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ABSTRACT

This dissertation addresses research problems related to the switched system as

well as its application to large-scale asynchronous dynamical systems. For decades,

this switched system has been widely studied in depth, owing to the broad applica-

bility of the switched system framework. For example, the switched system can be

adopted for modeling the dynamics of numerous systems including power systems,

manufacturing systems, aerospace systems, networked control systems, etc. Despite

considerable research works that have been developed during last several decades,

there are still remaining yet important and unsolved problems for the switched sys-

tems. In the first part of this dissertation, new methods are developed for uncertainty

propagation of stochastic switched systems in the presence of the state uncertainty,

represented by probability density functions (PDFs). The main difficulty of this

problem is that the number of PDF components in the state increases exponentially

under the stochastic switching, incurring the curse of dimensionality. This disser-

tation provides a novel method that circumvents the issue regarding the curse of

dimensionality. As an extension of this research, the new method for the switching

synthesis is presented in the second part, to achieve the optimal performance of the

switched system. This research is relevant to developing the switching synthesis on

how to switch between different switching modes.

In the following chapters, some interesting applications that emerges as today’s

leading-edge technology in high-performance computing (HPC) will be introduced.

Generally, the massive parallel computing entails idle process time in multi-core pro-

cessors or distributed computing devices as up to 80% of total computation time,

owing to the synchronization of the data. Thus, there is a trend toward relaxing

ii



such a restriction on synchronization penalty to overcome this bottleneck problem.

This dissertation presents asynchronous computing algorithms as a key solution to

leverage the computing performance to the maximum capabilities. The price to

pay for adopting the asynchronous computing algorithms is, however, unpredictabil-

ity of the solution due to the randomness in the behavior of asynchrony. In this

dissertation, the switched system is employed to model the characteristics of the

asynchrony in parallel computing, enabling analysis of the asynchronous algorithm.

Particularly, the analysis will be performed for massively parallel asynchronous nu-

merical algorithms implemented on 1D heat equation and large-scale asynchronous

distributed quadratic programming problems. As another case study, this switched

system is also implemented on the stability analysis of large-scale distributed net-

worked control systems (DNCS) having random communication delays. For these

problems, the convergence or stability analysis is carried out by the switched system

framework. One of major concerns when adopting the switched system framework

for analysis of these systems is the scalability issues associated with extremely large

switching mode numbers. Due to the massive parallelism or large-scale distributed

nodes, the switching mode numbers are beyond counting, leading to the computa-

tional intractability. The proposed methods are developed targeting the settlement

of this scalability issue, which inevitably takes place in adopting the switched sys-

tem framework. Thus, the primary emphasis of this dissertation is placed on the

mathematical development of computationally efficient tools, particularly for anal-

ysis of the large-scale asynchronous switched dynamical system, which has broad

applications including massively parallel asynchronous numerical algorithms to solve

ODE/PDE problems, distributed optimization problems, and large-scale DNCS with

random communication delays.

iii



DEDICATION

To my lovely wife Youjin and my dearest daughter Serene for their unconditional

love and endless support they have shown all the way!

iv



ACKNOWLEDGEMENTS

I cannot help mentioning those people who have had influence on me both intel-

lectually and physically while pursuing my degree in Doctor of Philosophy. I admit

that without their great support and help, I would not finish this long journey to

obtain my Ph.D. degree. First of all, I am very grateful to Dr. Raktim Bhattacharya

who has guided me during my Ph.D. as a research and academic advisor. His brilliant

ideas have always inspired me whenever I could not find a way to look at the prob-

lems in broader vision. Occasionally, I was really into the problem itself rather than

finding out how to implement the proposed research methods into wider context.

Dr. Bhattacharya’s great inspirations have always illuminated me while I couldn’t

see the forest for the trees. Also, I appreciate his great support, which made me

purely concentrate on the research problems as a graduate student.

I also thank to Dr. Aniruddha Datta, Dr. Diego Donzis, and Dr. P. R. Kumar

who are my committee members. I took Dr. Datta’s class in 2011, which helped

me to understand the basic concepts and fundamentals of adaptive control. I had

research collaboration with Dr. Donzis, to analyze the behavior of asynchrony in

massively parallel numerical algorithms. It was always my great pleasure to have

discussions on the analysis of asynchronous parallel computing with Dr. Donzis and

this research collaboration led to motivation for my doctoral dissertation. I also

thank to Dr. Kumar whose deep insight on research made me better understand the

problems in different perspective. I appreciate Dr. Kumar’s considerable comments

on my research during my preliminary examination.

In summer 2014, I visited University of Notre Dame as a visiting scholar, having

research collaboration with Dr. Vijay Gupta. Dr. Gupta’s exceptional ideas and

v



advice helped me to solve very challenging research problems, and this research

collaboration made me grow up one more step academically. I never forget Dr.

Gupta’s kindness and great hospitality while I was staying at Notre Dame.

I also would like to express my thankful mind to Karen, Michelle, and Rose in the

Aerospace department. Karen always helped me whenever I got in trouble due to

the lack of information. Michelle assisted me to process the work as a research assis-

tant. Especially, I really thank to Rose who facilitated my travel for the conference

throughout my Ph.D.

Last but never least, I heartily appreciate my family’s unlimited support and

unconditional love they always showed at my side. My wife, Youjin, has encouraged

me and made me feel alive. Her vivid characteristics has made me cheer up whenever

I felt stressed or depressed due to a long road to my degree, which seemed to be

endless. My dearest daughter, Serene, has always been meaning and purpose of my

life. Her smile has lifted my spirit, and has brightened me. Without my family’s

enormous amount of love and trust, I would not end up with Ph.D. I dedicate this

work to them.

vi



TABLE OF CONTENTS

Page

ABSTRACT . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . ii

DEDICATION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . iv

ACKNOWLEDGEMENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . v

TABLE OF CONTENTS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . vii

LIST OF FIGURES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . x

LIST OF TABLES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . xiii

1. INTRODUCTION . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.1 Overview . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Research Approaches with Chapter Organization . . . . . . . . . . . 5
1.3 Key Contribution and Research Impacts . . . . . . . . . . . . . . . . 10

2. PERFORMANCE ANALYSIS OF SWITCHED SYSTEMS WITH STOCHAS-
TIC JUMPING PARAMETERS . . . . . . . . . . . . . . . . . . . . . . . 13

2.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
2.2 Preliminaries . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.3 Performance and Robustness Analysis using Wasserstein Metric . . . 18

2.3.1 Wasserstein Distance . . . . . . . . . . . . . . . . . . . . . . . 19
2.3.2 Performance and Robustness Analysis for SJLSs . . . . . . . . 20
2.3.3 Alternative Proof for Stability of Switched Systems via Wasser-

stein Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
2.4 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
2.5 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 41

3. OPTIMAL SWITCHING SYNTHESIS FOR SWITCHED SYSTEMS WITH
GAUSSIAN INITIAL STATE UNCERTAINTY . . . . . . . . . . . . . . . 42

3.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.2 Problem Description . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
3.3 Wasserstein Distance . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

vii



3.4 Switching Synthesis using Receding Horizon Framework with Wasser-
stein Metric . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
3.4.1 Optimal Switching Problem . . . . . . . . . . . . . . . . . . . 49
3.4.2 Stability Issues . . . . . . . . . . . . . . . . . . . . . . . . . . 54
3.4.3 Horizon Length Issues . . . . . . . . . . . . . . . . . . . . . . 55
3.4.4 Complexity Issues . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.5 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57
3.5.1 Jump Linear System with Five Different Modes Dynamics . . 57
3.5.2 Linearized Quadrotor Dynamics with Two Controllers . . . . . 59

3.6 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

4. ANALYSIS OF MASSIVELY PARALLEL ASYNCHRONOUS NUMERI-
CAL ALGORITHMS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64

4.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
4.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 65
4.3 A Switched System Approach . . . . . . . . . . . . . . . . . . . . . . 68
4.4 Stability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
4.5 Convergence Rate . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73
4.6 Error Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
4.7 Simulations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 85
4.8 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

5. ON THE CONVERGENCE OF ASYNCHRONOUS DISTRIBUTED
QUADRATIC PROGRAMMING VIA DUAL DECOMPOSITION . . . . 92

5.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 92
5.2 Preliminaries and Problem Formulation . . . . . . . . . . . . . . . . . 95

5.2.1 Duality Problem . . . . . . . . . . . . . . . . . . . . . . . . . 95
5.2.2 Dual Decomposition with Synchronous Update . . . . . . . . . 98
5.2.3 Dual Decomposition with Asynchronous Update . . . . . . . . 99

5.3 A Switched System Approach . . . . . . . . . . . . . . . . . . . . . . 104
5.4 Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . . . . . . 107
5.5 Rate of Convergence Analysis . . . . . . . . . . . . . . . . . . . . . . 113
5.6 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 118
5.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 123

6. STABILITY OF LARGE-SCALE DISTRIBUTED NETWORKED CON-
TROL SYSTEMS WITH RANDOM COMMUNICATION DELAYS . . . . 125

6.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
6.2 Problem Formulation . . . . . . . . . . . . . . . . . . . . . . . . . . . 127

6.2.1 Distributed Networked Control System with No Delays . . . . 127
6.2.2 DNCS with Communication Delays . . . . . . . . . . . . . . . 128

viii



6.3 Switched System Approach . . . . . . . . . . . . . . . . . . . . . . . . 129
6.4 Stability with Reduced Mode Dynamics . . . . . . . . . . . . . . . . . 132
6.5 Stability Region and Stability Bound for Uncertain Markov Transition

Probability Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . 136
6.6 Numerical Example . . . . . . . . . . . . . . . . . . . . . . . . . . . . 143

6.6.1 Stability Analysis with Random Communication Delays . . . . 144
6.6.2 Stability Bound for Uncertain Markov Transition Probability

Matrix . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 145
6.7 Concluding Remarks . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

7. CONCLUSIONS . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148

REFERENCES . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151

APPENDIX A. PROOF FOR CHAPTER 2 . . . . . . . . . . . . . . . . . . . 164

A.1 Proof of Proposition 2.4 . . . . . . . . . . . . . . . . . . . . . . . . . 164

ix



LIST OF FIGURES

FIGURE Page

1.1 The schematic of DNCS with random communication delays. . . . . . 5

1.2 Example of large-scale network map. . . . . . . . . . . . . . . . . . . 6

1.3 Chapter organization and flows. . . . . . . . . . . . . . . . . . . . . . 7

2.1 Schematic of PDF propagation under stochastic switching. Initially,
an MoG PDF was given; Upper one shows the exponential growth
of MoG components; Bottom one shows “Split-and-Merge” algorithm
where the number of Gaussian components remains constatnt, which
is m modes at most. In this figure, m = 2. . . . . . . . . . . . . . . . 25

2.2 Inverted pendulum on cart. . . . . . . . . . . . . . . . . . . . . . . . 36

2.3 Simulation result for performance and robustness analysis of inverted
pendulum system with the existence of both random communication
delays and initial state uncertainties. . . . . . . . . . . . . . . . . . . 40

3.1 Schematic of optimal switching for the switched system. . . . . . . . . 46

3.2 Optimal switching strategy for the switched linear system using re-
ceding horizon framework. . . . . . . . . . . . . . . . . . . . . . . . . 53

3.3 Simulation results of optimal switching synthesis for the switched sys-
tem with 5 different modes. . . . . . . . . . . . . . . . . . . . . . . . 60

3.4 Simulation results of optimal switching synthesis for linearized quadro-
tor dynamics. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 63

4.1 Discretized one-dimensional domain with an asynchronous numerical
algorithm. the PE denotes a group of grid points, assigned to each core. 67

4.2 The spatio-temporal change of the temperature. Initially, the temper-
ature was given by the cosine square function. The total grid points
are 100, and the simulation was terminated when k = 10000. . . . . . 86

x



4.3 The results for the stability and convergence rate. (a) The solid lines
represent the ensembles of total 300 simulations. The synchronous
case is given by dashed line. The steady-state is depicted by starred
line. (b) The solid and dotted lines represent 300 ensembles for ||e(k)||
and the normed empirical mean ||ē(k)||, respectively. The dashed
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1. INTRODUCTION

1.1 Overview

Typically, the switched system (or jump linear system, interchangeably) refers to

the dynamical system consists of a family of subsystem dynamics and a switching

logic that orchestrates the switching between subsystem dynamics [10], [17], [19], [31],

[66], [68], [34], [22], [62], [63], [64]. Since this switched system has broad applications

ranging from power systems, manufacturing systems, aerospace systems to even net-

worked control systems, there have been considerable research works on the analysis

of the switched system during past decades. One of the enthralling aspects of this

switched system is that the system can be unstable by the switching even in the case

that all subsystem dynamics are known to be stable. Thus, it has attracted wide re-

search interests regarding the stability analysis of the switched system. For example,

Kozin [55] surveyed basic ideas for the stability of stochastic systems and defined

various concepts of stochastic stability, which has served as a stepping stone in the

stability analysis of stochastic switched systems. Feng et.al. [34] showed equivalence

of three different notions of the stability (e.g., second moment stability, stochastic

stability and exponential mean square stability) for the switched systems by inquir-

ing about the stochastic properties of the transition matrix. In [52], Ji et.al. studied

the stability of the discrete-time jump linear systems in the mean square sense, and

introduced less conservative stability notion – almost sure stability.

Later, the classification of the stochastic switched system is more concretized

by the embodiment of the switching process such as independent, identically dis-

tributed (i.i.d.) process, Markovian process, and semi-Markovian process. Among

different notions for stochastic switched systems, Markov jump linear system struc-
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ture has been widely employed due to its practicality for formulating randomness.

For instance, the Markov jump linear system framework can be utilized for mod-

eling communication delays [97] or packet losses [99] in networked systems, abrupt

environmental disturbances or changes in subsystems [74], systems with parametric

uncertainties [105], etc. Since the system stability is of concern under Markovian

switching, it has led to a variety of research areas [105], [23], [86], [9]. For the general

non-Markovian stochastic jump linear systems, however, only few results [34], [74]

can be found. In most cases, the mean square stability conditions are obtained

from the Lyapunov’s method, where finding Lyapunov function satisfying certain

conditions is sometimes troublesome. Moreover, most literature has focused on the

stability itself, meaning that it has remained as an unexplored area to investigate

the performance of the switched system in transient time, which requires uncertainty

propagation under the switching process.

This dissertation addresses a new method that enables uncertainty propagation

for the switched system of which state is represented by the probability density func-

tion (PDF). Particularly, this research will investigate uncertainty propagation for

any arbitrary stochastic switching process, including Markovian jump process. The

major difficulty in uncertainty propagation problem is that the number of component

PDFs grows exponentially under the stochastic switching, leading to the curse of di-

mensionality problems. To avoid this dimensionality issue, this study will develop

a novel approach, “split-and-merge” algorithm, which enables the performance and

robustness analysis for the stochastic switched system in a computationally efficient

manner. Uncertainty is quantified via the Wasserstein metric to measure the dis-

tance between PDFs. Through the convergence of the state PDF, system stability is

guaranteed in the mean square sense, which will be proven with a particular choice

of the reference PDF as Dirac distribution. Thus, the proposed methods can be
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used to measure the system performance as well as robustness with respect to the

stochastic switching both in transient and steady-state time. Then, a new approach

for the optimal switching synthesis will be presented for general switched systems.

In conjunction with the receding horizon control framework, this optimal switching

synthesis guarantees the optimal performance of the switched systems, which pro-

vides the information regarding how and when to switch. The proposed optimal

switching synthesis method can be adopted to the controller switching for optimal

performance of the system.

In the following chapters, this dissertation introduces some interesting case stud-

ies as applications for the large-scale asynchronous switched dynamical systems [62],

[60], [61]. These case studies include massively parallel asynchronous numerical al-

gorithm, large-scale asynchronous distribute quadratic programming problems, and

large-scale distributed networked control systems (DNCSs) with random communi-

cation delays. The first two case studies are mostly relevant to the high-performance

computing to achieve the maximum computing capability in multi-core processors or

distributed computing devices. With a rapid advancement of computing technology

in distributed and parallel computing, one can handle complicated and computation-

ally intensive applications. These applications range from science and engineering

problems to even big data and information processing, for which solutions can be

approximately obtained by numerical methods. In solving such large-scale problems,

the purpose of implementing distributed and parallel computing is glaringly obvious

– to speedup the computation. However, distributed and parallel computing entails

synchronization at each iteration step due to the interdependency of the data, which

may result in a large amount of waiting time, particularly for extreme-scale parallel

computation. In fact, it has been reported [13] that this synchronization latency can

reach up to 50% or even more in the total computation time. Therefore, the syn-
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chronization latency may become dominant as compared to the pure computation

time, and thus it may severely degrade the performance of distributed and parallel

computing. To mitigate this restriction on synchronization penalty, this disserta-

tion investigates asynchronous parallel computing algorithm, where asynchronous

algorithm is a benefit as well as a key point to solving massively computation in-

tensive problems. The major concern when adopting the asynchronous computing

algorithm is that it is not completely and thoroughly revealed yet what is the effect

of asynchrony on the solution. Due to the randomness of asynchrony, the solution

obtained from asynchronous computing algorithms becomes unpredictable, incur-

ring the tradeoff between speedup and accuracy. Motivated by the utilization of

the stochastic switched system that is broadly used in the analysis of systems with

random delays, this dissertation employs the switched system framework to charac-

terize the behavior of such an asynchrony. Thus, the effect of asynchrony is analyzed

by means of this switched system framework. Particularly, this dissertation aims at

developing new mathematical tools based on the switched system framework for anal-

ysis of asynchronous parallel computing algorithms, implemented on asynchronous

parallel numerical algorithms to solve ODE/PDE problems and asynchronous dis-

tributed quadratic programming problems. As another example, the stability of

large-scale DNCSs having random communication delays will be discussed. For this

system, each agent has communication with its neighbors, where the communication

delays may take place as described in Fig. 1.1. In such cases, system stability is one

of the major concerns because the communication delays may incur system insta-

bility. To describe the randomness of communication delays in DNCS, the switched

system framework will be employed again. Then, it will be shown that the dynamics

of large-scale DNCS with random communication delays can be successfully modeled

by the switched system. Therefore, the stability analysis will be performed under
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Figure 1.1: The schematic of DNCS with random communication delays.

this switched system framework.

Note that we are particularly interested in large-scale problems of which network

map, for example, appears as in Fig. 1.2. In this type of excessively large-scale net-

work connection, adopting the switched system framework for the purpose of system

analysis will cause scalability problems associated with an extremely large amount of

switching mode numbers. Therefore, the primal emphasis of dissertation lies in the

development of computationally efficient tools for the stability or convergence anal-

ysis of large-scale asynchronous switched dynamical systems. Further explanations

regarding the proposed research approaches with chapter organizations are described

in the following section.

1.2 Research Approaches with Chapter Organization

The chapter organization for this dissertation is described in Fig. 1.3. In chap-

ter 2, a new method for performance analysis of the stochastic switched system

will be presented, followed by the optimal switching synthesis method in chapter 3.

These two chapters deal with analysis and synthesis for general switched systems.

Then, the remaining three chapters introduce some case studies for large-scale asyn-

chronous switched dynamical systems. Especially, chapter 4 and 5 are related to the
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Figure 1.2: Example of large-scale network map.

high-performance computing with an implementation of the asynchronous computing

algorithms. In these chapters, massively asynchronous parallel numerical algorithms

and asynchronous distributed quadratic programming problems will be analyzed in

the switched system framework. Finally, analysis of large-scale DNCS with random

communication delays will be introduced in chapter 6, and the stability condition

will be established via the switched system framework.

More details about problem descriptions and research approaches are addressed

below.

• Performance Analysis of Switched Systems with Stochastic Jumping

Parameters:

This research focuses on the performance and the robustness analysis of stochas-

tic jump linear systems. In the presence of stochastic jumps, state variables evolve

as random process, with associated time varying probability density functions. Con-

sequently, system analysis is performed at the density level and a proper metric is
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Figure 1.3: Chapter organization and flows.

necessary to quantify the system performance. In this research, Wasserstein metric

between probability density functions is employed to develop new results for the per-

formance analysis of stochastic jump linear systems. Both transient and steady-state

performance of the systems, with given initial state uncertainties, can be analyzed

in this framework. Also, we prove that the convergence of the Wasserstein metric

implies the mean square stability. In addition, we present a novel “Split-and-Merge”

algorithm for propagation of state uncertainty for such systems. Overall, this study

provides a unifying framework for the performance and the robustness analysis of

general stochastic jump linear systems, and not necessarily Markovian that is com-

monly assumed.

• Optimal Switching Synthesis for Switched Systems with Gaussian Initial

State Uncertainty:

7



This study provides a method to design an optimal switching sequence for jump

linear systems with given Gaussian initial state uncertainty. In the practical per-

spective, the initial state contains some uncertainties that come from measurement

errors or sensor inaccuracies and we assume that the type of this uncertainty has the

form of Gaussian distribution. In order to cope with Gaussian initial state uncer-

tainty and to measure the system performance, Wasserstein metric that defines the

distance between probability density functions is used. Combining with the receding

horizon framework, an optimal switching sequence for jump linear systems can be

obtained by minimizing the objective function that is expressed in terms of Wasser-

stein distance. The proposed optimal switching synthesis also guarantees the mean

square stability for jump linear systems.

• Analysis of Massively Parallel Asynchronous Numerical Algorithms:

In the near future, massively parallel computing systems will be necessary to solve

computation intensive applications. The key bottleneck in massively parallel imple-

mentation of numerical algorithms is the synchronization of data across processing

elements (PEs) after each iteration, which results in significant idle time. Thus, there

is a trend towards relaxing the synchronization and adopting an asynchronous model

of computation to reduce idle time. However, it is not clear what is the effect of this

relaxation on the stability and accuracy of the numerical algorithm.

In this study we present a new framework to analyze such algorithms. We treat

the computation in each PE as a dynamical system and model the asynchrony as

stochastic switching. The overall system is then analyzed as a switched dynamical

system. However, modeling of massively parallel numerical algorithms as switched

dynamical systems results in a very large number of modes, which makes current

analysis tools available for such systems computationally intractable. We develop

new techniques that circumvent this scalability issue. The framework is presented

8



on a one-dimensional heat equation and the proposed analysis framework is verified

by solving the partial differential equation (PDE) in a nVIDIA TeslaTM GPU machine,

with asynchronous communication between cores.

• On the Convergence of Asynchronous Distributed Quadratic Program-

ming via Dual Decomposition:

In this research, we analyze the convergence as well as the rate of convergence

of asynchronous distributed quadratic programming (QP) with dual decomposition

technique. In general, distributed optimization requires synchronization of data at

each iteration step due to the interdependency of data. This synchronization latency

may incur a large amount of waiting time caused by an idle process during computa-

tion. We aim to attack this synchronization penalty in distributed QP problems by

implementing asynchronous update of dual variable. The price to pay for adopting

asynchronous computing algorithms is unpredictability of the solution, resulting in a

tradeoff between speedup and accuracy. Thus, the convergence to an optimal solution

is not guaranteed owing to the stochastic behavior of asynchrony. In this study, we

employ the switched system framework as an analysis tool to investigate the conver-

gence of asynchronous distributed QP. This switched system will facilitate analysis

on asynchronous distributed QP with dual decomposition, providing necessary and

sufficient conditions for the mean square convergence. Also, we provide an analytic

expression for the rate of convergence through the switched system, which enables

performance analysis of asynchronous algorithms compared to the synchronous case.

To verify the validity of the proposed methods, numerical examples are presented

with an implementation of asynchronous parallel QP using OpenMP.

• Stability of Large-scale Distributed Networked Control Systems with

Random Communication Delays:

In this research, we consider the stability analysis of large-scale distributed net-
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worked control systems with random communication delays. The stability analysis is

performed in the switched system framework, particularly as the Markov jump linear

system. There have been considerable research on stability analysis of the Markov

jump systems. However, these methods are not applicable to large-scale systems

because large numbers of subsystems result in extremely large number of switching

modes. To circumvent this scalability issue, we propose a new reduced mode model

for stability analysis, which is computationally scalable. We also consider the case in

which the transition probabilities for the Markov jump process contain uncertainties.

We provide a new method that estimates bounds for uncertain Markov transition

probability matrix to guarantee the system stability. Numerical example verifies the

computational efficiency of the proposed methods.

1.3 Key Contribution and Research Impacts

This dissertation will mainly focus on the analysis of stochastic switched systems

and its applications to large-scale asynchronous switched dynamical systems. Key

contributions of this dissertation include new techniques for:

1) A novel method for uncertainty propagation of the switched system in conjunc-

tion with nonlinear, non-Gaussian state PDFs (Chapter 2)

2) Optimal switching synthesis for the switched system with Gaussian state un-

certainty (Chapter 3)

3) Application I: Analysis of massively parallel asynchronous computing algo-

rithms implemented on parallel numerical algorithms (Chapter 4)

4) Application II: Analysis of large-scale distributed quadratic programming (Chap-

ter 5)
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5) Application III: Stability analysis of large-scale distributed networked control

systems with random communication delays (Chapter 6)

The above lists 1) and 2) are developed for general switched systems. On the other

hands, lists from 3) to 5) are targeting the analysis of asynchronous algorithms and

large-scale systems with random communication delays by employing the switched

system framework.

Regarding the uncertainty propagation for the stochastic switched systems, it is

expected that the proposed method will be utilized to measure the system uncer-

tainty, caused by both state uncertainty and stochastic jump process. The major

impact of this research is that it enables the uncertainty quantification both transient

and steady-state time, whereas previous literature only focused on the stability in

the steady state. Thus, the performance and robustness analysis can be carried out

by the proposed methods while avoiding the aforementioned curse of dimensionality

issue. Also, a new approach is developed for the optimal switching synthesis problem.

This research provides information on how to switch for the optimal performance of

the switched system considering the state uncertainty in the form of Gaussian noise.

This will benefit the synthesis problems including controller switching synthesis for

the optimal performance of the system.

For the analysis of asynchronous computing algorithms, it is expected to bring

transformative potential in scientific computing at extreme scale. At these scales,

the idle time for synchronization across multi-core or distributed devices may incur a

huge amount of waiting time, which can be avoided by the asynchronous algorithms.

This capability is highly relevant to the scientific computing community involved

in developing mathematical methods and algorithms to accurately and efficiently

describe the behavior of complex systems. Ultimately, this will enable both accurate
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and efficient analysis on massively parallel asynchronous computing algorithms that

will be necessary as well as ubiquitous in the near future to further understanding

the complicated and critical scientific inquiry.
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2. PERFORMANCE ANALYSIS OF SWITCHED SYSTEMS WITH

STOCHASTIC JUMPING PARAMETERS

2.1 Introduction

A jump linear system is defined as a dynamical system constructed with a set of

linear subsystem dynamics and a switching logic that conduct a switching between

linear subsystems. Over decades, a jump linear system has attracted a wide range of

researches due to its practical implementations. For instance, jump linear systems

are used for power systems, manufacturing systems, aerospace systems, networked

control systems, etc.

In general, a jump linear system can be divided into two different categories

depending on the switching logic. One branch is a deterministic jump linear system

where the jump process is deterministically driven by a certain switching logic. The

utilization of such systems stems from plant stabilization [75], adaptive control [76],

system performance [68], and resource-constrained scheduling [8]. In most cases, the

system stability has been one of the major issues to investigate since even stable

subsystems make the system unstable by the switching. Hence, numerous results

have been established for the stability analysis and the recent literature regarding

the stability of deterministic jump linear systems can be found in [68]. In [68],

necessary and sufficient conditions for the system stability are shown via a finite

tuple, satisfying a certain condition.

