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ABSTRACT 

 Piecewise growth mixture modeling (PGMM) can be used to investigate growth 

and change of subpopulations consisting of distinct developmental phases (Muthén, 

2008). The major difficulty in specifying a PGMM is how to optimally locate a turning 

point (or transition point, or knot). Recently, Kohli, Harring, and Hancock (2013) 

proposed a version of a two-stage (or two-piece) PGMM that allows free estimation of a 

turning point. The procedure offers more advantages over the practice of determining a 

turning point a priori. Yet, many questions regarding the performance of the procedure 

remain to be answered. The dissertation conducted comprehensive Monte Carlo 

simulation studies to investigate and compare the performance of the proposed 

procedure under two dominant estimation methods: Bayesian estimation framework via 

the Markov Chain Monte Carlo (MCMC) algorithm and the Maximum likelihood 

estimation via the expectation maximization (EM) algorithm (ML/EM). 

The dissertation consisted of two studies. Study One used a two-piece PGMM as 

the population model to generate data and compared the performance of a PGMM with 

unknown turning points under both estimation methods with regard to parameter 

recovery, and individual classification accuracy in different experimental conditions. It 

was found that individual classification accuracy under both estimation methods varied 

depending on the separation of the latent classes and the number of time points. Overall, 

the Bayesian method with informative priors gave a more accurate individual 

classification than the same method with other prior specifications and the ML/EM 

method. As for the recovery of true parameter, with exception to the Bayesian method 
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with informative priors, which was found to be able to recover the fixed effects in both 

classes to an acceptable degree, the same method with other prior specifications and the 

ML/EM method had difficulty in recovering the fixed effects, particularly, the second 

slope of class two. Both estimation methods were also found to have difficulty in 

estimating random effects. 

Study Two explored and compared the accuracy of commonly used enumeration 

indexes with PGMMs in identifying the correct number of latent classes under both 

Bayesian and ML/EM estimation methods. The findings showed that, for the ML/EM 

method, the ICL-BIC was the most useful index in correct model identification across all 

the data conditions under examination. For the Bayesian method, the WAIC2, DIC3,and 

BIC could be used with confidence in class enumeration with PGMMs. 

            The findings can help applied researchers determine under what conditions a  

 PGMM performs better fitted by one estimator than the other. The findings also provide 

reasonable ways for using model fit statistics in combination to decide an optimal 

PGMM analyzed by either the ML/EM or the Bayesian method. 



 

iv 

 

ACKNOWLEDGEMENTS 

I am indebted to many people who have helped make this dissertation happen. 

But first of all, I would like to acknowledge my academic advisor, Dr. Wen  Luo, for all 

her time, support, patience, and research mentorship. Your integrity and discipline has 

won my deepest respect and admiration. You have been an exemplary role model to me 

in my academic journey. I thank you for introducing me into the amazing world of 

statistics and for your professional guidance and supervision, which has laid a solid 

foundation for my future growth. I am grateful for the opportunities to teach, research, 

publish, attend workshops, and to travel to national and international conferences. Thank 

you for always being supportive during the past five years, especially through my ups 

and downs. Without you, this dissertation would not have been possible. I am truly 

blessed to have you in my life. 

I would also like to thank my committee members, Dr. Willson, Dr. Kwok, and 

Dr.Yoon, for their guidance and support throughout the course of this research. I am 

especially grateful to my committee members and Dr. Hall for being supportive and 

accommodating my family situation. 

My heartfelt thanks also go to Dr. Bo Zhang, Dr. Cindy Walker, and Dr. Razia 

Azen at University of Wisconsin-Milwaukee, for their support, encouragement, and 

guidance during my study there.  

I also want to thank Dr. Lili Zhao at University of Michigan at Ann Arbor for 

checking my Bayesian models and the R codes for the dissertation.  Thanks also go to 



 

v 

 

my colleagues and the department faculty and staff for making my time in Aggieland 

pleasant and memorable.  

Special thanks are also due to the sisterhood and brotherhood at the Grace Valley 

Chinese Church. Your encouragement and prayers have kept my faith strong and have 

spurred me ―on toward love and good deeds‖ (Hebrews 10:24).  

I would like to express my sincere thankfulness to my dear mother and my 

deceased father, who passed away this May, for their devoted love and selfless sacrifices 

for me and my two brothers. Many thanks to my brothers for their support and for being 

truly brothers when needed. 

Last but not least, I would like to express my deepest gratitude to my husband, 

for his love, support, and patience over the last five years. Thank you, my cute little son, 

for being a well-behaved child while I was in school.  

 



 

vi 

 

TABLE OF CONTENTS 
 
 

Page 
 
ABSTRACT .............................................................................................................  ii 
 
ACKNOWLEDGEMENTS  ....................................................................................  iv 

TABLE OF CONTENTS .........................................................................................  vi 

LIST OF FIGURES ..................................................................................................  viii 

LIST OF TABLES ...................................................................................................  ix 

CHAPTER 

 I INTRODUCTION ........................................................................................  1 

 II LITERATURE REVIEW .............................................................................  6 

 2.1 Piecewise Growth Mixture Models with Unknown Turning Points ...  6  
 2.2 Maximum-Likelihood Estimation of PGMMs via EM Algorithm  

in SEM .................................................................................................  8 
 2.3 Bayesian Estimation of PGMMs .........................................................  10 
 2.4 ML-Based Class Enumeration Indices ................................................  12 
 2.5 Bayesian-Based Enumeration Indices .................................................  19 
 2.6 A Review of GMM’s Class Enumeration Performance ......................  24 
 

 III STUDY ONE: DETECTING UNKNOWN TURNING POINTS USING 
PIECEWISE GROWTH MIXTURE MODELS: A COMPARISON OF ML/EM 
VERSUS BAYESIAN ESTIMATION  ...................................................................  28 
 
 3.1 Overview .............................................................................................  28 
 3.2 Methods ...............................................................................................  31 
 3.3 Results .................................................................................................  40 
 3.4 Discussion ...........................................................................................  48 
 
 IV STUDY TWO: CLASS IDENTIFICATION EFFICACY IN PIECEWISE 
GROWTH MIXTURE MODELS WITH UNKNOWN TURNING POINTS: A 
COMPARISON OF ML/EM VERSUS BAYESIAN ESTIMATION  ...................   52 
 
 4.1 Overview .............................................................................................  52 



 

vii 

 

 

 

 4.2 Methods ...............................................................................................  54 
 4.3 Results .................................................................................................  60 
 4.4 Discussion ...........................................................................................  73 
 
 V IMPLICATIONS AND CONCLUSIONS ...................................................  79 

REFERENCES .........................................................................................................  83 

APPENDIX A ..........................................................................................................  91 

APPENDIX B ..........................................................................................................  93 

APPENDIX C ..........................................................................................................  96 

APPENDIX D ..........................................................................................................  97 

  



 

viii 

 

LIST OF FIGURES 

FIGURE                                                                                                                        Page 

 1 Monte Carlo simulation 95% confidence intervals under  

               the ML/EM method ....................................................................................  45 

 2 Monte Carlo simulation 95% confidence intervals under  

               the Bayesian method ..................................................................................  45 

 3 Mean coverage rates of fixed effect estimates for both estimation                      

               methods across all conditions .....................................................................  46 

 4  Mean coverage rates of fixed effect estimates for both the ML/EM and  

               Bayesian with informative priors for the mean growth factors ..................  47 

 5 Mean coverage rates of fixed effect estimates for both the ML/EM and   

               Bayesian estimation with data driven priors for the mean growth factors .  48 

 6 Mean coverage rates of fixed effect estimates for both the ML/EM and  

               Bayesian estimation with weakly informative priors for the mean growth 

               factors .........................................................................................................  48 

 7 Percentage of 1-, 2-, and 3-class models identified by enumeration indices  

               under the ML/EM estimation .....................................................................  64 

 8 Percentage of 1-, 2-, and 3-class models identified by enumeration indices  

               under the Bayesian estimation ....................................................................  65 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

ix 

 

LIST OF TABLES 

    TABLE                                                                                                                     Page 

 1 Population Parameters for the Two Classes ...............................................  33 

 2 Mean Hit Rate for Bayesian and ML/EM Estimations ..............................      44 

 3 ANOVA Results of the Designed Factors' Effects on Model Fit Indices in 

               Selecting the True Model across Model Types and Conditions under ML/EM 

               Estimation ...................................................................................................   68 

 4 ANOVA Results of the Designed Factors' Effects on Model Fit Indices in  

               Selecting the True Model across Model Types and Conditions under Bayesian  

               Estimation ...................................................................................................  68 

 5 Percentage of Correct Model Identification Collapsed by the Factors of Class  

               Separation, Number of Time Points, and Sample Size Under ML/EM  

               Estimation ...................................................................................................  69 

 6 Percentage of Correct Model Identification Collapsed by the Factors of Prior  

               Specification, Class Separation, and Number of Time Points Under Bayesian  

               Estimation ...................................................................................................  70 



 

1 

 

CHAPTER I 

INTRODUCTION 

Change is a constant. Measuring individual development change over time has 

long fascinated empirical researchers. Since the 1980s, researchers have been able to 

study change well with appropriate statistical models, one of which is known as the 

Latent Growth Model (LGM) in the Structural Equation Modeling (SEM) framework 

(Preacher, 2008; Singer & Willett, 2003). Up to date, the majority of applications of the 

models in longitudinal data analysis have been limited to the assumption that change 

follows a simple linear trend.  However, when longitudinal data are collected over a long 

period of time, they often do not follow a linear trend, and a simple smooth polynomial 

functional form may not adequately describe the data that consist of different growth 

phases. A more flexible approach to model the nonlinear form of growth is the Piecewise 

Latent Growth Curve Model (PLGCM). This approach breaks up the curvilinear growth 

trend into separate linear segments or pieces of different slopes, which are again tied 

together by knots (or turning points or change points). The flexibility of PLGCM allows 

the formulation of different functional forms for the different phases of growth such that 

each phase does not have to conform to the same function (Harring, Cudeck, & du Toit, 

2006; Khoo, West, Wu, & Kwok, 2006; Kohli et al., 2013; Kwok, Luo, & West, 2010). 

The approach is particularly appealing when researchers are interested in comparing 

growth rates for two or more periods based on a substantial interest, such as a marked 

effect of schooling on children‘s scholastic attainments before and after secondary 

school (Chou, Yang, Pentz, & Hser, 2004; Rutter, 1996).  
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One of the assumptions underlying PLGCMs is that the population being studied 

is homogeneous in terms of the growth process, and all individuals in the data 

experience the same differential growth process tied together by the same turning points. 

However, if the data consist of heterogeneous growth processes, the homogeneous 

assumption may be concealing important features of inter-individual and intra-individual 

variations, which produces modeling results that are unreliable (Lu & Huang, 2014).    

A more realistic alternative is the Piecewise Growth Mixture Modeling (PGMM) 

technique. It groups individuals into a finite number of growth trajectories of different 

growth processes based on observed data patterns. Compared to conventional latent 

growth curve models, the technique is more flexible: it can not only detect distinctive 

turning points at which differential growth rates manifest and explore the heterogeneity 

in the population‘s growth trajectories, but also examine latent trajectory-specific 

variance components (Li, Duncan, Duncan, & Hops, 2001; Muthén, 2001). The 

flexibility and dynamism of the method has attracted enthusiastic applications in social 

and behavioral sciences (Galatzer-Levy, Bonanno, & Mancini, 2010; Heybroek, 2011; 

Johnsson, Leifman, & Berglund, 2008; Li et al., 2001; Mora et al., 2009; Uher et al., 

2010; Wu, Zumbo, & Siegel, 2011).  

The major difficulty in specifying a PGMM concerns an optimal identification of 

a turning point, designated by a fixed or free time point where the growth rate changes 

from one linear slope to the other. A brief literature review showed that empirical studies 

using PGMMs relied exclusively on theoretical considerations to specify a priori a 

turning point. However, such situations are not often attained. 
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Recently, a statistical procedure proposed by Kohli, Harring, and Hancock 

(2013) allows free estimation of a turning point using a two-piece PGMM. Using 

statistical procedures to detect turning points has several advantages. First, it does not 

limit the trajectory shape to the substantive hypothesis that two developmental phases 

are connected by a priori determined fixed time point. Furthermore, allowing free 

estimation of turning points and time specific factor loadings can sometimes entail a 

more optimal functional form in the description of observed data patterns over time 

(Kwok, Luo, & West, 2010; Wood & Jackson, 2013).  

Despite the advantages of the newly proposed PGMM procedure, many issues 

have not yet been resolved. One of the issues involves the choice of an appropriate 

parameter estimation method for mixture models. The most commonly used estimator 

has been the Maximum Likelihood estimation method via the EM algorithm (ML/EM). 

Yet, ML/EM is also known for difficulties in finding global maximum, as well as for 

slow convergence, parameter inconsistency, and very large sample size needed in order 

to apply the asymptotic theory particularly to mixture models (Depaoli, 2013; Frühwirth-

Schnatter, 2006; G. McLachlan & Peel, 2004). In contrast, a Bayesian method allows 

one to search through the parameter space and to have a full posterior distribution of a 

parameter that is free from local maximum and parameter uncertainty. Another 

advantage associated with using the Bayesian estimation framework to analyze PGMMs 

is that the measurement occasions are allowed to vary across individuals; if using the 

ML/EM estimator under the SEM framework, the measurement occasions have to be 

fixed equal for all individuals, which is not realistic in actuality. Moreover, turning 
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points analyzed by Bayesian methods can be random within class, which is not possible 

if using ML/EM methods in the SEM framework. Such properties, along with many 

others, have made Bayesian methods an attractive alternative to ML/EM in fitting 

mixture models (Richardson & Green, 1997). 

Nevertheless, many questions regarding the performance of the two predominant 

estimation methods for fitting PGMMs still remain to be examined. Is the performance 

of ML/EM similar or dissimilar to the Bayesian method for estimating a PGMM?  

Specifically, how do ML/EM and the Bayesian method perform in terms of class 

parameter recovery and classification accuracy?  Furthermore, how is the respective 

performance of ML/EM and the Bayesian estimation method in identifying the correct 

number of growth trajectories with a PGMM? Finally, in each of the three 

considerations, under what conditions would they perform similar or dissimilar to each 

other? The purpose of the study is to shed some light on the above questions. 

In summary, the purposes of the dissertation are two-fold. First, the study 

investigated and compared the performance of a PGMM with unknown turning points 

under ML/EM and Bayesian estimation frameworks with regard to parameter recovery 

and classification accuracy. Second, the performance of a PGMM in class enumeration 

using ML/EM and Bayesian estimations were examined and compared to explore under 

what conditions one estimator outperforms the other for fitting a PGMM.  

The dissertation proposal is organized as follows. Chapter I introduces the 

background and the purpose of the study. Chapter II presents a comparative study of the 

performance between ML/EM and Bayesian estimation methods in detecting turning 
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points, recovering population parameters and individual classification accuracy with 

PGMMs. Chapter III presents a comparative study of the performance of PGMMs 

between ML/EM and Bayesian estimation methods in growth trajectories enumeration 

accuracy. Chapter IV concludes with a summary of the findings and implications of the 

findings for applied research using PGMMs of unknown turning points.  
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CHAPTER II 

LITERATURE REVIEW  

2.1 Piecewise Growth Mixture Models with Unknown Turning Points  

A PGMM is essentially a type of multivariate normal mixture model. One 

underlying assumption is that the repeated measures of the outcome y are a finite 

mixture of two or more latent subpopulations. In each latent subpopulation, individuals‘ 

mean growth trajectory exhibits distinct developmental stages before and after a turning 

point. Different functional forms can be formulated for the growth stages before and 

after the turning point. To keep it simple, we considered a two-stage piecewise linear 

growth mixture model. 

To formulate a two-stage piecewise linear growth mixture model with one 

unknown turning point, suppose that the sample data consists of K subpopulations with k 

indexing subpopulations ((k = 1… K). The Level 1 (repeated measures) model for 

Trajectory k is specified as 

                       











kijijkijik2ik2k2

kijijkijik1ik1k1

ijk
t)t(ba:)t(l

t)t(ba:)t(l
y  ,                               (1) 

where ijk
y  is the response at the jth measurement for the ith individual in Trajectory k. 

ik1
a and 

ik1
b  are the intercept and the slope growth factors of the first phase, and ik2

a

and
ik2

b  denote the corresponding growth factors of the second phase after the turning 

point. 
k
  is the location of the unknown turning point in Trajectory k marking the shift 

from one growth phase to the other. The location of 
k
 is fixed within class but varies 
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across classes.  ijk


 
is the level-1 residual for individual i at measurement j in Trajectory 

k [ ),0(~
ijk

2
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σN  ].  

