
DYNAMIC VOLTAGE AND FREQUENCY SCALING TECHNIQUES FOR

CHIP MULTIPROCESSOR DESIGNS

A Dissertation

by

JAE YEON WON

Submitted to the Office of Graduate and Professional Studies of
Texas A&M University

in partial fulfillment of the requirements for the degree of

DOCTOR OF PHILOSOPHY

Chair of Committee, Jiang Hu
Co-Chair of Committee, Paul V. Gratz
Committee Members, Le Xie

Radu Stoleru
Head of Department, Miroslav Begovic

August 2015

Major Subject: Computer Engineering

Copyright 2015 Jae Yeon Won

ABSTRACT

Due to chip power density limitations as well as the recent breakdown of Den-

nard’s Scalingover the past decade, performance growth in microprocessor design

has largely been driven by core scaling. These trends have led to Chip Multi-

Processor(CMP) designs, currently with tens of cores,and expected to grow to the

thousands in the pursuit of exascale computing.The more complicated CMP de-

sign is more leading power consumption relatively in computer architecture. The

increased power consumption generates thermal issues, and so performance degrada-

tion. Therefore, it is certain that power efficient algorithm in CMP and main memory

are essential. For the power efficiency, we focus on dynamic voltage/frequency scaling

(DVFS) techniques for CMP and main memory.

In the first work, we focus on the ”uncore”, consisting of an on-chip communica-

tion fabric and shared LLC in CMP. The uncore now occupies as much as 30% of the

overall die area, which is not negligible in CMP design, but has rarely researched.

We find there are predictable patterns in uncore utility which point towards the

potential of a proactive approach to uncore power management. In this work, we

utilize artificial intelligence principles to proactively leverage uncore utility pattern

prediction via an Artificial Neural Network (ANN).

Even though the uncore takes non-negligible portion of CMP power consumption,

processor cores still exist as major power consumers. For core DVFS, We explore a

novel approach with the potential to achieve synergistic energy-savings and perfor-

mance gain in chip multiprocessors (CMPs). In current designs, performance must

typically be traded-off to achieve energy savings or, conversely, performance gains

come with significant energy overhead. Resources shared by processor cores, such as

ii

on-chip interconnect and shared memory, play an increasingly critical role in deter-

mining the overall CMP performance. Our key observation is that per-core DVFS

can be used as a client regulation mechanism for the shared resources. Based on this

observation, we propose a new DVFS technique inspired by TCP Vegas, a congestion

control protocol from the IP-networking domain.

In addition to uncore in CMP, main memory is also critical shared resource in

total system. As uncore is critical resource for CMP performance while occupying

critical portion of total CMP energy consumed, main memory is also critical for

total performance and accounts for large fraction of total energy consumption. Most

conventional approaches focused on utilization of cores and memory only for memory

power management. We found, however, the uncore plays an important role of total

system performance and its utilization must be considered as well for memory power

management. From the observation, we propose shared resource utilization aware

power management technique for main memory. Our technique chooses low V/F level

of memory for some congested case in uncore, and so derives negligible performance

degradation while saving more energy by the low V/F level. We also proposed

coordination policies to avoid oscillation issues among individual DVFS techniques

(i.e. over energy saving or over performance increment).

Full system simulations on PARSEC benchmarks show that our coordinated tech-

nique reduces total energy dissipation by over 47% across all benchmarks with less

than 2.3% performance degradation.

iii

DEDICATION

To my wife

iv

ACKNOWLEDGEMENTS

First of all, I would like to give my appreciations to my advisers, Dr. Jiang Hu

and Dr. Paul Gratz. I was very grateful to have had working with them during my

doctoral studies. Their advises were very helpful for my researches and even beyond

researches for my future life. Especially, I would like to take this chance to thank

Dr. Jiang Hu for taking care of my family when I had my little kid. Also, I would

like to thank my committee members, Dr. Le Xie and Dr. Radu Stoleru. Their

comments and advises about my dissertation made my dissertation and researches

more concrete and robust.

My appreciations go to all my friends in our research group. Also, I thank Chia-

Yu Wu and Dr. Yong Zhang for your advises and discussions. I could have pleasant

life during my studies at Texas A&M through the discussions with you.

I also thank my father and mother to encourage me pursuing my doctoral degree.

Sincerely, I appreciate for your dedication of your whole life for me. Also, I would

like to thank my sweeties, Ashley and Aiden to wake me up with big smiles every

day. From deep down in my heart, I would like to give special thanks to my wife,

Eunyoung Lee for your dedicated love to me.

Finally, the fund supporting from Korean government, National Institute for

International Education is acknowledged.

v

NOMENCLATURE

DVFS Dynamic Voltage Frequency Scaling

CMP Chip Multi-processor

V Voltage

F Frequency

ANN Artificial Neural Network

PI Proportional Integral

LLC Last Level Cache

PCU Power Control Unit

ED Energy Delay product

E Energy

D Delay(Run-Time)

RTT Round Trip Time

vi

TABLE OF CONTENTS

Page

ABSTRACT . ii

DEDICATION . iv

ACKNOWLEDGEMENTS . v

NOMENCLATURE . vi

TABLE OF CONTENTS . vii

LIST OF FIGURES . ix

LIST OF TABLES . xi

1. INTRODUCTION . 1

2. BACKGROUND AND RELATED WORK 8

2.1 Dynamic Voltage Frequency Scaling on CMP and Related Work . . . 8
2.2 Uncore Power Management . 11

2.2.1 PI Controller . 13
2.3 Concept of Artificial Neural Networks 13
2.4 Quality of Service in CMP . 16

3. ONLINE LEARNING IN ARTIFICIAL NEURAL NETWORKS FOR IMP
UNCORE POWER MANAGEMENT . 18

3.1 Tandem ANN and PI Control . 18
3.1.1 ANN Controller Architecture 18
3.1.2 ANN Learning . 21
3.1.3 ANN-PI Tandem Control . 28

3.2 Design Implementation . 30
3.3 Evaluation . 32

3.3.1 Experiment Setup . 32
3.3.2 Experimental Evaluation . 34

3.4 Conclusions . 42

vii

4. ENERGY SAVINGS WITHOUT PERFORMANCE LOSS THROUGH RE-
SOURCE SHARING DRIVEN POWER MANAGEMENT 44

4.1 Resource Sharing Driven Per-Core DVFS 44
4.1.1 TCP Vegas in Network Control 45
4.1.2 Fairness though TCP Vegas 47
4.1.3 TCP-Vegas Based DVFS Control 48

4.2 Experimental Results . 50
4.2.1 Experiment Setup . 50
4.2.2 PARSEC Application Cases and Analysis 54

4.3 Conclusion . 59

5. COORDINATED DYNAMIC VOLTAGE FREQUENCY SCALING TECH-
NIQUE FOR MAIN MEMORY . 60

5.1 Coordinated Memory DVFS with CMP Power Management 60
5.1.1 Shared Resource Utilization Aware Memory DVFS 60
5.1.2 Coordinated DVFS policy . 66

5.2 Experimental Results . 70
5.2.1 Experiment Setup . 70
5.2.2 PARSEC Application Cases and Analysis of Coordinated DVFS 73

6. CONCLUSION AND FUTURE WORK 84

6.1 Conclusion . 84

REFERENCES . 85

viii

LIST OF FIGURES

FIGURE Page

2.1 16-core CMP in a 4 × 4 2D mesh array. The darkened tile indicates
location of the Power Control Unit (PCU). The dashed lines indicate
paths traversing the NoC [62]. 12

2.2 Model of a single neuron [62]. 14

2.3 Multi-layer feed-forward ANN [62]. 16

3.1 Architecture of the uncore DVFS control system [62]. 19

3.2 Proposed 3-layer feed-forward ANN [62]. 20

3.3 Input and target sets for ANN learning [62]. 22

3.4 Bootstrapping learning applied to the Bodytrack application of the
PARSEC benchmark suite [62]. 25

3.5 Pipelined monitoring and control intervals [62]. 32

3.6 Overall full-system experimental results [62]. 37

3.7 Pareto optimal points and normalized energy-normalized run-time
curves for PI control-, offline-, and bootstrapped learning-based meth-
ods [62]. 38

3.8 Effect of online self-adaptation. ED: energy×delay product [62]. . . . 39

3.9 ANN-PI tandem control based on offline supervised learning [62]. . . 40

3.10 The effect of variable learning gain [62]. 41

4.1 A 16-core CMP with on-chip network and per-core DVFS. Orange
(white) cores are in a high (low) voltage/frequency state. Red circles
are network routers experiencing congestion [63]. 46

4.2 Full-system simulation results of single application PARSEC bench-
mark suite [63]. 51

ix

4.3 Multi-applications experiment results with uncore at the maximum
V/F [63]. 57

4.4 Comparison with static core V/F levels in single-application cases [63]. 58

5.1 The number of instructions executed in canneal 62

5.2 Conventional main memory DVFS. 63

5.3 Our shared resource congestion aware memory DVFS. 65

5.4 Energy distribution of PARSEC [3] applications in CMP and main
memory. 73

5.5 Full-system simulation results of PARSEC benchmark suite [3]. . . . 74

5.6 Full-system simulation results of PARSEC benchmark suite [3] (Un-
core frequency is fixed to maximum frequency. 77

5.7 Full-system simulation results of PARSEC benchmark suite [3] (Fre-
quencies of cores and uncore are fixed to maximum). 79

5.8 Comparison with static memory V/F levels (Frequencies of cores and
uncore are fixed to maximum). 81

5.9 Cache coherence traffic in the shared source 82

x

LIST OF TABLES

TABLE Page

3.1 Rules governing the choice between the ANN controller and the PI
controller decision under ANN-centric tandem control. Parameter ēi
represents the error occurred in previous V/F selections, and ξi repre-
sents the consistency between the ANN and PI controller decisions [62]. 29

3.2 ANN control computing runtime in PCU clock cycles [62]. 31

3.3 System parameters used for full-system simulations [62]. 33

3.4 ANN configuration parameters [62]. 35

4.1 Configuration and parameters of the experiment platform [63]. 52

4.2 Standard deviation (σ) and mean of RTTs from our TCP-DVFS, nor-
malized with respect to results from cores at the max V/F level [63]. 56

5.1 Configuration and parameters of the experiment platform. 71

xi

1. INTRODUCTION

Historically, advances in transistor process technology yielded scaling perfor-

mance and energy efficiency together with scaling transistor density, a phenomenon

known as Dennard scaling. Recently, however, Dennard’s scaling [16] has broken

down, leading to much tighter constraints on power consumption with each passing

process technology generation. As a result, industry and academia have shifted to

many-core, chip-multiprocessor (CMP) designs as a means to utilize increasing tran-

sistor density to efficiently gain performance. As scaling continues, however, energy

and power management promise to be continuing concerns.

The “uncore” in modern CMPs, consisting of an on-chip communication fabric

and shared LLC, now occupies as much as 30% of the overall die area [33]. Even

though the die area of the uncore is smaller than CMP cores and their own private

caches, the portion of the uncore, 30%, is not negligible in CMP power consump-

tion. Also, uncore plays an important role of total system performance as a shared

resource of cores and bottle-neck between CMP cores and external memory. Regard-

ing that current work-load varies from core-intensive to uncore or memory-intensive,

uncore becomes more critical resource for some far uncore, memory or both-intensive

applications.

With the importance of uncore power management, the power management for

the CMP cores still exist as a main concern regarding that 70% of the overall die

area is responsible for CMP cores and private caches. Also with increasing core-

counts in CMP designs, the shared resources, such as interconnect and cache, have

become critical to the overall performance. Properly allocating these shared resources

among threads or tasks is essential for efficient performance scalability. The goal in

1

this context is to ensure that all clients (threads or tasks) achieve completion with

low target delays and by doing so receive fair access to shared resources on chip.

Interestingly, we find that there is a synergy between power management policies and

techniques that achieve fair resource allocation for concurrently executing threads.

In addition to the CMP, main memory in computer architectures is usually

adopted as a cost efficient memory device compared to cache memory [25]. Chip

Multi-processor(CMP) includes multiple cores, private caches for each core and a

shared cache for all cores. Even though cache memory is used as the fastest memory

device, cache memory is not cost efficient to handle large size of data. To implement

cache memory, it takes larger area than main memory. In other words, main memory

plays an important role as a faster memory device to handle larger data. Certain

types of main memory such as DRAM keep refreshing to hold data and takes com-

parable portion of energy consumption to CMP [2]. Therefore, power management

for the main memory is necessary as much as CMP power management. In CMP

power management, shared resource has been proven as critical resource for high

performance and energy consumption [9, 62]. As such, main memory is also shared

by all cores and shared cache of CMP, thus important for total performance and

accounts for large fraction of total energy consumption.

