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ABSTRACT 

 

This dissertation presents the experimental studies of low energy microplasma 

discharges in liquid and the model studies of microdischarge-generated microbubbles in 

liquid. The main focus is to determine the properties of the microbubble and relate them 

to the initiation and dynamics of the observed microplasma. Microplasma in liquid 

began to draw researchers’ attention in recent decades because of its low energy input, 

micron scale size and nanosecond scale duration. The understanding of plasma 

discharges in gases has been well established; however, the mechanism of plasma 

initiation in liquid is still unclear. Several theories were proposed to provide different 

explanations of this mechanism, but none of them have been proven exclusively correct. 

Results here show that the generation of a microplasma needs higher energy than the 

generation of a microbubble from the same discharges. This supports the theory that 

during the microplasma initiation a lower density gaseous site is generated before the 

microplasma and the microplasma exists inside a microbubble. The typical form of a 

plasma and bubbles in liquid reported in literature are branch-like structures. Here we 

report spherical microplasma and microbubble afforded by relatively lower energy input, 

and it was found that for branched bubbles increasing the ambient pressure was able to 

reduce the microbubble size and eliminate its branches. The dynamics of the spherical 

bubbles could be modeled with a customized Rayleigh-Plesset model considering both 
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condensable and incondensable gases in the bubble, the initial neutral temperature and 

neutral pressure were estimated to be as high as 550 K and 1.2 GPa. 
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CHAPTER I  

INTRODUCTION 

1.1 Background 

Plasma, as the fourth state of matter, plays a very important role in our universe. 

As suggested in the book “Physics of the Plasma Universe” [1], the plasma composes 

99.999% of the known matter in universe. Why is the plasma so common in our 

universe, but pretty rare on earth? The answer to this question can be very complicated. 

In general, plasma is widely spread in the outer space, and is one of the main constituent 

of it. Langmuir firstly defined the plasma as a partially or fully ionized gas containing a 

collection of randomly moving charged particles [2]. 

Different from the other three states of matter, the research on the plasmas has 

not been a long time. From application perspective, however, the plasma based industrial 

products have been widely used in many areas such as semiconductor industry, water 

treatment industry, chemical analysis industry, surface treatment industry, nuclear 

industry, etc. Without the plasma based etching technique, a CPU based on vacuum tube 

transistors is probably still as big as a room. On the other hand from fundamental 

understanding perspective, there left many unknown properties of plasma and 

microplasma waiting us to explore.  

The research objective of this dissertation is to investigate microplasma 

generation and microdischarge generated microbubbles in liquid. The plasma generation 

in different gases have been investigated for decades, but the microplasma in liquid with 
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low energy input only drew attentions in recent decades. Non-equilibrium transient 

plasma with the duration in nanosecond scale and the size in micron scale was used to 

explore the mechanism of microplasma generation in liquid in this work. The 

investigation of general background concerning the plasma, the non-equilibrium (non-

thermal) plasma, the hypothesis of mechanism of plasma and microbubble generation in 

liquid, and some observational techniques is introduced in the following sections.  

1.2 Motivation 

 

 

Figure 1. Different Forms of Plasma in Universe [3](Copyright © 1996 Contemporary 

Physics Education Project (CPEP) – CPEPweb.org)  
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Diversified forms of plasmas exist in our universe as presented in Figure 1. High 

vacuum and high energy sites in the universe provide them the stage, whereas only can 

the lightning and flames be seen on our earth. In Figure 1, there is a gradient grey area 

which marks as “Solids, liquids and gases. Too cold and dense for classical plasma to 

exist”. The description of this region actually answers the reason why the natural plasma 

is not very common on the earth. That is due to the “cold” (but being suitable for lives) 

temperature. Right above this grey area is the nuclear fusion application, which implies 

that this no-classical-plasma-existence area has its similarities (high number density) to 

some thermal nuclear traditional plasmas. The investigation of the plasma generation in 

this grey area has its potential for the exploration of the nuclear fusion. The general 

motivation of this research is to push the plasma research boundary into that grey region.  

As briefly introduced in previous subsections, plasma as the fourth state of matter 

has many unique characteristics. Fundamental research wise, there are many unknowns 

concerning the microplasma generation in liquids. The discharges in liquid, also called 

plasma discharges in liquid, have been investigated for a long time. But due to the 

limitation on the control of energy inputs, the fabrication of microstructure electrodes, 

the control of the discharge duration, and the observational and analysis equipment, the 

investigation of microplasma generation in liquid was not practical even 20 years ago. 

Macro scale discharges in liquid were studied and will be introduced in the next chapter. 

The generation of plasma in liquid, the streamers following the plasma discharges, the 

generation of a large number of bubbles, the generation of many branch like channels, 

complicates the generation mechanism of plasma in liquid. Many phenomena occurring 
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at the same time makes it hard to distinguish them and identify the cause for each of 

them.  

Thanks to the development of the high voltage power supply, the high speed 

switch (e.g. spark gap), the microfabrication techniques for micro structure in micron 

scale, the high speed cameras with shutter speed up to nanosecond scale and the GHz 

data acquisition oscilloscope, the experimental research of microplasma in liquid 

becomes possible. Since the energy input for the microplasma is in milli joule scale, 

there is only one plasma spot generated at the tip of the electrode. Without the 

distractions created by high energy discharges described above, the observation of the 

initiation mechanism of microbubble and microplasma can become much clearer.  

The duration of microplasma is in nanosecond scale. Current experimental 

research on the microplasma by using the nanosecond gated ICCD camera and the 

nanosecond response timed photomultiplier tube still has its limitation. The research of 

the microbubble generated with the plasma provides a different path for the study of the 

microplasam generation. The microbubble was observed to coexist with the microplasma 

at the first 100 ns, and the duration of the microbubble can be as long as in microsecond 

scale. The data and image acquisition for microsecond events is easier than the 

nanosecond events. In the first 100 ns, the microplasma and microbubble coexisted, and 

the research of the microbubble in first 100 ns can benefit our understanding of the 

nanosecond duration microplasma in liquid. The objective of the study of micro 

discharge generated microbubble is to investigate the thermodynamic properties of 

microplasma.   
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Besides the intrigues of fundamental understanding of plasma discharges in gas 

and liquid, there still have many industrial applications. A microplasma discharge on an 

onion cell is presented in the Figure 2. The idea to use microplasma discharge in liquid 

for the cancer cell treatment as introduced in the previous subsection is the most updated 

research. Liquid consists of 60% to 70% percent of human body, and the discharges 

being operatable in aqueous environment is critical in this research. 

 

 

  

 

Figure 2. Microdischarge on One Onion Cell 
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1.3 Dissertation Statement 

The goal of this dissertation is to establish the knowledge and techniques 

necessary to investigate the low energy microplasma discharge in liquid. The study 

addresses issues such as 

 the time-resolved light emission from the microplasma discharge in liquid, 

 the dynamics of a spherical microbubble generated by a micro discharge in liquid 

under atmospheric pressure, 

 the dynamics of a spherical microbubble generated by a micro discharge in liquid 

under different ambient pressures, 

 the transition from an aspherical microbubble generated by a micro discharge in 

liquid to a spherical microbubble. 

To accomplish this goal, microplasma discharges in liquid with different energy 

inputs, different applied peak voltages, different size of microelectrode tips, different 

conductivities of liquid, different surface tensions and different ambient pressures were 

all employed in this research for a parametric study of the initiation and evolution of the 

microplasma and the microdischarge generated microbubbles in liquid.  

1.4 Dissertation Overview 

This dissertation contains 7 chapters. Chapter I briefly introduces the general 

background of plasmas, the motivation of this research, the dissertation statement and 

overview.  
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Chapter II narrows the scope to the background of natural plasma and artificial 

plasma, the identification of ‘hot’ plasma and ‘cold’ plasma, the plasma discharge in gas, 

and the plasma discharge in liquid. In addition, the equipment usage and literature 

review very related to the research are covered in this dissertation.  

The experimental setups are introduced individually in each chapter from 

Chapter III to Chapter VI. With the background introduction and the literature review, 

one research topic of microplasma light emission in liquid begins to commence in 

Chapter III.  In Chapter III, the microplasma light emission is detailed studied of the 

duration, the initiation timing, the rising time and the interaction between the 

microplasma light emission and microdischarge generated microbubble. One significant 

finding covered in this chapter is that from the energy perspective it was found the 

microdischarge generated microbubble requires lower energy to generate than the 

microplasma with all conditions same. Experimentally, it was proved that the 

microbubble can be generated prior to the initiation of miroplasma, and the microbubble 

provides an ideal inception site for the microplasma generation.  

In addition to the knowledge of the coexistent of the microplasma and the 

microbubble at the first 100 ns, a thorough investigation of microdischarge generated 

microbubble is presented in Chapter IV. In Chapter IV, the radius change of 

microbubble versus time was accurately recorded. Based on the experimental data of the 

radius change, the Rayleigh-Plesset model was then used to calculate and estimate the 

thermodynamic properties of the microbubble. It was estimated that the microbubble 
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share a high temperature and pressure environment with the microplasma during the first 

fraction of a microsecond when they coexist. 

The dynamics of the microdischarge generated microbubble was driven by the 

pressure difference between the pressure inside of the bubble and the pressure outside of 

the bubble. In Chapter V, a parametric study of microbubble’s dynamics in a pressure 

controlled environment was investigated. It was found that the ambient pressure can 

significantly change the duration and the maximum radius of the microbubble. 

Furthermore, it was found that the microbubble’s dynamics presented more uncertainty 

with high ambient pressures.  

Most microbubbles presented in this dissertation are spherical bubbles. With state 

of the art experimental equipment, the energy input was reduced to microjoule and the 

electrical field was increased to GV/m scale at the microelectrode tip. In most plasma 

generation in liquid research, bubbles were either branch like or aspherical which were 

all addressed in Chapter II. In Chapter VI, the mechanism of the aspherical microbubble 

was studied experimentally, and a transition from spherical bubbles to aspherical 

bubbles were found experimentally as well. The findings for the transition from 

branched microbubbles to spherical microbubbles were used to further our 

understandings and techniques to create high energy density areas, control the size of 

microplasma and test the ambient pressure sensitivity of microplasma initiation.  

A conclusion for this dissertation and the future work for this research is 

described in Chapter VII.  
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It should be mentioned that one journal paper “Microbubble Generation by 

Microplasma in Liquid” [4], two conferences paper “Thresholds for Microbubble & 

Microplasma Generation in Liquid”, “PMT & ICCD Investigation of Light Emission 

from Microplasma Generated in Liquid” [5, 6], and one presentation “Experimental & 

Modeling Analysis of the Single Micro Bubble Generation by Micro Plasma in Water” 

[7] have been generated from this research. In addition, two journal papers “Thresholds 

of Low Density Region & Light Emission by Microdischarges in Liquid” and 

“Transition from Aspherical to Spherical Microbubble Generated by Microplasma in 

Liquid” are about to submit, and one conference paper “Hydrodynamic study of plasma 

generation in liquid” has been accepted.  
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CHAPTER II 

PREREQUISITE KNOWLEDGE AND LITERATURE REVIEWS 

2.1 Prerequisite Knowledge of Experimental Equipment 

Before the investigation of microplasma generation in liquid, prerequisite 

knowledge and some technical equipment are introduced first. They have been well 

established, so they do not belong to the research part in this dissertation. But they are all 

important for the experimental setup and the data acquisition and analysis. 

2.1.1 Prerequisite Knowledge of Plasmas 

2.1.1.1 Introduction to Plasma 

From the energy perspective of atoms or molecules, the solid state has the lowest 

energy and the plasma has the highest energy. With the addition of energy, the solid state 

can be changed into the liquid state. Furthermore, more energy addition into liquid state 

can vaporize the liquid into the gas state. These three states of matter are the most 

common three phases on our earth. Beyond the gas state with more energy, the gas can 

be ionized, and eventually forms the plasma. In this case, the collisions between particles 

are so severe that some electrons cannot stay in their orbits, so the neutral atoms or 

molecules are ionized into two groups, one of which consists of the negative charges 

such as free electrons, and the other one of which consists of the positive charges such as 

free ions. The matters in general on earth do not have that much of energy to form 
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plasma. Some transient natural plasma can be observed e.g. lightning, but the stable 

natural plasma can only be observed in the outer space.  

Plasma presents itself in various forms artificially or naturally.  In Figure 1 

different plasmas are presented in terms of electron number density and electron 

temperature. In most cases the electron temperature of plasma can range from 103 K to 

109 K, and the number density of electron can range from 105 #/m3 to 1032 #/m3. The 

detailed explanation of electron temperature will be in the next subsection. For the case 

of the aurora which occurs on the most outside layer of atmosphere when rarified air 

molecules collide with solar wind, it has relatively low electron number density and 

electron temperature because of its nature of formation. For the case of nebula, the 

electron temperature is 4 orders of magnitude higher than the aurora, though the electron 

number density has similar value. They both exist in outer space environment, so the 

number density of electron of both cases is diluted by high vacuum. Since the nebula has 

higher ionization degree, it has higher electron temperature. Different from the aurora 

and nebula, the solar core is confined in the center of a nuclear fusion. Due the enormous 

mass, the gravity in the core of sun creates a site with high electron number density and 

high temperature. Besides some examples of plasma in universe, there is a grey area in 

Figure 1 presenting a “solids, liquids and gases” region where it is too cold or too dense 

that classical plasma is impossible to exist.  The general objective of the research 

covered in this dissertation is to push the research boundary of plasma into that grey 

area. 
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The natural plasma on the earth is not as common as in the universe, but some 

transient plasma can also be seen in our life easily. As mentioned in previous 

paragraphs, lightning is a very common plasma discharge on earth. It normally involved 

high energy releasing and high electron temperature. The plasma generated by the 

lightning can create a lot of chemical reactions such as the production of ozone [8], NOX 

[9, 10], etc. On the contrary, the majority of the plasma people deal with every day 

especially in industry is artificial plasma, and the most common one is fluorescent light. 

The pressure in the light tube is normally in 0.2 Torr. Mercury is excited by electrical 

field in the fluorescent light, and the light emission is the product after the free electrons 

from the mercury collides the phosphorus on the inside wall of the tube. In industry, the 

plasma has already been widely used in the plasma based deposition, e.g., carbon film 

[11], TiO2 particles [12], atomic layer deposition of Co [13], SiOX [14], etc., the plasma 

based etching, e.g., carbon fiber [15], silicon wafer [16], GaN pattern [17], etc., and the 

plasma based sterilization in water processing industry [18-21].  

As presented in Figure 1, most electron temperature in plasma is higher than 103 

~ 104 K, so how is such high temperature used in industry? Can they destroy all the 

manufacturing equipment? With these two questions non-equilibrium plasma, also called 

non-thermal plasma, will be introduced in the following subsection.  

2.1.1.2 Equilibrium (Thermal) and Non-equilibrium (Non-thermal) Plasma 

Before the detailed introduction of the plasma research in this dissertation, one 

important definition which characterizes the internal energy of plasma is introduced 
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here. Plasma is categorized into the equilibrium plasma and the non-equilibrium plasma 

according to its thermodynamic equilibrium state, which can also be called “hot” plasma 

and “cold” plasma respectively according to its gas temperature.  

The definition of plasma, as mentioned in previous paragraphs, is ionized gas 

which presents collective behaviors. In order to ionized gas or achieve different 

ionization degree, different methods have been employed. In the Figure 3, an inside view 

of Tokamak nuclear fusion presented by Joint European Torus is shown. The plasma 

created by nuclear fusion is regarded as the equilibrium or the “hot” plasma. The gas 

temperature in the nuclear fusion can be above 105 K and very high percentage of the 

atoms are ionized within the devise. On the contrary, in Figure 4 the dielectric barrier 

discharge based plasma jet is used on a person’s forehead for the purpose of sterilization. 

The pink plasma jet can be easily identified in the figure, and it can safely touch people’s 

skin without causing any discomfort or burning. The temperature for this plasma is just 

the same as the room temperature.  
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Figure 3. Inside View of JET Tokamak [22](Copyright © EFDA-JET) 

 

 

 

 

Figure 4. Dielectric Barrier Discharge (DBD) on Person’s Forehead [23] (Copyright © 

PEDL TAMU) 

 

 

 

Why can the plasma show such different characteristics? From the energy 

perspective, the temperature of different species in a plasma needs to be clarified. 
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Different from the other three states of matter, species in the plasma is the mixture of the 

electrons, neutrals, ions and radicals. Because of their different electrical polarity, mass, 

size, etc, each of the species in plasma has its own energy characteristic. Using a 

simplified example with an assumption that the plasma only consists of electrons, ions 

and neutrals, an energy distribution for the equilibrium and non-equilibrium plasma is 

presented in Figure 5 and Figure 6.  

For the case of the equilibrium plasma, the ionization degree of plasma is very 

high. It indicates that most of the atoms or molecules in the plasma are ionized. The 

energy for the high degree ionization needs to be sufficient enough to allow the electrons 

and the ions have same high energy distribution, which requires not only to move 

electrons at high speed but ions as well. To move electrons at high speed does not 

required a lot of energy due to their small mass, but to move ions at high speed needs a 

lot energy due to their much bigger mass. The energy required to achieve the equilibrium 

is so high that the electrons and the ions have the same thermodynamic equilibrium 

states. In Figure 5, a schematic illustration of energy distribution of electrons and ions is 

presented. Because the electrons and the ions both stay at high energy levels, the plasma 

temperature which is dominated by the ion temperature is at least 10000 K.  
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Figure 5. Schematic Energy Distribution of Equilibrium Plasma (Yellow Region 

Indicates Ion and Red Region Indicates Electron)  

 

 

 

For the case of the non-equilibrium plasma, the ionization degree of plasma is 

very low. The ionization degree of the atoms or molecules in the plasma can be lower 

than 0.01%. The energy for the low ionization degree does not need to be sufficient to 

allow the electrons and the ions have same energy distribution. In addition, the 

ionization of non-equilibrium plasma only requires to excite a very small portion of 

atoms or molecules and to move the free electrons. In Figure 6, a schematic illustration 

of energy distribution of electrons and ions of non-equilibrium plasma is presented to 

compare with the Figure 5. In order to sustain the plasma state, the electrons have high 

temperature energy distribution which gives them the capability to ionize other atoms. 

However, the ions, due to their mass, cannot acquire enough kinetic energy to move in 

non-equilibrium plasma. As presented in Figure 6, the majority of electrons stays at high 
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energy levels, but the majority of ions stay at low energy levels. Because of the weak 

ionization degree for non-equilibrium plasma and the low temperature energy 

distribution of ions, the non-equilibrium plasma presents relatively low temperature. The 

low temperature plasma is a relative concept to the high temperature plasma. Their 

temperature is normally room temperature or a little bit higher than room temperature 

(300 K ~ 500 K). The low temperature plasma as mentioned in previous subsection is 

widely used in industry. The gas temperature of plasma is in room temperature, so most 

of the equipment can handle this temperature. At the same time, it still has many unique 

characteristics of plasma.  

 

 

 

 

Figure 6. Schematic Energy Distribution of Non-equilibrium Plasma (Yellow Region 

Indicates Ion and Gas, and Red Region Indicates Electron) 
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2.1.1.3 Gas Discharge and Paschen’s Law 

The most common way to excite the non-equilibrium plasma is to use an 

electrical field to accelerate the collision and to enhance the ionization. As mentioned in 

previous section, the fluorescent light is probably the most common plasma discharge in 

our daily lives. The voltage and current characteristics presented in Figure 7 describes a 

voltage and current relationship for a glow discharge in a vacuum tube. The current in 

the vacuum tube is carried by electrons and ions. The detailed description of the voltage 

and current relationship can be found in “Gas Discharge Physics” authored by Yuri 

Raizer. Assuming there is a vacuum tube with argon (2 Torr) filled in with two parallel 

plate electrodes on each side. With an electrical potential on the anode and a ground on 

the cathode, the current in the tube stays at an extremely low value before the voltage 

gets to 600 V. At this stage, there is very limited ionization caused by cosmic rays or 

other sources of ionizing radiation. As the voltage increases, the free electrons are able 

to carry more energy to cause further ionization. When the electrons have enough energy 

to ionize and free another electrons in the gas, a process called electron avalanche 

happens. The process, also called Townsend discharge, can accelerate the generation of 

electrons in the gas. When the electron avalanche occurs, the current changes from 10-15 

A to 10-5 A. The end of the Townsend discharge is that the secondary electron emission 

(SEE) can sustain this process without a high electrical field. In the Figure 7, point “D” 

marks the separation of Townsend discharge and self-sustained discharge. At the 

beginning of the self-sustained, a corona discharge appears with a drop of voltage. The 

corona discharge is an inefficient discharge since the current delivery is not high enough 
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and it only occurs in some local high electrical field places such as sharp corner of an 

electrode. Since the size of the sharp tips or corners normally very small, the idea of 

corona is used in our research to create microplasma in liquid. The corona discharge can 

develop into the glow discharge which is the discharge in fluorescent light or neon light. 

With increasing the voltage after the glow discharge, the plasma can develop into the arc 

discharge. The point “I” marks this transition. The mechanism of plasma changes from 

secondary electron emission (low temperature plasma) to thermionic emission (high 

temperature plasma). To be noted here, the arc plasma is beyond the scope of this 

dissertation.  

 

 

 

 

Figure 7. Voltage and Current Relationship of DC Discharge in Vacuum Tube [24] 
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The voltage and current relationship in Figure 7 was measured under the constant 

pressure. But since the plasma is generally regarded as a high energy gas, what does the 

pressure of the plasma can influence the generation of it? 

In an electrical field, the generation of plasma depends on the electrical potential 

across the field. The minimum voltage required to initiate a plasma is called breakdown 

voltage or strike voltage. In Figure 8, different gases present different curves of 

breakdown voltages. These breakdown voltages vary corresponding to the change of the 

product of pressures (P) and the distance between electrodes (d). The patterns, however, 

are very similar. This pattern named after Prof. Paschen is called Paschen’s Law [25]. 

There is a minimum breakdown voltage for each gas, and the breakdown voltages 

increase dramatically on both sides of this minimum value. The relationship presented in 

Paschen’s curves can be expressed in Equation 1. The breakdown voltage of a specific 

gas is a function of the product of the pressure and the distance between the electrodes. 

For the non-equilibrium plasma, the pressure of the gas can be expressed in terms of the 

number density of the neutrals in the gas. So the relationship evolves from the product of 

the pressure and the distance between electrodes to the number density of neutrals and 

the distance between electrodes.   

 
(Pd) (n d)Breakdown oV f f   Equation 1 

In order to acquire enough energy for an electron to ionize the other atoms or 

molecules, it needs a clear path to accelerate in an electrical field before the collision 

which causes the ionization and energy losing. The energy an electron can acquire 
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between collisions can be expressed in Equation 2, where ‘e’ is the charge of an electron, 

‘E’ is the electrical field and ‘λMFP’ is the mean free path for an electron. 

 
MFPeE   Equation 2 

In addition, the mean free path can be express in the Equation 3, where ‘no’ is the 

number density of neutrals in the gas and ‘σ’ is the cross section of the atoms waiting for 

the collision with the free electrons. The cross section is one physical property of a 

specific gas, it does not depend on the experimental parameters.  

 1
MFP

on



  Equation 3 

Thanks to the Equation 2 and Equation 3, the mechanism of Paschen’s law can 

be unveiled according to how electrons acquire energy in gas. The explanation of 

Paschen’s Law is illustration in Figure 9, Figure 10 and Figure 11. 

 

 

 



 

22 

 

 

Figure 8. Paschen Curves for Different Gases [26] 
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Figure 9. Illustration of Increasing Number Density of Neutrals Requiring Higher 

Breakdown Voltage  

 

 

 

On the right hand side of the minimum breakdown voltage on Paschen’s curves 

as presented in Figure 8, the breakdown voltage increases with the increment of the ‘Pd’. 

Pressure “P” or the distance between electrodes “d” are then treated as a constant 

respectively for the explanation of Paschen curves. Assuming the pressure ‘P’ is constant 

in a 1D system, increasing of the distant between electrodes does need a higher 

breakdown voltage to maintain the electrical field between electrodes in pre-plasma 
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stage (E=V/d), which is the reason that the breakdown voltage needs to be changed 

linearly with the change of the distance between electrodes. On the other hand, assuming 

the distance between electrodes is constant, the increasing of the pressure or the number 

density of the neutrals does need a higher breakdown voltage as well. As presented in 

Figure 9, when the number density of neutrals increases, the mean free path between the 

collisions of the free electron and atoms become shorter. The ionization energy for a 

specific gas is constant, but a shorter mean free paths indicates that the electrons need to 

be provided a higher electrical field to acquire equivalent energy to the longer mean free 

paths cases, as suggested in the Equation 2. So when the number density of gas increases 

in electrode-distance-fixed system, the breakdown voltages linearly increases with the 

increasing of “Pd”.  
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Figure 10. Illustration of Reducing Distance between Electrodes Requiring Higher 

Breakdown Voltage 

 

 

 

 

On the left hand side of the minimum breakdown voltage on Paschen curves with 

the assumption of a constant distance between two electrodes, the number density of 

neutrals is fairly small, but the breakdown voltage does not reduce with the decreasing of 

the pressure “P”, as explained for the right hand side of the Paschen curve. Figure 10 

explains the reason why the parabolic shape of Paschen curve on the left hand side. 

neutral

neutral
electron

An
od

e

Ca
th

od

Electrical Field

mean free path

electron

Electrical Field

mean free path

Ca
th

od

An
od

e

neutral

neutral



 

26 

 

When the neutral number density is reduced or the mean free path is increased so 

significantly that the average collision distance between atoms is longer than the 

distance between electrodes as presented in Figure 10, an electrical field to send an 

electron from one electrode to the other electrode is not enough. A higher voltage is 

necessary to move the electrons to find atoms to ionize. The energy needs to be high 

enough to let the electrons run pass the electrodes. 

From the Paschen’s curve, the size of plasma presented in previous cases 

regarded as the distance between two electrodes is a function of the mean free path. The 

idea that can be inherited from the Paschen’s curve is that by maneuvering the number 

density of neutrals or the pressure in the system, the size of the plasma can be controlled 

accordingly. 

The Paschen’s law and the relationship between the mean free path and the size 

of the plasma it represents are employed to design and direct our research of 

microplasma generation. As suggested, the microplasma needs a high number density of 

neutral to confine and restrict the size of plasma, as presented in Figure 11. A high 

number density of neutral is able to limit the mean free path and make the breakdown 

voltage back to its minimum value shown in the Paschen’s curves. In order to provide a 

high neutral number density environment, two measures can be employed. The first one 

is to generate the plasma in a high pressure gas environment. The high pressure is able to 

reduce the mean free path of the collision, but it is not an easy job to achieve a super 

high pressure. The other one measure is to generate the plasma in liquid environment. 

The number density of molecules in the liquid is intrinsically high. Under one 
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atmospheric pressure, the number density of molecules in water is a thousand times 

higher than that in vapor under same atmospheric pressure. The vapor water can only 

achieve the same molecules number density of liquid water with thermodynamic state at 

or above the critical condition. Thanks to the high number density of molecules of 

liquid, the microplasma can be achieved in low ambient pressure environment.  

 

 

 

  

Figure 11. Illustration of Reducing Mean Free Path by Increasing Pressure 
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2.1.1.4 Applications of Plasma Discharge in Liquid  

Discharges in liquids have been investigated for a very long time. It was studied 

as spark gaps for pulsed power to replace the discharge in gas [27], high voltage 

insulations [28, 29], material synthesis [30, 31], water treatment [32, 33], plasma surgery 

[34, 35], cancer therapies [36, 37], UV light emission [38, 39] and shock wave 

generation [40-42].  

 The dielectric properties of liquid is better for the purpose of insulation than the 

gas under atmospheric pressure. Liquids can also be used as the dielectric material for 

the spark gaps for pulsed power systems. Pulsed power supply needs a switch system 

which needs to be robust and can handle high voltage, high current and high frequency 

with stable repeatability. It is the same objective as using air as the dielectric material for 

the spark gap. The advantages of using liquid is to provide a more stable on/off switch 

characteristic. Before the breakdown, the liquid functions as the off switch between the 

electrodes. The system stays at the open-circuit state. After the breakdown occurs in the 

liquid, the voltage is able to rise within nanosecond or microsecond to desired values. 

After the breakdown, there would be many gas channels in the liquid for the plasma 

formation. The recovery time is limited by the quenching of the gas channel by the 

liquid flow or by its hydrodynamic collapse [43-45]. The electrode configuration is also 

very important for the discharges in the liquid. A detailed literature review will be given 

in the next chapter. Electrical transformers in industry are mostly used with organic 

liquid such as castor oil or mineral oil as the insulating liquid [46]. The bubble 

generation in the liquid caused by the discharge is able to add impurity into the liquid. 
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Those bubbles can change the breakdown voltage in the liquid, and cause the early 

failure for the high voltage power transformers. The generation of bubble or 

microbubble will also be introduced in the next chapter. By investigating the generation 

mechanism of the discharge based bubbles is able to benefit us knowing how to avoid 

their generation and the equipment failure.  

Plasma discharge in liquid have been used for material synthesis as well. Plasma 

is able to create many chemical reactions in the liquid. In Table 1, examples of 

ionization, excitation, dissociation and light emission caused by the plasma in water are 

presented. High energy density, high production of radicals and high electrical field can 

all be used for the material synthesis. Figure 12 presents the gold nanoparticle and silver 

nanomaterial synthesis by using microplasma in liquid.  

 

 

Table 1. Examples of Ionization, Excitation, Dissociation and Light Emission Caused by 

Discharges in Water 

Ionization 
2 2

2

*

2

2

2

2

e H O H O e

e O O O e

e H O OH H e

  

  

  

  

   

   

 

Excitation 

*

2 2

*

2 2 2

*

2 2 2

1

2

1

2

e H O H O e

e H O O H e

e H O O H e

 

 

 

  

   

   

 

Dissociation 
2 2 2

1

2
e H O O H e      

Light Emission 

*OH OH hv

e Na Na hv 

 

  
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Figure 12. TEM Images of (a) Ag Nanoparticles Synthesized from Anodic Dissolution 

of Ag Foil and Microplasma Reduction, (b) Au Nanoparticles Synthesized from Anodic 

Dissolution of Au Foil and Microplasma Reduction, (c) Ag Nanoparticles Synthesized 

from Microplasma Reduction of Aqueous AgNO3 Soution, (d) Au Nanoparticles 

Synthesized from Microplasma Reduction of Aqueous HAuCl4 [30]  

 

 

 

Scaled up plasma based water treatment devises can be found in water plants.  

They are widely used for the water pollution treatment and water pollution control. As 

mentioned in Table 1, the high energy electrons generated in the non-equilibrium plasma 

can dissociate water molecules and produce OH, H and O radicals. In addition, the 

relaxation of excited atoms or molecules can emit very strong UV light. These radicals 

are able to diffuse into the water surrounding the plasma generation sites. Radicals are 

generally very excited and only have micro second life time. They can quickly remove 

dissolved organic compound in the water. They function as oxidizers to turn any organic 

molecules into inorganic carbon dioxide in the water [39, 47]. The chemical reactions 
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caused by the plasma in the liquid is very like the plasma induced reaction in gas. The 

liquid molecules can be treated as the gas medium and the collision between the 

electrons and the water molecules to form new species or new radicals is very similar to 

the collision between the electrons to the gas molecules. Also in most of plasma 

discharge in liquid cases, there are gas channels formed in the liquid. Those gas channels 

function as the transition site between pure gases to pure liquids. In addition, the 

hydroxyl formed in the plasma discharge in liquid has much stronger oxidization 

characteristic, and it can also combine with water to form the hydrogen peroxide which 

is a very strong oxidizer. To sum up, the plasma due to its capability to form high 

volume of radicals and emit strong UV light has been widely used in water pollution 

treatment.    

Plasma discharges in liquid have also been used for the research of plasma based 

surgery and plasma based cancer therapies. Chemically, the oxidative properties of 

plasma in liquid indicates it is capable of killing the biological cells. The excited radicals 

are able to etch the membrane of cell walls, which is able to disarm the protection layer 

of bacteria. Physically, the plasma discharges in liquid are able to generate very strong 

shock waves. The shock waves generated by high energy discharges have already been 

used to crash the kidney stone in human body, as presented in the Figure 13.  
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Figure 13. The Shock Wave Generator by Plasma Discharge in Water for Medical 

Application [48] (Copyright © Institute of Plasma Physics AS CR) 

 

 

 

2.1.2 Plasma Generation and Diagnostic Techniques 

In this research, microplasma is generated in the liquid at the microelectrode tips. 

The configuration of the microelectrode tips and the dielectric layer setup are a little 

different in each research, but the general idea that a tungsten microelectrode tip with 

diameter around 3 µm is covered by high dielectric epoxy is very same.  

The duration of microplasma can be as short as in nanosecond scale and the 

duration of a microdischarge generated microbubble can be as short as in microsecond 

scale. In addition, the microplasma light emission generated by a low energy input can 

be so dim that human eyes cannot detect its existence. Two high speed cameras and one 

photon detection tool were all employed for the data acquisition. 
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2.1.2.1 Electrolysis of Microelectrode Tips 

The microelectrode tip was used as the microplasma initiation site in the liquid. 

The size of microelectrode tip was very important. It needed to be as small as possible in 

micron scale, so a high electrical field can be generated at the tip.  