The trajectory is assumed to be continuous and exhibit no jump from stage one to 

stage two, therefore, the two stages for )(1 tl k
  and  )(2 tl k  are connected at the turning 

point. That is, when ,t kij  ),(ba)(ba kik2ik2kik1ik1  which gives

)b(bγaa 2ik1ikk1ik2ik  . Thus Model (1) that has five parameters is reduced to a 

four-parameter model  
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The Level-2 (between-subject) model for Trajectory k is specified as 
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where ka1 , kb1 , and kb2 are growth factor means and ka1 , kb1 , and kb2  are  

random disturbances in their respective growth factors for Class k. The random 

disturbances are assumed to be uncorrelated with the Level 1 residuals. The Level 1 

residuals and the Level 2 disturbances are also assumed to be uncorrelated with the 

latent growth factors.     
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However the parameterization of Model (2) cannot be specified and estimated in 

regular Structural Equation Modeling (SEM) programs. Harring, Cudeck, & du Toi 

(2006) and Kohli et al. (2013) suggest a re-parameterization to combine the two linear 

trajectories in Model (2) into one equation 

                                      ijk

2

kij3ikij2ik1ikijk ε)γ(tλtλλy   ,                           (5) 

Model (2) and (5) are identical given: 
ik1 = ( ik1a + ik2a )/2, 

ik2 = (
ik1b +

ik2b

)/2, and 
ik3 = ( ik2b -

ik1b )/2. As an example, suppose we have 6 measurement waves 

with t = 
'5) 4, 3, 2, 1, 0,(  and  3.3

k
  for the kth trajectory. Equation (5) can be written 

in the matrix form as follows 
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2.2 Maximum-Likelihood Estimation of PGMMs via EM Algorithm in SEM 

By specifying the design matrix in Model (5) appropriately using the polynomial 

constraint, the functional form can be directly implemented and estimated using regular 

SEM programs. 

The EM algorithm can be applied to finding maximum likelihood (ML) 

parameter estimates for a PGMM assuming zik, the conditional probability of individual i 

classified into trajectory k, ―missing‖ but independently and identically distributed 
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according to a multinomial distribution. The complete-data log likelihood is formulated 

as follows 

                              ))|y(log(z)( Llog ijk

K

1k
ik

N

1i
kψ|ψ zy, f 

 

,                                     (7) 

where f (
kij |ψy )  is the density of an observation ijy

 
from Trajectory k, kψ  is the set of 

model parameters,  k is the probability of an individual being classified into Class k (

k >0 and 1
K

1k

k 


),  and K denotes the number of growth trajectories. 

The EM algorithm iterates between an E (for expectation) step and an M (for 

maximization) step. In the E-step, the quantity of zik and other parameter estimates can 

be obtained based on the previous iteration. In the M-step, the complete data log 

likelihood, with its parameter replaced by the current conditional expectation estimates, 

is then maximized and updated. The E- and M- steps are alternated repeatedly until the 

difference of the likelihood values is small enough to obtain ―convergence‖ of a 

sequence of likelihood values (McLachlan & Peel, 2004; Redner & Walker, 1984). 

The EM algorithm is straightforward and has become a general approach to 

maximum likelihood fitting of mixture models. However, it is not without limitations. 

Frühwirth-Schnatter (2006) summarized the limitations as follows: first, unless the latent 

trajectories in the growth mixtures are well separated, the sample size is large, or the 

estimation starts with reasonable values, the algorithm can be very slow in convergence. 

Second, the EM algorithm tends to give a local maximum, and it is difficult to identify 

and avoid local maximum when maximizing the log likelihood function. Third, the 
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standard errors of maximum likelihood estimates of a growth mixture model could be 

very difficult to obtain when using the EM algorithm. Fourth, a very large sample size is 

usually needed in order to apply the asymptotic theory of maximum likelihood, 

particularly to mixture models. 

The limitations with the ML/EM estimator may not be easily bypassed in actual 

research settings. It is certainly not possible for applied researchers to have an optimal 

research situation in which sample size or the magnitude of latent class separation is 

very large. Nor is it possible for an applied researcher to be able to specify good starting 

values to begin with. A viable alternative for fitting a PGMM is the Bayesian estimation 

method. 

2.3 Bayesian Estimation of PGMMs 

In the Bayesian perspective, all unknown model parameter values are treated as 

random variables and the observed data are treated as fixed. The ultimate goal of 

Bayesian methods is to infer a posterior distribution of the parameters )|Pr( yψ  , which is 

the product of the mixture likelihood function )|Pr( ψy  and prior distributions )Pr(ψ . 

When a posterior distribution is difficult to integrate explicitly, Markov Chain Monte 

Carlo (MCMC) methods can be used to summarize the posterior distribution. The 

fundamental idea of the MCMC method is that we assemble a large number of samples 

from a posterior distribution )|Pr( yψ , and then applies discrete formulas to these 

samples to summarize and obtain the mean and variance of the posterior distribution 

(Gelman et al., 2013; Gilks, Richardson, & Spiegelhalter, 1996; Gill, 2014).  
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One of the major distinctions between the ML/EM and the Bayesian methods is 

the specification of prior distributions in the Bayesian framework, which allows the 

inclusion of additional information of certainty into the estimation process. The 

specification of prior distributions falls in a continuum ranging from completely 

uninformative to very informative. An uninformative (or diffuse or objective) prior 

contains vague or very general information about a model parameter. The use of 

uninformative priors in Bayesian analysis yields results which are generally believed to 

be not too different from maximum likelihood estimation methods, as the uninformative 

priors have little effect on the likelihood function in the posterior distribution. However, 

all priors are informative in some way and there is no truly uninformative prior (Irony & 

Singpurwalla, 1997). Above all, the assumption of the functional form of a prior 

distribution for a model parameter already imposes information. Natarajan and 

McCulloch (1998) conducted a study on the impact that uninformative priors have on 

posterior distribution and recommended to be cautious about the results obtained using 

uninformative priors as they can lead to inaccurate posterior estimates particularly when 

sample size is small.  

Somewhere on the continuum from an uninformative prior to an informative 

prior lies a weakly informative prior. The goal of using a weakly informative prior is to 

incorporate some sensible yet limited prior information into posterior estimation to 

regularize and stabilize the results in compliance with our knowledge (Richardson & 

Green, 1997). Summary statistics obtained using weakly informative priors for the 
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model parameters posterior are also believed to correspond closely to maximum 

likelihood estimates. 

A prior that contains precise scientific information about a model parameter 

value is often referred as an informative prior. Informative priors are not simply ready to 

be used as they are based on expert opinion or results from previous data. However, the 

inclusion of information from expert belief or from previous models can increase the 

precision of the posterior distribution. Depaoli‘s (2013) study examined the impact of 

different prior distributions on mixture class recovery in the context of growth mixture 

modeling and found that only ―accurate‖ informative priors based on population values 

produces optimal parameter recovery, and the performance of weakly informative priors 

varied depending on sample size. 

2.4 ML-Based Class Enumeration Indices 

The accuracy of the number of classes extracted during estimation is of prime 

importance as it can affect the features of the latent growth trajectories which, in turn, 

can affect within-class parameter estimates and statistical inference. Generally, under the 

ML/EM framework, four major categories of model selection statistics are available for 

identifying the optimal number of growth trajectories: (a) information-based criteria (IC) 

statistics, (b) nested model likelihood ratio test derivative, (c) the entropy statistic and 

entropy-penalty based indexes, (d) goodness of fit tests (Bauer & Curran, 2003b; Liu & 

Hancock, 2014; Peugh & Fan, 2012; Peugh & Fan, 2015; Tofighi & Enders, 2008).  

 

 



 

13 

 

2.4.1 Information-Based Criteria (IC) Statistics 

2.4.1.1 Akaike’s Information Criterion (AIC) 

 Akaike (1974) developed an information criterion as a measure to identify an 

optimal and parsimonious model from competing models. The equation of AIC is 

formulated as below 

                                        AIC= -2 log L + 2p,                                                  (8) 

where log L is the maximum log likelihood and p is the number of free parameters in a 

PGMM with K growth trajectories. AIC was found to have the tendency to over-extract 

the number of classes in the mixture modeling context (Celeux & Soromenho, 1996; 

Hurvich & Tsai, 1989; G. McLachlan & Peel, 2004; Soromenho, 1994). 

2.4.1.2 Bayesian Information Criterion (BIC)  

 Schwarz (1978) proposed an alternative approach to AIC within the Bayesian 

framework 

                                        BIC = -2 log L + p log N,                                          (9) 

where log L of the Bayes estimator is equivalent to the maximum likelihood estimator 

given a large sample, and the penalty term of p log N penalizes extra parameterization. 

BIC differs from AIC by the multiplication of log N /2 to the second term of AIC. The 

larger N is, the more remarkable difference these two measures would show. BIC tends 

to pick up models with fewer parameters than AIC.  

2.4.1.3 Consistent AIC (CAIC) 

 Bozdogan (1987) provided an extension to AIC to make it asymptotically 

consistent and more stringent on penalty for extra parameterization.  
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                                                 CAIC= -2 log L + p (logN +1),                                   (10) 

where the penalty term, p (log N +1), is designed to depend on the sample size, which 

makes AIC asymptotically consistent and at the same time increases penalty for over-

parameterization. Given a more stringent penalty term, CAIC tend to pick up even 

simpler models than AIC and BIC. 

2.4.1.4 Sample Adjusted BIC (SABIC) 

 A similar adjustment to BIC was first proposed by Rissanen (1978) to rectify the 

coincidental nature of the penalty term in BIC: 

                                 SABIC= -2 log L + p log [(N+2) /24]                           (11) 

The second term in SABIC differs from the corresponding term in AIC, BIC, and 

CAIC, and gives an even heavier penalty for extra parameterization. 

2.4.1.5 DBIC 

 Draper (1995) used Laplace approximations to compute Bayes factors for model 

selection and the simpler approximation is: 

                              DBIC = -2 log L +p (log N-log 2π)                                (12) 

Controversies arose regarding the term -p log 2π. Draper (1995) held that 

compared with BIC, the inclusion of -p log 2π would improve the accuracy in model 

selection; however, others believed that the term hurts the accuracy of the approximation 

(Kass & Wasserman, 1995; Raftery, 1995).  

2.4.1.6 Other Information Criteria 

 Hannan and Quinn (1979) proposed an HQ index which multiplies a term, log 

(log N), to the penalty term in AIC to obtain strong consistency. Hurvich & Tsai (1989) 
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proposed an index AICC which adds one term, ((2[p+1][p+2])/(N-p-2)), to AIC. They 

claimed that AICC can rectify the over fitting problem of AIC when the sample size is 

small. It is noted that the term, ((2[p+1][p+2])/(N-p-2)), can also be added to most of the 

IC statistics and the Entropy-based criteria discussed below to create their corresponding 

sample size adjusted versions (Peugh & Fan, 2012; Peugh & Fan, 2015; Sclove, 1987). 

Finally, Andrews and Currim‘s (2003) proposed another variant of AIC (i.e., AIC-3), 

which replaced the penalty term in AIC with 3 multiplied by the number of free 

parameters.  

2.4.2 Nested Model Likelihood Ratio Test Derivative 

When determining the correct number of classes in a growth mixture model, we 

are inclined to use the traditional likelihood ratio test -2 (log Lk-1 – log Lk) to test the 

competing models with k latent trajectories versus a nested model with k-1 trajectories. 

However, with mixture models, the likelihood ratio statistic does not follow the usual 

asymptotic χ
2
 distribution with degrees of freedom equal to the difference between the 

number of parameters under the competing model and the nested model. This is because 

when the parameters for one or more growth trajectories are fixed to be zero, the 

parameters (i.e., the mixing proportions) under the null hypothesis are set to be zero, at 

the boundary of the parameter space, resulting in non-identifiable parameters under the 

null model (McLachlan & Peel, 2004). There have been many adjusted versions of the 

likelihood ratio statistic, among which, the LMR LRT test and the BLRT test are two 

widely used procedures.  
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2.4.2 .1 The LMR LRT Test 

 Lo, Mendell, and Rubin (2001) extended the test procedure originally developed 

in the context of regression by Vuong (1989) to normal mixture modeling. According to 

Lo, Mendell, and Rubin (2001), the LMR LRT test is able to approximate the likelihood 

ratio test procedure of k-1 growth trajectories normal mixture versus a k growth 

trajectories normal mixture as shown in Vuong‘s (1989) study. Under general regularity 

conditions, the likelihood ratio statistic of the H0 and H1 has asymptotic property and 

distributed as weighted sum of independent chi-square values with one degree of 

freedom. 

2.4.2 .2 Bootstrapping LRT (BLRT) 

 McLachlan (1987) showed that approximate p-values of the likelihood ratio test 

could be obtained via a parametric bootstrap method. The following procedures are used 

to conduct the BLRT test: 

 (i) Use the real data to estimate the null PGMM with k-1  latent trajectories and 

the alternative PGMM with k latent trajectories and compute the 2 times log likelihood 

difference (-2 (log Lk-1 – log Lk)). 

 (ii) Use the parameter estimates for the null PGMM model obtained in step (i) to 

generate data and analyze the generated data again by the null PGMM model and the 

alternative PGMM model and calculate the 2 times log likelihood difference. This step is 

repeated for a sufficiently large number of times to generate the bootstrap sampling 

distribution of the 2 times log likelihood difference. 
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 (iii) Estimate the p-value of the observed value of 2 times log likelihood 

difference obtained in step (i) by comparing it with the bootstrap sampling distribution 

created in step (ii). 

2.4.3 Entropy-based Criteria 

            As standard regularity of conditions for the likelihood ratio (LR) test does not 

hold in the growth mixture context, the ICs that rely on the usual asymptotic theory of 

the likelihood ratio test are problematic in practical situations (McLachlan & Peel, 

2004). Entropy-based criteria were proposed to avoid the disadvantages associated with 

information-based criteria statistics. In mixture modeling, the primary interest is in 

cluster analysis, where choosing a correct number of clusters is essential. Entropy-based 

criterion takes into account of the clustering purpose, and is able to choose one mixture 

model over the other in terms of model-based classification accuracy (Biernacki & 

Govaert, 1997; Biernacki, Celeux, & Govaert, 2000; Celeux & Soromenho, 1996). 

Below is a review of the commonly used entropy-based criteria. 

2.4.3.1 Normalized Entropy Criterion (NEC)  

 Entropy (EN) is a measure of the performance of a PGMM in providing accurate 

classification, with larger values indicating poor classification accuracy. Entropy is 

calculated by:   

                                                    
ik

N

1i

K

1k

ik t̂logt̂)t̂(EN 
 

  ,                                       (13) 

where ikt̂  is the estimated conditional probability that an individual i is in group k. Note 

that entropy labeled in Mplus Version 7.2 output is an alternative rescaled entropy 
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measure proposed by Ramaswamy, DeSarbo, Reibstein, and Robinson (1993). The 

rescaled entropy ranges from 0 to 1 with 1 indicating perfect classification (Bauer & 

Curran, 2003a; B. Muthén & Muthén, 2000). Celeux & Soromenho (1996) proposed the 

normalized entropy criterion (NEC) to make entropy more effective in assessing the 

number of clusters in a mixture model: 

                                           NEC = 
)1log(Llog

)t̂(EN


,                                              (14) 

where log L is the log-likelihood of the mixture model with K components, and log (1) is 

the log-likelihood for a single class model. Later, Bieernacki, et al. (2000) suggested 

setting the NEC to 1 for the one-class model for comparisons between one-class models 

and two-class models as the NEC is undefined when K=1. 

2.4.3.2 Classification Likelihood Criterion (CLC)  

 It is observed that the estimated mixture log likelihood can be decomposed into 

two components (Hathaway, 1986; G. McLachlan & Peel, 2004) 

                                            Log L = log Lc+ )t̂(EN ,                                         (15) 

where log Lc is the classification likelihood (or the complete-data likelihood) which 

equals log L given a perfect classification of observations, while the entropy ( )ˆ(tEN  ) 

captures the uncertainty of classification. The classification likelihood information 

criterion (CLC) is derived based on the relation between mixture log likelihood and 

classification likelihood in Equation (8), which is calculated by: 

                                          CLC = -2 log L + 2 )t̂(EN                                        (16) 

In CLC, the estimated entropy is used to penalize model complexity.  
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2.4.3.3 Integrated Completed Likelihood Criterion and BIC (ICL-BIC) 

 AIC, BIC, and other ICs as well, favor models that can more accurately 

reproduce the observed data, yet fail to take into account the performance of a PGMM in 

terms of growth trajectories classification accuracy. Biernacki, et al. (2000) proposed a 

BIC-like approximation procedure to approximate integrated completed likelihood 

(ICL), hoping to correct for the tendency of ICL to overestimate the correct number of 

latent trajectories. The ICL-BIC is formulated as   

                               ICL-BIC=-2 log L +p log N + 2 )t̂(EN .                              (17) 

ICL-BIC becomes equivalent to BIC if without the entropy term 2 )t̂(EN , yet 

adding the term would take into account a mixture models‘ accuracy in partitioning 

trajectories. If without the penalty term p log N, the procedure would be reduced to CLC; 

the addition of the penalty term to CLC enables the completed log-likelihood to penalize 

over parameterization.  

