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ABSTRACT 

 

Both morphological and biochemical changes occur in a diseased tissue. As a 

result, tissue optical response changes with the progression of disease. A single optical 

imaging modality can assess either morphological or biochemical changes. In order to 

investigate the development of a disease in detail, both of these characteristics need to be 

probed simultaneously. Therefore, researchers have been interested in combining 

different imaging modalities that can provide complementary, morphological and 

biochemical images. This dissertation focuses on the development of dual-modality 

systems that incorporate Optical coherence Tomography (OCT) and Fluorescence 

Lifetime Imaging Microscopy (FLIM) for simultaneous characterization of tissue 

morphology and its biochemistry. 

In the first phase of the research, we combined spectral-domain OCT with FLIM 

that is designed for endogenous emission acquisition. The operating wavelength for 

OCT and FLIM were 830nm and 355nm, respectively. The maximum field of view 

(FOV) was 4mmx4mm. The combined system was used to image hamster cheek pouch 

model for oral cancer in vivo and postmortem human coronary arteries with 

atherosclerotic plaques ex vivo. Their morphological and endogenous emission images 

correlation was studied. The evaluation was equivalent to their histopathological 

analysis. 

In the second phase of this research, we built a bench-top prototype that 

comprised of swept source OCT (SSOCT) and a FLIM system with the capability to 
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characterize endogenous and exogenous emissions simultaneously. The swept laser had 

a sweep rate of 50 kHz and the center wavelength was at 1310nm. FLIM utilized lasers 

with wavelengths 355nm and 532nm to excite endogenous and exogenous fluorophores, 

respectively. The maximum FOV was 16mmx16mm. With this system, OCT-FLIM 

images of a Watanabe rabbit aorta, which was non-specifically tagged with Alexa Fluor 

532, were acquired ex-vivo. The results appraised the ability of the system to 

simultaneously probe the sample’s structure, its endogenous emission and the exogenous 

fluorescence of the dye tagged to it. We hypothesize that the OCT-FLIM imaging tool 

adds a potential to study the activities of important non-fluorescing molecules in an 

artery while relating the analysis to its morphology and biochemistry. 
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1. INTRODUCTION

 

 

1.1 Background 

Research in biomedical engineering focuses on the application of available 

engineering principles and techniques to decrease disease morbidity and mortality. One 

of the sectors investigates the development of non-or minimally invasive optical imaging 

tools for timely and/or detailed diagnosis of the diseases. Currently, two diseases that 

require well-engineered diagnostic tools are oral cancer and atherosclerosis. 

Oral cancer is associated with the development of malignant tissue in oral cavity 

and larynx. The Oral Cancer Foundation estimates that more than 45,750 new cases of 

oral cancer will be reported this year in the US [2]. The average 5 year survival rate of 

oral cancer at all stages is approximately 57% and this figure hasn’t shown much 

improvement in the last decade [2]. This lies on the fact that the symptoms are evident 

only in a later stage, in most cases, when the cancer metastasizes to the lymph node of 

the neck, making the treatment difficult and expensive [3]. Late diagnosis of oral cancer 

can also be attributed to the conventional method of diagnosis used in clinics. It 

primarily involves visual inspection which is followed by biopsies at few suspicious 

regions. Since distinction between benign and malignant lesion is not visually clear at 

early stages, the chances of failing to detect a precancerous region is high. Moreover, the 

                                                 


 Parts of this section were taken from [1] J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. 

Applegate, "A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy 

system for simultaneous morphological and biochemical tissue characterization," Biomed Opt Express, 

vol. 1, pp. 186-200, 2010. Copyright 2015 The Optical Society. 
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procedure of biopsy is painful to the patient and taking biopsy at every suspicious region 

is impractical. As a result, regular examination of the oral cavity for premalignant tissue 

is often overlooked. However, based on the study conducted by The Oral Cancer 

Foundation, early detection of oral cancer is the key to the survivability of oral cancer. 

The foundation estimates that early detection of oral cancer can significantly improve 

the survival rate by as much as 80-90%. From this it is evident that the number of early 

detections can be greatly improved if an alternative to biopsy is available, which is easier 

and faster to carry out. This underscores the need of a tool which can non-invasively 

diagnose oral cancer at early stage. 

Likewise, atherosclerosis is a process of hardening of an artery to form plaques 

on the lumen. It is a gradual process that begins as fatty streaks at childhood and may 

lead to occlusion at older ages. Ischemic heart diseases and stroke, which have been the 

top two causes of death in the world in the last decade according to World Health 

Organization (WHO), are caused by atherosclerosis [4]. Atherosclerosis may also be the 

reason for many other diseases, e.g. peripheral artery disease, chronic kidney disease, 

depending on its location. To mitigate risk from this condition, pharmaceutical methods 

to cease aggravation of atherosclerosis are being clinically used or are under research [5, 

6]. Research also shows that the development of atherosclerosis is in stages accompanied 

by minute changes in the artery, meaning the therapeutic strategy depends on the 

condition of the hardening. Therefore, diagnostic tools that help in comprehensive 

visualization of the plaques are important to increase the efficacy of atherosclerosis 

treatment. Current clinically used technologies, such as angiography and intravascular 
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ultrasound, only help in identifying blockages in the lumen or plaques on the vascular 

bed. However, atherosclerosis is a complex process that requires more detailed 

assessment of the plaques in order to be able to classify them accurately for the most 

suitable treatment. Therefore, further investigation on the development of a diagnostic 

tool that screens the arteries in molecular level and that classifies atherosclerotic plaques 

with high sensitivity and specificity is essential. 

In general, diagnostic tools assess the biomarkers of a disease. Therefore, 

identifying the biomarkers is essential before selecting/developing an intervention. The 

changes in tissue during the progression of oral cancer and atherosclerosis are discussed 

below at a basic level: 

1. Oral epithelial tissue consists of layers of stratified squamous epithelium of 

several cell layers thickness, a basement membrane of a single cell layer thickness and a 

stromal region with collagen and blood vessel. Malignant cells originate at the basement 

membrane and proliferate upward to the epithelium. With further growth of these cells, 

they invade into the stroma by breaking the basement membrane. During this process, 

the structural modifications incident on the oral epithelium are, formation of keratin, 

epithelial thickening, loss or destruction of layered structure and irregular epithelial 

stratification [7-10]. Oral epithelial tissue also experiences degradation of stromal 

collagen as well as an elevation in metabolic rate elevation and cellular invasion. The 
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NADH-FAD

 activity increases leading to an increase in the concentration of NADH 

and decrease in the concentration of FAD at abnormal state [11, 12]. 

2. A basic structure of an artery consists of layers of intima, media and adventitia. 

Intima contains endothelial cells of a cell layer thickness. Media is made of smooth 

muscle cells and elastic fibers containing elastin. Adventitia is composed of connective 

tissue consisting of collagen. Atherosclerosis involves the development of various forms 

of plaques in the intimal region, as summarized in Figure 1. It begins with the 

development of pathological intimal thickening filled with collagen. During this process, 

lipoproteins such as Low-Density Lipoprotein (LDL) may enter the intima, get oxidized, 

get accumulated, and as a result may lead to generation of lipid-rich foam cells[13]. In 

the subsequent stage, smooth muscle cells may form fibrous cap over the foam cells 

forcing the formation of necrotic core. Necrotic cores may be inflamed and/or calcified. 

Also, the thickness of the fibrous cap may differ


. 

From this discussion on the changes of oral epithelium and arterial intima, we can 

recognize that they go through several morphological and biochemical changes during 

the progress of the disease. Therefore, these changes can be considered the biomarkers 

for their diagnosis. 

 

 

 

                                                 


 NADH- Nicotinamide Adenine Dinucleotide, FAD- Flavin adenine nucleotide 


 The structure and the process of atherosclerosis are far more complex than described and beyond the 

scope of this study. 
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Figure 1: Highly simplified cartoon of various state of Atherosclerosis. Figure illustrates the phases of an 

artery from when it is healthy to when the artery is narrowed. These phases are not necessarily sequential. 

Different state of the disorder results in different cardiovascular diseases.  

 

 

 

Property of light-tissue interaction changes with the modification of the 

morphology and biochemistry of the tissue [14]. Generally, optical properties of the 

tissue such as the scattering coefficient and absorption coefficient are influenced due to 

change in the size, distribution and composition of the particles in the tissue. If a tissue 

contains autofluorophores, the fluorescence property of the tissue may change due to 

alteration in their relative abundances. On the other hand, if the non-fluorescing 

components (molecules) of the tissue are tagged with a fluorescent agent, the 

fluorescence property of the agent may change depending on the activities of these 

molecules. Thus, optical imaging modalities, which use the tissue optical response to 

yield images of the tissue, can be applied for tissue diagnosis.

 

Some of the optical imaging modalities that probe the morphology of tissue are 

confocal microscopy and Optical Coherence Tomography (OCT). Likewise, the 

                                                 


 Sound-tissue interaction is another phenomenon that Ultra-sound is based on. Ultrasound is used to probe 

morphology of the sample. 
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biochemistry of a tissue can be assessed using modalities like multi-photon microscopy, 

Raman spectroscopy, fluorescence spectroscopy and Fluorescence Lifetime imaging 

Microscopy (FLIM). 

For detailed understanding of a disease, all the available biomarkers need to be 

investigated as they are inter-related. Unfortunately, no single optical imaging modality 

is capable of measuring all of the changes in the optical response of pathological tissue. 

However, a promising solution is to combine two or more individual modalities such 

that the product contains the strengths of the constituent modalities. As a combined 

system, such multi-modal diagnostic tools are capable of interrogating the morphology 

as well as the biochemistry of a tissue. Information obtained with multi-modal systems 

help in analyzing a disease with improved sensitivity and specificity [15]. 

Over the years, this strategy has been adopted by many researchers, who have 

developed multi-modal instruments and have tested their applications. For instance, 

Raman Spectroscopy (RS) and Intra-Vascular Ultra-Sound (IVUS) have been combined 

for the study of lipid and calcium packets in atherosclerotic plaques [16]; time-resolved 

fluorescence spectroscopy has been combined with ultrasonic backscatter microscopy 

for atherosclerosis diagnosis [17]; Optical Coherence Tomography (OCT) has been 

fused with RS for tissue characterization [18]; Fluorescence Lifetime Imaging 

Microscopy (FLIM), photoacoustic and ultrasound have been combined to yield 

increased sensitivity and specificity in diagnosis of oral cancer [19]; and Full-field 

Optical coherence microscopy and optically sectioned fluorescence microscopy have 

been combined for high resolution images of micro-architecture of tissue and its 
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components highlighted by contrast agents [20]. We can also find examples of combined 

OCT and multi-photon microscopy [21], OCT and fluorescence spectroscopy [22-28], 

OCT and multi-photon tomography [29], confocal Raman spectroscopy and confocal 

microscopy [30], and reflectance confocal microscopy and FLIM [31]. Furthermore, 

some of the dual-modality imaging tools have also been successfully used in patients in 

clinical settings [32, 33]. 

A combined system to be used for the imaging of an oral tissue and an artery 

requires two main capabilities that are discussed below:  

1)  The thickness of epithelial layer of oral tissue and the intima of the artery, when 

diseased, are below 1mm [9, 34]. The system should have imaging depth range that 

scans this thickness. Within this depth, the epithelium contains several layers with few 

microns of thickness. Their measurement is needed to understand the condition of the 

tissue. Similarly, the intima contains areas with several forms of plaques within the 

imaging depth. These regions may be loaded with foam cells, may be calcification or 

may contain a necrotic core. The fibrotic cap over the necrotic core has varied thickness 

and is marked to be vulnerable to rupture if it measures <65µm. Therefore, the imaging 

system to be used for oral cancer and atherosclerosis diagnosis should have an axial 

resolution that is sufficient to measure few tens of microns of thickness and a lateral 

resolution to identify the variation in structures. In short, the system should have the 

ability to assess morphological changes in tissue up to a depth of 1mm with high 

resolution. 
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2)  These tissues consist of endogenous fluorophores whose relative abundance 

changes with the progression of the disease. In oral tissue, such intrinsic or endogenous 

fluorophores are collagen, NADH and FAD [11, 35-37]. Fluorescence from collagen 

decreases due to its degradation in stroma and the thickening of the epithelium. 

Fluorescence from NADH decreases while that of FAD increases with the development 

of a lesion. Similarly, in arterial tissue, the autofluorophores are collagen, LDL and 

elastin. Fluorescence from elastin is predominant when the artery is healthy. Artery with 

pathological intimal thickening has higher fluorescence from collagen. At deposition of 

foam cells, strongest fluorescence is from LDL. Beside these fluorophores, tissue also 

has some non-fluorescing biochemicals of interest (which have been studied with other 

modalities [38-40]). These molecules can be studied by tagging them with a dye. The 

system should be able to probe the emissions from all the endogenous and the exogenous 

fluorophores. 

OCT and FLIM are two modalities that meet these requirements. OCT is a high 

speed optical imaging modality that non- or minimal-invasively provides 2-D and 3-D 

morphological images of a tissue up to a depth of few millimeters. It has better 

penetration depth than that of confocal microscopy and better axial resolution than that 

of an IVUS system. It has axial resolution of few microns and lateral resolution of few 

tens of microns, which are adequate to distinguish layers and to identify patterns in the 

tissue. Study shows that OCT is able to discern changes in the epithelial and sub-

epithelial layers of the oral tissue [7-10, 41]. OCT images also report thickness of intima, 

location and thinness of fibrotic cap, and the size and structure of the necrotic core [42-
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46]. Introduction of OCT to atherosclerosis diagnosis has enabled detection of smaller 

pools of lipid in coronary artery, which could not be identified with IVUS [47]. On the 

other hand, FLIM provides information on tissue biochemistry based on the 

characteristics of the emissions (endogenous as well as exogenous) from the 

fluorophores: wavelengths, intensities and lifetimes. FLIM collects emissions from all 

the fluorophores simultaneously and separates them spectrally. The resulting emission 

signals are used to calculate the intensity and lifetime for each fluorophore. Intensity 

provides the relative concentration of the fluorophore. Lifetime accurately identifies the 

fluorophore and its environment. Each fluorophore has a distinct lifetime for a given 

environment and emission wavelength. For example, at a range of 500-550nm, LDL and 

elastin have similar emission spectrum as shown in Figure 10; however their 

fluorescence lifetimes are ~10ns and ~4ns, respectively. Likewise, free and bound 

NADH molecules have fluorescence lifetimes of ~0.5ns and ~2-3ns but similar emission 

spectrum with maximum emission at 450nm. Therefore, even if the emission spectra of 

two fluorophores or a fluorophore in different environment overlap, the lifetime of the 

acquired emission helps in determining the source of emission and its environment.  

Thus, such multi-spectral FLIM support simultaneous acquisition of emissions from a 

group of any fluorophores as long as their lifetimes are different. This is the advantage 

of FLIM over fluorescence spectroscopy, which characterizes emissions just based on 

their wavelength and intensity. Various FLIM systems have been designed to acquire 

emissions from the autofluorophores in oral tissue [48-50]. Their results demonstrated a 

difference in the intensities and lifetimes of the emissions between normal and 
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pathological tissue. Similarly, research on the application of FLIM in arterial imaging 

evaluated the emissions from elastin, LDL and collagen for classification of the stages of 

atherosclerosis [51-53]. 