Electrolysis was used for the microelectrode tip fabrication. A tungsten wire with 

the diameter of 50 µm was purchased first. The thin tungsten wire was cut into a small 

piece with length of 1 cm. The 1 cm tungsten wire was then soldered with a copper wire 

with diameter of 1 mm. The copper wire was covered with plastic coating. The solder 

needs to be well done so that the connection between a 50 µm tungsten wire and a 1 mm 

copper wire is firm enough. The soldered wire then was fixed on a stage vertically with 

one side dipping in NaOH solution and the other side connect to a DC power supply. A 

grounded tungsten plate was also placed in the NaOH solution. The solder wire was 

connected with the anode of the power supply and the ground was connected with the 

cathode of the power supply. As mentioned that the length of the tungsten wire was only 

1 cm, one half of the tungsten was dipped in the solution with the rest of the soldered 

wire suspended in the air. The voltage used was around 30 V and gas bubbles could be 

observed in the solution as the electrolysis carried on. The whole half of the tungsten 

wire in the solution was etched, but the interface where the solution, the air, the tungsten 

wire contacted each other was etched much more quickly. When a notch was observed at 

that interface, the voltage was then reduced a little. The notch became bigger and bigger, 

and then the tungsten wire dipping in the solution was cut at the interface. When the 

dipping part of the tungsten wire began to drop in the solution, the power was cut 
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immediately. There was a sharp tip formed at the cutting interface with the rest of the 

soldered wire suspended in the air. The size of this tip was around 3 µm in our research.  

The tip needed to be carefully stored since any unnoticeable contact was able to 

bent or damage the tip. Then the tungsten wire with solder and the exposed part (without 

plastic coating) of copper wire was covered by a glass tube with diameter of 2 mm. Only 

the electrode tip was exposed to the open air with the rest of the soldered wire was 

covered by a dielectric material already. After the glass tube functioned as a sleeve 

covered the soldered electrode, high dielectric epoxy was used to fill in the glass tube. 

The purpose of the high dielectric epoxy was to increase dielectric property between the 

tungsten tip and the liquid potentially surrounding it, and also working as a glue to hold 

the glass tube there permanently.  

2.1.2.2 High Speed Intensified Charge Coupled Devise (Nanosecond Photo Based 

ICCD) and High Speed Charge Coupled Devise (Microsecond Video Based CMOS) 

The duration of microdischarges and microplasmas was in nanosecond scale, and 

the duration of microbubbles lasted around 200 microsecond (µs) in our tests, so 

different high speed cameras were demanded to capture and record microplama and 

microbubbles. The microplasma discharge was recorded with a nanosecond gated ICCD 

camera, and the initiation, growth, collapse and rebound of a microbubble was recorded 

by a million fps CMOS video camera as presented in the Figure 14. The micropalsma 

was captured with a minimum exposure time of 10ns by the ICCD camera and the 

growth and collapse of the microbubble was recorded with the frame speed of 1180000 
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fps by the CMOS camera. The main differences between two cameras are that the ICCD 

camera could take a single photo with a nanosecond scaled exposure time, the CMOS 

camera however was able to take videos with a microsecond scale exposure time. Actual 

experimental layouts with the CMOS high speed camera mounted on the microscope are 

presented in the specific experimental layout section. The duration of a microplasma 

initiation made it impossible to be captured by the high speed CMOS camera. Even if 1 

million fps was employed, it still left around 1 µs informational gap between a 

microplasma discharge and a microbubble formation captured by CMOS camera. 

Although the microplasma discharge was the only possible way to generate microbubble 

since there was no other sources to provide energy for phase change, videos of 

microbubbles by the high speed CMOS camera was still not solid enough. In order to 

understand more about the relationship between the microplasma and the microplasma 

based microbubble, an ICCD camera with nanosecond gate was used together with the 

CMOS camera. Both of the cameras could be trigger by the electromagnetic interference 

emitted from the plasma discharges or by a trigger signal sent out from a function 

generator or an oscilloscope. It provided much more flexibility to integrate the high 

speed cameras into the whole system.  
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Figure 14. CMOS (Copyright © Photron FASTCAM SA5) and ICCD (Copyright © 

Stanford Computer Optics) High Speed Camera [49] 

 

 

 

2.1.2.3 Photomultiplier Tube Detector (Hamamatsu R928) 

The light emission from the microplasma could be very dim, and the duration for 

such light emission could be as short as in nanosecond scale. The ICCD camera was 

used for the light emission detection, but the ICCD had an internal delay of 65 ns. In 

order to corroborate the ICCD camera, and also to compensate the first 65 ns that the 

ICCD camera missed, a photomultiplier tube (PMT) was used to capture the light 

emission from microplasma as presented in the Figure 15.  

In theory, a PMT can be sensitive to a single photon emitted from a light source. 

The working mechanism of a PMT is presented in the Figure 16. When one photon 

arrives at the collection window of the PMT, an electron is excited from the 
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photocathode. The material chosen for the photocathode has low work function and the 

PMT used in our tests was made of Multialkali (Na-K-Sb-Cs) material. After the 

electron leaves the photocathode, it goes into a vacuum tube with 10 to 12 dynodes. The 

secondary electron emission is then excited from each dynode. An electrical field exists 

in the vacuum tube to accelerate the electron to collide with the each dynode to free 

more electrodes. Assuming the secondary electron emission ratio is 5 which means that 

one electron is able to free 5 additional free electrons. With 10 dynodes in the vacuum 

tube, one electron initially excited from one photon can free 610 electrons. Due to this 

geometrical amplification in the PMT, the PMT is very sensitive and useful for weak 

light detection.  

 

 

 

 

Figure 15.  PMT with 28mm Dia., Side-on Type, Multialkali Photocathode (Effective 

Area: 8 x 24 mm and Spectral Response : 185 to 900 nm) [50] (Copyright © Hamamatsu 

Photonics)  
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Figure 16. Working Principle of PMT 

 

 

 

2.1.2.4 Voltage and Current Measurement 

A negative DC high voltage supply (Glassman Series EH), capable of -20kV and 

5mA DC, provided the initial energy for the microplasma discharge.  The energy from 

the voltage supply charged a capacitor through a resistor, and was released to the load. 

The voltage and current from the spark gap were recorded using an oscilloscope, 

with both a voltage probe (Lecroy S/N: 2524) and current transformer (Bergoz CT-D1.0-

B) attached to the electrode.  The voltage probe that was used has a maximum voltage 

and frequency of 20 kV and 100 MHZ.  The current probe that was used had a specified 

rising time of 0.7 ns. For the experiments conducted the spark gap circuit consisted of a 

20 MOhm resistor and 1nF capacitor.  The current was set such that the pulse repetition 

was sufficiently low that only a single discharge occurred.  Prior to discharge events, no 

preexisting microbubbles were observed on the probe tip. Voltage was seen to rise 
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rapidly, at approximately 500 V/ns, due to the rapidity of the spark gap switch. Currents 

and voltages reached their peaks within 10 ns and decayed to within 10% of the max 

values within 1-2 µs.   

2.2 Literature Review 

The applications of the plasma discharge in liquid has been introduced in 

previous chapters. Due to its unique characteristics on energy transfer, chemical 

activation, UV light emission, shove wave generation, etc., the plasma or discharges in 

liquid have been widely used to solve practical problems in real world. Fundamentally, 

there have been decades of research on the plasma mechanism, plasma mode, plasma 

discharge type, liquid properties for discharges, etc. In this subsection, a literature 

review concerning some key findings of the plasma discharge in liquid in past decades 

and the most recent microplasma generation in liquid research are presented. Many of 

those outstanding and thorough investigations of discharges with liquid have been 

inspiring our research in microplasma initiation and microdischarge generated 

microbubbles. This literature review is divided into plasma discharges with liquid and 

micro scale plasma discharges in liquid.  

2.2.1 Plasma Discharges with Liquid 

The research about the physical mechanism of conventional plasma discharges 

with liquid has focused on two topics mainly. They are electrode configuration of 

plasma discharges with liquid and bubble generations by discharges. 
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2.2.1.1 Electrode Configuration of Plasma Discharges with Water 

There have been many researches on the topic of electrode configuration of 

plasma discharges with water. Depending on the electrode configuration and the 

experimental setup, different plasma discharges can be observed in water. In the Figure 

17, the fabrication of a pin electrode is presented. In general, in order to create a corona 

discharge in liquid, only small portion of the electrode pin can expose in liquid. In the 

figure below, it is clear that only the tip of the electrode is not covered by the dielectric 

insulator. Most of the body of the electrode is covered by several layers of the insulator. 

It is very important to provide a high electrical field to initiate the plasma discharge in 

liquid. In the later chapters, the microelectrodes which were used to create microplasma 

with size in micron scale also employed the same idea that the most of the electrode 

body was covered by dielectric material except the tip.   

 

 

 

Figure 17. Fabrication of Pin Electrode for Discharges in Liquid [51] [52] 
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Figure 18. Schematic of Pin to Plane Discharge: (a) Streamer Discharge, (b) Spark with 

Streamer, (c) Spark Discharge [38].  

 

 

 

The generation and the growth of plasma discharges in water can be a partial or a 

full discharge. The head of a discharge or the head of a streamer starts from one of the 

electrode, and may contact the other electrode directly or just extend to somewhere 

between two electrodes. If the head of the streamer as presented in the Figure 18(a) only 

extends to a very close distance, this type of discharge is regarded as a streamer or 

corona like discharge. The corona discharge was mentioned in the previous chapter with 

the gas discharge. The initiation of corona discharge in gas needs a breakdown voltage 

and the current for the corona discharge is very small. The corona discharge normally 

occurs at local high electrical field which is the reason that the corona discharge only 

extends to very limited distance. The streamer discharge in liquid is called corona like 
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discharge or sometimes corona discharge, because the discharge initiation is very similar 

to the corona discharge in gas. Due to the ultrashort mean free path in liquid, the 

mechanism of the streamer discharge in liquid is still under investigation. In addition, if 

the head of the discharge is able to reach the other electrode, the discharge is regarded as 

the spark or the arc as presented in the Figure 18(b) and (c). A conductive bridge is able 

to be formed between two electrodes when a spark or an arc discharge happens. The 

difference between a spark and an arc is not very obvious. The spark discharge is more 

transient, and has lower energy transfer comparing with the arc discharge. When an arc 

plasma is created, the electron creation mechanism is thermionic emission and the 

plasma is turned into thermal plasma.  

The comparison between the discharges in gas and the discharges in liquid 

presented in the Figure 19 is that the glow discharge (homogeneous discharge) is able to 

be created in gas as the transition between the corona to arc, but only the spark 

(inhomogeneous discharge) is able to be generated between the corona to arc in liquid. A 

most common setup of parallel plates for plasma generation in gas environment can 

barely initiate a plasma in liquid. Due to the unique characteristics of discharging in 

liquid, various electrode configurations have been designed to generate the discharges. 

Most of the setups for discharges in liquid are like the pin to plane setup that provides a 

typical inhomogeneous electrical field. The local electrical field is provided by a high 

voltage and a sharp electrode. 
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Figure 19. Discharge in Liquid and Long Time Exposure for Multiple Discharge 

Channels [23](Copyright © PEDL). 

 

 

 

Many researches have been done on the configuration of the electrodes for the 

discharges with liquid. In the Figure 20, three main ideas of the discharges with liquid 

including two electrodes immersing in liquid, only ground in the liquid with high voltage 

pin electrode above the liquid surface and the plasma generation in artificial pre-exist 

gas bubbles, are presented [29, 53-55]. The most common discharge methods for the 

immersed pin to plane setup (Figure 20(a)) is the discharging with a capacitor with a 

spark gap as a trigger. Discharges with the high voltage electrode above the gas surface 

and the ground in liquid is a semi-liquid discharge setup (Figure 20(b)). The discharge 

for this setup only occurs above the liquid surface, but since the air above the surface is 

probably saturated with vapor and the ground is the liquid, this setup is still regarded as 
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the discharges with liquid. It is well known that a DC excited atmospheric pressure glow 

discharge (in air) between metal electrodes tends to be unstable to radial constriction 

leading to arc or spark. With water electrodes it is possible to obtain diffused 

atmospheric pressure glow discharges in air [56]. Discharges in artificial bubble in liquid 

is a very interesting phenomena as well. Since the mean free path in the bubbles is much 

longer than the mean free path in liquid, striking voltage for the breakdown in the bubble 

is much lower than that for surrounding liquid. When gas sites are provided in the liquid 

environment, the plasma is initiated in the bubbles. The idea of creating discharge in 

liquid surrounding gas bubbles can be extended into the Figure 21. In Figure 21(a), the 

electrodes setup is like the pin to plane discharge except that the high voltage discharge 

is directly in a big pre-exist bubble [57]. In Figure 21(b), it is still a pin to plane 

discharge, but the high voltage electrode is on the same side of the ground plate. In 

addition, the artificial bubbles are continuously blown into the liquid. The discharge 

actually happens in different bubbles [58]. In Figure 21(c), one bubble is blown into a 

capillary, and the electrodes is a plate to plate setup. Since the location of the capillary 

and the electrode plate are fixed, the plasma discharges in the bubble is due to the high 

electrical field in the liquid [59]. The discharge in a single bubble trapped in a capillary 

is very same to the discharge in the Figure 20(c). In a pin to plate liquid streamer setup 

the pin electrode has often a needle and is used to inject gas bubbles into the reactor to 

increase radical formation in the Figure 22(a) [60]. A similar setup with a capillary 

electrode surrounded by a ceramic tube is presented in the Figure 22(b) [61]. A DC 

voltage is used to generate the discharge in a gas flow through the capillary. Continuous 
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bubbles flowing between two metal electrodes is also employed for the discharge in the 

artificial bubbles in the Figure 22(c) [62]. Even when the bubbles are not in contact with 

the electrodes, discharges can also be generated in the bubbles due to the big density 

difference between the gas and surrounding liquid. In the Figure 22(d), the gas film is 

used to function as a gas layer for discharges. The gas layer is separated from the ground 

electrode by a water. Due to gravity, the gas layer can only touch the upper electrode 

[63]. The discharges are found to be streamer and to propagate along the bubble surface.  

DC discharges induced bubbles in capillaries have been investigated by many 

groups [58, 64-68]. In the Figure 22(e), a submerged liquid jet is used to generate a 

plasma shell at the jet boundary. Threshold breakdown voltages are reduced 

considerably when stream velocity of 30m/s is employed because of the formation of the 

cavity bubbles [69]. Discharges in a gas channel with a liquid wall between electrodes 

was presented in the Figure 22(f). The configuration consists of two tubes with the metal 

electrodes inserted and a gas flow is applied to both. These gas flows merge into each 

other and form a stable gas channel [70]. It is an arc discharge that is cooled by the water 

wall.  
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Figure 20. Typical Electrode Configurations for Three Different Types of Discharges 

with Liquids (a) Direct Liquid Phase Discharge Reactor [57], (b) Gas Phase Discharge 

Reactor with Liquid Electrode [58], (c) Example of Bubble Discharge Reactor [59]. 

 

 

 

 

Figure 21. Overview of Different Electrode Configurations Used to Study Electrical 

Breakdown of Bubbles in Liquid [60].  
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Figure 22. Experimental Setups Developed for Discharges in Bubbles, (a) Bubble 

Corona Discharge Reactor [60], (b) Capillary Gas Flow Bubbling Reactor [61], (c) 

Volume Pulsed Discharges Bubbling Reactor [62], (d) Bubble Surface Discharge 

Reactor [63], (e) Discharge Reactor with Submerged Liquid Jet, (f) DC Arc Discharge 

Reactor in Gas Channel with Liquid Wall [58, 64-68] 

 

 

 

Most of the electrode configurations of the plasma discharges with water are pin 

to plate or plate to plate discharges. The major differences are where to place the high 

voltage electrode tip for some cases or where to place the artificial bubbles if there is 

any. Twelve different setups have been presented in previous paragraphs. As mentioned 

early, only small portion of research on discharges with liquid was directly on the full 

discharges in liquid. Since the low energy input discharge is not an easy mission, when a 
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discharge is initiated the streamer propagated in branches. The important finding of these 

researches is to provide us ideas to fabricate our micron scale microelectrodes in 

experiments. Briefly speaking, the electrode configuration used in our tests is a typical 

pin to plate setup except that the size of the pin is around 3 µm and only corona 

discharges have drawn us attention.    

There are still some other electrode configurations which were mentioned in 

different papers. They were not used very common, so a brief introduction of their 

application is presented here. In the Figure 23(a), water film instead of bubble film is 

used to flow on the electrodes. The discharge electrodes functions also as the structure to 

support the whole reactor. The flow of liquid can cool down the system when an arc 

discharge is initiated.  In the Figure 23(b), droplets of water are used to cover the 

electrodes. It can be treated as the setup in (a) with an open angle of 180o and no flow. 

The setup in Figure 23(c) has been used more commonly than those in (a) and (b). The 

idea of high voltage pulse is to control the energy and to initiate corona discharge. But 

the high voltage electrode is still above the liquid not immerses in. The setups in Figure 

23(d), (e), (f) are designed for the liquid treatment on dissociation or sterilization 

purpose. The air blow or the liquid flow caused by gravity can cool down the electrodes. 

In addition, the unconventional design of the electrode shape is to accommodate this 

application.  
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Figure 23. Different Electrode Configurations Used to Study Electrical Discharges with 

Liquid, (a) Discharge Reactor between Two Liquid Electrodes, (b) Setup to Study 

Discharges between Two Droplets, (c) Water Surface Discharge Setup, (d) Gliding Arc 

Reactor with Active Water Electrode [71], (e) Gliding Arc Reactor with Passive Water 

Electrode, (f) Hybrid Reactor [72]. 

 

 

 

2.2.1.2 Bubbles Generation 

The generation of bubbles by discharges is still not very clear. Several possible 

mechanisms can explain the generation. Since the discharge generated bubbles are 

created in a complicated environment, none of the possible mechanism is exclusively 

conclusive. Two main hypotheses are electrostatic crack mechanism and the joule 

heating mechanism. 
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2.2.1.2.1 Electrostatic Crack Mechanism 

Within a short timescale, the liquid can be treated as a solid due to its 

incompressible characteristic in short time scale. A crack that normally occurs to solid is 

able to be formed in liquid with the similar mechanism under electrostatic stress. Such 

crack is able to explain the propagation of the branched streamers and the bubble 

formation along the streamers in liquid. The electrostatic crack mechanism includes two 

main steps [73], small molecular vacancy which is thermoelectrically induced and a 

crack formation by electrostatic stress.  

The idea for the initiation of small molecular vacancy is similar to the initiation 

of crack on solid. The concept of the defects in solid is borrowed here to describe those 

imperfect spots in liquid which can be later used to create the initiation site for the 

cracks. The criteria for a crack formation can be lowered by an electrically enhanced 

hole. The theory to describe such electrically enhanced imperfect is called Lippman 

Effect. The potential difference across an interface is balanced by a mechanical tension 

on the interface (surface tension). The surface tension can be significantly affected by 

the potential differences at the liquid to solid interface. When a high local electrical field 

is formed, the surface tension which limits the propagation of the crack from tearing the 

liquid can be reduced, as illustrated in the Figure 24. When the local surface tension is so 

low that the imperfect spot can develop from a molecular scale spot to a mesoscale 

crack, the preparation of bubble generation is finalized. The localized high electrical 

field (MV/cm) is normally formally in places with high curvature such as a spike or a 

needle tip, as presented in Figure 25. 
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Figure 24. Illustration of Electrical Holes Formation by Electrostatic Stress in Liquid[73] 
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Figure 25. Illustration of Formation of Localized High Electrical Field at Spark Tips [73] 
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2.2.1.2.2 Joule Heating Mechanism 

The joule heating mechanism is rather easily to understand. The discharge in 

liquid is initiated by a high voltage, and when the discharge is formed the current is 

transmitted in the liquid. The current is determined by the electrical impedance of the 

liquids and the applied voltages. The impedance passed by current is able to generate 

joule heat. When the joule heat is sufficient to initiate a local phase change, a bubble can 

be formed in the liquid.  

2.2.2 Micro Scale Plasma Discharges in Water 

The conventional mesoscale plasma discharges in liquid and the bubble 

formation caused by discharges in liquid have been discussed in previous subsections. 

The microscale plasma and microscale bubble began to draw our attention in the recent 

decade. Due to the small size and the short duration, the experimental investigation of 

the microplasma and microbubbles has been proved to be a challenge in this field.  

2.2.2.1 Four Theories of Mechanism of Microplasma Initiation 

Four different theories of the mechanism of microplasma initiation have been 

proposed in literatures. As same as the mechanism of discharge generated bubbles, these 

four theories are not exclusively correct either. One of the objective of the research 

covered in this dissertation is to experimentally and theoretically prove which theory has 

more grounds. Two mechanisms of the electrostatic cracking theory and the Joule 

heating theory have been introduced for the bubble formation in previous section. The 
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unclearness of the mechanism of microplasma or plasma generation in liquid actually is 

very similar to the mechanism of the discharge generated bubbles. Moreover, the main 

disagreement is whether the plasma is directly generated in liquid, or a microbubble is 

formed picoseconds or even shorter than picoseconds prior to the generation of the 

plasma.  

As for the former opinion, the idea is that the Townsend avalanche and the 

secondary emission actually directly happen in liquid without the presence of any gases 

as showed in the Figure 26 (a). The disadvantage of this theory is that electrons seem to 

be hard to acquire that much energy to ionize atom or molecules in liquid. The mean free 

path between collisions in liquid is much smaller than that in gas (>1000 times smaller), 

and within such short mean free path the breakdown needs to be on order of 106V 

(deduction from Paschen’s Curve) to strike a breakdown in liquid. The experimental 

results, however, proves that much lower voltages of 103 V were able to strike a 

breakdown.  

As for the latter opinion, the idea is a low density region (gas bubble) is 

somehow formed very quickly prior to the generation of microplasma, as presented in 

the Figure 26(b), (c) and (d). The gas-phase sites in liquid becomes the inception site for 

the plasma. The fundamental difference of this idea from previous one is that this idea 

supports the generation of plasma being from a gas phase, even if the gas-phase site is 

very small and formed only picoseconds before the plasma. The gas bubble here is not 

actually a traditional concept of bubble. It is actually a low density region surrounded by 
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high density liquid. Furthermore, this low density region is crucial for a longer mean free 

path and a higher possibility for secondary electron emission.  

One more theory of the origination of microbubbles is added to the other two 

theories proposed in previous subsections. Other than the electrostatic cracking 

mechanism and Joule heating mechanism to form a bubble initially, a third mechanism is 

that nanometer gas bubbles that already exist in liquid provide the site for plasma 

generation. One of these nanobubbles happens to be in front of the local high electrical 

field during a discharge created by the microelectrode tip, and the nanobubble then 

functions as the inception site for the bubble generation. 

 

 

 

 

Figure 26. Schematic Illustration Mechanism of Microplasma Generation in Liquid, (a) 

Direct Electron Avalanche in Liquid, (b) Joule Heat Generated Microbubble, (c) 

Electrostatic Cracking Theory, (d) Pre-existing Microbubble 
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2.2.2.2 Microbubble Generation by Microdischarge in Water  

Applications of microplasmas in liquid [74-78] for spectroscopy and nano-

material synthesis were reported within last decade and are generally similar to those of 

macroscale plasmas in liquids but with added benefits of spatial localization, lower 

energy, and more non-equilibrium chemistry. One of advantages of microplasmas 

generation in liquid is that the bulk of the liquid remains at ambient conditions. Also 

ambient aqueous media are of biological interests [79, 80]. As live tissues, organs, and 

certain sensitive substrates cannot survive high energy meso-scale plasma in liquids, and 

liquid plays major part of biological systems, microplasmas in liquids can be applied to 

many biological applications such as plasma surgeries[81, 82], cancer therapies, bacteria 

sterilization, water treatment, etc [83-85]. 

In this work we investigate plasmas with maximum size less than 30μm, 

generated without any preexisting bubbles, but apparently existing inside a microbubble 

generated commensurate with the plasma. It is presented that for around one hundred 

nanoseconds that microplasma and microbubble coexist, after which only the bubble is 

present. We first reported these types of low energy discharges in applications as unique 

non-equilibrium systems [86]. Our long term goal is to understand the initiation 

mechanism and time dependent state of the microplasma: neutral density, plasma 

density, and temperatures. Here we focus on one aspect, the dynamics of these 

microscale plasmas in liquids and the micro-bubbles they generate. The dynamics of the 

bubble are measured, and through a Rayleigh-Plesset model, the time dependent state of 

the gas in the bubble is determined. This tells us the environment in which the plasma 
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was created, and also indirectly with some assumptions regarding mass and energy 

transfer some bounds on the energy and mass associated with the plasma. 

 This work complements and relies upon ongoing research in this area. In studies 

of mesoscale plasmas in liquids, without pre-existing bubbles, a transient microplasma 

and microbubble [87] with diameter around 500µm was captured with primary and 

secondary coronas, and evolves into a macroscale discharge. The properties of such 

microplasma in liquid are significantly different, being higher energy, than those studied 

here; however, some aspects of the transient primary negative streamer, namely its 

symmetry are similar to the discharges observed here. Microdischarges in pre-existing 

gas bubbles in liquid have also been studied [88-90]. In those papers, the bubbles 1-3cm 

in size were injected into liquid and the mechanism of microplasma initiation occurred in 

gases. Properties of the gases in preexisting bubbles are near ambient pressure and the 

sizes of the bubbles are typically noticeably larger than the plasma. While the sizes are 

different, there are probably direct, Paschen scaled [91], similarities between these 

microdischarges and those we create in smaller bubbles at higher internal pressures. 

However, due to the small size of our systems the propagation of the plasma within the 

bubble cannot be observed.  

The principal mechanisms of microplasmas initiation in liquid are still under 

study [28, 40, 92-94], and are beyond the scope of a single paper to answer. In general 

the generation of microplasmas in liquid is similar to generating a corona in air. It 

requires atoms or molecules being ionized in an electrical field. The number density in 

liquid is significantly higher than that in gases. The effective pressure which reflects the 
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mean free path is considered in Paschen’s Law [91]. In Paschen’s law ( Constantnd  ), 

with the same breakdown voltage, in order to decrease the dimension ‘d’, the number 

density ‘ n ’ has to be increased correspondingly [95, 96]. For plasma in liquid, sharp and 

tiny tips were employed to create a high electrical field to maintain the reduced electrical 

field ( /E n ) for corona discharges. Also these electric fields are rapidly applied, at rates 

of around 500 V/ns to reduce electrochemical energy losses and dissipation. During the 

time of the application of the electric field, when or if a low density region (here-after 

referred to as a bubble) is generated the reduced electric field rises in that region 

facilitating breakdown. While slightly lower in density than the liquid, the initial bubble 

may be very high pressure, even sufficiently high pressure to be supercritical, with no 

clear interface with the liquid. In such a sense microplasmas in liquids are similar to 

discharges in a high pressure gas environment. The necessity and existence of a bubble 

is a point of contention [97]. It is our direct observation, in this paper, that a bubble is 

present in the liquid both at the same time as, and after the plasma. This contradicts 

some of the work of Dobrynin [20], but conditions are sufficiently different here 

(namely negative polarity and conducting solutions) to leave the general question as to 

the conditions for the presence of bubbles still open. 

As already alluded to in our review of prior works, in this paper microplasmas 

based microbubbles are studied experimentally and theoretically. In our experiments, a 

single microbubble was observed with the microplasma initiation. The microbubble 

formation and the corresponding phase change are induced by energy release during the 

discharge. It was observed that the microbubbles were generated very rapidly. The 
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precise mechanism of the microbubble generation, however, is beyond the scope of this 

paper.  This paper focuses on the microbubbles’ dynamics within the first 40~50µs. With 

two sophisticated high speed cameras which can take million fps videos and nanosecond 

photos respectively and a 2GHz oscilloscope, the detailed study on energy inputs and 

images of microplasma and microbubble at the initiation stage are given in this paper. 

For the first around 100ns, the microplasma and microbubble coexisted together, with 

the microplasma observed to be inside of the microbubble. After around 100ns, the 

plasma disappears. The microbubble keeps on growing eventually oscillating in size 

with discharge energy dependent amplitude and frequency. The decaying oscillation of 

the microbubble’s beyond about 50µs generally compare well with prior hydrodynamic 

studies and are not the focus of this paper. The microbubbles studied in this paper are 

spherical in shape for their first cycle. No branches were observed from microplasma’s 

and microbubble’s initiation. Conditions for aspherical and branched bubble could be 

attained but are not the focus of this dissertation. These spherical bubble conditions are 

unique to the low energy plasmas studied, and greatly facilitate analysis of the bubble 

dynamics. Established studies of vapor based microbubbles in liquid from boiling and 

cavitation literature [98] are used to describe the hydrodynamics of the bubble. The 

investigation of a microbubble at the very beginning stage assists our understanding of 

microplasmas. In the theoretical study of the microbubbles’ dynamics in this paper, a 

Rayleigh-Plesset model is used to establish a momentum balance of a spherical bubble. 

For the first 40~50µs after plasma disappearance, still within the first cycle of bubble 

oscillation, there is no significant mass and energy transfer from the bubble allowing us 
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to estimate the conditions of the gas inside the bubble. The radius change calculated by 

the RP model matched well with experimental results, and the thermodynamics 

properties and initiation energies are estimated based on model results. 
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CHAPTER III 

MICROPLASMA LIGHT EMISSION IN LIQUID 

3.1 Section Overview 

A low density region, here-after referred to as a microbubble, and light emission 

can be generated from a microdischarge in liquid. Several physical mechanisms of the 

formation of bubbles and plasmas are possible. This paper shows that a microbubble can 

be initiated before a microplasma during a microdischarge in liquid. Energy inputs to 

liquid were adjusted by changing the magnitude of the pulsing voltages, here-after 

referred to as applied peak voltages (APVs), the duration of discharges, the 

conductivities of liquid, and the size of microelectrodes. A DC power supply and spark 

gaps were used together as a nanosecond rise time pulsed power source. The pulsing 

power can output repeatable microsecond or nanosecond pulses with APVs from -2kV to 

-12kV. Deionized water with NaCl of two conductivities, 1990µS/cm and 17600µS/cm, 

and two microelectrode tips with diameter of 3µm and 5µm were tested. Visual images 

of microbubbles and microplasma light emission were captured by a nanosecond gated 

intensified CMOS camera (ICCD).  The light emission from microdischarges could also 

be detected by an opto-isolated photomultiplier tube (PMT), which was used to provide 

continuous monitoring. For the microsecond duration discharges, the generation of 

microbubbles and microplasma light emission was observed in all tests. However, for 

the nanosecond discharges, there were specific thresholds for light and bubble 

generation affected by the conductivity of liquid and the size of microelectrodes. With 
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the high conductivity (17600µS/cm), the plasma light emission was always generated 

with a microbubble. With the low conductivity (1990µS/cm), on the other hand, three 

different phenomena were observed sequentially by changing the APV from -2kV to -

12kV. These phenomena included 1) No bubble formation and no detection of 

microplasma light emission, 2) Bubble formation but no detection of microplasma light 

emission, and 3) Bubble formation and the detection of microplasma light emission. The 

three phenomena and two thresholds of APVs separating them were verified by using 

two microelectrode tips of different sizes. The results show that for ns-rise time 

discharges only at low energy can the generation of microbubbles and microplasma light 

emissions be distinguished, and only at lowest energy (~ 0.5 mJ) microbubbles can be 

initiated before a microplasma. The APV thresholds for two tips were different, but the 

electrical field at the tip for these thresholds was consistent at ~1.1GV/m for the 

microbubble generation, and at ~1.4GV/m for microplasma light emissions. From our 

observation, a microbubble can be initiated at lower energy and before the generation of 

a microplasma during a microdischarge in liquid. 

3.2 Experimental Setup 

Microbubbles and microplasmas were generated at a microelectrode tip in liquid. 

A 3D drawing of a microdischarge in liquid is presented in Figure 27. The electrical 

conductivity of liquid was controlled by adjusting the mass concentration of NaCl in DI 

water (1990µS/cm and 17600µS/cm are two conductivities reported in this paper). 

Tungsten (W) microelectrode tips were made through electrolysis and the tip diameters 
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in this research were around 5 µm. In order to reduce electrical leaking, epoxy (Loctite 

Hysol Adhesives) and a glass tube (OD: 1mm) were both used as an electrical insulation 

layer. The home-made pulsing circuit could output pulses with APVs ranging from -2kV 

to -12kV. The circuit consists of a DC high voltage power and spark gaps, and it could 

output microsecond or nanosecond duration high voltage pulses. Microsecond and 

nanosecond discharges, due to their different discharge durations, were employed to 

achieve different energy inputs to liquid. The schematic diagram of the pulsing power is 

presented in Figure 28. This circuit is the same as used previously [99]. An ICCD 

camera (Standford Computer Optics Inc. 4 Picos ICCD camera) was used to detect the 

microplasma light emission and record the formation of microbubbles. Electromagnetic 

interference (EMI) from the pulsing power was used as the trigger for the ICCD camera. 

The observation of the microbubble and microplasma was through a microscope with a 

gooseneck lamp as back lighting and without any lighting or ambient light. The PMT 

and compatible circuits were a Hamamatsu R928 & C6270 coupling with a 50 Ω 

resistor. The experimental results reported in this paper were all from the highest gain 

setting (1200V) of the PMT. The PMT has a response time of 1.2ns, and the output 

voltages of PMT are proportional to the intensity of the light inputs. 
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Figure 27. 3D Drawing of Microelectrode Tip Immersing in Water with Microplasma 

and Microbubble Generation 
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Figure 28. Schematic Drawing of Experimental Setup. 