For the information criteria-based statistics and the entropy-based indices, the 

smaller value indicates better model fit. Therefore, when estimating the number of 

trajectories, researchers need to fit several competing PGMMs (i.e., one-class, two-class, 

three-class PGMMs, etc.), and the model that gives the minimum value on those indices 

is the ―best fitting‖ PGMM.  

2.5 Bayesian-Based Enumeration Indices 

Bayesian methods for determining the number of latent growth trajectories with 

GMM have been widely used as effective alternatives to ML/EM methods particularly in 

situations when we do not have a general theoretical knowledge for the number of 
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growth trajectories (Lindsay, 1995; Steele & Raftery, 2009) or when the estimates of 

parameters are not asymptotically consistent, leading to inappropriate information-based 

criteria statistics under the ML/EM estimator (Park & Lord, 2009). 

            Within the Bayesian framework, there are two main approaches that could be 

used to identify the correct number of growth trajectories with a PGMM: the first type of 

approaches assumes that the number of classes is an unknown variable and could be 

estimated using methods such as Dirichlet process mixtures (Escobar & West, 1995), 

distributional distances (Mengersen & Robert, 1993), reversible jump MCMC 

(Richardson & Green, 1997), and Birth-and-Death MCMC (Stephens, 2000). The 

Bayesian paradigm is ―particularly suited to mixture analysis especially with an 

unknown number of components‖ (Richardson & Green, 1997, p.732). However, these 

methods come with a heavy cost of intensive computation and the sensitivity of the 

posterior distribution to the prior selection for the unknown number of components 

(Park, Zhang, & Lord, 2010).  

In this study, we opt for the second type of approaches using various Bayesian 

model selection criteria including information-based criteria (AIC, BIC), a variation of 

deviance information criterion (DIC3; Celeux, Forbes, Robert, & Titterington, 2006), a 

Watanabe-Akaike information criterion (WAIC2; Watanabe, 2010), a log-pseudo 

marginal likelihood (LPML; Geisser & Eddy, 1979) and pseudo-Bayes Factor (PsBF; 

Geisser & Eddy, 1979).The advantage of information-based criteria is that they are easy 

to calculate, and with exception to DIC, none of them depends on prior information. 

Moreover, from a Bayesian perspective, the posterior model probability should be the 
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tool for model comparison; therefore, the information criteria do not need a formal 

Bayesian model justification in their use for model comparison (Koop, 2003).  

2.5.1 AIC and BIC   

 We have presented AIC and BIC in the ML framework in the above. In the 

Bayesian framework these two information-based criteria use the Laplace approximation 

to obtain the integrated likelihood assuming ignorable priors. Keribin (2000) showed 

that BIC was reliable in identifying the correct number of components in a mixture 

model. Steele & Raftery (2009) found that BIC was highly accurate in detecting the 

correct number of components in normal mixture models. 

2.5.2 Deviance Information Criterion (DIC3)  

 The Deviance Information Criterion, or DIC, was proposed by Spiedelhalter et 

al. (2002) based on Bayesian measures of model fit and model complexity, with an 

intention to lighten the computational demand involved in calculating Bayes factors ( 

McGrory & Titterington, 2007; Spiegelhalter, Best, Carlin, & Van Der Linde, 2002). 

DIC is defined as: 

                                        DIC = )(D  + PD=2 )(D  - )ˆ(D   ,                                (18) 

where PD = )ˆ(D)(D  , and )(D   is the mean of -2 log L over the posterior distribution, 

and )ˆ(D   is the -2 log L of the posterior model. PD is in fact an estimate of the effective 

number of parameters in the Bayesian model, a penalty term for over parameterization 

(Johnson, 2004; McGrory & Titterington, 2007; Spiegelhalter et al., 2002). 
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DIC3 (Celeux, Forbes, Robert, & Titterington, 2006) is a variation of DIC, which 

replaces )ˆ(D   with the estimated density -2 log )(
ˆ

yf  approximated in each MCMC 

evaluation. DIC3 is defined as:  

                                          DIC3 = )(D  +2 log )(
ˆ

yf
                                    

(19) 

In this study we use DIC3 rather than the standard DIC because studies have 

shown that DIC3 can better account for the number of parameters in mixture models and 

takes care of the endemic issues of non-identifiability and label switching in mixture 

models (Celeux et al., 2006).  

2.5.3 Watanabe-Akaike information criterion (WAIC) 

 Watanabe (2010) introduced WAIC to approximate Bayesian cross-validation. 

The computation involves first calculating the log predictive density, and then correcting 

the log likelihood with a penalty term for model overfitting (Gelman, et al. 2013). There 

have been two proposals for the penalty terms to adjust for model overfitting (i.e., 

P_WAIC1 and P_WAIC2). Watanabe (2010) and Gelman, et al. (2013) gave detailed 

explanations of the formulation of P_WAIC1. The present study focused on WAIC2 

defined as: 

                                     WAIC2 = -2 (log L + P_WAIC2)                                   (20) 

where P_WAIC2 is the penalty term defined as  

                                         




n

1i
post

var2WAIC_P (log L) .                                   (21) 

P_WAIC2 is obtained by summing the posterior variance of individual log 

likelihood over n individuals. The multiplicative factor of -2 can rescale WAIC2 to be on 
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the deviance scale and thus make it comparable to AIC, BIC, and DIC3. As a fully 

Bayesian estimate, WAIC is more desirable than AIC, BIC, and DIC as it averages 

across the posterior, while the latter three evaluate model performance based on the 

plug-in predictive density. Furthermore, it has shown that WAIC2 works particularly 

well with mixture and hierarchical models (Gelman, et al. 2013).  

2.5.4 Log Pesudo Marginal Likelihood (LPML) 

As a summary statistics of Conditional Predictive Ordinate (CPO), LPML 

(Geisser & Eddy, 1979) has been found to be a useful measure for model comparison in 

the Bayesian context. LPML is defined as 

)CPOlog(LPML
n

1i
i



  ,  (22) 

where CPOi =   d)y|()y,|y()y|y(
]i[]i[i]i[i

ppp , estimates the cross-validation 

predictive densities, with yi denoting the i
th

 observation, y[i] denoting the set of

observations excluding yi and   denote all parameters under the model. 

2.5.5 Pseudo-Bayes factor (PsBF) 

The method of Bayes factors is commonly used within the Bayesian framework 

for model comparisons. However, Bayes factor has some drawbacks. It is difficult to 

compute and interpret Bayes factor when priors are diffuse. In addition, the Bayes 

factors suggested by Lewis and Raftery (1997) are based on the unrealistic assumption 

that one of the compared models is the true model (Johnson, 2004). Pseudo-Bayes factor 

(PsBF) is a more flexible alternative to Bayes factor. PsBF can be estimated via a 

predictive likelihood approach which assumes that only part of the observations is used 
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in estimating a model. The Pseudo Bayes factor is defined as the ratio of products of 

―leaving one out‖ cross-validation predictive densities based on CPO under Model 1 and 

Model 2: 

                                         
)BModel(CPO

)AModel(CPO
PsBF

i

N

1i

i

N

1i








  .                                           (23) 

PsBF can also be computed using LPML as PsBF = EXP (LPML1-LPML2). 

2.6 A Review of GMM’s Class Enumeration Performance 

Researchers have investigated the performances of many of the model selection 

indices in terms of the class enumeration accuracy in Growth Mixture Models. The 

current study will benefit from a systematic review of those studies. The study of Tofighi 

and Enders (2008) compared the performances of the following indices: BIC, SABIC, 

AIC, CAIC, SACAIC, the LMR LRT nested model test, and the goodness of fit statistics 

of the Multivariate Skewness Test (MST) and the Multivariate Kurtosis Test (MKT). A 

population GMM with k=3 heterogeneous growth trajectories were used in the study. 

Across all the independent experimental conditions of sample size, class proportion, 

class separation, and inclusion and exclusion of covariates, SABIC and the LMR LRT 

test were the ―most accurate‖ indices (Tofighi & Enders, 2008, p. 383). The study also 

found that the inclusion of covariates had detrimental effect on correct trajectory 

identification rate across all the enumerations measures. 

The work of Peugh and Fan (2012) examined the performance of class 

enumeration measures when the population is either homogeneous (k=1 linear growth 

trajectory) or heterogeneous (k=3 linear growth trajectories). They found that entropy-
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based indexes such as CLC, ICL-BIC, SAICL-BIC correctly identify the homogeneous 

growth trajectory regardless of sample size while the performance of other information 

criteria (ICs), such as CAIC, BIC, and DBIC varied depending on sample size. When 

identifying heterogeneous growth trajectories, the performance of enumeration indexes 

varied across the design factors and none of the enumeration indices performed well 

particularly when the proportions of different trajectories were unequal. 

Peugh & Fan (2015) extended their study in 2012 to test Muthén‘s (2003) 

hypothesis that the performance of latent trajectory identification measures could be 

improved by including time-invariant (antecedent) and time-varying (concurrent) 

covariates, and by regressing a distal (consequent) outcome on the extracted growth 

mixture classes. The study used a population GMM that had three latent trajectories that 

differed in both intercepts and slopes. They found that when sample size is small (N 

~300-500), even with a high class separation, the effects of including antecedent, 

concurrent, and consequent covariates were negligible for the majority of the 

enumeration indices. However, when sample size is large (N =3000) and class separation 

is high, particularly under equal class proportions, the inclusion of antecedent, 

concurrent, and consequent covariates largely improved the performance of DBIC, 

SACAIC, HQ, SABIC, SAICL-BIC (correct class enumeration rate > 97%). However, 

some enumeration measures (e.g., SADBIC, NHQ, and BLRT) saw a slight decrease in 

correct model identification rate. Since in applied research, the scenarios that give 

improved performance of enumeration indices are highly unlikely, the authors restated 
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the importance for the use of both statistical and substantive checking when population 

heterogeneity is suspected.  

Another most recent study by Liu and Hancock (2014) evaluated the ―two-step‖ 

approach proposed by Bauer & Curren (2004) in the context of GMM. According to 

Bauer & Curren (2004), misspecifications of the structural model could lead to over-

extraction of latent classes and they suggested following a ―two-step‖ rule to identify a 

correct number of classes. First, we fit an unrestricted (or saturated) model to the data to 

determine the optimal number of latent classes, as a saturated model could prevent the 

extraction of spurious latent classes due to misspecifications of the structural model. 

Then we estimate the sample means and covariance using the optimal number of classes 

identified in Step 1. Liu and Hancock (2014) examined the performance of unrestricted 

multivariate normal mixture models (UMMs) versus the linear GMMs in the accuracy of 

class enumeration using sample data generated from k =2 GMM. In their findings, the 

indices that work well for UMM also works well with linear GMM; some indices 

indicate that UMM does not work well in class identification probably due to its over-

parameterization. Overall, they recommended using BIC and DBIC in the linear GMM 

settings and the DBIC across different types of mixture models. Besides, CAIC, 

SACAIC, BIC, SABIC, DBIC, LMR, and BLRT are sensitive to sample size and 

perform better with the increase of sample size.  

In summary, due to the different models and conditions examined in previous 

simulation studies, no consensus could be reached regarding the performance of class 

enumeration indices in GMM with the ML/EM estimator. The ML/EM estimator has 
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been the dominant estimation method in growth mixture models due to their efficiency 

in computation time. However, it‘s been unanimously acknowledged that ML/EM 

methods have severe problems such as convergence to local maxima, and the tendency 

to overfitting especially when data are sparse or noisy (Depaoli, 2013; Neelon, Swamy, 

Burgette, & Miranda, 2011).  

As for class enumeration with GMM in the Bayesian framework, no study has 

been done to evaluate the class enumeration performance of commonly used Bayesian-

based model selection indices. In particular, there has been no simulation study to 

investigate the class enumeration performance of the model selection indices in PGMMs 

with unknown turning points and to compare their performances based on the ML/EM 

and the Bayesian estimations. The current research conducted a comprehensive Monte 

Carlo simulation study to fill the gap and to advance the knowledge of PGMMs under 

the two dominant estimation methods in different data scenarios.  
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CHAPTER III 

 STUDY ONE: DETECTING UNKNOWN TURNING POINTS USING PIECEWISE 

GROWTH MIXTURE MODELS: A COMPARISON OF ML/EM VERSUS 

BAYESIAN ESTIMATION 

3.1 Overview 

Piecewise growth mixture modeling (PGMM) is a longitudinal data analytic 

technique that can be used to investigate the growth trajectories consisting of distinct 

developmental phases of several unknown heterogeneous subpopulations (Muthén, 

2008). Oftentimes, a growth trait measured over a sufficiently long interval of time does 

not follow a linear trend or a simple polynomial functional form because the growth 

trend exhibits differential developmental stages. PGMM is an extension of the 

conventional growth mixture modeling (GMM) techniques to account for the nonlinear 

processes in developmental changes. Like GMM, PGMM explores the heterogeneity in 

the population‘s growth trajectories and examines trajectory-specific variance 

components. More importantly, PGMM allows the identification of distinctive turning 

points (or change points or knots), the presence of which marks the change of one 

growth rate to the other and thus introduces an inherently nonlinear growth processes in 

the functional form (Harring, Cudeck, & du Toit, 2006; Kwok, Luo, & West, 2010). 

The flexibility and dynamism of PGMM has attracted enthusiastic applications in 

social and behavioral science. For example, Li et al. (2001) found development process 

in alcohol use among the youths consisting of two distinct growth processes with one 

subpopulation exhibiting an increase in alcohol use only after middle school and the 

other subpopulation showing a continued, linear growth throughout both middle and 
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high school years. Kim and Kim‘s (2012) study identified five growth trajectories of 

individuals‘ smoking craving level before and after the quit date using PGMMs. 

The major difficulty in specifying a PGMM concerns how to optimally determine 

the turning point. Sometimes, graphical exploration of individual and average growth 

patterns over time could be helpful in suggesting a turning point and differences in 

patterns of change (Weiss, 2005). A brief review of the literature showed that the 

majority of applied studies using PGMMs tend to rely on theoretical considerations to 

specify a priori the location of a turning point. For example, Uher et al. (2010) used 

PGMM to model the individual variability in clinical response over antidepressant 

treatment and categorized the individuals into two groups: one with overall gradual 

improvement and the other with rapid improvement at the initial stage followed by a 

more gradual improvement. McAuley et al. (2011) used PGMM to examine the 

differential effects of randomized controlled exercise trial on self-efficacy and identified 

three growth trajectories, each exhibiting distinctive growth rate before and after 

intervention. In these two studies, the turning point was set at the time of intervention. 

However such considerations may not be always reasonable, because the turning point 

may occur after the intervention due to delay in response to intervention.  

There have been quite a few statistical procedures proposed to determine 

unknown turning points. For example, Kwok et al‘s (2010) study proposed to use 

modification index to detect the turning point in the linear latent growth modeling 

framework. They argued that the turning point can be optimally located using 

modification indexes because the fixed loadings on the slope factor has to be relaxed to 
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account for the change in growth rate. Other approaches have been proposed in the 

context of mixed effect models in which the turning point is a parameter in statistical 

models to be estimated and is allowed to have inter-individual and intra-individual 

variability (Dominicus, Ripatti, Pedersen, & Palmgren, 2006; Wang & McArdle, 2008).  

Recently, a two-stage piecewise growth mixture model with an unknown turning point 

was proposed by Kohli, Harring, & Hancock (2013) in the framework of Structural 

Equation Modeling (SEM). 

Generally speaking, using statistical procedures to estimate turning points is 

advantageous over the complete reliance on theoretical considerations to specify a priori 

turning points. First, it does not limit the shape of the trajectories to the assumption that 

the developmental phases are connected by a priori determined fixed time points. 

