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ABSTRACT 

 

Hybridization represents a collision of genomes that can introduce new genetic 

and phenotypic variation into a population. Depending on the environment, this may lead 

to increased individual fitness and allow for integration of novel gene combinations via 

gene flow between divergent species. Recent work has shown that hybridization is an 

important evolutionary process in terms of the diversification of species and that it is 

probably far more common than once thought. To further understand the process of 

hybridization, studies examining mating decisions can be used to predict not only how 

hybridization occurs in the first place but also to predict the future evolutionary path of 

parental and hybrid populations. Here I present two studies on Xiphophorus malinche, X. 

birchmanni, and their hybrids. In the first, I examine the chemical and visual preferences 

of male X. malinche with dichotomous choice trials; I found that, unlike females or male 

X. birchmanni, male X. malinche show no strong preferences in terms of chemical or 

visual cues. In my second study, I used microsatellite markers to determine that there is a 

high degree of polyandry in a subpopulation of an X. malinche and X. birchmanni hybrid 

zone after first investigating population structure. 
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CHAPTER I  

INTRODUCTION TO MATE CHOICE IN HYBRID ZONES AND THE X. 

MALINCHE X X. BIRCHMANNI HYBRID ZONE SYSTEM 

Introduction 

Hybridization represents a coming together of genomes that can introduce new 

genetic and phenotypic variation into a population. Depending on the environment, this 

may lead to increased individual fitness and allow for integration of novel gene 

combinations via gene flow between divergent species (Barton 2008; Abbott et al. 2013; 

Cui et al. 2013; Paczolt et al. 2014). Recent work also shows that hybridization is an 

important evolutionary process in terms of the diversification of species and that it is 

probably far more common than once thought (Rieseberg 2003; Seehausen 2004; Cui et 

al. 2013).  

Hybridization is dynamic depending on the species and ecological circumstances 

involved, and its consequences can range from production of sterile individuals in the 

population (Dobzhansky 1935), to gene flow (Cui et al. 2013; Hailer 2015), to hybrid 

speciation (Mallet 2007). How and if hybridization occurs, and what happens after 

initial hybridization events, is partially dependent on the mating decisions of the 

individuals involved (Rosenthal 2013). Mate choice may get more complicated when 

two recently diverged populations with fragile reproductive barriers meet again in 

sympatry.  New trait phenotypes to choose from—both in terms of the other parental 

species and in terms of transgressive phenotypes that result from hybridization—and 
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new preference phenotypes to do the choosing can lead to a wide variety of outcomes 

within hybrid systems.  

Most studies in hybrid zones thus far have examined the mating decisions of the 

parental species involved in hybrid systems. Here, what happens in hybrid zones can 

depend on who mates with whom (Are one or both parental species permissive?) and 

the fitness costs of hybridizing (Are costs low enough that hybrid individuals can stay in 

the population to mate with each other or backcross with parentals? Or are costs high 

enough so that hybrid genotypes diminish and reinforcement of parental 

genotypes/phenotypes occur?).  In what appears to be the vast majority of cases, 

asymmetrical mating decisions and/or fitness consequences drive the patterns we see 

within hybrid zones. Focusing just on mate choice, asymmetric hybridization (followed 

closely by asymmetric introgression of certain traits/preferences) occurs when the 

female of one species mates more often with the male of the other (Wirtz 1999).  This 

may occur because the female prefers the secondary sex characteristics of 

heterospecifics to conspecifics (Parsons et al. 1993) or because males of one species 

subvert female choice by indiscriminate coercive matings (Gröning and Hochkirch 

2008). 

When two closely related species meet in sympatry, females of one species may 

find certain heterospecific male traits (or lack thereof) more appealing than those of 

conspecifics. These new males may be appealing because they represent hidden 

preferences (Arak and Enquist 1993), a better choice given environmental factors 

(Pearson 2000; Willis et al. 2012), or simply because of their novelty (Hughes et al. 
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1999). Examples include: female white collared manakins (Manacus candei) preferring 

the bright golden plumes of the golden manakin (M. vitellinus) over the white collars of 

conspecifics (Stein and Uy 2005); and female hermit warblers (Dendroica occidentalis) 

that choose to mate with Townsend warbler (D. townsendi) males, as these males are 

better at holding territories than hermit males (Pearson 2000). 

Males can also be the driver of asymmetric matings, but usually because of their 

indifference to female identity. Theoretically, a male should take advantage of any 

mating opportunity presented in order to increase his fitness (Bateman 1948), even if 

that mating occurs with a heterospecific.  Appropriately named “the satyr effect” after a 

mythological half-goat, half-man who mates with anything, in hybrid zones, males of 

one species may subvert heterospecific females’ preferences for conspecifics by 

coercively mating with said female (Ribeiro and Spielman 1986; Gröning and 

Hochkirch 2008). This effect has been described in hybridizing damselflies where males 

may get many mating opportunities, but females may only get one or two (Ribeiro and 

Spielman 1986) and in some species of leaf-hoppers, where not only does male 

reproductive interference behavior lead to hybridization, but also to more general 

competitive exclusion (Hochkirch et al. 2007). 

Once hybridization has occurred, transgressive traits and transgressive 

preference types are found in hybrid zones. Traits used to attract mates may be 

intermediate between parental forms (Harrison and Bogdanowicz 1997), may resemble 

one parental form or the other because of asymmetrical mating/introgression (Stein and 

Uy 2005), or hybrids may display novel trait combinations not found in the parents 



4 

(Rosenthal et al. 2003). How fit any of these trait phenotypes are depends on the mating 

preferences of potential mates. Much less is known about hybrid preferences, but like 

trait phenotypes, preference phenotypes also probably run the gamut of being more or 

less like one of the parental species involved, to something in between. There is also the 

possibility that hybrids may prefer something completely novel.  

With the potential of transgressive phenotypes and two parental genotypes 

complicating mate choice, fitness costs are potentially everywhere: one could mate with 

the “wrong” type of individual and waste time producing less fit offspring; on the other 

hand, one could waste time and potential mating opportunities by narrowing the range 

of acceptable mates too much (Rosenthal 2013). In a hybrid zone, then, there are 

potential trade-offs between mating more and mating less. Promiscuity is predicted to 

evolve in populations where genetic incompatibilities may be an issue: for instance, by 

mating multiply, a female can insure that at least one of her mates will have sperm that 

are compatible with her eggs (Colegrave et al. 2002). Of course, if there are strong 

enough reinforcement mechanisms in place (or if they eventually evolve given how 

much fitness is affected), individuals may mate less. 

The extent of multiple mating is important both within and outside of hybrid 

zones. Multiple mating, where multiple sires (or dams in some cases) contribute to one 

brood or clutch, has ramifications for numerous evolutionary processes (Andersson 

1994). In particular, the degree of multiple mating can affect the strength and direction 

of sexual selection (Shuster and Wade 2003, Clutton-Brock and Vincent 1991).  