From the discussion above, it is evident that OCT and FLIM are two imaging 

modalities that are suitable to image oral tissue and arteries. A general hypothesis for the 

development of a combined system with these two modalities is that the combined 

images obtained from the system improve the sensitivity and specificity for the detection 

of all stages of the disease as compared to individual OCT and FLIM images. The high 

resolution OCT images help in quantifying various characteristics of the tissue structure 

(e.g. thickness, depth, shape of the margins, texture) that can be associated with a 

condition of the tissue. Multi-spectral FLIM images, on the hand, delineate the chemical 

composition of the tissue in terms of the emission intensities and lifetimes. Using a 

combined image, the morphological and biochemical information can be merged to get a 

better understanding of the tissue, hence increasing the sensitivity and specificity in 

disease classification. 

1.2 Objective and dissertation outline 

The goal of the project is to develop a novel dual-modality system with OCT and 

FLIM and to test the system’s application on the diagnosis of oral cancer at an early 

stage and atherosclerosis in-vivo. These aims are achieved in stages. 

To begin, a high resolution synchronized bench-top prototype of an OCT-FLIM 

system is designed and developed. The OCT subsystem is designed to have a scan depth 

range of about or more than 1mm, a high axial resolution of few microns and a lateral 
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resolution of few tens of microns. FLIM system is designed to collect emissions from the 

autofluorophores and/or exogenous fluorophores in the tissue, and has a lateral 

resolution of few hundreds of microns. As a part of the development, the system is 

validated using an arrangement that mimics the characteristics of a tissue. 

Subsequently, animal model for oral cancer is designed. Hamster is known to 

have oral epithelium similar to humans [54]. These animals develop oral cancer at its 

late stage in their cheek pouch within 32 weeks from the day they are exposed to a 

carcinogen, Benzo[a]pyrene (BAP). Advantage of using this chemical to induce 

epithelial cancer is that the growth of a malignant tissue is gradual. This allows 

assessment of multiple stages of oral cancer, including its early stage. These animals 

treated with BAP are thus imaged in cohorts at different time points within the 32 weeks 

using the OCT-FLIM system. The data collected are evaluated to interrogate the 

system’s capability to provide morphological and biochemical images that can be 

correlated to each other and to the corresponding histopathology. Furthermore, these 

data are analyzed to develop classification criteria for identifying stages of oral cancer. 

Data are also used to study algorithms for data analysis and for classification automation 

based on the criteria developed. The hypothesis is that the results evaluate the ability of 

the algorithm and the combined imaging system to distinguish between multiple stages 

of cancer, including cancer at early stage, based on the characteristics of the morphology 

and the biochemistry of the tissue. 

Likewise, the bench-top system is used to embark the investigation on the 

diagnosis of atherosclerosis. Postmortem human arteries are imaged with the system. 
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Artery samples that are available from adult autopsy cases have a wide variety of 

plaques. Their morphology and chemical composition remain intact for couple of days 

after the demise. The OCT and FLIM images of the atherosclerotic plaques were 

analyzed and the analysis was verified with the corresponding histopathological images. 

These data are used to develop automated classification for identifying plaques based on 

their structural and biochemical characteristics on the images. The hypothesis is that the 

classification of plaques is as accurate as when done by histopathological analysis.  

In order to interrogate the application of an OCT-FLIM system on the diagnosis 

of atherosclerotic plaques in vivo, an endoscope is incorporated to it. This endoscopic 

system is made compact and portable to allow imaging of Watanabe rabbits and swine in 

vivo in clinical settings. The OCT and FLIM images of the plaque are compared to the 

corresponding histopathological slides.  

In addition, non-fluorescing molecules that are vital in atherosclerosis are tagged 

with exogenous fluorescence tags during intravascular imaging. The intravascular FLIM 

images of emission from these tags help in understanding the activities of the molecule 

during the progression of the disease. These images are coupled with the corresponding 

morphological and endogenous fluorescence images. The relationship among these 

images is investigated. The hypothesis is that the morphological, endogenous emission 

and exogenous fluorescence images acquired simultaneously provide deeper insight on 

the condition of atherosclerotic plaques. Such detailed information assist in selecting an 

ideal therapeutic strategy specific to the condition. 
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This dissertation mainly focuses on the design, development and validation of 

bench-top imaging system with OCT and FLIM. In this dissertation, two acquisition 

systems are built

: 

1)  Combined system containing spectral domain OCT (SDOCT) and FLIM with 

capability to acquire endogenous emission. This system has been named as the first 

generation OCT-FLIM system in this dissertation. 

2) Combined system containing swept-source OCT (SSOCT) and FLIM with 

capability to acquire endogenous and exogenous emission simultaneously. This system 

has been referred as the second generation OCT-FLIM system in this dissertation.  

The first system is used to image hamster cheek pouch model with oral cancer in 

vivo and post mortem human coronary arteries ex vivo. The capacity of these systems to 

generate complementary morphological and biochemical images simultaneously is tested 

using the images acquired during these experiments. The second system is used to image 

post mortem human coronary arteries ex vivo as well. As a trial run, this system is also 

used to image a Watanabe rabbit aorta, which is tagged with a dye, Alexa Fluor 532 

[55]. The system’s ability to acquire morphology, endogenous emission and exogenous 

fluorescence simultaneously is evaluated. 

Based on the aforementioned objectives, this dissertation has been organized as 

follows: 

 Chapter 2 discusses the theory of Fourier-domain OCT (FD-OCT), and FLIM. 

The first sub-section covers the fundamentals of the two variants of FD-OCT, SDOCT 

                                                 


 Spectral domain OCT and Swept source OCT are two techniques of Fourier domain OCT. 
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and SSOCT, and their key parameters. The second sub-section focuses on the theory of 

multi-spectral time-domain FLIM and develops an understanding on the important steps 

required during data processing. 

Chapter 3 explains the design and development of the first generation OCT-

FLIM system, and describes how the system performance was validated. 

Chapter 4 covers our methodology for testing the application of the first 

generation OCT-FLIM system on Hamster cheek pouch model and post mortem human 

coronary artery. This chapter also demonstrates some significant examples of 

complementary OCT and FLIM images. 

Chapter 5 discusses the design and development of the second generation OCT-

FLIM system. The following subsection describes the methods used for the validation of 

system. An example of a post mortem human coronary artery imaged ex-vivo using this 

system has also been discussed. 

Chapter 6 discusses some of the improvements and limitations of the system. 

Insights on the on-going as well as future work of this system have also been included. 

Chapter 7 summarizes the dissertation. 

Parts of [1] have been taken with permission and have been arranged throughout 

the dissertation. 
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2. FUNDAMENTALS OF FOURIER-DOMAIN OPTICAL COHERENCE 

TOMOGRAPHY AND FLUORESCENCE LIFETIME IMAGING MICROSCOPY 

 

This chapter discusses the theory of Fourier-domain OCT (FD-OCT), and 

Fluorescence Lifetime Imaging Microscopy (FLIM). The first sub-section covers the 

fundamentals of the two variants of FD-OCT, spectral domain OCT and swept source 

OCT, and their key parameters. The second sub-section focuses on the theory of multi-

spectral time-domain FLIM and develops an understanding on the important steps 

required during data processing. 

2.1 Fourier-Domain Optical Coherence Tomography 

2.1.1 Theory of Fourier-Domain Optical Coherence Tomography 

FD-OCT is an interferometric technique that analyzes the interferogram as a 

function of optical frequencies to retrieve the depth-resolved reflectivity profiles of a 

sample.  

 

 

 

 
Figure 2: A simple Michelson interferometer based OCT setup. GS-Galvanometer scanner, BS-

Beamsplitter. Sample represents a multilayered reflector. 
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In FD-OCT, a broadband continuous-wave near Infrared (NIR) light is sent 

through a non-polarizing beamsplitter to form two beams with unequal (for example 

90:10, 70:30) or equal (50:50) intensity. Let the source spectrum be Ii(k) with a Gaussian 

intensity profile, where k is the spatial frequency or wavenumber calculated as 


2
k

(λ being the wavelength of the source). Also, let’s assume the schematic in Figure 2 

splits light into identical beams with intensities Ii(k)/2. These two beams travel along 

two separate arms of the interferometer, the reference arm and the sample arm. The light 

in the reference arm (with lower intensity in the case of unequal split) is directed towards 

a fixed mirror, which reflects the light back towards the beamsplitter. Let’s suppose, the 

sample contains N discrete layers, each at a distance of ZS1, ZS2,...ZSN. The NIR light in 

the sample arm penetrates up to 1-2mm into a sample and gets backscattered from 

multiple layers in the sample (as shown in Figure 2) with intensity proportional to the 

difference in refractive indices between the layers. This backscattered light from 

different depths produces optical path length differences between the sample arm and 

reference arm. i.e. ZR-ZS1, ZR-ZS2, and so forth. These path length differences produce 

interference signals at the detector when the reflected light from the sample and the 

reference arms are combined at the beamsplitter. These interference fringes are 

modulated with a frequency proportional to the delay caused by the path length 

differences. 

In FD-OCT, these interference fringes are detected as a function of optical 

frequencies in two ways. In the first method, known as spectral domain OCT (SDOCT), 
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a broad band source is used to illuminate the interferometer and the interference signal is 

dispersed spectrally with a spectrometer. In the second method, called swept source 

OCT (SSOCT) or optical frequency-domain imaging (OFDI), a broadband source is 

continuously swept spectrally to illuminate the interferometer with a narrowband light. 

In this case, the interference signal is detected with a single photodetector in terms of 

time that corresponds to the wavelength of illumination. 

Let IR(k) be the intensity of the light reflected from the reference arm and IS1(k), 

IS2(k),...ISN(k) be the intensity of light reflected from each layer of the sample arm, all 

measured at the detector. Let ρ be the responsivity of the detector. 

If the amplitude reflectance of the reference mirror is RR and that of the layers of 

sample arm are RS1, RS2...RSN, IR(k) = RR∙Ii(k)/4, ISn(k) = RSn∙Ii(k)/4 where n is the number 

of reflecting layers in the sample. Here, if RR= 1, IR(k) = Ii(k)/4 since the laser passes 

through the beamsplitter twice. Let’s assume the average refractive index to be nr. 

Interference between IR(k) and, let’s say, IS1(k) is given by, 

      )(2cos)()(2)()()(I 111D1 SRrSRSR ZZknkIkIkIkIk  
 (1) 

Substituting IR(k) and IS1(k) with its values in terms of reflectance and Ii(k), we get, 

 
      )(2cos)(2))((

4
)(I 111D1 SRriSRSRi ZZknkIRRRRkIk 



 (2) 

In these equations, the factor of 2 in the cosine terms is attributed to the roundtrip 

pathlength of the sample beam to the reflecting layer in the sample. In other words, z 

refers to the single pass optical pathlength. 
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The spectrally resolved signal detected is an integration of interference signal due 

to every reflecting layer in the sample arm and is represented as: 

       
 

 
                           

  
 

 
             

 

   

                   

  
 

 
             

 
                         (3) 

The first expression in the equation above corresponds to the DC component of 

the signal (denoted as “DC term”). It represents the components of light reflected from 

the arms which do not undergo interference. It doesn’t contain any information about the 

location of the reflecting layers in the sample arm. The second expression, called the 

“cross-correlation term”, contains the information on the location and the reflectivity of 

the reflectors in the sample arm. This is the term that is processed further to obtain the 

depth reflectivity profile. The last expression, called “Autocorrelation term” represents 

the interference between backscattered light from different layers on the sample. The 

term is considered negligible relative to the DC and cross-correlation terms.  

The DC term in ID(k) may be removed electronically. If not, the first step of 

processing the signal involves “DC subtraction”. Intensity of the light reflected from a 

sample (tissue) is minimal as compared to the intensity of light reflected from the 

reference arm. Therefore, the DC component of the interferometer is estimated to be the 

spectrum of the reference arm at the detector when the sample arm doesn’t contain any 

sample. This spectrum is used to subtract the DC component of ID(k). 
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Light is dispersed (in SDOCT) or swept (in SSOCT) linearly in terms of λ. Upon 

conversion to k-space using 


2
k , the signal loses its linearity. The cross-correlation 

term is made linear by interpolation of the signal with a linear array of k. This step is 

called “resampling”. The methods to obtain this linear array in SDOCT and SSOCT 

have been discussed in sections 3.1.4 and 5.2.6.2 respectively. 

To obtain the depth reflectivity profile in terms of z (along the axis of the sample 

beam), an inverse Fourier transform of the linear interference signal is performed. The 

Fourier transform of a linear cross-correlation term can then be represented as: 

        
 

 
             

 
                     (4) 

where,   is a symbol for convolution, γ(z) is the magnitude of the Fourier transform of 

Ii(k) and                  
 
  

 

 
                                   . 

According to equation 4, taking inverse Fourier transform of the correlation term, 

we obtain peaks in terms of ±z, which are delta functions convoluted with the function 

γ(z). The FWHM of γ(z) determines the axial resolution of the depth reflectivity profile. 

The amplitudes of these peaks represent the reflectivity of the sample at depth z. Also, in 

this equation, the peaks get positioned at 2nr(ZR-ZSn) while the actual depths are (ZR-

ZSn). During processing, the positions are calibrated. 

One of the properties of Fourier transform is that it is conjugate symmetric, i.e., 

X(-z) = X*(z). Due to this property, in displaying the Fourier transform of real-valued 

time function, it is only necessary to display the transform for positive values of z. The 

resulting depth-resolved reflectivity profile is termed as an “A-line”. 
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In OCT, 2-D and 3-D OCT images are made up of multiple A-lines. Light in the 

sample arm is used to raster scan the sample using a pair of mirrors controlled by a 

galvanometer, as shown in Figure 2. Adjacent A-lines from a cross-section of the sample 

builds a 2-D reflectivity map of that cross-section, called “B-scan”. Adjacent B-scans 

placed together form the 3-D volume of the sample. These B-scans and the subsequent 

3-D volume show the morphology of the sample. Further details the theory of FDOCT 

can be found in general OCT textbooks [56, 57]. 

2.1.2 Techniques of Frequency-domain Optical Coherence Tomography 

2.1.2.1 Spectral Domain-OCT 

Figure 3(a) shows a basic schematic of a SDOCT containing the key 

components. The setup is similar to that of the schematic in Figure 2 except that the free-

space beamsplitter is replaced by a 2x2 single-mode fiber (SMF) coupler. In this case, 

the broadband continuous source is coupled into one port of the fiber coupler and the 

corresponding output ports deliver split light to each arm. Light from the fiber tips of the 

ports are collimated and focused onto the respective reflectors. A variable filter is used 

in the reference arm to control the intensity of the interference signal to avoid saturation 

at the detector. Light reflected/backscattered from each arm are coupled back into the 

fibers. The coupler combines them and delivers the interference signal to the 

spectrometer. A spectrometer collimates the signal and disperses it with a transmitting or 

reflecting grating. The resulting fringes in terms of wavelength are focused with a 

compound lens on to a line-scan camera. 

 

 



 

21 

 

 

 
Figure 3: Basic schematic of Frequency-domain OCT. (a) Michelson Interferometry design of a fiber-

based Spectral Domain OCT with spectrometer (b) Mach Zehnder Interferometry design of a fiber based 

Swept source OCT with a wavelength swept laser (c) Process to obtain depth reflectivity from interference 

signal. A- Attenuator, GS-Galvanometer scanner, C- Circulator. 