To struggle with the power issue in CMP architecture, many researches has

been conducted. Our first work focuses on dynamic voltage and frequency scal-

ing (DVFS) for the CMP uncore. Although DVFS has been extensively studied in

the literature [6, 22, 41, 47, 52, 53, 56], they have paid less attention on the uncore’s

power consumption. That is, they are restricted to either core DVFS or DVFS volt-

age/frequency (V/F) domains partitioning around cores, merely including a slice of

the uncore. Classifying the uncore into separated V/F domains incurs large per-

formance overhead in communication, as packets must pass between different V/F

2

domains, experiencing synchronization delays at each hop.

In this work, we consider a different, but practical scenario where the entire

uncore comprises a single V/F domain. In such setting, data need not experi-

ence synchronization delays in the network-on-chip (NoC) fabric interconnecting the

cores. A few recent works seek to address uncore and/or NoC power management via

DVFS [39, 10, 9]. These approaches are largely reactive, i.e., they set V/F state based

purely upon past uncore state. Such approach works well only when the uncore load

and its performance impact change slowly. In realistic applications, however, uncore

load and its utility (i.e. the system’s performance sensitivity to the uncore) often

have abrupt changes. A reactive controller, such as a rule-based [39] or Proportional

Integral (PI) controller [10, 9], may tune the uncore V/F to a higher level due to

high load or poor performance observed in the previous interval. Utility, however,

can suddenly change in the next interval, and a V/F increase consequently wastes

energy that could otherwise be saved.

To improve upon this behavior requires a more proactive approach – a tech-

nique which can predict the load and make corresponding decisions. This requires

the controller to maintain knowledge that associates past application behavior pat-

terns with future uncore utility. In this work, we explore the use of an Artificial

Neural Network-based (ANN) technique to achieve the desired proactive/predictive

control [43]. ANNs are a general neural model derived from biological systems, that

can be applied to approximately classify nonlinear and dynamic behaviors. As such,

ANNs are particularly useful in identifying patterns in a current system state and

predicting future behavior accordingly. ANNs have been used in branch predic-

tion [61] and predicting traffic congestion hotspots in NoCs [31]. For the purposes

of this work, we propose that the ANN is fed by the individual measured state of

each core, together with some history of recent state in those cores. Based upon this

3

input, the ANN will predict the future utility of the uncore, and the V/F state will

be traced and set appropriately. This predictive control scheme allows faster, more

proactive responses to abrupt state changes. The ANN’s multi-input control is a

clear advantage versus the single-input PI control [10] where information loss occurs

during the data aggregation.

ANNs obtain their predictive ability via training of their internal parameters

(weights). Thus, in typical ANN applications, a priori training set including inputs

and desired output is required. For typical general-purpose processor implemen-

tations, difficulties exist in developing representative training sets, as this requires

offline analysis of captive applications assumed to be similar to the expected work-

load of the processor. Architecting an efficient training mechanism without a priori

knowledge of the workload’s behavior is a significant challenge which we address in

this work. We propose a novel technique in which a simple PI controller is used

as a secondary classifier during a purely online training phase, dynamically pulling

the the ANN up (by its bootstraps) to accurate prediction. Since the PI controller

itself has been shown to produce reasonable power management, we propose that

both the ANN and the PI controller work in tandem once the ANN training phase

is complete. In this work we investigate novel policies determining which controller,

the ANN or PI, should decide the next V/F state of the uncore, as well as when and

how to modulate ANN online training during system runtime.

In addition to the uncore power management technique through DVFS, our work

also considers DVFS techniques for cores and private caches as well. We observe that

power-efficiency and shared resource management can be synergistic. There are two

mechanisms by which this is true: First, and most obviously, shared resource manage-

ment can balance resource utilization among threads and tasks, improving system’s

performance without impacting energy consumption and thus improving efficiency;

4

Second, Power management techniques, such as dynamic voltage/frequency scaling

(DVFS) can be used as a means to implement shared resource management. Thus

the shared resource management policy actually drives power management policy in

a direct sense. For example, when an on-chip network is congested, decreasing a par-

ticular core’s voltage/frequency reduces its packet injection and therefore improves

the network quality of service for the other cores. If well managed, core performance

may not be impacted as it must wait for data from the congested network in any

event. Further, the reduced congestion can allow other cores which may be more per-

formance critical to make greater forward progress by reducing network and memory

latency.

Based on this observation, we develop a simple, low-overhead, per-core DVFS

policy inspired by TCP Vegas, a network congestion control technique that aims at

ensuring small queuing delays. Simulations on PARSEC benchmarks indicate that

our policy can reduce energy dissipation by 43% on average without performance

degradation (or even performance increment). This work also compares our technique

to state-of-art- methodology and shows that our technique is more efficient than other

techniques.

Beyond CMP power management techniques, many researches have been con-

ducted for memory power management to reduce entire power consumption. Deng

and et al. proposed active low-power modes for main memory through dynamic

voltage frequency scaling [15]. Also many researches on power management of main

memory have been proposed [12, 14, 45]. However, the researches focus on main

memory only and do not consider with CMP power management. This would occur

too much energy saving with much performance degradation or less energy saving

due to over V/F scale. To solve this issue, a coordinated DVFS technique of cores

in CMP and main memory [13]. The work solves oscillation issue of operating V/F

5

level without over energy saving. In this work, we explore coordinated memory DVFS

techniques to maximize total energy saving. We do not consider only cores in CMP

and main memory, but also shared resource in CMP. In general, lots of requests to

main memory requires high voltage(V) and frequency(F) level to maximize system

performance even though high V/F level derives less energy saving. Likewise, low

V/F level is preferred when there are few requests to main memory for more energy

saving. The low V/F level is sufficient to process few accesses of main memory with

less performance degradation. However, we found that high V/F level to process

lots of requests to main memory sometimes leads performance degradation while less

energy saving. In this case, actually, the high V/F level generates congestion in un-

core or memory controller, more requests to main memory or more cache coherence

traffic. Our technique chooses low V/F level for the case, and so derives performance

increment(or less performance degradation) by solving congestion while saving more

energy by low V/F level.

The individual contributions of this work are as follows:

• We develop an ANN-based mechanism for uncore power management based

upon offline training.

• We augment the offline-trained ANN controller with online self-adaptation and

show that it improves the energy-delay product by 8% compared to a state-of-

the-art previous work [9].

• We propose a novel, purely-online, tandem ANN-PI power manager, which

further improves energy-delay product by 27% versus prior techniques [9] while

removing the need for offline training. Compared to constantly high uncore

V/F, the performance degradation from our approach is less than 3%.

6

• We develop resource sharing driven DVFS technique for CMP cores power

management and show that it improves performance by 2.9% with 43% energy

savings compared to maximum frequency simulations.

• Our proposed cores power management policy is compared to a conventional

work [24] and show that our work improves performance by 19.2% with similar

energy savings.

• We propose coordinated uncore power management policy to cope with other

DVFS policies.

• We propose shared resource aware power management technique for memory

and shows 66% energy saving of main memory without no performance degra-

dation (18% energy saving of total energy).

• Our proposed memory DVFS technique is compared to a conventional work [15]

and shows that our work saves 24% more energy and improves performance by

3.5%.

• We propose coordinated policy among cores, uncore and memory and compared

to a conventional work [13]. Our work shows that our work saves 12% more

energy and improves performance by 0.4%.

Our full system simulations on PARSEC benchmarks shows 66% energy saving

of main memory and 18% energy saving of total energy consumption. In addition to

solely main memory DVFS, our coordinated DVFS technique for core, uncore and

main memory shows 47% energy saving with less than 2.3% performance degradation.

7

2. BACKGROUND AND RELATED WORK

2.1 Dynamic Voltage Frequency Scaling on CMP and Related Work

Many works utilize Dynamic Voltage and Frequency Scaling (DVFS) techniques

to save energy; often, these schemes are independently applied to either the NoC or

onto the cores to save power, but not holistically. The earliest work, utilizing only

dynamic voltage scaling (DVS) by Shang et al.[56] regulated the voltage of individ-

ual NoC links independently to save power during periods of link under-utilization.

Soteriou et al. also explored DVFS regulation of links in NoCs. In this work DVFS-

specific instructions were inserted into a given application, based upon profiling, to

instruct the voltage-frequency regulation of links during run-time [58]. Son et al.

proposed simultaneous CPU-NoC link DVFS for a specific application – parallel lin-

ear system solving [57]. Luo, et al., combined NoC link DVS with task scheduling

of embedded systems [41]. Ogras, et al., applied state-space control for DVFS on

tile-based designs where the NoC was partitioned and associated with processing

cores [52]. Mishra et al. examined DVFS in NoC router designs [47]. The work of

Guang et al. [22] partitioned a multi-core chip into voltage/frequency islands and

its NoC was also regionally mapped onto those islands. They proposed a rule-based

DVFS control for each island according to queue occupancy. Next, Rahimi, et al.,

proposed another rule-based DVFS based on both link utilization and router queue

occupancy [53]. Bogdan, et al., described a DVFS approach based on a fractional

state model, where the NoC was also partitioned to be associated with each volt-

age/frequency island [6]. There are very few previous works addressing DVFS for

caches. Flautner et al. presented one such work, which applied DVS to individual

cache lines [19].

8

These previous works all partition the NoC or caches into fine-grained volt-

age/frequency domains. Another realistic scenario is that the NoC, or uncore, con-

stitutes a single V/F domain, such that the interfacing overhead can be avoided [39,

10, 9]. Liang and Jantsch [39] tuned the voltage/frequency state of the NoC accord-

ing to network load as predicted by injection rate. Network congestion, however, is

often a poor indicator of the entire chip’s performance. Further, the DVFS policy in

this work is a simple rule-based approach. To capture the impact of the uncore upon

overall system performance, Chen, et al. [10], proposed an approach using AMAT

(Average Memory Access Time). They employed a PI (Proportional and Integral)

controller to implement their DVFS policy. In a recent work, Chen et al. [9] devel-

oped the concept of critical latency, the product of LLC throughput demand and the

latency of the LLC and NoC, as an expression of uncore utility. This formulation

brings significantly more energy savings than any prior work to-date. A dynamic

reference technique was introduced for the PI controller which also facilitates addi-

tional energy-efficiency improvements. Collectively, these three approaches can be

broadly classified as reactive, i.e. the V/F state for the next control interval is set

based upon the current state and some limited amount of history. In this work, we

propose a proactive mechanism, in which an ANN is used to detect program phase

patterns exhibited in uncore utilization demands. Through finer ANN-based predic-

tions, the controller can make the uncore V/F level better trace the uncore utility

changes, and discover opportunities for additional energy savings without degrading

the performance of the uncore.

Bitirgen and et al. examined the use of an ANN to manage shared resource

allocation in a multicore environment [5]. They show an ANN can be an effective

tool for complex management problems within a given hardware budget. Unlike

this prior work, here we examine the use of an ANN for a different problem power

9

management of the LLC and interconnect. Further, we explore the means of using

a secondary classifier to provide online training and collaborative control.

Main memory is well known as a cost efficient and essential component in com-

puter architecture. And, its power consumption compared to CMP (cores and un-

core) takes large portion and the system requires power management for the mem-

ory parts. One work about memory power management technique utilizes estimated

time for certain work-load [15]. The policy selects memory V/F level based on the

estimated time for the certain work-load. They proposed an OS-level power manage-

ment technique for memory through run-time estimation and used simplied model

for accurate estimation.

Some work also focus on Quality-of-Service to enhance fairness and entire perfor-

mance. Memory QoS techniques include fair queuing scheduling for its access [50], re-

quest grouping [49] and fairness-driven source throttling [17]. Cache QoS is obtained

by enforcing priority-based capacity limit among threads [27] and access bandwidth

allocation [51]. Coordinated QoS among NoC, cache and memory is studied in [37].

We proposed an on-chip memory power management technique and utilized mea-

sured performance counters for cores, shared memory and memory. We observed

performance of the shared resource beyong memory itself affects the performance of

memory. Thus, our technique which is based on measurement can be used in any

architecture.