Second, it allows the formulation of different functional forms for the different phases of 

growth such that each phase does not have to conform to the same function (Harring et 

al., 2006; Khoo, West, Wu, & Kwok, 2006; Kohli, Harring, & Hancock, 2013; Kwok, 

Luo, & West, 2010). Furthermore, allowing free estimation of turning points and time 

specific factor loadings can oftentimes entail a more optimal functional form in 

characterizing observed data patterns over time (Kwok, Luo, & West, 2010; Wood & 

Jackson, 2013).  

Despite the advantages of the newly proposed PGMM procedure by Kohli et al. 

(2013) and the growing interest in using PGMMs to describe differential growth phases 

in developmental changes, many issues have not yet been resolved. One of the issues 

involves the choice of an appropriate estimation method for PGMMs. So far, the most 
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commonly used estimator has been the Maximum Likelihood estimation method via the 

EM algorithm (ML/EM). On the other hand, the Bayesian estimation framework via the 

Markov Chain Monte Carlo (MCMC) algorithm has been argued to be a better 

alternative to ML/EM for fitting mixture models (Richardson & Green, 1997). However, 

many questions regarding the performance of the ML/EM vs. Bayesian estimation in 

analyzing PGMMs with unknown turning points remain to be examined. The purpose of 

this research was to conduct a comprehensive Monte Carlo study to compare the 

performance of ML/EM and Bayesian estimation for estimating unknown turning points 

and other growth factors with PGMMs. Specifically, parameter recovery and 

classification accuracy would be examined. Moreover, the study would also explore 

under what circumstances the use of one estimator in analyzing a PGMM would 

outperform the other. 

In order to carry out a Bayesian analysis, we need to specify a prior distribution 

for every unknown parameter in model (2). Prior probability distribution, often simply 

called prior, describes what is known a priori about a model parameter value to be 

estimated.  

3.2 Methods 

The population model used in this study was a 2-class PGMM, where each class 

exhibits a two-stage linear-linear growth trend. The number of classes was chosen based 

on past empirical studies using PGMM (e.g., Li, et al., 2001; Li, et al., 2001; Kohli, et 

al., 2013; Zhao & Banerjee, 2012). Data with two known classes under two-level model 
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were first generated and then analyzed using Bayesian estimation method and the 

ML/EM estimation method.  

In the above model (2), within Trajectory k, a total of 11 parameters need to be 

specified: four fixed effect coefficients (i.e., 
a

 , 
1b

 , 
2b

 , and  ) and seven variances 

and covariance of random effects (i.e., 
2 , 

00
 , 

10
 , 

20
 , 

11
 , 

21
 , 

22
 ).  Table 1 

displays the population parameters for the average growth models and the covariance 

components of random effects for the two trajectories to be generated. 

The average growth models were specified based on the parameter estimates in 

Kohli, et al.‘s (2013) study of verbal skill acquisition data set. Specifically, the following 

model parameters in their study were chosen: the means of the intercept growth factor 

and the slope factors in the first and second phase for Class 1 and the means of the slope 

factors in the first and second phase for Class 2. The mean of the intercept growth factor 

in the first phase for Class 2 was calculated based on the magnitude of within-class 

variance parameters determined by the degree of separation. For simplicity, the error 

variance for each time point was set to follow a standard normal distribution.  

3.2.1 Design Factors 

Although no PGMM simulation have been published to date, some simulation 

studies related to GMM have shown consistent findings about what factors could impact 

class parameter recovery and classification accuracy (Chen, Kwok, Luo, & Willson, 

2010; Enders & Tofighi, 2008; Henson, Reise, & Kim, 2007; Tofighi & Enders, 2008). 

Based upon the previous findings, five design factors were considered in the study, 

including (a) the degree of trajectory separation, (b) the number of repeated measures, 
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(c) mixing percentages of latent classes, (d) sample size, (e) specification of prior 

distributions. 

 

Table 1 

Population Parameters for the Two Classes 

  Class 1 

 

Class 2 

a 25 

 

22.5   

b1 -3.78 

 

-4 

 b2 -0.24 

 

-0.18 

 γ 4.3 

 

2.4
1
   

σ
2
 1.0 
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1 When the number of time points change to 10, the turning point was set to be 7.2 for Class one, and 4.1 for Class two to create equal proportion of 

distance between the initial status and the turning point for both levels of time points. 
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We varied the degree of class separation by manipulating the within class 

variance components. The bigger the variation of the within class variance components 

are, the less separated and thus more overlapping the two classes are. We chose a small 

size of variances and covariance matrix of the random effects for the high class 

separation condition according to Raudenbush and Liu‘s (2001) criteria, which was set 

as follows: 
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For the low separation condition, we increased the variance and covariance as follows.
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In the high separation condition, given  = .1 and  , the difference between the 

intercept for Class 1 and that for Class 2 was approximately 2.4 standard deviation units. 

In the ―low separation‖ condition, the intercept for Class 1 and Class 2 differed by 

approximately 1.9 standard deviation units. They were similar to the high and low 

separation conditions specified in Tofighi and Enders‘ (2008) study. 

In both high and low separation conditions,
11

 and 
22

 were set to be half of the 

size of
00

 , because the variation of the intercept has generally been larger than the 

variation of the growth trends in longitudinal data. The size of the covariance,
10

 and  

21
 was set to be .025 and .0175, .175 and .1225 in high and low separation conditions 

so that there was a moderate correlation (i.e., ρ=0.35) between the intercept and growth 

3.2.1.1 Degree of Class Separation  
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factors in the first phase and between the growth factors in the first and second phases as 

well.  

3.2.1.2 Sample Size  

The sample size factor values were chosen based on the conditions used in the 

past simulation studies (Chen et al., 2010; Enders & Tofighi, 2008; Henson et al., 2007; 

Nylund, Asparouhov, & Muthén, 2007; Tofighi & Enders, 2008) and a careful review of 

substantive GMM and PGMM applications. As a result of a literature search in Web of 

Sciences (from 2000-2013) for studies applying GMM and PGMM in different 

substantive areas, a total of 346 studies were found. A random sample of 100 out of the 

346 studies were reviewed and the studies varied dramatically with respect to sample 

size. We chose the sample size to be 300 and 1000, representing approximately the 25
th

 

and 75
th

 percentiles of the sample size distribution in the 100 studies that we reviewed. 

3.2.1.3 Number of Repeated Measures  

It is more typical for a two-piece linear growth model to include more than two 

time points in each piece, with 5 points in total making it possible to estimate a full 

growth model (fully random) (Bollen & Curran, 2006). The use of fewer than 5 time 

points restricts the possibility to estimate a complete set of random effects (i.e., 

variances and covariance for the intercept and slope factors). Hence we chose 6 waves of 

repeated measures as one of the conditions. We chose 10 waves of repeated measures as 

the other condition since the mean number of waves among the empirical GMM studies 

that have more than 6 measurement waves is about 10.  
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Following the simulation studies in Chen et al. (2010), Nylund et al. (2007), and 

Liu and Hancock (2014), we considered two sets of mixing percentages of the two 

classes. The mixing percentages in the balanced condition were 50% and 50% for the 

two classes. In the unbalanced situation, we considered: 75% vs. 25% for the fast-

decreasing group and the slow-decreasing group respectively. The mixing percentages in 

the unbalanced situation correspond to the mean mixing percentages in the empirical 

studies using PGMM (Zhao & Banerjee, 2012; Li et al., 2001; Kohli, et al., 2013). 

3.2.1.5 Prior Specifications for PGMMs  

To estimate a Bayesian PGMM, each parameter has to be assigned a prior 

distribution. The unknown parameters in a PGMM include the mixture proportions ( k ), 

mean vector of the growth factors and the turning point 
'

b1bak ),,,(
kk2kk η , the 

variance and covariance vector  
'

bbbaba

2

b

2

b

2

a
),,,,,(

k2k1k2kk1kk2k1k
φ , and the variance of 

the residuals (
keΩ ). Non-informative Jeffrey‘s prior was used for ))5.0,5.0(Beta~( . The 

prior distributions for the random effects variances were given the Inverse Wishart (IW) 

distribution [i.e., ],,,,,
k2k1k2kk1kk2k1k bbbaba

2

b

2

b

2

a 
 
~IW (3, 10) and the level-1 error 

variance were given the inverse gamma distributions with both the shape and scale 

parameters being known [i.e.,
2

e ijk
 ~IG (0.001, 1000)]. For the prior distributions for the 

means of the growth factors and the turning point, we used  ),(N~ 2

aaak
 , 

),(N~ 2

bb1b 11k
 , ),(N~ 2

bbb 22k2
 , and  ),(N~ 2

rk   in which the hyperparameters 

(i.e., ),,,,, 2

bb

2

bb

2

aa 2211
  were manipulated in our simulation design to 

3.2.1.4 Mixing Percentage of the Two Classes 
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examine whether priors have impact on the performance of Bayesian methods in 

estimating PGMMs with unknown turning points. 

Following Depaoli‘s (2013) study, three classes of the prior distributions for the 

means of the growth factors were considered: weakly informative priors, data driven 

priors, and accurate informative priors. For a normally distributed growth parameter with 

certain mean and variance hyperparameters, the sizes of the hyperparameters determine 

the degree of certainty a prior has on the posterior estimate of the parameter value. For 

informative prior, the mean hyperparameter was set to be the corresponding growth 

parameter population value, while the variance hyperparameter was set to be 5% of the 

growth parameter population value. For example, since the population value of the 

intercept of Class 1 was 25, the mean hyperparameter was set to be 25 and the variance 

hyperparameter was calculated to be 1.25 (25*5%). So the informative prior for the 

intercept is N (25, 1.25). Weakly informative priors were specified by taking the 

population value as the mean hyperparameter but 50% of the population value as the 

variance hyperparameter [i.e., N(25, 12.5)]. The weakly informative and informative 

priors for the rest growth parameters were determined in a similar way. As for the data 

driven priors, the ML/EM parameter estimates of each growth factor (i.e., the mean and 

variance) in one replication for each data scenario was obtained as the mean 

hyperparameter and the variance hyperparameter for the growth factors.  

Combining all the design factors, the simulation used a 2 (magnitude of the T
 

matrix: small or medium) × 2 (number of sample size: 300 or 1000) × 2 (number of 

repeated measures: 6 or 10) × 2 (mixing percentages: 50%:50% or 75%:25%) factorial 
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design to generate data. A total of 200 replications were generated for each condition 

using R (2013), yielding a total of 3,200 (16 conditions 200 data sets) data sets. Each 

replication was fitted respectively using the ML/EM method under Mplus Version 7.2 

(Muthén & Muthén, 2012) and the Bayesian method under JAGS (Plummer, Stukalov, 

& Denwood, 2015). In addition, within the Bayesian estimation framework, we 

compared and measured the impact of three levels of prior distribution on the posterior 

estimates.  

3.2.2 Outcomes 

3.2.2.1 Hit Rate 

Hit rate is the percentage of correctly classified individuals in the two classes. 

Both estimation methods were evaluated by comparing their respective hit rate averaged 

across all replications for each condition. 

3.2.2.2 Standardized Bias 

The turning point, the mean growth parameter and their corresponding random 

effect parameter estimates from both the ML/EM and the Bayesian methods were 

summarized across all replications for each condition. The standardized biases of the 

estimates [i.e., )ˆ(/)ˆ()ˆ(  SB ] 
2
 were calculated. The mean of the standardized bias 

is equivalent to a Cohen‘s d, which measures the standardized distance between the 

estimate and the parameter. Based on the guidelines for Cohen‘s d, the value of less than 

.4 is considered acceptable. 

                                                 
2 Where ̂ is the parameter estimate,  the population parameter value, and )ˆ(S the standard deviation of the estimates across 200 replications. 
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3.2.2.3 Coverage   

            The coverage of a confidence interval is the proportion of replications whose 

95% confidence interval includes the specified true parameters. According to Burton, 

Altman, Royston, and Holder (2006), the coverage rate of a 95% confidence interval 

should be approximately equal to .95, with a margin of error of .03
3
. Put it differently, 

there should be between 92% and 98% of the replications whose confidence intervals 

cover the true parameter. A coverage rate greater than 98% indicates more replications 

fail to detect significant results thus leading to decreased power or inflated Type II error 

rate. A coverage rate lower than 92% indicates more replications have incorrectly 

identified significant estimates, which resulted in inflated Type I error rate. The 

confidence interval was only computed for fixed effects.     

3.2.3 Analysis 

Analysis of variance (ANOVA) was used to partition the total variation in the 

standardized bias, coverage, and hit rate to determine the effects of the design factors on 

these three outcome measures. In each estimation method, individual parameter estimate 

were analyzed with a separate factorial ANOVA. Given that the purpose of using 

ANOVA in the present study was descriptive rather than inferential, the p value of the F-

test was not reported. Instead, the eta-squared (2
) effect size

4
 was computed and 

reported as a measure of practical significance. Effects were considered substantial with 

the semi-partial eta-squared greater than 0.1. 

                                                 
3
 Using the formula provided by Burton, Altman, Royston, and Holder (2006), margin of error =  Bpp /)1(96.1  , where p is the nominal coverage 

rate (p=.95) and B is the number of replications (B=200). 
4
 The eta-squared effect size is computed by 2=SSeffect / SStotal. 
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3.3 Results 

3.3.1 Convergence 

Convergence has always been a challenging issue with finite mixture models 

(Chen, 1995; G. McLachlan & Peel, 2004). We examined each replication for 

convergence problems to determine if it should be included in further analyses. 

According to Chen et al. (2010), replications that have fewer than 2 individuals in any of 

the latent classes should be treated as improper results and be excluded from further 

analysis. We did not find such a problem in our replications, and across all replications 

under both ML/EM and Bayesian methods, each class had been assigned an adequate 

number of individuals. Another concern over the convergence issues with GMMs 

estimated by the ML/EM method was replications that gave negative error variance (i.e., 

Heywood cases) (Liu & Hancock, 2014; Tofighi & Enders, 2008; Tolvanen, 2007). In 

our study, 14% of the overall replications were found to bear negative error variance 

estimates across all replications. However, the estimates were found to be not 

statistically significantly different from zero, and were most likely induced from 

sampling fluctuations (Gerbing & Anderson, 1987; Dillon, Kumar & Mulani, 1987). 

Therefore, we considered it appropriate to include those replications for further analysis. 

For the Bayesian approach, the Geweke and the Heidelberg-Welch diagnostics were 

used to examine convergence problems. A replication was considered converged if the 

posterior distribution of each parameter passed both convergence tests. For the correctly 

specified two-class models, the non-convergence rate is around 25%. A high 

convergence rate up to 91 % was found in the condition of small sample size (N=300), 
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balanced class proportion, and 6 time points. Holding other factors constant, the change 

from balanced class proportions to unbalanced ones incurred higher rate non-

convergence. 

3.3.2 Hit Rate 

The results showed that for the ML/EM estimation, the percentage of correct 

classification of individuals ranged from 84% to 94%, while the range for the Bayesian 

estimation was from 86% to 97%. Under the Bayesian method, there was a very high hit 

rate with informative priors (from 90% to 100%), followed by the data driven priors 

(from 85% to 97%), and the weakly informative priors (from 81% to 95%).  

The ANOVA results indicated that under the ML/EM estimation, the design 

factors of class separation and sample size were found to have substantial effect on the 

hit rate; while for the Bayesian estimation, the class separation, sample size, and prior 

specification were found to have substantial effect. Table 2 showed mean hit rate broken 

down by the three factors. As expected, for both estimation methods, the hit rate was 

higher under the high separation condition than the low separation condition. 

Specifically, for the ML/EM estimation, as the class separation changed from low to 

high, the hit rate increased from 86% to 93%, and for the Bayesian estimation, the hit 

rate increased from 89% to 93%. Also, for both estimators, the hit rate increased with the 

increase in sample size.  

3.3.3 Standardized Bias   

Figure 1 and Figure 2 showed the mean standardized biases of the parameter 

estimates under both ML/EM and Bayesian approaches across all the conditions along 
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with the Monte Carlo 95% confidence intervals of the means. The lower and the upper 

limit of the 95% confidence interval were set at the 2.5th and 97.5th percentiles of the 

sampling distributions of the mean standardized bias of the parameter estimates from all 

conditions considered.  