Generally, the more sires represented in one brood, the weaker sexual selection is 
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(Kvarnemo and Simmons 2013). This is because more sires usually equals more 

variation in traits sampled, which means that more trait values will be represented in the 

brood, and thus no one trait value is “selected” over the others. This can have important 

implications for how and what traits may introgress through hybrid zones. 

To begin understanding how the above processes come together, we need studies 

detailing mating decisions to better predict their outcomes in hybrid zones. Here, I 

propose to add to a body of knowledge on the naturally hybridizing swordtails, 

Xiphophorus malinche and X. birchmanni, by completing a set of studies on parental 

species preferences and by investigating multiple paternity in a hybrid zone. These two 

fish produce viable hybrid offspring and form seven replicated hybrid zones displaying 

key differences in population structure in the wild (Culumber et al. 2011). That, coupled 

with their life history characteristics and the growing body of knowledge on preferences 

and traits important in precopulatory mate choice in these fish, makes this system ideal 

for studying the roles of mate choice and differential fertilization in hybridizing species. 

The X. birchmanni/X. malinche System 

X. birchmanni and X. malinche form at least seven hybrid zones in the Sierra 

Madre Oriental of eastern Mexico(Rosenthal et al. 2003; Culumber et al. 2011). These 

hybrid zones likely formed due to anthropogenic disturbance in the form of organic 

chemical pollution (Fisher et al. 2006; Culumber et al. 2011). Wild adult hybrids of 

these two species are viable, and there is no evidence of contemporary selection against 

hybrids (Culumber et al. 2011), although there may be some genetic incompatibilities 
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between the two (Schumer et al. 2014). Xiphophorus are live-bearing fish that, like 

other poeciliids, may store sperm from multiple males within their reproductive tract for 

up to 10 months (Potter and Kramer, 2000). Generally, female poeciliids are also highly 

promiscuous (Simmons et al. 2008; Evans and Magurran 2000) and these two species 

are probably no exception. Indeed, broods from female X. birchmanni are shared by 

2.37 sires on average (Paczolt et al. 2014). 

There is also a wealth of genetic and molecular tools available for studying 

Xiphophorus. Members of this genus have served as a model system for cancer research 

for decades (Walter and Kazianis 2001; Fernandez et al. 2012) and this system in 

particular is becoming a model for responses to hybridization in vertebrate animals 

(Schumer et al. 2012; Cui et al. 2013). Additionally, Fish and genomic tools are readily 

available through the Xiphophorus Genetic Stock Center in San Marcos, TX, and the 

Rosenthal and Andolfatto labs have recently generated pseudogenomes for both X. 

malinche and X. birchmanni using the fully sequenced X. maculatus genome (Schartl et 

al. 2013) as a reference (Schumer et al. 2014).  

Females in these species base mating decisions on both chemical and visual 

cues. In general, females of both species prefer conspecific chemical cues (Rosenthal 

and Ryan 2011); however, these preferences may be reversed as a result of learning 

through ontogeny (Verzijden et al. 2012), Cui 2014), or abolished as a result of 

environmental or social stressors (Fisher et al. 2006; Willis et al. 2012).  When exposed 

to just visual cues, both X. malinche and X. birchmanni prefer male X. birchmanni cues 

(Fisher et al. 2009; Cui 2014). The story becomes even more complicated when females 
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are exposed to computer generated visual signals: both of these species prefer males 

with larger apparent body size paired with smaller dorsal fins and swords (Wong and 

Rosenthal 2006). Thus, because fin size increases allometrically with body size, females 

have strong preferences for males where these traits are decoupled (Fisher et al. 2009). 

This sort of phenotype is not seen in either parental species, which could lead to certain 

hybrid males being more globally attractive visually (Culumber et al. 2014).  

When it comes to males, we only know part of the picture: X. birchmanni prefer 

the chemical cues of heterospecifics and have no preferences for visual cues from either 

female(Wong, Fisher, and Rosenthal 2005).  We do not yet know the chemical or visual 

preferences of X. malinche. In Chapter II, I will test if X. malinche males have 

preferences for, or are indifferent to, the chemical and visual cues of hetero- and 

conspecific females.  

What we do know about precopulatory preferences suggests that X. birchmanni 

males and X. malinche females may preferentially mate with one another in areas of 

species overlap, leading to hybrid swarms. However, this is not what we see in some 

populations, which instead display a bimodal population structure characterized by 

hybrids that fall into two genetic clusters: either more X. birchmanni-like or more X. 

malinche-like (Culumber et al. 2011, 2014). In Chapter III, I will examine multiple 

paternity, reproductive skew, and confirm population structure in a sample from this 

particular hybrid population. 
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CHAPTER II  

CHEMICAL AND VISUAL CUE PREFERENCES IN MALE SWORDTAILS, 

XIPHOPHORUS MALINCHE 

Introduction 

Within the mate choice and sexual selection literature, males are not usually 

regarded as active choosers when it comes to mating; however their mating preferences, 

or lack thereof, can be extremely important in the natural history and evolution of a 

species (Trivers 1972; Emlen and Oring 1977; Edward and Chapman 2011). This may 

be especially true within hybrid zones, where males may help reinforce mating barriers 

alongside choosy females or where males might aid in the process of hybridization with 

their indifference.  

Male choice has a wide variety of consequences in instances where recently 

diverged organisms suddenly find themselves living in sympatry. For example, in the 

hybridizing leaf beetles, Chrysochus cobaltinus and C. auratus, sexual isolation has 

increased because of strong selection against hybrids. Here, female choice is augmented 

by the chemical preferences of males: in both species, males use cuticular hydrocarbons 

to preferentially mate with conspecifics (Peterson	
  et	
  al.	
  2007). Alternatively, in the 

hybrid zone between white-collared (Manacus candei) and golden-collared (M. 

vitellinus) manakins, male indifference coupled with M. candei females’ preference for 

the brighter neck plumes of male M. vitellinus, has led to asymmetric hybridization. 

This in turn has lead to introgression of a sexual signal, the golden collar trait, well into 
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M. candei’s range (Parsons, Olson, and Braun 1993). Males that mate indiscriminately 

can also affect heterospecifics through reproductive interference: by hybridizing and/or 

limiting heterospecific females’ opportunities to mate, these indifferent males can 

severely affect the fitness of heterospecifics. This phenomenon, termed the “satyr 

effect”, has been found to lead not only to the formation of unfit hybrids, but also to 

more general competitive exclusion between two species of ground-hopper (Tetrix 

species). Aggressive and indifferent mating by T. subulata males leaves T. ceperoi 

females unable to mate with conspecifics and limits T. ceperoi’s ability to compete with 

T. subulata in areas of sympatry (Hochkirch et al. 2007). Thus, whether or not males 

exercise strong preferences can have important implications for hybrid systems and the 

parental species involved.  