 

 

 

Signal acquired contains autocorrelation, DC and interference terms as described 

by equation 3. Autocorrelation is ignored as the signal is weak and the DC signal is 

subtracted. The remaining interference signal is resampled as described in section 3.1.4. 

The resulting linear signal is Fourier transformed to obtain an A-line. Figure 3(c) shows 

the important steps of processing in SDOCT just discussed. The sample in the figure 
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contains 5 reflecting surfaces and the resulting A-line shows corresponding peaks at 

different depths along the axis of light penetration. 

2.1.2.2 Swept Source OCT 

 

 

 

 
Figure 4: Tuning mechanism of Swept source Laser 

 

 

 

In general, a Swept source OCT system contains a broadband source whose 

wavelength is swept continuously at a certain repetition rate to emit narrowband 

spectrum with instantaneous line-width (FWHM), δλ, as shown in Figure 4. The 

broadband spectrum of the laser is the tuning spectrum. Sweep is mostly linear in λ, 

though some lasers are designed to be linear in k-space [58]. The sweep direction is 

either uni- or bi-directional. Similar to SDOCT, the swept source is coupled into an 

interferometer. Interference signals for each narrowband of wavelength is integrated and 

detected with a balanced detector over time. 

Figure 3(b) shows an example of a Mach Zehnder interferometer setup of SS-

OCT. Here, source is split unevenly and higher intensity light is delivered to the sample 
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arm through circulators. Light reflected/backscattered from each arm interfere at the 2x2 

SM coupler. A balanced detector acquires the interference signal over time, filtering the 

DC electrically.  

This signal can be considered analogous to the interference signal in SDOCT 

after DC subtraction. Each narrow spectrum during a sweep of the laser is associated 

with a sample point of the signal. The interference signal can thus be viewed to be in 

terms of λ or k.  

Similar to SDOCT, signal is then re-sampled in k-space. Distribution of the 

signal in terms of k is not linear due to non-linear sweep in k and can be made linear 

using several techniques [59-61]. The method used in this project has been discussed in 

section 5.2.6.  

The remaining steps to process the linear interference signal to retrieve the A-line 

is the same as that of SDOCT, as shown in Figure 3(c).In general, the FWHM of Fourier 

transform of the tuning spectrum, provides the axial scanning resolution. During data 

processing, windowing may be applied to the spectrum (as described in section 5.2.6.2) 

such that the FWHM of the Fourier transform of the resulting spectrum is the axial 

resolution. 

2.1.3 Figures of Merit 

2.1.3.1 Wavelength 

Penetration depth of light depends on the absorption and scattering coefficients 

of the medium. Values of these coefficients vary with the wavelength of light. This 

infers that the penetration depth depends on the wavelength of the light. Since one of the 
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factors that determine the performance of OCT is penetration depth, it is important to 

understand the optical properties of the sample and to choose the best operating 

wavelength accordingly. 

Optical window for biological sample ranges from visible light to NIR. 

Absorption coefficient is the least and light attenuation occurs mainly due to scattering 

in this window. Light used for OCT has wavelength in this range. Furthermore, choice of 

the operating center wavelength lies on the application of the system. For example, OCT 

uses light at 800nm to image an eye in order to minimize signal degradation due to 

absorption by the aqueous humour. However, OCT designed for intravascular imaging 

uses light with wavelengths longer than 1μm for deeper penetration. 

2.1.3.2 Resolution 

In OCT, two types of scanning yield a 3D structural image: an “A-scan” (axial 

scan) and a “B-scan” (lateral scan). Therefore, axial and lateral resolutions are two 

important parameters in OCT. Resolution define the distance between two points that 

can be easily resolved. Based on Rayleigh criterion, the full width at half of maximum 

intensity (FWHM) of the point spread function measures the resolution of the system. 

Axial resolution is the resolving ability along the axis of the beam in the sample. 

Axial resolution is measured as the FWHM of the function derived by taking the Fourier 

transform of the source spectrum in terms of k. Theoretically, assuming the source 

spectrum has a Gaussian distribution with spectral band width Δλ (FWHM of the 

spectrum) and center wavelength of λo (which is equal to 2π/ko), the axial resolution is 

calculated as: 
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2

Δλ
 (5) 

Here, n is the refractive index of the medium between the sample and the lens. From the 

equation, we can infer that axial resolution is inversely proportional to the bandwidth of 

the spectrum. Therefore, in OCT, use of a broadband source provides better axial 

resolution. Axial resolution for a typical source like superluminescent diodes (SLDs) is 

about 5-8μm and can be improved by using femtosecond lasers. 

Lateral resolution, δx, on the other hand, is the resolving ability in the directions 

orthogonal to the beam axis. Based on Rayleigh criterion, it is the FWHM of the beam 

focused at the sample. In general, lateral resolution of an OCT system is few tens of 

microns. 

2.1.3.3 Depth of focus 

The other important parameter in OCT is the Depth of Focus (DOF). While 

focusing a beam, its spot size is the least at the focal plane (Z = 0). Here, spot size means 

the radius of a Gaussian beam waist on the plane (x-y). Let the radius of beam be w(Z). 

The minimum radius at z=0 is then w(Z)=w(0)=wo. When w(Z) is √2.wo, Z = ZRayleigh, 

which is known as the Rayleigh range. Depth of focus is 2ZRayleigh, Z = 0 being the center 

of the range. This is basically the range of depth where the light can be considered to be 

“in focus” and backscattered light from this range is useful for an image. Depth of focus 

of an OCT system can be calculated as,  

2           
  

 
   

  (6) 

Based on this equation and general Gaussian distribution, the lateral resolution 

discussed in the previous section can be formulated as: 
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ox w)2ln2(  (7) 

We should note that DOF is directly proportional to the lateral resolution of the 

system. This means when the resolution is improved, the DOF worsens and vice versa. 

2.1.3.4 Sensitivity, roll-off and maximum depth 

Sensitivity is another important parameter that denotes the largest permissible 

signal attenuation within a sample that can still be distinguished from noise. It can be 

defined as the ratio of signal power generated when a mirror is used as a sample to the 

weakest signal power equivalent to noise of the system. Sensitivity is also termed as 

Signal-to-Noise ratio (SNR). SNR of an FDOCT system can be estimated as: 

e

tRS
SNR SS

2





 (8) 

Here, ρ is the responsivity of the detector, SS is the sample illumination power, 

RS is the reflectivity of the sample arm, e is the electronic charge and Δt is the detector 

integration time in SDOCT or the sweep time in SSOCT [62]. Equation 8 provides the 

achievable SNR of the OCT system. 

In FD-OCT, another vital parameter associated with sensitivity is the roll-off. It 

defines the depth in the sample where the signal sensitivity reduces to half of the 

maximum sensitivity. Typically, roll-off is few millimeters. In SDOCT, the pitch of the 

linescan camera of the spectrometer is finite. As a result, each pixel acquires the 

integration of multiple wavelengths providing a finite spectrometer resolution, δλSD. 

Likewise, in SSOCT, the bandwidth of the narrowband spectrum, δλ in Figure 4, is 

finite. The interference signal detected is thus a convolution of the actual interference 
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signal and the Gaussian function with FWHM equal to δλSD(SDOCT) or δλ(SSOCT). 

Taking the Fourier transform of such signal results in an A-line which is multiplied by a 

Gaussian function with a FWHM equal to the coherence length. Roll-off is half of the 

coherence length. Moreover, the spectral sampling interval is inversely proportional to 

the maximum depth of acquisition. The spectral sampling interval is defined by the 

number of pixels on the linescan camera in SDOCT and the sampling rate in SSOCT. 

Thus, better spectrometer resolution and larger number of pixels in SDOCT, and better 

narrowband spectrum resolution and sampling rate during signal acquisition in SSOCT 

can improve roll -off and maximum depth. 

2.1.3.5 Imaging speed 

Imaging speed is crucial when motion artifact during in vivo application of the 

system need to be avoided or minimized. It is determined by the rate of A-line 

acquisition. In FD-OCT, speed is limited by the read-out rate of the detector (SDOCT) 

or the sweep rate of the laser (SSOCT). 

2.2 Fluorescence Lifetime Imaging (FLIM)

 

Upon excitation, some chemicals (fluorophores) emit light. FLIM is a 

fluorescence spectroscopy technique that collects emission from a sample and 

characterizes the contents based on the emission properties: wavelength, intensity and 

lifetime. 

                                                 


 Concept and formulation in this section are based on [63] J. R. Lakowicz, Principles of fluorescence 

spectroscopy, Third ed.: Springer Science & Business Media, 2006. 
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In this section, the fundamentals of fluorescence have been described briefly in 

section 2.2.1. Section 2.2.2 elaborates the concept of lifetime and the last section covers 

detailed description of multi-spectral time-domain FLIM. 

2.2.1 Basics of Fluorescence 

During its interaction with photon(s), an electron of a molecule in its lowest 

energy level, E0, (ground state) absorbs energy of the photon to go to one of its higher 

energy levels, Em (excited state). A molecule gets excited only when the energy of the 

photon matches with the difference between two levels, i.e.:  

Energy of photon = hν = Em – E0 (9) 

Here h is the Planck’s constant and ν is the frequency of the photon. Each electronic 

level further consists of quantized vibrational levels. Energy of a photon may match the 

difference between the lowest vibrational level of the ground state and a higher 

vibrational level of the excited state as well. Thus, photons with a range of discrete 

energies or frequencies can be used to excite a molecule. 

Excited states are not stable and electrons return to the ground state following 

different mechanisms [64]. The phenomenon of relaxation that is relevant to FLIM is 

called Fluorescence. In this phenomenon, molecules in the condensed phase that are 

excited to higher vibrational levels of Em , generally, relax to the lowest vibrational level 

of the same electronic state within 10
-12 

s, losing some energy. This non-radiative 

transition within the vibrational levels is called vibrational relaxation. These molecules 

then generally return to the ground state within near 10
-8

 s while emitting photons with 

lesser energy than that of the photons absorbed [63]. In most cases, relaxation occurs 
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from the lowest vibrational level of the excited state. Moreover, similar to the transition 

during excitation, molecules may relax to one of the higher vibrational levels of E0 first 

and proceed to the lowest level non-radiatively. Therefore, photons with a range of 

discrete energies or frequencies are emitted. These emitted photons are collected and 

studied using FLIM. 

A simple Jablonski’s diagram in Figure 5 illustrates the photoluminescence 

process. Thick lines represent the lowest vibrational level of that electronic level and the 

thin lines show rest of the vibrational levels. Blue arrows represent the transition from 

ground state to excited state upon absorption of energy hν1, Red wiggled arrows denote 

the vibrational relaxation. Green arrows represent the relaxation to the ground state from 

higher state, emitting photons with energy hν2. 

 

 

 

 
Figure 5: A simplified Jablonski’s diagram showing the process of fluorescence. E0 is the ground state and 

Emis the excited state. The thick lines represent the lowest vibrational level of the band. The thin lines 

represent rest of the levels. Figure is color-coded: Blue arrows represent the transition from ground state to 

excited state upon absorption of energy hν1, Red wiggled arrows denote the vibrational relaxation. Green 

arrows represent the relaxation to the ground state from higher state, emitting photons with energy hν2. 

Electrons relax to higher vibrational levels of Eo. Red arrows on the ground state represent the transition 

from higher states of Eo to the lowest. Here hν2 < hν1. 
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In equation 9, energy of a photon is directly proportional to its frequency. Since ν 

= 


c , where λ denotes wavelength of the photon and c is the velocity of the light, 

energy can be related to the wavelength of the photon as well. Thus, emission has longer 

wavelength than that of the excitation light and this property is called Stoke’s shift. 

Additionally, as mentioned before, since a molecule can be excited with a range of 

energies to emit in a range of energies, the absorption and emission spectra are broad. 

The probability of transition from the ground state to each vibrational level in 

excited state is different. The intensity of the absorption spectrum represents this 

probability, assuming absence of any other sources of broadening. According to Frank-

Condon principle, the probability of a molecule’s transition from ground state to the nth 

vibrational level of Em is equal to its probability to go from the lowest vibrational level 

of Em to the nth vibrational level of E0. Thus, the absorption and emission spectra of a 

molecule are symmetrical to each other. Loss-less transition between the lowest 

vibrational level of E0 and the same of Em creates an overlap of these spectra as shown in 

Figure 6. The excitation spectrum (blue) for Alexa Fluor (AF) is a mirror image of its 

emission spectrum (green). Shift of the emission spectrum to longer wavelength is due to 

loss of energy during vibrational relaxation. Further detail on the basic mechanism of 

fluorescence can be found in [63]. 
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Figure 6: Example of excitation and emission spectra and their properties of Stoke’s shift and mirror 

image. The data for the spectra for Alexa Fluor 532 was taken from [65]. Excitation spectrum (Blue) and 

emission spectrum (Green) have mirror profiles. The peak of excitation spectrum is at 534nm and that of 

the emission peak is 553nm. The shift is due to loss of energy in non-radiative transition within the same 

energy band. This shift is called Stoke’s shift. 

 

 

 

2.2.2 Lifetime and its estimation 

So far, the mechanism of fluorescence has been explained in terms of excitation 

of an electron of a molecule. In reality, fluorescence involves multiple valence electrons 

of multiple molecules. Let N be the number of molecules that are in excited state at a 

given time, t, after incidence of infinitely small width excitation pulse at t = 0s. The rate 

of relaxation is proportional to the population of molecule in the excitation state, giving 

us: 

)(
)(

tN
dt

tdN


 (10) 

If k is the rate constant of the decay dynamics, equation 10 becomes: 

)(
)(

tkN
dt

tdN
  (11) 

Also, let’s consider the population of excited molecule at t=0 to be N0. Therefore, 
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 (12) 

Equation 12 can be written as: 

I(t) = I0 e
-t/τ 

(13) 

This is because N is directly related to the intensity of emission. Io is the intensity of 

emission at t = 0 and τ is the lifetime of emission, which is equivalent to 1/k. This also 

brings us to the concept that lifetime is the decay rate of emission intensity and the value 

can be approximated by measuring the time that the decay takes to reach 1/e of the 

maximum intensity. Here, equation 13 represents a single exponential decay. However, 

if there are multiple pathways with different rate constants, the equation denotes a multi-

exponential decay. 

The above equation is derived also with the assumption that the excitation pulse 

is infinitely narrow. In reality, the pulse has a width of at least few nanoseconds, causing 

the decay to be broadened. The resulting decay is the convolution of the true decay and 

the excitation pulse. Therefore, a method to recover the true decay of the fluorophore is 

to deconvolve the instrument response function (the response of the instrument to an 

impulse) from the acquired decay (referred as impulse response function)[63]. The 

deconvolution algorithm designed for this project was based on a recently proposed and 

validated Laguerre deconvolution method [66]. This method furnished fast lifetime 

estimation of multiple fluorescence decays simultaneously. As this dissertation focuses 

mainly on the instrumentation of the FLIM system, details on the deconvolution 

algorithm have not been covered. However, for further detail please refer to [67-69]. 
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One other important concept to realize about the estimation of lifetime is that 

fluorescence emission is a random process in which different molecules in a population 

emit at different times. Lifetime, τ, is therefore the inverse of the decay rate of the 

ensemble. In other words, the lifetime we estimate using FLIM is the average time the 

population spends in excited state. Average time, <t>, either for single or multi-

exponential decay, is calculated as: 
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 (14) 

When the rate is singular, meaning the decay is single exponential, <t>= τ based on 

equation 14. For multi-exponential decay, I(t) = a1.e
(-t/τ1)

+a2.e
(-t/τ2)

+...+aN.
e(-t/tN)

, where 

1/τ1 through 1/τN represent the decay rates. In this case, <t> ≠ τ and can be estimated 

using the equation above. 