3.3.3.1 Standardized Bias of Fixed Effect Estimates 

Overall, under both approaches, the estimates were considered acceptable with 

negligible biases for the intercept (a) and the first slope (b1) of the both classes. The 

mean standardized bias for the turning points (γ) in class one and class two was 0.16 and 

-0.34 respectively under the ML/EM approach, and the values were 0.09 and -0.23 under 

the Bayesian approach. Large biases were found with estimates of the second slope (b2), 

and the ML/EM approach recovered the parameter with a smaller bias (-0.28) than its 

counterpart, the Bayesian approach (-0.45). ANOVA showed that under the ML/EM 

estimation, class separation had significant impact on the estimates of the turning point 

for class-two (
2 =0.45) and the second slope in each latent growth curve (

2 ranges 

from 0.51 to 0.53); while under the Bayesian method, class separation and the 

specification of the prior distributions showed significant impact on the second slope for 

each class (ranges from 0.46 to 0.49).  

3.3.3.2 Standardized Bias of Random Effect Estimates 

 Under both estimation methods, the random effect estimates were highly biased. 

The level of bias was particularly problematic for the variance estimate of the intercept, 

with the ML/EM method producing a much higher degree of bias than the Bayesian 

method. Under both estimation methods, with exception to the variance estimate of the 
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intercept for each class, the estimated random effects were negatively biased across all 

conditions.  

ANOVA results showed that under the ML/EM approach, the number of time 

points had significant impact on all random effect estimates ( 2 ranges from 0.31 to 

0.52), and class separation was found to have substantial impact on the estimates of the 

first and second slope for class two ( 2 =0.4 for both). Under the Bayesian method, 

except for the first slope, the estimation of the random effects varied significantly 

depending on the prior distribution specifications ( 2  ranges from 0.11 to 0.56), class 

separation ( 2 ranges from 0.09 to 0.43), and sample size ( 2  ranges from 0 to 0.52).  

3.3.3.3 Standardized Bias of Residual Variance Estimates 

 The mean standardized bias of the residual variance estimates for the ML/EM 

method is 0.16 while the corresponding value for the Bayesian method is 0.7. For the 

ML/EM approach, the number of time points (
2  =0.39) and class separation (

2  =0.44) 

were found to account substantially for the variance in the bias of the residual. Under the 

Bayesian method, the class separation (
2  = 0.35) and sample size (

2  = 0.43) were the 

most influential factors. 
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Table 2 

    Mean Hit Rate for Bayesian and ML/EM Estimations 

Impact Factors Hit Rate 

Mixing % Separation Sample Size ML/EM 
Bayesian 

(Informative Prior) (Data Driven Prior) (Weakly Informative Prior) 

50%:50% 

High 
300 91% 91% 85% 83% 

1000 93% 99% 96% 95% 

 Low 
300 84% 90% 85% 81% 

1000 87% 95% 92% 92% 

75%:25% 

High 
300 92% 95% 90% 85% 

1000 94% 100% 97% 94% 

Low 
300 85% 92% 90% 82% 

1000 88% 96% 93% 91% 
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Figure 1 Monte Carlo simulation 95% confidence intervals under the ML/EM method 

Figure 2 Monte Carlo simulation 95% confidence intervals under the Bayesian method 

3.3.4 Coverage 

As shown in Figure 3, under both estimation methods, for Class 1, coverage rates 

lied within the acceptable range between 92% and 98% across all conditions. For Class 
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2, the coverage rates of the turning point (γ) under both estimations and the slope of the 

second piece (b2) under Bayesian estimation showed a slight deviation from the 

acceptable range. Overall, compared to the Bayesian method, the ML/EM estimation 

gave higher coverage rates for parameter estimates of both classes. ANOVA results 

showed that for the ML/EM estimation, no design factor was found to have a significant 

impact on the coverage rate.   

Figure 3 Mean coverage rates of fixed effect estimates for both estimations across all 

      conditions 

For the Bayesian approach, the prior specifications had critical impact on the 

coverage rate, particularly with respect to the estimation of the turning point (
2  =0.31) 

and the second slope (
2  =0.28) for class 2. Figure 4 presented a comparison of the 

mean coverage rates of the fixed effect estimated under the ML/EM method and the 

Bayesian method with informative priors. It could be noted in Figure 4 that with 

informative priors, the coverage rate of the parameter estimates in each class lied within 
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an acceptable range for the Bayesian method and the coverage rates of parameter 

estimates in class 2, particularly with the turning point and the second slope, was better 

than the ML/EM method. 

Figure 4 Mean coverage rates of fixed effect estimates for both the ML/EM and 

Bayesian with informative priors for the mean growth factors 

When using data driven priors, both estimation methods produced acceptable 

coverage rate of parameter estimates in Class 1. However, as shown in Figure 5, under 

the Bayesian method, the coverage rate of the slope of the second piece (b2) in class 2 

was below the acceptable range. The same pattern was observed in Figure 6, which 

showed the comparison of the coverage rates between the ML/EM method and the 

Bayesian method with weakly informative priors. The coverage rates of the second piece 

slope (b2) in class 1 and the turning point (γ) and b2 in class 2 lied far below the 

acceptable rage under the Bayesian method with weakly informative priors. 
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Figure 5 Mean coverage rates of fixed effect estimates for both the ML/EM and 

Bayesian estimation with data driven priors for the mean growth factors 

Figure 6 Mean coverage rates of fixed effect estimates for both the ML/EM and Bayesian 

estimation weakly informative priors for the mean growth factors 

3.4 Discussion 

This study examined and compared the performance of the ML/EM method and 

the Bayesian method in estimating PGMM with unknown turning point in terms of the 

accuracy of individuals ‗class assignment and parameter estimates. Four design factors 

were considered, that is, number of time points, sample size, class proportions, and class 
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separations. For the Bayesian method, different specifications of prior distributions for 

the mean growth factors were considered. 

3.4.1 Parameter Estimates 

Both estimation methods have almost no difficulty in recovering the true 

parameters of class one. For the true parameters of class two, however, only the 

Bayesian approach with informative priors can recover them to an acceptable degree. 

The ML/EM method and the Bayesian approach with data driven priors can give 

considerably good estimates of the turning point, the intercept, and the first slope for 

class two, but fail to do so with regard to the true parameter of the second slope for the 

second class. Comparatively speaking, the Bayesian approach with weakly informative 

priors performs the worst in recovering the true parameters of class two. 

Random effect estimation presents a challenge for both the Bayesian and the 

ML/EM approaches, although a specification of informative prior for a Bayesian PGMM 

could help alleviate the problem to some degree. Both approaches tend to overestimate 

the variances of the random effects, with exception to the intercept, which was largely 

underestimated. The results are in line with the findings in Depaoli's (2013) study. In her 

study, data were generated using a 3-class model, with the third class model adding a 

quadratic term over and above the linear trajectories in the first two classes. The results 

of her study showed that the estimated variances of the random effects associated with 

the slope of the linear trajectory in the second-class and the slope of the quadratic term 

in third class showed large bias in both ML/EM method and Bayesian estimation with 

different levels of prior specifications. The biases in the random effects could have led to 
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biased estimates in the standard errors of the fixed effects, which in turn lead to the 

undercoverage or overcoverage of their confidence intervals. 

3.4.2 Impacts of the Design Factors 

The impact of the design factors on the model performance varied depending on 

which estimation method to use. Overall, for both estimation methods, class separation 

determined the accuracy in individuals‘ class assignment, the level of biases, and the 

degree of undercoverage. As expected, well defined classes of high separation make it 

easier to recover the true parameters and to accurately assign individuals to the correct 

class. 

Sample size and the number of time points also have great impacts on the 

outcomes. The large number of time points (i.e., 10 in our study) combined with a small 

sample size (N=300) hampered the recovery of the random effects under both estimation 

methods. The problem became more serious with the Bayesian method, as the priors for 

the random effects were non-informative. The large variability associated with non-

informative priors in combination with a small sample size and a large number of time 

points could lead to random effect estimates way off their true values. 

Our findings regarding the Bayesian estimation are consistent with the extant 

literature (Kass & Wasserman, 1996; Depaoli, 2013). It has been noted that priors, 

particularly with noninformative priors, can have a substantial impact on parameter 

estimates, especially so when the sample size is small (Lambert, et al., 2005). Small 

sample size, coupled with poor class separation will magnify the impact of the 

inaccurate prior specifications on parameter estimation, resulting in less accuracy in 
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individual assignment and true parameter recovery. The results of our study again 

highlighted the importance of including accurate prior information in modeling analysis 

of a turning point PGMM. An inclusion of information that summarizes the previous 

studies into the Bayesian model specification could weaken the detrimental effect of 

small sample size, and thus lead to a comparatively increased power to produce more 

accurate parameter estimates (Gelman, Carlin, Stern, & Rubin, 2004; Depaoli, 2013). 

3.4.3 Implications 

For empirical researchers whose research interests lie in the identification of 

distinctive turning points that differentiate one change process from the other, 

particularly associated with the intervention effect, a turning point PGMM is of 

particular importance as it allows for an accurate estimation of the turning point. A 

complete reliance on theory to determine a turning point a priori when specifying a 

PGMM could lead to a mis-presentation of the growth trait in the data. However, when 

using the Bayesian approach to estimate a turning point in PGMM, the accuracy of the 

growth trajectory estimates (including turning points and growth factors), and the latent 

class assignment depend on the level of accuracy in the information that we could 

provide to the Bayesian model estimation. For the ML/EM approach, valid and good 

estimates could be produced given that the classes are well separated, plus an adequate 

number of time points and sample size. For example, in our study, the data scenario that 

is a combination of high class separation, 6 time points, and 1000 individuals recovered 

the trajectory shapes reasonably well. 
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CHAPTER IV 

 STUDY TWO: CLASS IDENTIFICATION EFFICACY IN PIECEWISE GROWTH 

MIXTURE MODELS WITH UNKNOWN TURNING POINTS: A COMPARISON OF 

ML/EM VERSUS BAYESIAN ESTIMATION 

4.1 Overview 

Piecewise Growth Mixture Modeling (PGMM) is an extension of conventional 

Growth Mixture Models (GMM) to accommodate the developmental change in 

longitudinal data that exhibits differential growth phases. On top of the capabilities to 

estimate the heterogeneity of growth trajectories in the population and the trajectory-

specific variance components, a PGMM allows for the incorporation of turning points 

(or change points or knots) in the functional form, the existence of which indicates a 

shift in the development from one growth phase to another. Longitudinal data collected 

over a long interval of time often exhibit nonlinear trend. The presence of a turning point 

renders a PGMM an inherently nonlinear function that can more precisely describe the 

change patterns in data across time intervals (Harring, Cudeck, & du Toit, 2006; Kwok, 

Luo, & West, 2010), than conventional GMM which is restricted to the linearity 

assumption. 

The specification of traditional piecewise growth functions usually relied on the 

researchers‘ substantive knowledge to determine a priori a turning point that connects 

different growth phases. For example, Hardy & Thiels‘ (2009) study determined a 

turning point to be at the time point where treatment sessions ended and post-treatment 

sessions began, hypothesizing that individuals under assessment exhibited different 

growth rate during treatment than post treatment. McAuley et al. (2011) used PGMM to 
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examine the differential effects of randomized controlled exercise trial on self-efficacy 

and identified three growth trajectories, each exhibiting distinctive growth rate before 

and after intervention. In these two studies, the turning points were set at the time of 

intervention. However, such consideration may not always be reasonable, because the 

turning point may occur after the intervention due to delay in response to intervention. 

Moreover, no attempt was found in applied studies to test the location of the turning 

point hypothesized based on theoretical considerations. A misspecification of a turning 

point may give a suboptimal functional presentation of the observed data patterns over 

the course of time, leading to misleading modeling results and statistical inferences of 

growth traits.  

A more realistic alternative is to estimate unknown turning points based on data. 

There have been several statistical procedures available for such realization. For 

example, Kwok et al. (2010) proposed to use modification index to detect the turning 

point in the linear latent growth modeling framework. Dominicus, Ripatti, Pedersen, & 

Palmgren (2006) and Wang & McArdle (2008) presented statistical modeling 

approaches in the context of mixed effect models in which the turning point is a 

parameter to be estimated and is allowed to have inter-individual variability. Recently, a 

two-stage (or two-piece) piecewise growth mixture model with one unknown change 

point was proposed by Kohli, Harring, & Hancock (2013) in the framework of Structural 

Equation Modeling (SEM).The newly proposed PGMM with unknown turning points is 

more advantageous than conventional PGMMs as it offers applied researchers an 

opportunity to determine a turning point empirically as well as theoretically. 
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Furthermore, to freely estimate a turning point and the factor loadings of the growth 

factors can oftentimes give a more optimal functional form describing the observed data 

patterns over time (Kwok, Luo, & West, 2010; Wood & Jackson, 2013). 

However, many questions regarding the performance characteristics of a PGMM 

with unknown turning points still remain to be examined. One of the questions of 

primary interest is the performance of PGMMs in determining the correct number of 

growth trajectories. The aim of the current study was to examine the accuracy of 

commonly used enumeration indexes with PGMMs in growth trajectories enumeration. 

In particular, comparisons were made between the two dominant estimation methods: 

the Bayesian estimation framework via the Markov Chain Monte Carlo (MCMC) 

algorithm and the Maximum likelihood estimation via the expectation maximization 

(EM) algorithm (ML/EM) in the SEM framework.  

4.2 Methods 

A 2-class PGMM [i.e., model (2)] was used as the population model in the study, 

with both classes exhibiting a two-piece linear-by-linear growth curve. The number of 

classes was decided based on past empirical studies using PGMM (Li, et al., 2001; 

Kohli, et al., 2013; Zhao & Banerjee, 2012). Table 1 presents the population parameters 

for the average growth models and the covariance components of random effects for the 

two trajectories. 

4.2.1 Design Factors 

Previous simulation studies on Growth Mixture Models have shown consistent 

findings upon what factors could impact class enumeration (Q. Chen, Kwok, Luo, & 
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Willson, 2010; Enders & Tofighi, 2008; Henson, Reise, & Kim, 2007; Tofighi & Enders, 

2008). Based upon the previous findings, five design factors were considered in the 

study, including (a) the degree of trajectory separation, (b) the number of repeated 

measures, (c) mixing percentages of latent classes, (d) sample size, (e) specification of 

prior distribution.  

4.2.1.1 Degree of Class Separation 

We varied the degree of class separation by manipulating the within class 

variance components. The larger the within class variance is, the smaller the degree of 

class separation is. According to Raudenbush and Liu‘s (2001) criteria, a small size of 

variances and covariance matrix of the random effects is set to be as follows for the high 

separation condition: 
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Given 00  = .1 and 12   , the difference between the intercept for Class 1 and that for 

Class 2 was approximately 2.4 standard deviation units. This was considered as the high 

separation condition according to Tofighi and Enders‘ (2008) study. In the ―low 

separation‖ condition, the within-class variance components were specified as below: 
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which results in approximately 1.9 standard deviation units difference between the 

intercept for Class 1 and Class 2. In both high and low separation conditions, 11 and 

22 were set to be half of the size of 00 , because the variation of the intercept has 
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generally been larger than the variation of the growth trends in longitudinal data. The 

size of the covariance, 10  and 21  was set to be .025 and .0175 in the high separation 

condition, and .175 and .1225 in the low separation condition so that there was a 

moderate correlation (ρ=0.35) between the intercept and growth factors in the first phase 

and between the growth factors in the first and second phases as well.  

4.2.1.2 Sample Size  

The sample sizes were chosen based on the conditions used in the past simulation 

studies (Q. Chen et al., 2010; Enders & Tofighi, 2008; Henson et al., 2007; Nylund, 

Asparouhov, & Muthén, 2007; Tofighi & Enders, 2008) and a review of substantive 

GMM and PGMM applications. A total of 346 studies were found from a literature 

search in PsycINFO (from 2000-2013) for studies applying GMM and PGMM in 

different substantive areas. A review of a random sample of 100 out of the 346 studies 

showed that the studies varied dramatically with respect to sample size. We chose the 

sample size values to be 300 and 1000, representing approximately the 25th and 75th 

percentiles of the sample size distribution in the 100 studies that we reviewed. 

4.2.1.3 Number of Repeated Measures  

It is more typical for a two-piece linear growth model to include more than two 

time points in each piece, with 5 points in total enabling a full growth model (fully 

random) to be estimated (Bollen & Curran, 2006). The use of fewer time points restricts 

the ability to estimate the full set of random effects (i.e., variances and covariance for 

intercepts and slopes). Hence we chose 6 waves of repeated measures as the small 

number. We chose 10 waves of repeated measures as the medium number since the 
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mean number of waves among the empirical GMM studies that have more than 6 

measurement waves is about 10.  

4.2.1.4 Mixing Percentage of the Two Classes 

Following the simulation studies in Chen, et al. (2010), Nylund et al. (2007), and 

Liu & Hancock (2014), we considered two sets of mixing percentages of the two classes. 