In Xiphophorus, males are showy, in terms of coloration (Kingston et al. 2003), 

physical display (Fisher and Rosenthal 2007), and chemical attractants (Rosenthal et al. 

2011).  This may suggest that they are just courters and may not exercise much choice, 

as their energies would be better spent trying to court with and mate with as many 

females as possible (Emlen and Oring 1977). To even have mating opportunities, males 

may also have to compete with other males, either through direct physical combat or 

through display (Fisher and Rosenthal 2007). Advertising to females and competition 

with other males may have quite significant energy costs (Head et al. 2010; Edward and 

Chapman 2011). Thus, it may behoove males to be choosier and court only certain 

females based on perceived reproductive benefit (Herdman et al. 2004; Servedio 2007). 

This may be especially true in hybrid zones where having hybrid offspring could 
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negatively impact an individual’s fitness. Given that there are genetic incompatibilities 

between X. birchmanni and X. malinche, this could be a possibility ( Schumer et al. 

2014). Here then, there is the potential for male species recognition and subsequent 

mate choice to reinforce female choosiness (Servedio 2007).   

In this study, I examine the chemical and visual preferences of X. malinche 

males in particular. Previous studies have shown that X. birchmanni males display a 

complex set of preferences: while they are indifferent to visual cues, X. birchmanni 

males prefer X. malinche female chemical cues compared to those of conspecifics 

(Wong et al. 2005). X. malinche may follow in this pattern, prefer conspecifics as 

females do, or be indifferent.   

Methods  

Animal Collection 

Focal males (N=32, SL = 50.125 mm +/- SD = 3.87 mm) were collected from a 

pure X. malinche site, Chicayotla (Arroyo Xontla, 1000 m; Culumber et al. 2011) in 

October of 2014. X. malinche females used to generate chemical and visual cues were 

collected from this site (N=8) in December 2013; X. birchmanni females (N=8) used for 

cue generation were collected from the pure X. birchmanni site, Garces (Rio Garces, 

244 m; Culumber et al. 2011), also in December of 2013. 
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Chemical Cue Preference Trials 

Behavioral trials followed the protocol as in Wong et al. 2005. Briefly, first 

chemical cue was generated; for each respective cue, two 20 L tanks were placed side 

by side so fish in either tank could see each other and interact through glass, but not 

smell each other or interact physically. Four males (non-focal males) were placed in one 

tank and four conspecific females in the other. The fish were allowed to swim freely and 

interact for 4 hours. Cue is contained in the urine (Rosenthal et al. 2011), so after this 

time period, 3-5 L of water (containing the urine/cue) was collected from the female 

tanks for use in the trials (Figure 2.1). 

Trials consisted of dichotomous choice tests (Wong et al. 2005). Trial lanes are 

divided into three equal sections: two association zones on either end of the trial lane, 

with a neutral zone in between (Figure 2.1). After a 20-minute acclimation period 

(acclimation period is extended for X. malinche based on preliminary studies, Squire 

and Rosenthal, unpublished data), chemical cue was dripped into the respective 

association zones via an automated pump system. Overhead tracking cameras and 

software allowed us to watch trials remotely and track males’ association time with each 

cue. Each male was tried twice to account for potential side bias. Trials lasted 10 

minutes; if the male did not explore both cues or failed to move in the first 5 minutes, he 

was deemed unresponsive.  
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Our chemical cue trials consisted of both a positive control (X. malinche female 

chemical cue vs. water) and experimental (X. malinche vs. X. birchmanni female cue) 

trials. After trials were completed, a t-test was conducted in R (R Core Team 2013) to 

determine if males associated more with either conspecifics or heterospecifics.  

 

Visual Cue Preference Trials  

The protocol for visual trials is identical to that of chemical trials, except for the 

nature of cue presentation. Here, males were presented with either one tank containing 

two live X. malinche females and an empty tank, or two tanks containing two 

conspecific or heterospecific females, respectively, placed at either end of the trial lanes. 

Figure 2.1: Chemical cue collection and dichotomous choice trial set up. Cue is 
collected from females (see text) and dripped into the association zones (dashed 
lines) of the trial lane. 

dkiniry
Sticky Note
Cancelled set by dkiniry
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In this way, males could see and interact with females through the glass, but could not 

smell the females (Figure 2.2). During the 20-minute acclimation period, an opaque 

divider was placed between the visual cue tank and the male’s trial tank. At the start of 

the 10-minute trial, this divider was removed. Again, if the male failed to interact with 

both cues or did not move in the first 5 minutes of the trial, the trial was terminated. 

Association time with each cue was recorded by the overhead tracking system and these 

data were analyzed using a t-test in R (R Core Team 2013). 

 
 
 

 
 
 
Results 

Chemical Cue Preference Trials 

 Male X. malinche, when they chose to respond, did have a preference for X. 

malinche cue over water (Welch’s 2 sample t-test, n=10, t = 4.8449, p < 0.01; Figure 

2.3a). However, they showed no significant preference for either conspecific or 

Figure 2.2: Visual dichotomous choice trial set up. Females are visible to males; males 
can court and associate with females from the association zones (dashed lines) of the 
trial lane. 
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heterospecific female chemical cues (Welch’s 2 sample t-test, n=32, t = 0.1159, p-value 

= 0.9081; Figure 2.3b). 

Visual Cue Preference Trials 

Just as with the chemical cue trials, male X. malinche displayed no significant 

preference when choosing between conspecific and heterospecific female visual cues 

(Welch’s 2 sample t-test, n=15, t = -0.5456, p-value = 0.594; Figure 2.4). We found that 

half our males did not respond to this test at all, hence the lower n, even when tried a 

second time. During the control trial, males were largely unresponsive, and those few 

that did respond had no significant preferences for water or visual cue (Welch’s t-test, 

n= 5, t = -0.3627, p = 0.7223). 

Figure 2.3: Association time (mean +/- SD) of male X. malinche with either a) water 
versus female X. malinche chemical cue or b) X. birchmanni versus X. malinche 
female chemical cue.  

a) b) 
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a) b) 

Discussion 

In this study, we found that, male X. malinche were found to have no statistically 

significant preferences for conspecific or heterospecifics in either chemical or visual 

preference trials.  This adds to a rich body of evidence suggesting that males in many 

systems are not overly choosey when it comes to mating decisions. We also can now 

complete the “preference picture” in that we now have basic preferences information for 

the wild-caught parental species involved in this Xiphophorus hybrid system (See 

Figure 2.5a and 2.5b). 
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Figure 2.4: Association time (s) male X. malinche spent associating with either a) No 
fish or X. malinche female visual cue, or, b) X. birchmanni or X. malinche female 
visual cue.  
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a)      b) 

Taken in context with previous data (Figure 2.5), this current data allows us to 

make more robust predictions about the history and future of the Xiphophorus hybrid 

system.  In the absence of chemical cues, X. malinche females prefer the visual signals 

of X. birchmanni males (Fisher et al. 2009); in areas with organic pollution that may 

abolish females’ ability to detect chemical cues, female X. malinche are then more prone 

to mating with heterospecifics (Fisher et al. 2006). Even in areas that have not been 

disturbed chemically, X. birchmanni males may attempt mating with X. malinche 

Figure 2.5: a) Net association time with X. birchmanni chemical cue; data from 
Fisher et al. 2006, Wong et al. 2005, and current study; b) Net association time with 
X. birchmanni visual cue; data from Fisher et al. 2006, Wong et al. 2005, and current 
study. 
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females where they co-occur, given X. birchmanni male chemical preferences (Wong et 

al. 2005). In contrast, X. birchmanni females strongly prefer conspecifics (Fisher et al. 