Unlike the deterministic jump linear system, a stochastic jump linear system

(SJLS), which is another category of jump linear systems, refers to systems with a

stochastic switching process. This type of jump linear systems is commonly used to

represent the randomness in the switching such as communication delays or packet
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losses in the networked control systems [47], [97]. In [47], the networked control

system with packet losses was modeled as an asynchronous dynamical system in-

corporating both discrete and continuous dynamics, and its stability was analysed

through Lyapunov techniques. Since then, this problem has been formulated in a

more general setting by representing the various aspects of communication uncer-

tainties as Markov chains [103], [18], [98], [99], [73]. Stability analysis in the pres-

ence of such uncertainty, has been performed in the Markov jump linear systems

(MJLSs) framework [97], [104], [96], [53], [58], [106]. Especially, [106] analysed the

stability of MJLS without requiring any knowledge of the structures in partially un-

known Markov transition probabilities. Further, the stochastic stability for a class

of nonlinear stochastic systems with semi-Markovian jump parameters is introduced

in [51], [65]. Most previous literatures, however, have only dealt with steady-state

analysis in terms of the system stability.

Beyond the current literature, this chapter has a key contribution for the analy-

sis of a SJLS as follows. Based on the theory of optimal transport [94], we propose

new probabilistic tools for analysing the performance and the robustness of SJLSs.

Compared to the current literatures that only guarantees asymptotic performance

with a deterministic arbitrary initial state condition, our contribution is to develop

a unifying framework enabling both transient and asymptotic performance analysis

with uncertain initial state conditions. The main difficulty dealing with analysis

of SJLSs is that the system trajectories differ from every run due to the random

switching. Moreover, the system state for SJLSs becomes random variables with a

corresponding probability density function (PDF) even with a deterministic initial

state condition. Therefore, we need to adopt a proper metric to measure the perfor-

mance and the robustness of SJLSs in the distributional sense. In this chapter, the

Wasserstein metric that enables uncertainty quantification by evaluating a distance

14



between PDFs is employed to measure the performance of SJLSs. We also prove that

the convergence of this metric implies the mean square stability. To sum up, this

chapter provides the performance and the robustness analysis tools for SJLSs with

given initial state uncertainties in the absence of any restriction on the underlying

jump processes.

The remainder of this chapter is organized as follows. In Section 2.2, we provide

a brief review of the preliminaries. Section 2.3 deals with the performance and

the robustness analysis of SJLSs and introduces computationally efficient tools for

that purpose. Numerical examples are provided in Section 2.4, to illustrate the

performance and the robustness analysis results developed in this work. Section 2.5

concludes the chapter.

Notation: The set of real and natural numbers are denoted by R and N, respec-

tively. Further, N0 , N ∪ {0}. The symbols tr (·), ⊗, and vec (·) denote the trace of

a square matrix, Kronecker product, and vectorization operators, respectively. The

abbreviation m.s. stands for the convergence in mean-square sense. The notations

P(·) and X ∼ ρ (x) denote the probability and the random variable X with PDF

ρ (x), respectively. The symbol N (µ,Σ) is used to denote the PDF of a Gaussian

random vector with mean µ and covariance Σ.

2.2 Preliminaries

Consider a discrete-time jump linear system as follows.

x(k + 1) = Aσkx(k), k ∈ N0, (2.1)

where k is a discrete-time index, x(k) is the state vector, and Aσk denotes the system

matrices. σk ∈M , {1, 2, . . . ,m} stands for the stochastic jump process, governing

the switching among m different modes of (2.1). In this chapter, we will consider
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general stochastic jump processes σk, and hence σk can be any arbitrary random

process. Then, the resulting dynamics becomes a SJLS as defined next.

Definition 2.1 (Stochastic jump linear system) Tuple of the form ({π (k)}∞k=1,

{A1, . . . , Am}) is termed as a SJLS, provided the mode dynamics are given by (2.1);

π(k) denotes the occupation probability vector at time k for the prescribed stochastic

process σk.

Remark 2.1 A SJLS, as defined above, is a collection of modal vector fields and a

sequence of mode-occupation probability vectors. If the jump processes σk is determin-

istic, then at each time, π(k) will have integral co-ordinates (single 1 and remaining

m − 1 zeroes), resulting in a deterministic switching sequence. If, however, σk is

stochastic jump processes, then π(k) will contain proper fractional co-ordinates, re-

sulting in a randomized switching sequence where at each time, exactly one out of m

modes will be chosen according to probability π(k). Thus, starting from a determin-

istic initial condition, each execution of the SJLS may result in different switching

sequences corresponding to random sample paths of σk over M. Every realization

of these random switching sequences results in a trajectory realization on the state

space, and hence repeated the SJLS executions, even with a fixed initial condition,

yields a spatio-temporal evolution of joint state PDF ρ (x (k)).

Based on the structure that governs the temporal evolution of π(k), SJLSs can be

categorized into several subsets according to inherent jump processes as follows.

1) i.i.d. jump process:

A SJLS switching sequence is called stationary, if the occupation probability

vector π (k) remains stationary in time. In particular, a stationary determin-

istic switching sequence implies execution of a single mode (no switching). A
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stationary randomized switching sequence implies i.i.d. jump process.

2) Markov jump process:

Consider a discrete-time discrete state Markov chain with mode transition

probabilities given by

pij = P (σk+1 = j | σk = i) ,

where pij ≥ 0, ∀i, j ∈ M. Hence, for k ≥ 0, the probability distribution

π (k) ∈ Rm of the modes of (2.1), is governed by

π(k + 1) = π(k)P, π(0) = [π1(0) · · · πm(0)],

where the transition probability matrix P ∈ Rm×m is a right stochastic matrix

with row sum
∑m

j=1 pij = 1, ∀i ∈M.

3) semi-Markov jump process:

For a homogeneous and discrete-time semi-Markov chain, semi-Markov kernel

q is defined by

qij(k) = P(σn+1 = j,Xn+1 = k|σn = i),

where Xn denotes the sojourn time in state σn = i. Note that the transition

probability pij in Markov chain can be expressed in terms of the semi-Markov

kernel by pij =
∑∞

k=0 qij(k).
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2.3 Performance and Robustness Analysis using Wasserstein Metric

Uncertainties in a SJLS appear at the execution level due to random switching

sequence. Additional uncertainties may stem from imprecise setting of initial con-

ditions and parameter values. These uncertainties manifest as the evolution of the

state PDF ρ (x (k)). Thus, a natural way to quantify the uncertainty for the per-

formance of a SJLS, is to compute the “distance” of the instantaneous state PDF

from a reference measure. In particular, if we fix the reference PDF as Dirac delta

function at the origin, denoted as δ (x), then the time-history of this “distance”

would reveal the rate of convergence (divergence) for the stable (unstable) SJLS in

the distributional sense.

For meaningful inference, the notion of “distance” must define a metric, and

should be computationally tractable. The choice of the metric is very important

as it must be able to highlight properties of density functions that are important

from a dynamical system point of view. We propose that the shape of the density

functions characterizes the dynamics of the system. Regions of high probability

density correspond to high likelihood of finding the state there, which corresponds

to higher concentration of trajectories. Higher concentration occurs in regions with

low time scale dynamics or time invariance. For example, for a stable system, all

trajectories accumulate at the origin and the corresponding PDF is the Dirac delta

function at the origin. Similarly, low concentration areas indicate fast-scale dynamics

or instability, and the corresponding steady-state density function is zero in the

unstable manifold. Therefore, behaviors of two dynamical systems are identical in

the distribution sense if their state PDFs have identical shapes. In order to properly

capture the above aspects in dynamical systems, we adopt Wasserstein distance and

details are introduced in the following subsection.
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2.3.1 Wasserstein Distance

Definition 2.2 (Wasserstein distance) Consider the vectors x1, x2 ∈ Rn. Let

P2(ς1, ς2) denote the collection of all probability measures ς supported on the product

space R2n, having finite second moment, with first marginal ς1 and second marginal

ς2. Then the Wasserstein distance of order 2, denoted as W, between two probability

measures ς1, ς2, is defined as

W(ς1, ς2) ,

(
inf

ς∈P2(ς1,ς2)

∫
R2n

‖ x1 − x2 ‖2
`2(Rn) dς(x1, x2)

) 1
2

. (2.2)

Remark 2.2 Intuitively, Wasserstein distance equals the least amount of work needed

to morph one distributional shape to the other, and can be interpreted as the cost for

Monge-Kantorovich optimal transportation plan [93]. Further, one can prove (p.

208, [93]) that W defines a metric on the manifold of PDFs.

Next, we present new results for system stability in terms ofW and simplifications

in its computation.

Proposition 2.1 If we fix Dirac distribution as a reference measure, then distribu-

tional convergence in Wasserstein metric is necessary and sufficient for convergence

in m.s. sense.

Proof Consider a sequence of n-dimensional joint PDFs {ρj (x)}∞j=1, that converges

to δ (x) in distribution, i.e., lim
j→∞
W (ρj(x), δ(x)) = 0. From (2.2), we have

W2 (ρj(x), δ(x)) = inf
ς∈P2(ρj(x),δ(x))

E
[
‖ Xj − 0 ‖2

`2(Rn)

]
= E

[
‖ Xj ‖2

`2(Rn)

]
, (2.3)
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where the random variable Xj ∼ ρj (x). The last equality follows from the fact that

P2(ρj(x), δ(x)) = {ρj(x)} ∀ j, thus infimum is obviated.

From (2.3), lim
j→∞
W (ρj(x), δ(x)) = 0 ⇒ lim

j→∞
E
[
‖ Xj ‖2

`2

]
= 0, establishing distri-

butional convergence to δ(x) ⇒ m.s. convergence. Conversely, m.s. convergence ⇒

distributional convergence, is well-known [43] and unlike the other direction, holds

for arbitrary reference measure. �

Proposition 2.2 (W between multivariate Gaussians [40]) The Wasserstein

distance between two multivariate Gaussians supported on Rn, with respective joint

PDFs N (µ1,Σ1) and N (µ2,Σ2), is given by

W (N (µ1,Σ1) ,N (µ2,Σ2)) = (2.4)√
‖ µ1 − µ2 ‖2

`2(Rn) + tr

(
Σ1 + Σ2 − 2

[√
Σ1Σ2

√
Σ1

] 1
2

)
.

Corollary 2.1 (W between Gaussian and Dirac PDF) Since we can write

δ (x) = lim
µ,Σ→0

N (µ,Σ) (see e.g., p. 160-161, [46]), it follows from (2.4) that

W (N (µ,Σ) , δ (x)) =
√
‖ µ ‖2

`2(Rn) + tr (Σ). (2.5)

2.3.2 Performance and Robustness Analysis for SJLSs

The performance and the robustness analysis problem for SJLSs is stated as fol-

lows: given a SJLS ({π (k)}∞k=1, {A1, . . . , Am}), compute and analyse the performance

history, quantified by W (k) ,W (ρ (x(k)) , δ(x)). Comparison of W (k) of uncertain

systems with that of a nominal system, quantifies the degradation in system perfor-

mance due to system uncertainty.
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2.3.2.1 Uncertainty propagation in SJLSs

The key difficulty here is the propagation of state PDFs under the stochastic

switching and we present a new algorithm for such computations.

Proposition 2.3 Given m absolutely continuous random variables X1, . . . , Xm, with

respective cumulative distribution functions (CDFs) Fi (x), and PDFs ρi (x), ∀i ∈

M. Let X , Xi, with probability αi ∈ [0, 1],
m∑
i=1

αi = 1. Then, the CDF and the

PDF of X are given by

F (x) =
m∑
i=1

αiFi (x) , ρ (x) =
m∑
i=1

αiρi (x) . (2.6)

Proof

F (x) , P (X ≤ x)

=
m∑
i=1

P (X = Xi)P (Xi ≤ x)

=
m∑
i=1

αiFi (x) ,

where we have used the law of total probability. Since each Xi and hence X, is

absolutely continuous, we have ρ (x) =
m∑
i=1

αiρi (x). �

Note that any continuous PDF can be approximated by a Gaussian mixture PDF

in weak sense [83, 91]. Therefore, we assume the initial PDF for the SJLS to be m0

components mixture of Gaussian (MoG), given by

ρ0 =

m0∑
j0=1

αj0 N (µj0 ,Σj0) ,

m0∑
j0=1

αj0 = 1.

Then, we have the following results.
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Theorem 2.1 (A SJLS preserves MoG) Consider a SJLS ({π (k)}∞k=1, {A1, . . . ,

Am}) with initial PDF ρ0 =

m0∑
j0=1

αj0 N (µj0 ,Σj0). Then the state PDF at time k,

denoted by ρ (x(k)), is given by

ρ (x(k)) =
m∑

jk=1

m∑
jk−1=1

. . .

m∑
j1=1

m0∑
j0=1

(
k∏
r=1

πjr(r)

)
αj0N (µjk ,Σjk) , (2.7)

where

µjk = A∗jkµj0 ,

Σjk = A∗jkΣj0A
∗>
jk
,

A∗jk ,
1∏
r=k

Ajr = AjkAjk−1
. . . Aj2Aj1 .

Proof Starting from ρ0 at k = 0, the modal PDF at time k = 1, is given by

ρj1(x(1)) =

m0∑
j0=1

αj0 N (µj1 ,Σj1) , (2.8)

where j1 = 1, . . . ,m, µj1 = Aj1µj0 , and Σj1 = Aj1Σj0A
>
j1

, which follows from the

fact that linear transformation of an MoG is an equal component MoG with linearly

transformed component means and congruently transformed component covariances

(see Theorem 6 and Corollary 7 in [2]). From Proposition 2.3, it follows that the

state PDF at k = 1, is

ρ(x(1)) =
m∑
j1=1

m0∑
j0=1

πj1(1)αj0 N (µj1 ,Σj1) , (2.9)

where πj1(1) is the occupation probability for mode j1 at time k = 1. Notice that

(2.9) is an MoG with mm0 component Gaussians. Proceeding likewise from this
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ρ(x(1)), at time k = 2, we obtain

ρj2(x(2)) =
m∑
j1=1

m0∑
j0=1

πj1(1)αj0 N
(
µj2 ,Σj2

)
, (2.10)

where j2 = 1, . . . ,m, µj2 = (Aj2Aj1)µj0 ,

Σj2 = (Aj2Aj1)Σj0(Aj2Aj1)
>,

ρ(x(2)) =
m∑
j2=1

m∑
j1=1

m0∑
j0=1

πj2(2)πj1(1)αj0 N
(
µj2 ,Σj2

)
, (2.11)

Continuing with this recursion till time k, we arrive at (2.7), which is an MoG with

mkm0 components. We comment that the expression is simplified when m0 = 1, i.e.

when the initial PDF is Gaussian. �

Remark 2.3 (Computational complexity) Given an initial MoG and a SJLS,

from Theorem 2.1, one can in principle compute the state PDF at any finite time, in

closed form (i.e., an analytical form with a finite number of well-defined functions).

However, since the number of component Gaussians grows exponentially in time,

the computational complexity in evaluating (2.7), grows exponentially, and hence the

computation becomes intractable. In the following, we show that the Wasserstein

based performance analysis can still be performed in closed form while keeping the

computational complexity constant in time.

2.3.2.2 Wasserstein computation in SJLSs

For a SJLS, there are no known results to represent the W distance in closed

form. The main computational issue is that even with Gaussian initial PDF, the

instantaneous state PDF remains no longer Gaussian but rather MoG, as shown in

Theorem 2.1. This brings forth concerns for the exponential growth of computational

complexity to obtain ρ(x(k)). To address these concerns, we firstly introduce a
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following theorem that enables the Wasserstein computation in an analytical form.

Then, we further show that the exponential growth can be avoided by the core idea

introduced in this subsection.

Theorem 2.2 (W for an m-mode SJLS with Dirac reference PDF) At

any given time k, let the state PDF for a SJLS be ρ(x) =
m∑
j=1

αjρj(x), x ∈ Rn,

where ρj(x), αj, and m are the instantaneous modal PDF, occupation probability of

mode j, and the number of individual mixture components, respectively. If we define

W ,W
(
ρ (x) , δ(x)

)
, and Wj ,W

(
ρj (x) , δ(x)

)
, then

W =

(
m∑
j=1

αjW
2
j

)1/2

. (2.12)

Proof From (2.2) and Proposition 2.3, we have

W 2 =

∫
Rn
‖ x ‖2

`2(Rn) ρ(x)dx

=

∫
Rn
‖ x ‖2

`2(Rn)

m∑
j=1

αjρj(x)dx

=
m∑
j=1

αj

∫
Rn
‖ x ‖2

`2(Rn) ρj(x)dx

=
m∑
j=1

αjW
2
j . (2.13)

⇒ W =

(
m∑
j=1

αjW
2
j

)1/2

. (2.14)

�

Theorem 2.2 provides an analytical solution to compute the performance and

the robustness of the SJLS in terms of Wasserstein distance. However, expression in
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Figure 2.1: Schematic of PDF propagation under stochastic switching. Initially, an
MoG PDF was given; Upper one shows the exponential growth of MoG components;
Bottom one shows “Split-and-Merge” algorithm where the number of Gaussian com-
ponents remains constatnt, which is m modes at most. In this figure, m = 2.
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(2.12) still includes the component-wiseW computation, and hence the computation

becomes intractable shortly due to the exponential growth of Gaussian components

in the state PDF ρ(x). In order to cope with this problem, we introduce a “Split-

and-Merge” algorithm as follows.

1) Merge Step:

For a given MoG ρ(x) at any time k, we can compute the mean µ̂ and the covariance

Σ̂ of an MoG by the following lemma.

Lemma 2.1 (Mean and covariance of a mixture PDF) Consider any mix-

ture PDF ρ(x) =
m∑
j=1

αjρj(x), with component mean-covariance pairs (µj,Σj), j =

1, . . . ,m. Then, the mean-covariance pair
(
µ̂, Σ̂

)
for the mixture PDF ρ(x), is given

by

µ̂ =
m∑
j=1

αjµj,

Σ̂ =
m∑
j=1

αj

(
Σj + (µj − µ̂) (µj − µ̂)>

)
. (2.15)

Proof We have

µ̂ ,
∫
Rn
xρ(x)dx

=

∫
Rn
x

m∑
j=1

αjρj(x)dx

=
m∑
j=1

αj

∫
Rn
xρj(x)dx

=
m∑
j=1

αjµj.

26



On the other hand,

Σ̂ , E
[
(x− µ̂) (x− µ̂)>

]
= E

[
xx>

]
− µ̂µ̂>

=

∫
Rn
xx>

m∑
j=1

αjρj(x)dx− µ̂µ̂>

=
m∑
j=1

αj

∫
Rn

(x− µ̂+ µ̂) (x− µ̂+ µ̂)> ρj (x) dx− µ̂µ̂>

=
m∑
j=1

αj

(
Σj + (µj − µ̂) (µj − µ̂)>

)
.

�

Lemma 2.1 proves that for any mixture PDF, we can compute the mean µ̂ and the

covariance Σ̂. Then, from this information, a synthetic Gaussian N (µ̂(k), Σ̂(k)),

which is a Gaussian PDF, can be constructed.

2) Split Step:

Once the synthetic GaussianN (µ̂(k), Σ̂(k)) is obtained at time k at “Merge step”, the

modal PDFs, propagated from N (µ̂(k), Σ̂(k)) along each modal dynamics {Aj}mj=1,

are computed at “Split step.” At this stage, we have m numbers of Gaussian compo-

nents N (Ajµ̂(k), AjΣ̂(k)A>j ), j = 1, 2, . . . ,m with a switching probability π(k + 1).

Accordingly, an MoG PDF, which has m-mode numbers in Gaussian components, is

constructed by Proposition 2.3 at time k + 1.

Repeating “Split-and-Merge” algorithm at every time step as depicted in Fig.

2.1, linear modal dynamics results in m modal Gaussian PDFs (“Split step”). Then,

instead of computing the non-Gaussian SJLS state PDF in an MoG form, one would

construct a synthetic Gaussian N (µ̂, Σ̂) (“Merge step”) corresponding to the actual

state PDF ρ(x), and repeat thereafter.
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Although the “Split-and-Merge” algorithm obviates the need to compute the state

PDF ρ(x) where Gaussian components grow exponentially, it does not imply that

N (µ̂, Σ̂) substitutes ρ(x). Since the state PDF ρ(x), expressed in an MoG form, have

higher moments other than first and second, ρ(x) is a non-Gaussian PDF and differs

from N (µ̂, Σ̂) that is a Gaussian PDF. Most importantly, however, we address that

both ρ(x) and N (µ̂, Σ̂) are equidistant to δ(x) in terms of the Wasserstein distance

as proved in the following theorem. (i.e., W(ρ(x), δ(x)) =W(N (µ̂, Σ̂), δ(x))).

Theorem 2.3 (Equidistance between W and Ŵ ) At any given time k, let the

state PDF for an m-mode SJLS ρ(x(k)), be of the form (2.7), which we rewrite

as ρ (x(k)) =
m∑

jk=1

m0∑
j0=1

αj0βjkN (µjk ,Σjk), where βjk ,
m∑

jk−1=1

. . .
m∑
j1=1

(
k∏
r=1

πjr(r)

)
,

µjk = A∗jkµj0, Σjk = A∗jkΣj0A
∗>
jk

, and A∗jk ,
1∏
r=k

Ajr . Let the instantaneous mean and

covariance of the mixture PDF ρ(x(k)) be µ̂(k) and Σ̂(k), respectively. Then, we

have

Ŵ (k) = W (k) =

(
m∑

jk=1

m0∑
j0=1

αj0βjkW
2
jk

(k)

)1/2

,∀k ∈ N0, (2.16)

where

Ŵ (k) ,W
(
N
(
µ̂(k), Σ̂(k)

)
, δ(x)

)
,

W (k) ,W (ρ (x(k)) , δ(x)) ,

Wjk(k) ,W (N (µjk ,Σjk) , δ(x)) ,

µjk = A∗jkµj0 , Σjk = A∗jkΣj0A
∗>
jk
, ∀k ≥ 1.

Proof The rightmost equality in (2.16), follows directly from Theorem 2.2. Thus,
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it suffices to prove that Ŵ (k) =
(∑m

jk=1

∑m0

j0=1 αj0βjkW
2
jk

(k)
)1/2

.

At time k = 0, from the “Merge step”, the mean and the covariance pair (µ̂0, Σ̂0)

of an initial MoG can be computed by (µ̂0, Σ̂0) =
(∑m0

j0=1 αj0µj0 ,
∑m0

j0=1(Σj0 + (µj0 −

µ̂0)(µj0 − µ̂0)>)
)

from Lemma 2.1. If we construct a synthetic Gaussian N (µ̂0, Σ̂0),

the Wasserstein distance Ŵ at time k = 0 can be computed by (3.6) as follows.

Ŵ 2(0)
(3.6)
= ‖ µ̂0 ‖2

`2(Rn) +tr(Σ̂0)

(2.15)
= µ̂>0 µ̂0 + tr

(
m0∑
j0=1

αj0

(
Σj0 + (µj0 − µ̂0)(µj0 − µ̂0)>

))
. (2.17)

Since tr(·) is a linear operator, we can expand (2.17) as

Ŵ 2(0) = µ̂>0 µ̂0 +

m0∑
j0=1

αj0tr (Σj0) + tr

(
m0∑
j0=1

αj0µj0µ
>
j0

)

− tr

((
m0∑
j0=1

αj0µj0

)
µ̂>0

)
− tr

µ̂0

(
m0∑
j0=1

αj0µj0

)>
+ tr

(
µ̂0µ̂

>
0

)
. (2.18)

Recalling that µ̂0 =
∑m0

j0=1 αj0µj0 and µ̂>0 µ̂0 = tr
(
µ̂>0 µ̂0

)
= tr

(
µ̂0µ̂

>
0

)
, the first,

fourth, fifth and sixth term in the right-hand-side of (2.18) cancel out, resulting in

Ŵ 2(0) =

m0∑
j0=1

αj0 tr
(
µj0µ

>
j0

)
+

m0∑
j0=1

αj0tr (Σj0)

=

m0∑
j0=1

αj0
(
‖ µj0 ‖2

`2(Rn) + tr (Σj0)
)

=

m0∑
j0=1

αj0W2
(
N (µj0 ,Σj0), δ(x)

)
=

m0∑
j0=1

αj0W
2
j0

(0)
(2.12)
= W 2(0). (2.19)
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Hence, Ŵ (0) is equivalent to W (0).

At time k = 1, we propagate the modal PDFs from a synthetic GaussianN (µ̂0, Σ̂0),

which results in m modal Gaussians N (Aj1µ̂0, Aj1Σ̂0A
>
j1

), j1 = 1, 2, . . . ,m at “Split

step”. After that, a synthetic Gaussian N (µ̂1, Σ̂1), where µ̂1 =
∑m

j1=1 πj1(1)Aj1µ̂0

and Σ̂1 =
∑m

j1=1 πj1(1)

(
Aj1Σ̂0A

>
j1

+ (Aj1µ̂0 − µ̂1)(Aj1µ̂0 − µ̂1)>
)

is constructed at

“Merge step”. Then, Ŵ (1) computation is carried out as follows.

Ŵ 2(1)
(3.6)
= ‖ µ̂1 ‖2

`2(Rn) +tr
(
Σ̂1

)
= µ̂>1 µ̂1 + tr

(
m∑
j1=1

πj1(1)
(
Aj1Σ̂0A

>
j1

+
(
Aj1µ̂0 − µ̂1)(Aj1µ̂0 − µ̂1

)>))
. (2.20)

By exactly same procedures in (2.18), term cancellations result in

Ŵ 2(1) =
m∑
j1=1

πj1(1)

(
tr
(
Aj1µ̂0µ̂

>
0 A
>
j1

+ Aj1Σ̂0A
>
j1

))
(2.15)
=

m∑
j1=1

πj1(1)

(
tr

(
Aj1

( m0∑
j0=1

αj0
(
µj0µ

>
j0

+ Σj0

))
A>j1

))

=
m∑
j1=1

m0∑
j0=1

πj1(1)αj0

(
‖ µj1 ‖2

`2(Rn) +tr
(
Σj1

))

=
m∑
j1=1

m0∑
j0=1

πj1(1)αj0W
2
j1

(1)
(2.12)
= W 2(1), (2.21)

where µj1 = Aj1µj0 and Σj1 = Aj1Σj0A
>
j1

.
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Continuing in this manner, finally we obtain the following result for any time k.

Ŵ 2(k) =
m∑

jk=1

· · ·
m∑
j1=1

m0∑
j0=1

(
k∏
r=1

πjr(r)

)
αj0

(
‖ µjk ‖2

`2(Rn) +tr
(
Σjk

))

=
m∑

jk=1

· · ·
m∑
j1=1

m0∑
j0=1

(
k∏
r=1

πjr(r)

)
αj0W

2
jk

(k)

(2.12)
= W 2(k), (2.22)

where µjk = AjkAjk−1
· · ·Aj1µj0 = A∗jkµj0 ,

Σjk =
(
AjkAjk−1

· · ·Aj1
)
Σj0

(
AjkAjk−1

· · ·Aj1
)>

= A∗jkΣj0A
∗>
jk

. �

According to Theorem 2.3, it is unnecessary to propagate the state PDF ρ(x)

and to compute W , which is intractable due to the exponential growth of Gaussian

components. Instead, we can analyse the performance of the SJLS through Ŵ , since

Ŵ is equal to W at all time k.

The major advantages of the “Split-and-Merge” algorithm with Ŵ computation

for the performance and the robustness analysis can be summarized in the following

sense. Ŵ computation using (3.6) provides an analytical solution, which is com-

putationally efficient. In addition, at any time step, we only have m mean vectors

and covariance matrices to work with, and hence the scalability problem with an

exponential growth can be avoided.

Remark 2.4 (Applicability of the performance and the robustness mea-

sure to general SJLSs) Since the switching probability π(k) is an independent

variable with regard to Ŵ (k) as described in Theorem 2.3, we can compute Ŵ (k) for

any SJLSs regardless of the updating rule for π(k). Once π(k) is computed at time k

by governing recursion equation (e.g., i.i.d., Markov, or semi-Markov jump process,

etc.), the performance and the robustness for SJLSs are measured by Ŵ (k). Hence,
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the proposed method for the performance and the robustness analysis can be applied

to generic SJLSs.