The mixing percentages in the balanced condition were 50% and 50% for the two 

classes. In the unbalanced situation, we considered 75% vs. 25% for the two groups 

respectively. The mixing percentages in the unbalanced situation correspond to the mean 

mixing percentages in the empirical studies using PGMM (Zhao & Banerjee, 2012; Li, et 

al. 2001; Kohli, et al. 2013).  

4.2.1.5 Specifications of Prior Distributions  

The impact of three classes of priors on Bayesian posterior estimates were 

considered in the study: weakly informative priors, informative priors, and data driven 

priors with the priors specified based upon estimates from the ML/EM estimation. The 

three classes of priors were specified following Depaoli‘s (2013) study. For each of the 

normally distributed growth parameters (i.e., ),(N~ 2

aaa k
 , ),(N~ 2

bb1b 11k
 , 

),(N~ 2

bbb 22k2
 , and ),(N~ 2

rk   ), there are mean and variance hyperparameters. 

For example, a and 
2

a  are the respective mean and variance hyperparameters for 

parameter a (i.e., the intercept mean factor). The hyperparameters determine the degree 

of certainty a prior has on the posterior estimate of the parameter value. To specify an 

informative prior, the mean hyperparameter was set to be the corresponding growth 

parameter population value, while the variance hyperparameter was set to be at 5% of 
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the growth parameter population value. For example, the mean hyperparameter of the 

intercept of Class 2 was set to be 25 and the variance hyperparameter was set to be 1.25 

(25*5%). Therefore, the informative prior for the intercept in Class 2 is N (25, 1.25).  

Weakly informative priors were specified by taking the population value as the 

mean hyperparameter but 50% of the population value as the variance hyperparameter 

[i.e., N (25, 12.5)]. The weakly informative and informative priors for the rest growth 

parameters were determined in a similar way. As for the data driven priors, the ML/EM 

parameter estimate of each growth factor (i.e., the mean and variance) in all replications 

for each data scenario were obtained as the mean hyperparameter and the variance 

hyperparameter for the growth factors. 

The above were the specifications of prior distributions for the mean growth 

factors in the correctly specified 2-class model. For the mis-specified under extracted 1-

class model, the priors were specified based on the average of the population values of 

the mean growth factors of the two classes. For example, to specify an informative prior 

to the intercept of the mis-specified 1-class model, the mean hyperparameter was the 

average of the intercept of class one (i.e., 22.5) and the intercept of class two (i.e., 25), 

which is 23.78; and the variance hyperparameter was set be 1.19 (23.78*5%). Therefore, 

the informative prior for the intercept in mis-specified 1-class model is N (23.78, 1.19). 

Follow suit, we would have the informative priors and the weakly informative priors for 

the mean growth factors in the mis-specified 1-class model. The data driven priors were 

based on the ML/EM parameter estimates of the 1-class model.  
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For the mis-specified over extracted 3-class model, the priors for the mean 

growth factors of first two classes were the same as how the priors were set up for the 

mean growth factors of the two classes in the true 2-class model. The priors for the mean 

growth factors of the third class were specified based on the average of the population 

values of the mean growth factors of the two classes in the true 2-class model, the same 

as how prior distributions for the mean growth factors in the under extracted mis-

specified 1-class model were specified. 

Combining all design factors, the simulation used a 2 (magnitude of the   matrix: 

small or medium) ×2 (number of sample size: 300 or 1000) × 2 (number of repeated 

measures: 6 or 10) × 2 (mixing percentages: 50%: 50% or 75%: 25%) factorial design to 

generate data. A total of 200 replications were generated for each condition using R 

(2013), yielding a total of 3,200 data sets(16 conditions 200 data sets). For each 

replication, three different models (i.e., one-, two-, & three-class models) were fitted 

using ML/EM algorithm under Mplus Version 7 (Muthén & Muthén, 2012) and 

Bayesian estimation under JAGS (Plummer, Stukalov, & Denwood, 2015) respectively. 

Also within the Bayesian estimation, three levels of prior specifications were compared 

for the respective impact on the accuracy of class enumeration.  

4.2.2 Outcomes and Analysis  

The primary outcome of interest in the study is the percentage of replications that 

accurately retrieved the correct number of trajectories based on a particular enumeration 

index. The average percentages of one-class, two-class, and three-class models identified 

by a particular enumeration index were summarized. Based on the information, we can 
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tell whether any indices are more liable to under- or over-extract the number of 

trajectories. Analysis of Variance (ANOVA) was conducted to investigate the impact of 

the design factors on the class enumeration accuracy of the index. 

4.3 Results 

4.3.1 Convergence  

Convergence has always been a challenging issue with finite mixture models 

(Chen, 1995; G. McLachlan & Peel, 2004). The convergence problem under ML/EM 

and Bayesian estimation were explicitly examined to ensure a clear and appropriate 

analysis of the results. Under the ML/EM estimation using Mplus Version 7.2, 

replications that gave proper solutions were counted as converged results. Agreement 

diverged upon whether a replication with a negative error variance (i.e., Heywood 

cases), should be considered as a converged result. Liu & Hancock (2014) excluded 

replications as non-converged results that produce inadmissible solutions, such as 

negative error variance (i.e., a Heywood case), whereas Tolvanen (2007) considered 

negative error variance as a normal variation of sampling. Many others did not consider 

Heywood cases at all (e.g., Peugh & Fan, 2012). In the present study, the overall 

replications with negative error variance estimates were about 18% across all 

replications and all three models. A further examination of the replications that bore 

negative error variance estimates showed that the estimates were statistically 

insignificant from zero, and the problem of Heywood cases was not a concern as they 

were most likely induced from sampling fluctuations (Chen, 1995; Dillon, Kumar, & 
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Mulani, 1987; Gerbing & Anderson, 1987). Therefore in our study, we considered 

Haywood cases as converged results and included those replications in our final analysis.  

For the correctly specified two-class models, all of the 8000 replications had 

converged results. For the one-class models, the overall convergence rate is 75%. 

Apparently, forcing too few classes onto the data has led to a higher number of 

replications that failed to converge. In addition, the non-convergence occurred more 

often when the sample size was small (N=300) and the class separation was low. The 

non-convergence rate decreased when the sample size increased and when the class 

separation changed from low separation to high separation. For the three-class models, 

the overall convergence rate was 96.5%. Again, the non-convergence rate occurred most 

often with small sample size (N=300) and low class separation. In replications where the 

three-class failed to converge, instead of continuing to fit in the data with four-, five-, or 

six-class models (e.g., Liu & Hancock, 2014), we chose to fit a three-class model at most 

and  to retain and interpret the two-class model provided that the index was found to 

show preference toward the two-class model (e.g., Tofighi & Enders, 2008).   

Under the Bayesian estimation, the Raftery and Lewis diagnostic (1992) was first 

used to calculate the number of iterations and the number of burn-in iterations necessary 

for convergence within each data scenario. Results from the Raftery and Lewis 

convergence diagnostic indicated that the convergence with 2 latent classes could be 

obtained after running a minimum number of 40,000 iterations, and 10,000 of which 

were burn-in iterations. To be conservative, for each replication, a single chain was run 

with 40,000 iterations, a burn-in of 10,000 iterations, and a thinning interval of 10, 
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resulting in 4000 Gibbs samples that comprised the posterior distributions for the 

parameters. The convergence of the Markov chain was again evaluated by the Geweke 

(1992) statistic and the Heidelberger-Welch stationarity test (Heidelberger & Welch, 

1981; Heidelberger & Welch, 1983). The Geweke convergence diagnostic test compares 

the mean estimates from two non-overlapping parts, usually from the early 0.1 and the 

latter 0.5 proportions of the Markov chain. The mean difference test is a two-sided test 

based on a z-score statistic. When an absolute z value is larger than 2, it indicates non-

convergence. The Heidelberger-Welch stationarity test examines whether the Markov 

chain is from a stationary distribution. The test consists of two parts. In part one, the test 

statistic calculates the stationarity by discarding the first 10%, then 20% up to 50% until 

the null hypothesis of stationarity is not rejected; the convergence fails if after 50% of 

the data has been discarded, the null hypothesis is still rejected.  Part two is a half-width 

test following the pass of the test in Part one. The test statistic is the ratio of the half-

width of the 95% credible interval to the mean. The test fails if the test statistic is greater 

than 0.1. For each replication, the convergence test results were obtained from both the 

Geweke and the Heidelberg-Welch diagnostics and examined for convergence problems. 

The replication is considered converged if the posterior distribution of each parameter 

passed both convergence tests. 

Overall, the non-convergence rate for the one-class under-extracted model is 

48%. The rate is higher for data sets with low class separation and with 10 time points, 

and the non-convergence rate is particularly higher when the sample size is large 

(N=1000). For the correctly specified two-class models, the non-convergence rate is 
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around 25%. A high convergence rate up to 91 % was found in the condition of small 

sample size (N=300), balanced class proportion, and 6 time points. The convergence rate 

decreased when sample size increased from 300 to 1000 and the number of time points 

from 6 to 10. Holding other factors constant, the change from balanced class proportions 

to unbalanced ones incurred higher rate non-convergence. For the three-class over-

extracted models, the non-convergence problem was serious. On average around 60% of 

all replications were not converged. Non-convergence problems occurred more often in 

replications with a small sample size in combination with low class separation and a 

large number of time points. A similar stance was taken here as in the ML/EM 

estimation: for replications that failed to converge with three-class models, we fit three-

class modes at most, and to retain and interpret the two-class models given that the index 

showed preference for them. 

4.3.2 Comparing Overall Performance of the Enumeration Indices 

Figure 7 shows the average percentages of one-class, two-class, and three-class 

models identified by the AIC, AICC, CAIC, BIC, SABIC, NEC, ICL-BIC, CLC, and 

BLRT for all converged replications estimated by the ML/EM method. As shown in the 

figure, all model enumeration indices were able to identify the two-class solution (i.e., 

the correct model) in most of the replications. Specifically, the ICL-BIC had the highest 

percentage of correct identification (97%), followed by the CAIC (91%), DBIC (85%), 

BIC (84%), BLRT (74%), AICC (73%), AIC (57%) and CLC (65%). The NEC 

exhibited the least utility as it tended to overestimate the number of classes, giving a 
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higher overall percentage in identifying the three-class solution (46%) than the 

corresponding two-class solution (34%). 

      Figure 7 Percentage of 1-, 2-, and 3-class models identified by enumeration indices under the 

  ML/EM estimation 

Figure 8 shows the average percentages of one-class, two-class, and three-class 

models identified by the AIC, WAIC2, BIC, DIC3, LPML, and PsBF across all 

converged replications estimated by the Bayesian method. All model enumeration 

indices were able to identify the two-class solution (i.e., the correct model) for the 

majority of the replications. On average, the DIC3 was able to identify the correct model 

most frequently, up to 93% of all replications, followed by the WAIC2 (91%), BIC 

(85%), AIC (75%), LPML (73%), and PsBF (69%). The AIC, PsBF and LPML were 

less accurate in identifying the correct model. Comparatively speaking, the AIC, LPML, 
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and PsBF exhibited a higher tendency to over-extract classes than the other indices such 

as the WAIC2, DIC3, and BIC. 

Overall, when using the ML/EM estimation method, ICL-BIC and CAIC were 

the most effective measures in identifying the correct number of trajectories in PGMM. 

When using the Bayesian method, WAIC2 and DIC3 were the most accurate indices 

followed by BIC. 

     Figure 8 Percentage of 1-, 2-, and 3-class models identified by enumeration indices under the 

 Bayesian estimation. 

4.3.3 Impact of the Design Factors on Class Enumeration Accuracy 

 Full factorial ANOVAs were conducted to determine the impact of the four 

design factors (or five factors under the Bayesian estimation) on the performance of the 

enumeration indices in class identification accuracy. The effect size indicator, the semi-

partial eta-squared (i.e., TotalEffect

2 SS/SS ), was computed to measure the impact of each 
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design factor on the class enumeration performance of a particular index. Table 3 and 

Table 4 presented the ANOVA results under the ML/EM and Bayesian framework 

respectively. A statistically significant effect (p<.05) of the factors on the indices was 

marked with an asterisk, and a semi-partial eta-squared larger than 0.1 was bolded. The 

interaction effects were found to be non-significant and thus were removed from the 

tables for brevity. 

As presented in Table 3, under the ML/EM framework, class separation and the 

number of time points were found to have significant impact on the enumeration 

performance of certain indices (i.e., the AIC, ICL-BIC, AICC, SABIC, CLC, and 

BLRT), while class proportion and sample size had not shown any significant impact. As 

shown in Table 4, when using the Bayesian estimation method, the prior specification 

was a significant factor that had critical impact on the accuracy of some indices, such as 

the AIC, LPML, and PsBF. Class separation was also found to have substantial bearing 

on the indices of the BIC and PsBF. The number of time points, sample size, class 

proportion had shown no substantial impact on class enumeration accuracy. 

4.3.3.1 Class Separation 

Table 5 showed the percentage of replications that correctly identified the two-

class population model under the ML/EM framework, broken down by the degree of 

class separation and time points. Table 6 presented similar information under the 

Bayesian method, broken down by the type of prior, degree of class separation, and time 

points. In both tables, the percentage over 90% was bolded. 
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Under the ML/EM estimation, because CAIC and ICL-BIC are the best 

performing indices, we focus on these two indices and examine how class separation 

affects their performance. When two classes were well-separated, the CAIC, ICL-BIC, 

and BIC were very accurate measures in identifying the correct model. However, when 

the class separation was poor, the ICL-BIC overwhelmingly outperformed the other 

indices, identifying the correct model in 94% of the replications. The CAIC was not 

severely impacted by class separation either, choosing the correct model 99% of the time 

when the classes were highly separated, and was still able to identify the correct model 

in 83% of the time even with poor class separation. 

Under the Bayesian estimation, we focused on the DIC3, WAIC2, and BIC 

because they are the top performers. As expected, the average accuracy of correct model 

identification increased when the classes were more separated. Specifically, with well-

separated class, the DIC3 (96%), BIC (96%), and the WAIC2 (92%) were very accurate 

in identifying the correct model, and their respective percentage decreased to 89% for 

DIC3, 82% for BIC, and 87% for WAIC2 when the class separation was poor. 

When comparing across the two frameworks (ML/EM vs. Bayesian), we found 

that the accuracy of the AIC and BIC were particularly higher under the Bayesian 

estimation than their counterparts in the ML/EM method when the class separation was 

low. This is because within the Bayesian framework, the model predictive accuracy of 

the AIC and BIC are summarized by posterior distributions using the Laplace method, 

which increased their accuracy than when summarized using the maximum likelihood 

estimator. 
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Table 3 

ANOVA Results of the Designed Factors' Effects on Model Fit Indices in Selecting the True Model across 

Model Types and Conditions under ML/EM Estimation 

Factors AIC AICC CAIC BIC SABIC DBIC NEC ICL-BIC CLC BLRT 

Class Separation 0.40* 0.20 0.15 0.25 0.26 0.23 0.17 0.73* 0.00 0.01 

Time Points 0.21 0.31* 0.17 0.18 0.38* 0.30 0.01 0.00 0.33* 0.50* 

Sample Size 0.17 0.20 0.08 0.07 0.07 0.08 0.11 0.00 0.13 0.05 

Class Proportion 0.02 0.00 0.04 0.03 0.004 0.02 0.16 0.12 0.02 0.24 

Table 4 

ANOVA Results of the Design Factors' Effects on Model Fit Indices in Selecting the True Model across 

Model Types and Conditions under Bayesian Estimation 

Factors AIC WAIC2 BIC DIC3 LPML PsBF 

Class Separation 0.16 0.10 0.20* 0.12 0.17 0.25* 

Time Points 0.14 0.08 0.18 0.06  0.27* 0.34* 

Sample Size 0.15 0.18 0.20 0.10 0.08 0.00 

Class Proportion 0.00 0.05 0.00 0.02 0.10 0.04 

Prior  0.18* 0.13 0.08 0.10  0.30*   0.35* 
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Table 5 

Percentage of Correct Model Identification Collapsed by the Factors of Class Separation, Number of 

Time Points, and Sample Size under ML/EM Estimation 

Design Conditions Performance of Class Enumeration Indices 

Separation Time Points N AIC AICC CAIC BIC SABIC DBIC NEC ICL-BIC CLC BLRT 

High 

6 
300 86% 98% 100% 96% 97% 100% 62% 100% 74% 100% 

1000 73% 84% 100% 98% 97% 100% 26% 100% 47% 100% 

10 
300 83% 91% 100% 97% 91% 98% 44% 100% 58% 44% 

1000 54% 65% 98% 95% 78% 88% 54% 99% 40% 26% 

Low 

6 
300 73% 92% 100% 91% 93% 98% 23% 93% 74% 100% 

1000 45% 75% 100% 93% 88% 94% 10% 95% 53% 100% 

10 
300 29% 57% 90% 76% 58% 70% 48% 93% 51% 29% 

1000 8% 25% 42% 26% 26% 29% 4% 94% 10% 3% 
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Table 6 

Percentage of Correct Model Identification Collapsed by Prior Specification, Class Separation, and Number 

of Time Points, under Bayesian Estimation 

Design Conditions Performance of Class Enumeration Indices 

Prior Separation Time Points AIC WAIC2 BIC DIC3 LPML PsBF 

Data Driven 

High 
6 82% 94% 97% 97% 91% 86% 

10 77% 88% 96% 95% 78% 70% 

Low 
6 75% 93% 92% 94% 84% 80% 

10 58% 80% 72% 84% 58% 50% 

Informative 

High 
6 87% 100% 98% 100% 91% 88% 

10 80% 96% 96% 97% 82% 79% 

Low 
6 81% 95% 94% 96% 86% 84% 

10 62% 84% 75% 85% 61% 57% 

Weakly Informative 

High 
6 80% 92% 95% 96% 85% 79% 

10 70% 83% 96% 92% 70% 62% 

Low 
6 72% 91% 90% 93% 79% 68% 

10 52% 79% 68% 80% 45% 40% 
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4.3.3.2 Time Points 

The number of time points also had a critical impact on the percentage of correct 

model identification ( 2 ranged from 0 to 0.5), and the impact was more dramatic on the 

performance of the AICC, SABIC, and BLRT than on other indices. Specifically, when 

the number of time points increased from 6 to 10, the correct model identification rate 

for the AICC dropped from about 90% to 60%, BLRT from 100% to 26%, and SABIC 

from 94% to 63%. The accuracy for other indices also decreased. However, the accuracy 

of the ICL-BIC remained overwhelmingly high regardless of the change in the number 

of time points or class separation. The CAIC were still able to identify the correct model 

in 83% of the time when the number of time points changed to be 10, as compared to 

100% when the number of time points was 6. 