Many researches about independent power management technique have been pro-

posed [26, 52] Even though the techniques are efficient for the specific component, it

would affect other power management techniques for other connected components.

Without awareness of other power management results, each techniques would over-

react and oscillate between too far up and down.

To avoid the oscillation issues, a coordinated power management technique has

10

been proposed [13]. The work presented the coordinated power management for

cores and main memory. In the work, they proposed new policy for cores’ DVFS

technique while using a pre-proposed technique for memory power management. In

addition to new technique for core power management, they proposed coordinated

DVFS through awareness of results of other power management techniques. They

suggested OS-level power management policy which has longer control interval(i.e.

5ms of epoch) and used simplied model for more accurate estimation of processing

time. Also, they assumed all running applications are single threaded application for

more accurate estimation of run-time.

In our proposed work, we proposed a coordinated DVFS technique for cores and

memory and additionaly we also considered shared resource, uncore, power manage-

ment. Uncore takes large portion of energy consumption in CMPs and so is critical

for power management of entire CMPs [9, 42, 62]. Also, uncore affects to other

components’ power management. In our work, we proposed an on-chip power man-

agement technique which is faster than OS-level power management. Our policy

can also be used in any architectures because it is based on measurement of control

interval.

2.2 Uncore Power Management

We consider a common case in multicore processor design where the entire chip is

composed of an array of identically-sized tiles. Each tile contains a processor core and

private caches. The communication fabric is a 2D mesh NoC with one router residing

in each tile. A shared LLC is partitioned into slices and distributed uniformly among

these tiles. The NoC and the LLC together are referred to as the uncore system. We

further assume that the CMP contains a Power Control Unit (PCU) [11]: a small

micro-controller with direct control of the uncore’s V/F state via memory-mapped

11

micro-architectural registers, which emulates our proposed power management policy

in software. This PCU is associated with one of the central tiles in the 2D mesh as

indicated by the darkened tile #6 of Figure 2.1.

0

4

8

12

1

5

9

13

2

6

10

14

3

7

11

15

Figure 2.1: 16-core CMP in a 4 × 4 2D mesh array. The darkened tile indicates
location of the Power Control Unit (PCU). The dashed lines indicate paths traversing
the NoC [62].

Similar to the design originally proposed by Chen et al. [10, 9], we assume that

data (i.e. L1 Miss rate, the L2 Miss rate, etc.) used in measuring uncore utility, are

encoded into the unused bits in the packet headers being routed onto the NoC. This

data is opportunistically collected when these packets pass through the router con-

taining the PCU (Figure 2.1). This approach minimizes the overhead of monitoring,

since no extra status packets are created, and there is no need for a secondary overlay

status network to convey statistical uncore utility information. Although this implies

some staleness in the collection of status data, Chen et al. found that, with appropri-

ate extrapolation, the data obtained produces results nearly indistinguishable from

omniscient data collection for the 50K-cycle control intervals [10].

12

2.2.1 PI Controller

As a basis of comparison and as a sub-component of our design we also utilize

a proportional-integral (PI) controller [10, 9]. A PI controller has two components,

the proportional “P” component calculates error, et, as the difference between the

reference value and measured output in a closed loop. While the P component

achieves steady-state rapidly, it is highly sensitive to noise and thus can be vulnerable

to multi-core system input patterns which can change dynamically. To increase

robustness, the integral “I” of past error is added in a weighted sum. The final

output, ut of the controller is calculated as shown in Equation 2.1. Kp and Ki are

the proportional and integral error gain, respectively, and are typically determined

empirically.

ut = Kpet +Ki

t∑
k=1

ek (2.1)

2.3 Concept of Artificial Neural Networks

An ANN is an information processing paradigm, inspired by biological neural

networks, that attempts to capture the learning behavior, response behavior and

general functionality of a biological central nervous system, so as to emulate a form

of intelligence artificially. An ANN consists of computation nodes called neurons

and interconnections between them, called synapses. ANNs are used to determine

relationships between sets of input data to sets of output data, so as to identify and

understand patterns.

ANN networks are usually organized in layers of neurons, where information

processed from each subsequent layer is fed as an input to the next layer, until the

last layer computes a useful result. This model, employed in this work, is known

as the multi-layer perceptron ANN. A typical single neuron model is depicted in

13

...



u

x1

x2

x3

x4 xn

w1

y

w2

w3

w4 wn

Figure 2.2: Model of a single neuron [62].

Figure 2.2, and is defined by Equation 2.2 [43]:

y = θ

(
n∑
j=1

wjxj − u

)
(2.2)

In this equation, x1, x2, · · · , xn are its inputs, w1, w2, · · · , wn are the weight param-

eters, u is the threshold parameter, θ is the activation function and y is its output.

The activation function can take various forms, e.g. if θ is a step function, the output

changes from 0 to 1 when the weighted sum of the inputs is exceeds a threshold u.

While single neurons can perform classification functions based upon their inputs,

this function is limited to linearly separable patterns [46]. Multi-level networks of

these perceptron models, i.e. ANNs, do not have this limitation [28]. Here, each

neuron is treated as a node, forming directed graph with input and output edges.

An example ANN is illustrated in Figure 2.3, where each circle represents a neuron.

The ANN in Figure 2.3 does not contain any cycles, and is therefore called a feed-

forward ANN. Other ANN variants exist which have cycles, however, we do not

14

consider them in this work, so as to reduce complexity.

An ANN is a very flexible framework, capable of modeling many different and

complex systems, through configuration of its topology, its activation functions and

by tuning its parameters. When the ANN is employed as a controller, its output is

the control variable and its inputs are from the states/outputs of the system to be

controlled. Through a learning procedure, the ANN weights are tuned to associate

certain input patterns with a desired output(s).

There are two general forms of ANN learning algorithms: supervised and unsu-

pervised. Under supervised learning, the ANN is typically trained iteratively with a

data set that has known solutions starting from an arbitrary set of parameters. In

each iteration, the ANN output is compared to the known solution, and the param-

eters are tuned such that the difference between them is reduced or converges, i.e.

they form a “good match.” For the simplest ANN, one that has a single neuron,

each input weight wj is updated by

wj(t+ 1) = wj(t) + g · (d− y) · xj (2.3)

where d is the known solution, g (0.0 < g < 1.0) is a learning gain factor and t

indicates iteration index.

For a multi-layer network, the learning procedure includes two passes of backward

traversals along the network, from the output(s) to the inputs. The errors are back-

propagated in the first traversal and the edge weights are updated during the second

traversal [23]. We use a 2-layer ANN topology in Figure 2.3, as an example, to

illustrate this process. The error, δk, is defined as δk = dk − yk for each output node

k. For each edge (j, k) between the middle layer and the output layer, its weight is

wj,k. The errors are back-propagated to the middle layer and the error δj at each

15

j

k yk

δk=dk-yk

wj,k(t)δjxi

xi+1

xI

...

wi,j(t)

Figure 2.3: Multi-layer feed-forward ANN [62].

middle layer node is obtained by

δj =
K∑
k=1

(wj,k(t) · δk) (2.4)

where K is the fanout of node j. For the edge weight update, we illustrate with the

edges from the inputs to the middle layer in Figure 2.3. Let the weighted sum of

inputs to node j be ψj = Σwi,j(t) · xi. Edge weights wi,j are updated by

wi,j(t+ 1) = wi,j(t) + g · δj ·
dθ(ψj)

dψj
· xi (2.5)

This procedure is repeated for all edges in a layer-by-layer backward traversal of the

network.

2.4 Quality of Service in CMP

In a CMP with shared resources that have a specific bandwidth, such as on-chip

networks, caches and memory controllers, contention resolution can shape overall

performance. For example, if a few cores dominate memory access, fairness suffers

16

and the other cores may form bottlenecks that harm the overall application perfor-

mance [17]. Contention resolution is a central subject of Quality-of-Service (QoS).

The exact concept of QoS is somewhat complicated and can be interpreted in differ-

ent ways depending on one’s emphasis. While Grot, et al., summarize ten attributes

of CMP Network-on-Chip (NoC) QoS [21], in practice, most prior work in CMP QoS

is focused on service prioritization [7, 27], service guarantees [35, 21, 20, 60], service

fairness [50, 51, 17] or some combination of these. Ultimately, however, for most

CMP applications, the focus is overall CMP performance and application runtime.

QoS can be achieved through a combination of arbitration at the service side,

service categorization and regulation at the client (processor cores) side. For on-

chip networks, typical QoS approaches include source throttling [?], router arbitra-

tion [21], or a combination of both [35]. Source throttling can be based on assigned

injection rates [35], application types and network congestion [?]. Global QoS arbi-

trates according to packet age [36] or whether a flow conforms to its assigned rate [21].

Memory QoS techniques include fair queuing scheduling for its access [50], request

grouping [49] and fairness-driven source throttling [17]. Cache QoS is obtained by

enforcing priority-based capacity limit among threads [27] and access bandwidth

allocation [51]. Coordinated QoS among NoC, cache and memory is studied in [37].

Existing CMP QoS works mostly treat energy consumption as an implementation

overhead to achieve fairness and pay little attention to its interaction with power

management.

17

3. ONLINE LEARNING IN ARTIFICIAL NEURAL NETWORKS FOR IMP

UNCORE POWER MANAGEMENT

3.1 Tandem ANN and PI Control

An overview1 of the proposed uncore DVFS control system is depicted in Fig-

ure 3.1. Besides an ANN controller, it includes a PI controller, as the PI controller

plays a role complementary to the ANN control and has very low overhead. The

center of this system is the coordination between the two controllers. In this section,

we will first introduce the ANN controller architecture. Then, we will describe the

ANN learning including how to utilize the PI controller for a bootstrapped learning.

The last part will be on the new techniques of tandem ANN-PI control operations.

3.1.1 ANN Controller Architecture

The output of our ANN controller is the uncore V/F level. Its inputs should

reflect the uncore performance as well as how sensitive whole system performance is

to uncore latency, effectively a measurement of the uncore’s utility to the system. To

this end, we adopt the critical latency metric introduced by Chen et al. [9], which is

defined as

Γ = η · λU (3.1)

where λU is the uncore latency and η is the criticality factor. The uncore latency

covers the overall request excluding the memory access latency, i.e., NoC travel

latency plus LLC access latency. The criticality factor is the product of private

cache miss rate and the ratio of load instructions versus total instructions. Chen et

1Reprinted with permission from ”Up by Their Bootstraps: Online Learning in Artificial Neural
Networks for CMP Uncore Power Management”, by Jae-Yeon Won, Xi Chen, Paul Gratz, Jiang
Hu and Vassos Soteriou, 15-19 Feb. 2014, The 20th IEEE International Symposium on High
Performance Computer Architecture(HPCA), c© 2014 IEEE

18

al.[9] collect the critical latency data from all cores and average them into a single

value as the input to a PI controller. In contrast, an ANN controller can directly

process multiple inputs, and is therefore able to utilize detailed, per-core information.

The DVFS control action is performed periodically in every control interval I.

Since the ANN controller accepts multiple inputs, it may examine monitored Γ of

an arbitrary number of history intervals. Thus, if the ANN controller examines the

past m intervals, including the current interval, and there are n cores, then it has

m · n inputs.

From the inputs to the output, there can be different numbers of layers of neurons,

which implies a tradeoff between capability and overhead. From our experience, a 3-

layer structure performs well and has limited overhead. Such a structure is depicted

in Figure 3.2. If the uncore V/F has k levels, we use k outputs, each of which indicates

the selection of a corresponding V/F level. The value of each output is a number

Uncore

System

...

ANN

Controller

Monitor

PI Controller Bootstrapped

learning

/

Self adaptation

/

Tandem

coordination

...

Γi

Packets injected

f

fPI

Γ , Γref

Figure 3.1: Architecture of the uncore DVFS control system [62].

19

... ...

...

Input layer Output layerHidden layer

C
o

m
p

a
ra

to
r

...

0.1

0.2

0.9 1

0

0

Figure 3.2: Proposed 3-layer feed-forward ANN [62].

between 0 and 1. Since an output can take fractional value, we use a comparator to

select the output with the maximum value, and round the other outputs to zero.

For the activation functions, we employ the commonly used Gaussian functions

defined by

f(x) = ae−
(x−b)2

2c2 (3.2)

We set a to 1 to maintain the neuron’s output dynamic range between 0 to 1. Pa-

rameters b and c can be adjusted according to input values which is introduced

in Equation (3.1). The learning algorithm here is the common back propagation

algorithm described in Section 2.3.