2.3.3 Alternative Proof for Stability of Switched Systems via Wasserstein Metric

Proposition 2.4 (MoG state PDF and a synthetic Gaussian are equidis-

tant from Dirac) Starting from an initial MoG joint PDF ς0 (k) =

m0∑
j0=1

αj0 N (µj0 ,Σj0),

let ς(k) be the joint state PDF at time k, for stochastic jump linear systems with ar-

bitrary switching probability π(k). Further, let the mean and covariance for ς (k), be

denoted as µ̂(k) and Σ̂(k), respectively. Let W (k) , W (ς(k), δ(x)), and Ŵ (k) ,

W
(
N
(
µ̂(k), Σ̂(k)

)
, δ(x)

)
. Then

W 2(k) = Ŵ 2(k) = vec(In)>Γ(k)vec(µ̂(0)µ̂(0)> + Σ̂(0)), (2.23)

where In denotes the n×n identity matrix, and µ̂(0) =

m0∑
j0=1

αj0µj0, Σ̂(0) =

m0∑
j=1

αj0 (Σj0

+ (µj0 − µ̂(0)) (µj0 − µ̂(0))>
)

are the mean and covariance of ς0, respectively. The

matrix Γ(k) is defined as Γ(k) ,
1∏
i=k

(
m∑
j=1

πj(i) (Aj ⊗ Aj)

)
, which is the product of

matrices in reverse order w.r.t. time. The proof is given in Appendix.

Corollary 2.2 Suppose that {σk} is an arbitrary switching sequence of the jump

linear system with the occupation probability π(k), satisfying πik(k) = 1 and πjk(k) =

0, ∀ik 6= jk for all time k. Then, the jump linear system is m.s. stable iff there is a

finite time k such that

‖ AikAik−1
· · ·Ai2Ai1 ‖< 1, (2.24)

where Aij ∈ {A1, A2, . . . , Am}, ∀j and ‖ · ‖ denotes any matrix norm.
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Proof If π(k) obeys πik(k) = 1 and πjk(k) = 0, ∀ik 6= jk for all k, then the matrix

Γ(k) in (2.23) becomes Γ(k) =
∏1

p=k

(
Aip ⊗ Aip

)
.

Since we have

∣∣∣∣∣∣∣∣ 1∏
j=k

Aij

∣∣∣∣∣∣∣∣ =

(∣∣∣∣∣∣∣∣ 1∏
j=k

(
Aij ⊗ Aij

) ∣∣∣∣∣∣∣∣
) 1

2

,

it is easily shown that

‖ (Aik ⊗ Aik)
(
Aik−1

⊗ Aik−1

)
· · · (Ai2 ⊗ Ai2) (Ai1 ⊗ Ai1) ‖< 1

⇐⇒ ‖ AikAik−1
· · ·Ai2Ai1 ‖< 1.

Therefore, Γ(k) is a contraction mapping and hence W → 0 ⇔ m.s. stable, if

‖ AikAik−1
· · · Ai2Ai1 ‖ < 1, ∀k. The necessity can be proved by contradiction. �

The condition for the switching probability π(k), described in Corollary 2.2 de-

notes the deterministic jump process. In [68], the authors addressed that the equation

in (2.24) guarantees a global uniform asymptotic stability for deterministic jump lin-

ear systems. Note that Corollary 2.2 stands for the stability condition in the mean

square sense. However, in the case when the initial distribution is given by Dirac

PDF located at arbitrary x0, i.e., ς0 = δ(x − x0), the proposed Wasserstein frame-

work also recovers the uniform stability since there is no uncertainty for both the

system state x and the deterministic switching π(k). Hence, the E[·] can be obviated,

resulting in the uniform stability.

Now, we prove the already-known stability conditions for i.i.d. jump processes

through the convergence of the Wasserstein distance.
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Suppose that {σk} is generated by an i.i.d. process with probability distribution

{π1, π2, · · · , πm} over the set {1, 2, . . . ,m}. In Corollary 2.7 of [33], the necessary

and sufficient condition for m.s. stability of an i.i.d. jump linear system is given by

that the matrix

A ,
m∑
j=1

πj (Aj ⊗ Aj) = π1(A1 ⊗ A1) + π2(A2 ⊗ A2) + · · ·+ πm(Am ⊗ Am) (2.25)

is Schur stable. We next recover this result from the Wasserstein distance perspec-

tive.

Theorem 2.4 Consider an i.i.d. jump linear system, where π (k) is a stationary

probability vector {π1, π2, · · · , πm} for all k. The i.i.d. jump linear system is m.s.

stable if and only if the matrix

A ,
m∑
j=1

πj (Aj ⊗ Aj)

is Schur stable, i.e. ρ (A) < 1.

Proof Since the jump stochastic process is i.i.d., the underlying probability vector

π (k) that generates the switching sequence {σk}, is a time-invariant probability

vector {π1, π2, · · · , πm}. As a consequence, (2.23) can be simplified as

W 2(k) = vec(In)>(Ak)vec(µ̂(0)µ̂(0)> + Σ̂(0)),

where A =
(∑m

j=1 πj (Aj ⊗ Aj)
)

. However, it is well known that

lim
k→∞
Ak = 0
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iff ρ(A) < 1. Therefore,

lim
k→∞

W 2 → 0⇔ ρ(A) < 1.

In addition, Proposition 2.1 tells us that

lim
k→∞

W → 0⇔ m.s. stability.

Combining these two, we arrive at ρ(A) < 1 ⇔ lim
k→∞

W → 0 ⇔ m.s. stability for

i.i.d. jump linear system. �

2.4 Numerical Example

Consider the inverted pendulum on cart in Fig. 2.2 with parameters described in

Table 2.1. Originally, this example was introduced in [97] with single communication

delay term τk between sensor and controller.

Table 2.1: Nomenclature for Inverted Pendulum Dynamics.
Symbol definition Symbol definition
m1 cart mass m2 pendulum mass
L pendulum length x cart position
θ pendulum angle u input force

The system states are x1 = x, x2 = ẋ, x3 = θ, and x4 = θ̇. We assume

that m1 = 1kg, m2 = 0.5kg, L = 1m with friction-free floor. Later, this exam-

ple was further exploited by [104] with two random delays τk and dk which are

sensor-to-controller and controller-to-actuator delays, respectively. The sets of mode

are M(τk) = {0, 1, 2} and M(dk) = {0, 1}. When the control action is taken at
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Figure 2.2: Inverted pendulum on cart.

time k, the controller-to-actuator delay dk is unknown, but τk and dk−1 are found.

Accordingly, controller gain F is dependent on τk and dk−1. Hence, the linearized

closed-loop system model with sampling time Ts = 0.1 is denoted by

x(k + 1) = Ax(k) +BF (τk, dk−1)x(k − τk − dk),

where

A =



1 0.1 −0.0166 −0.0005

0 1 −0.3374 −0.0166

0 0 1.0996 0.1033

0 0 2.0247 1.0996


, B =



0.0045

0.0896

−0.0068

−0.1377
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with the controller gain F ’s given in [104]:

F (0, 0) =

[
0.1690 0.8824 19.5824 4.3966

]
,

F (0, 1) =

[
0.5625 0.6259 24.8814 5.1886

]
,

F (1, 0) =

[
−0.3076 0.9370 12.0069 5.9910

]
,

F (1, 1) =

[
−0.0097 0.7109 15.2518 7.3154

]
,

F (2, 0) =

[
−0.3212 1.0528 11.9330 6.3809

]
,

F (2, 1) =

[
0.0427 0.8640 16.0874 7.8361

]
.

Therefore, the closed-loop dynamics of this system has total 6 modesM = {1, 2, . . . , 6}.

In this example, we consider two different types of communication delays as follows.

1) Markovian Communication Delays:

We denote the transition probability of sensor-to-controller and controller-to-actuator

delays as λij and ωrs, respectively. Then, λij and ωrs are defined by

λij = P(τk+1 = j|τk = i), ωrs = P(dk+1 = s|dk = r),

where λij, ωrs ≥ 0 and
∑2

j=0 λij = 1,
∑1

s=0 ωrs = 1. Given individual Markov

transition probability matrices

Λ =


0.5 0.5 0

0.3 0.6 0.1

0.3 0.6 0.1

 , Ω =

0.2 0.8

0.5 0.5
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corresponding to λij and ωrs, the Markov transition probability matrix P for 6 modes

MJLS is obtained from P = Λ⊗Ω as in [97]. The switching probability distribution

π(k) is updated by the linear recursion equation π(k + 1) = π(k)P with initial

probability distribution π(0) = [1, 0, 0, 0, 0, 0].

2) i.i.d. Communication Delays:

Although the previous examples in [97,104] assumed that the communication delays

are governed by Markov process, we adopt an i.i.d. jump process to manifestly show

that the proposed methods are also applicable to other types of SJLSs. In case of

i.i.d. jump process, the occupation probability vector π(k) is stationary, and hence

it does not change over time. We assume that the switching probabilities πsc and πca

are given by

πsc = [0.7, 0.2, 0.1], πca = [0.5, 0.5],

where πsc and πca stand for the switching probability distribution with respect to

sensor-to-controller and controller-to-actuator, respectively. Then, the occupation

probability vector π for this inverted pendulum system is computed by π = πsc⊗πca.

Differently from [104] where the initial state is deterministically given, we assume

that the system contains initial state uncertainty, given as a Gaussian distribution

ρ(0) = N (µ(0),Σ(0)) where the mean µ(0) = [0, 0, 0.1, 0]>, the covariance Σ(0) =

0.252I4×4, and I4×4 denotes 4×4 identity matrix. Also, we test another type of initial

state uncertainty, given as an MoG PDF expressed by a bimodal Gaussian in the

following form

ρ(0) =
2∑
j=1

αj(0)N (µj(0),Σj(0)),
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where α1(0) = 0.5 and α2(0) = 0.5. The mean and the covariance for each Gaussian

component are given by

µ1(0) =

[
0.5, 0.25, −0.12, 0.05

]>
, Σ1(0) = 0.252I4×4,

µ2(0) =

[
−0.4, 0.35, 0.07, −0.1

]>
, Σ2(0) = 0.32I4×4.

This type of multimodal uncertainties is caused by various factors such as sensing

under interference [39], distributed sensor networks [57], multitaget tracking prob-

lems [72] and so forth. The bivariate marginal distribution associated with state

x and θ for these Gaussian and MoG PDF are shown in Fig. 2.4 and Fig. 2.4,

respectively.

In Fig. 2.4, the performance of this inverted pendulum system, incorporating with

two different initial state uncertainties with two different stochastic jump processes,

are depicted via Ŵ computation. For all cases, it is shown that the system is m.s.

stable from the convergence of Ŵ . However, the rate of convergence and the transient

performance show different aspects in the transient time. Among all cases, Ŵ for

i.i.d. jump process with initial MoG PDF converges fast with low bounce, whereas

Ŵ for MJLS with initial Gaussian PDF slowly converges with high bounce.

At every time step, the “Split-and-Merge” algorithm, presented in Section 2.3.2.2

is used to propagate the state PDFs. Without using these techniques, it is practically

impossible to propagate density functions and calculate W (i.e., the Wasserstein

distance between actual state PDF ρ(x) and δ(x)) even for finite switching modes.

The number of Gaussian components that represents the state PDF after N time

steps is 6N , which soon becomes computationally intractable. For an m-mode SJLS,

the growth rate is mN . With the implementation of the proposed “Split-and-Merge”
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θ x θ x

(a) Gaussian marginal distribution (b) MoG marginal distribution

k

W(k)

0 100 200 300 400 500
0

0.2
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0.6

0.8

1

1.2 MJLS, Gaussian
MJLS, MoG
i.i.d., Gaussian
i.i.d., MoG

(c) Wasserstein distance with different stochastic jump processes and initial PDFs;
MJLS with Gaussian (blue solid), MJLS with MoG (red dashed), i.i.d. with

Gaussian (green triangle), and i.i.d. with MoG (purple cross).

Figure 2.3: Simulation result for performance and robustness analysis of inverted
pendulum system with the existence of both random communication delays and
initial state uncertainties.
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algorithm, Ŵ that is equivalent to W was computed without scalability problems.

From this example, it is clearly shown that the performance and the robustness for

SJLSs can be measured via Ŵ , which quantifies the uncertainties.

2.5 Concluding Remarks

This chapter provided new tools for the performance and the robustness analysis

of stochastic jump linear systems. New methods for analysis of such systems were de-

veloped with the Wasserstein distance. Scalability issues in uncertainty propagation,

due to the exponential increase in the number of modal PDFs, was circumvented

with a novel “Split-and-Merge” algorithm. Also, it was shown that the convergence

of the Wasserstein distance, with a particular choice of Dirac distribution as a refer-

ence PDF, implies mean square stability. These results address both transient and

steady-state behavior of stochastic jump linear systems and can be implemented in a

computationally efficient manner. The new framework for the performance and the

robustness analysis are applicable to general jump linear systems, that may not sat-

isfy Markovian properties. Finally, the practical usefulness of the proposed methods

were verified using examples.
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3. OPTIMAL SWITCHING SYNTHESIS FOR SWITCHED SYSTEMS WITH

GAUSSIAN INITIAL STATE UNCERTAINTY

3.1 Introduction

A jump linear system is defined as a dynamical system consisting of a finite

number of subsystems and a switching rule that governs a switching between the

family of linear subsystems. Over decades, a variety of researches for jump linear

systems have been investigated because of its practical implementation. For exam-

ple, a jump linear system can be used for power systems, manufacturing systems,

aerospace systems, networked control systems, etc [10], [14], [24].

In general, problems for jump linear systems branch out into two different fields.

The first one is the stability analysis under given switching laws. Since a certain

switching law between individually stable subsystem can make the jump linear system

unstable [66], it is very important to identify conditions under which system can be

stable. Interestingly, the jump linear system also can be stable by switching between

unstable subsystems. Fang et al. [31] showed sufficient conditions for stability of jump

linear systems under arbitrary switching using linear matrix inequalities (LMIs).

Lin et al. [68] showed necessary and sufficient conditions for asymptotic stability

of jump linear systems using finite n-tuple switching sequences, satisfying a certain

condition. In addition, broad analysis regarding stability for jump linear systems

has been accomplished within few decades [34], [67], [49], [89], [63], [64].

On the other hand, switching synthesis problem, which is another branch of jump

linear systems, is relatively new and few investigations have been achieved. Since

the main objective is to design switching sequences that establish both the stability

and the performance, this case is much harder than stability analysis problem. For
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instance, Das and Mukherjee [22] solved the problem for an optimal switching of

jump linear systems using Pontryagin’s minimum principle. In this method, two-

point boundary value problem was solved via relaxation method, where ordinary

differential equations are approximated by finite difference equations on mesh points.

Therefore, the optimality and computational cost depend on mesh size. In addition,

the time to find optimal solution varies according to guess solution. Egerstedt et

al. [28] addressed a method to find derivative of the cost function with respect to

switching time. However, in this chapter, switching sequences are already given and

the main focus is to find switching time. Although several other researches regarding

optimal control problem together with optimal switching were studied for switched

nonlinear systems [48], [100], [5], they may not fit to pure optimal switching problem

for jump linear systems.

Here we address optimal switching problem for jump linear systems with given

multi-controllers. Multi-controller switching scheme is widely used, such as plant sta-

bilization [75], system performance [68], adaptive control [76], and resource-constrained

scheduling [8]. Under the assumption that more than two controllers are given to

user, our objective is to find the optimal switching sequence which attains the best

performance of the system by controller switching. We can also extend our method to

multi-model switching problem by generalizing the multi-controller switching prob-

lem. Consequently, we aim to synthesize switching protocols that result in the opti-

mality for the performance of jump linear systems. Moreover, we address the optimal

switching problem with initial state uncertainties. In the practical perspective, initial

state may contain uncertainties that usually come from measurement errors or sensor

inaccuracies. Then, the system state is expressed as random variables represented

by PDFs. We assume that the initial state PDF has a form of Gaussian distribution

that is very common for real implementation. In order to measure the performance
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of the jump linear system with a given Gaussian PDF, we need to adopt a proper

metric. In this chapter, Wasserstein metric that assesses the distance between PDFs

is used as a tool for both the stability and the performance measure. Hence, we

introduce the optimal switching synthesis to achieve the optimality of the system

performance with given Gaussian initial PDF by minimizing the objective function

that is expressed in terms of Wasserstein distance. We also prove that the conver-

gence of Wasserstein distance implies the mean square stability for the jump linear

systems.

Rest of this chapter is organized as follows. Section 3.2 introduces the problem

we want to solve. Brief explanations of Wasserstein distance are described in Section

3.3. Section 3.4 provides a way to solve optimal switching problems using receding

horizon framework when Gaussian initial state uncertainty exists. Then, Section

3.5 demonstrates the validation of proposed methods by examples and Section 3.6

concludes this chapter.

3.2 Problem Description

Consider a discrete-time linear system with multi-controller, given by

x(k + 1) = Ax(k) +Buσk(x), k ∈ Z+, σk ∈ I (3.1)

uσk(x) = Kσkx (3.2)

where the state vectors x ∈ Rn, control inputs uσ ∈ Rm, the system matrices A ∈

Rn×n, B ∈ Rn×m, and the set of modes I = {1, 2, · · · ,m}. Note that the system

matrix A is time-invariant and user can select one controller Kσk out of multiple

choices. Without loss of generality, we can convert system (3.1)-(3.2) to the following
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jump linear systems by letting Aσk := A+BKσk .

x(k + 1) = Aσkx(k), k ∈ Z+, σk ∈ I (3.3)

where the system matrices Aσk ∈ Rn×n.

The system in (3.3) represents not only the controller switching as depicted in

(3.1)-(3.2), but also the system mode switching. Hence, we consider the jump linear

system model (3.3) and we assume that individual subsystem dynamics Aσk are

Schur stable. Our objective is to find the switching sequence, σ = {σ1, σ2, · · · },

which guarantees the optimal performance of the switched system. For example, with

multi-controller, we want to design a switching law which makes the system states

reach the origin as fast as possible. Therefore, our aim is not to design controllers,

but rather to synthesize the optimal switching sequence.

For simplicity, we assume that there are two different controllers, which are good

and poor in terms of system performance. The closed-loop dynamics are given by A1

and A2, respectively. In general, the reason to design multi-controller with respect to

single system is to attain not only the system performance but also system stability,

robustness, resource-optimal scheduling, etc.

The convergence rate of system state is determined by spectral radius ρ(Aσ) :=

maxj |λjσ|, where λσ = {λ1
σ, λ

2
σ, · · · , λnσ} is the set of eigenvalues for Aσ mode. Ac-

cording to characteristics of subsystem Aσ, there may exist a surge or an elevation

in the state trajectory. In Fig. 3.1, we show one possibility where the switching is

necessary for better performance of the system. Solid line represents the state tra-

jectory of A1 while dashed line shows that of A2. In contrast to A2, which has slow

convergence rate with no surge, A1 reaches the origin faster with a surge. Therefore,

for better performance, it is clear that A2 mode has to be used from the beginning,

45



and then system has to switch to A1 mode at time tk as described in arrows in Fig.

3.1.

Figure 3.1: Schematic of optimal switching for the switched system.

In this chapter, motivated by the above example we address the following two

questions.

1. Is there a switching sequence for a jump linear system to get better performance

compared to single mode?

2. If the above holds true, can we find the optimal switching sequence?

In general, it is difficult to answer the first question directly. Instead, we want

to show the case where the switching synthesis is not required because single mode

attains the best performance. When ρ(A1) < ρ(A2), A1 mode has faster convergence

to the origin than A2 mode. In addition, if ‖A1x(k)‖ < ‖A2x(k)‖ for all k, then

‖x(k)‖ using A1 mode is always less than ‖x(k)‖ using A2 mode. As a result, A1

mode attains the best performance and jump is not necessary.
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For the second question, which is the main contribution of this chapter, we in-

troduce the optimal switching sequence using receding horizon framework and it is

explained in section IV. Since, in most cases, initial condition of system state con-

tains uncertainties, which come from measurement errors or sensor inaccuracies, we

will use probability for initial state uncertainty of the system. Moreover, we assume

that the type of initial state uncertainties is given by Gaussian distribution. The

deterministic single initial state is a special case for Gaussian distribution with zero

covariance. Therefore, in this chapter we conceptually cover much broader one. Due

to this Gaussian PDF, system states become a random number, and hence we cannot

use `2-norm for the performance measure. As a consequence, we need to adopt a

proper metric to quantify the distance between PDFs to measure the performance.

For this reason, instead of using `2-norm ‖ · ‖`2 , Wasserstein distance is used as a

tool for measuring the performance of jump linear systems. Brief explanations of

Wasserstein distance are introduced in the next section.

3.3 Wasserstein Distance

Definition 3.1 (Wasserstein distance) Consider the metric space `2 (Rn) and let the

vectors x1, x2 ∈ Rn. Let P2(ς1, ς2) denote the collection of all probability measures ς

supported on the product space R2n, having finite second moment, with first marginal

ς1 and second marginal ς2. Then the L2 Wasserstein distance of order 2, denoted as

2W2, between two probability measures ς1, ς2, is defined as

2W2(ς1, ς2) , (3.4)(
inf

ς∈P2(ς1,ς2)

∫
R2n

‖ x1 − x2 ‖2
`2(Rn) dς(x1, x2)

) 1
2

.

Remark 3.1 Intuitively, Wasserstein distance equals the least amount of work needed
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to morph one distributional shape to the other, and can be interpreted as the cost for

Monge-Kantorovich optimal transportation plan [93]. For notational ease, we hence-

forth denote 2W2 as W . Further, one can prove (p. 208, [93]) that W defines a

metric on the manifold of PDFs.

Next, we present new results for stability in terms of W .

Proposition 3.1 If we fix Dirac distribution as the reference measure, then distribu-

tional convergence in Wasserstein metric is necessary and sufficient for convergence

in m.s. sense.

Proof Consider a sequence of n-dimensional joint PDFs {ςj (x)}∞j=1, that converges

to δ (x) in distribution, i.e., lim
j→∞

W (ςj(x), δ(x)) = 0 = lim
j→∞

W 2 (ςj(x), δ(x)). From

(3.4), we have

W 2 (ςj(x), δ(x)) = inf
ς∈P2(ςj(x),δ(x))

E
[
‖ Xj − 0 ‖2

`2(Rn)

]
(3.5)

= E
[
‖ Xj ‖2

`2(Rn)

]

where the random variable Xj ∼ ςj (x), and the last equality follows from the

fact that P2(ςj(x), δ(x)) = {ςj(x)} ∀ j, thus obviating the infimum. From (3.5),

lim
j→∞

W (ςj(x), δ(x)) = 0 ⇒ lim
j→∞

E
[
‖ Xj ‖2

`2

]
= 0, establishing distributional conver-

gence to δ(x) ⇒ m.s. convergence. Conversely, m.s. convergence ⇒ distributional

convergence, is well-known [44] and unlike the other direction, holds for arbitrary

reference measure. �

Proposition 3.2 (W 2 between Gaussian and Dirac PDF (see e.g., p. 160-161,

[46])) The Wasserstein distance between Gaussian and Dirac PDF supported on Rn,
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with respective joint PDFs ς = N (µ,Σ) and δ (x) = lim
µ,Σ→0

N (µ,Σ), is given by,

W 2 (N (µ,Σ) , δ (x)) =‖ µ ‖2
`2(Rn) + tr (Σ) . (3.6)

3.4 Switching Synthesis using Receding Horizon Framework with Wasserstein

Metric

3.4.1 Optimal Switching Problem

W 2 defined in (3.6) represents square Wasserstein distance at fixed time. How-

ever, because the state PDF changes over time along dynamics, W 2 also changes

as time goes. The following proposition expresses time-varying square W distance

between N (µ,Σ) and δ(x) at time k.

Proposition 3.3 Let W 2(k) denote square Wasserstein distance between N (µ,Σ)

and δ(x) at time k. Then W 2 distance at time k is given by

W 2(k) = vec(In)
k∏
p=1

(
Aσp ⊗ Aσp

)
vec
(
µ0µ

>
0 + Σ0

)
(3.7)

where µ0 and σ0 are mean and covariance of initial Gaussian PDF.

Proof From (3.6), W 2 at time k + 1 is defined as

W 2(k + 1) = ‖ µ(k + 1) ‖2 +tr (Σ(k + 1)) (3.8)

= tr
(
µ(k + 1)µ(k + 1)> + Σ(k + 1)

)
(3.9)

Note that N (µ(k),Σ(k)) remains Gaussian PDF for all time k, even in the mode

switching between sublinear dynamics. The following property are used for updating
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mean and covaraince of Gaussian PDF.

µ(k + 1) = Aσkµ(k) (3.10)

Σ(k + 1) = AσkΣ(k)A>σk (3.11)

Substituting (3.10) and (3.11) into (3.9), we get

W 2(k + 1) = tr
(
A>σkAσk

(
µ(k)µ(k)> + Σ(k)

))
(3.12)

Using tr(X>Y ) = vec(X)>vec(Y ), (3.12) can be expressed as

W 2(k + 1) =vec(A>σkInAσk)
>vec

(
µ(k)µ(k)> + Σ(k)

)
(3.13)

Further, by applying vec(ABC) = (C> ⊗ A)vec(B) to the first term of right hand

side in (3.13), we get

W 2(k + 1) = vec(In)> (Aσk ⊗ Aσk)

vec
(
µ(k)µ(k)> + Σ(k)

) (3.14)

Similarly, W 2 at time k is also obtained as

W 2(k) = vec(In)>vec
(
µ(k)µ(k)> + Σ(k)

)
(3.15)

From (3.14) and (3.15), and by induction, we conclude that W 2(k) can be ex-
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pressed in terms of initial mean and covariance as follows.

W 2(k) = vec(In)>
k∏
p=1

(
Aσp ⊗ Aσp

)
vec
(
µ0µ

>
0 + Σ0)

)
(3.16)

�

We aim to find the switching sequence which guarantees the optimality of the

system performance. One way of doing that is to minimize the area of Wasserstein

distance, and hence minimize the time for the state PDF N (µ(k),Σ(k)) to reach the

reference PDF δ(x). In this case, we can formulate the cost function as

J(σ) =

∫ ∞
0

W 2dt =
∞∑
k=0

W 2(k)dk (3.17)

where dk is a sampling time for discrete-time system. We use discrete-time W 2, and

hence equality between second and last equations in (3.17) holds. From the cost

function in (3.17), the optimal switching problem is defined as follows.

Optimal Switching Problem

J(σ∗) = min
σ
J(σ) (3.18)

The solution of the above optimal switching problem can be obtained by finding

optimal switching sequence σ∗ = {σ∗1, σ∗2, · · · } out of all switching possibilities. For

example, if the terminal time is finite and is set to be n instead of ∞ in (3.18), we

have to check total mn switching sequences for optimal solution, where m is total

number of modes. Therefore, this problem is same as a conventional tree-search

problem [20]. Since the growth of tree size is exponential in time, this problem is

extremely difficult to solve and it requires large computational time. More details
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with respect to issues on complexity are discussed in the last subsection. Therefore,

we want to simplify the original problem by the next assumption.

Assumption 3.1 For the jump linear system in (3.2), switching sequence σ is con-

stant over given horizon T .

Using assumption 3.1, we can apply the receding horizon framework and the cost

function over horizon length T can be defined as

J =

T+tj∑
k=tj

W 2(k)dk (3.19)

=

T+tj∑
k=tj

vec(In)

(
k∏
p=1

(
Aσp ⊗ Aσp

))
vec(µ0µ

>
0 + Σ0)dk (3.20)

=

T+tj∑
k=tj

vec(In)
(

(Aσ ⊗ Aσ)k
)
vec(µ0µ

>
0 + Σ0)dk (3.21)

=

T+tj∑
k=tj

W 2
σ (k)dk (3.22)

Switching sequence, denoted as σ, is fixed and we get (3.21) from (3.20) for

σp = σ = constant under the assumption 3.1.