 

 

 

3.2.1 Reduction of EMI for PMT Measurement 

EMI could be emitted by the pulsing power and transmission circuits, which 

significantly deteriorate the performance of the PMT. The light emission from 

microplasmas could be extremely dim, and the PMT output could be very low 

correspondingly. EMI created from discharges, hence, was able to overshadow the weak 

PMT output due to the low level of light from the discharge. Likely for this reason, PMT 

results for pulsing microdischarges in liquid are difficult to find in literature. Prior to 

specifically addressing various EMI issues, the PMT outputs were severely 
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compromised by EMI, as presented in Figure 29(a). The interference was so strong for 

the first several microseconds after the initiation that it was even beyond the detectable 

limits of our oscilloscope, and such interference lasted around 6µs to 7µs, far longer than 

the duration of a discharge. 

 

 

 

 

Figure 29. Output Signals of PMT Affected by EMI; a) Prior to Shielding, b) After 

Shielding and Isolation Measures. Flat Cut at First 2 µs of (a) Caused by Limitation of 

Oscilloscope's Range 

 

 

 

To isolate the PMT from EMI, shields for switching circuit, shielded twisted pair 

wirings for the pulsing transmission and an optical isolation were all employed. In 
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Figure 28, a schematic experimental layout is presented. Two grounded metallic boxes 

were used to cover the spark gaps as the first barrier of EMI. Then a 12-meter optical 

fiber going through two sheetrock walls transmitted light emission from microdischarges 

to the PMT, which functioned as an optical isolator of EMI. This setup not only provided 

a certain physical distance between the EMI source and the EMI antenna (PMT), but 

also provided some barriers between them. One end of the optical fiber was placed 0.5 

mm above the microelectrode tip and the other end was placed on the PMT collection 

window. It turned out that the Faraday cage firstly made for the PMT to isolate EMI 

increased EMI as it acted as a pickup antenna.  The PMT was then assembled in a plastic 

box to reduce the pickup of EMI. The same discharges presented in Figure 29(a) were 

then performed with all measures of EMI isolation, and it is clear that the EMI was 

significantly reduced on both of the magnitude (reduction to ~1.5%) and the duration 

(reduction to ~21%), as presented in Figure 29(b). As a result, the electrical noises 

caused by EMI were low enough, and the PMT output became quite distinguishable. 

Moreover, six successive EMI signals, as presented in Figure 29(b), showed that the 

EMIs are highly consistent under the same discharge conditions. The consistency of the 

EMI from the discharges would be used in the later section to separate the real light 

signals from the EMI. 

3.2.2 Energy Inputs to Liquid for Microdischarges 

There are three energies to be considered in these systems. First the energy stored 

on the capacitor, EC, second the energy transferred to the liquid, EL, and third the energy 
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which is dissipated in the plasma discharge, EP. Since there are two spark gap 

configurations, the single spark gap and the double spark gap, the energy stored on the 

capacitor is not the most relevant. For the single spark gap the energy input into the 

liquid is roughly the energy stored on the capacitor, EL/EC ~ 90%. For the double spark 

gap the energy input is significantly less since there is energy flow through the second 

gap, ESG2, and typically EL/EC ~ 5%, though it can vary significantly with immersed 

electrode conditions. The energy transferred to the liquid, EL, is calculable from the 

measured voltage and current traces. The energy transferred to the plasma is more 

difficult to determine since there may be parasitic losses such as those resulting from the 

fluids conductivity. Such differences of energy input to liquid and energy observed to 

pass through the plasma were addressed in previous research [5]. EP/EL ranged from 

0.01% to 80% and was significantly smaller for single spark gap configurations such that 

EP/EC always ranged from 1% to 5%. 

Considering the energy transferred from the circuit to the liquid, in practice it is a 

function of the APVs, the duration of discharges, the size of microelectrode tips and the 

conductivities of liquid. In this paper, APVs were varied systematically, it was found 

that while keeping the APV and discharge duration constant, the energy input from the 

circuit to the liquid was further determined by the conductivity of liquid. We observed 

that EL increased with increased conductivity at the same APV. Explanation of this is not 

so straight forward. A simple consideration to explain this might be to consider the 

plasma and water resistance in series. In which case high conductivity would increase 
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energy input. However this may be an over simplification considering short time scales 

and double layers in conductive liquids. 

Other than the electrical conductivity of the liquid, the size of microelectrode tips 

was also able to change the fraction of the energy which is input to liquid. In Figure 30, 

energy input to liquid vs. APVs from two microelectrode tips (around 3µm and 5µm) is 

presented respectively for nanosecond discharges. These results suggest that for a 

smaller tip EL/EC is higher. This is likely due to the higher fields and thus more rapid 

breakdown for the smaller tip, which apparently has a smaller impedance relative to the 

second spark gap than the breakdown for the large tip relative to the second spark gap.  

Smaller tips create a higher local electrical field (E~V/R) which can contribute in several 

ways to facilitate generation of a bubble. First they can reduce the surface tension 

through the Lippman Effect [73]. This lower surface tension makes a microbubble 

initiation a lower energy process. Electron field emission can also be initiated at around 

1 GV/m. Injections of electrons into the liquid creates electro-hydrodynamic forces 

(EHF) which can generate forces and crack the liquid. Field emission and EHF could 

occur without light emission. A high field also increases electron avalanche and 

ionization processes (however these will typically be visible by increased electronic 

excitation processes and light emission). The inception of microbubble and the initiation 

of the plasma reduce the electrical resistance in liquid, which draws more energy that is 

diverged from EC to ESG2. On the other hand, for longer duration discharges, the 

microsecond discharges (single spark gap), always show both microbubble and 

microplasma initiation because of their higher energy input to liquid. Since threshold for 
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plasma initiation were only observed for the nanosecond discharges (double spark gap), 

they are the focus of this study. 

 

 

Figure 30. Energy Input to Liquid with Different APVs of Nanosecond Discharges in 

Liquid 

 

 

 

3.2.3 PMT Signals for Discharges after Shielding of EMI 

The PMT outputs of microsecond and nanosecond discharges are presented in 

Figure 31. In Figure 31(a), light emission from nine successive microsecond discharges 

were shown, and in Figure 31(b), light emission from ten successive nanosecond 

discharges were presented as well. The APVs for the microsecond and nanosecond 

discharges in Figure 31 were both -8kV. The PMT outputs a voltage signal that is 
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proportional to the light intensity it collects. The peak outputs for microsecond 

discharges are around 4V and the peak outputs for nanosecond discharges are around 

0.8V. The microsecond discharge, due to its high energy input to liquid, not only creates 

a longer plasma light emission, but also makes the light emission brighter than the 

nanosecond discharge. The patterns of light emission presented highly repeatable 

characteristic, which verified the accuracy of using the multiple-gated accumulation 

(MGA) from successive discharge events with the ICCD camera. In addition, they show 

a pattern of the variation of light emission. The rising time of light emission is around 

40ns in both cases. The jitter time of the standard PMT is ~1.1 ns, so such a small jitter 

time does not affect much on the rising time (~40 ns) of both microsecond and 

nanosecond discharges. However, due to the RLC effect in the circuit, i.e., the decay tail 

of each line, the estimation of the duration of light emission may not be accurate to the 

nanosecond scale. Furthermore, there is an inconsistent zone at around 1 µs with 

duration about 100 ns of microsecond discharges. Unlike the multiple-gated 

accumulation with using the ICCD, one of the advantages of PMT data collection is that 

each data line represents a continuous signal from a single discharge. This inconsistent 

intensity variation region suggests that the multiple-gated accumulation of the ICCD 

should be inaccurate to represent this small zone of microsecond discharges. In addition, 

the electrical signals and the light signals are checked independently to verify the setup. 

The signals of EMI sent out from the spark gas and the light signals from the discharges 

travelled different paths and were recorded on a same oscilloscope in the Figure 32. 63 

ns time delay was found between these two signals. The individual EMI was measured 
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independently which needed 21 ns from its source to oscilloscope, and the light signals 

through many instrument was measured independently as well which needed 84±2 ns to 

travel. These independent measurement results matched with the time delay measured by 

oscilloscope, which corroborated the signals collected from oscilloscope were true 

signals. 

 

 

 

 
Figure 31. Successive PMT Signals of (a) Microsecond Discharges and (b) Nanosecond 

Discharges 
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Figure 32. Time Scheme of Light Transmission and EMI Transmission 

 

 

 

3.3 Analysis and Discussion of Experimental Results 

The detection of light emission by the PMT and the ICCD were both presented 

and compared in this section. As the high efficient photon detection tools with fast 

response time, the PMT and the ICCD were used together for the detection of 

microplasma light emissions. As presented in Figure 33, the data line collected from the 

PMT of one single discharge was normalized and plotted. To compare with it, ICCD 
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images were taken with different delay time under the same discharge condition as well. 

The maximum intensity of each ICCD image was then collected, normalized and plotted 

in Figure 33. These dimensionless normalized plots are used to present the change of the 

microplasma light intensity. 

3.3.1 Light Emission by Microsecond Discharges Recorded by ICCD and PMT 

The light emission lasting around 1.5 µs from a microsecond discharge was 

clearly detected and recorded by the ICCD and the PMT, as presented in Figure 33. Each 

of the inset photos was captured by the ICCD camera with 10ns exposure time, different 

delay time and 10 multiple-gated accumulation (MGA). Since there was a time delay 

between the trigger and the shutter of the ICCD camera (58~63 ns), the very beginning 

stage of microplasma light emission was not able to be recorded by the ICCD.  There 

was, however, no such problem of the PMT which continuously recorded the change of 

light intensity. A 40ns rising time of light emission to its maximum value was observed 

by the PMT. The results from the PMT more comprehensively revealed the variation of 

the light intensity of microplasmas. The dots on green line in Figure 33 were the 

maximum light intensity corresponding to each inset photo, and the blue line represents 

the evolution of a microplasma light emission recorded by the PMT. These two patterns 

of the PMT and the ICCD compare well. They both depicted the similar trend of the 

change of light intensity. The APV for the microplasma presented in Figure 33 was -

4kV, and the conductivity of liquid was 1990µS/cm. From our observation, the 

microplasma light emission and microbubble could both be created by microsecond 
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discharges in all tests. The microplasma light emission captured in dark environment and 

the microbubble captured with ambient light on are presented in Figure 34. The delay 

time of ICCD camera for both images was 200ns, the exposure time was 20ns, the 

electrical conductivity of the liquid was 1990µS/cm, and the APV for this discharge was 

-2kV. 

 

 

 

 

Figure 33. Light Emission Signals Collected from PMT and ICCD (Dots on Green Line 

Representing Maximum Intensity of Plasma Light Emission on Each ICCD Photo. APVs 

= -4 kV and Conductivity of Liquid for Discharge =1990µs/Cm) 
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Figure 34. Light Emission and Microbubble from Microsecond Discharge (Delay Time 

(td)=200ns, Exposure Time=20ns, Liquid Conductivity=1990µS/cm and APV=-2kV). 

 

 

 

3.3.2 Thresholds Concerning Microbubbles and Microplasma Light Emission by 

Nanosecond Discharges 

The microbubble generation and microplasma light emission could always be 

observed with microsecond discharges in all tests. The nanosecond discharges, however, 

tell a different story. One advantage of nanosecond discharge is that the energy input to 

liquid can be significantly reduced [5]. Within using the nanosecond discharges, the 

electrical conductivity of liquid still can vary the energy input to liquid. The 

microplasma light emission and the microbubble were both captured with using 

nanosecond discharges in Figure 35. The electrical conductivity was 17600µS/cm, the 

delay time was 20ns and 200ns respectively, the exposure time was 200ns, and the APV 

was -2kV as well. 
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Figure 35. Light Emission and Microbubble from Nanosecond Discharge (Delay Time 

(td)=20ns and 200ns, Exposure Time=200ns, Liquid Conductivity=17600µS/cm and 

APV=-2kV). 

 

 

 

An even lower energy inputs to liquid in this research were achieved by using 

nanosecond discharges and a lower conductivity (1990µS/cm). As the microbubble 

generation and microplasma light emission both needed energy to initiate and sustain, 

low energy input to liquid which might not be sufficient for both of them were expected 

to bring useful information about the initiation mechanism. With limited energy, the 

experimental results suggested that a preference exist for the initiation of microbubbles 

to the initiation of microplasmas. Their generation and evolution with the microelectrode 

of 3µm are depicted in Figure 36. In Figure 36, the first photo of each row was captured 

without any ambient light. The delay time was for all of the pictures was 0 ns and the 

exposure time of ICCD was a constant 1000 ns. They are used to identify the 

microplasma light emission. The rest were all taken with the ambient light for the 
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identification of microbubble generation with different delay times and an exposure time 

of 200ns. Different phenomenon concerning the initiation of microbubbles and 

microplasmas are revealed in Figure 36. As the discharge duration is in nanosecond 

scale, the exposure time of 1000 ns is believed to be long enough to detect any possible 

light emissions. On the other hand, for the microbubble generation, the exposure time of 

200 ns together with different delay time was employed to record a microbubble’s 

growth. When the APVs were -2 kV and -3 kV, there was no light emission detected by 

the ICCD camera. Neither was the generation of microbubble at the microelectrode tip 

detected. The first threshold dividing 1) No bubble formation and no detection of 

microplasma light emission and 2) Bubble formation but no detection of microplasma 

light emission, occurred between the APV of -3 kV and -4 kV. When the APV was -4 

kV, no plasma light emission was detected by the ICCD camera as same as previous 

tests. The generation of microbubble, however, was observed. With the delay time of 

600 ns, a tiny microbubble with the diameter around 7 µm was captured. It quickly 

disappeared, as no trace of microbubble was left in the image with the delay time of 

1200 ns. This interesting threshold might suggest that with the APV around -4 kV of 

nanosecond discharges, the energy output from the pulsing power is sufficient enough to 

initiate a microbubble but not enough to initiate microplasma light emission. 

Microbubble and microplasma were both observed by using microsecond discharge with 

APVs from -2 kV to -12 kV with the same tip. The second threshold dividing 2) Bubble 

formation but no detection of microplasma light emission and 3) Bubble formation and 

the detection of microplasma light emission, was discovered with the APV between -4 
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kV and -5 kV. When the APV was -5 kV, a very weak light emission was captured in 

no-ambient-light photo. The weak light spot could be found in the centre of the photo in 

Figure 36 (APV: -5kV). Furthermore, the duration of microbubble became longer, as a 

microbubble was recorded when the delay time was 3000ns. The bubble disappeared 

between 3000ns and 5600ns. The APVs were then changed to -12kV stepwise. The 

microplasma light emission became brighter, and the maximum diameter of 

microbubbles became bigger as well. Eventually the microplasma light emissions 

became very bright with the APV of -12 kV. A grey scale bar was attached to the last 

plasma light emission figure to present the intensity differences. 

The first two phenomenon were very distinguishable, since the appearance of a 

microbubble was clearly recorded by the ICCD camera. However, the evidence of 

second threshold (light emission) presented in Figure 36 was not solid enough, since the 

noise levels on the ICCD are too high to rule out faint light emission on the photos with 

the APVs of -4 kV and -5 kV. The PMT, as an alternative for the photon detection, was 

then used to verify the microplasma light emission, or lack thereof. In Figure 37, the 

normalized PMT outputs and the energy inputs to liquid, EL, were both plotted 

corresponding to each APV. It is clear that the energy input to liquid presents a linear 

relationship with the APV. On the contrary, when the APVs were -2 kV and -3 kV, the 

PMT signals were both at the background (EMI) level. A rise of the PMT output was 

observed with the APV of -5 kV. Then the PMT outputs basically followed the same 

trend of the energy change. This PMT result comes to the same conclusion as the ICCD 

images that there exists a threshold of the microplasma light emission. In addition, the 
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discovery by using a PMT illustrates that the results from the ICCD and the PMT are 

very consistent. 

As presented in Figure 36, the initiation of microbubble and microplasma light 

emissions was re-tested by using a different microelectrode tip with diameter of 5 µm. 

The size of microelectrode tip also affect the energy input to liquid. In this set of photos, 

the first of each row was captured without any ambient light. The delay time was all 0ns 

and the exposure time was all 1000 ns. The second one of each row was taken with 

ambient light, the same delay time of 0ns and the same exposure time of 100 ns. The 

first threshold concerning the microbubble generation was discovered between the APV 

of -5 kV and -6 kV. A microbubble was recorded with the diameter around 7 µm at the 

microelectrode tip, as presented in Figure 38 (APV= -6 kV). The second threshold 

concerning the microplasma light emission was discovered between the APV of -6 kV 

and -7 kV. A light spot was detected by the ICCD camera, as presented in Figure 38 

(APV= -7 kV). As the APV increased, the brightness of microplasma light emission and 

the size of microbubble were increased correspondingly. The PMT was used as well for 

the microplasma light emission. The energy input to liquid and the normalized PMT 

outputs were also plotted together in Figure 39. The energy input to liquid shows a linear 

relationship versus APVs. The PMT outputs, one the other hand, presents a threshold 

existing in this case as well, before which the PMT signals stayed at the background 

level, and after which the PMT signals follows a similar linear tread of the energy input 

to liquid. 
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Figure 36. Plasma Light Emission and Microbubble from Tip Size of 3 µm  
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Figure 37. Plasma Light Emission and Total Energy Corresponding to Applied Peak 

Voltage from Tip Size of 3 µm 
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Figure 38. Plasma Light Emission and Microbubble from Tip Size of 5 µm  
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Figure 39. Plasma Light Emission and Total Energy Corresponding to Applied Peak 

Voltage from Tip Size of 5 µm  

 

 

 

3.4 Discussion of Thresholds from Perspective of Energy and Electrical Field 

For two different microelectrode tips using nanosecond discharges, separate 

thresholds for the initiation of microbubbles and microplasma light emissions were 

discovered. The APVs were used as the controlled parameter with other parameters as 

constant for each set of tests and the thresholds were only observed in nanosecond 

discharges. Although APV was the control parameter analysis reveals that energy input 

may actually be the real parameter determining these thresholds. Furthermore, a smaller 

tip being able to output a higher energy at each APV explained the shift of the 
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thresholds. As presented in Figure 40(a), the lower energy not only shifted the thresholds 

of APV for the microplasma initiation, but also reduced the light intensity as also 

illustrated. At the same APV, the light intensity from the 3 µm tip was stronger than the 

5 µm tip. As the microbubble was created using the lower APV than the microplasma in 

each case, it seemed that phase change needs lower energy to initiate than the 

microplasmas. In addition to the knowledge of energy input to liquid, the electrical field 

at both tips was analyzed as well. With consideration of both the APVs and the size of 

microelectrode tips, electrical fields at the tip vs. PMT outputs are plotted in Figure 

40(b). It turns out that the electrical field at the tips for the first threshold is of the same 

quantity at around 1.0 GV/m, and for the second threshold is at around 1.3-1.4 GV/m. 

To conclude, with the similar amount of energy, the electrical field at the microelectrode 

tip for the initiation of microbubble or microplasma light emissions was pretty 

consistent. Moreover, energy input to liquid vs. PMT peak output was plotted in Figure 

40(c) as well. The light intensity collected by PMT should reflect the amount of energy 

used for plasma generation, EP, but the energy input to liquid, EL, conceivably can not 

100% be converted into plasma generation. The conversion efficiency EP/EL is quite 

difficult to estimate and also beyond the scope of this paper. As presented in Figure 

40(c), the shift between the PMT peak output of 3 µm and 5 µm illustrates that with 

same amount of the energy input to liquid, due to the different configuration of 

microelectrode tip (size difference), the energy used for plasma looks rather different. 
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Figure 40. (a) PMT Peak Signals vs. Applied Peak Voltage of 3µm and 5µm 

Microelectrode Tips; (b) PMT Peak Outputs vs. Electrical Field at Microelectrode Tips; 

(c) PMT Peak Outputs vs. Energy Input to Liquid of Two Microelectrode Tips. 
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3.5 Summary 

Several possible physical mechanisms of bubble and plasma formation are 

discussed, and systematic experiments were conducted in this research. Different applied 

peak voltages, duration of discharges, conductivities of liquid and size of microelectrode 

tips were used to explore the initiation of microbubbles and microplasma light 

emissions. The ICCD camera was used to record the microbubble generation and detect 

the microplasma light emission, and the PMT was used as an indirect visualization 

means for the continuous detection of microplasma light emission. Their results were 

used to corroborate each other. The variation of light intensities acquired from the ICCD 

photos matched consistently with that from the PMT. Due to the internal delay of the 

ICCD camera, the fact that microplasma light emission experienced a very short rising 

time around 40ns to their peak values was only collected by the PMT. With the same 

APV, the nanosecond discharge was able to output much less energy than that from 

microsecond discharge. The generation of microbubble and microplasma light emission 

were observed together in all microsecond discharges and in nanosecond discharges with 

the high electrical conductivity liquid. Two thresholds of APVs were discovered by 

using the nanosecond discharges in the low electrical conductivity liquid. One threshold 

was between 1) No bubble formation and no detection of microplasma light emission 

and 2) Bubble formation but no detection of microplasma light emission. And the other 

one was between 2) Bubble formation but no detection of microplasma light emission 

and 3) Bubble formation and the detection of microplasma light emission. The three 

phenomenon suggest that a certain energy input be able to initiate a phase change in 
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liquid without causing plasma generations. Under the same conditions, e.g., same APV, 

conductivity of liquid and energy input, the size of microelectrode tips shifted the 

thresholds from our observations. After the microplasma light emissions were initiated, 

their intensities showed similar linear trends as the energy input to liquid. The lower 

energy not only shifted the thresholds of APV for the microplasma initiation, but also 

reduced the light intensity. At the same APV, the light intensity from the small tip was 

stronger than the big tip. As the microbubble was created using the lower APV than the 

microplasma in each case, it seemed that phase change needs lower energy to initiate 

than the microplasmas. When there existed thresholds, the electrical field for 

microbubble generation was around 1.1 GV/m and for microplasma light emission was 

around 1.3-1.4 GV/m for both microelectrode tips. From energy perspective, the criteria 

for the initiation of microbubble seems lower than that for the initiation of microplasma. 

For energy provided to plasma, however, there is some uncertainty as the EP/EL is 

unknown. Time wise it is still unknown whether the inception of microbubble is earlier 

than the microplasma, even if the energy for initiation of the former is easier to meet 

than the latter. Determination of this would require continuous monitoring of bubble 

presence perhaps by a laser scattering technique. 
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CHAPTER IV 

MICRODISCHARGE GENERATED MICROPLASMA AND SPHERICAL 

MICROBUBBLES 

4.1 Section Overview 

A microscale plasma and a spherical microscale bubble were generated by the 

application of a single pulsed discharge in water with no pre-existing bubble. The 

microscale corona discharges were created at the tip of a microelectrode by applying a 

voltage at around -11 kV with the rise time of around 20 ns. The energy inputs for a 

microplasma generation were controlled by varying the durations of discharges from 

nanoseconds to microseconds. Two different energy inputs 103 mJ and 0.5 mJ were 

studied in detail and the differences in the microplasma generated microbubbles, such as 

the maximum radii, the numbers of oscillation and the durations of a bubble were 

observed. These microbubbles were visualized using a microscope based optical system 

with two different high speed cameras. Images of the discharges were captured by a 

*Reprinted with permission from “Microbubble generation by microplasma in water” by P. Xiao and 
D. Staack, 2014. Journal of Physics D: Applied Physics, vol. 47, p. 355203, Copyright [2014] by 
Institute of Physics. 
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nanosecond gated intensified CCD camera (ICCD), and the microbubbles’ dynamics 

were recorded by a million-frame-per-second (Mfps) CMOS video camera. A Rayleigh-

Plesset (RP) model considering both condensable (water vapor) and incondensable (H2 

and O2) gases in the microbubble predicts the bubbles’ dynamics accurately. 

Comparisons of the experimental results and the RP models allow estimation of the 

thermodynamic states of microplasmas and microbubbles. The energies in the 

microbubbles are analyzed quantitatively from the model and rough approximations for 

energy dissipation and the energy of the microplasma are made. The microplasma 

energy can be significantly less than the applied energy input. Such low initiation energy 

is the reason that the size of microplasmas is in micron scale and all microplasmas are 

confined in a spherical microbubble. All the microbubbles reported in this paper are 

spherical. The low energy also provides conditions for non-equilibrium plasmas in 

liquid. 

4.2 Mechanism and Initiation Rate of Microdischarge Generated Microbubbles 

Two similar theories are espoused by A) Lewis [100, 101], B) Kunhardt [102] 

and Shoenbach [97, 103] which differ on one main point. Lewis believes that the water 

essentially cracks under the high dielectricphoretic stresses, leaving a void due to electric 

fields and space charge to form bubbles according to the Lippmann Effect. Shoenbach 

refers to heating of the liquid to vaporization to form bubble. There is yet another theory 

involving pre-existing bubbles so called ‘bubbstons’ (bubble, stabilized by Ions) [104, 

105] but it has not been widely referred to in literature. From our research, Lewis’ theory 
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is more closed to what were observed in tests. The forces on such interfaces could be 

modeled using electro-hydrodynamics. The experimental verification of these theories 

has mainly been studying variation of breakdown with conductivity, hydrostatic 

pressure, and polarity. Shoenbach [97] has attempted Direct Simulation Monte Carlo 

(DSMC) modeling of the discharge initiation but assumes high current (fast discharge 

formation) and neglects the Lippmann effect. Experimentally, there are no conclusive 

evidences to prove what the microbubble initiation mechanism is [76, 106]. 

 

 

 

 

Figure 41. Electrode Geometry 

 

 

In general when a voltage is applied across a solid-liquid interface several 

processes can occur. Three possible processes include electrolysis, local heating, and 

cavitation. For the case of a short transient pulse voltage the relative importance of these 
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processes depends largely on how rapidly the voltage is applied; therefore the 

characteristic times of these processes are important. Estimates for these characteristic 

times will be considered. The general setup is as shown in Figure 41 where a pointed 

electrode, with tip radius ‘r’, is a distance ‘d’, away from the other electrode and a small 

bubble is forming having a radius ‘δ’ which will be the free variable for this analysis. It 

will be approximated that the bubble growth away from the electrode grows with a 

cylindrical geometry having a constant cross sectional area; in this was the bubble grows 

a distance ‘l’ away from the electrode. In general we seek a time for the bubble will 

grow to some length ‘l’ as predicted by the different mechanisms; as will be seen these 

estimations will that the general form of Equation 4, where ‘Ci’ is a constant to be 

determined which is associated with a particular mechanism. 

 
i iC l   Equation 4 

In order to make determine these constants of proportionality for each 

mechanism the variables in table Table 2 will be used. 

 

 

Table 2. Legend of Variables Used for Estimating Proportionality Constants 

Property Variable Units 

Density 𝜌 [
𝑘𝑔

𝑚3
] 

Electric Field 𝐸 [
𝑉

𝑚
] 
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Table 2 Continued 

Property Variable Units 

Enthalpy of Vaporization ℎ𝑣 [
𝑘𝐽

𝑘𝑔
] 

Mobility 𝜇𝑖 , (𝑖 ≝ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠) [
𝑚2

𝑉 ∗ 𝑠
] 

Number Density 𝑛𝑖  , (𝑖 ≝ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠) [𝑚−3] 

Specific Heat 𝑐𝑝,𝑖 , (𝑖 ≝ 𝑠𝑝𝑒𝑐𝑖𝑒𝑠) [
𝑘𝐽

𝑘𝑔 ∗ 𝐾
] 

Voltage 𝑉 [𝑉] 

Yield Strength 𝑌 [
𝑁

𝑚2
] 

 

 

 

 

Electrolysis requires the presence of mobile ions in the liquid in order to transfer 

charge; therefore if there is no ion concentration in the liquid electrolysis will not occur. 

However if electrolysis is possible it will tend to be a very slow process due to the 

relatively low mobility of the ions. A characteristic timescale for electrolysis can be 

estimated using Faraday’s Law of Electrolysis, Equation 5 & Equation 6, where ‘F’ is 

the Faraday constant. 
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 dN I

dt F
  

Equation 5 

 

0

1
 N I dt

F



   
Equation 6 

 

Equation 5 can be rewritten in terms of number density using the assumption that 

the bubble is a cylindrical volume Equation 6. 

 2

0

1
 

a

l
n I dt

N F


 

 
 

  
Equation 7 

The current for a specific charged species (𝑖) can be expressed in terms of the 

mobility, charge, and electric field as in Equation 7. 

 
i i iI en EA  Equation 8 

If any of these variables change with time then they must be considered within 

the above integral, however for a simplified initial case it can be assumed that each one 

of these variables are constant. Making the constant current assumption and choosing the 

cross sectional area for the current to have a radius of ‘δ’ can be combined and solved 

for time; also note that the Faraday constant is simply the product of the fundamental 

charge of an electron and Avogadro’s number, which provides the constant of 

proportionality for the electrolysis mechanism. 

 
2H

e

i i

n
l

n E




 
  
 

 Equation 9 

A characteristic timescale can be estimated for boiling by considering a simple 

energy balance at the solid-liquid interface. 

  , 2p H v bm c T h VI   Equation 10 

In order to be consistent, the voltage will be converted to the electric field, this 

required a further assumption for the electric field. It will be assumed that the geometry 
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shown in Figure 41 can be approximated as a parabolic tip above a plane. Furthermore it 

will be assumed that the maximum electric field will determine that current flow; this is 

reasonable since it is the area of the highest stress. The maximum electric field is 

approximated. 

 2

2
ln

V
E

d
r

r

  
Equation 11 
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Equation 12 

 

In order for cavitation to occur the voltage must be strong enough to overcome 

the yield strength of the liquid; this is equivalent to pushing the interface apart leading to 

the creation of a low density region. To estimate the characteristic time for this process 

the Yield strength of the liquid is balanced with the applied power. 

 2

cY l VI   Equation 13 

Just as before the electric field will be related to the voltage, the current will be 

given. And when combined, time can be solved. 

 

2
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d
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

 
 

  
 
 

 Equation 14 

The proportionality constants for the three different mechanisms have been 

obtained and can now be compared by plugging in actual numbers and plotting. To 

create this plot the number used are shown in Table 3. 
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Table 3. Values Used for Comparing the Relative Rates for Each Mechanism 

Variable Value Unit 

ρH2 89.9 g/m3 

nH2 2.71e25 m-3 

cp,H2O 1670 J/kg*K 

hv,H2O 4.24e4 J/kg*K 

nNa 1.06e22 m-3 

μNa 5.19e-8 m2/(V*s) 

E 6.68e8 V/m 

r 5e-6 M 

d 1e-3 M 

ne 1e12 m-3 

μe 1.80e-4 m2/(V*s) 

Y 45e5 N/m2 
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Figure 42. Time Constants for Low Density Bubble Formation vs. Bubble Size 

 

 

 

4.3 Experimental Setup 

The microplasmas in our tests were generated at a microelectrode tip. A 3D 

schematic drawing of microplasma in liquid is presented in Figure 43. The 

microelectrode tip is immersed in a petri dish containing water and a grounded metal tab 

is placed in the water. By using a high voltage power supply (maximum -20 kV) and a 

spark gap, short rise-time pulses microplasmas were able to be initiated in liquid. The 

size of microplasma is related to: the size of microelectrode tip, the applied electrical 

field, and the input energy. A small electrode tip is necessary, because it allows for a 

localized discharge and an attaining breakdown field with lower applied voltage and 

energy. The ground in not sharp and no discharge occur there. The sharp electrode tips 

were fabricated through electrolysis. The distance between electrodes was always around 
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1cm. When the two electrodes are too close (<0.5 mm depending on voltage), a spark 

discharge (extending the distance between the electrode) instead of a corona discharge 

occurs. Only corona discharges are covered in this paper. If the ground electrode is 

sharp, an opposite polarity discharge occurs there. To prevent electrical leaking, epoxy 

was used to cover the body of microelectrode except for the tip. The liquid used was a 

mixture of deionized water and sodium chloride (NaCl) salt with a conductivity as 9120 

µS/cm, and was consistent for all our tests. The water depth was about 3 mm and the 

water surface was at ambient pressure. The bubble dynamics are sensitive to solution 

conductivity and ambient pressure, the plasma is also affected by these. A parametric 

study of changing the properties of liquid is ongoing work. 

 

 

 

 

Figure 43. 3D Drawing of Microelectrode Tip Immersing in Water with Microplasma 

and Microbubble Generation Illustrated 
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4.3.1 Microelectrode Fabrication 

The size of microelectrode tip is a key parameter assisting to determine the 

energy density of microplasma. To fabricate the micro tip, a tungsten micro wire (OD: 

50µm) was suspended with one end immersed in NaOH solution and the other end 

connected to the anode of a DC power supply [107]. The microelectrode tip was 

sharpened by electrolysis at the interface of solution and air. Micro tips in our tests were 

around 1 µm to 3 µm presented in Figure 44(a). They were used to create a localized 

high electrical field to induce a breakdown. After a tungsten microelectrode tip was 

finished, the surface of tungsten microelectrodes would be covered by high dielectric 

epoxy as an insulator. Due to capillary forces, the epoxy on the surface of 

microelectrode formed some beads presented in Figure 44(b). It is most important to 

provide dielectric insulation at the water/air/electrode interface and this was done by 

locating the thick epoxy bead area at the interface. 
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Figure 44. (a) Microelectrode Tip Fabricated by Electrolysis; (b) Microelectrode 

Covered by Epoxy 

 

 

 

The surface of microelectrode tip was very smooth after electrolysis, as presented 

in a SEM photo in Figure 45(a). The diameter of the tip was around 1.5 µm. After about 

3 discharges of 4 µs duration and 200 discharges of 200 ns duration (discharges details 

are described later), the tip was reshaped, likely by melting during the first several 

discharges of plasma as presented in Figure 45(b). The rest of microelectrode looked 

intact. The diameter of the tip became around 3µm to 4µm and did not change further. 