20

3.1.2 ANN Learning

ANN learning is a procedure of identifying/improving the weight parameters

based upon the expected output(s) for a given input set. ANN learning can be carried

out offline or online. The basic supervised learning is introduced in Section 2.3. In

Section 3.1.2.1, we describe how to apply traditional supervised learning offline for

our ANN controller. New online self-adaptation techniques for tuning the ANN

controller are discussed in Section 3.1.2.2. We propose an “up by the bootstraps”

learning technique using PI control as a secondary classifier in Section 3.1.2.3.

3.1.2.1 Offline Supervised Learning

In offline supervised learning, first a set of cases with known solutions for ANN

training is created. Since the DVFS control is carried out periodically for each control

interval, this set should include the target uncore V/F level of every control interval.

The target level should be the optimal level defined by the minimum uncore V/F

level such that the runtime increase is no more than α% compared with the highest

V/F level, where α is a parameter. Ideally, the optimal V/F level can be found by

enumerating all combinations, e.g., simulate all V/F levels in interval Ii and then

simulate all V/F levels in interval Ii+1 for every case at Ii. By approximation, we

enumerate uncore V/F levels for the entire trace, i.e., if there are k V/F levels, the

entire trace is simulated for k times, each with a different uncore V/F level. These

simulation results are partitioned into control intervals and the target V/F level is

chosen for each interval.

The interval partitioning starts with simulation result of the highest frequency,

i.e., uncore frequency is fmax, and each interval consists of κ clock cycles. Finding the

corresponding intervals of other simulations with different uncore V/F is challenging,

as the executed instruction count in multithreaded benchmarks tends to vary with

21

uncore V/F state2. In lieu of instruction count we use a count of the number of

committed store instructions from each thread, as this number tends to be invariant

with uncore latency, to determine overall runtime of equivalent intervals from one

uncore V/F to the next. For example, if there are 9876 store instructions in the first

interval for uncore frequency fmax, we define the first interval for other uncore fre-

quency traces f < fmax by the cycle when the 9876th store instruction is committed.

This procedure is repeated for subsequent intervals and all k uncore frequency levels.

For each interval, the target frequency is the minimum one such that the runtime

of this interval is no greater than (1 + α%) · κ clock cycles, where the cycles are in

terms of fmax.

Γ1,1/3

f=fmax

f=1/4·fmax

...

Γ0,1 Γ1,1 Γ2,1 Γ3,1

Γ0,1/2

...

...

...

...

Γ1,1/2 Γ2,1/2 Γ3,1/2

Γ0,1/3 Γ2,1/3 Γ3,1/3

Γ0,1/4 Γ1,1/4 Γ2,1/4 Γ3,1/4

...
...

s0 s1 s2 s3

f0=1 f1=1/3 f2=1/2 f3=1

... si

Γi,1

Γi,1/2

Γi,1/3

Γi,1/4

... fi

f=1/3·fmax

f=1/2·fmax

Figure 3.3: Input and target sets for ANN learning [62].

2Spin-locks and other synchronization primitives tend to vary in instruction counts when uncore
latency is changed.

22

The ANN controller decides the uncore V/F level of interval Ii+1 based on the

critical latencies observed from n cores of the last m intervals. Likewise, we use the

the critical latencies of all n cores across intervals Ii−(m−1), Ii−(m−2), · · · , Ii and

the target uncore frequency at interval Ii+1 as one training set. Figure 3.3 shows

a simple example with m = 1 where the shaded intervals correspond to the target

frequencies and si is the number of store instructions at interval Ii. In interval 1, the

Γ1,1/3 is the observed critical latency when the uncore operates at f1 = 1
3
fmax. The

critical latency Γ1,1/3 for all cores, and the target frequency f2 = 1
2
fmax of interval 2,

form a data set for the supervised learning. This procedure is repeated for Γ2,1/2 and

f3 = fmax, and so on. Once the training data sets are obtained, supervised learning

is performed as described in Section 2.3.

3.1.2.2 Online Self-Adaptation

While offline supervised learning can produce good results, it has a weakness. The

actual applications may have quite different characteristics from the training cases.

In other words, an ANN well-trained for certain workloads may perform poorly on

different workloads (i.e. the workloads it was not trained on). To overcome this

weakness, we propose two online self-adaptation techniques: feedback adaptation

and self-sharpening.

Feedback Adaptation: Feedback adaptation is similar to supervised learning

described in Section 2.3 except that the target frequency is obtained online as in

the case of feedback control. In typical feedback control techniques, such as PI

control [10], the controller attempts to correct the error of the system’s output with

respect to a reference. The error at interval Ii is defined by

ei = Γi − β · Γref,i (3.3)

23

where Γi is the critical latency observed during interval Ii, β is a coefficient, and

Γref,i is the reference. We adopt the idea of dynamic reference [9], which is the

critical latency when no data packet experiences queuing delay. The coefficient β is

typically selected to have a value of 1.1, implying that a small queuing delay during

NoC congestion is allowed. The adaptation action is taken only if the error magnitude

|ei| is greater than a certain threshold τ . If there is a large positive (negative) error,

we set the target frequency to be one level above (below) the uncore frequency used

in interval Ii. This target frequency together with the critical latencies of all cores

across intervals Ii−m, Ii−(m−1), · · · , Ii−1, form a data set to train the ANN once. Such

trainings are interleaved with the ANN control operation and thus can be conducted

at run-time.

Self-sharpening: The self-sharpening technique is based on the observation that

the ANN should ideally have one output of value 1, while the other outputs have a

value of 0. In typical operations, however, the ANN produces a set of fractional out-

puts in [0, 1]. Thus, if the ANN output is {0.1, 0.2, · · · , 0.9}, the uncore frequency se-

lection is effectively the same as if the output is {0, 0, · · · , 1}. Under self-sharpening,

we set the ANN output error as {−0.1,−0.2, · · · , 0.1} and back propagate this error

through the ANN, as carried out with supervised learning, reinforcing the ANN’s

decision.

3.1.2.3 Bootstrapped Learning Using a PI Controller

Although the self-adaptation techniques presented in Section 3.1.2.2 can improve

upon the performance of offline supervised learning by refining the ANN’s behav-

ior according to the actual workload demands, it cannot completely replace offline

learning3. General-purpose CMP workloads can vary so greatly that developing a

3We explored purely online training with the techniques discussed in Section 3.1.2.2, however
the results were poor due to the long training time required, these results were dropped from this

24

0 20 40 60 80 100 120 140 160 180 200
-5

-4

-3

-2

-1

0

1

2

3

4

5

Control Interval

U
n
c
o
re

 f
re

q
u
e
n
c
y

Bodytrack, g=0.001

PI

ANN

Diff

(a) gain=0.001

0 20 40 60 80 100 120 140 160 180 200
-5

-4

-3

-2

-1

0

1

2

3

4

5

Control Interval

U
n
c
o
re

 f
re

q
u
e
n
c
y

Bodytrack, g=0.1

PI

ANN

Diff

(b) gain=0.1

Figure 3.4: Bootstrapping learning applied to the Bodytrack application of the PAR-
SEC benchmark suite [62].

25

representative set, at design time, for training may be impossible. Therefore, an

ANN controller design which does not rely on offline learning is often desirable. Ide-

ally, one would prefer the ANN training as purely online, i.e. during the application’s

runtime, without the need for an a priori training set. There are, however, several

challenges to this form of pure, “up by its bootstraps”, online training. For example,

online training requires knowledge of the desired output for any given input, at run-

time, before the ANN itself is trained well enough to produce that output. Although

the PI controller [10, 9] has its weakness, it has very low overhead and it requires very

little start-up delay in producing V/F control at its best ability. We thus propose

instantiating a PI controller for online training of the ANN. In this “bootstrapped”

learning, the ANN learns from the PI controller while the PI controller is controlling

the V/F state of the uncore. Hence, the PI control is a surrogate for the training set

in supervised learning. The PI controller provides a realistic, dynamically generated

training set for online ANN training. When combined with continuous online self

adaptation (feedback-adaption and self-sharpening described in Section 3.1.2.2) the

ANN can exceed the performance of the PI controller. In Section 3.1.3, we will show

that the PI controller may also be used for tandem control once the ANN is trained

as well.

The offline supervised learning is often conducted based upon complete traces

of many applications. By contrast, bootstrapped learning is performed during the

beginning phases of each single application. Hence, it should be much faster and

requires a greater learning gain (see Equation (2.3)). Furthermore, bootstrapped

learning is focused on the behavior of a single, ongoing application, while the offline

supervised learning is intended to be more general. As a result, bootstrapped learning

is much more focused to the application at hand and can perform significantly better.

paper for brevity.

26

Figure 3.4 compares the bootstrapped learning with different gains applied to the

Bodytrack application of PARSEC benchmark suite [3]. The x-axis holds the indica-

tion of the control interval, and the y-axis indicates the uncore frequency selection

in terms of the ratio of fmax versus uncore frequency; for example, value 4 implies

that the uncore frequency is 1
4
fmax. The green crosses are the V/F selections chosen

by the PI controller, the red dots are those chosen by the ANN, and the blue circles

represent the differences between them. Figure 3.4a shows the results with a learning

gain of g = 0.001, which is common for the offline supervised learning. One can see

that the ANN output remains quite different from the PI controller’s output after

200 intervals. Experimental results with g = 0.1 are shown in Figure 3.4b, which

exhibits that the ANN output starts to follow the PI control after approximately 100

intervals.

3.1.2.4 Variable Learning Gain

To further improve the learning efficiency, we propose a variable gain scheme,

which can be applied with the bootstrapped learning and the online self-adaptation.

In this scheme, the gain g can vary in a range [gmin, gmax] according to the error ei

defined by Equation (3.3). A small (large) error means the result is close to (far

from) a desired one, based on which the learning should be more (less) emphasized

and use a large (small) gain. Using this rationale, the variable gain is given by

gi =


gmax if ei ≤ τ

gmax −
(

ei−τ
emax−τ

)
· (gmax − gmin) if τ < ei < emax

gmin otherwise

(3.4)

where τ and emax are two constant parameters.

27

3.1.3 ANN-PI Tandem Control

As discussed in Section 3.1.2, the ANN controller pro-actively adjusts the uncore

V/F level according to its experience, learned either offline or bootstrapped online.

This methodology, however, may not always be accurate. One can predict rain

from heavy clouds, but heavy clouds do not always yield rain. Alternately, the PI

controller always bases its V/F selection only upon current observations. Thus, ANN

control and PI control can be viewed as complementary to each other. We propose

three ANN-PI tandem control schemes, elaborated next.

3.1.3.1 ANN-Centric Tandem Control

In the first scheme, ANN-Centric Tandem Control, after the ANN is fully trained,

both the ANN and PI controllers make their V/F selection for the next control

interval. One of their results is chosen to be applied to the uncore. The choice

depends on the average error defined by

ēi =

∑i
j=i−m+1

∑n
l=1 ej,l

m · n
(3.5)

where ej,l is the error defined in Equation (3.3) for control interval Ij and core l. This

is the average control error among all n cores across the past m control intervals.

The choices also rely on the consistency (ξi) between ANN and PI control, which is

defined as

ξi = 1−

(
i∑

j=i−m+1

|fj,ANN − fj,P I |
k − 1

)
/m (3.6)

where k is the number of uncore V/F levels, fj,ANN (fj,P I) is the uncore frequency

level computed from the ANN (PI) in control interval Ij. In dividing with k− 1, the

difference is normalized to be no greater than 1. The second term in Equation (3.6)

is the average normalized difference between the ANN and the PI computed results

28

in the past m intervals.

Ii ēi ξi Ii+1

PI ↓ ↓ ANN
PI ↓ ↑ PI
PI ↑ ↓ ANN
PI ↑ ↑ ANN

ANN ↓ ↓ ANN
ANN ↓ ↑ ANN
ANN ↑ ↓ PI
ANN ↑ ↑ ANN

Table 3.1: Rules governing the choice between the ANN controller and the PI con-
troller decision under ANN-centric tandem control. Parameter ēi represents the error
occurred in previous V/F selections, and ξi represents the consistency between the
ANN and PI controller decisions [62].