Then, the optimal cost-to-go function is defined as:

Optimal Switching with Receding Horizon

J∗ = min
σ

T+tj∑
k=tj

W 2
σ (k)dk

 (3.23)

s.t. W 2
σ (tj+1)−W 2

σ (tj−1) ≤ −εσ(tj) (3.24)

52



where εσ(·) is a positive definite function and the constraint (3.24) is enforced for

stability.

It is well known [66] that switching between individually stable modes can make a

stable system unstable. Therefore, the constraint (3.24) should be enforced to ensure

stability. Fig. 3.2 shows schematic of optimal switching sequence using receding

horizon framework. At time tj, the solution of (3.23)-(3.24) provides the optimal

switching sequence for horizon T and there is no switching during time k ∈ [tj, tj+1).

When time k reaches tj+1, we again compute optimal switching for next horizon T .

Note that although (3.24) implies piecewise monotone decreasing in W 2, it is not

so restrictive condition because (3.24) is only applied to the time tj at which jump

occurs. In other words, W 2(·) can increase in between times k ∈ [tj, tj+1) as depicted

in Fig.3.2.

Figure 3.2: Optimal switching strategy for the switched linear system using receding
horizon framework.
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3.4.2 Stability Issues

The reason we choose time tj−1 and tj+1 for piecewise monotone decreasing condi-

tion in (3.24) is as follows. Switching takes place at every time instance tj. Between

time k ∈ [tj−1, tj), there is no switching. At the end of the horizon T , which is at

time tj, we can compute the next optimal switching sequence for time k ∈ [tj, tj+1)

using (3.23)-(3.24). Since the individual subsystem is Schur stable, there is no sta-

bility problem if there is no switching. However, if jump occurs, there may be a

bump in the state trajectory, and hence in W 2 right after the switching. This may

cause instability of the jump linear system. Therefore, the constraint (3.24) which

is sufficient condition for the stability should be enforced. The following lemma and

theorem prove the stability of jump linear systems in the context of mean square

sense under the receding horizon framework.

Lemma 3.1 For jump linear systems with the receding horizon framework (3.23),

W 2(tj) converges to zero under the constraint (3.24), where tj is jump time.

Proof For piecewise monotone decreasing sequence W 2(·), ∃n0 ∈ Z+ such that

W 2(tn0) < N and N is any arbitrary positive real number R+. By the monotone

decreasing condition above, for all n > n0, W 2(tn) < N . Since N is any arbitrary

positive real number R+ and the lower bound of W 2(·) is 0, W 2(tj)→ 0 as j →∞.

�

Lemma 3.1 proves piecewise convergence of W 2 under the constraint given in

(3.24). Although W 2(tj) converges to zero, it does not necessarily guarantee no

oscillation at time k ∈ [tj, tj+1). Therefore, we have to show that if W 2(tj) → 0,

then W 2(k) is also zero for all t ∈ [tj, tj+1). The following lemma proves the above

argument.
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Lemma 3.2 Once W 2(tj) = 0 at time tj, then W 2(k) is always zero for all k ≥ tj.

Proof From (3.6), in order for W 2(tj) to be zero, both mean and covariance have

to be zero. According to (3.10) and (3.11), used for updating mean and covariance,

they remain zero for all k ≥ tj once they become zero. �

Using Lemma 3.1 and Lemma 3.2, following theorem shows the m.s stability of

jump system under the proposed switching policy.

Theorem 3.1 Jump linear systems in (3.3) under the receding horizon framework

(3.23)-(3.24) is m.s. stable.

Proof By Proposition 3.1, the system is m.s. stable if and only if W (·) = 0. From

Lemma 3.1 and Lemma 3.2, it is shown that W 2(·) converges to zero, and hence W (·)

also converges to zero. Therefore, jump linear system in (3.3) is m.s. stable. �

3.4.3 Horizon Length Issues

Primbs et al. [82] have shown the unified framework between pointwise min-

norm(T = 0), optimality(T =∞), and receding horizon T . The horizon length T can

vary according to available time for online computation and in general, we can attain

better results for longer horizon length T . However, unlike receding horizon control,

longer horizon length T for optimal switching does not imply better performance of

jump systems. The effect of different receding horizon length T in optimal switching

can be analysed as follows.

1. Pointwise minimum (T = 0): When T = 0, the solution of optimal switching

problem is obtained by solving (3.23)-(3.24) with T = 0. This is equivalent to

finding pointwise minimum of W 2
σk

(k) at every time k. However, since there is

no prediction for the future behaviour of the system, pointwise minimum does
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not guarantee the optimal switching of jump systems. Therefore, it may cause

worse performance than good or even poor controller itself without switching.

2. Infinite horizon (T = ∞): In case of infinite horizon, the optimal switching

problem is trivial. By assumption 3.1, switching does not occur over infinite

horizon. Therefore, the solution of the optimal switching is to choose single

mode which achieves the minimum area of W 2 from time k = 0 to ∞.

From the above fact, receding horizon length T should be 0 < T <∞. However,

there is no guideline for the optimal horizon length T . One necessary condition for T

is that it has to be chosen to satisfy the stability constraint in (3.24). For instance,

if jump occurs at time tj and as a result there might be a bump right after the

switching, then the constraint(3.24) may not be satisfied for short T . Therefore, we

can set the receding horizon length T as follows.

Theorem 3.2 For optimal switching problem with receding horizon framework in

(3.23)-(3.24), the receding horizon length T has to be set to satisfy stability constraint

(3.24) and such that,

T ≥ τj := tj+1 − tj−1 (3.25)

where τj is updating time interval for receding horizon, and there always exist τj

satisfies stability constraint (3.24) under the assumption that each dynamics is Schur

stable.

Proof From Assumption 3.1 and that individual systems are Schur stable, there is

no switching in fixed horizon T . For linearly stable system, which is globally uni-

formly asymptotically stable, there exists time tj+1 such that ‖x(tj+1)‖ < ‖x(tj−1)‖

for tj+1 > tj−1. By taking square and expectation for both side of above equation,
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we get W 2(tj+1) < W 2(tj−1). Therefore, stability constraint (3.24) is satisfied with

some positive definite function εj. �

Note that the horizon length T is not necessarily to be constant. For each different

jump time tj we can set a different horizon length T , satisfying the condition given

in Theorem 3.2.

3.4.4 Complexity Issues

Two problems associated with the original optimal switching problem (3.18) give

rise to complexity issues. First, infinite time causes infinite size in total possible

numbers of switching. Second, even if the switching is finite and hence (3.18) is

equivalent to tree-search problem [20], the computational complexity to solve this

problem is NP-complete [3].

However, the optimal switching with receding horizon framework in (3.23)-(3.24)

enable us to simplify the problem. Once the horizon length T satisfying (3.24)

is obtained, then the solution of optimal switching problem is same with choosing

min{W 2
1 ,W

2
2 , · · · ,W 2

m}, where m is total number of modes. Hence, this is same with

sorting problems, where computational complexity is O(n log n) in general. As a

consequence, optimal switching with receding horizon can be solved fast enough for

online computation.

3.5 Examples

3.5.1 Jump Linear System with Five Different Modes Dynamics

Consider a following discrete-time jump linear system.

x(k + 1) = Aσx(k), σ ∈ {1, 2, . . . , 5}
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This system has a five different mode dynamics given by

A1 =

1.01 −0.17

0.32 −0.48

 ,
A2 =

0.06 0.80

0.01 −0.77

 ,
A3 =

0.72 0.48

0 0.55

 ,
A4 =

−0.33 −0.65

−0.46 0.69

 ,
A5 =

−0.13 0.12

−1.33 −1.05


In addition, we assume that initial state has an uncertainty represented by Gaus-

sian PDF with mean µ0 and covariance Σ0 as follows.

µ0 = [5, 5]>, Σ0 =

2.25 0

0 2.25


.

For this system with given Gaussian initial state PDF, we aim to design a switch-

ing sequence that attains the optimality of the system performance. The simulation

results are shown in Fig. 3.3(a). The cross mark represents the mode that is used

at a specific switching sequence. According to this result, jump system shows the

fastest convergence to the origin under the proposed receding horizon framework.

The spectral radius for individual mode dynamics are ρ(A1) = 0.97, ρ(A2) = 0.78,
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ρ(A3) = 0.72, ρ(A4) = 0.93, and ρ(A5) = 0.82. From this, we know that A3 dy-

namics converges to the origin faster than other mode dynamics. However, since

other mode dynamics shows good performance in the beginning, it is desirable to

use that mode dynamics initially. This intuition coincide with the optimal switching

results as shown in Fig.3.3(a). Additionally, total W 2 area that stands for the system

performance, is depicted in Fig.3.3(b) to compare the performance between different

mode dynamics and a jump system. In Fig.3.3(b), A2 mode shows the minimal W 2

area between individual dynamics without switching. The jump system using opti-

mal switching synthesis shows about 3.5 times less W 2 area compared to A2 mode

that attains the best performance between the individual mode dynamics. In this

example, the optimal switching synthesis provided in this chapter shows the best

performance and beats any other mode dynamics without switching.

3.5.2 Linearized Quadrotor Dynamics with Two Controllers

Here we consider 6-state linearized nonlinear quadrotor dynamics. The first con-

troller (CHigh) provides higher performance by commanding aggressive control ac-

tions and is designed using full-state feedback. The second controller is a lead-lag

compensator (CLow) which provides poorer performance by commanding less aggres-

sive control actions. Implementation of CHigh requires more computational time and

consumes more energy (batttery) and CLow is resource economical in terms of both

CPU time and energy usage. More details about this controller can be found in [54].

In this example, we want to design the optimal switching sequence using both Chigh

and Clow to obtain better performance.

The states of the quadrotor are x = [φ, θ, ψ, p, q, r]> and nonlinear dynamics is
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given by

ṗ =
qr(Iyy − Izz) + qJrΩr + bl(−Ω2

2 + Ω2
4)

Ixx
,

q̇ =
pr(Izz − Ixx)− pJrΩr + bl(Ω2

1 − Ω2
3)

Iyy
,

ṙ =
pq(Ixx − Iyy) + d(−Ω2

1 + Ω2
2 − Ω2

3 + Ω2
4)

Izz
,


φ̇

θ̇

ψ̇

 =


1 sin(φ) tan(θ) cos(φ) tan(θ)

0 cos(φ) − sin(φ)

0 sin(φ) sec(θ) cos(φ) sec(θ)



p

q

r

 ,

where symbols are defined in Table 3.1.

Table 3.1: Nomenclature for Quadrotor Dynamics
Symbol definition Symbol definition

φ roll angle p roll rate
θ pitch angle q pitch rate
ψ yaw angle r yaw rate

Ixx,yy,zz body inertia Jr rotor inertia
b thrust factor d drag factor
l lever Ωr rotor speed

Linearized quadrotor dynamics is obtained by linearizing the nonlinear equations

of motion about hover. Two continuous-time closed-loop systems A1 and A2 are

discretized with sampling time 0.01s. The switching policy determines the sequence

for σ, which is deterministic.

The initial condition uncertainty is assessed with respect to initial condition un-

certainty given by Gaussian PDF N (µ0,Σ0), with µ0 = [0.5,−1.5,−5, 0.1, 0.2, 0.1]>
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and Σ0 = 0.0225×I6×6, where I6×6 is the 6×6 identity matrix. The control objective

is to maintain hover, which corresponds to equilibrium state xeq = [0, 0, 0, 0, 0, 0]>.

Fig. 3.4(a) and 3.4(b) present the result of switching synthesis using proposed

method in this chapter. From the beginning in Fig. 3.4(a), A1 dynamics shows

large elevation in W 2 distance while A2 does not. As a result, the optimal switching

with receding horizon selects A2 dynamics. However, after k = 50, an optimality is

obtained by switching to A1 via optimal switching synthesis proposed in this chapter.

Fig. 3.4(b) presents the performance of each mode in terms of total W 2 area. It

is clear that the lowest area, which is the best performance, can be attained by

switching.

3.6 Concluding Remarks

In this chapter, we proposed the optimal switching synthesis for jump linear sys-

tems with Gaussian initial state uncertainty. The Wasserstein metric that defines

a distance between PDFs was adopted to measure both the performance and the

stability of the jump linear system. We showed that the optimality of the system

performance can be obtained by synthesizing switching laws via minimization of ob-

jective function expressed in terms of Wasserstein distance. Also, the mean square

stability of the jump linear system was guaranteed under the proposed switching syn-

thesis. The efficiency and the usefulness of the proposed methods were demonstrated

by examples.
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Figure 3.4: Simulation results of optimal switching synthesis for linearized quadrotor
dynamics.
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4. ANALYSIS OF MASSIVELY PARALLEL ASYNCHRONOUS NUMERICAL

ALGORITHMS

4.1 Introduction

Exascale computing systems will soon be available to study computation intensive

applications such as multi-physics multi-scale simulations of natural and engineering

systems. Many scientific and practical problems can be described very accurately

by ordinary or partial differential equations which may be tightly coupled with long-

range correlations. These exascale systems may have O(105−106) processors ranging

from multicore processors to symmetric multiprocessors [30], [79], [77]. Furthermore,

such systems are likely to be heterogeneous using both heavily multi-threaded CPUs

as well as GPUs. Many challenges must be overcome before exascale systems can be

utilized effectively in such applications. One such obstacle is the communication in

tightly coupled problems during parallel implementation of any iterative numerical

algorithm. This communication requires massive data movement in turn leading to

idle time as the cores need to be synchronized after each time step.

Recent literature has proposed relaxing these synchronization requirements across

the PEs [25]. This potentially eliminates the overhead associated with extreme paral-

lelism and significantly reduces computational time. However, the price to pay is loss

of predictability possibly resulting in calculation errors. Thus, a rigorous analysis of

the tradeoff between speed and accuracy is critical. This chapter presents a frame-

work for quantifying this tradeoff by analyzing the asynchronous numerical algorithm

as a switched dynamical system [19], [69], [59], [47], [97], [104], [73], [63], [64], [61].

While there is a large literature for analysis of such systems, these techniques are not

applicable to our application. The reason is that due to the large number of PEs,
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the switched system model has an extremely large number of modes, which makes

the available analysis tools intractable. Key contributions in this chapter include

new techniques for a) stability analysis, or quantification of steady-state error with

respect to the synchronous solution; b) convergence rate analysis of the expected

value of this error; and c) probabilistic bounds on this error. These techniques are

developed to be computationally efficient, and avoid the aforementioned scalability

issue.

The chapter is organized as follows. Section 4.2 addresses the problems for the

asynchronous numerical algorithm. In section 4.3, we introduce a switched system

framework to model the system structure for the asynchronous numerical scheme.

The stability results are presented in section 4.4, and section 4.5 shows the conver-

gence rate analysis. Then, the error analysis in probability is developed in section

4.6. Section 4.7 demonstrates the usefulness of the proposed method by examples.

Finally, section 4.8 concludes this chapter.

4.2 Problem Formulation

Notation: The symbol || · || and || · ||∞ stand for the Euclidean and infinity norm,

respectively. The set of positive integers are denoted by N. Further, N0 , N ∪ {0}.

Also, λ(·) represents an eigenvalue of a square matrix. In particular, λmax(·) and

λmin(·) denote the largest and the smallest eigenvalue in magnitude, respectively. The

symbols ⊗, det(·), tr(·), and vec(·) denote Kronecker product, matrix determinant,

trace operator, and vectorization operator, respectively. Finally, the symbol Pr(·)

stands for the probability.

In this chapter we demonstrate our framework and techniques on the one-dimensional
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heat equation, given by

∂u

∂t
= α

∂2u

∂x2
, t ≥ 0, (4.1)

where u is the time and space-varying state of the temperature, and t and x are

continuous time and space respectively. The constant α > 0 is the thermal diffusivity

of the given material.

The PDE is solved numerically using the finite difference method by Euler explicit

scheme, with a forward difference in time and a central difference in space. Thus

(4.1) is approximated as

ui(k + 1)− ui(k)

∆t
= α

(
ui+1(k)− 2ui(k) + ui−1(k)

∆x2

)
, (4.2)

where k ∈ N0 is the discrete-time index and ui is the temperature value at ith

grid space point. The symbols ∆t and ∆x denote the sampling time and the grid

resolution in space, respectively. Further, if we define a constant r , α ∆t
∆x2

, then

(4.2) can be written as

ui(k + 1) = rui+1(k) + (1− 2r)ui(k) + rui−1(k), (4.3)

It is important to observe that (4.3) is a discrete-time linear dynamical system.

Fig. 4.1 illustrates the numerical scheme over the discretized 1D spatial domain.

A typical synchronous parallel implementation of this numerical scheme assigns sev-

eral of these grid points to each PE. The updates for the temperature at the grid

points assigned to each PE, occur in parallel. However, at every time step k, the data

associated with the boundary grid points, where the communication is necessary are

synchronized, and used to compute ui(k + 1). This synchronization across PEs is
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Figure 4.1: Discretized one-dimensional domain with an asynchronous numerical
algorithm. the PE denotes a group of grid points, assigned to each core.

slow, especially for massively parallel systems (estimates of idle time due to this syn-

chronization give figures of up to 80% of the total time taken for the simulation as

idle time). Recently, an alternative implementation which is asynchronous has been

proposed. In this implementation, the updates in a PE occur without waiting for the

other PEs to finish and their results to be synchronized. The data update across PEs

occurs sporadically and independently. This asynchrony directly affects the update

equation for the boundary points, as they depend on the grid points across PEs. For

these points, the update is performed with the most recent available value, typically

stored in a buffer. The effect of this asynchrony then propagates to other grid points.

Within a PE, we assume there is no asynchrony and data is available in a common

memory.

Thus, the asynchronous numerical scheme corresponding to (4.3) is given by

ui(k + 1) = rui+1(k∗i+1) + (1− 2r)ui(k) + rui−1(k∗i−1), (4.4)

where k∗i ∈ {k, k − 1, k − 2, . . . , k − q + 1}, i = 1, 2, . . . , N , denotes the randomness

caused by communication delays between PEs. The subscript i in k∗i depicts that
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each grid space point may have different time delays. The parameter q is the length

of a buffer that every core maintains to store data transmitted from the other cores.

In this chapter, we treat k∗i as a random variable and thus (4.4) can be considered

to be a linear discrete-time dynamical system with stochastic updates.

Although (4.4) is derived for the 1D heat equation, the treatment above can

be developed for any parabolic PDEs. This observation encourages us to consider

using tools from dynamical systems to analyze the effect of asynchrony in parallel

numerical algorithms. Therefore, the primary goal of this study is to investigate

the stability, convergence rate, and error probability of the asynchronous numerical

algorithm in the framework of stochastic switched dynamical systems.

4.3 A Switched System Approach

Let us define the state vector Uj(k) ∈ Rn , [uj1(k), uj2(k), . . . , ujn(k)]>, where

uji (k) stands for the ith grid space point in the jth PE and n is the total number of

grid points in the jth PE. Therefore, (4.3) can be compactly written as

U(k + 1) = AU(k), k ∈ N0,

where U(k) ∈ RNn , [U1(k)>, U2(k)>, . . . , UN(k)>]>, N is the total number of PEs,

n is the size of the state for each PE, and system matrix A ∈ RNn×Nn is given by

A =



1 0 0 · · · · · · 0

r 1-2r r 0 · · · 0

0 r 1-2r r · · · 0

...
. . . . . . . . .

0 · · · r 1-2r r

0 · · · 0 0 1


∈ RNn×Nn.
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Note that the first and the last row of A matrix specify the Dirichlet boundary

conditions (see pp. 150, [80]). i.e., we have the constant in time boundary tempera-

tures for simplicity.

Next, we define the augmented stateX(k) ∈ RNnq , [U(k)>, U(k−1)>, . . . , U(k−

q + 1)>]>, where, as stated before, q is the buffer length. For pedagogical simplicity

(and without loss of generality), we consider the case with q = 2 and N = 3. Further,

we let n = 1, which implies there is only one grid point in each PE. For this particular

case, we construct the following matrices,

W1 =



1 0 0 0 0 0

r 1-2r r 0 0 0

0 0 1 0 0 0

I 0


, W2 =



1 0 0 0 0 0

0 1-2r r r 0 0

0 0 1 0 0 0

I 0


,

W3 =



1 0 0 0 0 0

r 1-2r 0 0 0 r

0 0 1 0 0 0

I 0


, W4 =



1 0 0 0 0 0

0 1-2r 0 r 0 r

0 0 1 0 0 0

I 0


,

where I ∈ RNn×Nn and 0 ∈ RNn×Nn are the identity and the zero matrices with

appropriate dimensions. As in [25], we assume that the condition 0 < r ≤ 0.5 holds

from now on. The asynchronous numerical scheme can then be written as a switched
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system

X(k + 1) = WσkX(k), σk ∈ {1, 2, . . . ,m}, k ∈ N0, (4.5)

where the matrices Wσk ∈ RNnq×Nnq, are the subsystem dynamics. In general, the

total number of switching modes is m = q2(N−2) that is obtained by considering all

cases to distribute every components r in W1 matrix, where the number of r in W1

is given by 2(N − 2), into q numbers of zero block matrix as in the above example.

Therefore, the number of modes increase exponentially with the number of PEs,

which is quite large for massively parallel systems.

At every time step, the numerical scheme evolves using one of the m modes,

which depends on the variable k∗i . In this chapter, we model the variable k∗i as a

random variable that evolves in an independently and identically distributed (i.i.d.)

fashion in time, and independently from one core to the next. Hence, we let πj

be the modal probability for Wj which is assumed to be stationary in time. Let

Π , {π1, π2, . . . , πm}, be the switching probabilities such that 0 ≤ πj ≤ 1, ∀j and∑m
j=1 πj = 1. The system in (4.5) is thus an i.i.d jump linear system, which is

a simpler case of the more well-known Markovian jump linear systems [64]. Even

though the analysis theory for such systems is well developed, the existing tools are

not suitable for our application because of the extremely large number of modes,

particularly when N is large. Thus, we now develop an analysis theory for the i.i.d.

jump linear systems which scales better with respect to the number of modes.

4.4 Stability

The first requirement is that of convergence of (4.5). Because of the Dirichlet

boundary conditions, we expect the temperature to converge to a constant value

for every grid point. We proceed to analyze the conditions for convergence (or
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stability) of the system. To this end, we may try to use the infinity norm and

apply the sub-multiplicative property to obtain ||X(k + 1)||∞ = ||WσkX(k)||∞ ≤

||Wσk ||∞||X(k)||∞ = ||X(k)||∞, where the last equality holds since we have ||Wj||∞ =

1, ∀j. This can be written as

‖ X(k + 1) ‖∞
‖ X(k) ‖∞

≤ 1. (4.6)

The above result only shows that the solution from the asynchronous algorithm is

marginally stable and we are unable to determine the steady-state solution.

In fact, we can show that the asynchronous scheme also attains the same steady-

state value as the synchronous scheme, regardless of the specific realization of {σk}.

Using spectral decomposition, the matrices Wj can be expressed in terms of the

eigenvalues and corresponding eigenvectors as

Wj ∈ RNnq×Nnq =

Nnq∑
i=1

λjiv
j
i s
j
i , j = {1, 2, . . . ,m}, (4.7)

where λji ∈ R, vji ∈ RNnq×1, and sji ∈ R1×Nnq denote the eigenvalues, right eigenvec-

tors, and left eigenvectors of Wj, respectively.

Since max
i
|λji | ≤ ||Wj||∞ = 1, ∀j, the spectral radius of Wj, j = 1, 2, . . . ,m, is

less than or equal to 1. Therefore, we may order the eigenvalues as 1 ≥ |λj1| ≥ |λ
j
2| >

· · · ≥ |λjNnq| ≥ 0. It can be shown that all Wj have two eigenvalues with value 1,

irrespective of the size of q and N . Therefore, the eigenvalues for Wj are ordered as

1 = |λj1| = |λ
j
2| > |λ

j
3| ≥ · · · ≥ |λ

j
Nnq| ≥ 0.

Moreover, the left and right eigenvectors for eigenvalues equal to 1 are common

eigenvectors for all matrices Wj, j = 1, 2, . . . ,m. These common left and right

eigenvectors are
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1) Left eigenvectors:

s1 = [1, 0, · · · , 0 , 0 , · · · , 0 ] ∈ R1×Nnq, (4.8)

s2 = [0, · · · , 0, 1 , 0 , · · · , 0 ] ∈ R1×Nnq, (4.9)

2) Right eigenvectors:

v1 = [µ1, µ1, · · · , µ1]> ∈ RNnq×1, (4.10)

v2 = [µ2, µ2, · · · , µ2]> ∈ RNnq×1, (4.11)

where 0 ∈ R1×Nn denotes a row vector with all zero elements, and

µ1 , [1,
Nn− 2

Nn− 1
, · · · , Nn− j

Nn− 1
, · · · , 1

Nn− 1
, 0] ∈ R1×Nn,

µ2 , [0,
1

Nn− 1
,

2

Nn− 1
, · · · , j − 1

Nn− 1
, · · · , Nn− 2

Nn− 1
, 1] ∈ R1×Nn,

j = 1, 2, . . . , Nn.

Notice that we have Wjvi = vi and siWj = si, i = 1, 2, ∀j. Then, the steady-state

value for the asynchronous scheme is given by the following result.

Proposition 4.1 Consider the i.i.d. jump linear system in (4.5) with subsystem

matrices Wj, j = 1, 2, . . . ,m and a stationary switching probability Π. For a given

initial condition X(0), if we define Ψ , v1s1 + v2s2, where vi and si, i = 1, 2, are

given in (4.8)–(4.11), then, the steady-state value Xss has the following form:

Xss , lim
k→∞

X(k) = ΨX(0),

irrespective of the switching sequence {σk}.
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Proof Let the eigenvalues ofWj be ordered in magnitude by 1 = |λj1| = |λ
j
2| > |λ

j
3| ≥

· · · ≥ |λjNnq| ≥ 0. Also, let vji and sji be the right and left eigenvector corresponding to

λji , respectively. Using the spectral decomposition, Wj can be alternatively expressed

by Wj =
∑Nnq

i=1 λ
j
iv
j
i s
j
i = Ψ +

∑
λji 6=1 f

j(i), where Ψ , v1s1 + v2s2 and f j(i) , λjiv
j
i s
j
i .

Then, starting with X(0), the realization of the switching sequence σk results in

X(k) = Wσk−1
Wσk−2

· · ·Wσ1Wσ0X(0)

=
(

Ψ +
∑

λ
σk−1
i 6=1

fσk−1(i)
)
· · ·
(

Ψ +
∑
λ
σ0
i 6=1

fσ0(i)
)
X(0)

=
(

Ψk + g(k)
)
X(0),

where in above equation, g(k) represents all the other multiplication terms except

Ψk term. Note that g(k) is formed by the product of λji , where 0 ≤ |λji | < 1, ∀i > 2,

∀j. Consequently, if k →∞, then g(k) is asymptotically convergent to zero since the

infinite number of multiplication of the term λji , ∀i > 2, converges to zero. Therefore,

we have

Xss = lim
k→∞

X(k) = lim
k→∞

ΨkX(0) = ΨX(0).

The last equality in above equation holds because Ψk = Ψk−1 = · · · = Ψ, ∀k ∈ N. �

4.5 Convergence Rate

In this section, we investigate how fast the expected value of the state converges

to the steady-state Xss by analyzing the transient behavior of the asynchronous

algorithm. Let us define a new state variable e(k) , X(k) − Xss. The expected

value of e(k) is given by ē(k) , E[X(k)−Xss] = E[X(k)]−Xss = X̄(k)−Xss, where

X̄(k) , E[X(k)]. Therefore, the convergence rate of ||ē(k)|| will provide bound for
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the convergence rate of ||X̄(k)−Xss||.