2.2.3 Multi-spectral Time-domain Fluorescence Lifetime Imaging  

2.2.3.1 Optical Configuration 

Figure 7 shows a simple schematic of a time-domain FLIM system. It uses a 

pulsed laser with width narrower than the decay time of the sample as the source for 

excitation. Excitation beam is focused on a sample. The excitation beam is separated 

from the emission using a dichroic mirror. Emission is then detected by a Photo-

Multiplier Tube (PMT) or a time-gated Intensified Charge Coupled Device (ICCD) 

camera. 
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Figure 7: Simple optical setup of a Time-domain FLIM. Blue and green lines represent the excitation and 

emission beams, respectively. 

 

 

 

Tissue is populated with many fluorophores. In such scenario, emission acquired 

from a confined area of a tissue surface using a FLIM system yields a decay that encodes 

emission from all the fluorophores in that area. In order to retrieve fluorescence from 

each fluorophore, the FLIM system described above needs to be modified to a 

multispectral FLIM system. 

A multispectral FLIM system is formed by integrating a set of dichroic mirrors 

and filters in front of the detector in the setup above. This added setup separates the 

emission spectrally resulting into channels that provide an impulse response function for 

a band. For simplicity, let’s say the sample has 3 fluorophores and their emission spectra 

do not overlap. In this case, the dichroic mirrors and filters are set up as shown in Figure 

8 and the bands of the 3 channels match with the emission spectra, respectively. The 

output of each channel is then the decay of the respective fluorophore in the sample. 

Each channel may be detected with a PMT. However, an economical strategy is to 

optically delay the channels to form a train of well separated decays that is acquired by 

just one detector. One way to achieve this is to couple all channels into multi-mode 

fibers (MMFs) with different lengths and provide the output of the MMF to a detector, 

Pulsed 
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Detector

Dichroic mirror

Lens

Sample
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as shown in Figure 8. The difference in the length of these MMFs is given by:
fibern

ic 
, 

where c is the velocity of light in vacuum, i is the temporal interval needed between the 

peaks of the decays in the train (value is chosen based on the longest lifetime to be 

acquired) and nfiber is the refractive index of the fiber, which is approximated to 1.5 for 

glass during calculation. 

 

 

 

 
 

Figure 8: Basic schematic of the setup used to separate the emission spectrally. The combination of 

dichroic mirrors and filters deliver the emission from each fluorophore to a channel. Each channel is 

coupled into a multi-mode fiber. These fibers have different lengths such that the decays are detected as a 

train as shown. DM-dichroic mirrors, F-bandpass filters, MMF-Multi-mode fiber.  

 

 

 

Here, we considered a simple hypothetical sample whose emission spectra do not 

overlap. However, in reality, this may not be true. The next section elaborates on the 

method of choosing the bands for each channel in either scenario. Section 2.2.3.3 

describes how the signal acquired by a multispectral FLIM is processed to obtain the 

intensity and lifetime of the emission from each fluorophore. 

2.2.3.2 Selection of bands for channels 

As discussed in the previous section, the fluorophores of interest in a tissue may 

have emission spectra with no or minimum overlap, making the choice of bands for the 

channels easy. However, in some instances, the peaks for two fluorophores overlap and 
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the band has to be picked at the range of wavelength where their lifetimes contrast. This 

means that one particular channel is designated for both fluorophores and the lifetime 

helps to identify the source. 

In this project, oral tissue and artery were imaged using the systems described in 

chapters 3 and 5. Oral tissue has fluorophores whose emission peaks are easily 

distinguishable, and thus is a perfect example of the first scenario above. On the 

contrary, the second scenario matches with the emissions from an artery. This section 

elaborates on the choice of bands in each case. 

2.2.3.2.1 Oral tissue 

The main fluorophores of interest in Oral tissue are Collagen, NADH and FAD. 

These fluoresce with peaks at ~390nm, ~460nm and ~550nm, respectively, as illustrated 

in Figure 9. Multispectral FLIM can be adapted to separate the emission into bands 

based on these peaks. Example of a set of bands is shown with green boxes in the figure. 

 

 

 

 
Figure 9: Spectra of Collagen (Purple), NADH (Red) and FAD (Green). The emission peaks of all the 

fluorophores are distinctly separated. Multispectral FLIM can be adapted to separate emission into the 

bands indicated by the light green boxes. Data was acquired with a TRFS system

. 

                                                 


 TRFS system used to collect the intensity and lifetime spectra had a general fluorescence spectroscopy 

setup as shown in Figure 7. The detector contained a monochromator and a PMT. 
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2.2.3.2.2 Artery 

The main autofluorophores in an artery are collagen, LDL and elastin. Figure 10 

shows the intensity and lifetime spectra of these fluorophores. In the figure, collagen has 

peak emission at ~390nm, while both elastin and LDL emit at ~425nm and have similar 

spectrum shape. Nonetheless, lifetime spectrum of LDL has higher gradient as compared 

to that of elastin. The center wavelengths of the channels are then around 390nm and 

anywhere between 480nm to 550nm, respectively. The second channel contains 

emission from LDL and elastin. Lifetime calculated helps in identifying the fluorophore. 

 

 

 

 
Figure 10: Intensity and Lifetime spectra of emission from collagen (Green), elastin (Blue) and LDL 

(Red). Data were acquired with a TRFS system. 

 

 

 

2.2.3.3 Data processing 

Let the number of channels be N in the multispectral FLIM setup. The resulting 

signal at the detector is then a train of N numbers of decay. Figure 11(a) shows the 

flowchart of the steps needed to process the signal at the detector. As a foremost step, 

signal is temporally divided to form a subset of N decays. Each decay is then 

deconvolved with the excitation laser profile to obtain the corresponding true decay from 
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the sample. The latter decay is integrated to find the intensity of emission. Equation 14 is 

used to calculate the lifetime. As a result, N sets of intensity and lifetime values 

corresponding to N channels are generated. Let these intensities be Ii and the lifetimes be 

Li where i = 1,2,3,...N, respectively. Intensity values for the decays are then normalized 

by the sum of all the intensities, I1 through IN, resulting in the corresponding values of In1 

through InN: 

i.e. Ini = 




N

i

i

i

I

I

1

, where i = 1, 2,...N. (15) 

 

 

 

 
Figure 11: FLIM Data processing with N=2. ch-channel. (a) Emission from a sample is spectrally 

separated with the multi-spectral FLIM. The signal acquired is thus a train of decays as shown. Following 

are the steps that are involved in processing this train collected from a single pixel of the sample surface: 

temporal division to get decay for each band, deconvolution of the decays with the corresponding 

excitation pulse, and calculation of absolute intensity, normalized intensity and lifetime from each decay 

(I1, In1,L1 for the first band/ch1 and I2, In2,L2 for the second band/ch2). Assembling similar information 

from multiple pixels on the sample, FLIM maps can be formed as shown in (b). (b) A sample of sets of 

absolute intensity, normalized intensity and lifetimes for each channel. 
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A typical FLIM system consists of a lateral scanning mechanism, e.g. a 

galvanometer scanner, to obtain emission from multiple points on the surface of the 

sample. When a sample is laterally scanned in x-y direction, we get N sets of intensity, 

normalized intensity and lifetime values for each point (pixel). Assembly of I1, In1 and 

L1 values for all the pixels form the intensity map, normalized intensity map and the 

lifetime map, respectively, for the first channel. Repeating the same process for all the 

channels, we can get similar maps for all the N channels. The total number of maps thus 

is 3xN. Figure 11(b) shows an example of a set of absolute intensity, normalized 

intensity and lifetime maps for N=2. 
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3. THE FIRST GENERATION OF COMBINED OCT-FLIM SYSTEM

 

 

In this chapter, optical design of the first generation combined OCT-FLIM 

system has been explained. The system was validated by imaging capillary tubes filled 

with dyes and submerged in intralipid. 

3.1 Method 

A schematic diagram of the dual-modality imaging system is shown in Figure 12. 

The diagram can be divided into three sub-diagrams: OCT subsystem, FLIM subsystem, 

and Common Path. The solid black arrows indicate the optical path of the reference and 

sample arms of the OCT module. The dashed gray arrows show the FLIM excitation 

light path, and the solid gray arrows show the FLIM fluorescence emission optical path. 

The connection between a central computer and all electronics and interfaces is 

symbolized by a thin solid black line. 

 

 

 

                                                 


 Parts of this section has been taken with permission from [1] J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. 

Wan, and B. E. Applegate, "A dual-modality optical coherence tomography and fluorescence lifetime 

imaging microscopy system for simultaneous morphological and biochemical tissue characterization," 

Biomed Opt Express, vol. 1, pp. 186-200, 2010. Copyright by The Optical Society. 
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Figure 12: Schematic diagram of the dual-modality imaging system. L1, L2 and L5: free-space collimation 

and coupling lenses, L3, L4, L6-L12: fiber-connected collimation and coupling lenses, NDF: neutral 

density filter, M1-M4: mirrors, DM1-DM4: dichroic mirrors, and F1-F4: filters. Dashed light gray lines 

show the path of 355nm laser, Light gray saolid lines are the emission, and black lines trace the optical 

path of OCT. Reprinted from [1]. 

 

 

 

3.1.1 OCT Subsystem 

A fiber-based Fourier domain OCT system was implemented as the OCT 

module. The light source was a superluminescent light emitting diode (SLED) 

(EXS8410-2413, Exalos, Langhome, PA) with a center wavelength of 830 nm and 

spectral bandwidth of 40 nm, providing a coherence length (or axial resolution) of 7.3 

µm in air. The SLED light propagated into an isolator (AC Photonics, Santa Clara, CA) 

designed to protect the light source from unwanted back reflections. Light exiting the 

isolator through single-mode optical fiber (AC Photonics, Santa Clara, CA) was divided 

by a 2x2 (50/50) single-mode coupler (AC Photonics, Santa Clara, CA) and directed to 

the reference and sample arms. The reflected beam from a reference mirror in the 

reference arm and the backscattered light from the sample were recombined at the 
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coupler and generated a spectral interferogram on a custom designed high-speed 

spectrometer. The spectrometer was based around a transmissive grating (1200 L/mm, 

Wasatch Photonics, Logan, UT) and a CCD linescan camera (Aviiva, SM2CL1014, EV2 

Technologies, Essex, England) capable of lines rates of up to 53 KHz. The detected 

signal was digitally converted and acquired by a high speed imaging acquisition board 

(PCIe-1427, National Instruments, Austin, TX). The OCT subsystem had a signal-to-

noise ratio (SNR) of 98 dB and a 3 dB single sided fall-off of 900 µm. The sample arm 

of the interferometer is encompassed in the Common Path in the OCT/FLIM System will 

be described in detail in section 3.1.3. 

3.1.2 FLIM Subsystem 

A frequency tripled (355 nm) Q-switched Nd:YAG laser (SPOT-10-50-355, 

Elforlight Ltd., England) with a pulse width of 1 ns, and maximum repetition rate of 50 

KHz was used as an excitation light source. A 50 µm multi-mode fiber delivered the 

excitation light to the OCT-FLIM Common Path. 

The emission light exiting the OCT-FLIM Common Path was directed through a 

200 µm multi-mode fiber into a multi-spectral detection module. As described in section 

2.2.3, the multispectral detection system contains a set of dichroic mirrors and filters to 

divide the emission spectrally. In this dual modality set up, dichroic mirrors from 

Chroma Technology, R405lp followed by 470DCXR sequentially reflected light for the 

first and second channels. Bandpass filters, FF01-390/40 and FF01-452/45 from 

Semrock were placed on the path of channel 1 and 2 respectively. The resulting bands 

for the three channels were 390 +/- 20nm, 452 +/- 22.5nm and >480nm, respectively. 
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These bands were temporally separated by propagating each band through a different 

length (1, 10, or 19 m) of multimode fiber with core size of 200μm which imparted a 45 

ns time delay between adjacent bands. The emission bands and fiber lengths were 

selected to detect tissue endogenous fluorophores, such as FAD, NADH, collagen, 

elastin and lipids. Upon a single pulse excitation, the three fluorescence decays were 

simultaneously detected by a MCP-PMT with 150 ps rise time (R3809U-50, 

Hamamatsu, Japan) and amplified using a high-bandwidth pre-amplifier (1.5 GHz 

bandwidth, C5594, Hamamatsu, Japan). Finally, the sequence composed of the three 

consecutive decays was digitized at 4 GS/s using a PCI-ADC card (1.5 GHz analog 

bandwidth, CS14G8 CobraMax, GaGe, Lockport, IL). 

3.1.3 Common Path in OCT/FLIM System 

The OCT sample beam and FLIM excitation were aligned to propagate together 

via a dichroic mirror (DM1) (365DCLP, Chroma Technology, USA) which was highly 

reflective in the UV and transmitted visible-nearIR (NIR) light. The co-propagating 

beams passed through a set of galvanometer mirrors (6230H, Cambridge Technology, 

Lexington, MA) used to raster scan the sample. A broadly achromatic (UV-NIR) 

objective lens (5X/0.16 NA, EC plan-Neufluar, Zeiss, Germany) was used to focus the 

OCT sample beam and FLIM excitation with lateral resolutions of 13.4 µm for OCT and 

100 µm for FLIM. The fluorescence emission was directed into the multispectral 

detection module by a second dichroic mirror (DM2), which was highly reflective in the 

UV-visible range and transmitted NIR. 
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3.1.4 System Control and Data Processing 

A Labview (Labview8.6, National Instruments, Austin, TX) based OCT-FLIM 

data acquisition interface was developed to control the electronics, data acquisition 

boards and imaging parameters. The program sent synchronized trigger signals to both 

the FLIM laser and the OCT camera, so that fluorescence decay acquisition at a pixel 

coincided with the corresponding OCT A-line collection. 2-D FLIM decay data and co-

registered 3-D OCT volume data were acquired after a controlled raster scan with two 

galvanometers, and saved into the central main computer.  

Due to the low pulse energy of the current FLIM laser (maximum of 300 nJ at 10 

KHz), tissue autofluorescence decays resulting from a single laser pulse excitation had 

an inadequate SNR. To improve the SNR of the FLIM signal, multiple fluorescence 

decays at a given pixel were acquired with multiple excitation laser pulses, and the 

decays were averaged. The FLIM maps of the ex vivo human coronary artery and in vivo 

hamster pouch used 20 fluorescence decays to represent one pixel. 

Each Fourier domain OCT A-line was derived in the standard way as described 

in section 2.1.1 using Matlab (Matlab R2007a, The Mathworks, Inc., Natick, MA) and 

these are the steps:  

(1) DC subtraction: As mentioned before, interference signal contains a DC term. At 

each imaging session, the sample arm is blocked to collect the reflectance of reference 

arm. This spectrum is used to subtract the DC component of signal. 