This was only 2 to 3 times bigger than its initial diameter. The comparisons of SEM 

photos show that the change to the electrode, likely melting, by the microplasma only 

occurred at the tip. The size of melting areas matched with the size we observed for the 

microplasma in Figure 45. Based upon the specific and latent heats of tungsten and the 

observed volume, the energy required to cause this area to melt is less than 4 µJ. Energy 

well in excess of this is provided during the discharge. The melting, we believe, is 
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caused by the plasma generation particularly during the microsecond pulsed discharges 

(probably less so during the ns pulsed discharges). This melting would indicate 

temperature in excess of 3695 K. The dark region in Figure 45(a) was caused by the 

accumulation of electrons on nonconductive impurities visible by the SEM. So that 

region appears blurred. The impurities might be due to some likely dust or un-rinsed 

NaOH or salts from the tip as artifact of the etching process used to fabricate the tip. 

 

 

 

 

Figure 45. (a) SEM Photos for Microelectrode Tip before Discharges, (b) SEM Photos 

for the Same Microelectrode Tip after 200 Discharges 
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4.3.2 Experimental Layout 

The maximum radius of microplasma and microplasma generated microbubbles 

in our tests were both in micron scale, so an inverted optical microscope was used to 

observe them. One of the outputs of a fiber optical white light source (AMScope, 150 W 

optical gooseneck microscope illuminator) was placed directly above the liquid 

container at full power to illuminate the microscopic field of view. This background 

lighting is similar to shadowgraph, making the density differences between the gases in a 

microbubble and the liquid surrounding it more distinguishable. Those shadow graphic 

images were used to estimate the radius variation of a microbubble. A reference object 

with known dimension was used under microscope with high speed cameras to calibrate 

the image resolution (length/pixel). The resolution was used later to calculate the 

diameter of microbubble based on the number of pixels. The resolution for CMOS 

camera is around 1 µm (1 µm/pixel) and the error for ICCD camera is around 200~300 

nm (200~300 nm/pixel). The ICCD camera has better image resolution than the CMOS 

camera. Due to image blurring and motion during the exposures the minimum feature 

sizes observable were about 6 µm and 2 µm for the CMOS and ICCD respectively. A 

schematic illustration of experimental layout including the microscope setup, cameras, 

data acquisition, power supply and switching circuit is presented in Figure 46. 
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Figure 46. Schematic Illustration of Experimental Layout with Double- and Single-

Spark-Gap Switching 

 

 

Pulsed switching circuit employing spark gaps were used to control energy inputs 

for the plasma generations. The single spark gap configuration was used to provide 

microsecond duration discharges, while the double spark gap configuration was used to 

provide nanosecond duration discharges. They both worked with a 20 MΩ resistor and a 

2 nF capacitor charging circuit. By adjusting the gap distances using a position screw of 

the primary spark gap, applied voltages to initiate microplasmas were able to be 

controlled. In Figure 47 and Figure 48, voltage & current vs. time from a single spark 

gap and a double spark gap are both presented with the same applied peak voltage (-11 

kV). 
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Figure 47. Voltage and Current Variation vs. Time of Single-Spark-Gap Microsecond 

Pulse Discharge 

 

 

 

 

Figure 48. Voltage and Current Variation vs. Time of Double-Spark-Gap Nanosecond 

Pulse Discharge 
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For the single spark gap configuration, the total energy stored in the capacitor 

before breakdown is released into the load mostly. The load is the electrode immersed in 

the liquid when properly insulated. For the double spark gap configuration, however, the 

secondary spark gap connected to ground fires shortly (several nanoseconds) after the 

primary spark fires. In this case, the primary spark gap initially still releases the energy 

stored in the capacitor to the load, but the secondary spark gap interrupts this releasing 

and conducts the remainder of energy to ground. So the energy released into load is 

significantly reduced. The timing of the second spark gap firing can be adjusted by 

changing its gap length and wiring. In Figure 47 and Figure 48, voltages and currents 

take around 4.5 µs for the single spark gap and 0.2 µs for the double spark to decay to 

zero with some ringing. In this paper, the configuration using only one spark gap is 

referred to as the microsecond pulse and the configuration using double spark gap is 

referred to as the nanosecond pulse. Only one set of conditions for each pulse duration 

was studied in detail. The applied peak voltage on the voltage waveform was the same (-

11 kV) for both cases. The total energy consumption in Figure 47 of microsecond pulse 

was around 103mJ and in Figure 48 of the nanosecond pulse was around 0.55 mJ, 

determined by integrating the product of the voltage and current. The total energy stored 

in the capacitor of our circuit is 121 mJ (1/2CV2), so the energy released into load from 

microsecond discharge took 85% and from nanosecond discharge took 0.4%. 
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4.3.3 Image Acquisition Equipment 

A single nanosecond pulsed discharge is able to create a microplasma in the 

liquid which emits light for only around 100 nanoseconds. But the microbubble 

generated with the microplasma lasts from tens to hundreds of microseconds. Two 

different high speed cameras targeting different time scales were used to capture the 

microplasmas and microbubbles respectively. The microplasma discharges were 

recorded by a nanosecond gated ICCD camera (Standford Computer Optics Inc. 4 Picos 

ICCD camera), and the initiation, the growth, the collapse and the oscillation of the 

microbubble were recorded by a CDD camera capable of million fps (Photron, 

FASTCAM SA5). One of the main differences between two cameras are that the ICCD 

camera can take a single triggered photo with nanosecond delay and nanosecond 

exposure time; whereas the CMOS camera can take continuous videos with 

microseconds interval between two frames. In all our tests, 10 ns exposure time and an 

average of 20 accumulations were used for the ICCD camera, and 300000 fps was used 

for the CMOS video camera. Due to an internal circuit delay in the ICCD camera, the 

shutter opened around 70 ns after it was triggered. Electromagnetic interference (EMI) 

from the primary spark gap was used to trigger the ICCD. The jitter of the ICCD camera 

is specified as <0.02 ns, and the EMI was measured to be a repeatable trigger relative to 

the voltage measurement within 0.5ns. The timing uncertainty is thus about 0.5 ns for the 

ICCD and it should not affect our accuracy with exposure time of 10 ns. All times from 

ICCD camera referred to in this paper are relative to this repeatable EMI signal. For the 

CMOS the timing uncertainty is 3.3 µs (the inverse of the frame rate). 
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4.4 Experimental Results and Discussion 

4.4.1 Microplasma Initiation and Nanosecond Duration 

The light emission due to the plasma at the probe tip for a nanosecond pulsed 

discharge is presented in Figure 49. Applied peak voltages for discharges were around -

11 kV corresponding to Figure 48. Figure 49(a) shows the image for a single exposure of 

the microplasma light emission and Figure 49(b) shows the averaging of 20 exposures. 

In both cases, the light emission from the discharges is visible and about 15µm in 

diameter. Figure 50 shows the time dependent microplasma and microbubble dynamics 

as captured by the ICCD for the first 120ns. In these images the microelectrode is seen 

coming up from the bottom of the image and the discharge and bubble are at the tip of 

the microelectrode. The first row presents the shadowgraphic visualization of the 

microbubbles at the tip of microelectrode with the light source on, while the second row 

presents light emission from the microplasmas without any ambient light. The arrows 

highlight the light emission regions. To reiterate the EMI emission from the spark gap is 

used as the reference t=0, the first photo begins at 70 ns delay due to the internal timing 

of the ICCD camera. The exposure time for all photos in Figure 50 is 10 ns. In the first 

row of photos, the microbubble grows from around 20 µm to around 30 µm in diameter. 

The tip and the microbubble itself are very clear in the images. The light emissions from 

the plasma can also be observed to be contained inside of the microbubbles. The second 

row of photos presents the plasma emission under same discharge conditions without 

any external light sources. The maximum intensity of light emission occurred at t=80 ns. 
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After that, it gradually dims. After around 110 ns, the light emission of the microplasma 

disappears, while the microbubble surrounding the microplasma is still present and 

growing. Detailed study of plasma light intensity recorded by the ICCD camera was also 

pursued [6] and investigations of initiation mechanism are ongoing. Considering the 

applied peak electric field on the order of 3.5 GV/m (-11 kV, 3 µm), observed high 

temperature (evidence by tungsten tip melting) and secondary electron emission 

processes possible routes of discharge initiation are field emission, thermionic emission 

and Townsend breakdown. The mechanism and timing of the bubble formation is also 

unanswered. What is very clear from these results is that a bubble is generated in less 

than 70 ns and the plasma discharge is confined inside of the bubble. A reason that the 

plasma is micro-scale is that it is confined inside of a microscale bubble. Inside the 

bubble the density is lower and ionization processes are easier and more prevalent. 

 

 

 

 

Figure 49. Nanosecond Pulsed Microplasma without Background Light with 10ns 

Exposure Time at t=70ns. (a) Single Microplasma Light Emission Captured by ICCD 

Camera, (b) Integrated Images of 20 Pulses Averaged by ICCD Camera. 
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Figure 50. Time-Sequence Photos of Microplasma and Microbubble Initiations at the 

Microelectrode Tip Generated by Nanosecond Discharges with Consideration of Internal 

Delay of ICCD Camera. Top Row with Backlit and Bottom Row within Dark 

Environment 

 

 

 

4.4.2 Microplasma Generated Microbubble 

The time scale of bubble growth is significantly longer than the discharge events 

and to some approximation the discharge can be considered as a nearly constant volume 

energy addition. After a discharge, the volume expansion of a microbubble is visible. A 

single pulsed discharge is able to create a microplasma in the liquid which emits light for 

around 100 ns. But the microbubble generated with the microplasma lasts from tens to 

hundreds of microseconds. The time evolution of single microbubbles was analyzed 

from videos recorded by the high speed CMOS camera. In Figure 51, a single frame 

from the video of a microplasma generated microbubble is presented. The radius of this 

microbubble was around 130µm and the microelectrode tip can still be seen in the center 

of the microbubble. The bubble’s edges are clearly distinct from the background, and a 
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focusing of the light is seen in the middle of the bubble due to the refraction at the 

bubble interface. This brightness is not plasma emission. 

 

 

 

 

Figure 51. Microbubble Initiated by Microplasma in Water, t=16.5 µs after Discharge 

Event 

 

 

4.4.2.1 Microplasma Generated Microbubble by High Energy Input (Microsecond 

Discharge) 

Figure 52 shows a sequence of 49 frames from the video corresponding to the 

bubble generated by the microsecond discharge with voltage and current as given in 

Figure 47 (103 mJ). The bubble is seen to grow, reaching a maximum diameter after 

around 3 3 µs, collapse to a minimum diameter at around 50 µs, and continue to grow 

and collapse in several decaying oscillations. The whole process of oscillations takes 

around 170 µs from the initiation of the microbubble to its disappearance. The maximum 

diameter during its evolution was around 260 µm. The bubble’s radius in each video 

frame was measured and shown as a function of time in Figure 52. Frames before the 

discharge with no bubble are assigned zero radii. Error bars which represented the 
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accuracy of radius in Figure 52 become larger as the bubble’s edge blurred. The 

blurriness of bubbles edge may be due to: the aspherical shape of bubble, the faster 

speed at smaller radius, the reflection of bubble off the electrode, and the possibility of 

supercritical vapor in process of collapse. In the last 10 µs of frames, microbubble 

researches an equilibrium radius without any motion, and eventually it disappears due to 

dissolving/condensation or rises due to buoyance out of the view. The dissolving and 

condensation, and the buoyance force estimated from the volume of bubble are both able 

to move the bubble out of view of microscope in hundreds of microseconds. 

 

 

 

 

Figure 52. Time-Sequence Photos of Microplasma Generated Microbubble’s Life Cycle 

by High Speed CMOS Camera with 300000fps  

 

 

Due to a sudden increase of temperature and pressure at the tip caused by the 

plasma generation, the microbubble expands quickly passing its equilibrium radius to the 

maximum radius. With the expansion of volume, its temperature and pressure drops. The 
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microbubbles’ dynamics are dictated by the surface tension, the inertia, and the pressure 

differences between the vapor and gases in the bubble and the liquid outside the bubble. 

When the internal pressure of microbubble is higher than its surface tension and 

hydrostatic pressure, the growth of microbubble accelerates and its radius is smaller than 

the equilibrium radius, and when the internal pressure of microbubble is lower than its 

surface tension and hydrostatic pressure, the growth of microbubble decelerates and its 

radius is bigger than the equilibrium radius. Because of the energy transfer due to 

temperature difference, and mass transfer due to the vapor condensation and the gas 

dissolving, the total energy and the maximum radius of each cycle decrease. The 

oscillations of bubbles have been well described by the Rayleigh-Plesse (RP) model 

[98], it will be analyzed in details in section IV. 

4.4.2.2 Microplasma Generated Microbubble by Low Energy Input (Nanosecond 

Discharge) 

On the other hand, for the nanosecond discharge, 0.4% of the energy stored in the 

capacitor of spark gap circuit was released to initiate microplasma. In Figure 53 and 

Figure 54 , the radius variations are presented in photos and measurements. They 

correspond to the voltage and current diagram in Figure 48. The maximum radius was 

around 88 µm, the period of the first oscillation is 25 µs, and it only oscillated twice 

before reaching an equilibrium radius, and remained at this radius for about 8µs before 

rising out of the view. 
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Figure 53. Time-Sequence Photos of Nanosecond Discharge Microplasma Generated 

Microbubble’s Life Cycle by High Speed CMOS Camera with 300000 fps  

 

 

 

4.4.2.3 Comparison between Microbubble Created by Microsecond/Nanosecond 

Discharge 

After the first cycle, the sphericity of microbubble was changed. It is also the 

reason RP model was not applied for any cycle with non-spherical bubbles in this paper. 

The shape influence to the electrical field was not investigated in this paper. Comparing 

the microbubbles’ dynamics in Figure 54 for the microsecond and nanosecond 

discharged microbubbles, the energy initiating the microbubble dissipated through heat 

and mass transfer. The error bars of the radius for both cases are ±2 µm for most of the 

first cycle, which is important for the comparison to the bubble model. The maximum 

radius, the oscillation period and the number of oscillations are important indicators to 

distinguish energy inputs. The microbubble oscillated 7 times created by the 

microsecond discharge and 2 times by the nanoseocnd discharge with same applied peak 

voltage (-11 kV). The maximum radius from the microsecond discharge was 120 µm and 

from the nanosecond discharge was 88µm. After oscillations, the microbubble did not 
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disappear immediately. On the contrary, they slowly rise due to buoyancy in liquid at a 

steady state equilibrium radius. It is believed that the incondensable gases, most likely 

O2 and H2, and the condensable gas such as water vapor both existed in the microbubble. 

The bubble might float up to the liquid surface after it departed the microelectrode. The 

energy input for the microsecond discharge was higher than nanosecond discharge, so 

the microsecond discharged microbubble oscillated more cycles than nanosecond 

discharged microbubble. This is the reason that the microsecond discharged microbubble 

took 150 µs and nanosecond microbubble took 60 µs to complete their oscillations. 

 

 

 

 

Figure 54. Comparison of Time Dependent Radius Change between Microsecond and 

Nanosecond Discharges with Error Bars. 
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4.5 Rayleigh-Plesset Model of Microplasma Generated Microbubble 

The experimental study of the microplasma generated microbubbles has been 

introduced. From ICCD photos in Figure 52, the light emission lasted only about 120ns. 

The microplasma was confined in the microbubble and the microbubble kept on growing 

after the microplasma disappeared. The oscillation of the spherical microbubble is 

studied using a one-dimensional Rayleigh-Plesset (RP) model. In a simplified RP model, 

a void is formed in a liquid and the liquid is drawn into the void. Lord Rayleigh 

described how the void collapsed mathematically based on the conservation of 

momentum and mass [108], and Dr. Plesset supplemented the model to include a 

compressible gas inside the bubble which allows for collapse, growth and oscillations as 

well [109]. Based on prior studies of cavitation, two different RP models [98] were 

considered as options to analyze the experimentally observed microbubbles’ dynamics 

as presented in Figure 52, Figure 53 and Figure 54. One is the ‘thermal bubble model’ 

which assumes energy transfer by thermal effects, i.e., the temperature difference 

between the gases in the bubble and the liquid outside the bubble, significantly affects 

the bubble’s growth and collapse. The other is the ‘inertia bubble model’ which assumes 

inertia is the main driving force dominating oscillations of the bubble. The dynamics of 

bubble are not affected by temperature differences across boundaries in this case. The 

inertia model was selected with initial and boundary conditions provided from the 

measurements of the microbubbles. Discounting the time period of energy addition by 

the microplasma, the RP model is similar to the dynamics observed in the plasma 

generated microbubble. As shown in Figure 50, after the first 120 ns energy input, the 
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bubbles’ dynamics are independent of energy addition. For simplicity, we modeled the 

first cycle of oscillation after the discharge with the assumption of no significant energy 

or mass transfer in the momentum balance. A fraction of the discharge energy supports 

the microbubble oscillations. Because of the short duration of microplasma compared to 

the microbubble, we assume the energy for the microbubble’s oscillations was all 

deposited into the microbubble instantaneously at the very beginning. The gravitational 

effect towards pressures in the RP model is constant. Microplasma generated 

microbubbles under micro or zero gravity is not in the scope of this paper. 

In the ‘inertial bubble model’ presented by Brennen [98], the dynamic force 

balance is given by the Equation15, Equation 16 and Equation 17 define the bubble 

pressure, bP , which  includes both incondensable gases pressure, gasP , and water vapor 

pressure vP . gasP  is related to the equilibrium gas pressure, g eqP  , and the equilibrium 

radius, eqR , of microbubble described by Equation 18 through a polytropic constant n . 

vP  is determined assuming a saturated vapor at a temperature equal to the incondensable 

gas temperature, bT , as given by ideal gas and polytropic process defined in Equation 19 

from equilibrium gas temperature, b eqT  . The content of microbubble being the mixture 

of vapor and some other incondensable gases such as H2 and O2 has been explained 

based on experimental observation. It is assumed that the incondensable gases are 

considered to consist of 1/3 oxygen and 2/3 hydrogen by mole fraction based on H2O 

dissociation. In equation 1, the first term in brackets represents the dynamic component 

of the boundary, the second one represents the surface tension component on the 



 

117 

 

boundary, the third one represents the internal force which includes pressures both from 

incondensable and condensable gases, and the last one represents ambient hydrostatic 

pressure.  
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In these equations, R  is the time dependent radius of microbubble, L  is the 

kinematic viscosity, L  is the density of liquid, S is the surface tension of liquid, and P  

is the ambient pressure. S, L , P ,T , and L  are constants for the ambient water at a 

saturation temperature of 373K (75 mN/m, 0.801×10-6 m2/s, 1.025×105 Pa, 300 K, 1×103 

kg/m3, respectively). These equations were solved for R as a function of time using a 

built in ordinary differential equation solver (ode23t) in Matlab. The numerical solutions 

were checked for time step convergence and energy conservation by calculating the 

solutions for many cycles and verifying that the amplitude of oscillations is constant. 

Initial radius 0R  and initial velocity 0R  as well as n , b eqT  and eqR were used as fitting 

parameters to compare the model to experiment. These five fitting parameters are used 
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to achieve best fitting using least square error comparing the simulations to the 

experimental data for bubble radius as a function of time in the first cycle of oscillation. 

The initial conditions for the bubble ( 0R and 0R ) determine the energy available for the 

oscillation of the bubble. Experimentally, the initial conditions, 0R and 0R  of 

microbubble in our model study are estimated to be around 10µm, and 100m/s 

respectively, based on images in Figure 54. These values after best fitting of 0R and 0R

should be comparable. Bubble temperature and radius at equilibrium ( b eqT  and eqR ) 

determine the equilibrium gas pressure. And the polytropic constant ( n ) determines the 

dynamics of internal & kinetic energy transfer, and should be bounded between 1 

(isothermal) and 1.4 (isentropic diatomic gas). After a best fitting solution is found, the 

values can be used to determine the thermodynamic state in the bubble, including 

pressure, temperature, vapor fraction, mass and internal energy. Based on our model 

results, the maximum temperature is about 390 K and the minimum temperature of 

microbubble is around 37 0K. This supports the assumption that heat transfer is not the 

main driving force over the range of radius change discussed in this paper. Including 

both water vapor and incondensable gases (H2 and O2) in the RP model is important. If 

water vapor is neglected, the best fitting procedure gives a polytropic index n  of 0.101 

which is non-physical because it requires heat flow along a positive temperature 

gradient. On the other hand, if only vapor existed in a microbubble, the bubble pressure 

is not able to provide a sufficient mechanism for oscillations in the model. So both of the 
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incondensable and the condensable gases are needed to make the microbubble have 

enough resilience to bounce.  

The radius changes from the experimental observation and from the best fitting 

of RP model with microsecond and nanosecond discharges are both presented as 

comparisons in Figure 55. Experimental results and theoretical model match well for the 

first cycle.  Fitting parameters for microsecond discharged microbubble are 0R =10±2 

µm, 0R =99±5 m/s, n =1.011±0.005, b eqT  =371±2 K and eqR =71.58±10 µm, and for 

nanosecond discharged microbubble are 0R =10±2 µm, 0R =79±5 m/s, n =1.015±0.005, 

b eqT  =371±2 K and eqR =49.65±10 µm. The best fitting solutions were analyzed around 

their minima to determine the sensitivity to the fitting parameters. Ranges for the fitting 

parameters, as given above, were determined by comparing the experimental uncertainty 

in radius (determined to be around ±2µm in Figure 55 in first cycle) to the root mean 

square errors. 
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Figure 55. Comparison of Experimental Results with RP Model Results for Both 

Microsecond and Nanosecond Discharged Microbubbles 

 

 

 

At the end of the first collapse, the model predicts there is what is described in 

the literature as a singularity, where the radii of microbubbles collapse to smaller than 

1µm for both cases, as presented in Figure 56. This tiny radius would occur between two 

experimentally observed radii and was not recorded by the high speed CMOS camera. 

There are two possible reasons, one is that the camera speed is not fast enough to capture 

this fast variation of radius, and the other is that our inertia model does not take 

significant mass and energy transfer into consideration. If the formation of vapor and the 

heat transfer is huge, presumably, the microbubble will not be able to collapse to such a 

small radius before bouncing back. At the time when the radii were smaller than 10µm, a 
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thermal bubble model may be more appropriate than the inertia bubble model. Such 

models have been used for sonoluminescence bubbles [110], where similar bubble 

oscillation patterns and singularities are observed. But those model only covered a single 

species of incondensable gas in the bubble [111, 112].  Most sonoluminescence research 

operates at conditions without significant phase change in order to observe a sharp 

singularity (noble gases and specific liquids are typically used). In the research of 

sonoluminescence bubble, singularities which correspond to light emission and plasma 

generation are observed at each minimum radius during oscillations. In our microplasma 

generated microbubble tests, singularity and microplasma is observed at initiation only. 

In future work, a thermal model will be used to describe the dynamics of a microplasma 

generated microbubble for the small radii at initiation. 

The pressure, the temperature, the mass and the internal energy of the water 

vapor, the incondensable gases (H2 and O2) and the combination of vapor and gases, 

based on model calculation, are presented in Figure 56. The thermodynamic properties 

of microsecond discharged microbubble are depicted in the first row, and those of 

nanosecond discharged microbubble are in the second row. The pressure drop is very 

fast at the beginning of the bubble’s growth. At around 2 µs after the initiation, the 

internal pressures of microbubble are around 1 MPa for both cases. The pressure in the 

microbubble is mainly dictated by the vapor pressure which is relatively constant. In the 

figures of pressure variations, the incondensable gases’ pressure changes significantly at 

small radius. The pressure in the microsecond discharged microbubble (1.2 MPa) is 

higher than that in the nanosecond discharged microbubble (0.6 MPa) at initial radius. 
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The temperature of the microbubble stays at around 370K except when the 

microbubbble is small (<3µm). From the Figure 56(b) and (f), the temperature in the 

microbubble is around 370K±5 K during the growth period except when the time is 

within the first 0.1~0.2 µs. From Figure 54, the 3 µm is estimated when the time is in the 

range of 0.1~0.2 µs. The internal temperatures of different species are assumed to be 

same. The mass of the microbubble are about 16 picogram and 5 picogram for the two 

conditions and they change by ~20% due to the evaporation and condensation of the 

water vapor. This mass transfer due to evaporation and condensation (~10 picogram) has 

little influence on the momentum transfer described in RP model. The momentum 

transfer in RP model is effectively for the mass and the motion of the liquid surrounding 

the microbubble. The ratio of the mass transfer of vapor (~10picogram) and the mass of 

liquid with same volume of microbubble (~7 µg) is around 2.5×10-6. So the mass 

transfer in terms of evaporation and condensation in our cases affect the momentum 

balance very little. With consideration of both the pressure variation and mass transfer, 

the oscillation of microbubble can be divided into two different mechanisms. The 

incondensable gases play the role of providing the amplitude of the oscillations, whereas 

the water vapor buffers the oscillation by means of the mass transfer. The mass in the 

microsecond discharged microbubble is 4 times higher than that in the nanosecond 

discharged microbubble. 
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Figure 56. Comparisons of Pressure (a, e), Temperature (b, f), Mass (c, g) and Internal 

Energy (d, h) of Microsecond Discharged Microbubble and Nanosecond Discharged 

Microbubble Predicted by RP Model. 
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These modeling results provide parameters useful for estimating energy 

dissipation in the microplasma and microbubble presented in Figure 57.  Several means 

of energy storage and dissipation from microplasmas have been considered. Considered 

energy associated with microplasmas from microsecond and nanosecond discharges 

includes 1: the internal energy of microbubble (~11 nJ and ~4 nJ), 2: the heat conduction 

from the hot plasma for heating and melting of the microelectrode tip (~4 µJ for both, 

with melting volume estimated), 3: the heat conduction from hot plasma to the 

microelectrode (~710 µJ and ~160 µJ with assumptions of temperature difference 

between plasma to far-away microelectrode as 4000 K, heat penetration time of 4µs and 

200 ns respectively, and using thermal diffusivity of tungsten at 4000 K), 4: the heat 

conduction from hot plasma to ambient liquid (~35 µJ and ~8 µJ with assumptions of 

temperature difference between plasma to ambient liquid as 5000 K, heat penetration 

time of 4 µs and 200 ns respectively, and using thermal diffusivity of liquid water), 5: 

the heat conduction from the microbubble to the microelectrode (193 µJ and 170 µJ with 

assumptions of temperature difference between the microbubble and ambient liquid as 

100 K, heat penetration time of 45 µs and 35 µs, and using thermal diffusivity of 

tungsten at 400 K (the time here is for the first cycle of microbubble oscillation)), and 6: 

the heat conduction from the microbubble to the surrounding liquid (~38 µJ and ~33 µJ 

with assumptions of temperature difference between the microbubble and ambient liquid 

as 100 K, heat penetration time of 45 µs and 35 µs, and using thermal diffusivity of 

liquid water). The summation at these energies represents an upper bound on the amount 

of energy in the plasma. The energies of microplasmas are estimated as ~980 µJ and 
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~375 µJ respectively. The energy input to the microelectrode for microplasma 

generation for both cases is in millijoule scale by circuit measurement (103 mJ and 0.5 

mJ). Quantitative analysis of different energy dissipations as well as the estimated 

formulas is presented to illustrate that majority of energy from spark gap actually is not 

used for plasma generation. The energy consumptions in Table 4 are rough estimations 

to show the orders of the energy each means consumes for both microsecond and 

nanosecond discharged microbubble. Details concerning of means of energy dissipation, 

the formulas used for each calculation and the estimated energy consumption for both of 

microsecond and nanosecond discharges are described in appendix. 

An important finding is that the energy for the plasma generation can be 

significantly less than the applied energy input. The energy used for microplasma 

generations is less than 1% of the input for the microsecond discharge and 65% of the 

input energy for the nanosecond discharge. Some of the energy supplied from spark gap 

is consumed through other parasitic means such as electrolysis (mainly for the 

microsecond discharge), inductance induced energy consumption (emitted as EMI), 

double layer formed capacitances along microelectrode, Joule heating from 

microelectrode to ambient liquid, etc., which will be addressed in detail in future work. 

The parasitic effects are more prominent in the microsecond discharge than the 

nanosecond discharges. Joule heating and electrolysis do not appear sufficient, at most 

~100 µJ and ~50 µJ, for the energy not into microplasma (99% of input) for the 

microsecond discharge. The capacitance of the double layer is large and can store all of 

the missing energy at low voltage and release it over long time. However, the dynamics 
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of double layer at such high voltage (-11 kV) have not been studied and are difficult to 

estimate, leaving a proper account of 99% of applied energy in microsecond discharge as 

future work. This low energy process while inefficient allows for a more non-

equilibrium plasma. Pulsing high voltage power supplies with energy per pulse for 

plasma initiation less than 1mJ are uncommon. The low energy makes the size of plasma 

small and it leads to discharges and microbubbles which are spherical in shape and 

different from other non-spherical microbubbles produced by high energy plasma 

discharge in liquid [113]. Processes such as the localized synthesis of nanoparticle by 

microplasma [74] and nanoscale corona based nanosecond optical emission spectroscopy 

[75] are allowed only with such low energy non-equilibrium plasmas. 
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Figure 57. Possible Energy Dissipation in Liquid 
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Table 4. Estimated Energy Dissipations in Microplasma Discharges 

Energy Path 

Energy 

(Microsecond 

Dis.) 

Energy 

(Nanosecond 

Dis.) 

Internal Energy 

of Microbubble 
~11nJ 4nJ 

Phase Change of 

Water in 

Microbubble 

~7nJ  ~1.5nJ 

Dissociation of 

Water in 

Microbubble 

(2H2O=2H2+O2) 

~0.23µJ  ~0.08µJ 

Kinetic Energy 

of Water 

Surrounding the 

Microbubble 

~62nJ  ~35nJ 

Microtip 

Heating and 

Melting 

~4µJ ~4µJ 

Microelectrode 

Heating 
0.71mJ 0.16mJ 

Heat Transfer to 

Water 

Surrounding the 

Microbubble 

~0.7µJ  ~0.15µJ 

Electromagnetic 

Interference 

(EMI) Caused 

by Wiring 

~5.6µJ ~5.6µJ 

Joule Heating in 

Liquid  
0.3mJ  0.015mJ 

Charging of 

Debye Length 

Capacitance  

~20nJ to 

20mJ 

~20nJ to 

20mJ 

Light Emission 

of Na* ~0.3nJ  0.1nJ 

Electrolysis in 

Liquid for 

Microsecond  

50µJ  0.4µJ 
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The energy dissipations from microplasma and microbubble generation are 

summarized and the quantities corresponding to different dissipations are calculated. In 

this section, details involving estimation equations and the relevant parameters are 

described. They are all rough estimations to present the order of each energy dissipation, 

by which the energy input for microplasma generation in microjoule scale is concluded.  

The addition internal energy of the microbubble is estimated with temperature 

difference between the vapor in microbubble and the ambient liquid 1T , average 

specific heat of vapor p vaporC  , hydrogen 
2HC  and oxygen 

2OC in the bubble and the 

mass of different species such as vaporm , 
2Hm  and 

2om  from model results. The mass of 

bubbles are different between microsecond and nanosecond discharged microbubble, the 

internal energy stored is around 11 nJ and 4 nJ respectively (nanojoule scale) with 

Equation 20. 

A component at the internal energy, estimated separately, is the energy for phase 

change of liquid. The vapor in the microbubble is heated from liquid to vapor at boiling 

temperature in the microbubble. Since the average temperature of vapor in microbubble 

is estimated around 373K from model, the latent heat of phase change fgh  , and the 

vapor mass vaporm are chosen with an assumption that the vapor in the bubble stays at 

saturated temperature at 373K. The energy consumption for the phase change are around 

7nJ and 1.5nJ respectively (nanojoule scale), calculated with Equation 21. 

Besides the vapor in the microbubble, the dissociated incondensable gases also 

play important role in consuming the energy from microplasma. Dissociation of water 
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(electrolysis) is estimated based on the formation enthalpy of hydrogen
2

o

Hh , oxygen 

2

o

Oh and water 
2

o

H Oh  with the mass of water liquidm involved in this reaction estimated 

in model. The energy consumption are around 0.23µJ and 0.08µJ (microjoule scale), 

calculated with Equation 22. 

The Rayleigh-Plesset model is based on the momentum balance from 

microbubble’s boundary to the ambient liquid. This liquid motion has kinetic energy 

associated with it. Due to the mass conservation of the liquid, the velocity v  at radius of 

r  in liquid can be estimated by using 0R and 0V from best fitting values. The kinetic 

energies from the microbubble interface to ambient liquid for both cases are around 62nJ 

and 35nJ respectively (nanojoule scale), calculated with Equation 23. 

Part of the energy is used to heat up and melt the microelectrode tip. It is 

assumed the microtip was heated up to the melting point of tungsten. 2T is the 

temperature between tungsten melting point to ambient temperature, p tungstenC   is the 

specific heat for tungsten and slh is the latent heat of tungsten from solid to liquid. 

tungstenm is estimated based on the observed melting volume presented in Fig. 3. The 

energy for heating and melting microtip is around 4µJ (microjoule scale), calculated 

with Equation 24. 