To obtain an upper bound for the convergence rate of ||ē(k)||, we use the following

matrix transformation. As described in (4.7), each modal matrix Wj can be alterna-

tively expressed by Wj =
∑Nnq

i=1 λ
j
iv
j
i s
j
i , where λji , v

j
i , and sji denote the eigenvalues,

right and, respectively, left eigenvectors for Wj. If we define the transformed matrix

W̃j , Wj −
∑

λ1i=1 λ
j
iv
j
i s
j
i = Wj −Ψ =

∑
λji 6=1 λ

j
iv
j
i s
j
i , then the modal dynamics with

the corresponding state ej(k), is given by

ej(k + 1) = W̃jej(k), j = {1, 2, . . . ,m}, k ∈ N0. (4.12)

Moreover, as in (4.5), the error state e(k) = X(k)−Xss, is governed by

e(k + 1) = W̃σke(k), σk ∈ {1, 2, . . . ,m}, k ∈ N0. (4.13)

The system in (4.13) is also a switched linear system. The transformed matrix

W̃j are the modes of the error dynamics. Generally, it is difficult to estimate the

convergence rate of the ensemble with stochastic jumps. Previous works [45,56,66,87]

have used the common Lyapunov function approaches, to analyze stability and the

convergence rate. However, the existence of a common Lyapunov function is the

only sufficient condition for the system stability, and hence there may not exist a

common Lyapunov function for the asynchronous algorithm. Moreover, extremely

large values of m make it very difficult to test every conditions for the existence of

such a common Lyapunov function. For this reason, we bound the convergence rate

of ē(k), instead of bounding e(k) directly.

Lemma 4.1 Consider an i.i.d. jump linear system given by (4.13) with the switch-

ing probability Π = {π1, π2, . . . , πm}. If the initial state e(0) is given and has no
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uncertainty, the expected value of e(k) is updated by

ē(k) , E[e(k)] = Λke(0) or ē(k + 1) = Λē(k), (4.14)

where Λ ,
m∑
i=1

πiW̃i.

Proof For an i.i.d. jump process with a given deterministic initial error e(0), we

have

E[e(k)] = E[W̃σk–1e(k–1)]

= E[W̃σk–1W̃σk–2 . . . W̃σ1W̃σ0e(0)]

= E[W̃σk–1 ]︸ ︷︷ ︸
=Λ

. . .E[W̃σ1 ]︸ ︷︷ ︸
=Λ

E[W̃σ0 ]︸ ︷︷ ︸
=Λ

e(0) = Λke(0).

�

Since the matrix Λ is given by Λ =
∑m

i=1 πiW̃i, the computation of Λ requires all

matrices Wj, j = 1, 2, . . . ,m. As pointed out earlier, this calculation is intractable

due to the extremely large number of the switching modes m. Therefore, instead of

using (4.14), we provide a computationally efficient method to bound ||ē(k)|| through

a Lyapunov theorem.

Consider a discrete-time Lyapunov function V (k) = ē(k)>P ē(k), where P is a

positive definite matrix. Since it is shown that the original state X(k) is convergent

to the unique steady-state Xss as k → ∞ irrespective of {σk}, the expected error

ē(k) , X̄(k)−Xss is asymptotically stable. Therefore, one can employ the Converse

Lyapunov Theorem [68], which guarantees the existence of a positive definite matrix

P , satisfying the following linear matrix inequality (LMI) condition Λ>PΛ−P < −Q,

where Q is some positive definite matrix. The matrix inequality can be interpreted
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in the sense of positive definiteness. (i.e., A > B means the matrix A−B is positive

definite.) Then, the above LMI condition results in ∆V (k) = V (k + 1) − V (k) =

ē(k)>(Λ>PΛ − P )ē(k) < −ē(k)>Qē(k) ≤ −λmin(Q) ‖ ē(k) ‖2. Also, the Lyapunov

function V (k) satisfies

λmin(P ) ‖ ē(k) ‖2 ≤ V (k) ≤ λmax(P ) ‖ ē(k) ‖2,

resulting in − ‖ ē(k) ‖2≤ − V (k)

λmax(P )
. Therefore, we have

∆V (k) < −λmin(Q) ‖ ē(k) ‖2≤ −λmin(Q)

λmax(P )
V (k).

⇒ V (k + 1) <
(

1− λmin(Q)

λmax(P )

)
V (k). (4.15)

Hence, ‖ ē(k) ‖ is bounded by a following equation:

‖ ē(k) ‖2< K

(
1− λmin(Q)

λmax(P )

)k
‖ e(0) ‖2, (4.16)

where K > 0 is some constant.

Next, we bound the convergence rate for ||ē(k)|| by using the result in (4.16) as

follows.

Proposition 4.2 For a stable i.i.d. jump linear system (4.13) with a stationary

switching probability Π, consider a Lyapunov candidate function for the state ē,

given by V , ē>P ē, where P is a positive definite matrix. In addition, a Lya-

punov candidate function for (4.12) is given by Vj , e>j Pjej, j = 1, 2, . . . ,m, where

Pj is a positive definite matrix. According to the Converse Lyapunov Theorem, there

exist Pj > 0 and P > 0 such that W̃>
j PjW̃j − Pj < −Qj, j = 1, 2, . . . ,m and
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Λ>PΛ − P < −Q, where Qj and Q are any positive definite matrices. Then, with

a particular choice of these matrices, we assume that Pj and P satisfy the following

conditions:

W̃>
j PjW̃j − Pj = −I, j = 1, 2, . . . ,m, (4.17)

Λ>PΛ − P ≤ −εjI, for some j, (4.18)

where εj ,
λmax(P )

λmax(Pj)
> 0, W̃j are the modal matrices in (4.12), and Λ ,

m∑
j=1

πjW̃j.

Then, ||ē(k)||2 is bounded by

‖ ē(k) ‖2< K

(
1− 1

λmax(Pj)

)k
‖ e(0) ‖2, (4.19)

where K > 0 is some constant.

Proof By applying the result in (4.16) into (4.18), we have

‖ ē(k) ‖2 < K

(
1− λmin(εjI)

λmax(P )

)k
‖ e(0) ‖2

= K

(
1− εj

λmax(P )

)k
‖ e(0) ‖2

= K

(
1− 1

λmax(Pj)

)k
‖ e(0) ‖2 .

The last equality in above equation holds by the definition of εj. �

Proposition 4.2 says that we can always guarantee the bound for ||ē(k)|| if (4.18)

holds. Consequently, the existence of such a P , satisfying (4.18) is the major concern

in order to guarantee the bound ||ē(k)||. The following lemma and theorem can be

used to prove the existence of such a P .
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Lemma 4.2 Suppose that Pj is a positive definite matrix, satisfying (4.17). Then,

the largest eigenvalue of Pj is strictly greater than 1 for all j, i.e., λmax(Pj) > 1, ∀j.

Proof From (4.17), Pj = W̃>
j PjW̃j + I, ∀j. Then, with the eigenvectors y ∈ RNnq

of Pj, the largest eigenvalue of Pj is given by its definition as follows:

λmax(Pj) = λmax(W̃
>
j PjW̃j + I)

= max
y

||y||2=1

y>(W̃>
j PjW̃j + I)y

= max
y

||y||2=1

(
y>W̃>

j PjW̃jy
)

+ y>y︸︷︷︸
=||y||2=1

Since Pj is a positive definite matrix, W̃>
j PjW̃j becomes a positive semi-definite

matrix at least. Then, the scalar term y>W̃>
j PjW̃jy cannot be zero unless W̃>

j PjW̃j

is a zero matrix or a triangular matrix with zero diagonal components, which is not

the case. Hence, it is guaranteed that y>W̃>
j PjW̃jy > 0, implying λmax(Pj) > 1,

∀j. �

Theorem 4.1 Consider Lyapunov functions for (4.12) and (4.13) given by Vj ,

e>j Pjej, j = 1, 2, . . . ,m, and V , ē>P ē, respectively, where the matrices Pj > 0,∀j

and P > 0. By the Converse Lyapunov Theorem, we assume that the matrices Pj,

∀j, satisfies the condition (4.17).

Then, there exists a positive definite matrix P such that

Λ>PΛ − P ≤ −εjI, for some j, (4.20)

where εj ,
λmax(P )

λmax(Pj)
> 0.

Proof We prove by contradiction. Suppose that there exist no such P > 0, satisfying
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(4.20), which is equivalent to that for all matrices P > 0, the inequality Λ>PΛ−P >

−εjI holds ∀j. The above inequality can be interpreted in the quadratic sense. In

other words, for any non-zero vector v that has a proper dimension, the following

condition holds:

v>
(
Λ>PΛ − P + εjI

)
v > 0, ∀j (4.21)

As a particular choice of v, we let the vector v be the eigenvector of the matrix Λ,

i.e., Λv = λΛ, where λ is the eigenvalue of Λ. Since (4.21) holds for any matrix

P > 0, we let P = I, which results in εj =
λmax(I)

λmax(Pj)
=

1

λmax(Pj)
. Hence, we have

0 < v>
(

Λ>Λ − I +
1

λmax(Pj)
I

)
v

= ( Λv︸︷︷︸
=λv

)>( Λv︸︷︷︸
=λv

)− ||v||2 +
1

λmax(Pj)
||v||2

=

(
λ2 − 1 +

1

λmax(Pj)

)
||v||2, ∀j.

From the structure of the matrix Λ, it can be shown that det(Λ) = 0. Therefore,

one of the eigenvalues λ is zero. Moreover, Lemma 4.2 states that
1

λmax(Pj)
< 1, ∀j.

As a consequence, with λ = 0, we have

0 <

(
−1 +

1

λmax(Pj)

)
︸ ︷︷ ︸

<0

||v||2︸︷︷︸
>0

< 0, ∀j.

which is a contradiction. �

Remark 4.1 Proposition 4.2 provides a very efficient way to bound the convergence

rate for ||ē(k)||. According to the proposed methods, it is unnecessary to compute the

matrix Λ and to keep all matrices Wj, j = 1, 2, . . . ,m since ||ē(k)|| is bounded by
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the proposed Lyapunov function. Also, Theorem 4.1 guarantees the condition (4.18),

which is assumed in Proposition 4.2.

Note that we specify the modal matrix Wm in (4.5) as the most delayed case – all

PEs use the oldest value in the buffer. Therefore, it can be inferred that λmax(Pm) ≥

λmax(Pj), ∀j, which results in

||ē(k)||2 < K
(

1− 1

λmax(Pm)

)k
||e(0)||2, (4.22)

where K is a positive constant. Therefore, the only information required to compute

the convergence rate of ||ē(k)||, is the matrix Wm with the corresponding positive

definite matrix Pm. As a result, the rate of convergence can be calculated by the

proposed methods without any scalability problems.

4.6 Error Analysis

In this section, we investigate the error probability, which quantifies the deviation

of the random vector X(k) from its steady-state value Xss in probability. To measure

this error probability, the Markov inequality given by Pr
(
X ≥ ε

)
≤ E[X]

ε
, where X

is a nonnegative random variable and ε is a positive constant, is used. First of all,

we investigate the term vec
(
e(k)e(k)>

)
as follows:

vec
(
e(k)e(k)>

)
= vec

(
W̃σk−1

e(k − 1)e(k − 1)>W̃>
σk−1

)
=
(
W̃σk−1

⊗ W̃σk−1

)
vec
(
e(k − 1)e(k − 1)>

)
. (4.23)

In the second equality of above equation, we used the property that vec(ABC) =

(C> ⊗ A)vec(B).

By taking the expectation with new definitions y(k) , vec
(
e(k)e(k)>

)
, ȳ(k) ,
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E[y(k)], and Γσk , W̃σk ⊗ W̃σk , (4.23) becomes

ȳ(k) , E[y(k)] = E
[
Γσk−1

y(k − 1)
]

=
m∑
r=1

E
[
Γσk−1

y(k − 1)
∣∣∣ σk−1 = r

]
Pr(σk−1 = r)

=
m∑
r=1

πrΓrE [y(k − 1)] ,

resulting in ȳ(k) = (
∑m

r=1 πrΓr) ȳ(k − 1), where in the second line we applied the

law of total probability and the last equality holds by Pr(σk−1 = r) = πr for i.i.d.

switching.

By the exactly same argument given in Lemma 4.1 and Proposition 4.2, the upper

bound for ȳ(k) is obtained as follows:

||ȳ(k)|| < K

(
1− 1

λmax(P̃m)

)k/2
||y(0)||, ∀k ∈ N, (4.24)

where K is some positive constant and P̃m is a positive definite matrix, satisfying the

condition Γ>mP̃mΓm − P̃m = −I. However, unlike the positive definite matrix Pm ∈

RNnq×Nnq in (4.17), the dimension of the matrix P̃m is given by P̃m ∈ R(Nnq)2×(Nnq)2 ,

which may be large in size, and hence incurs computational intractabilities to obtain

such a P̃m. Therefore, we introduce the following proposition and theorem in order

to further facilitate the computation of λmax(P̃m) as follows.

Proposition 4.3 Consider a positive definite matrix P̃m, satisfying the following

condition Γ>mP̃mΓm − P̃m = −I, where Γm , W̃m ⊗ W̃m, and W̃m is any real square

matrix. If we assume that there exist finite, positive constants k0, c0, and c1 such
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that

1 ≤ ||W̃ k
m||4 ≤ c0, for k ∈ [0, k0), (4.25)

||W̃ k
m||4 ≤ c1 < 1, for k ∈ [k0,∞), (4.26)

then, the largest eigenvalue of P̃m is bounded by the following function:

λmax(P̃m) <
∞∑
k=0

||W̃ k
m||4 ≤ k0c0

(
1

1− c1

)
, (4.27)

Proof The leftmost inequality in (4.27) can be proved as follows. The positive

definite matrix P̃m satisfying the condition Γ>mP̃mΓm − P̃m = −I, is analytically

computed by P̃m =
∑∞

k=0

(
Γ>m

k
)
I
(
Γkm
)

=
∑∞

k=0 Γ>m
k
Γkm. Then, for a given matrix

Γm , W̃m ⊗ W̃m, we have

Γ>m
k
Γkm < ρ(Γ>m

k
Γkm)I

= ρ(Γkm
>

Γkm)I

= σ2
max(Γ

k
m)I

= ||Γkm||2I

= ||(W̃m ⊗ W̃m)k||2I

= ||W̃ k
m||4I, (4.28)

where ρ(·) and σmax(·) denote the spectral radius and the spectral norm, respectively.

For equality conditions in (4.28), we used the known property that

√
ρ(Γkm

>Γkm) =

σmax(Γ
k
m) = ||Γkm|| and ||(W̃m ⊗ W̃m)k|| = ||W̃ k

m ⊗ W̃ k
m|| = ||W̃ k

m||2, ∀k ∈ N0. By

summing up from k = 0 to ∞, and then taking the largest eigenvalue in (4.28), we

have λmax(P̃m) = λmax

(∑∞
k=0 Γ>

k
Γk
)
<
∑∞

k=0 ||W̃ k
m||4.
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For the rightmost inequality in (4.27), the assumptions in (4.25)-(4.26) result in

∞∑
k=0

||W̃ k
m||4 =

k0−1∑
k=0

||W̃ k
m||4︸ ︷︷ ︸

≤k0c0

+
∞∑

k=k0

||W̃ k
m||4

≤ k0c0 +

2k0−1∑
k=k0

||W̃ k
m||4 +

3k0−1∑
k=2k0

||W̃ k
m||4 + · · ·

= k0c0 +

k0−1∑
k=0

||W̃ (k0+k)
m ||4 +

3k0−1∑
k=2k0

||W̃ k
m||4 + · · ·

≤ k0c0 + ||W̃ k0
m ||4︸ ︷︷ ︸
≤c1

k0−1∑
k=0

||W̃ k
m||4︸ ︷︷ ︸

≤k0c0

+

k0−1∑
k=0

||W̃ (2k0+k)
m ||4 + · · ·

≤ k0c0 + k0c0c1 + ||W̃ 2k0
m ||4︸ ︷︷ ︸
≤c21

k0−1∑
k=0

||W̃ k
m||4︸ ︷︷ ︸

≤k0c0

+ · · ·

≤ k0c0 + k0c0c1 + k0c0c
2
1 + · · ·

= k0c0

(
∞∑
n=0

cn1

)
= k0c0

(
1

1− c1

)
.

Hence, we have
∞∑
k=0

||W̃ k
m||4 ≤ k0c0

(
1

1− c1

)
. �

Theorem 4.2 Consider a stable, i.i.d. jump linear system with subsystem dynamics

W̃j given in (4.13). Then, the probability of ||e(k)||2 > ε, where ε is some positive

constant, is given by

Pr

(
||e(k)||2 > ε

)
≤ min(1, β), k ∈ N0, (4.29)

where β ,

√
nK

ε

(
1− 1− c1

k0c0

)k/2

||y(0)||, K > 0 is a constant, c0, c1, k0 are positive

constants such that the conditions (4.25)-(4.26) are satisfied.
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Proof At first, we consider the following equality condition given by

||e(k)||2 = e(k)>e(k)

= tr(e(k)>e(k))

= tr
(
I
(
e(k)e(k)>

) )
= vec(I)>vec(e(k)e(k)>)

= vec(I)>y(k), (4.30)

where we used the cyclic permutation property for the trace operator in the first line

and the equality in the second line holds by the property tr(X>Y ) = vec(X)>vec(Y )

for any square matrix X, Y ∈ Rn×n.

We take the expectation in both sides of (4.30), which leads to

E
[
||e(k)||2

]
= vec(I)>E

[
y(k)

]
= vec(I)>ȳ(k). (4.31)

Since the term E
[
||e(k)||2

]
is a scalar value, taking the Euclidean norm returns

the same value. Hence, applying the Euclidean norm in (4.31) results in

E
[
||e(k)||2

]
= ||vec(I)>ȳ(k)||

≤ ||vec(I)>|| · ||ȳ(k)|| =
√
n · ||ȳ(k)||. (4.32)

Now, plugging (4.24) and (4.27) into (4.32) leads to

E
[
||e(k)||2

]
<
√
nK

(
1− 1− c1

k0c0

)k/2

||y(0)||.
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Finally, by applying the Markov inequality the above equation ends up with

Pr

(
||e(k)||2 > ε

)
≤

E
[
||e(k)||2

]
ε

< β,

where β ,

√
nK

ε

(
1− 1− c1

k0c0

)k/2

||y(0)||.

Since the probability cannot exceed one, we have Pr

(
||e(k)||2 > ε

)
≤ min(1, β)

�

Theorem 6.1 represents the error probability for a given bound ε. Since e(k) is a

time-varying variable, the probability Pr (||e(k)||2 > ε) also changes with respect to

time. Starting from a given initial condition y(0), this probability will converge to

zero if

(
1− 1− c1

k0c0

)
< 1.

4.7 Simulations

In order to test the proposed methods, simulation was carried out for the one-

dimensional heat equation. We implemented the asynchronous parallel algorithm

with CUDA C++ programming on nVIDIA TeslaTM C2050 GPU, which has 448 CUDA cores.

The simulations were performed with the following parameters:

• Simulation Parameters:

∆x = 0.1,∆t = 0.01, α = 0.5, r = α
∆t

∆x2
= 0.5

I.C. : ui = cos2

(
3πi

2(N − 1)

)
, i = 1, 2, . . . , N

B.C. : u1(k) = 1, uN(k) = 0, ∀k

• Buffer length: q = 3
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Figure 4.2: The spatio-temporal change of the temperature. Initially, the tempera-
ture was given by the cosine square function. The total grid points are 100, and the
simulation was terminated when k = 10000.

• Number of PEs: N = 100.

• Number of grid points in PE: n = 1

For a given initial temperature, the spatio-temporal evolution of the state is

presented in Fig. 4.2. As time k increases, the curved shape of the temperature,

given as a cosine square function initially, flattens out. This simulation represents

the synchronous case.

In Fig. 4.3 (a), the ensemble of the trajectories is shown for the asynchronous

algorithm. The solid lines show the trajectories of total 300 simulations. Due to the

randomness in the asynchronous algorithm, the trajectories differ from each other.

For a reference, the synchronous scheme is also shown by a dashed line. Although

it seems that the synchronous scheme converges faster with respect to the given
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Figure 4.3: The results for the stability and convergence rate. (a) The solid lines
represent the ensembles of total 300 simulations. The synchronous case is given by
dashed line. The steady-state is depicted by starred line. (b) The solid and dotted
lines represent 300 ensembles for ||e(k)|| and the normed empirical mean ||ē(k)||,
respectively. The dashed line shows the upper bound of ||ē(k)|| from the proposed
Lyapunov function, respectively.
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iteration step, the physical simulation time may take more because the idle time

is necessary at each iteration in the synchronous case. As the proposed method

guarantees the stability through the common eigenvectors, both synchronous and

asynchronous trajectories converged to the same steady-state value Xss, depicted by

starred line.

Next, we present the result for the convergence rate of the asynchronous algo-

rithm. We assume that the switching probability Π has the form of an i.i.d. jump

process. Fig. 4.3 (b) shows the convergence rate of ||ē(k)||, which describes how fast

the expected value of the state converges to Xss. The solid lines are 300 sample tra-

jectories of ||e(k)||, starting from the given initial condition: e(0) = X(0)−Xss. The

dotted line depicts the time history of the normed empirical mean ||ē(k)||, whereas

the dashed line shows an upper bound by the proposed Lyapunov method (4.22).

Note that ||e(k)|| is a random variable, and hence the normed empirical mean ||ē(k)||

was obtained by averaging the data over 300 simulations. In the proposed method,

however, it is not necessary to execute the simulation multiple times.

Fig. 4.5 represents the result for the error probability with respect to time and ε.

For different values of ε, Fig. 4.5 (a) and (b) describe the time history of the error

probabilities. The solid line denotes the empirical probability obtained from data –

i.e., the number of samples satisfying ||e(k)||2 > ε divided by the total number of

samples. The dashed line depicts the Markov inequality, computed from
E[||e(k)||2]

ε
,

where E [||e(k)||2] is obtained by the statistics. Finally, the cross symbols mean

the upper bound by the proposed method. As shown in Fig. 4.5 (a) and (b), the

probabilities for all cases converge to zero since the error is asymptotically convergent.

On the other hands, Fig. 4.5 (c), (d) show the error probability with respect to ε

at fixed time instance. In this result, the time is fixed at k = 9000 out of total 10000

iteration times, and the probability is computed while increasing ε values. In Fig.
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Figure 4.4: Error probability with respect to iteration step. The solid line and
dashed line represent empirical error probability and empirical Markov inequality,
respectively. The cross symbol denotes the upper bound for the error probability by
the proposed method.
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Figure 4.5: Error probability with respect to given constant error bound ε. The
solid line and dashed line represent empirical error probability and empirical Markov
inequality, respectively. The cross symbol denotes the upper bound for the error
probability by the proposed method.
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4.5 (c) and (d), εT is given by the index along x-axis, where the value of T is given

in Fig. 4.5 (c) and (d), respectively. In both cases, the error probabilities decrease

as ε increases.

Although the proposed methods provide a conservative bound, it does not re-

quire executing the code multiple times to predict the convergence rate or the error

probability. In addition to that, the proposed methods are carried out in a computa-

tionally efficient manner without storing all subsystem matrices. In this example, we

have m = 32(100−2) ≈ 3200, and keeping 3200 numbers of matrices is intractable in the

real implementation. The proposed method, however, guarantees the convergence

rate and the error probability, without any scalability issues. Therefore, the pre-

sented methods provide a computationally efficient tool to analyze the asynchronous

numerical schemes.

4.8 Concluding Remarks

This chapter studied the stability, convergence rate, and error probability of the

asynchronous parallel numerical algorithm. The asynchronous algorithm achieves

better performance in terms of the total simulation time, particularly when massively

parallel computing is required because it doesn’t wait for synchronization across PEs.

In order to analyze the asynchronous numerical algorithm, we adopted the switched

linear system framework. Although modeling of massively parallel numerical algo-

rithms as switched dynamical systems results in a very large number of modes, we

developed new methods that circumvent this scalability issue. While the results pre-

sented here are based on 1D heat equation, the analysis approach is generic and be

applicable to other PDEs as well.
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5. ON THE CONVERGENCE OF ASYNCHRONOUS DISTRIBUTED

QUADRATIC PROGRAMMING VIA DUAL DECOMPOSITION

5.1 Introduction

Recent advancement of distributed and parallel computing technologies has brought

massive processing capabilities in solving large-scale optimization problems. Dis-

tributed and parallel computing may reduce computation time to find an optimal so-

lution by leveraging the parallel processing in computation. Particularly, distributed

optimization will likely be considered as a key element for large-scale statistics and

machine learning problems, currently represented by the word “big data”. One of

the reasons for the preference of distributed optimization in big data is that the size

of data set is so huge that each data set is desirably stored in a distributed manner.

Thus, global objective is achieved in conjunction with local objective functions as-

signed to each distributed node, which requires communication between distributed

nodes in order to attain an optimal solution.

For several decades, there have been remarkable studies that have enabled to

find an optimal solution in a decentralized fashion, for example, dual decomposition

[21], [4], [29], [38], [6], augmented Largrangian methods for constrained optimization

[50], [81], [35], [1], alternating direction method of multipliers (ADMM) [41], [37],

[36], Spingarn’s method, [88], Bregman iterative algorithms for `1 problems [12],

[15], [27], Douglas-Rachford splitting [26], [70], and proximal methods [92]. More

details about history of developments on the methods listed above can be found in

the literature [11]. In this study, we mainly focus on the analysis of asynchronous

distributed optimization problems. In particular, we aim to investigate the behavior

of asynchrony in the Lagrangian dual decomposition method for distributed quadratic
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programming (QP) problems, where QP problems refer to the optimization problems

with a quadratic objective function associated with linear constraints. This type of

QP problems has broad applications including least square with linear constraints,

regression analysis and statistics, SVMs, lasso, portfolio optimization problems, etc.

With an implementation of Lagrangian dual decomposition, the original QP problems

that are separable can be solved in a distributed sense. For this dual decomposition

technique, we will study how the asynchronous computing algorithms affect on the

convergence as well as the rate of convergence for the dual variable.

Typically, distributed optimization requires synchronization of the data set at

each iteration step due to the interdependency of data. For massive parallelism,

this synchronization may result in a large amount of waiting time as load imbalance

between distributed computing resources would take place at each iteration step. In

this case, some nodes that have completed their tasks should wait for others to fin-

ish assigned jobs, which causes idle process of computing resources, incurring waste

of computation time. In this chapter, we attack this restriction on synchronization

penalty necessarily required in distributed and parallel computing, through the im-

plementation of asynchronous computing algorithms. The asynchronous computing

algorithms that do not suffer from synchronization latency thus have a potential to

break through the paradigm of distributed and parallel optimization. Unfortunately,

it is not completely revealed yet what is the effect of asynchrony on the convergence

as well as the rate of that in the distributed optimization. Due to the stochastic

behavior of asynchrony, the solution for the asynchronous distributed QP may di-

verge even if it is guaranteed that the synchronous scheme provides a convergence to

an optimal solution. Although Bertsekas [7] introduced a sufficient condition for the

convergence of general asynchronous fixed-point iterations (see chapter 6.2), which is

equivalent to a diagonal dominance condition for QP problems, however, this condi-
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tion is known to be very strong and thus conservative, according to the literature [71].

Therefore, the primal emphasis of this research is placed on: 1) convergence analysis;

2) analytic estimation on the rate of convergence, by employing a new framework for

analysis of distributed QP problems with an asynchronous update of dual variable.

For this purpose, we will adopt the switched system [34], [33], [32], [63], [64], [62]

framework as an analysis tool. In general, the switched system is defined as a dynam-

ical system that consists of a set of subsystem dynamics and a certain switching logic

that governs a switching between subsystems. For asynchronous algorithms of which

dynamics is modeled by the switched system, subsystem dynamics denotes all pos-

sible asynchronous computing due to the difference of data processing time in each

distributed computing devices. Then, a certain switching logic can be implemented

to stand for a random switching between subsystem dynamics. Thus, the switched

system framework can be used to properly model the dynamics of asynchronous

computing algorithms. Lee [62], for example, introduced the switched system to

represent the behavior of asynchrony in massively parallel numerical algorithms.