(2) Data re-sampling: Signal is in terms of wavelength and need to be converted to 

evenly spaced k-space. Since dispersion is not linear in k-space, values of the spectral 
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interference signal at equally spaced k need to be generated using interpolation. In order 

to obtain a linear sequence of values of k, system is calibrated before is application in 

samples. For this, the spectrometer is illuminated with a source, for example an Argon 

lamp, which emits at discrete known wavelengths. These emissions appear as peaks at 

different pixels and provide a power series up to 3
rd

 order for λ over pixels. Using



2
k , the values of kmin and kmax corresponding to the first and last pixels, 

respectively, are calculated. Evenly spaced k-space points are then calculated as 

kpkk p  )1(min , p = 1, 2, ...., P, where 
P

kk
k maxmin  . P = the number of 

pixels x the interpolation factor. As mentioned before, values of pk are used for 

interpolation. 

(3) Fourier transform: Taking the Fourier transform of the calibrated interference 

signal, A-lines are generated. 

(4) Generation of B-scans and Volume: Adjacent A-lines are assembled to form the 

2-D B-scan images and the 3-D volume. 

The emission intensities and lifetimes in each band at all pixels were calculated 

by following the steps, aforementioned in Section 2.2.3.3: segregate decays for each 

band from the decay train, deconvolve decay with the instrument response, integrate 

deconvolved decay to get the intensity, use equation 14 to estimate the lifetime, and 

calculate the normalized intensity. Results were a set of intensity, normalized intensity 

and lifetime maps for each band. 
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The OCT volume and FLIM maps were fused by overlaying the 3-D OCT 

volume with 2-D FLIM maps. The fused OCT/FLIM data were rendered using ImageJ 

(1.42q, NIH, Bethesda, MA). 

3.2 Validation using capillary tubes filled with fluorophores in Intralipid 

The OCT-FLIM system validation method was based on the technique used to 

validate the performance of a solo FLIM system reported in [70]. In this method, three 

capillary tubes filled with fluorophores were imaged and analyzed. The only change 

required for the new combined system was that these capillary tubes needed to be within 

a non-fluorescing scattering medium for the OCT to render the layout of the tubes. The 

following sections describe the model preparation and the results we obtained after 

imaging it with the OCT-FLIM system. 

3.2.1 Sample preparation and Imaging 

Three standard fluorophores with known emission spectra and lifetimes were 

selected to evaluate the OCT/FLIM dual-modality system: POPOP in ethanol (Emission 

peak = 390 nm, lifetime = 1.2 - 1.5 ns), NADH in PBS (Emission peak = 450 nm, 

lifetime = 0.3 - 0.4 ns), and FAD in PBS (Emission peak = 540 nm, lifetime = 2.3 - 2.85 

ns) [71]. The fluorophore concentrations (0.015 mM in POPOP, 0.5 mM in NADH, and 

1 mM in FAD) were chosen such that the peak emission intensity from each fluorophore 

was comparable. The dye samples were loaded into three quartz capillary tubes (ID = 

300 µm, OD = 400 µm, and Length = 2500 µm). The capillary tubes were sealed to 

prevent leakage of dyes and were collaterally placed in 2% intralipid which is commonly 

used to mimic tissue light scattering [72]. The capillary tubes were placed ~100 µm 
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below the surface of the intralipid and imaged. No averaging was performed, since the 

fluorescence efficiencies of the dyes were high enough even with a single excitation 

laser pulse at a pulse repetition rate of 30 kHz. 

3.2.2 Results 

The OCT-FLIM dual-modality system was first validated by imaging three 

capillary tubes loaded with POPOP, NADH and FAD placed within 2% intralipid 

(Figure 13). The OCT/FLIM images were acquired with a pixel rate of 30 KHz. Figure 

13(a-b) shows a 3-D OCT volume and a 2-D OCT B-scan image of the capillary tubes 

(2500 (x) x 2500 (y) x 600 (z) µm). The relative scale on the x, y and z axes in Figure 13 

were chosen to improve the visualization of the OCT/FLIM image. The circular structure 

in Figure 13 represents the ends of the capillary tubes, which essentially show up as a 

void in the typical speckle pattern produced by the intralipid. Moreover, the inner 

diameter (305 µm), outer diameter (400 µm), the depth position (~100 µm) from the 

surface and separation distance between tubes (~750 µm) may be gleaned from the 

structural OCT image. 

Normalized fluorescence intensity and lifetime maps are displayed in Figure 

13(c-d). The intensity and the lifetime values were calculated within the capillary tubes 

only, and the averaged lifetime values were calculated only when the normalized 

fluorescence intensities in each band were greater than 0.1. The capillary tubes 

containing POPOP, NADH, and FAD could be identified based on their emission 

strength and lifetime in each band. POPOP in the leftmost tube showed peak emission 

intensity at 390 nm, and had a lifetime of 1.42 ± 0.01 ns. Likewise, the maximum 
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emission of NADH in the middle tube was observed at 450 nm, and the lifetime was 

0.36 ± 0.01 ns. FAD within the rightmost tube had the maximum emission at 550 nm 

with a lifetime of 2.47 ± 0.02 ns. The peak emission and lifetimes determined for each 

fluorophore was in good agreement with the literature [71]. Figure 13(e-f) depicts the 

fluorescence intensity map (from the 550 nm band) that has been projected onto the 

surface of the corresponding OCT volume or cross-section.  

 

 

 

 
Figure 13: Dual-modal OCT and FLIM images of three capillary tubes loaded with POPOP (left tube), 

NADH (center tube) and FAD (right tube) within the 2% intralipid (2500 (x) x 2500 (y) x 600 (z) µm). (a) 

3-D OCT volume, (b) 2-D OCT B-scan, (c) Normalized fluorescence intensity maps, (d) Fluorescence 

lifetime maps, (e) 3-D OCT/FLIM volume with fluorescence intensity at the 550 nm band and (f) 2-D 

OCT/FLIM B-scan image with fluorescence intensity at the 550 nm band. Horizontal scale bar = 500 µm 

and vertical scale bar = 100 µm. Reprinted from [1]. 
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4. TEST ON APPLICATION OF THE COMBINED OCT-FLIM SYSTEM

 

 

4.1 Introduction 

In the previous chapter, the key components of a combined OCT-FLIM were 

described. The chapter also demonstrated that the OCT-FLIM system efficiently 

produced the structural and chemical images of the fluorophore filled capillary tubes 

submerged in intralipid. The first objective of developing the system was to test the 

application on biological samples ex-vivo or in-vivo. In this chapter, we elaborate the 

methodology of the experiments, and the results obtained therewith. 

The combined OCT-FLIM system was tested on diagnosis of: 

(1) Early stage Oral cancer  

(2) Atherosclerosis 

4.2 Oral Cancer 

4.2.1 In vivo hamster cheek pouch model 

The OCT-FLIM dual-modality system was evaluated for the early detection of 

oral cancer lesions using a Syrian golden hamster cheek pouch model of epithelial 

cancer. Following a previously reported protocol [73], epithelial cancer was induced in 

32 animals by treating one cheek pouch of each hamster with a suspension of 2.0% 

Benzo[a]pyrene (BAP) (Sigma Aldrich Corporation, St. Louis MO) in mineral oil three 

                                                 


 Reprinted with permission from [1] J. Park, J. A. Jo, S. Shrestha, P. Pande, Q. Wan, and B. E. Applegate, 

"A dual-modality optical coherence tomography and fluorescence lifetime imaging microscopy system for 

simultaneous morphological and biochemical tissue characterization," Biomed Opt Express, vol. 1, pp. 

186-200, 2010 Copyright by The Optical Society. 
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times per week for up to 32 weeks. 22 Control hamsters were similarly treated with just 

mineral oil. The treatment and imaging protocol was approved by the Institutional 

Animal Care and Use Committee at Texas A&M University.  

4.2.2 Imaging 

A cohorts of (3-4) treated and (1-2) control hamsters were imaged every week 

during the 32 weeks of treatment. For imaging, the hamster was anesthetized with a 

cocktail of Ketamine (Bioniche pharma USA, Lake Forest, IL) and Xylazine (Akorn 

Inc., Decatur, IL). After placing the hamster on a small lab jack, the cheek pouch was 

exposed to the air and positioned under the objective lens of the OCT/FLIM system. Co-

registered OCT images and FLIM maps of 2x2 mm
2
 tissue sections were simultaneously 

acquired at cancer-suspicious locations, which were thereafter marked with ink for 

identification with the tissue histopathology. The heart rate and oxygen saturation of the 

hamster were continuously monitored during the imaging procedure using a compact 

veterinary monitor (PC-VetGrad
+TM

, Vmed Technology, Mill Creek, WA). After 

imaging, the hamster was euthanized using Nembutal (Hospira, Inc., Lake Forest, IL), 

and biopsy samples from the imaged locations were taken for H&E histopathology 

analysis.  

4.2.3 Results 

Two examples of in vivo multimodal imaging of the hamster cheek pouch 

epithelial tissue are presented here. The first example corresponds to a normal oral 

mucosa, shown in Figure 14. The second example corresponds to a segment of oral 

mucosa presenting a squamous cell carcinoma (SCC) lesion, shown in Figure 15. 
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4.2.3.1 Normal hamster cheek pouch tissue 

The OCT volume (Figure 14 (a)) with a size of 2000 (x) x 2000 (y) x 350 (z) µm 

showed a fairly smooth surface, a blood vessel running at the bottom of the tissue 

segment, and four discernible layers (Keratinized stratified squamous epithelium (KE), 

subepithelial connective tissue (lamina propria) (SC), skeletal muscle layer (tunica 

muscularis) (SM) and adventitial connective tissue (AC) [74]). The position and size of 

the blood vessel (BV) and the thicknesses of the layers (KE = ~ 20 µm, SC = ~ 80 µm 

and SM = ~ 140 µm) could also be quantified in the cross-sectional OCT B-scan (Figure 

14 (b)), assuming an average refractive index of 1.4. These morphological features were 

in agreement with the corresponding normal oral mucosa histology (Figure 14 (c)). 
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Figure 14: Dual-modal OCT images and FLIM maps of in vivo normal hamster cheek pouch (2000 (x) x 

2000 (y) x 450 (z) µm). (a) 3-D OCT volume, (b) 2-D OCT B-scan (KE: Keratinized stratified squamous 

epithelium, SC: subepithelial connective tissue (lamina propria), SM: skeletal muscle layer (tunica 

muscularis), AC: adventitial connective tissue, and BV: Blood vessel), (c) H&E histology corresponding 

to (b), (d) Normalized fluorescence intensity maps, (e) Fluorescence lifetime maps, (f) 3-D OCT/FLIM 

volume with a normalized fluorescence intensity in 390 nm band, and (g) 3-D OCT/FLIM volume with a 

lifetime in 390 nm band. Horizontal scale bar = 400 µm and vertical scale bar = 100 µm. Reprinted from 

[1]. 

 

 

 

Normalized fluorescence intensity and lifetime maps are displayed in Figure 

14(d-e). The normalized fluorescence intensity maps were quite homogeneous, with the 

390 nm band showing the stronger emission (~ 60%), followed by the 450 nm (~30%) 

and the 550 nm (~10%) bands; the fluorescence lifetime was longer (~3.5 ns) at the 390 

nm band than at the 450 nm (~1.5 ns) and 550 nm (~1.5 ns) bands. These fluorescence 



 

53 

 

characteristics resemble the emission of collagen, which is the dominant fluorophore in 

the normal oral mucosa [75]. 

In Figure 14(f-g) we show the normalized fluorescence intensity and lifetime 

maps from the 390 nm band overlaid over the corresponding OCT volume of the thin 

oral mucosa. In these multimodal images, we can clearly see that both the tissue 

morphology and biochemical composition are fairly uniform within the imaged segment 

of normal oral mucosa. 

4.2.3.2 Cancerous hamster cheek pouch tissue 

The OCT volume (2000 (x) x 2000 (y) x 650 (z) µm) in Figure 15(a) showed a 

major lesion with a size of ~ 1500 (x) x 1000 (y) µm at the bottom and a small tumor-

suspicious bump with a size of ~ 200 (x) x 200 (y) µm at the upper right corner. The 

thickness of the major lesion (~650 µm) and normal-like surrounding area (~250 µm) 

was visibly determined in a cross-sectional OCT B-scan along the main lesion (Figure 

15(b)), assuming the average tissue refractive index of 1.4. Degradation of the layered 

structures toward the major lesion and no layer at the lesion location was also observed 

although OCT signal under the major lesion was weak due to low backscattering from 

the thick cancer lesion. Histopathology analysis of the imaged area confirmed that the 

major lesion corresponds to squamous cell carcinoma (SCC) (Figure 15(c)). 
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Figure 15: Dual-modal OCT images and FLIM maps of in vivo cancerous hamster cheek pouch (2000 (x) 

x 2000 (y) x 650 (z) µm). (a) 3-D OCT volume, (b) 2-D OCT B-scan (KE: Keratinized stratified squamous 

epithelium, and SC: sub-epithelial connective tissue), (c) H&E histology corresponding to (b), (d) 

Normalized fluorescence intensity maps, (e) Fluorescence lifetime maps, (f) 3-D OCT/FLIM volume with 

normalized fluorescence intensity in 390 nm band, and (g) 3-D OCT/FLIM volume with lifetime in 390 

nm band. Horizontal scale bar = 400 µm and vertical scale bar = 100 µm. Reprinted from [1]. 

 

 

 

The multispectral FLIM maps of the cancerous hamster cheek pouch are shown 

in Figure 15(d-e). The difference between the major lesion at the bottom and the 

surrounding area was detected in both the normalized fluorescence intensity and lifetime 

maps in all three bands. The normalized fluorescence intensity in the surrounding area 

was ~55% at the 390 nm band, ~35% at the 450 nm band and ~10% at the 550 nm band. 

Lifetimes in the surrounding area were ~3.9 ns at the 390 nm band, ~2.4 ns at the 450 

nm band and ~ 2.7 ns at the 550 nm band. The normalized fluorescence intensity and the 

values of lifetimes resembled those of the normal oral mucosa containing collagen as the 
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dominant fluorophore. In the major lesion, the normalized fluorescence intensity 

decreases to ~25% at the 390 nm band, and increases to ~ 45% at the 450nm band and to 

~30% at the 550 nm band. The values of lifetimes were ~1.5 ns at 390 nm band, ~1.3 ns 

at 450 nm band, and ~2.1 ns at 550 nm band. The fluorescence characteristics of 

normalized fluorescence intensities and lifetimes resembled the emission of NADH (at 

the 450 nm band) and FAD (at the 550 nm band), which are the dominant fluorophores 

of cancerous tissues [75]. 

In Figure 15(f-g), we also show the normalized fluorescence intensity and 

lifetime maps from the 390 nm band overlaid over the corresponding OCT volume of the 

imaged lesion. In these multimodal images we can clearly see two distinct regions 

showing very distinct morphology and biochemical composition, which are in agreement 

with the histopathological characteristics of a squamous cell carcinoma and benign 

tissue. 

4.3 Atherosclerosis 

4.3.1 Ex-vivo human coronary artery 

A total of 58 postmortem human coronary artery specimens were obtained within 

48 hours from the time of the autopsy, according to a protocol approved by the Texas 

A&M University Institutional Review Board. The artery specimens were longitudinally 

opened to acquire OCT/FLIM images from the internal lumen side. 