 Thermal energy not only heats up and melts the microelectrode tip, but also 

conducts along the microeletrode which has radius of eleR , specific heat of P WC   and 

density of W . 3T is the temperature difference between melting point of tungsten and 
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ambient temperature of water at atmospheric pressure. Characteristic length of heat 

penetration 1L (~18µm and ~4µm) of transient heat conduction along the microelectrode 

is determined with the discharge time 1t  (4µs and 200ns respectively) and tungsten 

thermal diffusivity W . The energy dissipations for both cases are around 0.71mJ and 

0.16mJ respectively (microjoule scale), calculated with Equation 25. 

With the same time of discharges, thermal energy also transfers from the 

microbubble to the ambient liquid. Characteristic length of heat penetration 2L  (~1.3µm 

and ~0.2µm) is determined with discharge time 2t (4µs and 200ns respectively). 4T  is 

the temperature difference of microbubble and ambient liquid. The energy dissipations 

for both cases are around 0.7µJ and 0.15µJ respectively (microjoule scale), calculated 

with Equation 26.  

The time-varying current from the spark gap through cables emits the 

electromagnetic interference (EMI). The self-inductance indL of cable is 0.7µH. The 

time-varying currents ( )I t  for both cases are collected. The energy emitted as EMI is 

around 5.6µJ (microjoule scale), calculated with Equation 27.  

In addition to the microtip used for the microplasma generation, there is about 

1mm of microelectrode not covered by epoxy as dielectric insulation. This area can also 

dissipate electrical energy through liquid to ground. The NaCl solution had a 

conductivity liquid  at ~5000µS. The variation of conductivity due to the change of 

temperature is considered and is negligible [114]. The aqueous resistance is assumed to 

be equivalent to a cylinder wrapped around the exposed area of microelectrode. The 
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length of microelectrode is 3L (~1mm), the aqueous resistance liquidR  can be calculated 

by the integral of radius r from microelectrode surface to the gap distance between 

cathode and anode in the liquid, and ( )V t is the voltage variation of discharges. The 

joule heating of NaCl solution is the integral of the power of aqueous resistance. The 

energy dissipations for both cases are around 0.3mJ and 0.015mJ respectively (millijoule 

scale), calculated with Equation 28.  

During the discharge, between anode to liquid, and cathode to liquid, there is 

Debye layer D  to screen charges. The potential drop across the Debye length 
D

V  can 

be treated as a capacitor [115], which stores energy from instant discharge and releases 

the energy into liquid later. The Debye length D  from the microelectrode surface is 

calculated based on the solution [116], 2A is the area exposed from the microelectrode to 

liquid, liquid is the permittivity of the liquid at ambient temperature with discharge 

frequency lower than 1GHz [114]. The energy stored in the capacitors of Debye length is 

provided by the potential drop across the Debye length and it is assumed it is same for 

both microsecond and nanosecond discharge. The energy released for both cases could 

be from 20nJ (nanojoule scale) to 20mJ, calculated with Equation 29. We have to admit 

that except the energy estimation stored in double layers, all the other energy estimations 

are believed to be within a 20% tolerance. The difficulties are the estimation of the 

thickness of the double layer, the potential drop across the double layer and the area of 

the double layer capacitor. Literatures we have found covered 2 to 3 V electrical 

potential drop, but our cases had around 3 kV to 20 kV electrical potential drop.   
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Plasma creates light emission by emitting photons. Light emission from 

electronic excited sodium species plays the main role in light emission. With sodium 

concentration from measurement, the mass of vapor in the microbubble estimated and 

the assumptions that every sodium atom in the microbubble emits one photon and Na 

concentration in the bubble is same as solution, parameters such as the number of 

sodium toms *#
Na

, Plank’s constant h , light speed c , and wavelength of sodium light 

emission 577nm , are used to estimate the energy dissipation. The energy consumption by 

light emission is at most 0.3nJ (nanojoule scale), calculated with Equation 30. 

Dissociation of water in terms of electrolysis in the microbubble is described 

above and calculated in Equation 22. Since the whole tungsten microelectrode is 

immersed in water, the electrolysis along the immersing part of the microelectrode also 

consumes energy.  By introducing Faraday’s laws of electrolysis, the mole fraction of 

the electrons from the cathode to the generated hydrogen is calculated as two. With the 

time-dependent current ( )I t  measured in Fig. 5 and Fig. 6, the energy of electrolysis 

along the microelectrode can be calculated with formation enthalpy of water 
2

o

H Oh  and 

Avogadro's number aN . The energy dissipations for both cases are around 50µJ and 

0.4µJ respectively (microjoule scale), calculated with Equation 31.   
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Table 5. Estimation Equations of Energy Dissipation  

Estimation Equation Number 

Energy 

(Microsec

ond Dis.) 

Energy 

(Nanoseco

nd Dis.) 

2 2 2 21 1 ( )p vapor v H H O OE T C m C m C m       

 

Equation 

20 ~11nJ 4nJ 

2 fg vaporE h m   
Equation 

21 
~7nJ  ~1.5nJ 

2 2 23 (2 2 )o o o

H O H O liquidE h h h m     
Equation 

22 
~0.23µJ  ~0.08µJ 
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24 
~4µJ ~4µJ 
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 

 
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Table 5 Continued 
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The total energy involves microplasma generation is 

1 2 3 4 5 6 7 11 715μJ and 164μJE E E E E E E E        respectively for microsecond 

and nanosecond discharged microbubbles. 

4.6 Uncertainty Study of Best-fitting Parameter  

The best-fitting parameters are calculated based on RP model presented in 

section 3.3. The algorithm of this best fit has been described in detail as well. The best 

fit in our calculation indicates a minimum of root mean square errors in a five-dimension 

matrix. However, whether this minimum is a local minimum or a universal minimum is 

still unknown. In addition, how sensitive of such minimum in our calculation needs to be 

carefully investigated. In this section, each of the five best fitting parameters, initial 

radius 0R  and initial velocity 0R  as well as polytropic index n , equilibrium temperature 

b eqT  and equilibrium radius eqR , is fixed as a controlled variable, while other four best-
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fitting parameters still optimize them to the minimum root mean square errors. With a 

varied controlled parameter, the root mean square errors are plotted in Figure 58.  

In Figure 58 Rzero Sensitivity, the initial radius is used as a controlled parameter. 

It varies from 5 µm to 18µm with 14 steps in between. It presents that the initial radii 

from 6 µm to 10 µm stay at a similar root mean square error. The sensitivity is not 

obvious when the initial radius is from 5 µm to 12 µm. When the initial radius is set to 

bigger than 12 µm, the root mean square errors show significant changes. The best-

fitting variables match with controlled initial radius are calculated and the results are 

shown in Table 6.   

In Figure 58 Vzero Sensitivity, the initial velocity of a microbubble is used as a 

controlled parameter. It varies from 50 m/s to 130 m/s with 10 m/s as an interval. The 

other four parameters are used for the best fit. The root mean square errors are calculated 

according to different initial velocities. The initial velocity has a very single minimum in 

the figure and it presents that the initial velocity is pretty sensitive than the initial radius. 

The minimum error occurs when the initial velocity is around 110 m/s. Other than this 

velocity, the root mean square errors become bigger.  

 In Figure 58, Tb0, the equilibrium temperature in the microbubble is used as a 

controlled parameter. In our model, the pressure changes with the change of the 

temperature, and the temperature and the pressure determines the thermodynamic 

properties of the microbubble in liquid. The temperatures are controlled to vary from 

350 K to 373.15 K as the constant for each best-fitting calculation. The upper limit for 

the liquid is restricted by its physics. The boiling temperature of water at one 
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atmospheric pressure indicates that beyond this temperature there is no liquid-vapor 

mixture. Without the existence of liquid and vapor, there is no boundary to form the 

microbubbles. From the calculation, the boiling temperature for the water at one 

atmospheric pressure i.e., 373.15 K presents the minimum root mean square error. When 

the equilibrium temperature is lower than the boiling temperature of water at one 

atmospheric pressure, the root means square errors increases monotonically. This results 

also illustrates that this boiling temperature is a very sensitive parameter, around which 

there only one minimum error is existing. 

 In Figure 58, Req Sensitivity, the equilibrium radius is used as the controlled 

parameter. It varies from 60 µm to 90 µm. At each equilibrium radius, the other four 

best-fitting parameters are calculated to get a minimum root mean square errors, just like 

the samples presented in above cases. The sensitivity results presented that the 

equilibrium radius for this case is pretty sensitive for the errors when it is smaller than 

70 µm. The sensitivity becomes less sensitive when the equilibrium radius is from 70 

µm to 90 µm. The results from the constant equilibrium radius actually presents that the 

equilibrium radius does not affect too much on the root means square errors as long as it 

is bigger than 70 µm. The initial radius and the equilibrium radius present similar 

sensitivity trends.  

In Figure 58, k Sensitivity, the polytropic index is used as a controlled parameter. 

The physical boundary for this polytropic index has been described in previous 

subsection. Here the controlled parameter varies from 1.01 to 1.09. The minimum root 
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mean square error only occurs when the polytropic index is 1.01. It significantly changes 

when the polytropic index increases from 1.01 to 1.09. 

 

 

 

 

Figure 58. Sensitivity Study of Best-Fitting Parameters in RP Model 
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Table 6. Variation of Best-Fitting Parameters with Rzero as a Controlled Input 

Req (µm) Vzero (m/s) Teq (K) k Rzero (µm) 

71.2419 98.2877 371.6518 1.0104 5 

69.518 99.4636 370.6047 1.0103 6 

69.4718 99.3101 370.7103 1.0104 7 

69.8283 99.16 371.1274 1.0113 8 

69.4824 98.4693 371.1977 1.0111 9 

69.5362 98.1789 371.4203 1.0115 10 

70.2688 100.5244 374.8099 1.0144 11 

70.1094 100.1563 377.4375 1.0168 12 

69.9751 96.3771 377.977 1.0187 13 

69.2889 97.7118 372.053 1.0142 14 

69.02 98.2388 371.7812 1.0145 15 

69.0886 98.9943 371.4893 1.0146 16 

69.0772 99.6901 371.2283 1.0151 17 

69.1886 100.0126 370.9165 1.0152 18 
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Table 7. Variation of Best-Fitting Parameters with Vzero as a Controlled Input 

Req (µm) Rzero (µm) Teq (K) k Vzero (m/s) 

71.235 9.96183 69.5555 1.0096 50 

71.2985 10.1081 370.435 1.0108 60 

71.2156 9.8985 370.452 1.0108 70 

72.1245 10.0311 371.5297 1.0126 80 

72.3407 10.1591 371.9569 1.0134 90 

70.3145 9.7347 371.8389 1.0122 100 

68.2078 9.852 372.5223 1.0123 110 

67.9304 10.2858 372.3288 1.012 120 

70.5924 10.0908 375.8525 1.0158 130 
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Table 8. Variation of Best-Fitting Parameters with Teq as a Controlled Input 

Req (µm) Rzero (µm) Vzero (m/s) k Teq (K) 

41.25601 3.9464 98.4385 0.98643 350 

72.4401 10.1639 101.0067 0.9963 353 

68.8146 10.355 102.145 0.9987 357 

69.4983 10.0222 100.6433 1.0019 360 

55.7239 11.3355 105.351 0.9986 363 

72.8919 10.0355 100.5853 1.008 366 

70.9823 10.0163 100.5323 1.0094 369 

72.8543 9.9095 100.7954 1.0113 370 

73.2506 9.8096 100.2666 1.0129 371 

71.969 9.9859 101.7014 1.0131 372 

 

 

 

  



 

142 

 

Table 9. Variation of Best-Fitting Parameters with Req as a Controlled Input 

Teq (K) Rzero (µm) Vzero (m/s) k Req (µm) 

364.494 10.1672 93.7139 1.0764 60 

377.6252 9.9938 100.157 1.0206 65 

371.8517 9.7222 99.8198 1.0123 70 

372.5585 9.7987 103.8576 1.0155 75 

374.5785 11.0258 90.029 1.0193 80 

374.9303 10.0993 99.5234 1.0254 85 
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Table 10. Variation of Best-Fitting Parameters with k as a Controlled Input 

Teq Rzero Vze Req k 

370.6222 9.9121 100.1005 70.458 1.01 

372.5652 9.9081 99.5562 71.5241 1.0189 

372.0734 10.5113 101.512 63.8953 1.0278 

372.1579 10.1596 100.0841 69.7075 1.0367 

371.7135 10.3045 100.6699 66.1755 1.0456 

371.3906 10.3477 99.6484 68.5234 1.0544 

371.933 10.1651 100.4792 70.3841 1.0633 

372.0634 10.3248 99.4295 71.4804 1.0722 

370.125 10.5313 99.6875 68.6875 1.0811 

 

 

 

4.7 Summary 

A single microplasma discharge is generated under water by negative (-11 kV) 

pulses applied to microelectrode tips. Images of discharges and generated microbubbles 

were captured at 10 ns exposure time with 10ns increment by the ICCD camera and at 

300k fps by the CMOS video camera. Two discharges were studied in detail, a 103 mJ 

microsecond pulsed discharge and a 0.5 mJ nanosecond pulsed discharge. A 

microbubble was observed with microplasma confined in it. The shape of microbubble 
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and microplasma was spherical, not branches-like [73, 87] as commonly observed. The 

study of microplasma generated microbubble provides a path to investigate the 

microplasmas. The energy to support the growth of the microbubble is provided by the 

microplasma. After the microplasma disappears, the microbubble expands and collapse 

for several oscillations. Due to energy and mass transfer, the amplitude of oscillations 

decays to zero. Then the microbubble at equilibrium radius is visible for ~10 µs before 

disappears either due to leaving the field of view or dissolving. The microplasma 

generated microbubble by microsecond discharge had more energy to sustain more 

oscillations and larger maximum radius comparing to the microbubble generated by the 

nanosecond discharge at same applied peak voltage. The physics of oscillations are well 

described by Rayleight-Plesset models. A RP model with the assumption of no 

significant mass and energy transfer fits well with experimental results in the first cycle 

of oscillation for both cases. The model allows us to describe the thermodynamic state 

inside the microbubble e.g., pressures, temperature, mass and internal energy, based on 

the observed size variation. The important features of the model are that the bubble 

contains vapor and ideal gases mixtures. Over the range modeled, it is approximately 

isothermal. The energy of the microplasma is summed up roughly. Energy in the 

microplasma is on the order of microjoule scale. Big portion of the input energy from the 

spark gap can be dissipated through other parasitic means, which will be addressed in 

future work. Such low energy explains that the spherical stability of microbubble’s 

interface compared to typical branched streamers. Future work will be using a RP 

thermal model to accurately predict the temperatures at initial stage of microplasmas. 
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Also it is important to determine the reasons for spherical bubbles reported in this paper 

and branched bubbles reported in literatures. Due to the low energy inputs, the 

microplasmas in this paper are believed to be non-equilibrium plasmas. It is unknown 

for the degree of non-equilibrium in current results. In the future work, time resolved 

spectroscopy involving Stark broadening will be conducted to estimate the number 

density of electrons in the microplasma. The number density of neutrals can be deducted 

from the estimation of pressure in the microbubble. With knowing the electron number 

density and neutral number density, the degree of non-equilibrium can be answered. 
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CHAPTER V 

DYNAMICS OF MICRODISCHARGE GENERATED SPHERICAL MICROBUBBLE 

UNDER VARIOUS AMBIENT PRESSURES 

5.1 Section Overview 

A microplasma and a spherical microbubble can be generated simultaneously in 

liquid. The microbubbles’ dynamics is able to give insight into the amount of energy 

deposited by the plasma. A DC high voltage power in combination with spark gaps were 

used for pulsed power input. The pulsed microsecond or nanosecond discharges were 

used to generate the microdischarges, and the rising time of the pulsed power was 

around 15 ns. The magnitudes of pulsed voltage, hereafter refer to as the applied peak 

voltage (APV), and the durations of discharges were varied in this research to control the 

energy inputs. The APVs were tuned from -3 kV to -9 kV with 2 kV as interval. The 

initiation of microplasma and microbubbles have been addressed in our previous 

research, and the hydrodynamics of microplasma generated microbubble at ambient 

pressure (0psig) was studied by using Rayleigh-Plesset (RP) model. With the 

consideration of the coexistence of the condensable and incondensable gases in the 

microbubble, the RP model matched well with our experimental results. In this chapter, 

the hydrodynamics of the microplasma generated microbubbles in a pressure controlled 

environment was studied parametrically. The environmental pressure was adjusted from 

0psig to 80psig. DI water with two different surface tensions was prepared (71 mN/m 

and 35 mN/m at 25 oC) as well, since the surface tension component in RP model 
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contributes to the surface momentum balance. The generation and the oscillation of 

microbubbles were recorded by a CMOS high speed camera (300k fps). The radius 

change of microbubbles corresponding to time under different pressures was depicted. 

The RP model with different ambient pressures and surface tensions were studied and 

compared with our experimental results. One of the advantages of RP model, which is 

built up on momentum balance, is to allow the estimation of the thermodynamic states 

and the energy deposition of the microplasmas and microbubbles. It was observed that 

the pressure of the microplasma and microbubble at the initiation stage was very high 

and decreased significantly in first hundreds of nanoseconds. It is concluded that the 

moderate environmental pressure won’t affect this initiation significantly, but it does 

affect the hydrodynamics of microplasma generated microbubble after it expands in 

microsecond scale. 

5.2 Experimental Setup 

The microplasma generation and microdischarge generated microbubbls were 

described in previous chapters. In order to generate microplasma in liquid, short rising 

time discharges (nanosecond scale) with kilovolts outputs are necessary for the plasma 

initiation. In Chapter II, the fabrication of micro electrode tip was introduced. A tungsten 

microelectrode wire was sharpened to around 2 to 3 µm using electrolysis. In this 

microplasma-and-microbubble-generate-in-pressure-vessel tests, a same microelectrode 

tip was fabricated as well. The microelectrode except the tip part was covered by Teflon 

coating as an electrical insulation layer. In this case, one half of  the microelectrode (tip 
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side) was left in the pressure vessel to generate microplasma, at the same time the other 

half of the microelectrode was left out of the pressure vessel to connect to the power 

supply. The sealing and the connection will be described in detail in the later subsection.  

5.2.1 Image Acquisition Toolset 

Two different high speed cameras were used to capture the microplasma and 

microbubble generation. The ICCD camera as described in previous chapters was used 

to detect the microplasma generation. It was able to have a delay time and an exposure 

time within the nanosecond scale. The microplasma generated in our study normally 

lasted from the nanosecond scale to the microsecond scale, so the ICCD was fully 

capable of capturing the plasma’s generation. The microbubble’s oscillation, on the other 

hand, was captured and recorded using the million frame per second CMOS camera. For 

the microbubble generation, our concern was more on the hydrodynamic properties of 

microbubble, which means a continuous recording of the radius changes was very 

important. As for the plasma generation and the plasma light emission, this camera was 

not fast enough. The ICCD and the CMOS camera both were triggered by the EMI in 

our setup. The advantage of triggering the high speed cameras using the EMI is that the 

time scheme would be more accurate. The time delay after the discharge could be 

precisely monitored. 

Choosing the right parameters for both high speed cameras could be tricky. As 

for the high speed CMOS camera, for instance if it works with 1 million frame per 

second, the exposure time will be one micro second and the frequency of the shutter 
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switching is 1 million Hz. One drawback of using high speed camera is that if the object 

of interest does not emit strong light, the environmental light needs to be bright enough 

to make sure that sufficient photons can be reflected from the object of interest to the 

CMOS camera within very limited exposure time. In addition, other than the short 

exposure time, the light intensity in this test were also attenuated on its path. The 

microplasma and microbubble generation was created in a pressure vessel. In order to 

make sure that the pressure be hold to 80 psig and no leaking occur, the main body of the 

pressure vessel was made of stainless steel and half inch thick acrylic sheets. The light 

was provided through a glass light pipe. The details of this light pipe and the setup of 

this experiment is introduced in the next subsection. The light pipe used in this test is a 

one foot long a quarter inch in diameter glass tube. The light through the light pipe can 

be projected onto the microelectrode tip, and then goes through the microscope to the 

observing lens. A halogen lamp was used for the alignment of microelectrode tip with 

the microscope objective.  

Room fluorescent light or the halogen lamp in general could not provide enough 

light for the high speed camera due to its short exposure time. A stronger light source 

was necessary in this test. Laser, due to its high photon density, was used to provide a 

much higher light intensity. The laser used in this test was a green point laser with the 

wavelength of 532 nm and the laser power of 300 MW. The laser went through the light 

pipe, and illuminated the microelectrode and its surroundings.  

For the short exposure time, the laser was used. However, the power from the 

laser was constant. It might be too strong for the high speed camera with long exposure 
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time. The intensifier in the high speed cameras could be damaged if without any 

protection. So neutral density filters (Edmund Optics) with 6 different attenuations were 

employed to control the light intensity towards the microelectrode tips. The optical 

density of these neutral density filers were 0.15, 0.3, 0.4, 0.6, 0.9 and 2.5 presented in 

Figure 59, so the transmission of the light with wavelength of 532 nm was around 70%, 

50%, 40%, 25%, 12% and 1% respectively. A single neutral density filter or a 

combination of several neutral density filters were placed between the laser light source 

and the light pipe. The setup of the neutral density filter and the laser will be presented 

in the next subsection. 

 

 

 

 

Figure 59. Neutral Density Filters 
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5.2.2 Experimental Layout 

The experimental setup is presented in Figure 60. The pressure vessel in the 

center of this diagram can hole the pressure from 0 psig to 80 psig. The details of the 

pressure vessle will be introduced in the next subsection. Several components are critical 

for the pressure controlled microplasma tests. Different from the previous experiemts in 

open air which operated at one atmospheric pressure, the pressure vessel in this research 

not only needs to maintain the ambient pressure at a desirable value but also needs to 

assure the light, power lines and image acquisition are all sucessfully connected with the 

discharge wire inside of the vessel without any air leakages.  

Light illumination was very important in this experiment for the observation of 

the microdischarge generated microbubble’s hydrodynamic properties. In previous tests 

without using the pressure vessel, the light was placed very closed above the 

microelectrode tip, so the light intensity could be strong enough for the observation of 

nanosecond events. With the pressure vessel, the light source had to be placed around 20 

cm above the microplasma discharge even without the consideration of sealing issues. 

The real experimental components in our tests are presented in Figure 61. Placing a LED 

light source with 20 cm distance from the tip was not practical, since only small portion 

of the light can reach the microelectrode tip and the light intensity would be attenuated 

during the trnasmission, not even to mention the light needed to transmit through the air 

in the pressure vessel and the liquid surrounding the microelectrode tip. As mentioned 

above, the light needed to go though a window as well no matter what design was 

applied eventually. The window was used on the purpose of sealing. The solution for the 
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light illumination was a one foot long and a quarter inch in diameter glass tube as a light 

pipe. The purpose of using the light pipe was to restrain the light to transmit in the light 

pipe and also for sealing. The light pipe was held with a wire grip on the top of the 

pressure vessel, and light could be transmitted into the pressure vessel towards the top of 

microelectrode tip. By using a wire grip connector, the sealing issue was solved 

sucessfully.  

Single or double spark gaps were used to provide microsecond or nanosecond 

discharges. The discharges could be manually triggered or signally triggered by a 

function generator. The signal outputs from the function generator were presented on the 

oscilloscope together with other signals such as the time shutter opens and closes of the 

ICCD camera, the rising of the breakdown voltage on the discharge load and the pulsed 

current through the microelectrode tip to the liquid. Since all tests of electrical signals 

were in nanosecond scale, the signals showed on the oscilloscope could help us to 

determine the sequence of the different events.  
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Figure 60. Schematic Diagram of Experimental Setup Using Pressure Vessel 
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Figure 61. Experimental Setup with Different Components Corresponding to the 

Diagram in Figure 60 

 

 

 

5.2.3 Fabrication of Pressure Vessel 

A pressure vessel that could hold internal pressure from 0 psig to 80 psig was 

made in this research. The whole pressure vessel was homemade and had experienced 
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several different versions before successfully completed. The SolidWorks illustration is 

presented in Figure 62. The top part of the pressure vessel was made of a sanitary cross 

tube. The advantage of this tube was that it could be easily assembled with different 

parts using sanitary clamps to other tubes. In our experimental setup, the cross sanitary 

tube was connected with the “gas in” and “gas out” with its horizontal tube. Pressure 

gauges and valves were connected with the “gas in” and “gas out”, so the pressure in the 

pressure vessel could be accurately controlled and monitored. As for the vertical tube, 

the upper part of this vertical tube was used, as introduced in previous subsection, to seal 

the pressure vessel while hold the light pipe for the laser to illuminate the plasma and 

discharge based bubble generation. A quarter of the light pipe was left outside of the 

pressure vessel and the rest of the light pipe was in the pressure vessel with the inside 

end just above the microelectrode tip. The images illuminated with the light pipe by the 

laser will be presented in the following subsection.  

The bottom of the pressure vessel was made of an acrylic cylinder, a piece of 

acrylic sheet and quartz glass. A one half inch diameter acrylic cylinder with length of 2 

inches was drilled with a concentric half inch diameter hole. The drilled hole was used 

as the reactor chamber, while the thick wall of acrylic cylinder was used to handle the 

high pressure and shock wave generated during the plasma initiation. Glass beaker was 

used before the acrylic cylinder, and was smashed by the shockwave generated by 

microplasma with relatively high energy. The other reason for using thick wall acrylic 

was to reduce the deformation as much as possible. The liquid was contained in this 

acrylic cylinder and was sealed in it using compressed sealing. The pulsed high pressure 
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induced by a shock wave was able to deform the container if the wall was very thin, and 

caused leaking. Also the transparency of the acrylic was important for the 

microelectrode alignment later. The microelectrode tip as mentioned in the Chapter II 

was made of tungsten, the size of the tip was around 3 µm and the diameter of the 

tungsten wire before electrolysis was around 50 µm. The microelectrode tip was needed 

to solder to a metal wire with a bigger diameter. The microelectrode tip was needed to be 

placed in the acrylic container to generate microplasmas and microbubbles, and the other 

end of the wire was needed to stay outside of the acrylic container to connect to the high 

voltage supply. The sealing of this wire became very crucial in our tests. Not only the 

sealing but also the location of the microelectrode tip was needed to be precisely aligned. 

Since the whole plasma generation event needed to stay in the view of the microscope, 

and the depth of view of the microscope was very limited especially with higher 

magnification lens, the microelectrode tip needed to get closed to the bottom window as 

much as possible but not to touch it. The tip was also needed to stay in the center of the 

drilled hole in the acrylic cylinder, because the movement of the bottom plate was 

limited. The toughest jobs of the microelectrode tip working with the acrylic cylinder 

were that the tip needed to be sealed with the side hole, got closed to the bottom as much 

as possible but not touch the bottom, and stayed in the center of that vertical hole. 

The base of the pressure vessel was also made of acrylic. It was machined into 

one side square and the other side round shape. In Figure 62, it shows that the 1 inch 

thick, 4 inch by 4 inch acrylic was machined with a sink in the center of it. The round 

shape at the bottom was for the purpose that the base could be mounted on the 
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microscope, and the center hole of the bottom round part served that the microscope 

objective could be inserted into it to get close to the bottom window. From the figure, we 

could tell that even with a 2 inch thick acrylic block, the microelectrode tip could be 

very close to the window. There were two rubber pads working as gaskets on and 

beneath the cylinder container for the purpose of sealing. And four threaded rods were 

placed four directions with screws to hold all parts together. The bottom central hole was 

drilled bigger than the microscope objective to make sure the whole base could be 

moved for the alignment. The four threaded rods went through the 2 inch thick portion 

of the acrylic base to make sure the compressed sealing was able to handle high 

pressure. A 1/8 inch thick with a diameter of 2 inches quartz glass was used as the 

window for the observation. The design goal for this window was to handle 80 psig 

internal pressure for several hours. The thinner the better, but a 1/16 inch quartz window 

cracked under 80 psig for only 10 min. Up to now, the 1/8 inch window has been 

working perfectly with our setup. In addition, the quartz window can also be used for 

light emission study in the future, since it would not block UV, visible and some IR 

wavelength.  
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Figure 62. Cross Section View of Pressure Vessel Using SolidWorks Illustration 

 

 

 

5.2.4 Algorithm of MATLAB for Boundary Identification  

In early chapters, the microbubble radius variation versus time were plotted for a 

better understanding of the microbubble’s hydrodynamic in liquid. Only two videos with 
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around 50 frames were presented. The boundary identification was rather easy since the 

contract between the bubble and surroundings was very clear and the number of frames 

was not big. In this chapter, a parametric study was pursued with microbubble 

generations in a pressure vessel. The energy inputs, the conductivities of liquid, the 

surface tensions of the liquid and the pressures of ambience were all varied 

experimentally. With the high energy input and low pressure, the maximum radius of 

microbubble could be as big as several hundreds of micron and the duration of the 

microbubble could be as long as several hundreds of micro seconds. Hundreds of videos 

with hundreds of frames for each of them made the microbubble boundary identification 

rather tedious. A MATLAB program was coded to solve this issue. Since the boundary 

identification was very important for tracing the radius change in this research, a 

subsection to introduce the boundary identification algorithm is necessary here.  

Depending on the frame rate used in the tests, the videos for the microbubble 

generation could have a relatively high or low temporal resolution. In most cases, the 

frame rate was maintained at 300k fps. The actual time between each frame was around 

3.3 µs. When the plasma was generated, the EMI accompanied with the plasma 

generation triggered the CMOS camera. The CMOS camera was programmed to record 

50 frames after the trigger and 10 frames before the trigger. The practical problems were  

 the first two photos might capture the plasma generation and the microbubble 

generation, it was really tough to tell the boundary of the microbubble for this 

case, 
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 the microbubble could be bigger than the microscope scope, it is hard to estimate 

the area of the microbubble, 

 pre-existed microbubbles could confuse the program to identify the boundaries of 

microbubble. 

The details of these problems are addressed as following. As presented in Figure 

63, a very bright plasma spot can be observed in the center of the image and there is also 

a halo feature surrounding the microplasma in the center. This halo feature is believed to 

be a fast growth microbubble. Since this image needs to cover 3.3 µs and the growth 

speed of microbubble is very fast at the beginning stage, the image of the bubble looks 

very blur.   

 

 

 

 

Figure 63. Microbubble Together with Microplasma Recorded by CMOS Camera 
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Figure 64. Microelectrode Tip in Liquid without Discharges 

 

 

 

All the information on each pixel was first stored in a matrix. For one image, a 3 

by 64 by 256 matrix was formed for the further calculation. An algorithm called ‘edge’ 

in MATLAB was used to identify the boundary of the microbubble. There were six 

different methods under this function to identify the boundary, the ‘canny’ algorithm 

was chosen. ‘canny’ function has both the threshold and sigma to identify complex 

boundary conditions. An image from the Figure 63 firstly was plotted out as presented. 

Then the boundary based on the transition of brightness change in the image was plotted 

in Figure 65. As mentioned earlier, when the plasma initiation together with the 

microbubble generation, there were two boundaries in the image. One of the brightness 

transition was from the microplasma bright spot to the environmental brightness, and the 

other one was from the brightness of the microbubble surface to the environmental 

brightness.  
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Figure 65. Boundary Identification Using “canny” Algorithm 

 

 

 

The problem was not very crucial since there might be only one or two images 

with microplasma generation. The solution to this issue was to identify where the plasma 

was and where the microbubble was. The image without any discharge or microbubble 

was used to identify where the microelectrode tip was. The coordinate of the tip was 

used as the center for both of the circles. The boundary of the tip could be plotted as 

presented in Figure 66. Now the distance of each white point in Figure 65 to the tip was 

calculated and plotted in Figure 67. The circle on the microbubble could be easily 

distinguished from the circle of the microplasma in the center. Then the inner circle was 

filled with black pixel with only outside circle left there as presented in Figure 68.   
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Figure 66. Boundary Identification of Microelectrode Tip 

 

 

 

 

Figure 67. Distance between Each Point on Circles to Microelectrode Tip 
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Figure 68. Microbubble Boundary after Microplasma Boundary Elimination 

 

 

 

After the boundary of microbubble was identified and the boundary of 

microplasma was eliminated, a second algorithm was used to locate the center of this 

circle and to estimate the radius of it. The sphere was a 3D structure in the real world, 

but due to the limitation of observation, only 2D images could be acquired by using the 

microscope and the high speed cameras. It was assumed that the bubble was symmetric 

on 3 directions. In addition, in most cases, only some portion of a microbubble can be 

viewed in the image. In Figure 69 and Figure 70, the whole microbubbles were not 

covered in the image. It would be very inaccurate to connect a random point on the 

boundary to the center of the microelectrode tip.  
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Figure 69. Big Portion of Microbubble Boundary in Image  

 

 

 

 

Figure 70. Small Portion of Microbubble Boundary in Image 

 

A left curve and a right curve was then identified since in all cases the left and 

right side of the microbubble could always be recorded even that sometimes the upped 

and bottom sides were cut out from the image. In Figure 71, the left and the right side of 

the microbubble were both identified and marked with two different colors. Then the 

‘fminsearch’ function in MATLAB was used to find a perfect circle with minimum 

difference between the radius of the perfect circle and the points on the boundary to the 

center of the bubble. The new perfect circle then would represent the circle of the 

microbubble as presented in Figure 72. Each Image were analyzed to estimate the radius, 
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and based on the time scale collected from the high speed camera the radius change 

versus time was able to be plotted as presented in Figure 73. 