2006), and, as this current study shows, male X. malinche are indifferent.  

Because of this, one could predict that asymmetric hybridization between X. 

malinche females and X. birchmanni males was key for the inception of these hybrid 

zones. As mentioned previously, geographic cline data on males traits across hybrid 

zones suggest that more X. birchmanni-like male sexual signals may be introgressing 

into hybrid zones and potentially may even introgress into “pure” X. malinche 

populations (Rosenthal and Garcia de León 2011). However, there are fluctuations in 

this pattern, and clines between these two species need to be further resolved (Jofre, 

unpublished data).  The reciprocal cross (X. birchmanni female X X. malinche male) has 

also proven difficult to produce in the lab (Powell, unpublished data).  

Here, though, we have completed the “preference picture” and now know where 

X. malinche males fit in with the other players in this hybrid system. Now that we have 

a complete idea about what each parental species might be doing in hybrid zones, we 

can better predict how these hybrid zones began, as well as make more informed 

hypotheses about their future. 
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CHAPTER III  

POPULATION STRUCTURE AND MULTIPLE PATERNITY WITHIN A HYBRID 

ZONE  

Introduction 

While hybrid zones have proven valuable in the study of various aspects 

evolution, from speciation (Abbott et al. 2013) to reticulate evolution (Arnold 1992; 

Seehausen 2004), in the past decades certain areas within hybrid zone research remain 

understudied.  Specifically, this includes studies that examine population structure of 

hybrid populations and mating decisions within hybrid zones. How parental and hybrid 

individuals interact and mate have myriad effects on hybrid systems and thus, the future 

of the species involved. 

Mating patterns within hybrid zones can contribute to overall population 

structure. Several different mechanisms are predicted to generate structure within hybrid 

zones: selection against hybrids, continuous migration of parentals into the hybrid 

zones, and/or assortative mating. When hybrids have very low fitness, hybrid genotypes 

are disproportionately removed from the population, generating a multimodal 

population structure consisting of parental individuals and early generation hybrids 

(Harrison and Bogdanowicz 1997; Lindtke et al. 2014). Similar patterns are seen in 

populations where parentals continuously migrate into the hybrid population; if 

migration levels are high enough, parental genotypes will increase in the population 

even in the absence of selection against hybrid individuals (e.g. Charpentier et al. 2012).  
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Specifically, assortative mating—either between parentals and hybrids or different 

groups of hybrids—tends to lead to complex population structure versus hybrid swarms 

(Bailey et al. 2004). While it is expected that parentals will discriminate against hybrids 

when it comes to mating decisions (Naisbit et al. 2001; Servedio and Noor 2003; Latour 

et al. 2014), how hybrids will choose to mate is less predictable. Hybrids may have 

preferences that are intermediates of their parental species and thus may exhibit weak or 

distinct mate preferences, they may be sensitive to cues from both parental species 

(Rosenthal 2013), or they may have distinct sensory experiences and thus perhaps novel 

preferences (Sandkam et al. 2013). 

In addition to deciding with whom they should mate, hybrids are also faced with 

how often they should mate. There may be trade-offs between mating more and mating 

less (Jennions and Petrie 2000). However, the potential benefits that come with mating 

multiply may outweigh costs for hybrid individuals. Promiscuity is predicted to evolve 

in populations where genetic incompatibilities may be an issue: by mating multiply, a 

hybrid female may be more likely to find a male with sperm that are compatible with 

her eggs (Jennions and Petrie 2000; Colegrave et al. 2002).  

Multiple mating and its extent has ramifications for numerous evolutionary 

processes (Andersson 1994). In particular, the degree of multiple mating can affect the 

strength and direction of sexual selection (Shuster and Wade 2003; Clutton-Brock and 

Vincent 1991). Generally, the more sires represented in one brood, the weaker sexual 

selection is. This is because more sires usually equals more variation in traits sampled, 

which means that more trait values will be represented in the brood(s), and thus no one 
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trait value is “selected” over the others(Tatarenkov et al. 2008; Shuster et al. 2013; 

Kvarnemo and Simmons 2013). This can have important implications for how and what 

traits may introgress through hybrid zones. 

 In a hybrid zone between the swordtails X. malinche and X. birchmanni, we have 

found a population with complex structure that may be due to assortative mating within 

genetic clusters(Culumber et al. 2014). These two fish, sister species that diverged 2-3 

mya, are found in the Sierra Madre Oriental of Central Mexico (Cui et al. 2014; 

Rosenthal et al. 2003). Hybrid zones have formed at least seven separate times between 

these species, and research suggests that past hybridization events were likely due to 

anthropogenic disturbance (Culumber et al. 2011; Fisher et al. 2006). As stated, in one 

of these hybrid zones, the Rio Calnali, hybrid populations seem to break down into 

several defined clusters versus hybrid swarms: in one study, individuals sampled were 

deemed to be either pure parentals or backcrossed hybrid individuals. No F1s were 

found (Culumber et al. 2014). Here, our aim is to add to this study by, in addition to 

investigating structure with microsatellite markers, examining the level of multiple 

paternity in this population. 

 In general, female pregnant fish tend to be polyandrous (Coleman and Jones 

2011) and Xiphophorus are no exception: in fact, on average, Xiphophorus females tend 

to mate slightly more often than other livebearers (Luo et al. 2005; Simmons et al. 2008; 

Tatarenkov et al. 2008; Paczolt et al. 2014). In pure X. birchmanni populations, females 

were found to have a mean of 2.48 sires represented in their broods (Paczolt et al. 2014). 

 It is hypothesized that females in hybrid zones may mate more often, especially 
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if genetic incompatibilities are present and if there is the opportunity for post-copulatory 

sexual selection (Colegrave et al. 2002). X. malinche and X. birchmanni are known to 

have potentially hundreds of genetic incompatibilities (Schumer et al 2014); 

Xiphophorus in general are also internal fertilizers, and females can store sperm for up 

to 10 months at a time, making post-copulatory sexual selection a real possibility (Potter 

and Kramer 2000). We thus predicted that females will indeed mate multiply in this 

population and that they will probably mate more often than other poeciliids or parental 

populations. 