4.3.2 Imaging 

For imaging, the specimens were placed on a quartz slide to minimize 

background fluorescence signal, and moistened to prevent it from drying during the 
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experiment. The imaged artery samples were processed following standard procedures 

for histopathology analysis. 

4.3.3 Results 

Two examples of multimodal imaging of human coronary atherosclerotic plaques 

are presented here. The first example corresponds to a thin fibrotic plaque, and it is 

shown in Figure 16. The second example corresponds to a thick fibroatheroma 

presenting a thick fibrotic cap (TFC) overlaying a large calcified necrotic core (CNC), 

shown in Figure 17. 

4.3.3.1 Artery with thin fibrotic plaque 

The OCT volume with a size of 2000 (x) x 2000 (y) x 350 (z) µm showed a fairly 

flat surface and three discernible layers (Fibrotic plaque in Intima (FP), Media (M) and 

Adventitia (A)) (Figure 16 (a)). The thicknesses of the layers (FP = ~50 µm and M = 

~165 µm) could also be quantified in the cross-sectional OCT B-scan (Figure 16 (b)), 

assuming an average refractive index of 1.4. These morphological features were in 

agreement with the corresponding plaque histology (Figure 16 (c)). 

Normalized fluorescence intensity and lifetime maps are displayed in Figure 

16(d-e). The normalized intensity maps reflected a broad emission spectrum covering 

the 390 nm and 450 nm emission bands, while the fluorescence lifetime maps showed 

short lifetimes (~2.00 ns) at the 390 nm band and longer lifetimes (~2.37 ns) at the 

longer emission bands. These features of the autofluorescence emission of the thin 

fibrotic plaque resemble the fluorescence of elastin found in the media layer. Since the 



 

57 

 

amount of collagen in the thin plaque is relatively lower than that of elastin in the media, 

tissue autofluorescence is expected to be dominated by the elastin emission as observed. 

 

 

 

 
Figure 16: Dual-modal OCT and FLIM images of an ex vivo human atherosclerotic artery tissue with thin 

fibrotic plaque (2000 (x) x 2000 (y) x 350 (z) µm). (a) 3-D OCT volume, (b) 2-D OCT B-scan (FB: 

Fibrotic plaque in Intima, M: Media and A: Adventitia), (c) H&E histology corresponding to (b), (d) 

Normalized fluorescence intensity maps, (e) Fluorescence lifetime maps, (f) 3-D OCT/FLIM volume with 

normalized fluorescence intensity in 390 nm band, and (g) 3-D OCT/FLIM volume with lifetime in 390 

nm band. Horizontal scale bar = 400 µm and vertical scale bar = 100 µm. Reprinted from [1]. 

 

 

 

The FLIM superficial maps can be superimposed over the OCT volumes to 

provide a comprehensive characterization of the atherosclerotic plaque. For instance, in 

Figure 16(f-g) we show the normalized fluorescence intensity and lifetime maps from 

the 390 nm band overlaid over the corresponding OCT volume. These multimodal 
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images provide an integrated representation of the underlying morphology and 

biochemical composition of a thin fibrotic atherosclerotic plaque. 

4.3.3.2 Artery with calcified necrotic core 

The OCT volume (2000 (x) x 2000 (y) x 650 (z) µm) in Figure 17(a) showed a 

fairly uniform surface, a large core at the middle of the imaged section, and a thick 

section towards the right side of the volume. Structural evaluation of the artery tissue 

was performed on the cross-sectional OCT B-scan image (Figure 17(b)). Averaged 

thickness of fibrotic cap (~125 µm) and spatial location and extension of the necrotic-

core under the cap were clearly assessed based on the backscattering contrast between 

the cap and the necrotic-core, assuming the average tissue refractive index of 1.4. The 

corresponding plaque histology (Figure 17(c)) confirmed the morphology of this lesion 

assessed by OCT. 
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Figure 17: Dual-modal OCT and FLIM maps of an ex vivo calcified human atherosclerotic artery tissue 

(2000 (x) x 2000 (y) x 650 (z) µm). (a) 3-D OCT volume, (b) 2-D OCT B-scan (TFC: thick fibrotic cap, 

CNC: calcified necrotic core), (c) H&E histology corresponding to (b), (d) Normalized fluorescence 

intensity maps, (e) Fluorescence lifetime maps, (f) 3-D OCT/FLIM volume with normalized fluorescence 

intensity in 390 nm band, and (g) 3-D OCT/FLIM volume with lifetime in 390 nm band. Horizontal scale 

bar = 400 µm and vertical scale bar = 100 µm. Reprinted from [1]. 

 

 

 

The multispectral FLIM maps of the normalized fluorescence intensity and the 

lifetime of the thick cap fibroatheroma are shown in Figure 17(d-e). Two different areas 

were observed in all FLIM maps that could be correlated to the fibroatheroma region 

(left) and to a mostly fibrotic region (right). The fibrotic region (right) showed stronger 

normalized fluorescence emission at the 390 nm band (~ 60%), followed by the 450 nm 

(~30%) and the 550 nm (~10%) bands; the fluorescence lifetime was longer (~2.6 ns) at 
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the 390 nm band than at the 450 nm (~2.4 ns) and 550 nm (~2.0 ns) bands. These 

fluorescence characteristics resemble the emission of collagen, which is the dominant 

fluorophore in fibrotic plaques [76]. The fibroatheroma region (left) showed similar 

normalized fluorescence intensities at the 390 nm (~43%) and 450 nm (~37%) bands, 

and lower intensity at the 550 nm band (~20%); the fluorescence lifetime at all bands 

were below 1.8 ns. These fluorescence characteristic resemble the emission of lipids, 

which is abundant inside the necrotic core. [77, 78] 

In Figure 17(f-g) we also show the normalized fluorescence intensity and lifetime 

maps from the 390 nm band overlaid over the corresponding OCT volume of the thick 

cap fibroatheroma. In these multimodal images, we can clearly see two distinct regions 

of the plaque showing distinct morphology and biochemical composition, which are in 

agreement with the histopathological characteristics of a fibroatheroma and a fibrotic 

lesion. 

4.4 Conclusion 

The volumetric morphological OCT images and en face biochemical FLIM maps 

of biological tissues measured with the dual-modality instrumentation demonstrate the 

complementary nature of the two modalities. In the images of the squamous cell 

carcinoma, the size of the lesion and the breakdown of the tissue layer organization are 

evident in the morphological image-Figure 15(a-b). The biochemical maps indicate an 

increased contribution from NADH and FAD (relative to the collagen contribution) in 

the area of the lesion compared to the surrounding area, likely indicating increased 

metabolism. Both morphological and biochemical observations are important for 
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distinguishing a malignant carcinoma from a benign lesion caused by trauma and/or 

inflammation. Likewise, the morphological image of the atherosclerotic artery in Figure 

17(a-b) revealed the existence of a cap over a calcified necrotic core as well as the cap 

thickness. The biochemical maps Figure 17(d-e) indicated a strong contribution from the 

structural protein collagen in the area surrounding the fibroatheroma and a strong lipid 

contribution directly above the necrotic core. Both morphological and biochemical 

observations are important criterion for classifying the plaque and clinical diagnosis. 
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5. THE SECOND GENERATION OF COMBINED OCT-FLIM SYSTEM 

 

This chapter discusses the design of the second-generation OCT-FLIM system. 

This combined system incorporated a Swept-source OCT (SSOCT) and a FLIM is 

system that was capable of acquiring endogenous and exogenous emission 

simultaneously. Performance of the new OCT-FLIM system was validated with a 

capillary tube model as detailed in the section 3.2. Also, the system was validated for its 

ability to acquire morphology, endogenous emission and exogenous fluorescence 

simultaneously. Experiments on post mortem human coronary artery as describe in 

chapter 4 were conducted with this system as well.  

5.1 Key changes incorporated in the new system 

One of the major changes in the transition from the prior system to the new 

system was the replacement of the SDOCT subsystem with the state-of-the-art SSOCT 

system. Michelson interferometry based Fourier domain OCT (FD-OCT) in the previous 

system that used a super-luminescence emission diode at center wavelength of 830nm 

was replaced with a Mach-Zehnder interferometry based SSOCT system centered at 

1310 nm. With this approach, we achieved improved SNR, penetration depth range and 

robustness of the OCT system. Introduction of the new SSOCT to the OCT-FLIM 

imaging system increased the SNR from 98dB to 108dB and the 3dB fall-off from 900 

μm to 2.75mm. The depth of focus was increased from .96mm to 3.55mm. However, 

with the increase in the depth of focus, lateral resolution of the OCT subsystem has been 

compromised from 13 μm to 32 µm. The new OCT subsystem also attributes improved 
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stability and portability as compared to the SDOCT as it is mostly fiber-based and 

doesn’t entail a highly sensitive spectrometer. 

The first generation OCT-FLIM was capable of acquiring emission from the 

autofluorophores in the artery. However, many more molecules, which do not fluoresce, 

play important roles during the progression of atherosclerosis. These molecules can be 

tagged with a dye whose emission can be collected for their study. In order to 

accomplish emission collection from exogenous fluorophores, while maintaining the 

capacity to uniquely identify autofluorophores, we integrated a pulsed 532 nm excitation 

laser into the system. Autofluorophores get efficiently excited with a short wavelength 

(355nm in our system) and poorly at 532 nm. This helped in the system’s capacity to 

excite exogenous fluorophores at 532 nm without disturbing the acquisition of the 

autofluorescence. The pulsed 532nm excitation was interleaved with the pulsed 355 nm 

excitation. The resulting alternate pulses probed exogenous and endogenous 

fluorescence, respectively. In this way, the exogenous and the endogenous FLIM images 

could be obtained simultaneously using a single detector. 

Based on the application of the second generation OCT-FLIM system, the multi-

spectral emission collection setup described in section 3.1.2 was also modified. FLIM 

signal is predominantly contributed by elastin in normal arteries, collagen when smooth 

muscle cell density increases at the artery surface and LDL when foam cells get 

deposited in the intima of the artery. The prior OCT-FLIM system was specifically 

designed to probe collagen, bound NADH and FAD to study oral cancer at early stage. 

Therefore, emission bands were 370-410nm, 429.5-474.5nm and >475nm, respectively. 
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When used for atherosclerotic plaque imaging, channel 1 provided information on 

collagen while both channel 2 and 3 yielded the same results on Lipid or elastin. This 

redundancy was eliminated during the system upgrade by shifting channel 2 to 472-

516nm. Also, the dichroic mirror that separated channel 2 and 3 was chosen such that the 

third channel contained emissions longer than 542nm. Thus, in the second generation 

OCT-FLIM system, channels 1, 2 and 3 were designed to collect emissions from 

collagen, low density lipoprotein (LDL)/elastin and exogenous fluorescence, 

respectively. 

5.2 Methods 

The new generation of OCT-FLIM optical imaging system, shown schematically 

in Figure 18, consisted of 4 parts: 1) OCT subsystem, 2) FLIM subsystem, 3) OCT-

FLIM common pathway, and 4) Multispectral FLIM collection. The two imaging 

modalities were optically and electronically synchronized. The free-space optical paths 

of the beams in the system are color-coded in Figure 18 as: Green-excitation beam for 

exogenous dye, Blue-excitation beam for endogenous fluorophores, Orange- emission 

due to 355nm and 532nm, Maroon-1310nm beam path. The thin gray lines indicate 

connection for trigger. 
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Figure 18: Schematic of the second generation OCT_FLIM system. Green line represents the excitation 

beam for exogenous FLIM; Blue line is the excitation beam for endogenous FLIM; Orange line is the 

emission; Maroon line is the beam for OCT; Thin grey line is the trigger path. DM1-DM7:Dichroic 

Mirrors, L1-L10: Lenses, M1-M2:Mirror, PC1-PC2:Polarization controller, F1-F3:Longpass and bandpass 

filters, MCP-PMT-Multi-channel plate photo multiplier tube, Pre-Amp-Pre-amplifier, MZI-Mach 

Zehender Interferometer, FPGA- Field Programmable Gate Array, DG-Delay Generator. 

 

 

 

5.2.1 OCT Subsystem 

A 1310nm swept source laser (ESS320024-00, Exalos, Switzerland) with bi-

directional sweep rate of 100 kHz (uni-directional sweep rate of 50 kHz), tuning 

bandwidth of 120nm and coherence length of 6mm in air was used for the Mach-

Zehnder interferometer based OCT system. OCT beam obtained during rising edge of 

the sweep trigger (either up-sweep or down sweep) was sent to a commercial Mach-

Zehnder interferometer (MZI) (INT-MZI-1300, Thorlabs, USA), whose interference 

signal provided a reference for spectral linearization [60]. Output beam from the MZI 

was split with a 90:10, 2x2 single-mode fiber based coupler (10202A-90-APC, Thorlabs, 
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USA). The end that carried the beam with more intensity delivered light to a free-space 

setup of sample arm (described in section 5.2.3) through a circulator, Cs. The other end 

was led to the reference arm of the OCT system. Reference arm begins with a fiber-

based attenuator (VOA50-APC, Thorlabs, USA), which is followed by an optical delay 

line (ODL)(VDL-001-35-60-FC/APC/APC-SS, General Photonics, USA) with length 

variability of up to 6 cm. The output beam from the ODL passed through a circulator 

(CIR1310PM-APC, Thorlabs, USA), got collimated by lens, L5, and then focused on a 

mirror placed at a distance equal to the sample arm’s optical pathlength in air. Light 

reflected from this mirror and the backscattered light from the sample arm were coupled 

into a 50:50 2x2 single-mode fiber based coupler (NPMC-22-F-13-50/50-FC/APC, 

General Photonics, USA). Outputs of the coupler were sent to an InGaAs balanced 

photodetector (WL-BPD600MA, Weiserlab, Germany). OCT signal was digitized with a 

Labview programmed FPGA (NI PXIe 7966, National Instruments, USA) based 

digitizer (NI 5772, National Instruments, USA) at sampling frequency of 400MHz. The 

digitizer and the FPGA were housed in a chassis (PXIe-1082, National Instruments, 

USA). The Signal-to-Noise ratio of the system was 107db. 

5.2.2 FLIM subsystem  

A frequency tripled (355 nm) Q-switched Nd:YAG laser (SPOT-10-50-355, 

Elforlight Ltd., England), pulsed at 10kHz with width of 2ns and maximum energy of 

5μJ, was used as the excitation beam for the endogenous fluorophores in the tissue. 

Likewise, a 532nm solid state laser (1Q532-2, CryLas GmbH, Germany) with a 

maximum repetition rate of 10 kHz was utilized to excite the exogenous fluorescent dye 
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tagged to the molecule of interest. Triggers for these lasers were based on the OCT 

sweep signal (see section 5.2.5), and were configured with a delay generator (P400, 

Highland Technology Inc., USA) to interleave pulses from the 355nm laser and 532nm 

with 50μs interval. These beams were spatially combined using a dichroic mirror, DM1 

in Figure 18, (425DCXR, Chroma Technology, USA) that reflected 355nm and passed 

532nm. A thin quartz coverslip reflected a small portion of light on a photodiode 

(DET36A, Thorlabs, USA) to generate trigger for the FLIM digitizer at 20 kHz. These 

excitation beams were coupled into a multimode fiber with a core diameter of 50um 

(FG050UGA, Thorlabs, USA) to deliver light to the common pathway. 