 

 

 

 

Figure 71. Identification of Left and Right Side of Microbubble 

 

 

 

 

Figure 72. Perfect Circle to Represent Microbubble in Image 
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Figure 73. Radius Changes vs. Time Collected by Program  

 

 

 

5.3 Experimental Results and Discussion 

Spherical microbubbles could be generated successfully by microdischarges in 

liquid, which was introduced in chapter III. The microbubble’s dynamics under 

atmospheric pressure recorded by the high speed camera and theoretically studied by the 

Rayleigh-Plesset model was investigated as well. The experimental results of 

microbubble’s dynamics in pressure controlled environment are discussed in this section.  
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5.3.1 Parametric Design 

The pressure vessel has been introduced in the experimental setup section. The 

pressure in the vessel could be varied from 0 psig to 80 psig. The electrical conductivity 

was constant at 0.2% NaCl mass concentration. The applied peak voltages could be from 

-2 kV to -12 kV as presented in Figure 74. They had very similar voltage rising time at 

round 10 ~12 ns. As mentioned in the electrode fabrication, one microelectrode tip was 

glued permanently through the pressure vessel, and the microelectrode tip was not 

replaceable. In order to protect the microelectrode tip in this test, only -3kV, -5kV, -7kV 

and -9kV were used for the microplasma generation.  

 

 

 

Figure 74. Voltage Rising from -2 kV to -12 kV for Microdischarges 
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The surface tension of the liquid was adjusted by using Sodium 

dodecylbenzenesulfonate (DDBSA) as a surfactant. The surface tension of DI water 

samples at 25 oC in this research were 35 mN/m and 71 mN/m respectively. The energy 

input to the liquid did not change between these two surface tensions as presented in 

Figure 75. It clearly presents that the energy inputs versus the applied voltages are pretty 

similar between nanosecond discharges and microsecond discharges with and without 

surfactant.  

 

 

 

 
Figure 75. Energy Input to Liquid (a): Nanosecond Discharges and (b): Microsecond 

Discharges 
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5.3.2 Uncertainty of Microbubble’s Dynamics under Different Parameters 

The repeatability of microbubble’s oscillations under atmospheric pressure was 

presented in the Chapter IV. The reason that the Rayleight-Plesset model could be used 

to compare the experimental results and the model simulation, and was believed 

accurately to depict the thermodynamic process with same energy inputs was because 

that the microbubble presented very similar dynamics. All microbubbles generated by 

the same breakdown voltages and discharge durations had almost same radius change 

trajectories on the radius versus time figure.   

The Rayleight-Plesset model is based on the momentum balance across the 

boundary of microbubble in liquid. The pressure differences inside and outside of the 

microbubble wall are the driving force to expand and collapse the microbubble. The 

internal pressures of the microbubble had been determined by the internal energy and the 

mass in the microbubble in our tests. By using the same breakdown voltages and 

discharge durations but different ambient pressure, the input energies should be same. 

However, the saturation temperature of the liquid had to be changed corresponding to 

the ambient pressure. It was found that as the ambient pressure increased, the uncertainty 

of the microbubble’s dynamics changed accordingly. The microbubble’s expansion and 

collapse was very sensitive to the pressure change, and once the external pressure 

changed, the momentum of the microbubble boundary changed as well. In Figure 76, 

microdischarges generated microbubbles by microsecond discharges with the APV of -9 

kV and the ambient pressures ranging from 0 psig to 80 psig is presented. As the 

ambient pressure went up, the duration of the first cycle of the microbubbles became 
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shorter and the maximum radius reduced correspondingly. The details of the change will 

be discussed in the next subsection. The uncertainty in this section means the differences 

between the durations of microbubbles’ oscillation and the maximum radii of 

microbubbles with the exactly same parameters.  

In Figure 77, the duration and the maximum radius of microbubble presents very 

similar patterns under the atmospheric pressures. The results from the radius change 

under atmospheric pressure presents the same patterns as presented in the Chapter IV. 

As the ambient pressure went up, however, the patterns of radius changes were not 

consistent any more.  

The shift of the radius change curve, e.g., the radius change vs. time at 10 psig 

presented in Figure 76, needs to be clarified here. The shutter speed of the high speed 

camera used in these tests were 300k fps. The time interval between each frame was 3.3 

µs. Trigger timing could be at any time between two frames one of which was the frame 

before the discharge and showed nothing happened in the image (the time for this image 

was set to 0) and the other one of which was the frame after the discharge and showed 

microplasma and a microbubble in the image (the time for this image was recorded as 

3.3 µs). As such, so long as the time shift in the radius change figures was shorter than 

3.3 µs, the temporal tolerance is acceptable. 

There were some time shifts for the ambient pressure of 10 psig case, but the 

duration of the first oscillation and the maximum radius were fairly consistent with 

subtle differences there. The uncertainty became more significant with a more increasing 

of the ambient pressures. For the ambient pressure of 80 psig case, the variation of the 
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maximum radius is 25 µm (25% change) and the duration of the first oscillation is 3 µs 

(17.6% change). In Figure 77, the mean maximum radius with 4 different parameters 

versus the different ambient pressures is presented. The standard deviation of each radius 

are presented as well. It clearly shows that with an increasing of the ambient pressures, 

the uncertainty of the maximum radius becomes larger. The ambient pressure is able to 

affect the radius change i.e., the dynamics of microdischarge generated microbubbles. 

The higher breakdown voltage and lower surface tension could be used to generate 

bigger microbubble. The force balance has been explained in Rayleigh-Plesset model 

subsection. The general trend is that increasing the ambient pressure is able to increase 

the uncertainty of the microbubbles’ radius and decrease the mean maximum radius.  

The same tests were pursued with different applied peak voltage of -7 kV. In 

Figure 78, microdischarges generated microbubbles by microsecond discharges at -7 kV 

at ambient pressures ranging from 0 psig to 80 psig. The similar trend was observed to 

the microbubbles generated by the applied peak voltage of -9 kV. As mentioned in the 

Chapter IV Sensitivity Study of Best-fitting Study, the sensitivity of the radius change 

vs. time was pretty high. The uncertainty of the radius change affects the accuracy of the 

Rayleigh-Plesset estimation. This influences are discussed in the next section. 
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Figure 76. Microdischarges Generated Microbubbles by Microsecond Discharges at -

9kV under Ambient Pressures Ranging from 0 psig to 80 psig 
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Figure 77. Mean Maximum Radius of 4 Different Conditions with Standard Deviation 

vs. Ambient Pressures.  
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Figure 78. Microdischarges Generated Microbubbles by Microsecond Discharges at -

7kV under Ambient Pressures Ranging from 0 psig to 80 psig 
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5.3.3 Changes of Microbubble’s Dynamics 

As expected, the ambient pressure affected the microbubbles’ dynamics on every 

perspective including the maximum radius, the duration of the microbubble, the number 

of oscillation and the shape of the microbubble. The influence on the shape of the 

microbubble will be discussed in the Chapter VI. The energy inputs controlled by the 

applied peak voltages and the durations of the discharge were both able to influence the 

microbubbles’ dynamics which has been described in the Chapter IV. Their influences 

could only affect the initiation stage of the microbubble. After the energy input for the 

first hundreds of nanosecond was done, the oscillation of the microbubble was on its 

own. On the contrary, the influence from the ambient pressure accompanied with the 

microbubble’s oscillation until its disappearance in liquid. From the energy and 

momentum perspectives, the change of the energy input was to change the energy 

balance of the system, and the change of the ambient pressure was to change the 

momentum balance of the system. 

Hundreds of videos were taken to record the microbubbles’ dynamic with varied 

ambient pressures, applied peak voltages, discharge durations and surfactant addition. 

Some of the representative examples are shown in this dissertation. In Figure 79, the first 

cycle of the oscillations initiated with the same applied peak voltage of -9 kV under 

different ambient pressures of 0 psig, 40 psig and 80 psig is presented. The size of the 

microbubble and the duration of the microbubble as showed in the images were both 

affected significantly by the ambient pressure. Under atmospheric pressure, the 
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microbubble took around 83.3 µs to finish its first cycle, which was almost 4 times 

longer than that for the microbubble under the 80 psig ambient pressure.  

The microbubble’s oscillation as described in the Chapter III can be regarded as a 

spring damping system. Its max velocities can be observed at the minimum radii during 

its oscillation. In Figure 80, the relation of radius change versus time for the different 

ambient pressures is presented. The maximum radius and the duration of the first cycle 

both decreased corresponding to an increasing of the ambient pressure. The relationship 

between the maximum radii vs. ambient pressures have already been presented. The 

change was more obvious or significant when the pressure changes from 0 psig to 10 

psig. As the pressure went up, the influence on the microbubbles’ dynamics became less 

important. The radius variation of the microbubble under 70 psig and 80 psig looked 

already very similar. The maximum radius changed from 260 µm to 120 µm and the 

duration of the first cycle changed from 80 µs to 20 µs when the ambient pressure 

changed from 0 psig to 80 psig. 
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Figure 79. Images of Radius Change vs. Time for -9 kV, µs Discharge with Ambient 

Pressures at 0 psig, 40 psig and 80 psig 
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It needs to be noted that most examples covered in this chapter were discharged 

by using -9 kV or -7 kV microsecond discharges. The limitation of the CMOS camera 

has been mentioned in the Chapter II.  A compromise needed to be made between the 

recording speed and the image resolution. The CMOS camera used in this setup was 

capable of taking maximum one million frame per second, but the image resolution 

would be so low that the boundary identification turned out to be impossible. 300k fps 

was eventually used to balance between the high speed and the acceptable image 

resolution. When the low energy inputs by using low applied peak voltages or 

nanosecond discharge with moderately high ambient pressure, the oscillation of 

microbubbles were so quick that only one or two frames recorded the appearance and 

disappearance of the microbubble. Those images were still very useful to firstly give 

some sense about how quick the microbubble could collapse, and secondly to check 

whether there was a microbubble generation. They cannot be used to depict the 

microbubbles’s dynamics due to lacking of enough data points.  
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Figure 80. Radius vs. Time for -9 kV, µs Discharge in DI Water with Surface Tension of 

35 mN/m and Ambient Pressure Ranging from 0 psig to 80 psig 

 

 

 

The microbubbles’ dynamics can be affected by the input energy and the surface 

tension as well. Since the initial energy is able to determine the initial velocity, and the 

damping oscillation of microbubble is a form of energy dissipation, the initial energy 

inputs can determine the micrbubbles’ dynamics. In addition, the surface tension, one of 

the balance forces for the momentum balance, can affect the microbubbles’ dynamics 

from outside. In Figure 81, the maximum radius and the duration of the first cycle both 

0 20 40 60 80 100
0

50

100

150

200

250

300

Time (s)

R
a
d
iu

s
 o

f 
M

ic
ro

b
u
b
b
le

 (

m

)

@ -9kV, s Discharge and 35mN/m

 

 

0psig

10psig

20psig

30psig

40psig

50psig

60psig

70psig

80psig



 

181 

 

change by only using DI water with a different surface tension. The maximum radius 

changed from 230 µm to 120 µm and the duration of the first cycle changed from 78 µs 

to 20 µs. It seems that the surfactant affected the low pressure oscillation much more 

significantly that the high pressure oscillation.  

 

 

 

 

Figure 81. Discharges with Same Parameters Presented in Figure 80 except Surface 

Tension (Surface Tension = 71 mN/m) 
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The influence of microbubbles’ oscillation largely depends on the energy inputs 

were analyzed in detail in the Chapter IV, the similar conclusion can also be drew from 

this part research. In Figure 82, the discharge parameters are exactly the same except the 

applied peak voltage as that in the Figure 80. The maximum radius and the duration of 

first cycle present big difference. The results from these two figures corroborated the 

conclusion already been drawn in the Chapter IV. 

 

 

 

 

Figure 82. Discharges with Same Parameters Presented in Figure 80 except Applied 

Peak Voltage (Applied Peak Voltage = -7 kV) 
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5.4 Rayleigh-Plesset Model with Varied Ambient Pressures 

The Rayleigh-Plesset model was used in the Chapter IV for the investigation of 

the thermodynamic properties of microdischarge generated microbubbles. The model is 

re-visited in this section for the microbubble generation in pressure controlled 

environment. Core information of the Rayleigh-Plesset model related to the pressure 

variation is reiterated for refreshment. The first component in bracket represents the 

momentum across the boundary of a microbubble. It consists of the velocity and 

acceleration which are expressed in terms of the first derivative and the second 

derivative of the radius. Comparing with the Rayleigh-Plesset Model used in the Chapter 

IV, the difference is the ‘P∞’ component. In Chapter IV, the ambient pressure component 

‘P∞’ was set to be equal to one atmospheric pressure always, while initial radius 0R  and 

initial velocity 0R  as well as n , b eqT  and eqR were used as fitting parameters to compare 

the model to experiment. In this section, the ambient pressure is still set as a constant for 

the best fitting calculation. However, this constant is varied from 0 psig to 80 psig in 

each best fitting.  

 2
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5.4.1 Best Fitting of Microbubble’s Dynamics under Different Parameters 

The ambient pressure was adjusted from 0 psig to 80 psig. The radius change 

versus time has been plotted in previous subsection. For the same applied peak voltage, 

the energy inputs to the liquid were supposed to be same no matter how the 

environmental parameters changed. The ambient pressure, however, was conceivably 

able to affect the thermodynamic properties of the liquid. The energy inputs to the 

microplasma and microbubble might be changed under the different ambient pressures 

even though the total energy into liquid which was determined by the applied peak 

voltage and the duration of the discharge stayed same. Rayleigh-Plesset model was first 

used to run the best fitting with different ambient pressures. The microdischarge with 

applied peak voltage of -9 kV, microsecond duration and 35 mN/m surface tension was 

used here as the example of detailed analysis. In Figure 83, the RP model studies 

accurately matched with the experimental results. The best fitting algorithm has been 

described in the Chapter IV and the MATLAB codes of the best fitting is attached in the 

APPENDIX.  
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Figure 83. Comparison between Experimental Results and Rayleigh-Plesset Model 

Study (Discharge Condition at -9 kV APV, µs Duration and 35 mN/m Surface Tension) 

 

 

 

As mentioned in the Chapter IV, the importance of the RP model is that it can 

unveil the momentum change of the whole process of a microbubble’s oscillation and 

also present the thermodynamic properties of the microbubble during the whole process. 

In Figure 84, Figure 85, Figure 86, Figure 87 and Figure 88, the best fitting parameters 
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microbubble. There is a correlation between the maximum radius and the equilibrium 

radius. The maximum radius change is from our observation and the equilibrium radius 

is from the RP model calculation.  

 

 

 

 

Figure 84. Equilibrium Radius vs. Ambient Pressure (Discharge Condition at -9 kV 

APV, µs Duration and 35 mN/m Surface Tension) 
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Figure 85. Initial Radius vs. Ambient Pressure (Discharge Condition at -9 kV APV, µs 

Duration and 35 mN/m Surface Tension) 

 

 

 

 

Figure 86. Initial Velocity vs. Ambient Pressure (Discharge Condition at -9 kV APV, µs 

Duration and 35 mN/m Surface Tension) 
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Figure 87. Saturation Temperature and Equilibrium Temperature vs. Ambient Pressure 

(Discharge Condition at -9 kV APV, µs Duration and 35 mN/m Surface Tension) 

 

 

 

 

Figure 88. Polytropic Index vs. Ambient Pressure (Discharge Condition at -9 kV APV, 

µs Duration and 35 mN/m Surface Tension) 
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The initial radius and the initial velocity of microbubbles under different ambient 

pressures have presented fairly consistent value. They present similar conclusion that 

was drawn from the Chapter IV. The initial radius was around 10 µm, smaller than 

which required a different assumption that the mass transfer and the energy transfer both 

play very important roles, and the temperature difference is the main driving forces to 

sustain the motion of the microbubble. The important information that could be acquired 

from the consistent initial velocity was that the kinetic energies of the microbubbles 

under different ambient pressures were very similar. After this initial radius and the 

initial velocity of the microbubbles, the microbubbles’ dynamics were heavily affected 

by the ambient pressures.  

The equilibrium temperature of the microbubble increased dramatically with the 

increasing of the ambient pressure. The ambient pressure was able to determine the 

saturation temperature for boiling, and the increasing the ambient pressure was 

conceivably able to increase the equilibrium temperature in the microbubbles. For each 

different ambient pressure, the equilibrium temperature was very close to the saturation 

temperature of that pressure, which implied that during the oscillation of the 

microbubble the vapor inside of it oscillate around its saturation condition as well.    

Polytropic index indicated the thermodynamic process the microbubbles 

experiences during their oscillations. Briefly speaking, the vapor in the microbubbles 

experienced a process possibly bouncing between isothermal process and isotropic 

process. The RP model results presented a consistent polytropic index of 1.01 for all 
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processes under different ambient pressures. From this results, it is concluded that the 

process of oscillation is much closer to the isothermal process than the isotropic process. 

5.4.2 Thermodynamic Properties of Microbubbles under Different Ambient Pressures 

The pressure variation, the temperature variation, the mass variation and the 

internal energy variation of the microbubbles generated by the discharges of -9 kV, 

microsecond discharge in water with surface tension of 35mN/m under different 

pressures are all plotted in Figure 89. With the increasing of the ambient pressure, the 

microbubbles became smaller and smaller. As the volume decreases, the mass in the 

microbubbles is conceivably becomes smaller as well if the density stays same. 

However, as the ambient pressure increases, the nucleation inception becomes harder 

and the density of the vapor becomes higher. So the decreasing of the volume caused by 

increasing ambient pressure does not necessary reduce the mass in the microbubble. The 

mass variation and internal energy variation are heavily contingent to the “fight” 

between the volume and the density of the microbubble. Even with the fight between 

them, as the ambient pressure changed from 0 psig to 80 psig, the general trends of the 

total mass and total internal energy decreased with some oscillations, as presented in 

Figure 90. The internal pressure estimation at 50 ns after initiation based on this case is 

presented in Figure 91.  
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Figure 89. Thermodynamic Properties of Microbubbles under Different Pressures 

(Discharge Condition at -9 kV APV, µs Duration and 35 mN/m Surface Tension) 
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Figure 90. Variation of Maximum Total Mass and Maximum Total Energy of 

Microbubbles vs. Ambient Pressures (Linear Fitting Presenting General Trend) 

 

 

 

 

Figure 91. Internal Pressure of Microbubbles at 50 ns after Initiation under Different 

Ambient Pressures Based on RP model 
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From Figure 91, the transient pressure in the microbubble could be around Gpa 

scale with temperature around 400 to 500 K. This transient process is so quick that the 

Gpa pressure only lasted around tens of nanosecond based on our model. A bold idea is 

proposed here that such pressure and temperature of water label the liquid on the edge of 

ice VII and liquid in water phase change diagram in Figure 92. 

 

 

 

 

Figure 92. Water Phase Change Diagram [117] (Copyright © Wikipedia) 

(Thermodynamic Properties of Microplasma Initiation in Red Box Region) 

Microplasma 

Initiation 
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5.5 Summary 

The microplasma and the microdischarge generated microbubbles were 

successfully generated in our homemade pressure vessel. The pressure vessel could 

handle 0 psig to 80 psig internal pressure. The microelectrode tips was placed at the 

bottom of the pressure vessel and the microplasma and the microbubble were both 

generated at the tip. The observation was still pursued using the high speed cameras and 

the microscope. Boundary identification was programed to efficiently identify the 

boundary of microbubbles and to estimate the radius change of them. Parametric study 

for the microbubble generation with various ambient pressures, liquid surface tensions, 

energy durations and applied peak voltages were done. It was found that the radius of 

microbubbles presented higher uncertainty when the ambient pressure increased. The 

Rayleigh-Plesset model which had been used in Chapter IV was used here to compare 

experimental results and the model estimation. The experimental results matched well 

with the model data, and the thermodynamic properties of microbubbles under different 

ambient pressures were calculated as well.  

From the parametric experimental results,  

 with the increasing of breakdown voltage while other parameters 

unchanged, the maximum radius of microbubbles became bigger and the 

duration of microbubbles became longer, 

 with the decreasing of surface tension while other parameters unchanged, 

the maximum radius of microbubbles became bigger and the duration of 

microbubbles became longer, 
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 with the increasing of ambient pressure while other parameters 

unchanged, the maximum radius of microbubbles became smaller, the 

uncertainty of radius became bigger and the duration of microbubbles 

became shorter.  

From the model results, the initial radius and the initial velocity did not change 

much with various ambient pressure, but the equilibrium temperature increased linearly 

corresponding to the increasing of the ambient pressure. The equilibrium temperature for 

each ambient pressure was very close to each of their saturation temperature. The 

polytropic index presented very consistent value with various ambient pressures. It 

implied that the thermodynamic process in the microbubble stay very similar. The 

polytropic index is around 1.01 which suggested during the oscillation, the vapor in the 

microbubble experienced an almost isothermal process. The internal energy and the 

mass in the microbubble did not change monotonically when the pressure linearly 

increased, but the general trend was that they both decreased with an increment of 

ambient pressure. The speculation was when the pressure increased, the volume of the 

microbubble became smaller but the density of the vapor in the bubble became higher, 

which was able to induce an oscillation of internal mass and energy change.   
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CHAPTER VI 

MICRODISCHARGE GENERATED ASPHERICAL MICROBUBBLES IN LIQUID 

6.1 Section Overview 

Microbubbles with diameters from 10 ~ 300 µm were produced by micro-

discharges in liquid with the discharge duration in nanosecond scale i.e., 400-700 ns.  It 

was observed that those microbubbles could form in three different shapes at the stage of 

initiation. These shapes were spherical, aspherical, and branched. The microbubbles 

were generated using pulsed voltage with peak value from -5 to -10 kV on a tip of 3 µm 

in diameter. The total energy inputs for the microplasma and microbubble generation 

could be as low as millijoule. Bubble shapes were observed to be affected by the applied 

peak voltages, the solution conductivities and the ambient pressures. The stability of 

microdischarge initiated microbubble, i.e., the sphericity of microbubbles at the 

initiation, increased at higher conductivities, lower voltages and high ambient pressures.  

With a 0.1% mass concentration of NaCl solution (1990 µS/cm), the branched 

microbubbles could be easily identified, but with a 0.3% mass concentration of NaCl 

solution (5690 µS/cm), the spherical microbubbles were the majority of all bubbles with 

all other parameters same as 0.1% NaCl case. In addition, for a 0.2% mass concentration 

of NaCl solution (3140 µS/cm), a clear and significant transition from the spherical to 

the branched bubbles occurred between -7 kV and -8 kV. Furthermore, for a 0.18% mass 

concentration of NaCl solution (2880 µS/cm), the branches of microbubble were 
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observed to be suppressed by ambient pressures. The moderate ambient pressures were 

observed to affect the microbubble’s dynamics. 

6.2 Experimental Setup 

The experimental setup in this chapter was very similar to the experimental setup 

in Chapter III, Chapter IV and chapter V. Major parts are reiterated here for a 

refreshment, and some minor differences are also introduced here.   

6.2.1 Experimental Design 

The microplasmas in these tests were generated at a microelectrode tip. The 

microelectrode tip was immersed in a petri dish containing water, and a grounded metal 

tab was placed in the water. By using a high voltage DC power supply (maximum -14 

kV) and a spark gap, short rising-time and pulsed microplasmas were able to be initiated 

in liquid. The size of microplasma was related to the size of microelectrode tip, the 

applied electrical field and the input energy. A small electrode tip was used for a 

localized discharge and an attaining high electrical field with relatively lower applied 

voltages and energies. The sharp electrode tips were fabricated through electrolysis. 

Only corona discharges were covered in this portion of research. To prevent electrical 

leaking, high dielectric epoxy was used to cover the body of microelectrode except for 

the tip. The liquid used was a mixture of deionized water and sodium chloride (NaCl) in 

our tests. The water depth was about 3 mm, and the water surface was at ambient 
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pressure. The microbubble’s dynamics were sensitive to the solution conductivity and 

ambient pressure. 

6.2.2 Energy Input and Conductivity 

A negative DC high voltage supply (Glassman Series EH), capable of -20kV and 

5mA DC, provided the initial energy for the microplasma discharge.  The energy from 

the voltage supply charged a capacitor through a resistor, and was released to the 

submerged microelectrode tip across a spark gap switch whose inter-electrode distance 

was set to give a specific voltage [118]. 

The microelectrode tip used for these tests ranged around 3 µm in diameter at the 

tip. It was fabricated from 50µm tungsten wire, which had been sharpened using 

electrolysis [119].  The voltage and current from the spark gap were recorded using an 

oscilloscope, with both a voltage probe (Lecroy S/N: 2524) and current transformer 

(Bergoz CT-D1.0-B) attached to the electrode.  The voltage probe that was used has a 

maximum voltage and frequency of 20 kV and 100 MHZ.  The current probe that was 

used had a specified rising time of 0.7ns.    For the experiments conducted the spark gap 

circuit consisted of a 20 Mohm resistor and 1nF capacitor.  The current was set such that 

the pulse repetition was sufficiently low that only a single discharge occurred.  Prior to 

discharge events, no preexisting microbubbles were observed on the probe tip. Voltage 

was seen to rise rapidly, at approximately 500 V/ns, due to the rapidity of the spark gap 

switch. Currents and voltages reached their peaks within 10 ns and decayed to within 

10% of the max values within 1-2 µs.  The applied voltages to the electrode could be 



 

199 

 

controlled by changing the distance between the spark gap. Conductivity of the solution 

was measured by an electrical conductivity probe.  For this experiment, 0.1%, 0.18%, 

0.2% and 0.3% mass concentration of NaCl solutions were tested. 

6.3 Experimental Results 

Microbubbles were generated by discharges in liquid. The shapes of microbubble 

were recorded by the ICCD camera. With different discharge and water parameters, the 

microbubbles presented different forms. The reasons for such changes was thought to be 

caused by the instability of the microbubble in liquid. The formation and the dynamics 

of the microbubble were maintained by a balance between the internal and external 

pressure on the boundaries of microbubbles. Once the balance was broken due to a non-

uniform force distribution, some spikes or branches would appear on the spherical 

boundary and deformed the sphericity. Spherical, aspherical, branched microbubbles are 

all presented in this section with different parameters. In addition, by changing the 

ambient pressures, the branched microbubble could be suppressed back to the spherical 

microbubble.  

Typically spherical bubbles were unseen in microplasma based microbubbles 

[120].  In order to produce spherical bubbles it was necessary to use relatively low 

voltage, around -5 ~ -10kV, at a nanosecond scale, which in other experiments was not 

done because the energy levels produced by power supplies were never low enough to 

produce spherical microbubbles.  The two main theories behind microbubble production 

is that they occur due to an electronic crack in the liquid, or that the high electric fields 
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produced lower the surface tension of the liquid by the Lipmann effect [121].  By using 

the negative polarity voltage source, with nanosecond scale rising time and micron scale 

microtip, the microbubble appeared at the cathode. This provided both electrons and 

high electric fields, at that point, which allows for microbubbles to form more easily at 

lower energies.    

Understanding the way that the microbubbles formed and dissipated was 

multifaceted question. In order to understand what was going on in the bubble, it was 

necessary to take into account the variables affecting initiation of the bubble at any given 

time. The experimental variables important to consider were the electric field and 

polarity. These variables interacted influences the hydrostatic and electric forces, surface 

tension, charge dissipation, and streamer instabilities of the bubble.    

The conductivity of the water had been found to play a significant role in the 

bubble growth stage, especially in determining the energy at which streamers propagate 

from the bubble. There were a few possible reasons why conductivity played this role.  

Firstly, as the conductivity of the solution increased, so did the energy that was released 

into the bubble.  This increase in energy was possibly due to the increased conductivity 

of the solution affecting the amount of energy that reached the tip of the submerged 

electrode during the initial stages of bubble generation.  The high conductivity also 

decreased the charge building up at the liquid interface.  This was an important point 

because even though the energy in the system was increased, the probability of streamer 

instabilities occurring decreased.  It was found that at lower conductivities it required 

less energy to created streamers. 
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The conductivity of the solution increased the stability of the bubbles by 

increasing the surface tension of the solution [122].  Because of the nanosecond time 

scale of the discharge, the bubbles were generated at such high rates of speed that the 

water solution acted as solid.  By taking this view it helped to answer the questions of 

why streamers propagate more often in low conductivity solutions.  During bubble 

expansion the outward force, due to the pressure gradient caused by the release of 

energy, was countered by the surface tension of the water resisting expansion.  Past a 

threshold the force from the bubble became too great and the bonds that make up the 

water began to break.  This caused “cracks” in the water that allowed the force to 

dissipate and eventually equalized over time, 10 ~ 20 µs, as the bubble returned to its 

spherical. 

6.3.1 Branched Microbubble in Conductivity Controlled Liquid 

Bubble formation was found to be a function of conductivities and peak voltages.  

In this research microbubbles were generated during the microplasma discharges for 

various mass concentration of NaCl and peak voltages.  For a given conductivity, as the 

voltage increased the energy in the microplasma bubble also increased until the energy 

was high enough that instabilities occurred. These instabiliies, also called secondary 

streamers [123], were cracks that propogated from the bubble into the surrounding 

liquid, and we referred to them as branched bubbles. The primary range in which the 

transition occurred between spherical and branched bubbles was between -5 kV and -6 

kV over the range of conductivities tested in this research. The images in Figure 93 were 
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taken approximatly one microseconds after the initial discharge occurred, and showed 

the electrode (coming in from the right) and bubble formed at the electrode tip. It can be 

seen that as the input voltage increased the bubbles increased in size correspondingly, as 

well as branched bubbles began to occur. Also as the conductivity of the water increased 

the bubbles was able to maintain the spherical shape without secondary streamers 

forming at higher energies. Through these voltage and current dependancies, it was 

possible to identify a transition in stability of the bubble’s expansion. 

 

 

 

 

Figure 93. Microbubble Images with 0.5µs Delay, 0.5µs Exposure Time 

 

 

 

After the discharge the microbubble lasted for approximately 10 ~ 100 µs 

depending on initial energy. In addition, once the microbubbles were generated there 
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were between 2 ~ 4 expansion and collapse oscillations before the bubble disappeared 

completely. The first bubble expansion lasted for 10 ~ 15 µs. It was important because 

during this expansion most of the energy was stored, and bubble instabilities were more 

likely to occur.  This process of the changed in bubble shapes as it occurred over time is 

presented in Figure 94.  The figure shows microbubble evolution at two different 

voltages as a function of time, a 0.1% mass concentration of NaCl was used.  The figure 

shows that with all other variables held equal, it was possible to transit between bubble 

phases solely based upon initial voltage. The first picture in each set was taken with no 

background lighting, allowing for confirmation that the light emissions from the plasma 

are seen. 

 

 

 

 

Figure 94. Bubble Images with 0.1% Mass Concentration of NaCl and Exposure Time of 

0.5µs in Dark and Illuminated Environment 
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In Figure 95, images of the bubbles taken at increasing intervals along the bubble 

life show that over the first 10 microseconds any initial instability in the bubble 

stabilized causing a spherical bubble shape. The spherical shape could be expected 

because it provided the lowest energy distribution for the bubble and allowed for 

equilibrium force distribution along the bubble surface. The reason that microbubbles 

with higher initial voltages experienced an increased growth rate comparing to lower 

initial voltages was because as the voltage increased the energy was transferred more 

quickly into the bubble. Energy input the liquid was calculated by integrating the 

measured voltage and current from a discharge. After the first 500 nanoseconds 

microbubbles with an initial voltage of -10 kV contained a higher energy of the -5 kV 

generated microbubbles. This increased energy led to faster growth rates and larger sizes 

as the energy in the bubble forced it to expand. Increased mass percent of NaCl also 

caused bubble size to increase. 

In order to summarize some of the trends observed.  The energy released from 

the electrode, in the first 100ns, as it related to input voltage and NaCl concentration in 

water, as presented in Figure 96.  It is seen that as the concentration of NaCl increased so 

did the energy transferred to the microbubble in the first 100ns.  It was also seen that as 

the concentration of NaCl increased the microbubbles that formed were more likely to be 

spherical. This shows that the initial bubble formation was dependent on the 

conductivity of the liquid to determine the shape and stability of the bubble. The whole 

trends between spherical and non-spherical microbubbles are presented in Figure 97. 

 



 

205 

 

 

Figure 95. Bubble Images with (a) 1.5us Delay, 0.5us Exposure Time, (b) 4.5us Delay, 

0.5us Exposure Time, (c) 9.5us Delay, 0.5us Exposure Time 
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Figure 96. Integrated Energy for First 100ns vs. Input Voltage.  Bubble Shape 

Determined from 0.5µs and Indicated by X=Branched Bubble Δ= Non-Spherical Bubble 

O=Spherical Bubble.  Lines Connecting Conditions of Same Conductivity. 
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Figure 97. Development of Instabilities of Microbubble on Three Dimensions (Applied 

Voltages, Mass Concentration of NaCl and Time of Development) 

 

 

 

6.3.2 Suppression of Branched Microbubble in Pressure Controlled Environment  

All bubbles generated by discharges in liquid introduced in Chapter II were 

branch-like bubbles. Before the era of microdischarges in liquid, streamers were the 

most commonly discharge forms in liquid. So long as the generation of streamers, 

bubbles or microbubbles followed along the streamers in liquid. The shape of those 

bubbles were either aspherical bubbles or branched like bubbles. By using the 

microelectrode tip and the low energy discharges, microplasma was able to be formed 
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without streamer structures in liquid. The spherical form of the microplasma provided a 

nuclear inception site for a spherical bubble. In previous subsections, the applied peak 

voltage and the conductivity of liquid could both trigger the branched microbubbles. The 

transition from spherical bubbles to aspherical bubbles were observed. It was believed 

that the branches of a microbubble was caused by the unbalance force across the 

microbubble boundary.    