Methods 

Sample Collection and DNA Extraction 

32 females and 22 males were collected from a X. malinche/X. birchmanni 

hybrid zone in one small pool (“Sycamore”) behind the CICHAZ field station on the 

Rio Calnali (981 m) in 2012. Females were photographed, fin-clipped, and measured, 

then, if gravid (N= 27), dissected to remove embryos for DNA extraction. Males were 

also fin-clipped for DNA extraction. 

DNA from adults and embryos was extracted from fin-clips and whole embryos 

using proteinase-K digestion followed by an isopropyl alcohol clean up step. Briefly, 

tissue (fin-clip or embryo) was digested overnight in a solution of proteinase K 

(Promega), dithiothreitol (DTT, Promega) and cell lysis solution (0.1 M Tris HCl, .1 M 

EDTA, 1% SDS); digested samples were then treated with a protein precipitation 
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solution (Promega), and then cleaned with 95% isopropanol followed by 70% ethyl 

alcohol before being resuspended in TE (pH 8.0).  

Of the collected families, twenty-two were used for subsequent multiple 

paternity analyses, as multiple paternity could not be confidently assigned to n=5 of 27 

families (see below). 

Microsatellite Genotyping 

Four highly polymorphic tetranucleotide microsatellite markers were chosen for 

paternity analyses based on their success in previous studies (Paczolt et al. 2015). 

Microsatellites sequences were modified from X. maculatus sequences (Walter 2004) to 

incorporate X. birchmanni-X. malinche specific mutations. Microsatellite amplification 

followed PCR protocols described in Paczolt et al. 2015 (Table 3.1).  PCR product 

labeled with fluorescent markers (6-FAM, NED, VIC, PET) from the four 

microsatellites was multiplexed and sent to the Yale DNA Analysis Facility on Science 

Hill for fragment analysis on a 3730x1 DNA analyzer. Individuals were genotyped via 

manual scoring in PeakScanner v1.0 (Life Technologies). Microsatellites optimized for 

this study were highly variable in the study population (Table 3.1) with 7-20 alleles per 

loci. Some families were excluded from final analysis due to failed microsatellite 

amplification, that is, if only 3 or fewer microsatellites amplified (N=5).  
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Fisher’s Exact Test for violation of Hardy-Weinberg Equilibrium (HWE) and 

FIS scores were calculated for each microsatellite with Genepop 4.2 (Raymond and 

Rousset 1995; Rousset 2008). We found statistically significant deviations from HWE 

in three of the four microsatellites when all of our individuals were considered together 

(Table 3.1). This is perhaps to be expected, given evidence of bimodal 

structure/assortative mating in this population (Culumber et al. 2014) We also found 

that all microsatellites displayed high FIS scores, suggesting a Wahlund effect. To 

investigate if these patterns were due to structure within our microsatellite data, 

multilocus genotypes from adults in the population were further analyzed (see next 

section).  

Locus Temp Range (bp) Alleles pHW FIS

Msd029 58 166-268 20 < 0.000 0.2103 

Msd036 58 157-295 15 0.215 -0.0061 

Msd049 60 135-229 7 < 0.000 0.2584 

Msd072 60 206-231 13 0.0012 0.1294 

Table 3.1: Microsatellite details, including annealing temperature (Temp), size range 
in base pairs (bp), number of alleles at each locus in this subpopulation (A), and p-
value from Fisher’s Exact Test, and FIS value.
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Tests for Population Subdivision 

The program STRUCTURE v2.3 (Falush et al 2003) was used to determine 

possible number of distinct genetic clusters within the sample. While previous research 

shows that there are likely two separate clusters in the population sampled (Culumber et 

al. 2014), we ran K = 1-6 for exploratory purposes. We simulated each K value five 

times (50,000 burnin, 100,000 replications) using correlated allele frequencies and 

admixture models. STRUCTURE does run under assumptions of HWE and linkage 

equilibrium, which could be problematic. To cross-check our STRUCTURE results we 

analyzed our data with a Principle Coordinates Analysis (PCoA), a multivariate 

statistical method that does not rely on the aforementioned assumptions, with our data 

using GenAlEx v6.5 (Peakall and Smouse 2006). Additionally, using ancestry data 

obtained through Multiplex Shotgun Genotyping (MSG, see methods below), we tagged 

the microsatellite genotypes of individuals with known ancestry information to see if 

those groups also lined up with our STRUCTURE and GenAlEx results. 

Using the clusters determined with MSG, we returned to Genepop 4.2 to test 

our microsatellites against HWE for each cluster. We also estimated FIS and FST values 

(Cockerham and Weir 1984) between our two clusters; these were calculated using 

FSTAT v.2.9.3 (Goudet 1995). Additionally, we explored whether there were differences 

in multiple paternity between our genetic clusters by running a generalized linear model 

to see if cluster could predict number of sires, given female size and number of 

offspring. 
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Multiplex Shotgun Genotyping 

A parallel study not presented here on this same sample makes use of Muliplex 

Shotgun Genotyping (MSG; Andolfatto et al. 2011)  to further investigate population 

structure and genetic ancestry of individuals in this population. Though we will not get 

into the full details of that other study, this method allows us to differentiate our sample 

in to two genetic clusters with thousands of markers versus our four microsatellite 

markers. We compared the genetic clusters found in that data set with the structure we 

see given the analyses described above to determine if they were concordant.  

The library preparation and data analysis methods we used for MSG follow 

Schumer et al. 2014. Briefly, samples were digested with MseI (NEB, Ipswich, MA) 

and custom barcode adapters were ligated to each sample. Following this step, the 

ligation reaction was stopped with 5 ul of sodium acetate and 50 ul of isopropanol. 

Samples with unique barcodes were pooled (in groups of 48) and precipitated overnight 

at -20 C. Pools were resuspended in TE (pH 8.0) and were bead purified using the 

Agencourt AMPure PCR purification kit (Beckman Coulter Inc., Brea, CA). Libraries 

were then size selected for fragments between 250-500 bp on a 2% agarose gel, and 2 

ng of the purified product was amplified with Illumina indexed primers for 14-16 cycles 

using the Phusion PCR kit (NEB, Ipswich, MA). After bead purification, samples were 

assessed for quality on a Bioanalyzer 2100 (Agilent, Santa Clara, CA) and sequenced on 

an Illumina HiSeq 2000 or 2500 (100 bp or 140 bp reads respectively). Up to 150 

individuals were pooled on a single lane.  
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After libraries were prepared, we parsed raw reads by index and barcode and 

trimmed to remove low quality base pairs (Phred quality score <20); reads with fewer 

than 30 bp of high quality contiguous sequence were discarded. The number of reads 

per individual ranged from 0.3-7.9 million, but reads in excess of 2 million were 

excluded to improve pipeline speed.  