The rules for the choices between the PI or the ANN are listed in Table 3.1. The

first row says that the ANN result will be chosen for interval Ii+1 if the control in

interval Ii is based on the PI, the average error (ēi) is small and the consistency

between the ANN and the PI results (ξi) is low. According to the second row, if the

PI is chosen for interval Ii, the average error is low, and the consistency is high, then

the PI control result is chosen for interval Ii+1. The other rows of Table 3.1 can be

interpreted in the same way.

This scheme is intentionally biased in favor of the ANN, only in rows 2 and 7,

where the advantage of PI is obvious, is the PI controller chosen for the next control

interval. In all the other cases, the ANN result is selected for actual use. The intent

under this technique is to select the ANN as soon as it begins producing reasonably

accurate results, under the assumption that the ANN can perform better in the long

run once training is complete.

29

3.1.3.2 Eager Tandem Control

We introduce an alternative scheme for the ANN-PI tandem control, which is

solely based on the control error ei (defined by Equation (3.3)) at the control interval

Ii. If ei > τ > 0 (ei < −τ < 0), where τ is a threshold, and the critical latency

is significantly greater (less) than the reference, then the higher (lower) frequency

between the ANN and PI results is chosen for the next interval Ii+1. The rationale

for this technique is the same as that of the feedback adaptation technique described

in Section 3.1.2.2, except that it is directly applied to control decisions, while the

adaptation is to improve the ANN.

3.1.3.3 Credit-Based Tandem Control

As another variant of the eager tandem control scheme, we concentrate not only

to ei, but also to the method selected in interval Ii. If ei > τ > 0 (ei < −τ < 0)

and the method chosen in Ii gives the higher (lower) frequency, this method is more

credible and will be chosen again for Ii+1. Otherwise, the other method is chosen for

Ii+1. Although this scheme also uses ei as in the eager tandem control, the ei here is

employed to compare which method performs better in Ii. The one which performs

better in Ii is assumed more trustworthy.

3.2 Design Implementation

In this section we describe the implementation details including monitored data

collection and control computation. For data collection, we employ a similar scheme

to that proposed by Chen et al. [10]. As with their work, there is a PCU (Power

Control Unit) [11], which is a microcontroller which handles power management for

the CMP system. The microcontroller is similar to that utilized in current CMP

designs such as in the Intel i7 [33]. Every core collects its critical latency Γ informa-

30

tion, and encodes it (piggy-backed in the header flit) onto the unused bits of each

outgoing packet. If a packet passes by the PCU, even when the corresponding tile

is not its destination, the Γ information is downloaded to the PCU. The PCU re-

tains all relevant data in its local memory. We have experimentally verified that the

proposed monitor technique incurs negligible error relative ideal monitoring. More

details about the data collection design can be found in the prior work of Chen et

al. [10, 9].

In our design, all computation required by our schemes is performed in emulation,

by running software onto the PCU (i.e. there is no actual ANN hardware, the ANN is

emulated in software on the PCU). The computation mainly consists of (a) computing

the PI control decision, (b) ANN training, (c) computing the ANN control decision,

and (d) choosing between the ANN and PI results in the tandem control schemes.

Items (a) and (d) exhibit very low complexity, and their overhead is negligible relative

to our control interval size. The ANN training process, including self-adaptation and

bootstrapped learning, does not block the ANN control computation, and is therefore

not timing-critical. We therefore focus here on estimating the computational cost of

the ANN control decisions. Table 3.2 shows the ANN control computation runtime

with different numbers of history intervals. These data are obtained based on a

baseline 16-core CMP design. As it would be expected, the computational overhead

increases with the number of history intervals.

history Runtime Runtime Total
intervals @hidden layer @output layer runtime

10 27,513 1,741 29,254
5 13,779 1,741 15,520
1 2,772 1,741 4,513

Table 3.2: ANN control computing runtime in PCU clock cycles [62].

31

Monitor Intervali Monitor Intervali+1

ANN

Computing

Overhead

Control Intervali Control Intervali+1

ANN

Online

Learning

Figure 3.5: Pipelined monitoring and control intervals [62].

As in the work by Chen et al. [10, 9], we assume a control interval to be 50

thousand core clock cycles. The ANN control computation accounts for a significant

portion of the overall control interval. In order to minimize the negative effect of this

latency, we use two sets of different intervals for the critical latency monitoring and

the control output change as illustrated in Figure 3.5. The two sets of intervals are

offset by the ANN control computation time, effectively pipelining the overhead. By

doing so, the ANN control computing does not block either the monitoring process

or the control output change. However, the ANN computation does lead to increased

staleness in the monitored data by the time the control decision is implemented. The

impact of this computational latency is examined in Section 3.3.2.5.

3.3 Evaluation

In this section, we describe our experimental setup and subsequent evaluation of

our proposed techniques.

3.3.1 Experiment Setup

The experimental baseline platform is a 16-core CMP with a 2-level cache hier-

archy, split L1i and L1d private caches, and a combined, shared L2 last-level cache.

Cache coherence is maintained via a MESI directory cache coherent protocol. The

32

Parameter Configuration

of cores 16
Core frequency Fixed at 1GHz
L1 data cache 2-way 256KB, 2 core cycle latency

L2 cache (LLC)
16-way, 2MB/bank, 32MB/total
10 core cycle latency

Directory cache MESI, 4 core cycle latency

NoC
4x4 2D mesh, X-Y DOR
4-flits depth/VC

Uncore V/F
10 levels, voltage: 1V - 2V
frequency: 250MHz - 1GHz

Control interval 50000 core cycles
V/F transition 100 core cycles per step

Table 3.3: System parameters used for full-system simulations [62].

NoC topology is a 4×4 2D mesh, with each node/router attached to a single processor

core. Table 3.3 summarizes the baseline CMP setup.

Simulation experiments are performed using the gem5 [4] full system simulator,

with the Ruby memory model and the Garnet network simulator [1]. The benchmark

applications are taken from the PARSEC shared-memory, multi-processor, bench-

mark suite [3]. Specifically, we use the 11 PARSEC benchmarks currently supported

by our simulation infrastructure, Blackscholes, Bodytrack, Canneal, Dedup, Ferret,

Fluidanimate, Freqmine, Streamcluster, Swaptions, Vips, and X264. In each case,

the entire benchmark is simulated, but only the Region Of Interest (ROI), is eval-

uated. The performance metric is evaluated as the runtime of the entire ROI. The

energy consumption evaluation includes both dynamic and leakage energy. ORION

2.0 [30] and CACTI 6.0 [48] are used to estimate the energy consumption of the

NoC and the LLC, respectively, both of which are based on 65nm CMOS process

technology.

To focus on the evaluation of our uncore DVFS techniques, the core frequency

33

is fixed at 1GHz throughout the simulations. There are 10 uncore frequency levels

between fmax = 1GHz and 250MHz. For each frequency, there is a corresponding

voltage level between 1V and 2V , which is roughly the minimum voltage allowing

correct uncore operation. The control interval is 50 thousand unscaled core clock

cycles at 1GHz and each step uncore V/F level change takes 100 core cycles (100

cycles per step is sufficient assuming on-die regulation [18]). During V/F transitions,

the uncore operation is halted.

The ANN configuration is summarized in Table 3.4. The ANN inputs are the

critical latencies as viewed by each of the 16 cores in the past 5 intervals; thus

the ANN has 80 first-layer nodes. The hidden layer and the output layer each

has 10 nodes. The learning gain g is set to 0.001 for the offline learning. For the

bootstrapped learning, the gain is either set at 0.1 or set as a variable value between

0.001 and 0.1, as described in Section 3.1.2.4. The error threshold τ , error bound

emax, and consistency threshold ξ are used in the tandem control. The values of

these parameters are identified empirically. Each ANN control computation takes 15

thousand core cycles, but does not block any uncore operations (see Section 3.2).

3.3.2 Experimental Evaluation

3.3.2.1 Overall Results

We compare the following 6 methods:

Baseline: the uncore constantly operates at highest V/F.

PI: best method from Chen et al. [9].

Offln+Adpt+TdEager: ANN trained with offline learning, operates with self-

adaptation and eager tandem control.

Bstrp+Adpt: bootstrapped learning, self-adaptation and ANN control.

34

Parameter Configuration

history intervals 5
nodes at input layer 5 × 16
nodes at hidden layer 10
nodes at output layer 10
Offline learning gain 0.001
Constant bootstrapped learning gain 0.1
Variable bootstrapped learning gain [0.001, 0.1]
Error threshold τ 0.001
Max error bound emax 0.1
Consistency threshold ξ 0.6
Computing overhead 15K core cycles

Table 3.4: ANN configuration parameters [62].

Bstrp+Adpt+TdANN: bootstrapped learning, self-adaptation and ANN-centric

tandem control.

(Bstrp+Adpt)VG+TdANN: bootstrapped learning and self-adaptation with vari-

able gain, ANN-centric tandem control.

Among the many techniques we investigated, the above includes only the best of-

fline learning-based method and three best bootstrapped learning-based approaches.

The results are normalized with the baseline and displayed in Figure 3.6. Compared

to the PI control [9], our best method can reduce the uncore energy and the energy-

delay product by 25% and 27%, respectively. The performance degradation from our

DVFS is less than 3% of the baseline. All applications show improved energy-delay

versus PI control except Blackscholes. Blackscholes presents some difficulties for the

ANN as it has two very short phases (beginning and end of simulation) with many

misses, broken up by a long phase with few misses. Hence, the ANN’s training on

the initial phase is to short to be beneficial for that phase, nor it is useful for the

middle phase. Similarly the final phase is ill-served by the training on the middle

35

phase.

The energy-performance tradeoffs of our offline and bootstrapped learning schemes

are depicted in Figure 3.7. To produce the results displayed in Figure 3.7, we found

the average energy delay (ED) across all PARSEC benchmarks for each of the three

techniques while sweeping many of the various parameters of each technique. The

Pareto optimal points for each of the PI control, offline and bootstrapped methods

were then plotted as shown in Figure 3.7. As the same figure shows, offline learning-

based methods generally dominate the PI control-based methods primarily due to

their superior runtime. All PI and offline results are both dominated by bootstrapped

learning in terms of both energy and runtime.

In the remainder of this section we explore and analyze the behavior of our

proposed techniques across several axes. All of the subsequent results are the average

among the 11 PARSEC benchmarks.

3.3.2.2 Effect of Online Self-Adaptation on Offline vs. Bootstrapped Learning

Figure 3.8 shows the benefit of the online self-adaptation (see Section 3.1.2.2) on

two options of the pre-operational learning for ANNs: the offline supervised learning

(Section 3.1.2.1) and the online bootstrapped learning (Section 3.1.2.3) to determine

the effect of training on a generic set versus training specifically on the application

to be run. Under offline supervised learning, the ANN is trained using the entire

PARSEC benchmark suite, except the benchmark under test. The number of re-

quired iterations depends on the size of learning gain. When bootstrapped learning

is conducted initially, we found experimentally that 600 intervals and 0.1 learning

gain is sufficient to train the ANN.

After the training phase, the ANN controls the uncore DVFS without any self-

adaptation to isolate the effects of the pre-operational learning as shown to color-

36

0

0.1

0.2

0.3

0.4

0.5

0.6
N

o
rm

a
li

z
e

d
 E

n
e

rg
y

PI Offln+Adpt+TdEager Bstrp+Adpt Bstrp+Adpt+TdANN (Bstrp+Adpt)VG+TdANN

(a) Normalized energy

0.75

0.8

0.85

0.9

0.95

1

N
o

rm
a

li
z
e

d

P

e
rf

o
rm

a
n

c
e

PI Offln+Adpt+TdEager Bstrp+Adpt Bstrp+Adpt+TdANN (Bstrp+Adpt)VG+TdANN

(b) Normalized performance

0

0.1

0.2

0.3

0.4

0.5

0.6

N
o

rm
a

li
z
e

d
 E

n
e

rg
y
·D

e
la

y

PI Offln+Adpt+TdEager Bstrp+Adpt Bstrp+Adpt+TdANN (Bstrp+Adpt)VG+TdANN

(c) Normalized energy×delay product

Figure 3.6: Overall full-system experimental results [62].