The impact of the number of time points under the Bayesian estimation was not 

as dramatic as that under the ML/EM method. The BIC showed a decrease from 94% to 

84% when the number of time points increased from 6 to 10. The WAIC2 and DIC3 

were able to maintain good performance with a slight drop in correct model dentification 

rate with the variation of the number of time points. 

4.3.3.3 Sample Size 

 Under both estimation methods, the variation of sample size did not exhibit 

significant impact on the accuracy for the indices under either ML/EM or Bayesian 

framework ( 2 ranged from 0 to 0.2). There is a slight trend that as sample size increases, 

many indices tend to point to three-class models more often than when the sample size 

was small. However, regardless of the sample size, the ICL-BIC under the ML/EM 



72 

method had the best performance as it consistently provided accurate assessment of the 

number of trajectories with 93% of the replications when N=300, and 95% when 

N=1000. Under the Bayesian estimation framework, the WAIC2, BIC, and DIC3 gave 

reasonably good percentage in correct model identification with a slight decrease from 

around 95 % to 90% when sample size increases from 300 to 1000. 

4.3.3.4 Class Proportion 

The factorial ANOVAs results indicated no appreciable differences between 

balanced and unbalanced proportions under the ML/EM method ( 2 ranged from 0 to 

0.24) and under the Bayesian estimation ( 2  ranged from 0 to 0.1). Again, with the 

ML/EM method, the ICL-BIC stood out to be the most accurate measure to identify the 

correct class solution across the two levels of this factor. The WAIC2, BIC, and DIC3 

under the Bayesian method were reasonably good measures in identifying the correct 

model. 

4.3.3.5 Prior Specification 

For the Bayesian analysis, the different prior specifications had a substantial 

impact on class enumeration ( 2  ranged from 0.08 to 0.35). Overall, the more 

informative the priors were, the more accurate the indices were in enumerating the 

correct number of classes. Specifically, when using informative prior, the WAIC2 

(94%), BIC (91%), and DIC3 (95%) were very accurate in identifying the correct model. 

However, the accuracy was compromised with the use of less informative priors. The 

WAIC2, BIC, and DIC3 showed decrease in accuracy using data driven priors, and the 

decrease became more dramatic when it came to the use of the weakly informative 



73 

priors. With weakly informative prior, the measures of DIC3 (90%), WAIC2 (86%), and 

BIC (87%) performed with only acceptable accuracy.  

4.4 Discussion 

This study evaluated and compared the class enumeration accuracy of a variety 

of model selection indices in Piecewise Growth Mixture models (PGMM) with unknown 

turning points estimated by the Bayesian and the Maximum Likelihood methods. 

4.4.1 ML-Based Class Enumeration Indices 

4.4.1.1 Information-based Criteria (IC) Statistics 

Under the ML/EM estimation, for the information-based criteria (IC) statistics, 

the CAIC showed the highest correct model recovery percentages. It performed 

consistently the best with exception to the condition of low class separation in 

combination with 10 time points and N=1000. The BIC, SABIC, and DBIC performed 

similar to each other with exception to the conditions that combines 10 time points and 

N=1000, in which the BIC (95%) had substantially higher correct model identification 

percentage than the latter two indices. The AICC performed consistently better than the 

AIC, and both showed a strong tendency to over extract classes given a large sample size 

(N=1000 in our study) and even more so when the class separation in the data condition 

is poor plus with a large sample size and a large number of time points. Overall, the 

results in our study recommended to use the CAIC and BIC class enumeration with 

PGMMs.  

Considering our results in conjunction with previous studies in GMMs, where 

Tofighi and Enders (2008), Nylund et al (2007), and Peugh and Fan (2012) found that on 
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average the SABIC functioned well across different data scenarios in their studies, 

particularly so when the sample size was large and the class proportion was equal 

(N=3000 in Peugh and Fan‘s study).  Liu and Hancock (2014) recommended using the 

BIC and DBIC in the linear GMM context and DBIC across linear GMMs and 

unrestricted GMMs in various conditions combined. 

There are at least three factors that can explain the different findings in our study. 

First, in our study, the within-class model specification was non-linear; the non-linear 

component within-class model specification has never been examined in the previous 

studies. A nonlinear within-class model involves more parameters, resulting in different 

performances in the enumeration indices from those with linear GMMs, as more severe 

penalty weight occurred with an increased number of parameters. Second, the largest 

sample size considered in our study was limited to N=1000; when combined with 10 

time points, such sample size was not large enough to exhibit the advantages of sample 

size adjusted versions of IC statistics (i.e., SABIC) as found in the previous GMM 

studies. Third, even the low class separation considered in our study could be considered 

very high compared with the design, for example in Peugh and Fan (2013) study. The 

MD (multivariate distance) in our study is almost three times the largest distance in their 

study, which explains partly why in our study the indices performed well even with low 

class separation and a small sample size. The last but not the least important factor is the 

factor of the number of time points, with the increase of the number of time points from 

6 to 10, the distance between the initial time point and the turning point also increased. 

As a result, more possibility of different time point estimates could occur given the 
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increased distance, which might explain why the factor of the number of time points has 

a substantial impact on the class enumeration performance. 

4.4.1.2 Entropy-based Indices under the ML/EM Estimation 

At this point, few studies have thoroughly examined the performance of entropy-

based statistics in class enumeration with GMMs. The only study that thoroughly 

evaluated the entropy-based statistics was by Peugh and Pan (2012). However, the 

formula for calculating the entropy in their study was different from our study as they 

used the rescaled entropy, a default output in Mplus Version 7.2 for calculation. Our 

results showed that, the ICL-BIC consistently performed the best in extracting the 

correct number of growth trajectories, with the accuracy rate ranging from 93% up to 

100% in many design cells. The NEC and the CLC, however, did not perform as well as 

the ICL-BIC and showed strong tendency to extract more complex model with the 

increase in sample size particularly when the class separation changed from high to low. 

4.4.1.3 Likelihood Ratio Test under the ML/EM Estimation 

The findings regarding the performance of BLRT were consistent with the results 

in previous studies (Nylund et al., 2007; Peugh & Fan, 2012; Liu & Hancock, 2014). 

The BLRT could be used with confidence to identify heterogeneity in growth 

trajectories, but at the same time we have to be cautious over its tendency to extract false 

latent classes. In our results, the BLRT were very likely to choose the 3-class over-

extracted model in data conditions when the class separation is not sufficiently high plus 

a large number of time points. 
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4.4.2 Indices under the Bayesian Estimation 

The WAIC2 and DIC3 were newly proposed criteria under the Bayesian 

framework for model selection. To the best of our knowledge, their performance in class 

enumeration with GMM has never been evaluated. Our results indicated that the 

WAIC2, DIC3, and BIC were very useful criteria in enumerating the correct number of 

latent growth trajectories in PGMM. The performance of the BIC was consistent with 

what was found in previous studies on mixture models (Li, et al., 2009; Steele & 

Raftery, 2009). With the knowledge of accurate prior information on the model 

parameters, the three indices could be used with strong confidence in identifying the 

heterogeneity in growth trajectories. 

On the other hand, the AIC, LPML and PsBF should be used with caution as 

their tendency to extract spurious latent classes is detrimental when the number of time 

points is large but without a sufficiently large sample size, and even more damaging 

when there is very limited information over the prior distributions. 

4.4.3 Convergence Issues 

No consensus could be found on how to define and handle non-convergence 

issues in studies of Growth Mixture Models under the maximum likelihood estimation 

method, particularly with respect to how to address negative variances. For the over 

extracted models which were prone to having negative variances, Tofighi and Enders 

(2008) and Nylund et al. (2007) suggested to use highly restricted model in terms of 

class-varying parameters to avoid negative variances. However, such strategy did not 

work well in the study by Liu and Hancock (2014), and their study showed a large 
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discrepancy in convergence rate as compared to the GMM study by Nylund et al. (2007) 

due to the exclusion of replications that produced Heywood cases. Another approach 

was considering the problem harmless when the negative variance estimates were 

statistically insignificant from zero which were caused by random sampling fluctuation 

(Dillion, Kummar & Mulani, 1987; Gerbing & Anderson, 1987; Tolvanen, 2007).  

In our study, we employed the second approach because we would like to keep 

our model less constrained and allow for class-varying parameters. In addition, an in-

depth examination of the replications that bore negative variances revealed the estimates 

were not statistically significant from zero, a supporting massage that we could include 

those replications as proper solutions for our final result analysis. However, it should be 

noted that different data situations require a different approach, particularly when the 

negative variances were found to be statistically different from 0. 

4.4.4 Impact of the Design Factors 

Class separation had a significant impact on class enumeration accuracy under 

both ML/EM and Bayesian methods. The variation of the number of time points had a 

substantial effect on the accuracy in correct model identification, but such effect was 

restricted only to the ML/EM method. The accuracy of the class enumeration indices 

under the Bayesian method was highly sensitive to the prior distributions of the growth 

factor means. A higher level of accuracy in class enumeration could be obtained given a 

higher level of informativeness on model parameters, which, however, is not realistic in 

real data analysis.    
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4.4.5 Recommendations 

For empirical researchers who are interested in using a PGMM with unknown 

turning points for comparing growth rates for two or more periods, or for estimating the 

turning point and the associated heterogeneous growth processes, our study results show 

that the ML/EM or Bayesian estimator perform variably with regard to the accuracy in 

class enumeration depending on data scenarios. Overall, for the ML/EM method, the 

ICL-BIC is the most effective measure in correct model identification, followed by the 

CAIC; for the Bayesian method, the WAIC2 and DIC3 are the most accurate indices, 

and the BIC is acceptable to a certain extent. For ideal data scenarios where underlying 

heterogeneous populations are well separated, there is no substantial difference in using 

either the ML/EM or the Bayesian estimator with regard to their respective best 

performed enumeration indices. However, for data situations that involve poorly 

separated latent classes, under the ML/EM estimator, only the ICL-BIC is able to 

distinguish the latent trajectories regardless of sample size and measurement occasions; 

for the Bayesian method, the accuracy of the WAIC2, DIC3, and BIC depends on the 

degree of prior information (or knowledge) that researchers could possibly have to 

incorporate into the Bayesian model estimation. The more informative the priors are, the 

more accurate the class enumeration indices are in determining the correct number of 

growth trajectories. 
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CHAPTER V 

 IMPLICATIONS AND CONCLUSIONS 

Piecewise growth mixture model (PGMM) is a very flexible technique in 

analyzing longitudinal data in educational and behavioral research. The approach is 

particularly useful for the identification of heterogeneous growth trajectories with 

distinctive turning points that connects two or more different growth processes. When 

specifying a PGMM, the traditional approach relies on theoretical or design 

considerations to determine turning points a priori. However, such approach may not be 

always reasonable. For example, researchers often set the turning point at the time when 

intervention is given, however, the true turning point may occur after the intervention 

due to a delay in response to the intervention.  A less restrictive alternative is to use the 

piecewise growth mixture model with unknown turning points (Kohli et al., 2013), 

which allows researchers to estimate unknown turning points based on data. This 

approach often yields a more optimal functional form describing the patterns of the 

observed data over time. 

The present study investigated the performance of PGMMs with unknown 

turning points in three aspects: 1) the accuracy of commonly used enumeration indices in 

class enumeration, 2) accuracy of parameter estimates, and 3) individual classification 

accuracy. Two dominant estimation methods were compared, namely, the Bayesian 

estimation method via the Markov Chain Monte Carlo (MCMC) algorithm and the 

maximum likelihood estimation via the expectation maximization (EM) algorithm 

(ML/EM) in the Structural Equation Modeling (SEM) framework. 
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The present study had several significant findings. First, for the ML/EM method, 

among the three major categories of class enumeration indices, the ICL-BIC, an entropy-

based criterion, has been found to be the most useful index in correct model 

identification across all the data conditions under examination. Among the information-

based criteria (IC) statistics, the CAIC could generally identify the correct model in a 

higher percentage than the BIC, which was in turn higher than the other IC statistics, but 

the performance of these two indices was hampered when the data consist of poorly-

separated classes in combination with a large number of time points. As for the BLRT, a 

likelihood ratio test derivative, it is safe to use the index to identify heterogeneity in 

growth trajectories, but due caution should be paid to its tendency to extract false latent 

classes. For the Bayesian method, the WAIC2, DIC3, and BIC were found to be very 

useful criteria in extracting the correct number of latent classes. If the researchers 

happen to have accurate prior knowledge on the model parameters, those three indices 

could be used with strong confidence in class enumeration with PGMMs. However, 

conservativeness should be taken when using the AIC, LPML, and PsBF, as their 

tendency to over-extract false latent classes could be very serious when the number of 

time points is large and valid information over the prior distributions is unavailable. 

Second, regarding the accuracy in individual classification (i.e., the hit rate), the 

Bayesian method with informative priors gave generally the highest percentage of 

correct individual classification than the same method with data driven priors, which was 

slightly better than the ML/EM method. The Bayesian method with weakly informative 

priors was comparatively the least accurate in individual classifications. However, such 
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accuracy varied substantially depending on the class separation and the number of time 

points across the two estimation methods. 

Third, only the Bayesian method with informative priors can recover the true 

parameters in both classes to a reasonable degree. The Bayesian method with data driven 

priors and the ML/EM method were found to have difficulty in accurately retrieving the 

true parameter of the second slope of the second class. Comparatively speaking, the 

estimates for the parameters of class two is the least reliable when using the Bayesian 

approach with weakly informative priors. Difficulty was also found for both the 

Bayesian and ML/EM methods in estimating random effects. Both approaches tend to 

overestimate the variances of the random effects, with exception to the intercept, which 

was largely underestimated. 

The findings of the present study enhanced the understanding of the performance 

of a PGMM with unknown turning points estimated in both the ML/EM and Bayesian 

frameworks. Based on the results of the study, the following suggestions are worthy of 

consideration given that the researchers have similar data structure to our simulations. 

First, though the BIC has been generally recommended for class enumeration under both 

estimation methods, our study found that for the ML/EM method, the ICL-BIC is the 

most effective measure in identifying the correct number of latent classes; for the 

Bayesian method, the DIC3 could be used with confidence in correct model 

identification, followed by the WAIC2. The BIC should be used with caution as it shows 

substantial variability depending on the number of time points and class separation. 

Second, for the Bayesian estimation, the more accurate information the researchers have 



 

82 

 

 

for the prior distributions, the more reliable the results are for the class enumeration, 

estimation of the parameters, and individual classification.  