 

 

  

 

Figure 98. Branched Microbubbles with Low Conductivities (0.05% Mass Concentration 

of NaCl, 5 µs FWHM Discharge, td=3 µs and te=50ns) Captured by ICCD Camera 
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The ambient pressure was employed to balance the force across the boundary of 

microbubbles. Since the pressure in the pressure vessel could only be adjusted between 0 

psig and 80 psig, if the internal pressure was excessively strong, the ambient pressure in 

the pressure vessel was impossible to suppress the branches. In Figure 98, microbubbles 

were generated with applied peak voltage of -10 kV. The energy from -10 kV seemed to 

be too strong to suppress by the external pressure. It was clearly that the whole size of 

the microbubble including its core and branches became smaller or shorter, but the 

change was not obvious. The tests were run from 0 psig to 80 psig and back to 0 psig to 

test the repeatability.  

 

 

 

 

Figure 99. Branches of Microbubbles Suppressed by Ambient Pressures 
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With same applied peak voltages, the conductivity of the liquid was able to be 

used to control the energy input to the plasma and discharge generated bubbles. At the 

same time, a lower breakdown voltage could also be employed to control the energy 

input as well. In Figure 99 and Figure 99, microsecond discharges were used with the 

different liquid conductivities and the applied peak voltages. As introduced in Chapter 

III, the applied peak voltage and the conductivity could subtly influence the energy 

input. Microsecond discharges were hoped to provide a discharge with moderate energy, 

so the suppression of the branches from aspherical bubble can be observed. Nanosecond 

discharges were also used, but none of them was able to create a branched microbubble.  

In Figure 100, branched microbubbles were generated by APV of -6 kV and -5 

kV both in 0.18% mass concentration of NaCl liquid. The branches looked very clear in 

the images. For the APV of -6 kV case, the branches looked very clear with 0 psig 

ambient pressure, so did it with 80 psig ambient pressure. The maximum pressure in the 

pressure vessel reduced the size of the microbubble. On the other hand, for the APV of -

5kV case, the branches looked pretty clear when the ambient pressure is 0psig, but a 

spherical bubble without any branches showed up when the ambient pressure was 

80psig. In order to double confirm the result, a second discharge with exact same 

parameters was done, and the spherical microbubble presented again. 

For spherical bubbles generated by the same parameters, the difference between 

each of them was subtle, and if any, the length of radius can be the only indicator. For 

the aspherical bubbles or branched bubbles, however, the number of branches, the length 

of each branch, the size of the core bubble, etc., all could be used to tell the differences 
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between bubbles. In Figure 100, nine discharges for each set of parameters were pursued 

and recorded. The ambient pressure varied from 0 psig to 80 psig with 10 psi as an 

interval. The length of the longest branch for each image and the core bubble which was 

enclosed along the roots of all branches were illustrated in Figure 101 both plotted in 

Figure 102. The error bars in the figure are the standard derivation of the length of the 

longest branch and the radius of core. The radius of core was reduced by an increasing of 

ambient pressure. In addition, the branches of the bubble were successfully eliminated 

by the ambient pressure. 

 

 

 

 

Figure 100. Statistical Study of Microbubbles with and without Branches under 

Different Ambient Pressures 
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Figure 101. Length of Longest Branch and Radius of Core Bubble 

 

 

 

 

Figure 102. Radius Change of Branched Microbubble and Length of Longest Branch 

Change vs. Different Ambient Pressures 
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6.4 Summary 

The shape of the microbubble is important in determining its properties and its 

ability to maintain a high energy density for any period of time.  Spherical bubbles allow 

for the lowest energy distribution, maximizing the stability of the microbubble that is 

formed.  Microplasma based microbubbles in liquids can be controlled and manipulated 

through the combined usage of input voltage and NaCl concentration of the liquid.  

Bubble shape transitions can occur by changing both voltage and concentration of NaCl, 

independently of one another.  Increasing the NaCl concentration of the liquid is the 

most promising bubble stabilizer, at concentrations of 0.3 mass % NaCl spherical 

bubbles were able to be maintained at input voltages of -10 kV.  In conclusion, bubble 

stability in microbubbles formed in liquids can be increased by increasing the surface 

tension of the liquid solution the bubble is generated in. 

In addition to the transition of microbubbles from aspherical to spherical 

manipulated by varying the liquid conductivity and the applied peak voltage, the ambient 

pressure was proved to be able to suppress the branches. Different from using the liquid 

conductivity and the applied peak voltage which changed the discharge characteristics, 

the ambient pressure variation only provide external physical interference. Due to the 

limitation of our pressure vessel which can only handle pressure from 0 psig to 80 psig, a 

relatively low energy input condition was found. The branched bubbles were observed 

and recorded when the ambient pressure was 0 psig and all branches disappeared when 

the ambient pressure was 80 psig.  

 



 

214 

 

CHAPTER VII 

CONCLUSION AND FUTURE WORK 

7.1 Conclusion 

Several possible physical mechanisms of bubble and plasma formation are 

discussed, and systematic experiments were conducted in this research. As introduced in 

the dissertation motivations and objectives, the general purpose of this dissertation is to 

explore the fundamental mechanisms of microplasma generation in liquid which has 

potential to create a high temperature and pressure micron scaled localized spot using 

low energy input. The microplasma and microbubble were both observed to be initiated 

in nanosecond scale by using low energy, and the thermodynamic and hydrodynamic of 

microdischarge generated microbubbles were estimated using Rayleigh-Plesset model 

(pressure of GPa scale and temperature of hundreds of K). This temperature and pressure 

in such a transient process together with unique characteristics of non-equilibrium 

plasma have presented us very promising future research in nuclear fusion, cancer 

therapy, analytical chemistry, material synthesis etc.  

Different applied peak voltages, duration of discharges, conductivities of liquid 

and size of microelectrode tips were used to explore the initiation of microbubbles and 

microplasma light emissions. The ICCD camera was used to record the microbubble 

generation and detect the microplasma light emission, and the PMT was used as an 

indirect visualization means for the continuous detection of microplasma light emission. 

Their results were used to corroborate each other. The variation of light intensities 
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acquired from the ICCD photos matched consistently with that from the PMT. Due to 

the internal delay of the ICCD camera, the fact that microplasma light emission 

experienced a very short rising time around 40 ns to their peak values was only collected 

by the PMT. With the same APV, the nanosecond discharge was able to output much 

less energy than that from microsecond discharge. The generation of microbubble and 

microplasma light emission were observed together in all microsecond discharges and in 

nanosecond discharges with the high electrical conductivity liquid. Two thresholds of 

APVs were discovered by using the nanosecond discharges in the low electrical 

conductivity liquid. One threshold was between 1) No bubble formation and no detection 

of microplasma light emission and 2) Bubble formation but no detection of microplasma 

light emission. And the other one was between 2) Bubble formation but no detection of 

microplasma light emission and 3) Bubble formation and the detection of microplasma 

light emission. The three phenomenon suggest that a certain energy input be able to 

initiate a phase change in liquid without causing plasma generations. Under the same 

conditions, e.g., same APV, conductivity of liquid and energy input, the size of 

microelectrode tips shifted the thresholds from our observations. After the microplasma 

light emissions were initiated, their intensities showed similar linear trends as the energy 

input to liquid. The lower energy not only shifted the thresholds of APV for the 

microplasma initiation, but also reduced the light intensity. At the same APV, the light 

intensity from the small tip was stronger than the big tip. As the microbubble was 

created using the lower APV than the microplasma in each case, it seemed that phase 

change needs lower energy to initiate than the microplasmas. When there existed 
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thresholds, the electrical field for microbubble generation was around 1.1 GV/m and for 

microplasma light emission was around 1.3-1.4 GV/m for both microelectrode tips. 

From energy perspective, the criteria for the initiation of microbubble seems lower than 

that for the initiation of microplasma. 

Images of discharges generated microbubbles were captured at 10 ns exposure 

time with 10ns increment by the ICCD camera and at 300k fps by the CMOS video 

camera. Two discharges were studied in detail, a 103 mJ microsecond pulsed discharge 

and a 0.5 mJ nanosecond pulsed discharge. A microbubble was observed with 

microplasma confined in it. The study of microplasma generated microbubble provides a 

path to investigate the microplasmas. The energy to support the growth of the 

microbubble is provided by the microplasma. After the microplasma disappears, the 

microbubble expands and collapse for several oscillations. Due to energy and mass 

transfer, the amplitude of oscillations decays to zero. Then the microbubble at 

equilibrium radius is visible for ~10 µs before disappears either due to leaving the field 

of view or dissolving. The microplasma generated microbubble by microsecond 

discharge had more energy to sustain more oscillations and larger maximum radius 

comparing to the microbubble generated by the nanosecond discharge at same applied 

peak voltage. The physics of oscillations are well described by Rayleight-Plesset models. 

A RP model with the assumption of no significant mass and energy transfer fits well 

with experimental results in the first cycle of oscillation for both cases. The model 

allows us to describe the thermodynamic state inside the microbubble e.g., pressures, 

temperature, mass and internal energy, based on the observed size variation. The 



 

217 

 

important features of the model are that the bubble contains vapor and ideal gases 

mixtures. Over the range modeled, it is approximately isothermal. The energy of the 

microplasma is summed up roughly. Energy in the microplasma is on the order of 

microjoule scale. Such low energy explains that the spherical stability of microbubble’s 

interface compared to typical branched streamers.  

The microplasma and the microdischarge generated microbubbles were 

successfully generated in our homemade pressure vessel. The pressure vessel could 

handle 0 psig to 80 psig internal pressure. The microelectrode tips was placed at the 

bottom of the pressure vessel and the microplasma and the microbubble were both 

generated at the tip. The observation was still pursued using the high speed cameras and 

the microscope. Boundary identification was programed to efficiently identify the 

boundary of microbubbles and to estimate the radius of them. Parametric study for the 

microbubble generation with various ambient pressure, liquid surface tension, energy 

duration and applied peak voltage were done. It was found that the radius of 

microbubbles presented higher uncertainty when the ambient pressure increased. The 

Rayleigh-Plesset model which has been used in Chapter IV was used here to compare 

experimental results and the model estimation. The experimental results matched well 

with the model data, and the thermodynamic properties of microbubbles under different 

ambient pressures were calculated as well. From the model results, the initial radius and 

the initial velocity did not change much with various ambient pressure, but the 

equilibrium temperature increased linearly corresponding to the increasing of the 

ambient pressure. The equilibrium temperature for each ambient pressure was very close 
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to each of their saturation temperature. The polytropic index presented very consistent 

value with various ambient pressures. It implied that the thermodynamic process in the 

microbubble stay very similar. The polytropic index is around 1.01 which suggested 

during the oscillation, the vapor in the microbubble experienced an almost isothermal 

process. The internal energy and the mass in the microbubble did not change 

monotonically when the pressure linearly increased. The speculation was when the 

pressure increased, the volume of the microbubble became smaller but the density of the 

vapor in the bubble became higher. By adding up these two effects, the internal energy 

and the mass contained in the microbubble did not change monotonically. 

The generation of spherical bubbles by discharges assists our model study for the 

thermodynamic properties of microdischarges, since the Rayleigh-Plesset model can 

only apply for the thermodynamic property estimation of spherical bubbles in liquid. 

Besides that, spherical bubbles allow for the low energy input and high energy density.  

Microplasma based microbubbles in liquids can be controlled by adjusting the input 

voltage, NaCl concentration of the liquid and ambient pressures.  Increasing the NaCl 

concentration of the liquid is the most effective bubble stabilizer, at concentrations of 0.3 

mass % NaCl spherical bubbles were able to be maintained at input voltages of -10 kV. 

Different from using the liquid conductivity and the applied peak voltage which changed 

the discharge characteristics, the ambient pressure variation only provide external 

physical interference. Due to the limitation of our pressure vessel which can only handle 

pressure from 0 psig to 80 psig, a relatively low energy input condition was found. The 
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branched bubbles were observed and recorded when the ambient pressure was 0 psig 

and all branches disappeared when the ambient pressure was 80 psig. 

7.2 Future Work 

The nanosecond micron scale microplasma and the microsecond micron scale 

microbubbles have been successfully generated in liquid with different experimental 

conditions. Their thermodynamic properties have been studied experimentally and 

theoretically. Based on the objectives, motivations and current results of this research, 

some future work in terms of short term plans and long term plans can be done. 

7.2.1 Short Term Plans 

The maximum radius of the microbubble in this research was around 300 µm. A 

bigger capacitor can be used in the spark gap circuit in the future. A much higher energy 

input from the bigger capacitor is believed to be able to generate a bigger microbubble. 

As suggested from sonoluminescence bubbles, it is worthwhile to investigate if a second 

microplasma can be generated from the collapse of a gas bubble in liquid. Mechanical 

means to generate plasma will be a very interesting and new area.  

The Rayleigh-Plesset model used in this research was a momentum balance 

based RP model. As mentioned in the Chapter IV, when the diameter of the microbubble 

is smaller than 10 µm, the mass transfer and heat transfer caused by the temperature 



220 

difference dominate the motion of the microbubble. An energy balance based RP model 

needs to be developed for the microbubbles with diameters smaller than 10 µm. 

In analysis of the energy balance between the energy input from the circuit and 

the energy used for the plasma generation and the bubble generation, the energy stored 

in double layer formed on the electrode is still unknown. The double layer can function 

as an effective capacitor and hold a big portion of the energy. The research on double 

layer in high electrical field will be useful for a better understanding of the energy 

dissipation during discharges. 

The 65 ns delay of the ICCD was the problem which prevented us from taking 

image in that period of time. PMT successfully helped us indirectly acquired light signal, 

but the images will still be useful for the bubble detection. A pre-trigger system can be 

built in the future, so the high speed camera can receive the shutter open command 65 ns 

before the discharge event. With this 65 ns pre-trigger system, the internal delay of the 

ICCD camera can be compensated.  

The whole research covered in this dissertation focused on fundamental research. 

The microplasma discharge in liquid was also designed to be used as an industrial 

product. The spectroscopic analysis using microplasma discharge in liquid or gas was 

designed to replace laser induced breakdown system. It is still in this very early 

preliminary stage, and R&D work needs to be continued.  
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7.2.2 Long Term Plans 

As introduced in Chapter I, one of the objectives and motivations is to push the 

research boundary of the classical plasmas which in general stay in gaseous phase to an 

uncharted area where the liquid and solid phases dominate the existence. The energy 

input in our research is low and the initiation site is in liquid, which are the reasons the 

plasma can be small and spherical. Thanks to the confinement of the liquid, the energy 

density (energy in plasma/volume of plasma) can be extremely high. From initiation rate 

and energy density perspective, there are many similarities between the microplasma 

initiations in liquid and the nuclear fusion. One of the long term plans is to explore 

plasmas with as-high-as-possible energy density which can be comparable to a nuclear 

fusion. The maximum power density in our case is around 7.4e20 W/m3. 

The high energy density is one of the magnificent advantages that microplasma 

generation in liquid has. Furthermore, the localized transient chemical process plus 

mechanical process in the scale of cells has attracted our attention. The idea here is to 

use the microplasma to get as close as possible to lysed cells e.g., lysed cancer cells. So a 

localized plasma can target specific cells without causing big collateral damages. The 

microplasma generation in liquid has solved a big problem that not only doesn’t the 

microplasma need to be created in a vacuum environment but an aqueous environment 

for microplasma generation is more close to the real environment where the cells live. 

 



 

222 

 

REFERENCES 

[1] A. L. Peratt, Physics of the plasma universe, 2nd ed. New York: Springer, 2015. 

[2] I. Langmuir, "Oscillations in ionized gases," Proceedings of the National 

Academy of Sciences of the United States of America, vol. 14, pp. 627-637, 1928. 

[3] Contemporary Physics Education Project, "Different forms of plasma in 

universe," NASA, 1996. 

[4] P. Xiao and D. Staack, "Microbubble generation by microplasma in water," 

Journal of Physics D-Applied Physics, vol. 47, 2014. 

[5] P. Xiao and D. Staack, "Microbubble generation by microplasma in water," 

Journal of Physics D: Applied Physics, vol. 47, p. 355203, 2014. 

[6] P. Xiao and D. Staack, "PMT and ICCD investigation of light emission from 

microplasma generated in liquid," in Pulsed Power Conference (PPC), IEEE, 

2013, pp. 1-6. 

[7] P. Xiao and D. Staack, "Experimental and modeling analysis of the single micro 

bubble generation by micro plasma in water," in APS Meeting Abstracts, 2012, p. 

4006. 

[8] R. Toumi, J. D. Haigh, and K. S. Law, "A tropospheric ozone-lightning climate 

feedback," Geophysical Research Letters, vol. 23, pp. 1037-1040, 1996. 

[9] K. Miyazaki, H. J. Eskes, K. Sudo, and C. Zhang, "Global lightning NOx 

production estimated by an assimilation of multiple satellite data sets," 

Atmospheric Chemistry and Physics, vol. 14, pp. 3277-3305, 2014. 



 

223 

 

[10] X. X. Tie, R. Y. Zhang, G. Brasseur, and W. F. Lei, "Global NOx production by 

lightning," Journal of Atmospheric Chemistry, vol. 43, pp. 61-74, 2002. 

[11] T. Tsubota, K. Kuratsu, N. Murakami, and T. Ohno, "Attempt of deposition of 

Ag-doped amorphous carbon film by Ag-cathode DC plasma with CH4 flow," 

Journal of Nanoscience and Nanotechnology, vol. 15, pp. 4619-4631, 2015. 

[12] Y. Zhang, M. Creatore, Q. B. Ma, A. El Boukili, L. Gao, M. A. Verheijen, et al., 

"Nitrogen-doping of bulk and nanotubular TiO2 photocatalysts by plasma-

assisted atomic layer deposition," Applied Surface Science, vol. 330, pp. 476-

486, 2015. 

[13] J. Yoon, J. G. Song, H. Kim, and H. B. R. Lee, "Plasma-enhanced atomic layer 

deposition of Co on metal surfaces," Surface & Coatings Technology, vol. 264, 

pp. 60-65, 2015. 

[14] N. Kumar, S. A. Barve, S. S. Chopade, R. Kar, N. Chand, S. Dash, et al., 

"Scratch resistance and tribological properties of SiOx incorporated diamond-like 

carbon films deposited by r.f. plasma assisted chemical vapor deposition," 

Tribology International, vol. 84, pp. 124-131, 2015. 

[15] A. W. Zia, Y. Q. Wang, and S. Lee, "Effect of physical and chemical plasma 

etching on surface wettability of carbon fiber-reinforced polymer composites for 

bone plate applications," Advances in Polymer Technology, vol. 34, 2015. 

[16] V. V. Felmetsger, M. K. Mikhov, and P. N. Laptev, "Effect of pre-deposition rf 

plasma etching on wafer surface morphology and crystal orientation of 



 

224 

 

piezoelectric aln thin films," IEEE Transactions on Ultrasonics Ferroelectrics 

and Frequency Control, vol. 62, pp. 387-391, 2015. 

[17] M. Ekielski, M. Juchniewicz, M. Pluska, M. Wzorek, E. Kaminska, and A. 

Piotrowska, "Nanometer scale patterning of GaN using nanoimprint lithography 

and inductively coupled plasma etching," Microelectronic Engineering, vol. 133, 

pp. 129-133, 2015. 

[18] K. C. Wright, H. S. Kim, D. J. Cho, A. Rabinovich, A. Fridman, and Y. I. Cho, 

"New fouling prevention method using a plasma gliding arc for produced water 

treatment," Desalination, vol. 345, pp. 64-71, 2014. 

[19] R. Wascher, N. Schulze, G. Avramidis, H. Militz, and W. Viol, "Increasing the 

water uptake of wood veneers through plasma treatment at atmospheric 

pressure," European Journal of Wood and Wood Products, vol. 72, pp. 685-687, 

2014. 

[20] P. M. K. Reddy, S. Mahammadunnisa, and C. Subrahmanyam, "Catalytic non-

thermal plasma reactor for mineralization of endosulfan in aqueous medium: A 

green approach for the treatment of pesticide contaminated water," Chemical 

Engineering Journal, vol. 238, pp. 157-163, 2014. 

[21] M. Holub, R. Brandenburg, H. Grosch, S. Weinmann, and B. Hansel, "Plasma 

supported odour removal from waste air in water treatment plants: an industrial 

case study," Aerosol and Air Quality Research, vol. 14, pp. 697-707, 2014. 

[22] European Fusion Development Agreement (EFDA) - The Joint European Torus 

(JET), "Inside View of JET Tokamak,"  



 

225 

 

[23] Plasma Engineering and Diagnostic Laboratory (PEDL), 2009. 

[24] C. F. Gallo, "Coronas and gas discharges in electrophotography: a review," 

Industry Applications, IEEE Transactions on, vol. IA-11, pp. 739-748, 1975. 

[25] F. Paschen, "Ueber die zum Funkenübergang in Luft, Wasserstoff und 

Kohlensäure bei verschiedenen Drucken erforderliche Potentialdifferenz," 

Annalen der Physik, vol. 273, pp. 69-96, 1889. 

[26] Y. P. Raizer, Gas discharge physics. Berlin: Springer, 1997. 

[27] J. Li, M. Sato, and T. Ohshima, "Degradation of phenol in water using a gas–

liquid phase pulsed discharge plasma reactor," Thin Solid Films, vol. 515, pp. 

4283-4288, 2007. 

[28] B. R. Locke, M. Sato, P. Sunka, M. R. Hoffmann, and J. S. Chang, 

"Electrohydraulic discharge and nonthermal plasma for water treatment," 

Industrial & Engineering Chemistry Research, vol. 45, pp. 882-905, 2006. 

[29] H. Akiyama, "Streamer discharges in liquids and their applications," Dielectrics 

and Electrical Insulation, IEEE Transactions on, vol. 7, pp. 646-653, 2000. 

[30] C. Richmonds and R. M. Sankaran, "Plasma-liquid electrochemistry: Rapid 

synthesis of colloidal metal nanoparticles by microplasma reduction of aqueous 

cations," Applied Physics Letters, vol. 93, p. 131501, 2008. 

[31] M. Vittori Antisari, R. Marazzi, and R. Krsmanovic, "Synthesis of multiwall 

carbon nanotubes by electric arc discharge in liquid environments," Carbon, vol. 

41, pp. 2393-2401, 2003. 



 

226 

 

[32] R. Burlica, M. J. Kirkpatrick, and B. R. Locke, "Formation of reactive species in 

gliding arc discharges with liquid water," Journal of Electrostatics, vol. 64, pp. 

35-43, 2006. 

[33] J.-S. Chang, "Recent development of plasma pollution control technology: a 

critical review," Science and Technology of Advanced Materials, vol. 2, pp. 571-

576, 2001. 

[34] J. Woloszko, K. R. Stalder, and I. G. Brown, "Plasma characteristics of 

repetitively-pulsed electrical discharges in saline solutions used for surgical 

procedures," Plasma Science, IEEE Transactions on, vol. 30, pp. 1376-1383, 

2002. 

[35] A. Vogel, N. Linz, S. Freidank, and G. Paltauf, "Femtosecond-laser-induced 

nanocavitation in water: implications for optical breakdown threshold and cell 

surgery," Physical Review Letters, vol. 100, p. 038102, 2008. 

[36] G. Fridman, A. Shereshevsky, M. Jost, A. Brooks, A. Fridman, A. Gutsol, et al., 

"Floating electrode dielectric barrier discharge plasma in air promoting apoptotic 

behavior in melanoma skin cancer cell lines," Plasma Chemistry and Plasma 

Processing, vol. 27, pp. 163-176, 2007. 

[37] T. C. Montie, K. Kelly-Wintenberg, and J. Reece Roth, "An overview of research 

using the one atmosphere uniform glow discharge plasma (OAUGDP) for 

sterilization of surfaces and materials," Plasma Science, IEEE Transactions on, 

vol. 28, pp. 41-50, 2000. 



 

227 

 

[38] A. T. Sugiarto and M. Sato, "Pulsed plasma processing of organic compounds in 

aqueous solution," Thin solid films, vol. 386, pp. 295-299, 2001. 

[39] A. T. Sugiarto, S. Ito, T. Ohshima, M. Sato, and J. D. Skalny, "Oxidative 

decoloration of dyes by pulsed discharge plasma in water," Journal of 

Electrostatics, vol. 58, pp. 135-145, 2003. 

[40] A. Starikovskiy, Y. Yang, Y. I. Cho, and A. Fridman, "Non-equilibrium plasma 

in liquid water: dynamics of generation and quenching," Plasma Sources Science 

& Technology, vol. 20, 2011. 

[41] C. H. A. Juvan, "Separation of dissolved and undissolved substances from liquids 

using high energy discharge initiated shock waves," ed: Google Patents, 1990. 

[42] D. V. Palanker, "Method and apparatus for pulsed plasma-mediated 

electrosurgery in liquid media," ed: Google Patents, 2000. 

[43] V. Y. Ushakov, N. M. Torbin and Foreign Technology Div Wright-Patterson 

AFB Ohio, "Concerning the development of a discharge in solid dielectrics." Ft. 

Belvoir: Defense Technical Information Center, 1967. 

[44] W. Douyan, A. Hidenori, and N. Takao, Pulsed Discharge Plasma for Pollution 

Control: INTECH Open Access Publisher, 2010. 

[45] T. Sakugawa, T. Yamaguchi, K. Yamamoto, T. Kiyan, T. Namihira, S. Katsuki, 

et al., "All solid state pulsed power system for water discharge," in Pulsed Power 

Conference, 2005 IEEE, 2005, pp. 1057-1060. 



 

228 

 

[46] O. Lesaint and G. Massala, "Positive streamer propagation in large oil gaps: 

experimental characterization of propagation modes," Dielectrics and Electrical 

Insulation, IEEE Transactions on, vol. 5, pp. 360-370, 1998. 

[47] M. A. Malik, A. Ghaffar, and S. A. Malik, "Water purification by electrical 

discharges," Plasma Sources Science & Technology, vol. 10, pp. 82-91, 2001. 

[48] Institute of Plasma Physics Academy of Sciences of the Czech Republic, 2006. 

[49] Photron and Stanford Computer Optics, USA. 

[50] Hamamatsh Photonics, Japan. 

[51] M. Sato, M. Saito, and T. Hatori, "Emulsification and size control of insulating 

and/or viscous liquids in liquid-liquid systems by electrostatic dispersion," 

Journal of Colloid and Interface Science, vol. 156, pp. 504-507, 1993. 

[52] M. Sato, T. Hatori, and M. Saito, "Experimental investigation of droplet 

formation mechanisms by electrostatic dispersion in a liquid-liquid system," 

Industry Applications, IEEE Transactions on, vol. 33, pp. 1527-1534, 1997. 

[53] P. Šunka, "Pulse electrical discharges in water and their applications," Physics of 

Plasmas (1994-present), vol. 8, pp. 2587-2594, 2001. 

[54] W. An, K. Baumung, and H. Bluhm, "Underwater streamer propagation analyzed 

from detailed measurements of pressure release," Journal of Applied Physics, 

vol. 101, p. 053302, 2007. 

[55] K. Schoenbach, J. Kolb, S. Xiao, S. Katsuki, Y. Minamitani, and R. Joshi, 

"Electrical breakdown of water in microgaps," Plasma Sources Science and 

Technology, vol. 17, p. 024010, 2008. 



 

229 

 

[56] P. Bruggeman and C. Leys, "Non-thermal plasmas in and in contact with 

liquids," Journal of Physics D: Applied Physics, vol. 42, p. 053001, 2009. 

[57] M. Sato, T. Ohgiyama, and J. S. Clements, "Formation of chemical species and 

their effects on microorganisms using a pulsed high-voltage discharge in water," 

Industry Applications, IEEE Transactions on, vol. 32, pp. 106-112, 1996. 

[58] P. Bruggeman, J. Degroote, J. Vierendeels, and C. Leys, "DC-excited discharges 

in vapour bubbles in capillaries," Plasma Sources Science and Technology, vol. 

17, p. 025008, 2008. 

[59] K. Sato and K. Yasuoka, "Pulsed discharge development in oxygen, argon, and 

helium bubbles in water," Plasma Science, IEEE Transactions on, vol. 36, pp. 

1144-1145, 2008. 

[60] Y.-S. Chen, X.-S. Zhang, Y.-C. Dai, and W.-K. Yuan, "Pulsed high-voltage 

discharge plasma for degradation of phenol in aqueous solution," Separation and 

Purification Technology, vol. 34, pp. 5-12, 2004. 

[61] W.-T. Shin, S. Yiacoumi, C. Tsouris, and S. Dai, "A pulseless corona-discharge 

process for the oxidation of organic compounds in water," Industrial & 

Engineering Chemistry Research, vol. 39, pp. 4408-4414, 2000. 

[62] T. Miichi, S. Ihara, S. Satoh, and C. Yamabe, "Spectroscopic measurements of 

discharges inside bubbles in water," Vacuum, vol. 59, pp. 236-243, 10// 2000. 

[63] C. Yamabe, F. Takeshita, T. Miichi, N. Hayashi, and S. Ihara, "Water treatment 

using discharge on the surface of a bubble in water," Plasma Processes and 

Polymers, vol. 2, pp. 246-251, 2005. 



 

230 

 

[64] P. J. Bruggeman, C. A. Leys, and J. A. Vierendeels, "Electrical breakdown of a 

bubble in a water-filled capillary," Journal of Applied Physics, vol. 99, p. 

116101, 2006. 

[65] P. Bruggeman, C. Leys, and J. Vierendeels, "Experimental investigation of dc 

electrical breakdown of long vapour bubbles in capillaries," Journal of Physics 

D: Applied Physics, vol. 40, p. 1937, 2007. 

[66] P. Bruggeman, J. Degroote, C. Leys, and J. Vierendeels, "Electrical discharges in 

the vapour phase in liquid-filled capillaries," Journal of Physics D: Applied 

Physics, vol. 41, p. 194007, 2008. 

[67] J. K. Evju, P. B. Howell, L. E. Locascio, M. J. Tarlov, and J. J. Hickman, 

"Atmospheric pressure microplasmas for modifying sealed microfluidic devices," 

Applied Physics Letters, vol. 84, pp. 1668-1670, 2004. 

[68] Y. Akishev, M. Grushin, V. Karalnik, A. Monich, A. Petryakov, and N. 

Trushkin, "Self-pulsing regime of dc electric discharge in dielectric tube filled 

with water containing gas bubble," Plasma Science, IEEE Transactions on, vol. 

36, pp. 1142-1143, 2008. 

[69] E. A. Azizov, A. I. Emelyanov, and V. A. Yagnov, "Underwater electrical 

discharge with a large surface of radiation," Dielectrics and Electrical Insulation, 

IEEE Transactions on, vol. 14, pp. 1291-1294, 2007. 

[70] I. Prysiazhnevych, V. Yukhymenko, V. Chernyak, S. Olshevskiy, V. Naumov, J. 

Skalny, et al., "Discharge in the gas channel with liquid walls as generator of 



 

231 

 

non-thermal plasma at atmospheric pressure," in 28th ICPIG, Prague, Czech 

Republic, ed, 2007. 

[71] J. Janca, S. Kuzmin, A. Maximov, J. Titova, and A. Czernichowski, 

"Investigation of the chemical action of the gliding and “point” arcs between the 

metallic electrode and aqueous solution," Plasma Chemistry and Plasma 

Processing, vol. 19, pp. 53-67, 1999. 

[72] P. Lukes and B. R. Locke, "Degradation of substituted phenols in a hybrid gas-

liquid electrical discharge reactor," Industrial & engineering chemistry research, 

vol. 44, pp. 2921-2930, 2005. 

[73] T. J. Lewis, "Breakdown initiating mechanisms at electrode interfaces in liquids," 

IEEE Transactions on Dielectrics and Electrical Insulation, vol. 10, pp. 948-955, 

Dec 2003. 

[74] S. Bhattacharyya, D. Staack, E. A. Vitol, R. Singhal, A. Fridman, G. Friedman, 

et al., "Localized synthesis of metal nanoparticles using nanoscale corona 

discharge in aqueous solutions," Advanced Materials, vol. 21, pp. 4039-4044, 

2009. 

[75] D. Staack, A. Fridman, A. Gutsol, Y. Gogotsi, and G. Friedman, "Nanoscale 

corona discharge in liquids, enabling nanosecond optical emission spectroscopy," 

Angewandte Chemie International Edition, vol. 47, pp. 8020-8024, 2008. 

[76] A. Starikovskiy, "Pulsed nanosecond discharge development in liquids with 

various dielectric permittivity constants," Plasma Sources Science and 

Technology, vol. 22, p. 012001, 2013. 



 

232 

 

[77] W. G. Graham and K. R. Stalder, "Plasmas in liquids and some of their 

applications in nanoscience," Journal of Physics D-Applied Physics, vol. 44, 

2011. 

[78] P. Bruggeman, T. Verreycken, M. A. Gonzalez, J. L. Walsh, M. G. Kong, C. 

Leys, et al., "Optical emission spectroscopy as a diagnostic for plasmas in 

liquids: opportunities and pitfalls," Journal of Physics D-Applied Physics, vol. 

43, Mar 31 2010. 

[79] M. Laroussi, D. A. Mendis, and M. Rosenberg, "Plasma interaction with 

microbes," New Journal of Physics, vol. 5, 2003. 