37

0.12

0.16

0.20

0.24

0.28

0.32

0.36

1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045 1.050

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

Normalized Run Time

PI.a [ED=0.2478] PI.b [ED=0.2558] PI.c [ED=0.3159]

Offln+Adpt+TdANN
[ED=0.2563]

Offln+Adpt+TdCredit
[ED=0.2310]

Offln+Adpt+TdEager
[ED=0.2280]

Bstrp+Adpt
[ED=0.1857]

Bstrp+Adpt+TdANN
[ED=0.1966]

(Bstrp+Adpt)VG+TdANN
[ED=0.1812]

Figure 3.7: Pareto optimal points and normalized energy-normalized run-time curves
for PI control-, offline-, and bootstrapped learning-based methods [62].

filled shapes. Blue-filled diamond and red-filled triangle show the results of these

two methods. For reference, we also include the equivalent results of the PI con-

troller [9] which is shown as green-filled circle. It is clear that the bootstrapped

learning significantly outperforms the offline supervised learning. This result high-

lights the benefits of learning on the specific application to be run versus a generic

set of different applications.

The unfilled shapes show the benefit of the online self-adaptation (see Section 3.1.2.2).

From Figure 3.8, it is clear that self-adaptation benefits both offline supervised learn-

ing and the bootstrapped learning, significantly improving the energy-delay product.

The benefit comes with a trade-off in runtime degradation for greater energy savings.

38

ED = 0.6344

ED = 0.3109

ED = 0.2528

ED=0.1857

ED = 0.2476

0.00

0.10

0.20

0.30

0.40

0.50

0.60

0.70

0.80

0.90

1.034 1.036 1.038 1.040 1.042 1.044 1.046 1.048

N
o

rm
a
li
z
e
d

 E
n

e
rg

y

Normalized Run Time

Offln Offln+Adpt Bstrp Bstrp+Adapt PI

0.1

0.1

Figure 3.8: Effect of online self-adaptation. ED: energy×delay product [62].

3.3.2.3 Effectiveness of ANN-PI Tandem Control

Three ANN-PI tandem control techniques are proposed in section 3.1.3: ANN-

centric tandem (TdANN), eager tandem (TdEager) and credit-based tandem (Td-

Credit). Figure 3.9 shows the results of these techniques integrated with the offline

learning and online self-adaptation. They are compared with the result only when

using the offline learning and online self-adaptation. It can be seen that the tandem

control techniques improve the overall energy-performance tradeoff.

39

ED=0.3109

ED=0.2563

ED=0.2310ED=0.2280

0.15

0.20

0.25

0.30

0.35

1.010 1.015 1.020 1.025 1.030 1.035 1.040 1.045

N
o

rm
a
li

z
e
d

 E
n

e
rg

y

Normalized Run Time

Offln+Adapt Offln+Adapt+TdANN Offln+Adapt+TdCredit Offln+Adapt+TdEager

0.1

0.1

Figure 3.9: ANN-PI tandem control based on offline supervised learning [62].

3.3.2.4 Effect of Variable Learning Gain

In Section 3.1.2.4, the variable gain learning technique is proposed to improve the

efficiency of the bootstrapped learning and self-adaptation. Here we show its effec-

tiveness by comparing it with learning under a constant gain using two approaches

(1) offline learning + self-adaptation + ANN-centric tandem control, and (2) boot-

strapped learning + self-adaptation + ANN-centric tandem control. The results in

Figure 3.10 show that the variable gain causes a 2% reduction in energy and a 1%

increase in runtime. Overall, it reduces the energy-delay product by 6− 8%.

40

0.1

0.1

ED=0.2563

ED=0.2400

ED=0.1966

ED=0.1812

0.10

0.15

0.20

0.25

0.30

1.014 1.016 1.018 1.020 1.022 1.024 1.026 1.028 1.030

N
o

rm
a
li

z
e
d

 E
n

e
rg

y

Normalized Run Time

Offln+Adpt+TdANN (Offln+Adpt)VG+TdANN

Bstrp+Adpt+TdANN (Bstrp+Adpt)VG+TdANN

Figure 3.10: The effect of variable learning gain [62].

3.3.2.5 ANN Overheads

We use the bootstrapped learning and the ANN-centric tandem control as a

platform to evaluate the impact of the ANN computation overhead.

The ANN computation is performed in the CMP’s power control unit (PCU), a

small microcontroller on die. The delay for the PCU to compute the next time win-

dow’s DVFS set point is 15K cycles and online ANN learning computation requires

an additional 18K cycles. The ANN implementation thus consumes 66% of the 50K

cycles of each interval, as shown in Figure 3.5. Compared to the total CMP power,

the incremental power required by the PCU due to the ANN implementation repre-

sents a negligible .32% increase. The ANN controller program occupies 7KB of text

41

and 5KB for data memory in the PCU’s memory. We also conducted a cost/benefit

analysis of a hardware ANN implementation. Leveraging data from a recent work by

Rasheed [54], we estimate the computational delay of the same ANN controller de-

signed in hardware to be a negligible 93 cycles, while the incremental average power

increase over the software implementation would be ∼ 49.83mW , assuming the ANN

is power gated when not in use. Due to the reduction in computation latency, the

hardware ANN implementation yields a small improvement of less than .2% energy

saving and 1% performance increase relative the software implementation. Thus,

while the hardware ANN does slightly improve performance, the requirement for

extra hardware design makes the software implementation of the ANN controller a

more attractive option.

3.4 Conclusions

The CMP uncore (i.e. the shared last level caches (LLC) and Networks-on-

Chip(NoC)) constitute a significant and increasing part of overall CMP power dis-

sipation. This work focused on Dynamic Voltage and Frequency Scaling (DVFS) of

the uncore. To fine-tune DVFS uncore control, and achieve the best possible power

savings, while maintaining high performance in the entire multi-core chip, various

Artificial Neural Network-based (ANN) techniques are explored. Conventional ANN

approaches rely on offline learning, which is inadequate to handle the large variety of

realistic multicore applications. We propose novel approach, wherein a Proportional

Integral (PI) controller, which can adapt to short system changes, but lacks long-

term pattern recognition, is used in tandem with the ANN, bootstrapping the ANN

during the ANN’s initial learning process. This is beneficial when the multicore chip

swaps between various applications rapidly, or when program phases change rather

frequently, imposing varying utility demands upon the uncore. Compared to a state-

42

of-the-art previous work, the new approach can reduce the energy-delay product by

27%.

43

4. ENERGY SAVINGS WITHOUT PERFORMANCE LOSS THROUGH

RESOURCE SHARING DRIVEN POWER MANAGEMENT

4.1 Resource Sharing Driven Per-Core DVFS

We consider a CMP architecture where (1) on-chip communication is imple-

mented via a packet-switched network, i.e., a Network-on-Chip (NoC), (2) each pro-

cessor core has an individual V/F domain, i.e., per-core DVFS [32], and (3) the V/F

levels of the uncore (NoC + LLC) are fixed. Without loss of generality, we assume

the core frequency is the allowed maximum for each supply voltage level in the given

process technology.

DVFS can be implemented as a feedback control system, where a given metric is

monitored, and the V/F level of a specific core is adjusted according to the monitored

result. The execution is carried out at the end of periodic time intervals, called control

intervals. At the end of a control interval, the controller collects monitored results,

based on which it computes the V/F level for the next control interval.

In computer networks, one approach to congestion control is to regulate client

packet injections according to perceived network congestion. We observe that the

regulation procedure in computer networks can be viewed as similar to a DVFS

control procedure, in that reducing the V/F level of a given core effectively throttles

the packet injections from this core. This observation motivates us to design a DVFS

policy1 based on network congestion control.

Consider the example in Fig. 4.1(a), where the large, dashed blue curves indicate

the dominant round-trip request/reply packet routes from core X. As shown, packets

1Reprinted with permission from ”Having Your Cake and Eating It Too: Energy Savings without
Performance Loss through Resource Sharing Driven Power Management”, by Jae-Yeon Won, Paul
Gratz, Srinivas Shakkottai and Jiang Hu, 22-24 Jul. 2015, ACM/IEEE International Symposium
on Low Power Electronics and Design(ISLPED), c© 2015 IEEE/ACM.

44

from this node have a significant round trip time relative to other cores (e.g. core

A and B) which have shorter communication loops (smaller dotted green curves).

Decreasing voltage/frequency (V/F) level of core X reduces its injection rate and

the shared resource contention, as shown in Fig. 4.1(b). Because core X is already

experiencing long round-trip times, a moderate reduction of its V/F level has little

effect on its own performance. The reduced congestion, however, can have a strong

effect on cores which are being more productive with their use of the network and

shared last level cache (LLC), (e.g., core A and B), allowing them to make greater

forward progress. This approach provides an appealing distinction from the conflicts

and tradeoffs typically seen in the design process. The per-core DVFS throttles

injections not only to uncore (on-chip interconnect + LLC), but also indirectly to

DRAM. Therefore, it regulates the overall shared resources as a whole.

4.1.1 TCP Vegas in Network Control

We describe TCP Vegas [8], a well-known network congestion control protocol

from computer networking, which provides the inspiration for our DVFS policy. The

objective of TCP Vegas is to achieve a fair allocation of network capacity across

different flows. It uses measured delays to adjust packet injection rates in such a

manner that the throughput obtained by each flow is independent of the propagation

delay between its source and destination. Further, it ensures that queuing delays are

kept low (ideally, zero) and so congestion effects are mitigated. Towards this goal,

TCP Vegas regulates the number of “outstanding” packets from a client. If a packet

is injected into network but its source client has not received the corresponding

acknowledgment (ACK) yet, this packet is outstanding. The set of outstanding

packets for a client is referred as the “congestion window”. TCP Vegas regulates

window size of each client according to observed round-trip time (RTT), which is

45

(a) Without resource sharing driven DVFS. (b) Reducing V/F of core X throttles its packet
injection, alleviates NoC congestion and im-
proves performance at cores A and B.

Figure 4.1: A 16-core CMP with on-chip network and per-core DVFS. Orange (white)
cores are in a high (low) voltage/frequency state. Red circles are network routers
experiencing congestion [63].

the time from a given packet’s injection to the time when its corresponding ACK is

received. The main idea is send a “marked” packet and to measure the time elapsed

and number of ACKs received between the sending of the marked packet and the

reception of its own ACK. We index this control interval by j, refer to the time

elapsed as RTTj, and the number of ACKs received as #ACKj. Then the metric

used for the control is:

∆ =
|WINDOW |j

RTTref
− #ACKj

RTTj
(4.1)

where |WINDOW |j is the congestion window size (in packets) at the beginning of

interval j, and RTTref is the reference RTT (the smallest observed RTT thus far,

46

which represents the pure propagation delay between source and destination).

The first term here specifies a reference throughput (packets per second) that

would arise if there were no queuing delay, while the second term represents the actual

throughput observed in control interval j. A large value of ∆ implies low throughput

and (potential or actual) network congestion. TCP Vegas then reduces window

size linearly (and equivalently, injection rate) in order to alleviate the congestion.

Similarly, if ∆ is small, the window size must be increased. Finally, if ∆ < 0, it

means that RTTref must be updated to reflect the most recent RTT sample. In the

interest of reducing oscillations, two thresholds α and β are maintained. The window

size is changed only if ∆ lies outside the interval [α, β].

4.1.2 Fairness though TCP Vegas

Our goal in the CMP setting is to ensure that none of the cores is starved for

network access, while ensuring that RTT between issuing requests and receiving

responses remains low. This goal ties in well with a concept known as propor-

tional fairness, a metric often employed in the network resource allocation context

[55]. Suppose that the set of flows is denoted by R, with each r ∈ R represent-

ing a flow. Also, let a vector of capacity allocations to the flows be denoted by

X = [x1, x2, · · · , xr, · · ·]. Consider two candidate allocations X and Y. Define the

proportional increase in allocation for a flow r between the two allocations by yr−xr
xr

.

Equivalently, note that if we multiply this quantity by 100, it would represent the

percentage increase of allocation for flow r. Then an allocation X is said to be

proportionally fair if for any other allocation Y, the following holds

∑
r∈R

yr − xr
xr

≤ 0. (4.2)

47

Thus, the total proportional (or percentage) increase over all flows would be less

than the total proportional (or percentage) decrease for any other allocation Y, as

compared to allocation X. Notice that this definition would not allow an increase in

allocation to flows that already have a large allocation at the expense of those that

have relatively lower allocations, hence ensuring a minimal allocation for all flows.

In TCP Vegas, the thresholds αr and βr are chosen to be inversely proportional

to the flow’s propagation delay, RTTref . It has been shown that with such a choice of

thresholds, TCP Vegas achieves proportional fairness [40].Now, by multiplying both

sides of (4.1) by RTTref , the control logic of Vegas can be interpreted as follows.