5.2.3 OCT-FLIM common pathway 

Excitation beams diverging from the multimode fiber in the FLIM subsystem 

was collimated. A set of dichroic mirrors maneuvered the collimated excitation lights to 

co-propagate with the OCT beam. The endogenous and exogenous excitation beams 

were separated with a dichroic mirror, DM2 (470DCXR, Chroma Technology, USA). 

355nm light was reflected with DM2 and DM3 (365DCLP, Chroma Technology, USA) 

that transmitted everything above 365nm. Similarly, 532 nm light was reflected with a 

notched dichroic mirror, DM4 (NFD01-532, Semrock, USA) such that the beam 

travelled together with the 355nm and 1310nm beams. All three beams were directed to 

a galvanometer scanner (6220H, Cambridge Technology, USA) used to scan sample 

surface. An achromatic lens (NT64-837, Edmund optics, USA) focused the beams onto 

the sample, providing a maximum field of view of 16mm by 16mm, and a lateral 

resolution of 34μm for OCT and 120μm for FLIM. Beam reflected with DM5 (BLP01-
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980R, Semrock, USA) was coupled into a multimode fiber of 200μm (BFL22-200, 

Thorlabs, USA), which delivered light to the multispectral FLIM collection system 

(described in section 5.2.4). Backscattered NIR light from the sample passed through 

DM5 and was focused back into the circulator Cs in Figure 18. 

5.2.4 Multispectral FLIM collection 

A combination of dichroic mirrors, DM6 (R405lp, Chroma Technology, USA) 

and DM7 (FF520Dio2, Semrock, USA), and bandpass filters, F2 (FF01-390/40, 

semrock, USA) and F3 (FF01-494_41, Semrock, USA) were used to separate the 

emission beam into three spectral bands: 390 ± 20 nm (channel 1), 494±22nm (Channel 

2) and > 542nm (Channel 3). Emission in channel 1, 2 and 3 were coupled into 

multimode fibers (BFL22-200, Thorlabs, USA) with a core size of 200µm and varying 

lengths of 24m, 11.5m and 1m, respectively. The difference in length between the 

consecutive channels provided an interval of ~60ns between their time-resolved 

fluorescence emissions at the detector. All 3 fibers were collimated onto the 11mm 

diameter quartz window of Multi-channel plate photomultiplier tube (MCP-PMT) with 

150 ps rise time (R3809U-50, Hamamatsu, Japan). Output of the MCP-PMT was 

amplified using a high-bandwidth pre-amplifier (C5594, Hamamatsu, Japan) and was 

digitized at sampling rate of 4 Giga-Sample/s using a PCI-ADC card (CS14G8 

CobraMax, GaGe, USA). The digitizer was triggered at 20 kHz with pulses from the 

photodiode, which was activated by the excitation lasers alternately. Pulse trains at the 

digitizer due to excitation of 355nm were separated from those due to 532nm excitation 

and were alternately appended in a file. 



 

69 

 

5.2.5 System synchronization 

Similar to the previous OCT-FLIM system, the two subsystems were 

electronically synchronized and controlled using Labview (National Instruments, Austin, 

TX). In this new setup, the internal sweep trigger at 50 kHz was taken as the master 

clock for the combined system. Beginning of each trigger provided a digital signal to the 

FPGA to produce synchronized triggers for the OCT signal digitizer, the two mirrors of 

the galvanometer scanner and the FLIM excitation lasers. Trigger for the 532nm laser 

was given a temporal shift of 50 µs with a delay generator. The FLIM signal digitizer 

was triggered by the pulse from the photodiode activated by the excitation beams. 

5.2.6 Image Acquisition and Processing 

5.2.6.1 Image Acquisition 

The optimum number of pixels that each OCT and FLIM images should contain 

in the x- scan direction and the y- scan direction were determined by the FOV, the lateral 

resolution of the respective modality, and an oversampling factor of 2. At each pixel, an 

interference signal and two emission decay trains due to 355nm and 532nm excitations, 

respectively, were acquired. The SNR of the FLIM signals was improved by spatial 

averaging. The pulse energies of the FLIM lasers at the sample at 10 kHz were 1.3 μJ 

(355nm) and 0.9 μJ (532nm). 

5.2.6.2 Image Processing-OCT 

These were the steps necessary while processing the raw interference signal 

detected by the balanced detector to obtain OCT images: 
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(1) Linearization of the fringes: Typically, the tuning of the swept source is not 

always linear in k-space. Therefore, the interference signal, which is acquired at an equal 

time interval, has to be subsequently resampled to an evenly distributed k-space by 

interpolation. The technique for linearization applied in our setup used a reference MZI 

after the swept laser in Figure 18. Phase of the analytical signal from the MZI was 

calculated by using Hilbert transform and was then unwrapped. This step assigned each 

sample point with a value of unwrapped phase. Unwrapped phase obtained in this 

manner is proportional to k. Linearized phase provided a linear array of k, which was 

used to resample the interference signal to be equally spaced in k-space. MZI signal 

recorded during the first sweep was used to resample all the interference signals, 

assuming that the MZI signal is the same at every sweep. 

(2) Numerical dispersion correction: Dispersion that could not be compensated 

optically was corrected during post processing using a phase correction technique. At the 

beginning of each imaging session, a mirror was scanned as the sample. The fringe 

collected encoded the phase difference between the two arms. A phase correction factor 

that would minimize the difference was calculated. For that, the interference signal from 

the mirror was recalibrated as described in the previous step and Hilbert magnitude and 

phase of the recalibrated signal were calculated. Phase was unwrapped and the 

difference between the unwrapped phase and its linear fit was estimated to obtain the 

phase correction curve in terms of the sample points.  

(3) Windowing and generation of corrected interference signal: Magnitude 

calculated using Hilbert transform in step 2 represented the laser intensity profile over 
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sample points. A custom window was generated by dividing a Bartlett-Hanning window 

by the laser intensity profile. This custom window was then multiplied by the 

recalibrated signal from step 1 with corrected phase from step 2. As a result, we obtained 

a dispersion corrected recalibrated interference pattern. 

(4) Fast Fourier transform (FFT): FFT of the processed signal obtained from step 3 

was taken to obtain the corresponding A-line. 

(5) Generation of B-scan and Volume: Steps from 1 through 4 were repeated for the 

fringes obtained from each pixel of the raw OCT volume data. Adjacent A-lines from 

each x-direction scan were assembled to form the B-scans. A 3-D matrix containing all 

the B-scans generated the volume.  

5.2.6.3 Image processing-FLIM 

Basic FLIM image processing technique used in the first generation OCT-FLIM 

system was replicated. To summarize the steps briefly: 

(1) Fluorescent decay for each band was deconvolved with the corresponding laser 

function, referred to as instrument response, using Laguerre deconvolution method [66]. 

(2) Deconvolved decay was integrated over time to calculate the absolute intensity of 

the emission. 

(3) Average lifetime of the decay was estimated using equation 14. 

(4) Absolute intensity of endogenous decay in each band was normalized by the 

integration of intrinsic fluorescent decays in all bands. The third channel was not 

included during normalization when SNR of the channel was low. 
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(5) The absolute endogenous intensity maps were calibrated for wavelength-

dependent loss in the system using fluorescence decays from Collagen IV (C9879, 

Sigma-Aldrich, USA) acquired after each imaging session. In order to calculate the 

calibration factors for each channel, ratio of intensities in each band to that in channel 1 

was calculated and compared with similar ratio of calibrated fluorescence intensity 

obtained using a TRFS system. 

(6) Using the steps (1-5), decays in emission bands at all pixels were processed and 

were assembled to construct 2D maps of normalized intrinsic fluorescence intensities, 

absolute intensities of endogenous and exogenous fluorescence, and lifetimes as 

described in section 2.2.3.3  

5.2.6.4 Combined OCT-FLIM 

FLIM maps were overlaid on top of the OCT volume to simplify pixel-wise, 

cross-section-wise and volume-wise study of the structure and biochemistry of the 

sample. Surface of the sample at each pixel in the OCT image was detected by finding 

the first index in the A-line whose intensity is greater than or equal to the mean plus 2 

standard deviations of the mean of the A-line. The intensity values at those indices on 

the OCT volume were replaced by the values on the FLIM map. Median filters were 

used for smoothing the detected edges in both x and y directions. Rendering of the 

overlaid version of OCT-FLIM images was accomplished using a 3-D visualization tool, 

VTK, based on C++. 
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5.3 System validation with dye-filled capillaries 

5.3.1 Experiment setup 

We imaged 3 parallel, coplanar quartz capillary tubes, each filled with a different 

fluorophore, submerged in diluted milk as a scattering medium for validating the 

performance of the OCT-FLIM system. POPOP and NADH fluoresce efficiently at 

400nm and 500nm, respectively, when excited at 355nm. Rhodamine6G emits at 

wavelength longer than 550nm when excited with wavelengths both 355nm and 532nm 

light. Solutions of POPOP in ethanol, NADH in Phosphate Buffer Saline (PBS), and 

Rhodamine6G in ethanol were prepared to have concentrations of 50μM, 1mM and 

2.8μM, respectively. These concentrations were chosen to ensure acquisition of 

emissions with comparable intensities while using the same amplification on the PMT. 

These capillary tubes had 0.3mm of inner diameter and 0.4mm of outer diameter. Their 

ends were carefully sealed before being submerged in diluted milk, which acts as the 

scattering agent for OCT. This sample was then raster scanned with a field of view of 

2.4mm by 2.4mm. 

5.3.2 Results 

3-D OCT volume and 2-D FLIM intensity and lifetime maps for all three spectral 

bands were generated. OCT volume was cropped up to the depth where capillary tubes 

existed, and the normalized intensity was calculated only in the area with the tubes. 

Lifetimes were calculated only for the pixels whose normalized intensity was greater 

than 0.2. Since fluorescence from diluted milk was absent, emission from the quartz 

capillary tubes can be considered purely from the dye within. 
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Figure 19: FLIM images of capillary tubes filled with POPOP, NADH and Rhodamine 6G, submerged in 

diluted milk for scattering. POPOP has maximum peak in channel 1, NADH in channel 2 and Rhodamine 

6G in channel 3. Rhodamine 6G emitted when excited with 355nm or 532nm. The lifetimes calculated 

were: POPOP-1.64±0.06ns, NADH = 0.67±0.04 ns and Rhodamine = 3.72 ± 0.01 ns. 

 

 

 

Figure 19 represents the FLIM images (60x60 pixels) that identify the dye inside 

the capillary tubes. Fluorescence intensity from POPOP peaked in the first channel and 

that from NADH in the second channel. These fluorophores did not fluoresce when 

excited with 532nm. Rhodamine6G emitted when excited with 355nm as well as 532nm. 

Lifetime of POPOP, NADH and Rhodamine6G when excited with 355 nm were 

calculated to be 1.64±0.06 ns, 0.67±0.04 ns, and 3.72±0.01 ns, respectively. Lifetime of 

Rhodamine6G was 3.69±0.03 ns when excited with 532 nm. These values were in 
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agreement with the values found in literature The lifetimes of these fluorophores found 

in literature were 1.2-1.5ns [71], 0.67ns[50], and 3.99ns[79]. 

 

 

 

 
Figure 20: OCT volume of the capillary tubes in milk overlaid with one of the FLIM images. Volume can 

be overlaid with any FLIM image. The dark circles represent the capillary tube’s cross-sections. 

 

 

 

Likewise, Figure 20 illustrates a 300 (x) x 300 (y) x 450 (z) pixel OCT volume of 

the setup. The circular regions with weaker signal represent the cross-section of the 

capillary tubes while the region with stronger signal denotes light scattered by milk. The 

diameter of the circle was measured to be 0.4mm, which matched the outer diameter of 

the tube. Volume in the figure is shown to be overlaid with the lifetime map of channel 3 

pertaining to 532nm excitation. Any of the FLIM maps can be overlaid on top of the 

OCT volume for simultaneous structural and chemical analysis. 

5.4 System validation with tissue 

Preliminary imaging tests were performed on a non-specifically tagged aorta of a 

Watanabe heritable hyperlipidemic (WHHL) rabbit ex-vivo. These rabbits are animal 

model that are LDL receptor deficient. They are prone to develop atherosclerotic plaques 

and show lipoprotein metabolism similar to humans [55]. Alexa Fluor 532 was used as 

the fluorescent agent. 
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5.4.1 Sample preparation and Imaging 

Aorta removed from the WHHL rabbit was cleaned with PBS and cut open 

longitudinally. Sample was then cut into two halves, first half being ~10mm by ~10mm 

(sample 1) and the other ~4mm x ~4mm (sample 2). They were washed with PBS for 

fifteen minutes by changing the solution every five minutes. A solution of 1% of Bovine 

Serum Albumin (BSA) (BP671-1, Fisher Scientific, USA) and 0.1% of Tween-20 

(BP337-500, Fisher Scientific, USA) in PBS was prepared. A mixture of 1ml of this 

solution and 5μl of Alexa Fluor 532 goat anti-rabbit IgG (A-11009, Life Technologies, 

USA) was used to incubate the smaller sample for an hour. BSA helps in blocking 

molecules to avoid unspecific tagging and Tween-20 enhances the permeability of the 

tissue. After incubation, tissue was washed with PBS thoroughly. Samples 1 and 2 were 

raster scanned with the OCT-FLIM imaging system. The 355nm and 532nm excitation 

beams were interleaved and triggered at a repetition rate of 10 kHz. In order to take the 

difference in emission intensities between the autofluorophores in the artery and the dye 

tagged into account, the pulse energy of the excitation beam at 355nm was reduced. 

SNR of the endogenous fluorescence decay signal was maintained by increasing the 

number of pixels scanned for spatial averaging. Thus, endogenous and exogenous 

emissions were simultaneously acquired with a single detector. 

5.4.2 Result 

Each scan over the entire sample produced an OCT volume, 3 sets of FLIM 

images that mapped the intensities and lifetimes of the endogenous emissions in 3 bands, 

and a set of intensity and lifetime maps of the exogenous emission in the third band. 
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WHHL rabbit endogenous emission in channel 3 was negligible. Therefore, the 

endogenous emission maps for channel 3 were ignored and have not been shown in the 

figures. 

 

 

 

 
Figure 21: FLIM maps of Watanabe rabbit aorta (Sample 1). Intensity maps in channel 1 and 2 due to 

355nm laser excitation suggest predominant existence of collagen. Low signal in the third channel infers 

absence of any substance on the artery. 

 

 

 

 
Figure 22: Volume of Watanabe rabbit aorta. Diffused surface indicates pathological intimal thickening. 
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Figure 23: FLIM images of Watanabe rabbit aorta tagged with Alexa Fluor 532 (Sample 2). Intensity maps 

in channel 1 and 2 due to 355nm laser excitation suggest predominant existence of collagen. The lifetime 

in channel 2 infers presence of lipid packets within collagen. The lifetime map has a lifetime of 2.06ns 

which matches with the lifetime of raw Alexa Fluor 532nm. Intensity map in the third channel 

demonstrates tagging of the dye with different concentration. 