[80] S. Rupf, A. Lehmann, M. Hannig, B. Schafer, A. Schubert, U. Feldmann, et al., 

"Killing of adherent oral microbes by a non-thermal atmospheric plasma jet," 

Journal of Medical Microbiology, vol. 59, pp. 206-212, 2010. 

[81] K. R. Stalder, G. Nersisyan, and W. G. Graham, "Spatial and temporal variation 

of repetitive plasma discharges in saline solutions," Journal of Physics D: 

Applied Physics, vol. 39, pp. 3457-3460, 2006. 

[82] K. R. Stalder, J. Woloszko, I. G. Brown, and C. D. Smith, "Repetitive plasma 

discharges in saline solutions," Applied Physics Letters, vol. 79, pp. 4503-4505, 

2001. 

[83] F. Iza, G. J. Kim, S. M. Lee, J. K. Lee, J. L. Walsh, Y. T. Zhang, et al., 

"Microplasmas: Sources, particle kinetics, and biomedical applications," Plasma 

Processes and Polymers, vol. 5, pp. 322-344, 2008. 



 

233 

 

[84] K. H. Becker, K. H. Schoenbach, and J. G. Eden, "Microplasmas and 

applications," Journal of Physics D-Applied Physics, vol. 39, pp. R55-R70, 2006. 

[85] K. Becker, A. Koutsospyros, S. M. Yin, C. Christodoulatos, N. Abramzon, J. C. 

Joaquin, et al., "Environmental and biological applications of microplasmas," 

Plasma Physics and Controlled Fusion, vol. 47, pp. B513-B523, 2005. 

[86] J. A. C. Broekaert, "Analytical chemistry - Plasma bubbles detect elements," 

Nature, vol. 455, pp. 1185-1186, 2008. 

[87] W. An, K. Baumung, and H. Bluhm, "Underwater streamer propagation analyzed 

from detailed measurements of pressure release," Journal of Applied Physics, 

vol. 101, pp. 053302-053302-10, 2007. 

[88] B. S. Sommers and J. E. Foster, "Plasma formation in underwater gas bubbles," 

Plasma Sources Science & Technology, vol. 23, 2014. 

[89] B. S. Sommers, J. E. Foster, N. Y. Babaeva, and M. J. Kushner, "Observations of 

electric discharge streamer propagation and capillary oscillations on the surface 

of air bubbles in water," Journal of Physics D-Applied Physics, vol. 44, 2011. 

[90] W. Tian, K. Tachibana, and M. J. Kushner, "Plasmas sustained in bubbles in 

water: optical emission and excitation mechanisms," Journal of Physics D: 

Applied Physics, vol. 47, 2014. 

[91] Y. P. Raizer, Gas discharge physics. Berlin ; New York: Springer-Verlag, 1991. 

[92] M. Pekker, Y. Seepersad, M. N. Shneider, A. Fridman, and D. Dobrynin, 

"Initiation stage of nanosecond breakdown in liquid," Journal of Physics D: 

Applied Physics, vol. 47, 2014. 



 

234 

 

[93] D. Dobrynin, Y. Seepersad, M. Pekker, M. Shneider, G. Friedman, and A. 

Fridman, "Non-equilibrium nanosecond-pulsed plasma generation in the liquid 

phase (water, PDMS) without bubbles: fast imaging, spectroscopy and leader-

type model," Journal of Physics D-Applied Physics, vol. 46, 2013. 

[94] P. H. Ceccato, O. Guaitella, M. R. Le Gloahec, and A. Rousseau, "Time-resolved 

nanosecond imaging of the propagation of a corona-like plasma discharge in 

water at positive applied voltage polarity," Journal of Physics D: Applied 

Physics, vol. 43, 2010. 

[95] M. Klas, S. Matejcik, M. Radmilovic-Radjenovic, and B. Radjenovic, "Electrical 

breakdown and volt-ampere characteristics in water vapor in microgaps," Epl, 

vol. 99, 2012. 

[96] N. Skoro, D. Maric, G. Malovic, W. G. Graham, and Z. L. Petrovic, "Electrical 

Breakdown in Water Vapor," Physical Review E, vol. 84, 2011. 

[97] R. P. Joshi, J. Qian, G. Zhao, J. Kolb, K. H. Schoenbach, E. Schamiloglu, et al., 

"Are microbubbles necessary for the breakdown of liquid water subjected to a 

submicrosecond pulse?," Journal of Applied Physics, vol. 96, pp. 5129-5139, 

2004. 

[98] C. E. Brennen, Cavitation and bubble dynamics. New York: Oxford University 

Press, 1995. 

[99] "Plasma conditions measured in bubbles imploded by extreme 

sonoluminescence," Mrs Bulletin, vol. 35, pp. 642-642, 2010. 



 

235 

 

[100] T. J. Lewis, "Breakdown initiating mechanisms at electrode interfaces in liquids," 

Dielectrics and Electrical Insulation, IEEE Transactions on, vol. 10, pp. 948-

955, 2003. 

[101] T. J. Lewis, "The electrode-liquid interface under high fields," in Dielectric 

Liquids, 2002. ICDL 2002. Proceedings of 2002 IEEE 14th International 

Conference on, 2002, pp. 91-94. 

[102] H. M. Jones and E. E. Kunhardt, "Development of pulsed dielectric breakdown 

in liquids," Journal of Physics D: Applied Physics, vol. 28, p. 178, 1995. 

[103] Q. Jun, R. P. Joshi, K. H. Schoenbach, J. R. Woodworth, and G. S. Sarkisov, 

"Model analysis of self- and laser-triggered electrical breakdown of liquid water 

for pulsed-power applications," Plasma Science, IEEE Transactions on, vol. 34, 

pp. 1680-1691, 2006. 

[104] N. F. Bunkin, N. V. Suyazov, and D. Y. Tsipenyuk, "Small-angle scattering of 

laser radiation by stable micron particles in twice-distilled water," Quantum 

Electronics, vol. 35, p. 180, 2005. 

[105] N. F. Bunkin and A. V. Lobeyev, "Influence of dissolved gas on optical 

breakdown and small-angle scattering of light in liquids," Physics Letters A, vol. 

229, pp. 327-333, 1997. 

[106] Y. Seepersad, M. Pekker, M. N. Shneider, D. Dobrynin, and A. Fridman, "On the 

electrostrictive mechanism of nanosecond-pulsed breakdown in liquid phase," 

Journal of Physics D: Applied Physics, vol. 46, p. 162001, 2013. 



 

236 

 

[107] F.-T. Weng and C.-T. Ho, "Manufacturing of a micro-tungsten carbide electrode 

using a supersonic-aided electrolysis process," Journal of Micromechanics and 

Microengineering, vol. 18, p. 037001, 2008. 

[108] L. Rayleigh, "VIII. On the pressure developed in a liquid during the collapse of a 

spherical cavity," Philosophical Magazine Series 6, vol. 34, pp. 94-98, 1917. 

[109] M. S. Plesset and A. Prosperetti, "Bubble Dynamics and Cavitation," Annual 

Review of Fluid Mechanics, vol. 9, pp. 145-185, 1977. 

[110] S. J. Putterman, "Sonoluminescence - Sound into Light," Scientific American, 

vol. 272, pp. 46-51, 1995. 

[111] S. J. Putterman and K. R. Weninger, "Sonoluminescence: How bubbles turn 

sound into light (vol 32, pg 445, 2000)," Annual Review of Fluid Mechanics, vol. 

34, pp. Ix-Ix, 2002. 

[112] M. P. Brenner, S. Hilgenfeldt, and D. Lohse, "Single-bubble sonoluminescence," 

Reviews of Modern Physics, vol. 74, pp. 425-484, 2002. 

[113] R. P. Joshi, J. F. Kolb, S. Xiao, and K. H. Schoenbach, "Aspects of Plasma in 

Water: Streamer Physics and Applications," Plasma Processes and Polymers, 

vol. 6, pp. 763-777, 2009. 

[114] A. I. Gerasimov, "Water as an insulator in pulsed facilities - (Review)," 

Instruments and Experimental Techniques, vol. 48, pp. 141-167, 2005. 

[115] G. S. Kulkarni and Z. H. Zhong, "Detection beyond the Debye Screening Length 

in a High-Frequency Nanoelectronic Biosensor," Nano Letters, vol. 12, pp. 719-

723, Feb 2012. 



 

237 

 

[116] F. Ziebert and D. Lacoste, "A Poisson–Boltzmann approach for a lipid membrane 

in an electric field," New Journal of Physics, vol. 12, p. 095002, 2010. 

[117] Cmglee, "Phase diagram of water,"  Open Link 

[118] Bruce R. Locke and Selma Mededovic Thagard "Analysis and review of 

chemical reactions and transport processes in pulsed electrical discharge plasma 

formed directly in liquid water," Plasma Chemistry and Plasma Processing, 

2012. 

[119] Y. K. Jeong, C. H. Jeon, and Y. J. Chang, "Evaluation of the equivalence ratio of 

the reacting mixture using intensity ratio of chemiluminescence in laminar 

partially premixed CH4-air flames," Experimental Thermal and Fluid Science, 

vol. 30, pp. 663-673, 2006. 

[120] J. M. Van Doren, J. F. Friedman, T. M. Miller, A. A. Viggiano, S. Denifl, P. 

Scheier, et al., "Electron attachment to POCl3: Measurement and theoretical 

analysis of rate constants and branching ratios as a function of gas pressure and 

temperature, electron temperature, and electron energy," Journal of Chemical 

Physics, vol. 124, 2006. 

[121] W. H. Tao and H. K. Yasuda, "Measurement of spatial distributions of electron 

density and electron temperature in direct current glow discharge by double 

langmuir probes," Plasma Chemistry and Plasma Processing, vol. 22, pp. 297-

311, 2002. 



 

238 

 

[122] Wetz, D.A., Truman, K.P., Mankowski, J.J. and Kristiansen, M. "The Impact of 

Surface Conditioning and Area on the Pulsed Breakdown Strength of Water," 

Ieee Transactions on Plasma Science, vol. 33, p. 1161, 2005. 

[123] Wladimir An1, Kurt Baumung1 and Hansjoachim Bluhm, "Underwater streamer 

propagation analyzed from detailed measurements of pressure release," Journal 

of Applied Physics, vol. 101, p. 053302, 2007. 



 

239 

 

APPENDIX 

MATLAB codes concerning the video processing, boundary identification, 

Rayleigh-Plesset model are presented in appendix. There are many other programs for 

data processing, but only above three categories are recorded in this dissertation.  

Video Processing 

Conversion from Videos to Frames 

clear 

clc 

close all 

dir 

FilesName =  '20x_100000fps_26nsrise_10kV_C001H001S0001.avi' 

FPS = 300000; 

% specify frames to load 

InitialFrame = 1; 

FinalFrame = 71; 

m_px = 24e-6/5;%% m/pixel % need more accurate value 

A_px = m_px^2; % pixel area m^2 

% specify region of interest (ROI) 

%ROIcol = [55:300]; 

%ROIrow = [81:160]; 

% specify theshold fraction of max brightness to use for finding ball 

% center 

FractionThreshold = 0; 

% load frames 

c = mmreader(FilesName); 

vidFrames = read(c,[InitialFrame,FinalFrame]); 

vidFrames_ROI = double(squeeze(vidFrames(:,:,1,:))); % grey scale so only one of the 

RGB indexes is required. 

clear vidFrames %% significant memory burden so clear unneeded data 

ss = size(vidFrames_ROI); 

FullSize = get(c,'NumberOfFrames'); 

X = [1:ss(2)]*m_px ; 

Y = [1:ss(1)]*m_px ; 

[Xm,Ym] = meshgrid(X,Y); % matrix values of x and y for easy indexing with matrices 

PLOTIT = 1; %% a boolean to see if plot the frames and images during analysis % 

plotting is very very slow but a good check of the algorithm 
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Xcen = 0*ones(1,ss(3)); % initialize arrays for faster calculation 

Ycen = 0*ones(1,ss(3)); 

Time = (1:ss(3))/FPS; 

%f1 = figure; 

%figure(f1); 

%set(gcf,'position',[142   89   990   833]);% set the figure position, it is not important in 

this program 

NominalPics = vidFrames_ROI(:,:,1:5); 

BG = mean(NominalPics,3); 

MX = max(max(max(vidFrames_ROI))); 

MN = min(min(min(vidFrames_ROI))); 

DELTA = MX-MN; 

%Xcen = 0*Time; 

%Ycen = 0*Time; 

%NumChanged = 0*Time; 

%Radius = Xcen; 

%Radius2 = Xcen; 

for i=14%i = 1:FinalFrame-InitialFrame   

    %pctdone = 100*i/ss(3); 

    CF = vidFrames_ROI(:,:,i); % current frame 

    CF2 = CF-BG; 

    %Threshold = FractionThreshold*DELTA; 

    %IsChange = abs(CF2)>Threshold; 

    %IndIsChange = find(IsChange); 

    %A = IsChange; % 

    %B = A.*Xm; 

    %C = A.*Ym; 

    %Xcen(i) = sum(B(IndIsChange))./sum(A(IndIsChange)); 

    %Ycen(i) = sum(C(IndIsChange))./sum(A(IndIsChange)); % centriods of the changed 

areas by a brightness weighted average 

    %NumChanged(i) = length(IndIsChange); 

    %Area(i) = A_px*NumChanged(i); 

    %Radius(i) =sqrt(Area(i)/pi); 

    %[junk,indc] =min(abs(X-Xcen(i))); 

    %if  Radius(i)>0 

    %    Radius2(i)=Ycen(i)- Y(min(find(A(:,indc)>0))); 

    %end 

    %if PLOTIT|i==ss(3)|(round(pctdone/5)==pctdone/5) 

        %subplot(2,1,1) 

        imagesc(X,Y,CF); 

        %saveas (gcf,'Bubble(i)','bmp'); 

        colormap gray 

        CF_gray = mat2gray(CF); 

        imwrite(CF_gray,['Bubble',num2str(i),'.bmp']) 
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        hold on 

        % if Radius(i)>0 

        %    R1 = rectangle('Curvature', [1 1], 'position',[Xcen(i)-Radius(i),Ycen(i)-

Radius(i),2*Radius(i),2*Radius(i)]); 

        %         set(R1,'EdgeColor','r') 

        %end 

        %p1=plot(Xcen(i),Ycen(i),'r.'); 

        %set(p1,'MarkerFaceColor','r') 

        %plot(Xm(IndIsChange),Ym(IndIsChange),'.k') 

        axis equal 

        hold off 

        %subplot(2,1,2) 

        %plot(Time,Radius,'.b-')%, Time,Radius2,'r') 

        %xlabel('time (s)') 

        %ylabel('Radius (m)') 

        pause(0.1) 

    %end 

end 
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Combination of Frames to Videos 

clc; 

clear all; 

FileName='10x_video3_C001H001S0001.avi'; 

A=VideoReader(FileName); 

Front=100; 

Back=200; 

vidFrames=read(A,[Front,    Back]); 

 

% aviobj=avifile('test.avi','fps',10); 

% fig=figure; 

% for ii=1: Back-Front 

%     image(vidFrames(:,:,:,ii)); 

%     F = getframe(fig); 

%     aviobj = addframe(aviobj,F); 

%     pause(0.1); 

% end 

% close(fig); 

% aviobj = close(aviobj); 

% for ii=1:Back-Front+1 

%     image(vidFrames(:,:,:,ii)); 

%     F(ii)=getframe; 

% end 

vidObj=VideoWriter('test.avi'); 

open(vidObj); 

writeVideo(vidObj,vidFrames); 

close(vidObj); 
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Load Images into Maxtrix 

clear 

clc 

close all 

a = dir('*.bmp'); 

%////// need this number every time 

for ii = 1:25 

    nm = b{ii}; 

    ind(ii) = str2num(nm(findstr(nm,'Bubble')+6:findstr(nm,'.')-1)); 

    A = imread(nm); 

    ss = size(A); 

    if length(ss)== 3 

        Mat(ind(ii),1:ss(1),1:ss(2),1:3) = A(:,:,1:3); 

    else 

        Mat(ind(ii),1:ss(1),1:ss(2)) = A; 

        Mat(ind(ii),1:ss(1),1:ss(2),2) = A; 

        Mat(ind(ii),1:ss(1),1:ss(2),3) = A; 

    end 

end 

%save AllImages.mat Mat 

 

 %for jj=1:length(b) 

     %imagesc(squeeze(Mat(jj,:,:,1:3))); 

     %colormap gray 

     %pause(0.2) 

 %end 
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Boundary Identification 

Canny Algorithm and Radius Trace 

clear all 

clc 

load AllImages.mat; 

vidObj = VideoWriter('Single-300k-9kv-0psi-30mNperm-0p2per-5cycle-10X.avi'); 

vidObj.FrameRate = 5; 

open(vidObj); 

fig = figure; 

for i=2:42 

    M=squeeze(Mat(i,:,:,:)); 

    I=squeeze(M(:,:,1)); 

    if max(max(I))<200 

        BW = edge(I,'canny',[0.67],8); %original version is 0.67 8 

        a0=0; 

        a=45; 

        b=115; 

    else 

        [row0, col0]=find(I>130); 

        a=mean(row0); 

        b=mean(col0); 

        for ii=1:size(row0) 

            I(row0(ii),col0(ii))=130; 

        end 

        BW = edge(I,'canny',[0.67], 12); 

        a0=1; 

    end 

    [row00, col00]=find(BW); 

    Z=sqrt((row00-a).^2+(col00-b).^2); 

    if i==22 ||i==23 

        zz=40; 

    elseif i==24 

        zz=30; 

    else 

        zz=24; 

    end 

    c=find(Z<zz); 

    %else 

    %c=find(Z<100); 

    %end 

    BW(row00(c),col00(c))=0; 

    subplot(2,1,1) 
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    imshow(BW); 

    imagesc(M); 

    title('Micro Plasma based Micro Bubble'); 

    xlabel('Pixel on X axis'); 

    ylabel('Pixel on Y axis'); 

    hold on 

    [row, col]=find(BW); 

    %     plot(col,row,'g.') 

    %     axis equal   

    % identify left and right curve 

    s=size(col); 

    m=1; 

    n=1; 

    k=1; 

    for j=1:s 

        if mean(col)<140 

            if col(j)<mean(col) 

                colL(m)=col(j); 

                rowL(m)=row(j); 

                m=m+1; 

            else 

                colR(n)=col(j); 

                rowR(n)=row(j); 

                n=n+1; 

            end 

            a1=0; 

        else 

            if col(j)>140 

                colR(k)=col(j); 

                %colL(j)=col(j); 

                rowR(k)=row(j); 

                %rowL(j)=row(j); 

                k=k+1; 

            end 

            a1=1; 

        end 

    end 

    % best fit for the radius 

    if mean(col)<140 

        r=30; 

        x0=mean(col); 

        y0=mean(row); 

        x(1) = r; 

        x(2) = x0; 
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        x(3)= y0; 

        params{1}=colL ; 

        params{2}=rowL ; 

        params{3} =colR; 

        params{4}=rowR; 

        err = circlefiterror(x,params); 

        Xnew = fminsearch('circlefiterror',x,[]12,params); 

        r = Xnew(1); 

        x0 = Xnew(2); 

        y0 = Xnew(3); 

        cp = circlefunction(r,x0,y0,rowL,rowR); 

        ynew = linspace(y0-r,y0+r,100); 

        cp = circlefunction(r,x0,y0,ynew,ynew); 

        xf_fit = cp{1}; 

        xb_fit = cp{2}; 

        plot(colL,rowL,colR,rowR,xf_fit,ynew,xb_fit,ynew) 

        a2=0; 

        clear colL rowL colR rowR xf_fit ynew xb_fit ynew 

    else 

        r=35; 

        x0=110; 

        y0=40; 

         

        x(1) = r; 

        x(2) = x0; 

        x(3)= y0; 

        params{1}=colR ; 

        params{2}=rowR ; 

        err = circlefiterrorXX(x,params); 

        Xnew = fminsearch('circlefiterrorXX',x,[],params); 

        r = Xnew(1); 

        x0 = Xnew(2); 

        y0 = Xnew(3);  

        cp = circlefunctionXX(r,x0,y0,rowR); 

        ynew = linspace(y0-r,y0+r,100); 

        cp = circlefunctionXX(r,x0,y0,ynew); 

        xb_fit = cp{1}; 

        plot(colR,rowR,xb_fit,ynew) 

        a2=1; 

        clear colL rowL colR rowR xf_fit ynew xb_fit ynew 

    end 

    axis equal 

    hold off; 

    subplot(2,1,2) 
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    RR(1)=0; 

    RR(i)=r; 

    FPS=300000; 

    deltaT=1/FPS*1e6; 

    t(1)=0; 

    t(i)=(i)*deltaT; 

    Radius=RR*2.5; 

    plot(t,Radius,'*-') 

    title('Micro Plasma based Micro Bubble'); 

    xlabel('Time(us)'); 

    ylabel('Radius(um)'); 

    grid on; 

    pause(0.3) 

    F=getframe(fig); 

    writeVideo(vidObj,F); 

end 

%close(fig); 

close(vidObj); 

savefile='S9kV0pS2C.mat'; % single+-7kV+10psi+surfactant+0.2conductivity 

save(savefile,'t','Radius'); 

 

 

 

function err =circlefiterror(x,params) 

r = x(1); 

x0 = x(2); 

y0 = x(3); 

xf = params{1}; 

yf = params{2}; 

xb = params{3}; 

yb = params{4}; 

cp = circlefunction(r,x0,y0,yf,yb); 

xf_fit = cp{1}; 

xb_fit = cp{2}; 

err = sqrt(sum((xf-xf_fit).^2) +sum((xb-xb_fit).^2)); 

 

 

function circlepoints=circlefunction(r,x0,y0,yf,yb) 

xf = real(x0-sqrt(r^2-(yf-y0).^2)); 
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xb = real(x0+sqrt(r^2-(yb-y0).^2)); 

circlepoints = {xf,xb}; 

 

 

 

Rayleigh-Plesset Partial Differential Equation 

Best Fitting for ‘fminsearch’ 

clear 

clc 

close all 

PlotIt = 1; 

load S9kV70pS2C.mat; 

Time=t(2:7); 

Rad=Radius(2:7); 

Params{1} = Time; 

Params{2} = Rad; 

Params{3} = PlotIt ; 

% x = [Req*1e6,Rzero*1e6,Vzero,TimeOffset*1e6,k,pinf/1e5]; 

% x = [103.7015,101.8816,-5.0877,0.9856,1.1008,1.0001]; 

Req = 85e-6;  

% pinf = 1.7e5; % external pressure 

k = 1.014; % ideally could be time varying (should be 1 for large slow bubble and >1 but 

<gamma for fater bubble 

% h=1.012e-8; 

% gamma=35e-3; 

Rzero = 10e-6; % intiall bubble radius 

Vzero =100; % intiall bubble wall velcotiy 

%TimeOffset = 1e-6; % time of initial bubble should be < 1/fps 

%Tb=300; 

%PvTb2=0.7e5; 

%Pgas0=2*gamma/Req-PvTb2+pinf; 

Tb0=420.38; 

%x = [Req*1e6,Rzero*1e6,Vzero,TimeOffset*1e6,k,pinf/1e5,Tb,Pgas,PvTb2]; 

x = [Req*1e6, Rzero*1e6,Vzero,Tb0, k]; %Pgas/1e5,PvTb2/1e5, Req*1e6,  

Params{3} = 1; 

figure 

x1=BubbleSolveError(x,Params); 

opts = optimset('fminsearch'); 

opts.TolFun = 1; 

opts.TolX = 1; 

x2 = fminsearch(@BubbleSolveError,x,opts,Params); 

% params{3} = 2; 

x3=BubbleSolveError(x2,Params); 
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Minimum Error 

function RMSEBubble = BubbleSolveError(x,Params) 

Time = Params{1}; 

Rad = Params{2}; 

PlotIt = Params{3}; 

f1 = gcf; 

%f2 = figure; 

%% Things to Consider Changing 

%x = [Req*1e6, Rzero*1e6,Vzero,Tb0, k]; from best fitting codes 

Req = x(1)/1e6; 

%pinf = x(2); % external pressure 

Pinf=5.9e5; 

%k = x(3); % ideally could be time varying (should be 1 for large slow bubble and >1 

but <gamma for fater bubble 

Rzero = x(2)/1e6; % intiall bubble radius 

Vzero = x(3); % intiall bubble wall velcotiy 

%TimeOffset = x(4)/1e6; % time of initial bubble should be < 1/fps 

TimeOffset=1e-6; 

%Req = 36.5e-6; 

h=1.012e-8; 

gamma=35e-3; 

%pinf = x(6)*1e5; % external pressure 

%k=1.02; 

k = x(5); % ideally could be time varying (should be 1 for large slow bubble and >1 but 

<gamma for fater bubble 

%Rzero = 1e-6; % intiall bubble radius 

%Vzero = 1e3; % intiall bubble wall velcotiy 

%TimeOffset = x(7)/1e8; % time of initial bubble should be < 1/fps 

%Tb=x(5); 

Tb0=x(4); 

%Pgas0=x(7)*1e5; 

%PvTb2=x(4)*1e5; 

%% 

TP_sats = [ 

6.04E-01 2.73E+02 

9.34E-01 2.79E+02 

1.41E+00 2.85E+02 

2.09E+00 2.91E+02 

3.05E+00 2.97E+02 

4.36E+00 3.04E+02 

6.14E+00 3.10E+02 

8.52E+00 3.16E+02 

1.16E+01 3.22E+02 

1.57E+01 3.28E+02 
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2.09E+01 3.34E+02 

2.76E+01 3.40E+02 

3.59E+01 3.46E+02 

4.63E+01 3.53E+02 

5.91E+01 3.59E+02 

7.47E+01 3.65E+02 

9.37E+01 3.71E+02 

1.16E+02 3.77E+02 

1.43E+02 3.83E+02 

1.76E+02 3.89E+02 

2.13E+02 3.95E+02 

2.58E+02 4.02E+02 

3.09E+02 4.08E+02 

3.68E+02 4.14E+02 

4.36E+02 4.20E+02 

5.14E+02 4.26E+02 

6.03E+02 4.32E+02 

7.03E+02 4.38E+02 

8.16E+02 4.44E+02 

9.43E+02 4.51E+02 

1.09E+03 4.57E+02 

1.24E+03 4.63E+02 

1.42E+03 4.69E+02 

1.62E+03 4.75E+02 

1.83E+03 4.81E+02 

2.07E+03 4.87E+02 

2.33E+03 4.93E+02 

2.61E+03 5.00E+02 

2.93E+03 5.06E+02 

3.26E+03 5.12E+02 

3.63E+03 5.18E+02 

4.03E+03 5.24E+02 

4.46E+03 5.30E+02 

4.93E+03 5.36E+02 

5.43E+03 5.42E+02 

5.98E+03 5.49E+02 

6.56E+03 5.55E+02 

7.18E+03 5.61E+02 

7.85E+03 5.67E+02 

8.57E+03 5.73E+02 

9.20e3      578 

9.8e3       583 

10.547e3    588 

11.274e3    593 
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12.845e3    603 

14.586e3    613 

16.51e3     623 

18.651e3    636 

21.03e3     643 

22.09e3     647.14 

];% kPa, K 

T_sat = TP_sats(:,2); 

P_sat = TP_sats(:,1)*1e3; 

PvTb0=interp1(T_sat,P_sat,Tb0); 

Pgas0=2*gamma/Req-PvTb0+Pinf; 

params = [Req,Pinf,h,k,gamma,Pgas0,PvTb0,Tb0]; 

y0 = [Rzero,Vzero]; % initial guesses 

ts = linspace(0,25e-6,1e5); 

[t,y]=ode23t(@myodefun,ts,y0,[],params); 

t = t + TimeOffset; 

% if PlotIt 

%     [yp,Res] = myodefun2(t,y,params); 

% end 

radius = y(:,1); 

[Rmax,indm] = max(radius*1e6); 

period = 2*min(t(radius>0.95*(Rmax/1e6))); 

 

% if PlotIt 

%     figure(f1) 

%     subplot(2,2,3) 

%     plot(t*1e6,y(:,2)) 

%     xlabel('time (\mus)') 

%     ylabel('velocity (\mum/s^2)') 

%     grid on; 

%      

%     subplot(2,2,4) 

%     semilogy(t*1e6,abs(yp(:,2))) 

%     xlabel('time (\mus)') 

%     ylabel('accel (\mum/s^2)') 

%     grid on; 

% end 

Rmod = Rmax; 

Tmod = period; 

%figure(f2) 

% ExRmax = max(Rad); 

% ExPer = 2.7957*1e-6; 

% Error1 = sqrt((Rmod-ExRmax).^2+(1e6*(Tmod-ExPer)).^2); 
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IndToFit = find(Rad>0&Time>0); 

InterpModelRadius = interp1(t*1e6,radius*1e6,Time(IndToFit)); 

Error2 = sqrt(sum((InterpModelRadius-Rad(IndToFit)).^2)); 

RMSEBubble  = Error2; 

if k>1.4|k<1.0 

    RMSEBubble=100*RMSEBubble; 

end 

%  

% if  pinf>1.1e5|pinf<0.9e5; 

%     RMSEBubble=100*RMSEBubble; 

% end 

if PlotIt 

    figure(f1) 

    subplot(2,1,1) 

    plot(Time,Rad,'o') 

    hold on 

    xlabel('time (\mus)') 

    ylabel('radius (\mum)') 

    grid on; 

    x 

end 

 

if PlotIt 

    %subplot(2,1,1) 

    p1 = plot(t*1e6,radius*1e6); 

    set(p1,'color','k') 

    subplot(2,1,1) 

    plot(Time(IndToFit),InterpModelRadius,'x') 

    hold off 

    grid on; 

end 
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Function for Boundary Velocity and Acceleration 

function yp = myodefun(t,y,params) 

t; 

% params = [Req,pinf,h,k,gamma,Tb,Pgas]; 

%params = [Req,pinf,h,k,gamma,Tb,Pgas,PvTb2]; 

rho = 1000; % kg/m^3 

Tinf=300; 

mu = 8.9e-4; % 8.9e-4 pa-s -- Not very sensitive to this 

Pinf = params(2); % 1e5 Pa 

Pt = 0*t; % Pressure as a function of time 

gamma = params(5); % N/m 

%Pg = 1e4; % Pa 

%Req = 10e-6; % m equlibrium bubble diameter 

h = params(3); % volume taken up by neucleii 

%k=1.3; % 1 is isothermal 5/3 for adiabatic 

Req = params(1); 

k = params(4); 

%Tb =params(6); 

Pgas0 = params(6); 

% Pressure in Gas 

% Pg = (Pinf+2.*gamma./Req).*((Req.^3-h.^3).^k)./((y(1).^3-h.^3).^k); 

PvTb2=params(7); 

Tb0=params(8); 

Pgas=Pgas0*(Req/y(1))^(3*k); 

Tb=(Pgas/Pgas0)^((k-1)/k)*Tb0; 

TP_sats = [ 

6.04E-01 2.73E+02 

9.34E-01 2.79E+02 

1.41E+00 2.85E+02 

2.09E+00 2.91E+02 

3.05E+00 2.97E+02 

4.36E+00 3.04E+02 

6.14E+00 3.10E+02 

8.52E+00 3.16E+02 

1.16E+01 3.22E+02 

1.57E+01 3.28E+02 

2.09E+01 3.34E+02 

2.76E+01 3.40E+02 

3.59E+01 3.46E+02 

4.63E+01 3.53E+02 

5.91E+01 3.59E+02 

7.47E+01 3.65E+02 

9.37E+01 3.71E+02 
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1.16E+02 3.77E+02 

1.43E+02 3.83E+02 

1.76E+02 3.89E+02 

2.13E+02 3.95E+02 

2.58E+02 4.02E+02 

3.09E+02 4.08E+02 

3.68E+02 4.14E+02 

4.36E+02 4.20E+02 

5.14E+02 4.26E+02 

6.03E+02 4.32E+02 

7.03E+02 4.38E+02 

8.16E+02 4.44E+02 

9.43E+02 4.51E+02 

1.09E+03 4.57E+02 

1.24E+03 4.63E+02 

1.42E+03 4.69E+02 

1.62E+03 4.75E+02 

1.83E+03 4.81E+02 

2.07E+03 4.87E+02 

2.33E+03 4.93E+02 

2.61E+03 5.00E+02 

2.93E+03 5.06E+02 

3.26E+03 5.12E+02 

3.63E+03 5.18E+02 

4.03E+03 5.24E+02 

4.46E+03 5.30E+02 

4.93E+03 5.36E+02 

5.43E+03 5.42E+02 

5.98E+03 5.49E+02 

6.56E+03 5.55E+02 

7.18E+03 5.61E+02 

7.85E+03 5.67E+02 

8.57E+03 5.73E+02 

9.20e3      578 

9.8e3       583 

10.547e3    588 

11.274e3    593 

12.845e3    603 

14.586e3    613 

16.51e3     623 

18.651e3    636 

21.03e3     643 

22.09e3     647.14 

];% kPa, K 
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P_sat = TP_sats(:,1)*1e3; 

T_sat = TP_sats(:,2); 

PvTb=interp1(T_sat,P_sat,Tb); 

Pg2=PvTb+Pgas; 

yp(1) = y(2); 

term1 = Pg2-Pinf; 

term2 = -4.*mu.*y(2)./y(1); 

term3 = -2.*gamma./y(1); 

term123 =1./rho.*(term1+term2+term3); 

term4 = -3./2.*y(2).^2; 

yp(2) = (term123+term4)./y(1); 

yp = yp'; 

 

 