The first term would simply be |WINDOW |i, which is the number of outstanding

packets, while the second term is the actual throughput times the propagation delay,

which is the number of packets in flight through the links (the “pipe-size”). The

difference between the two is then the number of packets buffered in the queues

between the source and destination. Hence, the thresholds α ·RTTref and β ·RTTref

represent the target number of packets for each flow that are allowed to be buffered

in the network. Choosing αr and βr, to be inversely proportional to RTTref would

imply that all flows are allowed a similar number of buffered packets. Assuming

uniform usage of links, this means that an appropriate choice of thresholds would

limit the queuing delays seen by flows. Thus, TCP Vegas is a good choice to enable

each flow to get a fair throughput, while ensuring small RTTs for all.

4.1.3 TCP-Vegas Based DVFS Control

Inspired by TCP Vegas, we design the following shared resource driven DVFS

controller. Since packet injection rate (or window size) typically increases with core

frequency, we replace the window size in Equation (4.1) by the relative core frequency

f
fmax

where fmax is the frequency corresponding to the highest supply voltage level.

48

In a cache-coherent CMP, request packets into the NoC typically will receive a cor-

responding response packet. For example, when a core executes a load which misses

in the local private caches, a request for the data will be sent into the NoC. This

request will later be replied with the data from either the LLC or the DRAM. Hence,

we can use the number of response packets received to estimate uncore and DRAM

throughput. Thus, Equation (4.1) is modified as follows for our DVFS control.

δ =
fj / fmax
RTTmin

− #RESPONSESj∑
k∈INTERV ALj

RTTj,k
(4.3)

where fj is the core frequency at control interval j. Like Equation (4.1), the first term

of Equation (4.3) represents the reference throughput at frequency fj and the second

term estimates the actual throughput from observations. We choose the reference

RTT to be RTTmin, which is conceptually the RTT when there is no congestion in

the uncore or DRAM. In practice, we first find an initial value of RTTmin through

offline analysis. At runtime, the RTTmin is updated in the event a smaller RTT is

encountered.

The V/F level of a core is tuned according to the δ observed at each interval.

In order to avoid oscillations, two thresholds α and β (α < β) are employed to

determine if the V/F should be changed. If δ < α, actual throughput is close to

expected throughput. This means round-trip time of the packets is low and the

packets are unlikely to cause congestion in network. Thus, it increases the number of

injections by incrementing the core V/F level to increase its performance. If δ > β,

actual throughput is low compared to the expected throughput and its round trip

time is high. Then, the core V/F level is decremented to reduce the packet injections

to network, because these packets are likely to congest the network and degrade the

performance of other cores which show high throughput. If δ is between the two

49

threshold values, the current core V/F level is maintained without change.

Our DVFS policy throttles packet injection when the observed RTT is high.

There could be three reasons for high RTT: the on-chip interconnect is congested,

shared cache banks are under high contention or the memory controllers are highly

contended. For the former case, reducing injections can decrease queuing delay for

packets of almost all cores. For the later two cases, the throttling reduces contention

at the cache banks and/or memory controller. Essentially, the controller dynamically

adjusts the frequency of each core such that they all experience the same target

delay per request. Thus, a natural metric of fairness in this context is the standard

deviation of average RTTs in a control interval among all cores.

Our DVFS policy is primarily based on injected packets. Thus, we also consider

the case when few packets are injected. When the injection rate from a specific core

to the uncore is very low, the core V/F level is instead determined proportionally by

the number of retired instructions in the that core instead of the TCP-Vegas inspired

policy, i.e., when there are significant numbers of instructions retired, the core is run

a max V/F, when an insignificant number of instructions are retired, the core is run

at min V/F.

4.2 Experimental Results

4.2.1 Experiment Setup

The experimental baseline platform is a 16-core CMP with a 2-level cache hier-

archy, split L1i and L1d private caches, a shared L2 last-level cache (LLC) and four

DRAM memory controllers. Cache coherence is maintained via a MESI directory

cache coherence protocol. The cores are interconnected via a 4 × 4 2D mesh NoC

topology. Table 4.1 summarizes the baseline CMP setup. Each core and the uncore

have their own separated voltage/frequency domain. V/F levels for the cores range

50

 0

 0.5

 1

 1.5

 2

(C
)M

a
x
+

(U
)M

a
x

(C
)M

in
+

(U
)M

a
x

(C
)R

u
le

+
(U

)M
a

x
(C

)T
C

P
+

(U
)M

a
x

(C
)M

a
x
+

(U
)M

in
(C

)M
in

+
(U

)M
in

(C
)T

C
P

+
(U

)M
in

(C
)M

a
x
+

(U
)M

a
x

(C
)M

in
+

(U
)M

a
x

(C
)R

u
le

+
(U

)M
a

x
(C

)T
C

P
+

(U
)M

a
x

(C
)M

a
x
+

(U
)M

in
(C

)M
in

+
(U

)M
in

(C
)T

C
P

+
(U

)M
in

(C
)M

a
x
+

(U
)M

a
x

(C
)M

in
+

(U
)M

a
x

(C
)R

u
le

+
(U

)M
a

x
(C

)T
C

P
+

(U
)M

a
x

(C
)M

a
x
+

(U
)M

in
(C

)M
in

+
(U

)M
in

(C
)T

C
P

+
(U

)M
in

(C
)M

a
x
+

(U
)M

a
x

(C
)M

in
+

(U
)M

a
x

(C
)R

u
le

+
(U

)M
a

x
(C

)T
C

P
+

(U
)M

a
x

(C
)M

a
x
+

(U
)M

in
(C

)M
in

+
(U

)M
in

(C
)T

C
P

+
(U

)M
in

(C
)M

a
x
+

(U
)M

a
x

(C
)M

in
+

(U
)M

a
x

(C
)R

u
le

+
(U

)M
a

x
(C

)T
C

P
+

(U
)M

a
x

(C
)M

a
x
+

(U
)M

in
(C

)M
in

+
(U

)M
in

(C
)T

C
P

+
(U

)M
in

(C
)M

a
x
+

(U
)M

a
x

(C
)M

in
+

(U
)M

a
x

(C
)R

u
le

+
(U

)M
a

x
(C

)T
C

P
+

(U
)M

a
x

(C
)M

a
x
+

(U
)M

in
(C

)M
in

+
(U

)M
in

(C
)T

C
P

+
(U

)M
in

(C
)M

a
x
+

(U
)M

a
x

(C
)M

in
+

(U
)M

a
x

(C
)R

u
le

+
(U

)M
a

x
(C

)T
C

P
+

(U
)M

a
x

(C
)M

a
x
+

(U
)M

in
(C

)M
in

+
(U

)M
in

(C
)T

C
P

+
(U

)M
in

(C
)M

a
x
+

(U
)M

a
x

(C
)M

in
+

(U
)M

a
x

(C
)R

u
le

+
(U

)M
a

x
(C

)T
C

P
+

(U
)M

a
x

(C
)M

a
x
+

(U
)M

in
(C

)M
in

+
(U

)M
in

(C
)T

C
P

+
(U

)M
in

(C
)M

a
x
+

(U
)M

a
x

(C
)M

in
+

(U
)M

a
x

(C
)R

u
le

+
(U

)M
a

x
(C

)T
C

P
+

(U
)M

a
x

(C
)M

a
x
+

(U
)M

in
(C

)M
in

+
(U

)M
in

(C
)T

C
P

+
(U

)M
in

N
o

rm
a

liz
e

d
 E

n
e

rg
y

blackscholes bodytrack canneal fluidanimate freqmine swaptions vips x264	 geomean	

Uncore
Core

(a) Normalized energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

blackscholes bodytrack canneal fluidanimate freqmine swaptions vips x264 geomean

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

1.03

(C)Max+(U)Max
(C)Min+(U)Max
(C)Rule+(U)Max
(C)TCP+(U)Max
(C)Max+(U)Min
(C)Min+(U)Min
(C)TCP+(U)Min

(b) Normalized performance

Figure 4.2: Full-system simulation results of single application PARSEC benchmark
suite [63].

from 2.66GHz - 1.6GHz, following the states found in the Intel Core i7 processor [59].

V/F level for the uncore is fixed to 1GHz as a maximum frequency or 250MHz as a

minimum frequency.

All experiments are conducted using the gem5 simulator system [4] with a 4-wide

O3 core CPU model, X86 ISA, Ruby memory model and Garnet NoC model. We

used CACTI 6.5 [48], ORION 2.0 [30] and McPAT 1.0 [38] to model the energy of the

NoC, cache and cores, respectively. The energy consumption model includes leakage

and dynamic energy based on 32nm process technology. The application testcases

are taken from the PARSEC shared-memory, multi-processor, benchmark suite [3].

We assume that the DVFS control is implemented as firmware running on the Power

Control Unit, a microcontroller dedicated to CMP power management which is often

51

Table 4.1: Configuration and parameters of the experiment platform [63].
Parameter Configuration

Core CPU 4-wide out of order processor

Pipeline 7-stage pipeline

ROB size 192-entry reorder buffer

of cores 16

Core V/F
9 levels, voltage: 1.55V - 0.8V
frequency: 2.66GHz - 1.6GHz

L1 data cache 2-way 256KB, 2 core cycle latency

Directory cache MESI, 4 core cycle latency

L2 cache (LLC)
16-way, 2MB/bank, 32MB/total
10 uncore cycle bank latency

NoC
4x4 2D mesh, X-Y DOR
4-flits per VC

Uncore V/F 1GHz(Max) or 250MHz(Min)

Control interval 50 µs

V/F transition per step 100 ns

DVFS threshold α = 0.18, β = 0.22

Technology 32nm

seen in modern Intel CMP designs [34]. The data collection from different cores is

realized by the techiques of [9]. As in the work by Chen et al. [9], we assume a

control interval to be 50µs and each step V/F level change takes 100ns (100ns per

step is sufficient assuming on-die regulation [18]). Experiments for control intervals of

∼ 1ms, which is close to the scheduling interval of the OS, have also been conducted

and exhibit similar results.

In the figures found in this section, the following V/F settings and policies are

examined:

• (C)Max+(U)Max: All cores and the uncore constantly run at the maximum

V/F level. This result is the baseline, to which the other results are normalized.

• (C)Min+(U)Max: All cores run at their minimum V/F while the uncore runs

at its maximum V/F level.

52

• (C)Rule+(U)Max: All cores run DVFS using the method proposed by Herbert

and Marculescu [24] while the uncore runs at its maximum V/F level.

• (C)TCP+(U)Max: All cores run our resource sharing driven DVFS (Sec-

tion 4.1.3) while the uncore runs at its maximum V/F level.

• (C)Max+(U)Min: All cores run at their maximum V/F while the uncore runs

at its minimum V/F level.

• (C)Min+(U)Min: All cores and the uncore constantly run at the minimum

V/F level. These results provide an approximated lower bound on energy

dissipation.

• (C)TCP+(U)Min: All cores run our resource sharing driven DVFS while the

uncore runs at its minimum V/F level.

Note that the (U)Min results are included to show the impact of a system in

which more contention is found in the memory system, providing more potential

performance upside to (C)TCP’s resource sharing based power management.

We use the eight PARSEC benchmarks currently supported in our infrastructure,

blackscholes, bodytrack, canneal, fluidanimate, freqmine, swaptions, vips, x264. In

the experiments, all benchmarks are executed to the end of simulation, but only the

Region Of Interest (ROI) is evaluated. We examine both single application testcases,

where the 16 threads of the application are run on all 16 cores of the CMP, as well

as multi-application runs, where the CMP is partitioned into two sets of 8 cores and

each application takes up one partition.

Quantitative analysis of the multi-application cases is not as straightforward as

single application benchmarks because the applications have different runtimes. We

use the following simulation methodology: the shorter application is re-executed

53

multiple times while a long application is running. By doing so, we ensure there are

always two applications running at any time. To estimate the overall performance,

we extract the runtime of the first ROI of each application and calculate the geo-

metric mean of their normalized performance. The normalization is with respect to

simulation with the static maximum V/F level. The overall energy is estimated as

the total core and uncore energy over the ROI of the long application.

4.2.2 PARSEC Application Cases and Analysis

Fig. 4.2 shows single application, full-system experimental results for each PAR-

SEC benchmark, with the rightmost clusters being the geometric mean results.