In this literature, the authors applied the switched dynamical system framework in

order to analyze the convergence, rate of convergence, and error probability for asyn-

chronous parallel numerical algorithms. Based on this switched system framework,

this chapter will provide a new approach for analysis of asynchronous distributed

QP problems with dual decomposition, to guarantee both necessary and sufficient

convergence conditions in the mean square sense. In addition, we will study how fast

each scheme (e.g., synchronous and asynchronous scheme) converges to an optimal

solution by studying the rate of convergence in analytic form. Therefore, this chapter

will present fundamental yet important analysis on the asynchronous distributed QP

problems through the switched system framework, which facilitates investigation on

the stochastic behavior of asynchrony.
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Rest of this chapter is organized as follows. In section 5.2, preliminaries are

presented in connection with problem formulations for asynchronous distributed QP

problems using dual decomposition. Section 5.3 introduces the switched system to

model the asynchrony in the asynchronous distributed QP problems. The results

for the convergence and the rate of convergence by employing the switched system

framework are derived in section 5.4 and 5.5, respectively. The numerical example

with a real implementation of distributed and parallel QP is provided in section 5.6,

to verify the validity of the proposed methods. Finally, section 5.7 concludes the

chapter.

5.2 Preliminaries and Problem Formulation

Notation: The real number, positive integer, and the non-negative integer are

denoted by the symbol R, N, and N0, respectively. The symbol > represents the

transpose operator. For any real matrix A,B ∈ Rn×n, the inequality A < B is

interpreted by the quadratic sense. (i.e., v>Av < v>Bv for any real vector v ∈ Rn).

In addition, the symbol ⊗ and diag(·) stand for the Kronecker product and diagonal

operator for the square matrix. respectively. Finally, for any real number a and

any real matrix A, the symbol |a| and |A| represent the absolute value of a and the

matrix with absolute value of all elements in A, respectively.

5.2.1 Duality Problem

Consider the following QP problem with a linear inequality constraint.

minimize f(x) (5.1)

subject to Ax ≤ b, (5.2)
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where f(x) is given by a quadratic form, meaning f(x) =
1

2
x>Qx+ c>x, the matrix

Q ∈ Rn×n is a symmetric, positive definite and c ∈ Rn is a vector. Further, in the

inequality constraint (5.2), it is such that A ∈ Rm×n and b ∈ Rm. If we define the

Lagrangian as L(x, y) , f(x) + y>(Ax − b), where y ∈ Rm is the dual variable or

Lagrange multiplier, then the dual problem for above QP is formulated as follows:

Duality using Lagrangian:

maximize inf
x
L(x, y) (5.3)

subject to y ≥ 0. (5.4)

The primal optimal point x? is obtained from a dual optimal point y? as

x? = argmin
x

L(x, y?).

By implementing gradient ascent, one can solve the dual problem, provided that

inf L(x, y) is differentiable. In this case, the iteration to find the x? is constructed as

follows:

xk+1 := argmin
x

L(x, yk), (5.5)

yk+1 := yk + αk(Axk+1 − b), (5.6)

where αk is a step size and the upper script denotes the discrete-time index for

iteration.

For the quadratic objective function f(x), the value argmin
x

L(x, yk) can be alter-
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natively obtained by ∇xL(x, yk) = 0, which leads to

argmin
x

L(x, yk) = ∇x

(
1

2
x>Qx+ c>x+ yk

>
(Ax− b)

)
= Qx+ c+ A>yk = 0.

From (5.5), we have

xk+1 = −Q−1(A>yk + c). (5.7)

Plugging (5.7) into (5.6) results in

yk+1 = yk + αk
(
A
(
−Q−1(A>yk + c)

)
− b
)

= (I − αkAQ−1A>)yk − αk(AQ−1c+ b). (5.8)

With the assumption that yk ≥ 0 ∀k, the above equation provides the solution

for y? and hence x?, if ρ(I − αkAQ−1A>) < 1 as follows:

y? = (I − αkAQ−1A>)y? − αk(AQ−1c+ b).

⇒


y? = −(AQ−1A>)−1(AQ−1c+ b), (if AQ−1A> is non-singular),

x? = −Q−1(A>y? + c).

(5.9)
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5.2.2 Dual Decomposition with Synchronous Update

In this subsection, we consider that f(x) = 1
2
x>Qx + c>x is separable, which

means

f(x) =
N∑
i=1

fi(xi)

=
N∑
i=1

(
1

2
x>i Qixi + c>i xi

)
,

where x = [x>1 , x
>
2 , . . . , x

>
N ]> and the variables xi ∈ Rni , i = 1, 2, . . . , N are subvectors

of x. Also, the matrix A in (5.2) satisfies Ax =
∑N

i=1Aixi, where Ai is such that

A = [A1, A2, . . . , AN ].

Then, the equations (5.5) and (5.6) are updated by

xk+1
i := argmin

xi

L(xi, y
k) = −Q−1

i (A>i y
k + c), (5.10)

yk+1 := yk + αk(Axk+1 − b). (5.11)

Note that when updating xk+1
i , i = 1, 2, . . . , N , each value is computed by dis-

tributed nodes. Hence, the computation for xk+1
i can be processed in parallel and

then, each value of xk+1
i is transmitted to the master node to compute yk+1 in the

gathering stage. Therefore, as in (5.11), updating yk+1 requires synchronization of

xk+1
i across all spatial index i at time k+1 because xk+1 is obtained by stacking xk+1

i

from i = 1 to N . In Fig. 5.1, we described the conceptual schematic of synchronous

update for dual variable y. If computing delay occurs among one of the index i due

to the difference of processing time in distributed node, the process to update yk+1

has to be paused until all data is received from distributed nodes. This implies that

the more parallel computing we have, the more delays may take place, resulting in
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a large amount of the idle time. Consequently, this idle time for synchronization

becomes dominant compared to the pure computation time to solve the QP problem

in parallel. In massive parallel computing algorithm, it has been reported that the

synchronization latency may be up to 50% of total computation time according to

the literature [13]. In order to mitigate or avoid this type of restriction that severely

affects on the performance to obtain an optimal solution, we introduce asynchronous

computing algorithm in the following subsection.

5.2.3 Dual Decomposition with Asynchronous Update

In order to alleviate this synchronization penalty, we consider asynchronous up-

date of dual variable y. In this case, the master node to compute yk+1 does not wait

until all xk+1
i is gathered. Rather, it proceeds with the value for xi saved in the buffer

memory. Thus, y value is updated asynchronously. To model the asynchronous dy-

namics of dual decomposition, we consider the new state vectors as follows.

• The state for the Asynchronous model:

x̃k := [x
k∗1
1

>
, x

k∗2
2

>
, . . . , x

k∗N
N

>
]>,

where k∗i ∈ {k, k − 1, . . . , k − q + 1}, i = 1, 2, . . . , N , denotes delay term that

may take place due to the load imbalance in distributed nodes, and the term

q ∈ N represents the maximum possible delay.

99



Figure 5.1: The schematic of update timing for the variable yk; upper one shows the
synchronous algorithm, where q is the length of maximum delay – i.e., all delays are
bounded by q; bottom one shows asynchronous algorithm. The time to compute yk

is given by 1 CPU time.

For this asynchronous case, y-update is given by

yk+1 := yk + αk(Ax̃k+1 − b) (5.12)

= yk +
N∑
i=1

(
αkiAix̃i

k+1 − 1

N
αki b

)
,

where αki is the step size for the index i.

Although αki may vary at each time step, we let αki be a constant value, denoted

by αi, for simplicity. Hence, it satisfies that α :=
∑N

i=1 αi, which is a fixed value.

There are two different ways to update dual variable y. Throughout the chapter,

we denote these two different cases as the deterministic asynchronous algorithm and

the stochastic asynchronous algorithm, respectively, in order to clarify and differen-

tiate them. The deterministic asynchronous algorithm stands for the case where the

variable k∗i is considered as a constant value and is given by k∗i := k−q+1, ∀i. Thus,

it leads to x̃k := [xk−q+1
1

>
, xk−q+1

2

>
, . . . , xk−q+1

N

>
]. In this case, it is assumed that the

value xk−q+1
i , which is a q-step prior value of xki , is always available to the master
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node. In other words, all delays are assumed to be bounded by the finite value q.

Therefore, one can proceed with y-update, given in (5.12), without synchronization

when applying the deterministic asynchronous algorithm. Note that there is no ran-

domness in the deterministic asynchronous algorithm. Although this deterministic

case obviates the unnecessary idle time by avoiding synchronization, it always utilizes

q : the maximum possible delay

xki : the value of xi at time k

x
k∗i
i : the random variable such that x

k∗i
i ∈ {xk, xk−1, . . . , xk−q+1}

Πi := [(π1)i, (π2)i, . . . , (πq)i], where (πj)i, j = 1, 2, . . . , q, stands for the modal

probability for x
k∗i
i

x̃k := [x
k∗1
1

>
, x

k∗2
2

>
, . . . , x

k∗N
N

>
]>

Figure 5.2: The schematic of the stochatic asynchronous algorithm in the distributed
quadratic programming. In this figure, the maximum delay is bounded by k−q+1 ≤
k∗i ≤ k, ∀i. Each node has the probability Πi to represent random delays.
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q-step prior values saved in the buffer memory. In the real implementation of the

distributed optimization, however, k∗i varies from distributed nodes and also changes

over each iteration. Thus, we consider another case by letting x
k∗i
i as a random vec-

tor, where k∗i becomes one of the values in the given set {k, k− 1, . . . , k− q+ 1}. To

distinguish this case with the deterministic asynchronous algorithm, it is referred to

as the stochastic asynchronous algorithm.

Fig. 6.1 describes the conceptual schematic of the stochastic asynchronous algo-

rithm using the dual decomposition in QP problem. Depending on the processing

capability and load balance in distributed nodes, the value for xki is available or not

in the master node at each iteration step. We assume that this delay is bounded by

the finite value q. To describe the randomness of such delays, we adopt a probability

Πi := [(π1)i, (π2)i, . . . , (πq)i] ∈ R1×q that predicts which value for xki will be used to

update yk as shown in Fig. 6.1.

Starting from (5.12), with the definition of the set Sk := {k∗i |k∗i = k} and the

symbol Φi := −αiAiQ−1
i A>i , the state dynamics of the stochastic asynchronous algo-
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rithm is then given by

yk+1 = yk +
N∑
i=1

(
αiAix̃i

k+1 − 1

N
αki b

)
= yk +

∑
i∈Sk+1

αiAix
k+1 +

∑
i∈Sk

αiAix
k + · · ·

+
∑

i∈Sk−q+2

αiAiQ
−1
i A>i x

k−q+2 +

(
N∑
i=1

− 1

N
αib

)

=

(
I −

∑
i∈Sk+1

Φi

)
yk −

(∑
i∈Sk

Φi

)
yk−1 − · · · (by (5.10))

−

( ∑
i∈Sk−q+2

Φi

)
yk−q+1 +

(
N∑
i=1

−αiAiQ−1
i c− 1

N
αib

)
.

(5.13)

The above equation is simplified by the following definitions, given by

Ri(k) :=
∑

j∈Sk−i+2

Φj, (5.14)

B :=

(
N∑
i=1

−αiAiQ−1
i c− 1

N
αib

)
, (5.15)

resulting in

yk+1 = (I −R1(k)) yk −R2(k)yk−1 − · · · −Rq(k)yk−q+1 +B, (5.16)

where the time-varying matrix Ri(k) completely depends on the value k∗i that is a

random event.

As described in [7], it is a very challenging task to analyze the stochastic asyn-

chronous algorithm (see page 101, chapter 1). The primary goal of this chapter

is, therefore, to analyze not only the convergence but also the rate of that for the
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stochastic asynchronous algorithm which brings stochastic process for the state yk.

For this purpose, we adopt a switched linear system (or jump linear system, inter-

changeably) framework that will be introduced in the next section in more detail.

5.3 A Switched System Approach

In order to solve the dual decomposition problem with random delays in dis-

tributed nodes, we define a new augmented state Y k := [yk
>
, yk−1>, . . . , yk−q+1>]>.

Then, one can define the following recursive dynamics:



yk+1

yk

yk−1

...

yk−q+2


︸ ︷︷ ︸

=Y k+1

=



I −R1(k) −R2(k) −R3(k) · · · −Rq(k)

I 0 · · · 0

0 I 0 · · · 0

...
. . .

...

0 0 I 0


︸ ︷︷ ︸

=W (k)



yk

yk−1

yk−2

...

yk−q+1


︸ ︷︷ ︸

=Y k

+



B

0

0

...

0


︸ ︷︷ ︸

=C

,

(5.17)

where I and 0 are identity and zero matrices with proper dimensions, respectively.

Consequently, the above recursive equation ends up with the following simple form:

⇒ Y k+1 = W (k)Y k + C

In fact, the structure of the time-varying matrix W (k) is not arbitrary, but it

has a finite number of forms, given by qN , which counts all possible scenarios to

distribute N numbers of Φi, i = 1, 2, . . . , N , matrices into the finite number of q. In

the switched system, this number is referred to as the “switching mode number”, and

we particularly denote this number with the symbol m. For instance, when q = 2
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and N = 2, the switching mode number is given by m = 22 = 4. Thus, at each time

k, the matrix W (k) has one of the following form:

W1 =

I − Φ1 − Φ2 0

I 0

 , W2 =

I − Φ1 −Φ2

I 0

 ,
W3 =

I − Φ2 −Φ1

I 0

 , W4 =

I −Φ1 − Φ2

I 0

 .
Then, only one out of all set of matrices {Wr}mr=1 will be used at each time k to

update the system state Y k, which results in the switched linear system structure as

follows.

Consider the switched system:

Y k+1 = WσkY
k + C, σk ∈ {1, 2, . . . ,m}, k ∈ N0, (5.18)

where {σk}∞k=0 denotes the switching sequence that describes how the asynchrony

takes place. Then, the switching probability Π(k) := Π1(k)⊗Π2(k)⊗ · · ·⊗ΠN(k) =

[π1(k), π2(k), . . . , πm(k)], where Πi(k) represents the probability for x
k∗i
i as depicted

by Fig. 6.1, determines which mode σk will be utilized at each time step. (Note

that Πi(k) and hence Π(k) are not necessarily to be stationary.) In this case, the

switched linear system is named by “stochastic switched linear system” or “stochastic

jump linear system” [64] because the switching is a stochastic process. The benefit

when applying this stochastic switched linear system structure is that the delay in

the asynchronous algorithm is naturally taken into account by the switched system

framework. Hence, the randomness of the asynchronous algorithm is represented by

a certain switching logic.
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Remark 5.1 (Computational complexity due to an extremely large num-

ber of the switching modes) Although the stochastic switched linear system

framework is suitable for modeling the dynamics of the stochastic asynchronous al-

gorithm in distributed QP problems, it results in an extremely large number of the

switching modes, causing computational complexity. For instance, even if q = 2 and

N = 20, we have m = qN = 220, and it is impractical to store such large numbers

of matrices in the real implementation. Therefore, it is necessary to develop proper

methods to analyze the stochastic asynchronous algorithm using the switched linear

system without any concerns for such computational complexity issues.

To avoid the computational complexity problems stated above, we make following

assumptions for analysis of both the convergence and the rate of the convergence for

the stochastic asynchronous algorithm:

• Assumption 3.1. We consider the random delays that occur during the com-

putation of xki at each node. In this case, the probability Πi(k) = [(π1(k))i,

(π2(k))i, . . . , (πq(k))i] describes which value for x
k∗i
i will be used among the

given set {xki , xk−1
i , . . . , xk−q+1

i }. Then, we assume that each modal probability

(πj(k))i is stationary, and hence Πi(k) is also stationary in time.

Under the Assumption 3.1., the switching probability Π(k) := Π1⊗Π2⊗· · ·⊗ΠN

becomes stationary. For this case, the jump linear system with the given dynamics in

(5.18) is termed as the independent, identically distributed (i.i.d.) jump linear sys-

tem. Since the modal switching probability πr is a probability, it satisfies 0 ≤ πr ≤ 1,

∀r and
∑m

r=1 πr = 1. This stationary occupation probability rules which system ma-

trix Wr will be used at each instance. The implementation of the switching sequence

{σk}, governed by Π, describes the randomness for the stochastic asynchronous al-

gorithm in an average sense.
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5.4 Convergence Analysis

In this section, the convergence of the state Y k for the stochastic asynchronous

model will be studied under the switched system framework. For several decades,

the stability results for the switched systems with stochastic jumping parameters

have been well established, for example, in the literature [63], [64], [34]. However,

these methods are inapplicable to the asynchronous computing algorithm with mas-

sive parallelism because it results in extremely large numbers of switching modes,

leading to computational complexity as explained in Remark 5.1. Therefore, we aim

to investigate the convergence and the rate of convergence for the asynchronous algo-

rithm without any concerns for such computational complexity issues. Particularly,

this section will provide a convergence condition for the stochastic asynchronous

algorithm in distributed QP problems.

Before proceeding further to investigate the asynchronous model, we analyze the

convergence of the synchronous case without delays for a reference. Since in the

synchronous algorithm all values are synchronized after each iteration, no delays

occur when updating the state dynamics. Then, the state Y k
sync. for the synchronous

case is governed by the following recursive equation:



yk+1

yk

yk−1

...

yk−q+2


︸ ︷︷ ︸

=Y k+1
sync.

=



I −R 0 0 · · · 0

I 0 · · · 0

0 I 0 · · · 0

...
. . .

...

0 0 I 0


︸ ︷︷ ︸

=Wsync.



yk

yk−1

yk−2

...

yk−q+1


︸ ︷︷ ︸

=Y ksync.

+



B

0

0

...

0


︸ ︷︷ ︸

=C

, (5.19)
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where the matrix R :=
∑q

i=1Ri(k) =
∑N

j=1 Φj is time-invariant.

Since R is a constant matrix in above equation, the matrix Wsync. is also time-

invariant, and the steady-state value of Y ?
sync. := limk→∞ Y

k
sync., is obtained by

Y ?
sync. = Wsync.Y

?
sync. + C. (5.20)

⇒ Y ?
sync. = (I −Wsync.)

−1C,
(
if (I −Wsync.) is non-singular

)
if the condition ρ(Wsync.) < 1 holds.

However, the state in the i.i.d. switched linear system that represents the stochas-

tic asynchronous model, evolves with the dynamics given in (5.18), where the matrix

Wσk is determined by the switching probability Π. Thus, the state of the asyn-

chronous model becomes a random vector, obstructing the convergence analysis of

the stochastic asynchronous model. For the stochastic switched systems, various

convergence (stability) notions have been developed [34], to guarantee the system

stability. Among different convergence notions, we will focus on the mean square

convergence, defined below.

Definition 5.1 (Definition 1.1, [32]) The switched system is said to be mean square

stable (convergent) if for any initial condition x0 and arbitrary initial probability

distribution Π(0), limk→∞ E
[
||x(k, x0) −x?||2

]
= 0, where x? is the fixed-point value

of xk, i.e. lim
k→∞

xk = x?.

The necessary and sufficient condition for the mean square convergence of the

i.i.d. jump linear systems is described as follows:

Proposition 5.1 (Corollary 2.7, [33]) Consider an i.i.d. jump linear system, where

Π (k) is a stationary probability vector {π1, π2, · · · , πm} for all k. Then, the i.i.d.
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jump linear system is mean square stable (convergent) if and only if the matrix∑m
j=1 πj (Wj ⊗Wj) is Schur stable, i.e.

ρ

(
m∑
j=1

πj (Wj ⊗Wj)

)
< 1. (5.21)

Once again, massive parallelism results in large m, causing computational in-

tractability. Thus, implementation of Proposition 5.1 is unfeasible to analysis of

asynchronous distributed and parallel QP problems with massively parallel comput-

ing algorithm because the equation in (5.21) requires the summation over index i

from 1 up to m. In order to avoid this problem, we provide Algorithm 1.

Algorithm 1

1: k∗i ← one of the values in {k, k − 1, . . . , k − q + 1} with probability Πi.
2: ξ ← k
3: for i ≤ N do
4: if ξ ≤ k∗i then
5: ξ ← k∗i .
6: i← i+ 1.
7: end if
8: end for
9: x̃k ← [(xξ1)>, (xξ2)>, . . . , (xξN)>]>

By executing Algorithm 1 at every time step in the master node, the random

vector x̃k has the following form: x̃k = [(xξ1)>, (xξ2)>, . . . , (xξN)>]>, where ξ denotes

the oldest time among the recently updated values across the index i = 1, 2, . . . , N .

For example, if k∗i = k − 2 for some i is the oldest value over all k∗i , i = 1, 2, . . . , N ,

then we have x̃k = [(xk−2
1 )>, (xk−2

2 )>, . . . , (xk−2
N )>]>. In this case, the modal matrix
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Wr has the same structure with W (k), given in (5.17), where Ri(k) satisfies

Ri(k) =


R, (if i = k − ξ + 1)

0. (otherwise)

The utilization of Algorithms 1 then drastically reduces the switching mode number

by q regardless of the value N , due to the fact that at each iteration step we inten-

tionally use the oldest updated value saved in buffer memory. For example, when

q = 2, the matrix Wσk becomes one of the following form:

W1 =

I −R 0

I 0

 , W2 =

I −R
I 0

 .
Since Algorithm 1 works as if it aggregates some subsets of the given switching

modes, we need to redefine the switching probability Π accordingly. Then, Π is

obtained by the following Theorem.

Theorem 5.1 Consider the i.i.d. switched linear system given in (5.18) with the

switching probability Π = Π1 ⊗Π2 ⊗ . . .⊗ΠN ∈ R1×qN . After the implementation of

Algorithm 1, the switching probability is redefined by Π := [π1, π2, . . . , πq] ∈ R1×q, of

which modal probability πi has the following form:

πr :=
N∏
i=1

(
r∑
j=1

(πj)i

)
−

(
r−1∑
j=1

πj

)
, r = 1, 2, . . . , q, (5.22)

where the term (πj)i denotes jth modal probability for Πi (i.e., Πi = [(π1)i, (π2)i, . . . ,

(πq)i] ).

Proof For simplicity of the proof, we assume that N = 2. The most general case
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is then proved similarly by induction. In this case, the master node takes the values

for each x
k∗i
i according to the probability Πi, i = 1, 2, which are given by

Π1 = [(π1)1, (π2)1, . . . , (πq)1],

Π2 = [(π1)2, (π2)2, . . . , (πq)2].

We let the index j ∈ {k, k− 1, . . . , k− q+ 1} be the value explained in Algorithm 1.

When j = 1, the modal switching probability π1 is obtained by

π1 = Pr
(
k∗1 = k, k∗2 = k

)
= Pr

(
k∗1 = k

)
×Pr

(
k∗2 = k

)
(since k∗1 and k∗2 are independent)

= (π1)1 × (π1)2.

Similarly, when j = 2, we have

π2 = Pr
(
k∗1 ∈ {k, k − 1}, k∗2 ∈ {k, k − 1}

)
− π1

=
2∑
j=1

Pr
(
k∗1 = k − j + 1

)
×

2∑
j=1

Pr
(
k∗2 = k − j + 1

)
− π1

=

(
2∑
j=1

(πj)1

)
×

(
2∑
j=1

(πj)2

)
− π1.

In the first line of above equation, we have to extract π1 because it corresponds to

the case when j = 1.

For any arbitrary value j satisfying j ∈ {k, k − 1, . . . , k − q + 1}, the switching
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probability is therefore obtained by induction as follows:

πr = Pr
(
k∗1 ∈ {k, k − 1, . . . , k − r + 1}, k∗2 ∈ {k, k − 1, . . . , k − r + 1}

)
−

r−1∑
j=1

πj

=

(
r∑
j=1

(πj)1

)
×

(
r∑
j=1

(πj)2

)
−

r−1∑
j=1

πj.

Thus, the most general case with q,N ∈ N can be induced as follows:

πr =
N∏
i=1

(
r∑
j=1

(πj)i

)
−

(
r−1∑
j=1

πj

)
, r = 1, 2, . . . , q.

�

For comparison, the switching mode number without the proposed algorithm is

given by m = qN of which growth is exponential with respect to N , whereas with

the proposed Algorithm 1, it is given by m = q that is a constant value irrespec-

tive of N . Thus, by leveraging the proposed algorithm, one can apply the mean

square convergence condition given in Proposition 5.1, to test the stability of the

stochastic asynchronous algorithm. Note that the implementation of Proposition 5.1

was computationally intractable without Algorithm 1 due to the large numbers in

m. Consequently, the proposed algorithm enables the convergence analysis of the

stochastic asynchronous parallel computing algorithm in QP problems.

Once the condition (5.21) is guaranteed with a given i.i.d. switching probability Π

by implementing Algorithm 1, the steady-state (fixed-point) value Y ? := limk→∞ Y
k,

where Y k is the state for the stochastic asynchronous algorithm of which dynamics
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is given in (5.18), can be obtained according to Definition 5.1 and is given by

Y ? = WσkY
? + C. (5.23)

⇒ Y ? = (I −Wσk)
−1C.

Interestingly, Y ? becomes a unique vector, regardless of σk that changes over time,

due to the inherent structure in matrices Wσk and C, which results in Y ? = Y ?
sync.,

where Y ?
sync. is defined in (5.20). Therefore, the state for the stochastic asynchronous

algorithm, denoted by Y k, converges to the unique, identical fixed-point value Y ?, if

the condition (5.21) holds.

5.5 Rate of Convergence Analysis

Since the rate of convergence provides information regarding how fast each scheme

converges to the fixed-point value, it works as a guideline that suggests which meth-

ods will solve the given QP problem faster than other schemes. Therefore, the

comparison for the rate of convergence between different schemes is advantageous

in terms of estimating the time to obtain an optimal solution for the QP prob-

lem. Although asynchronous algorithms are considered to be more time-efficient for

obtaining an optimal solution, it is not analytically proved yet what is the rate of con-

vergence. Therefore, in this section we investigate the rate of convergence for three

different algorithms (e.g., synchronous, deterministic asynchronous, and stochastic

asynchronous algorithms) in analytic form.

i) Synchronous algorithm with delays:

For synchronous scheme, Y k is updated after a certain amount of time due to the

idle time for synchronization. As described in Fig. 5.1, we assume that all data from

distributed nodes arrive at the master node within a bounded time q. In this case,
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idle process time for the synchronization is given by q and Y k can be updated at

every t(q + 1) time step, where t ∈ N0. Consequently, at each time step, Y k-update

is given by

at time t = 1: Y (q+1) = Wsync.Y
0 + C

at time t = 2: Y 2(q+1) = Wsync.Y
(q+1) + C

at time t = 3: Y 3(q+1) = Wsync.Y
2(q+1) + C

...
...

at arbitrary time t+ 1: Y (t+1)(q+1) = Wsync.Y
t(q+1) + C, t ∈ N0

Now, we consider the term ||Y k − Y ?||∞ in order to investigate the rate of con-

vergence for the synchronous algorithm. Then, from the dynamics for synchronous

case, given by Y k = Wsync.Y
k−1 + C, we have

||Y k − Y ?||∞ = ||Wsync.Y
k−1 + C − Y ?||∞

= ||Wsync.Y
k−1 −Wsync.Y

?||∞
(
by (5.20)

)
= ||Wsync.

(
Wsync.Y

k−2 + C
)
−Wsync.Y

?||∞

= ||(Wsync.)
2Y k−2 +Wsync.(C − Y ?)||∞

= ||(Wsync.)
2
(
Y k−2 − Y ?

)
||∞

(
by (5.20)

)
...

= ||(Wsync.)
k
(
Y 0 − Y ?

)
||∞

≤ ||(Wsync.)
k||∞ · ||Y 0 − Y ?||∞,

where k = t(q+1), t ∈ N0. Thus, we have the upper bound of the rate of convergence
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for the synchronous algorithm as follows:

||Y k − Y ?||∞ ≤ ||(Wsync.)
k||∞ · ||Y 0 − Y ?||∞, k = t(q + 1), t ∈ N0.