Following quality trimming, data was processed with the MSG pipeline 

(https://github.com/JaneliaSciComp/msg). The following parameters were specified for 

the analysis: recRate = 420, rfac=0.0001, X. birchmanni error (deltapar1) = 0.05, X. 

malinche error (deltapar2) = 0.05. The recombination rate was set based an expectation 

of 0.0018 cM/Mb in Xiphophorus and of at least 35 generations of recombination 

(Amores et al. 2014; Schumer et al. 2014) and the error rate was set based on observed 

error rates in parental individuals (Schumer et al. 2014). Each population was analyzed 

separately. Individuals were initially run with naïve MSG priors (expectation par1, 

par1par2, par2 = 0.33,0.33,0.33), and then were re-analyzed with informed priors based 

on genome-wide ancestry in the initial run.  

MSG reports genotypes in the form of posterior probabilities. To calculate 

hybrid index, we treated posterior probabilities >0.95 as support for a particular 

genotype, and for each individual divided the total number of X. malinche genotype 

calls by the total number of genotype calls with >0.95 posterior probability support. For 

calculations of hybrid index, we used only markers that were sampled in >70% of 

individuals (720,040 ancestry informative markers). Of the adults in this sample, we 
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were only able to achieve high enough coverage to confidently ascertain hybrid index in 

33 of our 53 individuals thus far.  

Parentage Analysis 

GERUD 2.0 (Jones 2001, 2005) was used to reconstruct paternal genotypes and 

determine the minimum number of sires per brood. GERUD reconstructs parental 

genotypes from full- and half-sibling genotype arrays using an algorithm that tests all 

possible paternal genotypes against offspring arrays to determine the minimum number 

of sire genotypes (Jones et al. 2010) and uses Mendelian probabilities (Jones 2005) to 

calculate the most likely groups of sires (within a 95% confidence interval); these are 

ranked by likelihood and displayed to the user, and we are then able to chose the most 

likely set of potential sire genotypes. 

To determine our power to detect multiple paternity, we used PrDM (Neff and 

Pitcher 2002) to measure the probability that we could detect multiple mating given the 

allele frequencies in our population. We used average sire numbers and skew data from 

our GERUD analyses as a basis for our simulations. 

Results 

Population Subdivision 

STRUCTURE results showed us that the optimal K for this population was 2. 

The mean ln P(D) reached it’s largest values at K = 2 (mean = -864.96) followed by K = 

3 (mean = -889.46) before declining further. At K = 3, however, variance among the 
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runs in ln P(D) was much larger. Additionally, at K ≥ 3, Q-values of individuals 

dropped precipitously, and are thus implausible at K ≥ 3.  Individuals were thus 

assigned to one of two sub-populations if their Q-value for that group was ≥ 0.7. Of our 

53 individual multilocus genotypes, all had a Q-value of ≥ 0.7. Of those, three had a Q-

value between 0.7 and 0.8 (5.6%), six had a Q-value between 0.81 and .90 (11.3%), and 

44 had a Q-value > 0.9 (83.1%). Additionally we plotted our individuals’ multilocus 

genotypes with a PCoA using GenAlEx, with the populations found in STRUCTURE 

highlighted in different colors (Figure 3.1). The PCoA also revealed that our individuals 

fall out into two groups, though there is some slight overlap. 

Figure 3.1: PCoA generated in GenAlEx 6.5. Subpopulations predicted by 
STRUCTURE (“Pop 1” and “Pop 2”) are marked by blue diamonds and orange squares, 
respectively. The microsatellite genotypes of individuals with known ancestry 
(determined by MSG) overlay this data: “Pop 3” (black plus-signs) are X. malinche-like 
individuals, and “Pop 4” (purple X’s) are X. birchmanni-like individuals. 
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From the MSG data, we found that adult individuals sampled from this hybrid 

zone fall into one of two clusters—an X. birchmanni-biased genotype cluster with 

73±2% of the genome derived from X. birchmanni and an X. malinche genotype cluster 

with 95±2% of the genome derived from X. malinche (Figure 3.2). When MSG data is 

laid over the “sub-populations” found in STRUCTURE and GenAlEx, we see that, in 

general, X. birchmanni-like individuals line up with “Pop 1” and X. malinche-like 

individuals line up with “Pop 2” (Figure 3. 1). Given that the PCoA was made using 

microsatellite genotypes, and the fact that past hybridization events/introgression has 

occurred in this population as evidenced by MSG genotypes, some overlap is to be 

expected. 

Figure 3.2: Hybrid indexes of adult individuals from MSG analysis, where 0 = pure 
X. birchmanni and 1 = pure X. malinche. Individuals in the X. birchmanni-biased 
genotype cluster have 73±2% of their genome derived from X. birchmanni, and 
those in the X. malinche genotype cluster have 95±2% of the genome derived from 
X. malinche 
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 We used GenAlEx to further visualize allele frequencies between the two 

groups (Figure 3.3). Overall, there were no significant differences in number of alleles, 

number of private alleles between clusters, or expected levels of hetrozygosity. The X. 

malinche-like cluster did have slightly more private alleles, but this was mainly driven 

by one microsatellite marker (Msd029, where X. malinche-like had seven private alleles 

over the four of the X. birchmanni-like group). This was slightly unexpected given the 

MSG data that shows heavy X. malinche introgression the X. birchmanni-like cluster. 

With this new population structure knowledge, we re-ran our microsatellite data 

in Genepop 4.2 (ref) and calculated F-statistics using FSTAT, following the procedures 

Figure 3.3: Allelic patterns across clusters, where “Pop1” are X. malinche-like 
individuals and “Pop2” are X. birchmanni-like individuals. Na is the number of alleles 
represented; Na Freq. >= 5% are the number of different alleles with a frequency ≥ 
5%; Ne is the number of effective alleles; I represents the Shannon’s information 
index; No. Private Alleles are the number of unique alleles represented in each cluster; 
and No. LComm Alleles (<=25) is the number of locally common alleles (freq. >= 
5%) found in 25% or fewer populations. The line represents He, or expected 
hetrozygosity within each cluster. 
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described in the Methods section. These results are presented in Table 3.2. When 

considered separately, microsatellite markers within each genetic cluster are in Hardy-

Weinberg equilibrium. FIS values also vary when the two groups are considered 

separately: FIS seems to be, in general, reduced. However, in the X. malinche-like cluster 

FIS increased for some of the microsatellites, suggesting a higher level of inbreeding. 

The small sample size may be a factor here. Despite the structure between the two 

groups, overall differentiation is somewhat low, with total FST between clusters = 0.053. 

