smaller incremental propagation time from well 1, then the cell is thought be 

drained from the well 1 first and is included the drainage volume of well 1. 

 Since our goal is to find a well location to produce maximum production, we will 

choose the possible well location of well 2 that gives us the biggest total drainage 

volume. If we have more drainage volume from the well 1 and well 2, we expect to have 

more production. In this sense, dynamic measure for green filed using fast marching 

method can be expressed as, 

 

   RNRN kDVDVFMMDMMeasureDynamic __                           (C.1) 

 

 

Here, dynamic term is drainage volume which incorporates pore volume in it and static 

properties is permeability. Note that the drainage volume is the total drainage volume of 

existing and new wells. Fig. C.2 shows comparison of dynamic measure with drainage 

volume calculation and the result of commercial software. We obtained good match with 

the actual simulation results. 

  However, for this dynamic measure, we have to calculate total drainage volume 

exhaustively for the possible well location. Because the computational efforts of fast 

marching method is much less compared to commercial simulator, it doesn’t take lots of 

computational time. But, it is true that we need to calculate according to the number of 

possible well locations whereas our proposed dynamic measure in chapter II needs a 
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single calculation. But, this approach may be a hint for how to deal with optimization 

problems of multiple wells drilled at different times with fast marching method.  

 

 

     

(a)                                                              (b) 

 

Fig. C.2 (a) Dynamic measure with DV calculation (b) Exhaustive calculation 

results from commercial simulator 

 

 

 

 

 