 

 

 

 
 (a) (b) 

Figure 24: OCT volume of Watanabe rabbit aorta. Strong scattering in the first layer indicates pathological 

intimal thickening. Volume has been overlaid with (a) Lifetime map in channel 2 (b) Intensity map of 

exogenous emission. Lifetime in channel 2 indicates lipid packets in the aorta and the intensity map of the 

exogenous emission signifies success in non-specific tagging of the artery. 
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Figure 21 through Figure 24 show the OCT and FLIM images obtained from the 

two samples. Biochemical composition of the surface of the arteries can be analyzed 

with the FLIM images in Figure 21 and Figure 23. In the first cases, sample 1 (Figure 

21), intensity in Channel 1 was higher among the endogenous fluorescence designated 

channels, suggesting higher concentration of collagen. Similar lifetimes in channel 1 and 

2 further confirmed that the emission is mostly from collagen. Normalized intensity 

maps of Sample 2, in Figure 23, showed pattern of emission similar to sample 1; 

however, lifetime of 5.1 ± 0.25ns in channel 1 and longer lifetime in channel 2 (7.6 ± 

0.46ns) inferred that the sample contained accumulation of lipid scattered throughout the 

tissue packed with collagen. Channel 3 in each figure indicated the intensity and lifetime 

characteristics of fluorophore when excited with the 532nm beam. Channel 3 for sample 

1 confirmed absence of the dye. The exogenous fluorescence intensity map in Figure 23 

showed that sample 2 contained non-specific binding of the antibody conjugated with 

Alexa Fluor 532 with varied concentration. Uniform lifetime map (2.06±0.1ns) indicated 

that the dye was conjugated to molecules throughout the tissue. The lifetime of raw 

Alexa Fluor 532 was measured to be 2.55±0.06 ns. Slight difference in the lifetimes 

could be due to the change in environment. Figure 22 shows the volume of sample 1; 

Figure 24(a) shows the OCT volume of sample 2 overlaid with its channel 2 lifetime 

map, and Figure 24(b) is the same volume but overlaid with the exogenous emission 

intensity map. The thickened layer in the volume of both samples diffused 
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homogeneously. Layers of the tissue were not visible, which indicates the presence of 

pathological intimal thickening. 

5.5 Ex-vivo imaging of human coronary artery 

The second generation OCT-FLIM system was used to image human coronary 

artery ex-vivo. We used the same imaging protocol that was used to image human 

coronary arteries with the first generation OCT-FLIM system. The only difference was 

the FOV. In the former system, the FOV was 2mmx2mm. With the new system, the 

maximum FOV was 16mmx16mm and a rectangular FOV was possible. When the 

specimen had larger area than the system’s FOV, it was imaged in parts with few 

millimeters of overlap. As a result, the system was able to image specimens with 

circumference as large as 1.2 cm and any length (maximum extracted ~3cm). We have 

imaged samples from 42 human autopsy cases so far. The sub-sections below describe 

the preparation method and discuss the OCT-FLIM images obtained from a 

representative specimen. 

5.5.1 Sample preparation 

Post mortem human coronary artery was collected and imaged within 48 hours 

from the time of autopsy. Sample was cleaned with PBS. Unwanted muscle and fat 

surrounding the artery were removed. Sample was cut open longitudinally. The lumen 

was imaged with a FOV of 10x11mm
2
 that covered 668x734 pixels and 168x368 pixels 

in x and y directions for OCT and FLIM images respectively. Since the sample was not 

stained, only endogenous emission was characterized. 
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5.5.2 Results 

Figure 25(a) shows the 3-D rendering of the sample. Using the 3D visualization 

tool mentioned earlier, the volume can be visualized from different angles. Figure 25(c) 

illustrates a representative B-scan from the volume. The green arrow shows the location 

of the B-scan in the volume. For better data visualization and interpretation, the air-

tissue boundary of the B-scan can be overlaid with the corresponding FLIM information. 

Here, the B-scan has been topped with the lifetime values in the second band. Figure 26 

depicts the normalized intensity and lifetimes maps for channel 1 and 2. Once again the 

intensity was normalized by using just the first 2 channels due to poor SNR in channel 3. 

Sample has regions with different biochemical composition as indicated by the 

FLIM maps in Figure 26. For instance, region at the top left denoted by a red square 

shows higher intensity in channel 2 by a factor of 1.2 while the section marked in purple 

suggests the opposite by a factor of 1.43. The average lifetime in channel 1 for the red 

region is 5.47±0.14ns and that in channel 2 is 6.10±0.26ns, showing slight increase in 

lifetime at longer wavelength. Referring to the trend of intensity and lifetime of the main 

fluorophores-Collagen, LDL and elastin in Figure 10, we can conclude that the main 

source of emission is elastin. Likewise, the region in purple has average lifetimes of 

6.57±0.07ns and 6.34±0.25ns for channel 1 and 2, respectively. Once again the trend of 

consistent lifetime and higher intensity in channel 1 tells us that the source is collagen. 
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Figure 25: OCT images of human coronary artery. (a) A 3D volume of the artery. (b) A representative B-

scan from (a). Green arrow points out where the B-scan belongs to. The surface of the B-scan is overlaid 

with the corresponding superficial FLIM information. This combination provides us both morphological 

and biochemical composition of the cross-section. (c) Histopathological image of the artery that 

corresponds to the B-scan in (b). Regions 1, 2 and 3 in (b) can be compared to the respective regions in 

(c). 

 

 

 

Scrutinizing the structure of the artery in the B-scan in Figure 25, we observe that 

the leftmost section, marked as 1, has more defined structure as compared to the sloped 

region, denoted by 2. Region, 3, has defined boundaries with a reflective layer in 

between, implying that it contains tissue surrounded by calcium. The biochemical 

information on top clarifies that the tissue in region is predominantly composed of 

elastin. Additionally, the lifetimes on the surface identifies that the diffused region 2 

contains collagen and while region 1 has elastin. The corresponding histopathology 

section in Figure 25(c) confirms the analysis. 
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Figure 26: FLIM images of a human coronary artery obtained with the second generation system. The red 

and purple boxes indicate regions of interest for discussion. 

 

 

 

5.6 Conclusion 

The latest OCT-FLIM system we built incorporated Swept source OCT for 

structural imaging, endogenous FLIM system specifically modified for cardiovascular 

biochemical imaging and exogenous FLIM system that adds capability to image 

molecules that do not fluoresce. Figure 22 and Figure 24 showed the structure of the 

aorta and furnished tissue thickness information. Likewise, Figure 23 demonstrated the 

ability of this multimodal optical imaging equipment to identify lipid content in sample 2 

despite the similarity in the morphology of the tissue in Figure 24. Exogenous emission 



 

84 

 

intensity maps in Figure 21 and Figure 23 distinguish samples with and without 

treatment of dye. The lifetime map of exogenous emission for sample 2 added 

confidence that the emission is from Alexa Fluor 532. These results validated the 

capability of the system to acquire the morphology, endogenous emission and exogenous 

fluorescence simultaneously.  

This system was also utilized in imaging human coronary arteries ex-vivo. An 

example of OCT-FLIM images of these arteries presented in Figure 25 and Figure 26 

appraised the ability of the system to scan large areas, and, once again, the power of the 

dual modality tool to provide complementary morphological and biochemical 

information. 
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6. DISCUSSION  

 

In this dissertation, two dual-modality optical imaging systems were built. The 

first combined system (the first generation OCT-FLIM system) contained a Spectral-

Domain OCT system and a multi-spectral FLIM system for endogenous emission 

acquisition. The second imaging system (the second generation OCT-FLIM system) 

comprised of a Swept-Source OCT system and a multi-spectral FLIM system for 

endogenous and exogenous emission acquisition.  

Using the first generation OCT-FLIM system, we imaged hamster cheek pouch 

model in vivo and post mortem human coronary artery ex vivo. In this dissertation, only 

few of the results were presented to support the validation of the systems. Apart from 

what this dissertation entailed, these data were used for various other studies. Data 

acquired from hamster cheek pouches were used to test automated classification of OCT 

images for the diagnosis of oral malignancy [80]. These data are also being used to 

analyze the application of OCT-FLIM in diagnosis of oral cancer at early stages. The 

dataset compiled from human coronary artery samples were analyzed to study the 

significance in characterization of atherosclerosis using FLIM and the combined OCT-

FLIM system [81, 82]. 

Some of the limitations of the first generation OCT-FLIM system were its FOV, 

OCT depth scan range and the FLIM pixel rate. The maximum possible FOV of the 

system was 4x4mm
2
. In general, the circumference of an artery ranges from 5mm to 

12mm and the entire artery could be scanned only by numerous cumbersome translations 
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of the sample. Likewise, the laser used for OCT was centered at 830nm wavelength and 

the system had a fall-off of 900μm. Also, low pulse energy (300nJ per pulse) of the laser 

used for FLIM resulted in requirement of about 20 averages at a pixel to obtain a decent 

SNR. The pixel rate was 2ms. These limitations were addressed in the second generation 

OCT-FLIM system. The new FOV of the system was 16x16mm
2
, providing comfortable 

coverage of the entire circumference. Also, we were able to increase the axial scan depth 

with a swept source laser attributing ~3mm fall-off and 1310nm as the center 

wavelength. We also significantly improved the SNR of the FLIM emission using a laser 

with higher pulse energy (1300nJ per pulse). The number of averages required was 

reduced to 2 and, consequently, the pixel rate has increased ten folds to 200µs. The 

balance between the increase in the power of the laser and decrease in its dwell-time per 

pixel provided exposure of the sample within ANSI limit. 

The second generation OCT-FLIM system was used to image post-mortem 

human coronary arteries ex-vivo. To date, we have imaged 147 samples from 42 autopsy 

cases. These samples were 5-12mm in circumference and their length varied between 5-

250mm. Samples with length longer than the maximum FOV were imaged in parts, 

translating the sample longitudinally. The resulting sections of images were then merged 

to form a mosaic of the entire sample. This library of human arterial OCT-FLIM dataset 

will be used to train an algorithm for automated atherosclerosis characterization. 

In future, the exogenous FLIM system may be used to image non fluorescing 

molecules like Vascular cell adhesion molecule 1 (VCAM-1) [83] and oxidized low-

density lipoprotein (oxLDL) receptor, LOX-1 [13]. These are known to be few of the 
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responsible molecules for the initiation and progress of atherosclerosis. VCAM-1 plays a 

role in infiltration of leukocytes into the endothelial cells. LOX-1 binds with oxidized-

LDL to generate lipids that initiate and maintain an active inflammatory process in 

intima [13]. Research suggests that inhibition of these molecules could prevent or reduce 

atherosclerosis [84]. These molecules have been studied using modalities such as 

Magnetic Resonance Imaging (MRI), Near Infrared fluorescence imaging and 

intravascular ultrasound imaging [85-87]. For each of the investigations, VCAM-1 and 

LOX-1 were conjugated to anti-VCAM-1 and anti-LOX-1, respectively and were tagged 

with molecules that respond to the modalities. For fluorescence spectroscopy, anti-

VCAM1 and anti-LOX-1 can be tagged with an Alexa Fluor or a dye with similar 

characteristics [88]. We hypothesize that we could use similar method to image them 

and relate their activity with corresponding morphological and biochemical changes. A 

more ambitious study could be to investigate them over time to understand the efficacy 

of their inhibitor or drug [89]. 

Similarly, another future work entails enhancement of the system for experiments 

in vivo. The sample arm will be replaced with a multimodal fiber-based endoscope with 

similar or improved lateral resolution and depth of focus, and minimal chromatic 

aberration. Further, an FPGA can be programmed for real-time processing of the OCT-

FLIM data and for easy reconstruction of the image to one that clinicians can appreciate. 

Moreover, automated characterization of the state of atherosclerosis can provide real-

time diagnosis of the disease during surgery or clinical examinations. 
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7. SUMMARY 

 

Morbidity and mortality due to oral cancer and atherosclerosis may be reduced 

by being able to diagnose them at all stages. The progressions of these diseases are 

accompanied by the change in the morphology and biochemistry of the tissue. In order to 

be able to diagnose them at all stages, detailed information on the tissue is needed. This 

is possible if both of the biomarkers-morphology and biochemistry- are probed 

simultaneously. 

The property of light-tissue interaction changes with the modification in the 

morphology and biochemistry of the tissue. Therefore, optical imaging modalities can be 

used to probe these changes to diagnose oral cancer and atherosclerosis. Unfortunately, 

an individual modality doesn’t have the capability to probe all the biomarkers. 

Therefore, in recent years, researchers have developed and tested combined multi-modal 

systems that are able to assess the morphology and the biochemistry. Such imaging tools 

combine the strengths of different modalities and is superior to any of the constituent 

modality considered alone.  

Two suitable optical imaging modalities for the diagnosis of oral cancer and 

atherosclerosis are Optical Coherence Tomography (OCT) and Fluorescence Lifetime 

Imaging Microscopy (FLIM). OCT provides high resolution images of morphology of a 

tissue up to a depth of 1mm. On the contrary, FLIM furnishes biochemical images based 

on the emission from fluorophores on the tissue. These fluorophores may be endogenous 

or exogenous. Endogenous fluorescence is contributed by components such as NADH, 
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FAD, collagen in oral tissue or collagen LDL and elastin in arterial intima. Exogenous 

fluorescence is provided by dyes that are used to tag the non-fluorescing molecules of 

interest.  

We have developed combined systems with OCT and FLIM and have validated 

their ability to image oral tissues and artery. In this dissertation, two such systems were 

designed, built and validated.  

The first OCT-FLIM system was built by incorporating spectral domain OCT, 

and multi-spectral FLIM with the capability to acquire autofluorescence. The operating 

wavelengths for OCT and FLIM were 830nm and 355nm. The maximum A-scan rate 

was 53 kHz and the maximum repetition rate of the laser used for FLIM was 50 kHz. 

The lateral resolution was 13.33µm and 100µm, respectively. The axial resolution for 

OCT was 7.6µm. Maximum FOV was 4mmx4mm. This system was used to image 

hamster cheek pouches with oral cancer and their controls in vivo. Additionally, 

postmortem human coronary arteries were imaged ex vivo using the system. The OCT 

and FLIM images obtained from these experiments were complementary to each other. 

The second OCT-FLIM system combined swept source OCT with multi-spectral 

FLIM, which allowed simultaneous endogenous and exogenous emission acquisition. 

This system possessed better penetration depth and SNR. The operating wavelength of 

the swept source laser was 1310nm and its one directional sweep-rate was 50 kHz. FLIM 

utilized lasers with wavelengths 355nm and 532nm to excite endogenous and exogenous 

fluorophores, respectively. Both were pulsed at 10 kHz and interleaved such that the 

signal due to these excitations could be acquired alternately. This supported acquisition 
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of the endogenous and exogenous emissions simultaneously using a single detector. The 

lateral resolution was 34µm and 120µm, respectively. The maximum FOV was 

16mmx16mm. This system was tested on Watanabe rabbit aorta with and without 

conjugation of Alexa Fluor 532. The results provided the images of the morphology, 

endogenous fluorescence and exogenous fluorescence of the aorta, validating the 

performance of the system. This OCT-FLIM system was used to image postmortem 

human coronary arteries ex vivo. 

Future work for this project involves replacement of the sample arm of the 

system with an endoscope, and study of some specific tagged molecules that play an 

important role in atherosclerosis. 
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