X. malinche-like cluster X. birchmanni-like cluster 

Locus N A pHW FIS N A pHW FIS FST

Msd029 16 16 0.2783 -0.0269 16 9 0.5062 0.1880 0.033 

Msd036 13 13 0.0260 0.2018 9 11 0.2473 0.1176 0.025 

Msd049 15 6 0.6997 0.0270 14 5 0.4018 0.0335 0.094 

Msd072 16 9 0.1377 0.2246 13 8 0.6880 0.0827 0.061 

Parentage Analysis and Minimum Number of Sires 

Females from our sample varied in standard length from 37.11 mm to 60.66 mm 

(mean = 50.36mm, SD = 0.64mm). Brood sizes for females used in the final analysis 

Table 3.2: Microsatellite loci assayed from adult male and female individuals. Name of 
locus and pairwise FST values are reported for each locus. Number of individuals with 
successfully amplified markers out of 16 (N), number of alleles (A), P value of Hardy-
Weinburg exact test (pHW), and FIS scores are reported for each population at each locus. 
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were between 8 and 61 offspring (mean= 32.31, SD = 13.82). All females in the final 

analysis were found to have two or more sires represented in their broods (mean= 3.09 

+/- 0.99 SE Figure 3.4).  

As with a past study, (Paczolt et al. 2014) simulations done in PrDM suggest a 

high probability of detecting multiple mating in our sample. Simulations with broods of 

less than 8 individuals showed a detection probability of < 0.95, but in simulations that 

Figure 3.4: Distribution of broods with a given number of sires; mean= 3.09 +/- 0.99 
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reflected similar brood sizes and reproductive skew as our sample showed a probability 

of detection >0.98. 

X. birchmanni-like hybrids had more sires per brood than X. malinche-like 

hybrids (Welch’s 2 sample t-test; t = 2.2942, df = 19.998, p-value = 0.03274; Figure 

3.5). To account for female size and brood size, we ran a generalized linear model with 

number of sires as the dependent variable and genetic cluster and the residuals of brood 

X.birchmanni-like X.malinche-like

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

5.
0

N
um

be
r o

f s
ire

s 
pe

r b
ro

od

Figure 3.5: Number of sires per brood in hybrid cluster types, before being corrected 
for offspring number and female body size 
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size given female size (which were highly correlated: Pearson’s product-moment 

correlation: r(20) = 0.759, p < 0.001) as predictor variables. When we did this, we found 

that X. birchmanni-like individuals were slightly more likely to have more sires (0.8971 

more sires versus a X. malinche-like individual of the same size) represented in their 

broods (linear model; overall model: adjusted R2 = 0.1284, F2,19 = 2.546, p = 0.1048; 

genetic cluster: F2,19= 5.0193, b’=-0.8971, p = 0.0405; residuals of brood size given 

female size: F2,19 =0.0732, b’=0.0061, p = 0.7896).  

.  

Discussion 

 Factors such as whom individuals mate with and how often individuals mate 

have implications for how populations are structured and are important in evolutionary 

processes such as sexual selection. Though studies on multiple paternity in wild 

populations are quite common, few studies have investigated multiple paternity in 

populations where hybridization has taken place specifically (although see Anderson, et 

al. 2008). Given the acceptance of the significant role hybridization may play in the 

evolution of species (Arnold 1992; Abbott et al. 2013), studies detailing hybrid mating 

decisions and structure within hybrid zones are relevant and necessary. 

In our current study, we first investigated population structure; at first, our 

microsatellite markers appeared to be out of HWE, suggesting structure. Analyses in 

STRUCTURE, GenAlEx, and additional information provided by MSG allowed us to 

show that the population under study could be broken into two distinct clusters. FST 

values were somewhat low, as one might predict from two subpopulations (of sister 
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species) that recently hybridized. FIS values within our two groups were for the most 

part high, suggesting some degree of inbreeding within genetic clusters. This may be a 

product of small sample size and the use of only four markers, but freshwater fish are 

also known to have a lower degree of genetic diversity in general (DeWoody and Avise 

2000). This study supports past work suggesting that there is distinct population 

structure in hybrid zones of X. malinche and X. birchmanni in this region of the Rio 

Calnali (Culumber 2011, 2014). The FIS values, MSG data, and population structure 

results again suggest that this structure is due to assortative mating. 

Additionally, as predicted, we determined that females within this hybrid 

population successfully mate with multiple sires and that the level of multiple mating is 

slightly higher than in populations of one of the parentals (X. birchmanni, Paczolt et al. 

2014). While at first it appeared that the level of multiple mating may also differ 

between hybrid genetic clusters, once we factored in female size and brood size, these 

differences were found to be non-significant. On average, females in this population had 

3.09 sires (+/- 0.99 SE) represented in each brood; this is high, considering studies done 

in other Xiphophorus fishes (Luo et al. 2005; Simmons et al. 2008; Tatarenkov et al. 

2008) and studies on poeciliids and female pregnant fish, more generally (Avise and Liu 

2010; Coleman and Jones 2011). However, this level of multiple paternity is only 

slightly higher than what is seen in pure and introgressed X. birchmanni populations 

(Paczolt et al. 2014, Figure 3.6).  

Theoretically, this higher level of multiple paternity is to be expected in hybrid 

zones. Polyandry may provide non-additive genetic benefits to females such as 
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incompatibility avoidance or allow females to “hedge their bets” (Colegrave et al. 2002; 

Zeh and Zeh 2003). Schumer et al. (2014) showed that there are hundreds of potential 

genetic incompatibilities between X. birchmanni and X. malinche; even a low amount of 

incompatibilities may be enough for polyandry to evolve (Colegrave et al. 2002). 
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Figure 3.6: Comparison of multiple paternity across Xiphophorus birchmanni and X. 
malinche populations. Black and deep blue are X. birchmanni from Coacuilco (X.b 
COAC) and San Pedro (X.b SP) localities, respectively (Paczolt et al. 2014). Green is 
hybrids from the current study; yellow and bright blue represent X. malinche-like 
hybrids (X.m H) and X. birchmanni-like hybrids, respectively. 
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 While this study sheds light on important information regarding this hybrid 

zone, further work is necessary. The results we obtained here will go on to inform an 

additional study that further investigates assortative mating as a cause of structure in this 

population. So far MSG results from offspring (of the females sampled here) sequenced 

for that study reveal that their genotype distribution is almost identical to the adult 

population and, using offspring genotypes to infer sire ancestry, we can see that there 

appear to be no cross-cluster matings in this subpopulation (Schumer et al, unpublished 

data).  This means that females are only successfully mating with males within their 

genotype cluster and that there is probably no post-fertilization selection against these 

hybrid offspring. However, because of the nature of our study, we cannot with complete 

confidence report that no cross-cluster matings occurred.  

We know that, in the parental species, females generally show strong 

preferences for conspecific males (Fisher et al. 2006; Fisher et al. 2009; Cui 2014), but 

rearing environment also plays an important role in the development of female 

preference (Verzijden et al. 2012). Females from this hybrid zone do prefer to associate 

with males of similar genotype in mesocosm social assays (Culumber et al. 2014), 

suggesting that they would also choose to mate with individuals with similar hybrid 

indices. Also, we can predict that forced copulations (either within or between ancestry 

clusters) may not be overly important in this system, given the showiness, courtship 

displays, and relatively short gonopodia of males (Rosen and Tucker 1961).  