The findings of the study should be considered in light of the limitations. First, 

the present study assumed a two-piece linear by linear growth mixture model with one 

unknown turning point. However, a PGMM specification could be more complex with 

each piece taking up different functional forms connected by more than one turning 

point. Second, the present study used fixed measurement occasions for all individuals, 

and constrained turning point to be fixed within classes. Such restrictions are necessary 

under the SEM framework, but can be relaxed under the Bayesian estimation method.  

More complex data scenarios such as individually-varying measurement occasions, and 

randomly varying turning points within classes can be accommodated under the 

Bayesian framework. In the future, researchers could further investigate the performance 

of PGMMs with random turning point and varying and/or missing measurement 

occasions under the Bayesian framework. 
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APPENDIX A 

R PROGRAM FOR GENERATING PIECEWISE GROWTH MIXTURE DATA 

library (mnormt) 

library(reshape2) 

 

setwd('C:\\mixturedata\\High Separation\\SixP') 

source('writeDatafileR.txt') 

 

sim.lme.slopeCP<- function(G=2, nn=c(50,50), 

t0=c(seq(1,6,by=1)),mu.alpha=c(25,22.5), sigma.alpha=c(0.1,0.1), 

COV=COV1,mu.beta1g=c(-3.78, -4), sigma.beta1g=c(0.05, 0.05),mu.beta2g=c(-0.24, -

0.18), sigma.beta2g=c(0.05, 0.05), 

mu.taug=c(4.3,2.4), sigma.taug=c(0,0), sigma=1, p.zg=c(1,1)){   

dir.create(path = paste0( per1,".", per2,".", nsubj)) 

for (irep in 1:reps) {     

 if(length(mu.beta1g) != G) 

  stop("The length of 'mu.beta1g' has to be equal to the number of groups") 

 if(length(sigma.beta1g) != G) 

  stop("The length of 'sigma.beta1g' has to be equal to the number of 

groups") 

 if(length(sigma.beta2g) != G) 

  stop("The length of 'sigma.beta2g' has to be equal to the number of 

groups") 

 if(length(mu.taug) != G) 

  stop("The length of 'mu.taug' has to be equal to the number of groups") 

 if(length(sigma.taug) != G) 

  stop("The length of 'sigma.taug' has to be equal to the number of 

groups"y <- NULL; t=NULL;  id=NULL; g=NULL; ID=NULL 

 cumsubj<- c(0, cumsum(nn)) 

 n1 <-rep(0,G) 

nt=rep(length(t0),2)   

for(j in 1:G){ 

   n <- nn[j]   

 tau<- rnorm(n, mu.taug[j], sigma.taug[j]) 

ab<- rmnorm(n = n, mean = c(mu.alpha[j],mu.beta1g[j],mu.beta2g[j]), COV)          

alpha<- ab[,1] 

beta1 <- ab[,2] 

 beta2 <- ab[,3]     

n1[j] <-sum(rbinom(n,1,p.zg[j])) 

  if(n1[j] > 0){ 

 for (i in 1:n1[j]){ 

 t1 <- t0 * (t0 <= tau[i])+ tau[i] * (t0 > tau[i]) 
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 t2 <- (t0-tau[i]) * (t0 > tau[i]) 

 X <- cbind(rep(1, nt[j]), t1, t2) 

 y.part<- X%*%c(alpha[i], beta1[i], beta2[i]) + 

 rnorm(nt[j], 0, sigma)   

 y <- c(y, y.part) 

   } 

          }    

   

         t <- c(t, rep(t0, n))           

id<- c(id, rep(1:n, each=nt[j]))           

g <- c(g, rep(j, n*nt[j]))                 

ID <- c(ID, rep(1:n, each=nt[j])+cumsubj[j])           

S=max(ID)           

N=length(y) 

}    

      output.dat <- data.frame(y=y, t=t, ID=ID) 

      output.dat1 <- list(y=y, t=t, ID=ID, S=S, N=N) 

output.dat.long<- melt(output.dat, id.vars = c("ID", "t")) 

output.dat.wide<- dcast(output.dat.long, ID ~ t) 

writeDatafileR(output.dat1, paste0(per1,".", per2,".", nsubj, "/databugs", irep, ".txt")) 

write.table(output.dat.wide, paste0(per1,".", per2,".", nsubj, "/data", irep, ".txt"), 

row.names = F, col.names = F) 

      "/datalong", irep, ".txt"), row.names = F, col.names = F) 

      } 

  } 

 

COV1<- matrix(c(0.1,0.025,0,0.025,0.05,0.0175,0,0.0175,0.05),ncol=3) # high 

separation 

 

nsubj<- 300    ### sample size: 300/1000 

RepMe<- 6          ### number of repeated measures: 6/10  

per1 <- .5   ### mixing percentages: .5 & .5 or .75 & .25  

per2<- .5 

reps<- 200      ### replications  

dd<- sim.lme.slopeCP(G=2, nn=c(nsubj*per1,nsubj*per2), t0=c(seq(1,RepMe,by=1)), 

mu.alpha=c(25,22.5), sigma.alpha=c(0.1,0.1),COV=COV1,mu.beta1g=c(-3.78, 

 -4), sigma.beta1g=c(0.05, 0.05),mu.beta2g=c(-0.24, -0.18), sigma.beta2g=c(0.05, 

0.05),mu.taug=c(4.3,2.4), sigma.taug=c(0,0),sigma=1, p.zg=c(1,1)) 
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APPENDIX B 

USE THE MPLUSAUTOMATION PACKAGE TO GENERATE MPLUS INPUT 

FILES FOR FITTING A PIECEWISE GROWTH MIXTURE MODEL 

[[init]] 

iterators =  nsubj per1 per2 reps ; 

nsubj = 300 1000 ; 

per1 = 0.5; 

per2 = 0.5; 

reps = 1:200; 

filename = "data[[reps]]_C2.inp"; 

outputDirectory = C:/mixturedata/Mplus/6.1/output/C2/[[per1]].[[per2]].[[nsubj]]"; 

[[/init]] 

 

Title: C2-6.[[nsubj]].[[per1]].[[per2]]-data[[reps]]; 

  Data: 

file is "C:/mixturedata/Mplus/6.1/[[per1]].[[per2]].[[nsubj]]/dataw[[reps]].txt"; 

 

VARIABLE: 

  NAMES are ID t1-t6; 

  USEVARIABLES are t1-t6; 

  CLASSES = c(2); 

 

  ANALYSIS: 

  TYPE IS MIXTURE; 

  STARTS = 75 25; 

  K-1STARTS = 50 10; 

  LRTSTARTS = 0 0 100 20; 

  STITERATIONS = 50; 

  ITERATIONS = 5000; 

  SDITERATIONS = 250; 

  MITERATIONS = 1000;   

 

  MODEL: 

  %OVERALL% 

w1 BY t1-t6@1; 

w2 BY t1@0 t2@1 t3@2 t4@3 t5@4 t6@5; 

w3 BY t1*0(p1); 

w3 BY t2-t6 (p2-p6); 

  w1*(v1); 

  w2*(v2); 

  w3*(v3); 
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w1 WITH w2*; 

w1 WITH w3*; 

w2 WITH w3*; 

  [t1-t6@0]; 

t1-t6; 

 

  %c#1% 

w3 BY t1* (p1); 

w3 BY t2-t6 (p2-p6); 

  [w1*17.9](mw11); 

  [w2*-2.45](mw21); 

  [w3*1.785](mw31); 

 

  %c#2% 

w3 BY t1 (q1); 

w3 BY t2-t6 (q2-q6); 

  [w1*17.86](mw12); 

  [w2*-2.535](mw22); 

  [w3*1.965](mw32); 

 

  MODEL CONSTRAINT: 

   mw11 >mw12; 

NEW(gam1*3.6 gam2*1.75 b11 b21 b41 b12 b22 b42); 

  p1 = (sqrt((0-gam1)^2)); 

  p2 = (sqrt((1-gam1)^2)); 

  p3 = (sqrt((2-gam1)^2)); 

  p4 = (sqrt((3-gam1)^2)); 

  p5 = (sqrt((4-gam1)^2)); 

  p6 = (sqrt((5-gam1)^2)); 

  q1 = (sqrt((0-gam2)^2)); 

  q2 = (sqrt((1-gam2)^2)); 

  q3 = (sqrt((2-gam2)^2)); 

  q4 = (sqrt((3-gam2)^2)); 

  q5 = (sqrt((4-gam2)^2)); 

  q6 = (sqrt((5-gam2)^2)); 

  b11=mw11 + mw31*gam1; 

  b21=mw21-mw31; 

  b41=mw21 + mw31; 

  b12=mw12 + mw32*gam2; 

  b22=mw22-mw32; 

  b42=mw22 + mw32; 

 

  OUTPUT: 

  SAMPSTAT TECH11 TECH14 ; 
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  SAVEDATA: 

  FILE = 

"C:/mixturedata/Mplus/6.1/output/C2/[[per1]].[[per2]].[[nsubj]]/cmember[[reps]]

.dat"; 

   FORMAT IS F8.2; 

  SAVE = CPROBABILITIES; 
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APPENDIX C 

USE THE MPLUSAUTOMATION PACKAGE TO CALLMPLUS FOR FITTING A 

PIECEWISE GROWTH MIXTURE MODEL 

 

workdir<- switch(Sys.info()['sysname'],  

                  'Windows' = "C:/mixturedata/Mplus") 

 

setwd(workdir) 

 

createModels("HS_6p_C2_55.txt")   

 

savedir<- "C:/mixturedata/Mplus/6.1/output/C2/0.5.0.5.300" 

 

runModels(directory = savedir, filefilter = "C2.inp")   
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APPENDIX D 

R SYNTAX OF TWO-CLASS BAYESIAN MODEL 

library(rjags) 

library(foreign) 

library(coda) 

 

setwd('C:/mixturedata/6.1')   

setwd('0.5.0.5.300') 

modelstring=" 

model { 

pi<-3.141593 

for (i in 1:N) { 

y[i] ~ dnorm(mu[i], w) 

  mu[i] <- b[ID[i],G[ID[i]], 1]+(b[ID[i],G[ID[i]],2]*t[i])*step(r[ID[i],G[ID[i]]]-t[i]) 

           +b[ID[i],G[ID[i]],2]*r[ID[i],G[ID[i]]]*step(t[i]-r[ID[i],G[ID[i]]]) 

           +b[ID[i],G[ID[i]],3]*(t[i]-r[ID[i],G[ID[i]]])*step(t[i]-r[ID[i],G[ID[i]]])            

log.like[i]<- -0.5*log(2*pi)+0.5*log(w)-0.5*(y[i]-mu[i])*(y[i]-mu[i])*w 

like[i] <- exp(log.like[i]) 

 }   

for (s in 1:S) { 

for (k in 1:2) { 

b[s ,k , 1:3] ~ dmnorm(b.mu[k,1:3],  tau[1:3,1:3]) 

r[s,k] ~  dnorm(Omu.r[k], tau.r[k])  

 } 

 M[s] ~ dbern(prior) 

 G[s] <- M[s]+1 

 } 

#  prior for mixture probability vector    

tau [1:3,1:3] ~ dwish(Omega,10)      # the precsion matrix for random effects 

B1[1]~dnorm(-4,5) 

B1[2]~dnorm(-3.78,5.29) 

B2[1]~dnorm(-0.18,111) 

B2[2]~dnorm(-0.24,83) 

A[1]~dnorm(22.5,0.89) 

A[2]~dnorm(25,0.8) 

#  } 

b.mu[1:2,1] <-sort(A)   

b.mu[1:2,2]<-sort(B1)  

b.mu[1:2,3]<-B2  

Omu.r[1]~dnorm(2.4,8.3) 

Omu.r[2]~dnorm(4.3,4.65)  

prior ~ dbeta(0.5, 0.5) 
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tau.r[1]~dgamma(0.001, 0.001) 

tau.r[2]~dgamma(0.001, 0.001) 

w~dgamma(0.001, 0.001) 

e<-1/w      

} 

"  

writeLines (modelstring, con="C:/mixturedata/C2/info/C2_info.bug") 

filenames<-list.files()       

parameters =  c("b.mu","Omu.r", "e", "tau") 

bugs.output<- matrix(nrow = length(filenames), ncol = 27) 

G.output<- matrix(nrow = length(filenames), ncol = 300)    

gweke<- matrix(nrow = length(filenames), ncol = 9) 

heidel<-matrix(nrow = length(filenames), ncol = 9) 

fitstats<- matrix(nrow = length(filenames), ncol = 6) 

 

for (i in 1:length(filenames)){ 

dat<- read.csv(paste0('C:/mixturedata/6.1/0.5.0.5.300', '/data', i, '.csv'), header=T)  

  t=dat$t 

  ID=dat$ID 

  y=dat$y 

  N=NROW(y) 

  S=max(ID) 

  Omega=structure(.Data = c( 

    0.001, 0, 0, 

    0, 0.001, 0, 

    0, 0, 0.001), .Dim = c(3, 3)) 

dat<-list(t=t,ID=ID, y=y, N=N, S=S,Omega=Omega)          

burnInSteps = 10000        

nChains = 1 

thinSteps = 10              

nPerChain=40000             

  Model = jags.model ("C:/mixturedata/C2/info/C2_info.bug", data=dat, 

n.chains=nChains)    

cat("Burning in the MCMC chain...\n") 

update(Model, n.iter=burnInSteps) 

cat("Sampling from the final MCMC chain ... \n") 

codaSamples = coda.samples(Model, variable.names=c(parameters, "like", "G"),   

n.iter=nPerChain,thin=thinSteps )      

 

subsample<-codaSamples[,c(301:309)]   ### sub sample of omu.r, b.mu, e 

 

like<- matrix(nrow = 4000, ncol = 300)      

like_all<- codaSamples[,c(310:2109)] 
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for (L in 1:4000){ 

  like_1<-do.call(rbind,like_all[L,] ) 

likes<-matrix(like_1, nrow=6,ncol=300) 

  R <- apply(likes, 2, prod) 

like[L,]<-R 

  } 

   Deviance <--2*mean(apply(like,1, function(s) sum(log(s)))) 

dm<-21 

  AIC <- Deviance + dm*2 

  BIC <- Deviance + dm*log(max(ID))      

  DIC3= 2*Deviance + 2*sum(log(colMeans(like))) 

  CPO =  1/colMeans(1/like) 

  LPML= sum(log(CPO))       

lpd=log(colMeans(like)) 

p_waic=apply(log(like),2,var) 

  elpd1_i=lpd-p_waic 

  waic1= -2* sum(elpd1_i)     

logPsBF=sum(log(CPO))      

b.tau<- rbind(matrix((summary(codaSamples)$stat [c(2110:2118), 1]), 

ncol=3,byrow=T))    

b.Sigma<-solve(b.tau) 

b.sigma<-as.vector(b.Sigma)        

subcodaS<- summary(codaSamples)$stat[c(301:309),c(1:2)]      

par<-c(subcodaS,b.sigma)  

bugs.output[i,]<- par #c(summary(subcodaS)$stat[,1])    

G.output[i,] <- c(summary(codaSamples)$stat[c(1:300),1] )    

fitstats[i,]<-c(Deviance, AIC, BIC, DIC3, waic1, LPML)      

geweke.vec<- geweke.diag(subsample)[[1]]$z  

heidel.vec<- heidel.diag(subsample)[[1]][, 6]    

gweke[i,]<- geweke.vec 

heidel[i,]<-heidel.vec 

} 

colnames(bugs.output)<("r1","r2","a1","a2","b11","b12","b21","b22","e","sd.r1","sd.r2"

,"sd.a1","sd.a2","sd.b11","sd.b12","sd.b21","sd.b22", "sd.e","taua", 

"tauab1","tauab2","taub1a","taub1","taub1b2","taub2a","taub2b1","taub2") 

colnames(gweke) <- names(geweke.vec)  

colnames(heidel) <- names(heidel.vec)  

colnames(fitstats) <- c("Deviance","AIC", "BIC","DIC3","WAIC2", "LPML" )     

 

write.csv(bugs.output,file='C:/mixturedata/C2/info/ParMean_6.1_55300_1.csv') 

write.csv(gweke,file='C:/mixturedata/C2/info/Geweke_6.1_55300_1.csv') 

write.csv(heidel,file='C:/mixturedata/C2/info/Heidel_6.1_55300_1.csv') 

write.csv(G.output,file='C:/mixturedata/C2/info/G_6.1_55300_1.csv') 

write.csv(fitstats,file='C:/mixturedata/C2/info/fit_6.1_55300_1.csv') 