(5.24)

ii) Deterministic asynchronous algorithm:

As described in section 2.3., the deterministic asynchronous algorithm takes ad-

vantage of the q step prior value instead of waiting for all xi values being gathered

in the master node for synchronization. In this case, the system dynamics for the

deterministic asynchronous scheme is given by

Y k+1 = Wdet.async.Y
k + C,

where the matrix Wdet.async. is defined as

Wdet.async. :=



I 0 0 · · · −R

I 0 · · · 0

0 I 0 · · · 0

...
. . .

...

0 0 I 0


because in this case we have ∀i ∈ Sk−q+2 in (5.13) for the deterministic asynchronous

algorithm, leading to above system dynamics.

Similarly to the process in obtaining (5.24), the upper bound of the rate of con-
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vergence for the deterministic asynchronous algorithm is derived by

||Y k − Y ?||∞ = ||(Wdet.async.)
k
(
Y 0 − Y ?

)
||∞ (5.25)

≤ ||(Wdet.async.)
k||∞ · ||Y 0 − Y ?||∞, k ∈ N0.

iii) Stochastic Asynchronous algorithm:

Since the state Y k becomes a random vector in the stochastic asynchronous case,

the rate of convergence for ||Y k − Y ?||∞ forms a distribution rather than a deter-

ministic value, and is difficult to analyze such a distribution. Thus, we take the

expectation for Y k with respect to the i.i.d. switching probability Π, and investigate

the rate of convergence for ||E[Y k]− Y ?||∞.

Under the assumption that the mean square convergence condition in Proposition

5.1 holds, the fixed-point value for Y k is deterministically given by Y ?, irrespective

of Π. Therefore, it satisfies E[Y ?] = Y ?. Taking the expectation in (5.23) results

in E[Y ?] = Y ? = E[WσkY
? + C] = E[Wσk ]Y

? + C = Pr (
∑q

r=1 πrWr)Y
? + C. By

defining a new matrix Λ :=
∑q

r=1 πrWr, we end up with

E[Y ?] = Y ? = ΛY ? + C. (5.26)

Then, the term ||E[Y k]− Y ?||∞ becomes
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||E[Y k]− Y ?||∞ = ||E[Wσk−1
Y k−1 + C] + Y ?||∞

= ||
q∑
r=1

Pr
(
Wσk−1

Y k−1 + C|σk−1 = r
)
Pr (σk−1 = r)︸ ︷︷ ︸

=πr

−Y ?||∞

= ||
q∑
r=1

πrWrPr
(
Y k−1|σk−1 = r

)
+ C − Y ?||∞

= ||
q∑
r=1

πrWrPr
(
Y k−1|σk−1 = r

)
− ΛY ?||∞ (by (5.26))

= ||

(
q∑
r=1

πrWr

)
︸ ︷︷ ︸

=Λ

q∑
s=1

Pr
(
Wσk−2

Y k−2 + C|σk−2 = s
)
πs − ΛY ?||∞

= ||Λ

(
q∑
s=1

πsWsPr
(
Y k−2|σk−2 = s

)
+ C

)
− ΛY ?||∞

= ||Λ

(
q∑
s=1

πsWsPr
(
Y k−2|σk−2 = s

))
+ ΛC − Λ (ΛY ? + C) ||∞

(by (5.26))

= ||Λ

(
q∑
s=1

πsWsPr
(
Y k−2|σk−2 = s

))
− (Λ)2 Y ?||∞

...

= ||(Λ)k−1

(
q∑
t=1

πtWtPr
(
Y 0|σ0 = t

)
+ C

)
− (Λ)k Y ?||∞

= || (Λ)k−1

(
q∑
t=1

πtWt

)
︸ ︷︷ ︸

=Λ

Y0 − (Λ)kY ?||∞

= ||(Λ)k
(
Y 0 − Y ?

)
||∞

≤ ||(Λ)k||∞ · ||Y 0 − Y ?||∞,

where we used the law of total probability in above equations.
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Therefore, the rate of convergence for the asynchronous scheme is given by:

||E[Y k]− Y ?||∞ ≤ ||(Λ)k||∞ · ||Y 0 − Y ?||∞, (5.27)

where with implementation of Algorithm 1 the matrix Λ :=
∑q

r=1 πrWr has the

following form:

Λ =



I − π1R −π2R · · · −πqR

I 0 · 0

0 I · 0

... · . . . ·

0 0 · · · I


, R :=

N∑
i=1

Ri(k) =
N∑
j=1

Φj. (5.28)

5.6 Numerical Example

In this section, we test the proposed asynchronous algorithms on distributed QP

problems with dual decomposition technique. The system for the test bed is given by

Intel(R) Core(TM) i7-4710HQ CPU, which has 4 cores with 8 threads (by Hyper-

Threading Technology), with 8GM memory. Although, the number of threads for this

test bed is not very large, the system is enough to show the performance of proposed

asynchronous computing algorithms for distributed QP with dual decomposition.

We implemented parallel processing through OpenMP API (Application Program In-

terface) developed for direct multi-threaded, shared memory parallelism.
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Figure 5.3: The convergence results for distributed quadratic programming with
stochastic asynchronous algorithm. The (green) solid lines represent the state trajec-
tory for y with total 100 Monte Carlo simulations (initial value was deterministically
given by y(0) = 2 for all cases). The (red) solid-cross line denotes the mean and the
standard deviation of multiple trajectories, respectively.

Let us consider the following distributed QP problem:

minimize
1

2
x>i Qixi + c>i xi

subject to Aixi ≤ bi, i = 1, 2, . . . , N.

The positive definite matrices Qi, the matrices Ai, and the vectors ci and bi

were generated by implementing pseudo random number generator in C++. The

dimension of matrices and vectors are set to be: Qi ∈ Rn×n, Ai ∈ R1×n, ci ∈ Rn×1,

and bi ∈ R, i = 1, 2, . . . , N , where n = 10, N = 20000. Thus, computational burden

for solving each distributed QP is low, whereas the total number of distributed QP

is extremely high. We let the buffer length q = 8 and the step size αi = 0.27, ∀i.

For this type of massively distributed QP problem, the time for synchronization

may become dominant in the total amount of time to solve QP. In this case, asyn-
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chronous computing algorithms may lead to speedup by avoiding synchronization.

We solved above distributed QP problem with the implementation of the proposed

stochastic asynchronous algorithm. In Fig. 6.2, total 100 times of state trajectories

for the dual variable y are given by (green) solid lines. Since y-update is stochas-

tic process in the asynchronous algorithm, the trajectories are different from each

other, resulting in the spread of the trajectories in the transient time. The i.i.d.

switching probability Πi that describes asynchronous computing for each distributed

node is given by (πj)i = e−3qj∑q
j=1 e

−3qj , j = 1, 2, . . . , q, ∀i. Then, by Theorem 5.1 the

switching probability for the switched system in (5.18), denoted by Π, is computed as

Π =
[
0, 0, 0.08, 0.8, 0.11, 0.01, 0, 0

]
. For this i.i.d. switching probability, we calculated

the spectral radius given in (5.21), which is ρ
(∑m

j=1 πj(Wj ⊗Wj)
)

= 0.6147 < 1.

Therefore, the convergence of the stochastic asynchronous algorithm is guaranteed

in the mean square sense. The result in Fig. 6.2 also verifies the mean square con-

vergence. The empirical mean and standard deviations are denoted by (red) solid

line with cross mark and vertical bars, respectively. As the iteration step increases,

the error of the mean square converges to zero (zero standard deviation).

Next, we predict the rate of convergence for three different schemes: i) syn-

chronous case; ii) deterministic asynchronous case; iii) stochastic asynchronous case,

in order to compare the performance. By employing the proposed results in section

5, we plotted the rate of convergence in Fig. 5.4. According to this result for the

upper bound of the rate of convergence, the asynchronous algorithm is advantageous

to speedup the total computation time for convergence of dual variable. This asyn-

chronous scheme is up to 5 times faster than the synchronous algorithm and 2.5

times faster than the deterministic asynchronous algorithm, respectively.

In Fig. 5.5, we plotted actual computation time to find the optimal solution

for three different schemes. For comparison purpose, the computation time for the
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Figure 5.4: The rate of convergence results for distributed quadratic program-
ming with three different schemes: synchronous (cross symbol); deterministic asyn-
chronous (green dotted line); stochastic asynchronous (red solid line) algorithms.

Figure 5.5: The convergence time comparison between sequential computing and
three different schemes when the number of threads is given by 8 (maximum possible
parallelization for the test bed.
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sequential case is also given as a reference. The termination for the iteration is given

by the residual tolerance |yk − yk−1| ≤ 10−5. As shown in Fig. 5.5, the proposed

stochastic algorithm achieves the fastest convergence to solve the distributed QP

problem. This result coincides with the result on the rate of convergence, which

provides information regarding which schemes are the best to solve the given QP

problem even before solving the optimization problem.

Table 5.1: Comparison of total computation time for the dual variable being conver-
gent to the optimal value.

No. of
Synchronous Det-Asynchronous Sto-Asynchronous

Threads Time Speedup Time Speedup Time Speedup

#2 5.2012s 1.89 7.8774s 1.25 4.4422s 2.22

#3 4.0189s 2.45 5.8558s 1.68 3.1259s 3.15

#4 3.3848s 2.91 4.8792s 2.02 2.6342s 3.74

#5 3.3511s 2.94 4.3913s 2.24 2.3071s 4.27

#6 3.3547s 2.94 3.8129s 2.58 2.0249s 4.86

#7 3.5891s 2.74 3.4590s 2.85 1.8351s 5.37

#8 3.8340s 2.57 3.3260s 2.96 1.6933s 5.81

For three different schemes, Table 5.1 presents the computation time to find the

optimal solution as we increase the number of threads in the test bed. Also, we plot-

ted speedup of three different schemes based on Table 5.1, by increasing the total

number of threads. As the number of threads increases, the performance degradation

occurred in the synchronous case, whereas the deterministic and stochastic asyn-

chronous algorithms resulted in continuous speedup. When the number of threads is

8, the stochastic asynchronous algorithm led to 5.81 times speedup compared to the

sequential computing, which is also 2.26 times faster than synchronous algorithms.
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Figure 5.6: The speedup vs. numbers of threads.

As described in Remark 5.1, the computational complexity was the major con-

cern when adopting the switched system framework for analysis of the stochastic

asynchronous algorithm. To circumvent this complexity issue, we applied Algo-

rithm 1. Thus, the number of switching modes has been drastically reduced from

qN = 820000 to q = 8, owing to Algorithm 1. Consequently, the analysis of stochastic

asynchronous computing algorithm was carried out in a computationally efficient

manner.

5.7 Concluding Remarks

In this chapter, we studied the convergence of asynchronous distributed QP prob-

lems via dual decomposition technique. To analyze the behavior of asynchrony in

distributed and parallel computing, the switched system framework was introduced.

Since the switching mode number becomes large for massively asynchronous comput-
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ing algorithm, we developed a new algorithm, which drastically decreases mode num-

ber. By implementing the proposed method, the convergence condition in the mean

square sense can be checked without any computational complexity issues. Also,

we derived the rate of convergence for three different schemes (e.g., synchronous,

deterministic asynchronous, and stochastic asynchronous algorithms), which analyt-

ically shows how fast dual variable converges to the optimal solution. The numerical

example with an implementation of asynchronous distributed QP using OpenMP

supports the validity of the proposed methods.
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6. STABILITY OF LARGE-SCALE DISTRIBUTED NETWORKED CONTROL

SYSTEMS WITH RANDOM COMMUNICATION DELAYS

6.1 Introduction

A networked control system (NCS) is a system that is controlled over a commu-

nication network. Recently, NCSs have attracted considerable research interests due

to emerging networked control applications. For example, NCSs are broadly used

in applications including traffic monitoring, networked autonomous mobile agents,

chemical plants, sensor networks and distributed software systems in cloud com-

puting architectures. Due to the communication network, communication delays or

communication losses may occur, resulting in performance degradation or even in-

stability. Therefore, it has led various researches to analyze NCSs associated with

communication delays [16], [95], [102], [101], [78], [97], [64], [63]. Particularly in [97],

the NCS with communication delays was analyzed by adopting the switched sys-

tem [64], [63], [108], [34], [32], which refers to the dynamical system consists of a

family of subsystems and a switching logic governing switching between subsystems.

In this chapter, we study large-scale distributed networked control system (DNCS),

which denotes NCS with a large number of spatially distributed subsystems (or

agents). For such large-scale systems, our primary goal is to analyze system sta-

bility when random communication delays exist. For decades, the system behavior

with random communication delays has been widely modeled by the Markov jump

linear system (MJLS) [97], [85], [84], [104], [86], [73] where the switching sequence

is governed by the Markovian process. Since stability has been one of the major

concerns, notable research studies have been reported for decades, in order to ana-

lyze the stability of the MJLS [90], [34], [17], [24], [106]. However, these results are
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only applicable to the systems with a small number of switching modes, whereas the

large-scale DNCSs in which we are particularly interested inevitably give rise to an

extremely large number of switching modes. Thus, previous approaches developed

for the stability analysis of MJLSs are inappropriate for large-scale DNCSs, due to

the computational intractability. Although the literature [62] recently investigated

the switched system that circumvents computation issues associated with a large

number of switching modes, it is developed for the independent and identically dis-

tributed (i.i.d.) switching, which is not Markovian switching. Besides, we are also

interested in large-scale DNCSs where the transition probabilities are inaccurately

known as in [106], [107], [53] because, in practice it is difficult to accurately estimate

the Markov transition probability matrix that models the random communication

delays.

This chapter provides two key contributions to analyze the stability of large-

scale DNCSs with random communication delays. Firstly, we guarantee the mean

square stability of such systems by introducing a reduced mode model. We prove

that the mean square stability for individual switched system implies a necessary

and sufficient stability condition for the entire DNCS. This drastically reduces the

number of modes necessary for analysis. Secondly, we present a new method to

estimate the bound for uncertain Markov transition probability matrix, in order to

guarantee the system stability. These results enable us to analyze large-scale systems

in a computationally tractable manner.

Rest of this chapter is organized as follows. We introduce the problem for the

large-scale DNCS in section 6.2. Section 6.3 presents the switched system framework

for the stability analysis with communication delays. In Section 6.4, we propose

the reduced mode model to efficiently analyze stability. Section 6.5 quantifies the

stability region and bound for uncertain Markov transition probability matrix. This
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is followed by the application of the proposed method to an example system in section

6.6, and we conclude the chapter with section 6.7.

Notation: The set of real numbers is denoted by R. The symbols ‖ · ‖ and ‖ · ‖∞

stand for the Euclidean and infinity norm, respectively. The symbol #(·) denotes

the cardinality – the total number of elements in the given set. In addition, the

symbols tr(·), ρ(·), ⊗, and diag(·) represent trace operator, spectral radius, Kronecker

product, and block diagonal matrix operator, respectively.

6.2 Problem Formulation

6.2.1 Distributed Networked Control System with No Delays

Consider a discrete-time dynamics of each agent in the DNCS, given by:

xi(k + 1) =
∑
j∈Ni

Aijxj(k), i = 1, 2, . . . , N, (6.1)

where k is a discrete-time index, N is the total number of agents (subsystems),

xi ∈ Rn is a state for the ith agent, Ni is a set of neighbors for xi including the

agent xi itself, and Aij ∈ Rn×n is a time-invariant system matrix that represents the

linear interconnections between agents. Note that we have Aij = 0 if there is no

interconnection between the agents i and j.

To represent the entire systems dynamics, we define the state x(k) ∈ RNn×Nn as

x(k) , [x1(k)>, x2(k)>, . . . , xN(k)>]>. Then, the system dynamics of the DNCS is

given as

x(k + 1) = Ax(k), (6.2)
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with the following definition for the matrix A ∈ RNn×Nn

A ,



A11 A12 A13 · · · A1N

A21 A22 A23 · · · A2N

A31 A32 A33 · · · A3N

...
...

...
. . .

...

AN1 AN2 AN3 · · · ANN


,

Aij =


0, if no connection between the agents i and j,

Aij, otherwise.

For the discrete-time system in (6.2), it is well known that the system is stable

if and only if the condition ρ(A) < 1 is satisfied. We assume that the system (6.2),

which is the case without communication delays is stable throughout the chapter.

Then, we address the problem to analyze the stability in the presence of random

communication delays. We remind the reader that N is very large.

6.2.2 DNCS with Communication Delays

Often, network communication between agents encounter time delays or packet

losses while sending and receiving data. We denote the symbol τ as random commu-

nication delays and assume that τ has a discrete value bounded by 0 ≤ τ ≤ τd <∞,

where τd is a finite-valued maximum delay. Then, the dynamics for the agent i with

communication delays can be expressed as:

xi(k + 1) =
∑
j∈Ni

Aijxj(k
∗), i = 1, 2, . . . , N, (6.3)
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where k∗ , k − τ . Note that we have no communication delays when i = j because

there is no communication in this case.

The random communication delay, represented by the term k∗, forms a stochastic

process. To analyze the stability of the DNCS, we define an augmented state X(k)

as X(k) , [x(k)>, x(k−1)>, · · · , x(k− τd)>]> ∈ RNnq×Nnq, where q , τd+1. Then,

the dynamics for the entire system is given by

X(k + 1) = W (k)X(k), (6.4)

where W (k) ,



Ã1(k) Ã2(k) · · · Ãq−1(k) Ãq(k)

I 0 · · · 0 0

0 I · · · 0 0

...
...

. . .
...

...

0 0 · · · I 0


∈ RNnq×Nnq,

the matrix I denotes an identity matrix with proper dimensions, and the time-

varying matrices Ãj(k) ∈ RNn×Nn, j = 1, 2, . . . , q, model the randomness in the

communication delays between neighboring agents.

6.3 Switched System Approach

Without loss of generality, the dynamics of the large-scale DNCS with commu-

nication delays in (6.4) can be transformed into a switched system framework as

follows:

x(k + 1) = Wσ(k)x(k), σ(k) ∈ {1, 2, · · · ,m}, (6.5)

where Wσ(k) is the time-invariant matrix, representing communication delays in

agents, {σ(k)} is the switching sequence, and m is the total number of switching

modes. When the switching sequence {σ(k)} is stochastic, (6.5) is referred to as
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a stochastic switched linear system or a stochastic jump linear system, according

to the literature [64]. For the stochastic switched linear system, the switching se-

quence {σ(k)} is governed by the mode-occupation switching probability π(k) =

[π1(k), π2(k), . . . , πm(k)], where πi is a fraction number, satisfying
∑m

i=1 πi = 1 and

0 ≤ πi ≤ 1, ∀i. In this case, each πi denotes the modal probability corresponding to

each mode dynamics Wi. In order to properly describe the behavior of random com-

munication delays, it is necessary to adopt a certain switching logic, which is used to

update the switching probability π(k). For this purpose, the MJLS framework has

been widely employed for decades as in [85], [84], [104], [86], [73]. Thus, we make

the following assumption in our analysis.

• Assumption: Consider the stochastic jump linear system (6.5) with the switch-

ing probability π(k) = [π1(k), π2(k), . . . , πm(k)]. Then, π(k) is updated by the

Markovian process given by π(k+1) = π(k)P , where P ∈ Rm×m is the Markov

transition probability matrix.

Since the MJLS is a family of the stochastic switched linear system, various stability

notions can be defined [34]. In this chapter, we will consider the mean square stability

condition, defined below.

Definition 6.1 (Definition 1.1 in [32]) The MJLS is said to be mean square sta-

ble if for any initial condition x0 and arbitrary initial probability distribution π(0),

lim
k→∞

E
[
||x(k, x0)||2

]
= 0.

The total number of switching modes m depends on the size q and N . Since

the communication delays take place independently while receiving and sending the

data for each agent, m is calculated by counting all possible scenarios to distribute

every matrices Aij ∈ Rn×n for i 6= j in the block matrix A ∈ RNn×Nn given in (6.2),
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into each Ãj(k) ∈ RNn×Nn, j = 1, 2, . . . , q, given in (6.4), which results in m =

qN(N−1). Note that the large-scale DNCS that has considerably large N brings about

extremely large m, which makes current analysis tools for the MJLS computationally

intractable.

Before we further proceed, we introduce the following proposition that was de-

veloped for the stability analysis of the MJLS.

Proposition 6.1 (Theorem 1 in [17]) The MJLS with the Markov transition prob-

ability matrix P is mean square stable if and only if

ρ
((
P> ⊗ I

)
diag(Wj ⊗Wj)

)
< 1, (6.6)

where I is an identity matrix with a proper dimension,

diag(Wj ⊗Wj) ,



(W1 ⊗W1) 0 0 · · · 0

0 (W2 ⊗W2) 0 · · · 0

...
. . .

...

0 0 (Wm-1 ⊗Wm-1) 0

0 0 . . . 0 (Wm ⊗Wm)


,

and m is the total number of the switching modes.

For the given set of matrices {Wσ(k)}mσ(k)=1 and the transition probability matrix

P , one can always compute the spectral radius given in (6.6), and hence guarantee

the system stability.

Unfortunately, this condition is not applicable to large-scale DNCSs due to enor-

mously large m. For example, even with q = 2 and N = 100, we have m = 2100×99. It

is not practically possible to compute the spectral radius in (6.6) for such problems.
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To circumvent this scalability issue, we present a new analysis approach for such

large-scale DNCSs in the next section.

6.4 Stability with Reduced Mode Dynamics

In this section, we define a new augmented state to reduce the mode numbers as

follows:

x̂i(k) , [x̃i(k)>, x̃i(k − 1)>, · · · , x̃i(k − τd)>]> ∈ Rn̂inq,

where n̂i , #(Ni), Ni stands for the set of neighbors to xi including itself, x̃i(k) ,

[xi(k)>, xj(k)>]> ∈ Rn̂in, and xj(k) ∈ Rn, j ∈ Ni, denotes all states that are neighbor

to xi(k) ∈ Rn.

Then, we can construct a switched linear system framework similarly to (6.5) as

follows:

x̂i(k + 1) = Ŵ i
σi(k)x̂i(k), σi(k) ∈ {1, 2, . . . ,mi}, (6.7)

where Ŵ i
σi(k) ,



Â1(k) Â2(k) · · · Âq−1(k) Âq(k)

I 0 · · · 0 0

0 I · · · 0 0

...
...

. . .
...

...

0 0 · · · I 0


∈ Rn̂inq×n̂inq

with the time-varying matrix Âj(k) ∈ Rn̂in×n̂in, j = 1, 2, . . . , q. In this case, the total

number of the switching modes for (6.7) is given by mi = qn̂i(n̂i−1).

By implementing the reduce mode model given in (6.7), we will provide a compu-

tationally efficient tool for the stability analysis of the original DNCS in the following

theorem.

132



Theorem 6.1 Consider the large-scale DNCS (6.5) with Markovian communication

delays associated with the transition probability matrix P . The necessary and suffi-

cient condition for the mean square stability of this system is then given by

ρ
(

(P i> ⊗ I)diag(Ŵ i
j ⊗ Ŵ i

j )
)
< 1, ∀i = 1, 2, . . . , N, (6.8)

where P i ∈ Rmi×mi is the transition probability matrix for the reduced mode MJLS

given in (6.7), I is an identity matrix with a proper dimension, N is the total number

of the agents in the system, mi = qn̂i(n̂i−1) is the total mode numbers for the reduce

mode MJLS, and

diag(Ŵ i
j ⊗ Ŵ i

j ) ,



(Ŵ i
1 ⊗ Ŵ i

1) 0 0 · · · 0

0 (Ŵ i
2 ⊗ Ŵ i

2) 0 · · · 0

...
. . .

...

0 0 (Ŵ i
mi-1
⊗ Ŵ i

mi-1
) 0

0 0 . . . 0 (Ŵ i
mi
⊗ Ŵ i

mi
)


.

Proof Let the matrix Qi(k) be of the form Qi(k) , E[x̂i(k)x̂i(k)>]. Then, Qi(k) is

alternatively obtained by the following equation: Qi(k) =

mi∑
s=1

Qi
s(k), where Qi

s(k) ,
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E
[
x̂i(k)x̂i(k)>|σi(k) = s

]
πis(k), and πis(k) , Pr

(
σi(k) = s

)
. Then, Qi

s(k) satisfies

Qi
s(k) =

mi∑
r=1

E[x̂i(k)x̂i(k)> | σi(k) = s, σi(k − 1) = r]

Pr(σi(k − 1) = r | σi(k) = s)πis(k)

=

mi∑
r=1

E[x̂i(k)x̂i(k)> | σi(k) = s, σi(k − 1) = r]

Pr(σi(k) = s | σi(k − 1) = r)︸ ︷︷ ︸
,pirs

πir(k − 1)

=

mi∑
r=1

pirs E[x̂i(k)x̂i(k)> | σi(k) = s, σi(k − 1) = r]πir(k − 1)

=

mi∑
r=1

pirs E[Ŵ i
σi(k−1)x̂i(k − 1)x̂i(k − 1)>Ŵ i>

σi(k−1) | σi(k − 1) = r]πir(k − 1)

=

mi∑
r=1

pirs Ŵ
i
r E[x̂i(k − 1)x̂i(k − 1)> | σi(k − 1) = r]πir(k − 1)︸ ︷︷ ︸

=Qir(k−1)

Ŵ i>

r

=

mi∑
r=1

pirs Ŵ
i
rQ

i
r(k − 1)Ŵ i>

r .

In the second equality of above equation, pirs denotes the mode transition probability

from r to s in the Markov transition probability matrix P i.

Taking the vectorization in above equation results in

vec
(
Qi
s(k)

)
= vec

(
mi∑
r=1

pirs Ŵ
i
rQ

i
r(k − 1)Ŵ i>

r

)

=

mi∑
r=1

pirsvec
(
Ŵ i
rQ

i
r(k − 1)Ŵ i>

r

)
=

mi∑
r=1

pirs(Ŵ
i
r ⊗ Ŵ i

r)vec(Qi
r(k − 1)).

In the last equality, we used the property that vec(ABC) = (C> ⊗ A)vec(B).
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Now We define a new variable yi(·)(k) , vec
(
Qi

(·)(k)
)

, which leads to

yis(k) =

mi∑
r=1

pirs(Ŵ
i
r ⊗ Ŵ i

r)y
i
r(k − 1).

By stacking yi(·)(k) from 1 up to mi, with a new definition for the augmented

state ŷi(k) , [yi1(k)> yi2(k)> . . . yimi(k)>]>, we have the following recursion equation:

ŷi(k) =



pi11(Ŵ i
1 ⊗ Ŵ i

1) pi21(Ŵ i
2 ⊗ Ŵ i

2) . . . pimi1(Ŵ i
mi
⊗ Ŵ i

mi
)

pi12(Ŵ i
1 ⊗ Ŵ i

1) pi22(Ŵ i
2 ⊗ Ŵ i

2) . . . pimi2(Ŵ i
mi
⊗ Ŵ i

mi
)

...
...

. . .
...

pi1mi(Ŵ
i
1 ⊗ Ŵ i

1) pi2mi(Ŵ
i
2 ⊗ Ŵ i

2) . . . pimimi(Ŵ
i
mi
⊗ Ŵ i

mi
)


︸ ︷︷ ︸

=(P i>⊗I)diag(Ŵ i
j⊗Ŵ i

j )



yi1(k − 1)

yi2(k − 1)

...

yimi(k − 1)


︸ ︷︷ ︸

=ŷi(k−1)

.