Given the high degree of structure seen in this population, mate choice and 

possible reinforcement mechanisms may be very important in this system. If high levels 
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of polyandry are an adaptation to avoid incompatibilities/allow females to hedge their 

bets, it may be a relic from when X. malinche and X. birchmanni first began hybridizing 

in this area. However, studies into multiple paternity and interactions with individual 

genotype need to be done in other hybrid zones between these species before we can 

speculate further. 
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CHAPTER IV  

SUMMARY, CONCLUSIONS, AND FUTURE DIRECTIONS 

Hybridization is an important evolutionary process (Arnold 1992; Abbott et al. 

2013; Cui et al. 2013); understanding the consequences of hybridization requires that we 

investigate the mating decisions of individuals within hybrid zones. Mate choice and 

other mating decisions, such as mating frequency, are crucial to how genes are spread 

through hybrid zones; thus, the study of these elements is vital to predicting the 

evolutionary future of species involved in hybrid systems. Here, I conducted two 

studies: the first investigated the chemical and visual preferences of male X. malinche, 

one of two swordtail fish species that hybridize in rivers of central Mexico. My second 

study detailed the beginning of a larger analysis; I start a more refined investigation into 

assortative mating in a hybrid zone by first examining multiple paternity in a hybrid 

population. 

In my first study, I found that male X. malinche have no significant preferences 

for conspecific or heterospecifics in either chemical or visual preference trials. This 

study, along with findings from previous studies (Wong et al. 2005, Cui 2014), allows 

us to make more accurate predictions about the history and future of the Xiphophorus 

hybrid system.  To summarize, although females of both species have strong 

preferences for conspecific chemical cues (Fisher et al. 2006) in the absence of chemical 

cues, X. malinche females prefer the visual signals of X. birchmanni males (Fisher et al. 

2009). This means that in areas contaminated by anthropogenically derived organic 
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pollution, where females’ ability to detect chemical cues is diminished, female X. 

malinche may be more prone to mating with heterospecifics (Fisher et al 2006). Even in 

areas that have not been disturbed chemically, X. birchmanni males may attempt mating 

with X. malinche females where they co-occur, as X. birchmanni males somewhat prefer 

heterospecific chemical cues (Wong et al. 2005). As this current study shows, male X. 

malinche are indifferent, meaning they will not reinforce female X. malinche 

preferences and that they may attempt courting and mating with X. birchmanni females. 

Whether or not the potential amorous attentions of X. malinche males could lead to 

reproductive interference and fitness costs (Gröning and Hochkirch 2008) for X. 

birchmanni females remains to be tested. 

Given the preferences and behavioral studies done on the parental species in this 

system, one could predict that asymmetric hybridization between X. malinche females 

and X. birchmanni males was key for the inception of these hybrid zones. Geographic 

cline data on male traits across hybrid zones seems to suggest that more X. birchmanni-

like male sexual signals may be introgressing into hybrid zones and potentially into X. 

malinche populations. This pattern has been seen to fluctuate, and clines between these 

two species need to be more fully resolved (Jofre, unpublished data). Further study of 

trait introgression/gene flow and of understanding how preferences lead to mating 

decisions in the hybrid zones are needed. 

In addition to elucidating how mating preferences operate for parental species 

that hybridize, studies that examine the mating decisions of hybrids within hybrid zones 

are important. To start, I investigated population structure and multiple paternity in a 
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sample consisting of X. malinche and X. birchmanni hybrids. Though studies on 

multiple paternity in wild populations are quite common, few studies have investigated 

multiple paternity in populations where hybridization has occured specifically. In this 

study, we determined that, as predicted, females within this hybrid population 

successfully mate with multiple sires and that the level of multiple mating is slightly 

higher than in populations of one of the parentals (X. birchmanni, Paczolt et al. 2014). 

On average, females in this population had 3.09 sires (+/- 0.99 SE) represented in each 

brood; this is somewhat high, considering studies done in other Xiphophorus fishes (Luo 

et al. 2005; Simmons et al. 2008; Tatarenkov et al. 2008) and, more generally, studies 

on poeciliids and female pregnant fish (Avise and Liu 2010; Coleman and Jones 2011). 

However, this level of multiple paternity is only slightly higher than what is seen in pure 

and introgressed X. birchmanni populations (Paczolt et al. 2014, Figure 3.4).  

In hybrid zones, females mating with multiple sires is expected: polyandry may 

provide non-additive genetic benefits to females such as incompatibility avoidance 

(Colegrave et al. 2002; Zeh and Zeh 2003). Even a low amount of incompatibilities may 

be enough for polyandry to evolve (Colegrave et al. 2002) and here, we know that that 

there are hundreds of potential genetic incompatibilities between X. birchmanni and X. 

malinche (Schumer et al. 2014). However, given the high degree of structure seen in this 

population it would seem that mate choice and possible reinforcement mechanisms may 

also have evolved here. If high levels of polyandry are an adaptation to avoid 

incompatibilities/allow females to hedge their bets, it may be a relic from when X. 

malinche and X. birchmanni first began hybridizing in this area. Thus more research on 
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premating barriers is needed in this hybrid zone and investigations into paternity 

patterns in other X. malinche/X. birchmanni hybrid zones are needed.  

As stated, parental females generally show strong preferences for conspecific 

males (Fisher et al. 2006; Fisher et al. 2009; Cui 2014), but rearing environment also 

plays an important role in the development of female preference (Verzijden et al. 2012). 

Females from this hybrid zone do prefer to associate with males of similar genotype in 

mesocosm social assays (Culumber et al. 2014), suggesting that they would also choose 

to mate with individuals with similar hybrid indices. We can also predict that forced 

copulations (either within or between ancestry clusters) may not be overly important in 

this system, given the showiness, courtship displays, and relatively short gonopodiums 

of males (Rosen and Tucker 1961). However, additional observational and behavioral 

studies are needed to determine if the patterns we see are strictly because of strong 

precopulatory mate choice and lack of coerced matings, or if postcopulatory 

mechanisms, such as conspecific sperm precedence, occur as well. Additionally, 

reproductive interference—where males of one species/genetic cluster waste the time, 

energy, and mating opportunities of heterospecific females by coercive matings or other 

sexual harassment—may occur, given the indifference of males. How this affects 

females in hybrid zones is worthy of investigation. 

Historically, hybridization was thought of as nothing more than a fitness-

reducing mistake on the part of the individuals involved. Through studying the 

consequences of the mating decisions of individuals within hybrid systems, we have 

come to find that in many cases, hybridization represents another of those powers that 
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allows for the evolution of, as Darwin (1859) wrote, “endless forms most beautiful and 

most wonderful.” 
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