From the above equation, it is clear that ρ
(

(P i>⊗I)diag(Ŵ i
j ⊗Ŵ i

j )
)
< 1 implies

lim
k→∞

ŷi(k) = 0, and hence this leads to lim
k→∞

Qi(k) = 0 ⇐⇒ lim
k→∞

tr
(
Qi(k)

)
= 0 ⇐⇒

lim
k→∞

E
[
||x̂i(k)||2

]
= 0, which is the sufficient mean square stability condition for

x̂i(k). On the other hand, if we have ρ
(

(P i> ⊗ I)diag(Ŵ i
j ⊗ Ŵ i

j )
)
> 1, then ŷi(k)

will diverge, resulting in necessity for the mean square stability of x̂i(k). Hence,

the spectral radius being less than one is the necessary and sufficient mean square

stability condition for the state x̂i(k). Further, we have lim
k→∞

E
[
||x̂i(k)||2

]
= 0, ∀i =

1, 2, . . . , N ⇐⇒ lim
k→∞

E
[
||x(k)||2

]
= 0, where x(k) is the state for the DNCS defined

in (6.5). This concludes the proof. �

Remark 6.1 Theorem 6.1 provides an efficient way to analyze the stability for the

large-scale DNCSs. The key idea stems from the hypothesis that the stability of each

subsystem obtained by decomposing the original system will provide the stability of

the entire system. Without any relaxation or conservatism, theorem 6.1 proved the
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necessary and sufficient condition for stability, which is equivalent to (6.6) developed

for the mean square stability of the MJLS. Compared to the total number of modes in

the full state model (6.5), which is qN(N−1), the reduced mode model (6.7) has total∑N
i=1 q

n̂i(n̂i−1) modes. Consequently, the growth of mode numbers in full state model

is exponential with respect to N2, whereas that in reduced mode model is linear with

regard to N . Therefore, theorem 6.1 is computationally more efficient.

6.5 Stability Region and Stability Bound for Uncertain Markov Transition

Probability Matrix

The Markov transition probability matrix can be obtained from data of com-

munication delays. In general, this Markov transition probability matrix obtained

from statistics can be interpreted as representation of random communication delays

in an average manner. Thus, one can not estimate the exact transition probability

in practice, which leads to uncertainty in the Markov transition probability matrix.

In this section, we aim at developing a tool to measure the stability bound for un-

certain Markov transition probability matrix, in order to guarantee the stability of

large-scale DNCSs with uncertain Markovian communication delays.

As explained in section 3, the dimension of the Markov transition probability

matrix for the full state model is given by P ∈ Rm×m, where the number of switching

modes is m = qN(N−1). For fairly large N , it is practically intractable to handle such

a large-scale matrix. For example, even with q = 2 and N = 100, the mode number

is given by m = 2100×99, resulting in P ∈ R2100×99×2100×99
. However, the reduced mode

model developed in section 3 renders computation tractable because it results in huge

decrease in the mode numbers as well as the dimension of each Markov transition

probability matrix, by decomposing the original system into N numbers of reduced

mode systems. As a consequence, the reduced mode model yields N numbers of new
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Markov transition probability matrix P i, i = 1, 2, . . . , N , which has small size.

Here we assume that the new Markov transition probability matrix associated

with the each reduced mode is given by the following form: P i = P̄ i + ∆P i, i =

1, 2, . . . , N , where P̄ i is the nominal value and ∆P i is the uncertainty in the Markov

transition probability matrix for ith subsystem. Due to the variation in ∆P i, the

system stability may change and hence we want to estimate the bound for ∆P i, to

guarantee the system stability. Here we assume that ∆P i has the following structure:

∆P i ,



∆pi11 ∆pi12 · · · ∆pi1mi

∆pi21 ∆pi22 · · · ∆pi2mi
...

...
. . .

...

∆pimi1 ∆pimi2 · · · ∆pimimi


,∈ Rmi×mi

s.t.

mi∑
s=1

∆pirs = 0,∀r = 1, 2, . . . ,mi (6.9)

Since we have a constraint such that the row sum has to be zero for ∆P i in above

equation, we aim to find the feasible maximum bound for each row, εir, satisfying the

inequality |∆pirs| ≤ εir, ∀r, in order to guarantee the system stability. Then, each εir

for r = 1, 2, . . . ,mi can be obtained by the following two steps.

Step 1: Solve Linear Programming (LP)

maximize 1>z (for upper bound) (6.10)(
or minimize 1>z (for lower bound)

)
subject to A|z| < bs, ∀s = 1, 2, . . . ,mi (6.11)

lbs ≤ zs ≤ ubs,∀s = 1, 2, . . . ,mi (6.12)
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where

zs , [∆pi1s, ∆pi2s, · · · , ∆pimis]
>,

z , [z>1 , z
>
2 , · · · , z>mi ]

>,

A ,
[
α1, α2, · · · , αmi

]
, with αj ,‖ Ŵ i

j ⊗ Ŵ i
j ‖∞, j = 1, 2, . . . ,mi,

bs , 1−
mi∑
r=1

αrp̄
i
rs,

lbs , [−p̄i1s, −p̄i2s, · · · − p̄imis]
>,

ubs , [1− p̄i1s, 1− p̄i2s, · · · 1− p̄imis]
>.

The inequality constraint (6.11) in the LP problem guarantees the mean square

stability by the forthcoming Lemma 6.1 and Theorem 6.2. The term lbs and ubs in

(6.12) are the lower and upper bounds for zs, respectively, according to 0 ≤ pirs =

(p̄irs + ∆pirs) ≤ 1.

Step 2: Obtain Feasible Solution with Hyperplane Constraint

We can compute the feasible maximum bound for ∆pirs as follows.

εir = min
(
min(|εir,lb|),min( |εir,ub|)

)
, r = 1, 2, . . . ,mi. (6.13)

where

εir,lb , [(∆pir1)?lb, (∆pir2)?lb, . . . , (∆pirm)?lb]>,

εir,ub , [(∆pir1)?ub, (∆pir2)?ub, . . . , (∆pirm)?ub]>,

and (∆pirs)
?
lb, (∆pirs)

?
ub denote optimal lower and upper bounds for ∆pirs, obtained
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Figure 6.1: The geometry of the Stability Region Analysis for the uncertain Markov
transition probability matrix when mi = 2. Each region is described in the figure.

from the LP, respectively.

Since upper or lower bounds are solved by maximizing or minimizing the objective

function, (∆pirs)
? has different values for upper and lower bounds. Fig.6.1 shows the

geometry of stability region analysis for uncertain transition probability matrix. The

region S1 stands for the bounds that come from −p̄irs ≤ ∆pirs ≤ 1 − p̄irs. S2 can be

obtained from inequality constraint (6.11). The region S3 denotes the solution from

the LP, and S is the feasible maximum bound with a stability guarantee. Note

that ∆P i satisfies
∑mi

s=1 ∆pirs = 0, ∀r and hence, feasible solutions should lie on the

hyperplane, satisfying ∆pir1 +∆pir2 + . . .+∆pirmi = 0, ∀r. Therefore, we can compute

the feasible maximum bound from (6.13) for each row r.

Now we prove that the inequality constraint (6.11) guarantees the system stabil-

ity. For this purpose, the following Lemma 6.1 will be used.
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Lemma 6.1 Consider a block matrix X defined by

X =



X11 X12 · · · X1m

X21 X22 · · · X2m

...
...

...
...

Xm1 Xm2 · · · Xmm


,

where matrix Xij ∈ Rn×n. Then, we have ρ (X) < 1, if
m∑
j=1

‖Xij‖∞ < 1, ∀i =

1, 2, . . . ,m.

Proof For the block matrix X given above, the following inequality condition ‖

X ‖∞≤ maxi
∑m

j=1 ‖ Xij ‖∞ holds. Also, it is well known that ρ(X) ≤ ‖ X ‖p for

any choice of p.

Therefore, we conclude that

m∑
j=1

‖ Xij ‖∞< 1, ∀i = 1, 2, . . . ,m.

⇒ ρ(X) ≤‖ X ‖∞< 1.

�

Theorem 6.2 Consider the MJLS (6.5) for the large-scale DNCS with communica-

tion delays. Then, (6.5) is mean square stable if

mi∑
r=1

αr|∆pirs| < βs,
∀s = 1, 2, . . . ,mi,

∀i = 1, 2, . . . , N

where αr =‖ Ŵ i
r ⊗ Ŵ i

r ‖∞ and βs = 1−
mi∑
r=1

p̄irs ‖ Ŵ i
r ⊗ Ŵ i

r ‖∞, is satisfied.
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Proof If the Markov transition probability matrix for the system in (6.7) has the

uncertainty denoted by P i = P̄ i + ∆P i, then the term ρ
(

(P i>⊗ I) diag(Ŵ i
j ⊗ Ŵ i

j )
)

in (6.8) can be expressed as

ρ
(

(P i> ⊗ I)diag(Ŵ i
j ⊗ Ŵ i

j )
)

=ρ
((

(P̄ i + ∆P i)
> ⊗ I

)
diag(Ŵ i

j ⊗ Ŵ i
j )
)

=ρ

((
(P̄ i> ⊗ I) + (∆P i> ⊗ I)

)
diag(Ŵ i

j ⊗ Ŵ i
j )

)
=ρ

(
(P̄ i> ⊗ I)diag(Ŵ i

j ⊗ Ŵ i
j ) + (∆P i> ⊗ I)diag(Ŵ i

j ⊗ Ŵ i
j )

)
≤ ‖ (P̄ i> ⊗ I)diag(Ŵ i

j ⊗ Ŵ i
j ) + (∆P i> ⊗ I)diag(Ŵ i

j ⊗ Ŵ i
j ) ‖∞

≤ ‖ (P̄ i> ⊗ I)diag(Ŵ i
j ⊗ Ŵ i

j ) ‖∞ + ‖ (∆P i> ⊗ I)diag(Ŵ i
j ⊗ Ŵ i

j ) ‖∞, (6.14)

In the first inequality, we used the fact that ρ(·) ≤‖ · ‖∞ and the sub-multiplicative

property was applied in the last inequality. The block matrix structure for each term

of the last inequality is alternatively expressed as follows:

∥∥∥(P̄ i> ⊗ I)diag(Ŵ i
j ⊗ Ŵ i

j )
∥∥∥
∞

=

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥



p̄i11I p̄i21I · · · p̄imi1I

p̄i12I p̄i22I · · · p̄imi2I

...
... · · · ...

p̄i1miI p̄i2miI · · · p̄imimiI


︸ ︷︷ ︸

=(P̄ i
>⊗I)



Ŵ i
1 ⊗ Ŵ i

1 0 · · · 0

0 Ŵ i
2 ⊗ Ŵ i

2 0

...
. . .

0 0 Ŵ i
mi
⊗ Ŵ i

mi


︸ ︷︷ ︸

=diag(Ŵ i
j⊗Ŵ i

j )

∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥∥
∞
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=

∥∥∥∥∥∥∥∥∥∥∥∥∥

γ1p̄
i
11 γ2p̄

i
21 · · · γmi p̄

i
mi1

γ1p̄
i
12 γ2p̄

i
22 · · · γmi p̄

i
mi2

...
...

. . .
...

γ1p̄
i
1mi

γ2p̄
i
2mi

· · · γmi p̄
i
mimi

∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

,

where γj = (Ŵ i
j ⊗ Ŵ i

j ), j = 1, 2, . . . ,mi, and similarly,

∥∥∥(∆P i> ⊗ I)diag(Ŵ i
j ⊗ Ŵ i

j )
∥∥∥
∞

=

∥∥∥∥∥∥∥∥∥∥∥∥∥

γ1∆pi11 γ2∆pi21 · · · γmi∆p
i
mi1

γ1∆pi12 γ2∆pi22 · · · γmi∆p
i
mi2

...
...

. . .
...

γ1∆pi1mi γ2∆pi2mi · · · γmi∆p
i
mimi

∥∥∥∥∥∥∥∥∥∥∥∥∥
∞

.

By applying the result in Lemma 6.1 into (6.14), it is guaranteed that

ρ
(

(P i> ⊗ I)diag(Ŵ i
j ⊗ Ŵ i

j )
)
< 1, if the following condition

mi∑
r=1

αr|∆pirs|+
mi∑
r=1

αrp̄
i
rs < 1, ∀s = 1, 2, . . . ,mi,

where αr , ||Ŵ i
r ⊗ Ŵ i

r ||∞, is satisfied.

Therefore, (6.5) is mean square stable by Theorem 6.1 if it is guaranteed that

mi∑
r=1

αr|∆pirs| < βs,
∀s = 1, 2, . . . ,mi,

∀i = 1, 2, . . . , N,

where βs , 1−
∑mi

r=1 αrp̄
i
rs. �
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6.6 Numerical Example

We consider the DNCS that has random communication delays, where the total

number of agents is denoted by N . The state for each agent is updated by the

following scalar discrete-time dynamics:

xi(k + 1) =
∑
j∈Ni

aijxj(k
∗), i = 1, 2, . . . , N, (6.15)

where aij ,


0.7, j = i,

−0.14, j ∈ {i− 1, i+ 1},

0, otherwise.

When there is no communication delay (i.e., k∗ = k), the dynamics for the entire

DNCS is obtained by (6.2) as follows:

X(k + 1) = AX(k),

A =



0.7 −0.14 0 0 · · · 0

−0.14 0.7 −0.14 0 · · · 0

0 −0.14 0.7 −0.14 · 0

... · . . . . . . . . .
...

0 · · −0.14 0.7 −0.14

0 0 · · · 0 −0.14 0.7


∈ RN×N .

In this case, the stability is computed by ρ(A) = 0.9523 < 1, which assures that

the given DNCS without communication delays is stable. However, communications

(e.g., wireless network) may be delayed in practice and thus, above stability result

is no longer guaranteed. Therefore, it is required to test the system stability in the
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existence of random communication delays.

6.6.1 Stability Analysis with Random Communication Delays

We assume that the communication delay τ is bounded by 0 ≤ τ ≤ τd = 1, i.e.,

k∗ = {k, k − 1}, ∀i = 1, 2, . . . , N , which implies q = 2. Also, we assume that all

communication delays for each agent (6.15) are governed by the Markov process with

an initial probability distribution π(0) and the Markov transition probability matrix

P , given by

π(0) = [1, 0], P =

0.6 0.4

0.3 0.7

 . (6.16)

For this system, even with N = 100, the full state model (6.5) has total qN(N−1) =

2100×99 modes. It is computationally intractable to deal with 2100×99 numbers of

subsystem dynamics, in order to analyze system stability. In contrast, the reduce

mode model (6.7) has total
∑N

i=1 q
n̂i(n̂i−1) = 98× (23×2) + 2× (22×1) = 6280 modes.

Furthermore, the proposed method to reduce the mode numbers fully maximizes

its own advantage by considering the symmetric property between agents, which

cannot be implemented on the full state model. Since subsystems are symmetric for

∀i = 2, 3, . . . , N − 1 and for ∀i = 1, N , we only need to check the stability condition

for these two cases. Taking into account the symmetric structure, the reduced mode

model results in total 23×2 + 22×1 = 68 modes. Compared to 2100×99 numbers of

modes, the proposed method leads to huge decrease in the mode numbers.

The spectral radius for i = 2, 3, . . . , 99 is computed by ρ
(

(P i> ⊗ I) diag(Ŵ i
j ⊗

Ŵ i
j )
)

= 0.8208 < 1, where P i = (P ⊗ P ⊗ P ⊗ P ). For i = 1 and N , we have

ρ
(

(P i> ⊗ I)diag(Ŵ i
j ⊗ Ŵ i

j )
)

= 0.7214 < 1, where P i = (P ⊗ P ). Consequently,

this system is stable in the mean square sense by Theorem 6.1. The state trajectory
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Figure 6.2: State trajectories of each agent for the DNCS with the Markovian
communication delays. Initial conditions are randomly generated for the state xi,
i = 1, 2, . . . , 100.

plot also supports this result, as shown in Fig. 6.2. For this simulation, initial

condition was assumed to be uniformly distributed in [−1, 1], and was generated

by manipulating the MATLAB
R

command rand(...) that generates uniformly

distributed pseudo random numbers between 0 and 1.

6.6.2 Stability Bound for Uncertain Markov Transition Probability Matrix

In order to solve the LP to estimate the bound for uncertain Markov transition

probability matrix, we used MATLAB
R

with CVX [42], a Matlab-based software for

convex optimization.

6.6.2.1 Scalar system

Although the proposed method to estimate maximum bound for uncertain Markov

transition probability matrix is developed for the large-scale DNCS, it is also applica-

ble to general MJLS. We adopted a following example, introduced in [53] to compare
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the performance of maximum bound estimation.

Consider the following MJLS that has two modes with scalar discrete-time dy-

namics.

x(k + 1) = aσ(k)x(k), σ(k) ∈ {1, 2},

a1 = 1/2, a2 = 5/4.

The Markov transition probability matrix has the form of P = P̄ + ∆P , where

P̄ =

0.4 0.6

0.5 0.5

 , ∆P =

∆p11 ∆p12

∆p21 ∆p22

 , 2∑
j=1

∆pij = 0, ∀i = 1, 2.

After applying the two steps proposed in this chapter, we obtained the maximum

bound ε1 = 0.4, ε2 = 0.02 whereas [53] gives the value as ε1 = ε2 = 0.021, which is

more conservative. For stability check, among all possible scenarios with |∆prs| ≤ εr,

∀r, s = 1, 2, we have max ρ
(

(P>⊗I)diag(aj⊗aj)
)

= 1, which is a marginal value for

stability. Hence, the system is stable with obtained maximum bound that is more

relaxed than [53].

6.6.2.2 The DNCS with random communication delays

Recalling the DNCS example, let us denote P̄ as a nominal Markov transition

probability matrix, which represents the transition probability in k∗ ∈ {k, k − 1}.

We assume that P̄ has the same structure with P in (6.16). Then, the new Markov

transition probability matrix associated with the reduced mode model is calculated

by P̄ i = P̄ ⊗ P̄ for i = 1, N and P̄ i = (P̄ ⊗ P̄ ⊗ P̄ ⊗ P̄ ) for i = 2, 3, . . . , N − 1.

More details on synthesizing new Markov transition probability matrix can be found

in [97] (see Page 2001).
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The feasible solution with the LP provides the maximum bound εi = [εi1, ε
i
2, . . . ε

i
16]

= 10−2× [0.37, 0.23, 0.23, 0.86, 0.23, 0.86, 0.86, 1.23, 0.23, 0.86, 0.86, 1.23, 0.86, 1.23,

1.23, 1.72], ∀i = 2, 3, . . . , N − 1. For i = 1 and N , we obtained εi = [εi1, ε
i
2, ε

i
3, ε

i
4] =

10−2 × [0.75, 2.25, 2.25, 3.75]. Therefore, we can assure that N inverted pendulum

system is mean square stable if the uncertainty in the Markov transition probability

matrix is within the bound such that |∆pirs| ≤ εir, ∀r and ∀i = 1, 2, . . . , N .

6.7 Concluding Remarks

This chapter studied the mean square stability of large-scale DNCSs in connection

with random communication delays. Although the Markov jump linear system has

been widely adopted to model the systems associated with random communication

delays, it inevitably results in a huge number of modes for the large-scale DNCSs,

making current stability analysis tools intractable. To avoid this scalability problem,

we provided a new analysis framework, which incorporates a reduced mode model

that scales linearly with respect to the number of agents. Additionally, we presented

a new method to estimate stability bound for uncertain Markov transition probability

matrix, in order to guarantee the stability of DNCSs. We showed that this method is

less conservative than those proposed in the literature. The validity of the proposed

methods were verified by the numerical example.
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7. CONCLUSIONS

This dissertation investigated the switched system, particularly for the analy-

sis and synthesis, and applications to large-scale asynchronous switched dynami-

cal systems. For the uncertainty propagation of the state in the switched system,

this dissertation developed a novel method, “split-and-merge” algorithm, which en-

ables the performance and robustness analysis in both transient and steady-state

time. The proposed method provides new tools for uncertainty quantification of

the state, avoiding the computational intractability caused by exponential growth

of the component-wise state PDFs. Also, the optimal switching synthesis method

was developed for the general switched system having state uncertainty. With an

implementation of the receding horizon framework, the proposed methods can be

used to design the switching sequence for the optimal performance of the switched

system. This synthesis methods can be applied to the optimal controller switching.

As case studies for the switched system, this dissertation introduced massively

parallel asynchronous numerical algorithm, implemented on 1D heat equation, large-

scale asynchronous distributed quadratic programming problem, and large-scale dis-

tributed networked control system with random communication delays. Since the

asynchrony is a completely random event and thus results in uncertainty, a proper

method is necessarily required to model such an asynchrony. Toward this end, this

dissertation showed that the behavior of asynchrony in distributed and parallel com-

puting can be naturally modeled by switched dynamical system. Then the analysis

was carried out based on the switched system framework. Also, this switched system

framework was applied to the large-scale distributed networked control systems with

random communication delays, to develop the stability condition for such systems.
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The major contributions of this dissertation can be summarized as follows:

1) For general stochastic switched systems, performance and the robustness anal-

ysis tools were developed with the Wasserstein metric. With a novel “Split-

and-Merge” algorithm, the scalability issues in uncertainty propagation, due

to the exponential increase in the number of modal PDFs, was circumvented.

These results addressed both transient and steady-state behavior of stochastic

jump linear systems and can be implemented in a computationally efficient

manner. The new framework for the performance and the robustness analysis

are applicable to general jump linear systems, that may not satisfy Markovian

properties.

2) The new method for optimal switching synthesis was proposed with respect to

general switched systems in conjunction with Gaussian initial state uncertainty.

The Wasserstein metric that defines a distance between PDFs was adopted

to measure both the performance and the stability of the switched systems.

It was shown that the optimal performance of the system can be obtained

by synthesizing switching laws via minimization of objective function while

guaranteeing the mean square stability.

3) Through the switched system, the convergence, rate of convergence, and error

probability were analyzed for asynchronous parallel numerical algorithms. The

asynchronous scheme achieves better performance in terms of the total compu-

tation time, particularly when massively parallel computing is required. As a

counter effect of implementing asynchronous algorithms, it causes uncertainty

in the solution. To depict and analyze this uncertainty, the switched system

was introduced. To cope with scalability issues associated with large mode

numbers, new methods were developed with the Lyapunov method.
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4) The convergence of asynchronous distributed QP problems was analyzed via

dual decomposition technique. The behavior of asynchrony in distributed and

parallel computing was investigated by the switched system framework. Since

the switching mode number becomes large for massively asynchronous comput-

ing algorithm, we developed a new algorithm, which drastically decreases mode

number. With a new algorithm proposed in this study, the mean square con-

vergence can be tested without any computational intractability. In addition,

the analytic expression for the rate of convergence was derived to compare the

speed of convergence for three different schemes (e.g., synchronous, determin-

istic asynchronous, and stochastic asynchronous algorithms).

5) The computationally efficient test condition was devised for the mean square

stability of large-scale DNCSs having random communication delays. Al-

though, this system does not have direct connection with asynchronous dy-

namical systems, the characteristics of such random communication delays,

effectively represented by Markov jump linear systems, can be regarded as

asynchronous communication. To avoid the scalability problem that is en-

countered by large mode numbers, the reduced mode model was introduced,

which scales linearly with respect to the number of agents. Additionally, a

new method was developed to estimate stability bound for uncertain Markov

transition probability matrix, in order to guarantee the stability of DNCSs.

The proposed method was proved to be less conservative than those proposed

in the literature.
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APPENDIX A

PROOF FOR CHAPTER 2

A.1 Proof of Proposition 2.4

Proof From (3.7) and (2.6), we have

W 2 =

∫
Rn
‖ x ‖2

`2(Rn) ς(x)dx =

∫
Rn
‖ x ‖2

`2(Rn)

m∑
j=1

πjςj(x)dx

=
m∑
j=1

πj

∫
Rn
‖ x ‖2

`2(Rn) ςj(x)dx =
m∑
j=1

πjW
2
j , (A.1)

where Wj , W (ςj(x), δ(x)).

Also, we can compute Ŵ 2 , W 2(N (µ̂, Σ̂), δ(x)) from Proposition 2.2 as follows.

Ŵ 2 =‖ µ̂ ‖2
`2(Rn) +tr(Σ̂)

(2.15)
= µ̂>µ̂+ tr

(
m∑
j=1

πj

(
Σj + (µj − µ̂)(µj − µ̂)>

))
. (A.2)

Since tr(·) is linear operator and
m∑
j=1

πj = 1, (A.2) becomes

Ŵ 2 = µ̂>µ̂+
m∑
j=1

πjtr (Σj) + tr

(
m∑
j=1

πjµjµ
>
j

)
−

tr

((
m∑
j=1

πjµj

)
µ̂>

)
− tr

µ̂( m∑
j=1

πjµj

)>+ tr
(
µ̂µ̂>

)
. (A.3)

Now, we recall from (2.15) that µ̂ =
m∑
j=1

πjµj, and that µ̂>µ̂ = tr
(
µ̂>µ̂

)
=
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tr
(
µ̂µ̂>

)
. Consequently, the first, fourth, fifth and sixth terms in (A.3) cancel out,

resulting in

Ŵ 2 =
m∑
j=1

πjtr (Σj) +
m∑
j=1

πj tr
(
µjµ

>
j

)
=

m∑
j=1

πj
(
‖ µj ‖2

`2(Rn) + tr (Σj)
)

=
m∑
j=1

πjW
2
j . (A.4)

From (A.1) and (A.4) W 2 = Ŵ 2 for any time index k. Therefore,

W 2(k) = Ŵ 2(k) =
m∑
j=1

πj(k)
(
‖ µj(k) ‖2

`2(Rn) + tr
(
(Σj(k)

))
= tr

(
m∑
j=1

πj(k)
(
µj(k)µj(k)> + Σj(k)

))
. (A.5)

Here, µj(k) and Σj(k) are corresponding modal mean and covariance of the Gaussian

mixture at time k, obtained from the synthetic Gaussian N (µ̂(k − 1), Σ̂(k − 1)) at

time k − 1, i.e.,

µj(k) = Ajµ̂(k − 1), Σj(k) = AjΣ̂(k − 1)A>j . (A.6)

Replacing µj(k) and Σj(k) in (A.5) with (A.6) results in

W 2(k) = tr

 m∑
j=1

πj(k)Aj

(
µ̂(k − 1)µ̂(k − 1)> + Σ̂(k − 1)

)
︸ ︷︷ ︸

,Φ(k−1)

A>j


= tr

( m∑
j=1

πj(k)A>j Aj

)>
Φ(k − 1)

 . (A.7)

Since the trace is invariant under cyclic permutation, the property tr(ABC) =
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tr(CAB) was applied between first and second line of above equations. Moreover,

using the trace property tr(X>Y ) = vec(X)>vec(Y ), (A.7) can be expressed as

W 2(k) = vec

(
m∑
j=1

πj(k)A>j InAj

)>
vec
(

Φ(k − 1)
)
, (A.8)

where In is n× n identity matrix.

Applying vec(ABC) =
(
C> ⊗ A

)
vec(B) to the first term of (A.8), we obtain

W 2(k) =

(
m∑
j=1

πj(k)
(
A>j ⊗ A>j

)
vec (In)

)>
vec
(

Φ(k − 1)
)

= vec (In)>
(

m∑
j=1

πj(k) (Aj ⊗ Aj)

)
vec
(

Φ(k − 1)
)
. (A.9)

Recalling (A.2), we have W 2 = Ŵ 2 =‖ µ̂ ‖2
`2(Rn) +tr(Σ̂) = tr

(
µ̂µ̂> + Σ̂

)
=

tr
(
I>n

(
µ̂µ̂> + Σ̂

))
. Again, from the trace property tr(X>Y ) = vec(X)>vec(Y ),

above equation with time index k further becomes

W 2(k) = Ŵ 2(k) = vec(In)>vec
(

Φ(k)
)
, (A.10)

where Φ(k) , µ̂(k)µ̂(k)> + Σ̂(k). Similarly, W 2 at k − 1 becomes,

W 2(k − 1) = Ŵ 2(k − 1) = vec(In)>vec
(

Φ(k − 1)
)
. (A.11)

Finally, from the recurrence relation between (A.9) and (A.11), we conclude that

W 2(k) = Ŵ 2(k) = vec(In)>Γ(k)vec
(

Φ(0)
)

= vec(In)>Γ(k)vec
(
µ̂(0)µ̂(0)> + Σ̂(0)

)
,
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where Γ(k) ,
1∏
i=k

(
m∑
j=1

πj(i)(Aj ⊗ Aj)

)
. �
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