Fig. 4.2(a) shows normalized energy with respect to simulations where both cores and

the uncore operate at the maximum V/F level. In the figure we see the proposed

resource sharing driven power management provides an average energy savings of

43% versus a maximum frequency simulation. Some benchmarks, such as freqmine

and vips, actually show more energy saving than the minimum frequency simulation,

this is because of the large increase in run-time caused at the minimum frequency.

Overall, the energy saving is close to that shown for the minimum frequency simula-

tions, except in the case of blackscholes, canneal and fluidanimate. Blackscholes is a

highly balanced, CPU-bound benchmark with very low shared resource utilization.

Thus, for this benchmark the best policy is to maintain a high frequency to avoid

system performance degradation.

Fig. 4.2(b) shows the performance of each benchmark, normalized against a max-

imum frequency simulation. Here, normalized performance represents speed-up. In

the figure, no benchmark shows more than a 5% performance loss. Some benchmarks

actually show a performance gain. In particular, canneal shows a 28% performance

improvement. This benchmark is memory-bound and shows particularly high con-

54

tention within the NoC, thus greater resource allocation fairness actually improves

performance while saving energy. It is important to note that even in nominally

CPU-bound applications such as bodytrack and swaptions, we see significant energy

savings with no appreciable change in performance. In these applications it is of-

ten the case that not all cores benefit from DVFS relative to other threads in that

workload. This is due to several effects, including program phase behavior - leading

to small memory-bound phases within otherwise CPU-bound applications, workload

imbalances - leading to some threads waiting on others to finish, and the location

within the network the thread is running - leading to differential resource utilization

efficiency. Overall, our resource sharing driven DVFS shows a 2.9% average per-

formance gain, while showing a 43% energy saving. Our DVFS policy also shows

19.2% better performance with similar energy saving versus a prior work, rule-based

approach [24].

The rightmost three bars in each cluster of Fig. 4.2 show results for when the

uncore is statically set to the minimum V/F level, “(U)Min”. As a result, the uncore

is more congested. Comparing the rightmost three bars we see that the performance

gain from our approach doubles to 6% versus the core max, uncore min V/F case,

(C)Max+(U)Min. These results highlight the effect of improved fairness in resource

allocation when this resource (the uncore) is more contended. Moreover, the energy

saving in this case also increases to 55% in this case.

We also examined the improvement in fairness according to the RTT-per-core

delay spread metric discussed in Section 4.1.2, and summarize the results in Table

4.2. Columns 2 and 3 are the results from simulations with the uncore V/F at its

maximum level. Our approach considerably reduces both the mean and standard de-

viation (σ) of RTTs among cores, indicating that the resource is more fairly shared

among the cores. Columns 4 and 5 show results for when the uncore V/F is set to the

55

Table 4.2: Standard deviation (σ) and mean of RTTs from our TCP-DVFS, normal-
ized with respect to results from cores at the max V/F level [63].

Uncore max V/F Uncore min V/F
σ Mean σ Mean

blackscholes 0.47 0.65 0.24 0.42
bodytrack 0.30 0.56 0.35 0.45
canneal 0.14 0.52 0.33 0.49
fluidanimate 0.44 0.55 0.35 0.43
freqmine 0.32 0.49 0.31 0.42
swaptions 0.28 0.53 0.17 0.41
vips 0.97 0.52 0.23 0.34
x264 0.51 0.47 0.35 0.37

gmean 0.38 0.54 0.28 0.41

minimum level, including the baseline. In this case, the uncore is presumably more

congested. Here, the RTT mean and σ reduction by our approach is even greater.

The standard deviation is reduced 72% on average. This greater σ reduction coin-

cides with greater performance gain as discussed previously. These results generally

indicate that our approach improves CMP performance via improving fairness in

shared resource utilization.

Fig. 4.3 shows overall full-system simulation results for randomly chosen sets of

two simultaneous PARSEC benchmarks. In each case, eight cores are allocated to

each application. Fig. 4.3(a) shows the normalized energy consumption for each

testcase. In Fig. 4.3(b), normalized performance is shown and each line bar above

the bar chart represents the performance of each single benchmark, separately. The

labels of two benchmarks are sorted by higher performance shown in (C)TCP. For

example, in a combination of swaptions + freqmine, swaptions shows 4.4% perfor-

mance improvement while 1.9% performance degradation is seen in freqmine. We

found that, in this configuration, the benchmarks showed an overall average per-

56

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

(C
)M

a
x

(C
)M

in
(C

)R
u

le
(C

)T
C

P

(C
)M

a
x

(C
)M

in
(C

)R
u

le
(C

)T
C

P

(C
)M

a
x

(C
)M

in
(C

)R
u

le
(C

)T
C

P

(C
)M

a
x

(C
)M

in
(C

)R
u

le
(C

)T
C

P

(C
)M

a
x

(C
)M

in
(C

)R
u

le
(C

)T
C

P

(C
)M

a
x

(C
)M

in
(C

)R
u

le
(C

)T
C

P

(C
)M

a
x

(C
)M

in
(C

)R
u

le
(C

)T
C

P

(C
)M

a
x

(C
)M

in
(C

)R
u

le
(C

)T
C

P

(C
)M

a
x

(C
)M

in
(C

)R
u

le
(C

)T
C

P

N
o

rm
a

liz
e

d
 E

n
e

rg
y

freqm.
+ canneal

freqm.
+ x264

fluid.
+ bodyt.

bodyt.
+ vips

swapt.
+ freqm.

black.
+ fluid.

black.
+ vips

fluid.
+ swapt.

geomean

Uncore Core

(a) Normalized energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

freqm.
+ canneal

freqm.
+ x264

fluid.
+ bodyt.

bodyt.
+ vips

swapt.
+ freqm.

black.
+ fluid.

black.
+ vips

fluid.
+ swapt.

geomean

(C)Max (C)Min (C)Rule (C)TCP

(b) Normalized performance

Figure 4.3: Multi-applications experiment results with uncore at the maximum
V/F [63].

57

formance degradation of 0.3% while also saving ∼ 56% in core energy consumption

and ∼ 42% in total energy consumption through our core-only TCP-DVFS policy.

Compared with (C)Rule [24], our approach leads to much less disparity between the

application runtimes of each combination.

To gain intuition on the benefits of dynamic V/F scaling in our technique we also

examine the simulations for static V/F levels across all benchmarks. Figure 4.4 shows

the geometric mean across all eight PARSEC benchmarks for the static V/F levels,

together with the rule-based per-core DVFS [24] and our QoS per-core DVFS (with

uncore at the maximum frequency). In the figure, the energy-performance tradeoff

among different static V/F levels is obvious. Our result achieves the performance

of a static 2.66GHz core frequency, while consumes energy of only 1.87GHz static

frequency. Moreover, our performance is significantly better than the rule-based

previous work.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

geomean

N
o

rm
a

liz
e

d
 E

n
e

rg
y

(a) Normalized energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

geomean

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e 2.66GHz(Max)

2.53GHz
2.39GHz
2.26GHz
2.13GHz
2.00GHz
1.87GHz
1.73GHz
1.60GHz(Min)
Rule−based
TCP−DVFS

(b) Normalized performance

Figure 4.4: Comparison with static core V/F levels in single-application cases [63].

58

4.3 Conclusion

We propose a resource sharing-driven DVFS technique for CMP designs, whose

performance is largely affected by resource shared among cores. In this technique, the

DVFS serves as client regulator so as to manage shared resource, especially fairness,

of the shared resources. As such, significant energy saving is obtained with negligible

performance loss and sometimes performance gain. This technique is bolstered by

network control theory yet is simple to implement and has low overhead. Full system

simulation results show that this technique can reduce energy dissipation by over 40%

with more than 2.0% performance gain compared to baseline and 19.2% performance

increment with similar energy savings compared to a prior work [24].

59

5. COORDINATED DYNAMIC VOLTAGE FREQUENCY SCALING

TECHNIQUE FOR MAIN MEMORY

5.1 Coordinated Memory DVFS with CMP Power Management

First, our proposed memory DVFS technique which is robust to randomized

resource utilization is described in section 5.1.1. Also, in section 5.1.2 we propose a

coordinated power management technique through dynamic voltage and frequency

scaling (DVFS) with CMP (core + uncore) power management.

5.1.1 Shared Resource Utilization Aware Memory DVFS

Generally, memory DVFS is achieved to save energy by decreasing voltage(V)

and frequency(F) when utilization of memory is low. In other word, lowering V/F

level of memory derives energy saving and less performance degradation when there

is few packets to access memory. As such, high utilization of memory requires high

V/F level to avoid lots of performance degradation. In this view, low V/F level

of memory is preferred for CPU-bounded applications because lowering V/F level

of memory does not degradate total performance too much. For memory-bounded

applications, high V/F level of memory is preferred to avoid performance degradation

even though less energy saving in memory. We however found that it is not true that

the highest V/F level of memory guarantees best performance among all V/F levels.

A conventional work [15] used a core utilization factor and a memory utilization factor

without knowledge of uncore utilization. Uncore (LLC + interconnection) utilization

here means how many packets go into last level cache and interconnected blocks. High

uncore utilization can possibly generate even much more congestion by the packets

responded from memory side. Higher V/F level of memory responses(injects) more

packets into the interconnected block compared to lower V/F level of memory. Thus,

60

the congestion by higher V/F level of memory degradates performance more than

one by lower V/F level of memory.

Especially, some randomized applications, i.e. simulated annealing, with higher

V/F level of memory generate more packets and congestion in uncore. In the ran-

domized application of chip multiprocessor, multiple threads access data from the

shared resource simultaneously and proceed their own computations. If more than

one thread access same data, recovery process to solve the conflict can be required

after each threads finish their own computations. For instance, simulated annealing

algorithm starts with randomly distributed data. The randomly distributed data

has more possibility to swap two data because the initial data is not aligned. This

phase possibly generates more conflicts among all threads and more recovery pro-

cesses. In this case, lower V/F level of memory operates as a serializing packets

responder(injector) to uncore. The serialized packets generates less conflict among

threads and have less recovery process. The less recovery process would contribute

less number of accessing cache and memory, cache coherence traffic, and so higher

performance.

Higher performance by lower V/F level of memory is shown in Figure 5.1. The

graphs shows the number of accumulated instructions executed at each control in-

tervals in maximum and minimum memory frequency simulations. For the first

1.0 × 106 instructions, minimum frequency simulation takes 54 control intervals

while maximum frequency simulation takes 62 control intervals. It means that mini-

mum frequency of memory shows faster run-time (higher performance) compared to

maximum frequency of memory. The total number of memory access in minimum

frequency simulation is decreased 22% compared to one in maximum frequency sim-

ulation. This means that the minimum frequency of memory generates less last level

cache misses. The less cache misses could contribute faster run-time. More conflicts

61

0 10 20 30 40 50 60 70 80 90 100
0

0.5

1

1.5

2

2.5
x 10

6

Control interval

T
h
e
 n

u
m

b
e
r

o
f

in
s
tr

u
c
ti
o
n
s

Max. Frequency

Min. Frequency.

Figure 5.1: The number of instructions executed in canneal

generated by high frequency of memory have more cache coherence traffic as well

as memory accesses. High frequency has high possibility to access data in the same

address, and we term it a conflict here. Accessing same data from more than a

thread occurs more cache coherence traffic. Thus, high frequency of memory gen-

erates more cache coherence traffic as well as more memory accesses. Through the

above two observations, memory V/F level affects utilization of the shared resources

such as LLC and interconnect components. Thus, uncore utilization factor is useful

for memory power management.

In this section, we propose a DVFS technique through awareness of shared re-

source congestion for memory power management. Figure 5.2 shows memory power

management technique of conventional approaches. In Fig. 5.2 and Fig. 5.3, red col-

62

Main

Memory

C1

C2

Cn

..
.

(a) Memory intensive behavior

Main

Memory

C1

C2

Cn

..
.

(b) Core intensive behavior

Figure 5.2: Conventional main memory DVFS.

ored components represent busy status with lots of work load executed while white

colored components has less work load executed. Figure 5.2(a) represents that work

load of memory intensive application exists in main memory. In this case, power

management policy of the conventional approaches hold high frequency for main

memory to avoid lots of performance degradation. In Fig. 5.2(b), work load of core

intensive application is in cores and less work load exists in main memory. Con-

ventional power management policy holds low frequency to save energy with less

performance degradation.

Our proposed shared resource aware power management policy is shown in Fig. 5.3.

In core intensive application, our technique works same way to the conventional ap-

proaches. In our approach, low frequency is preferred to save energy with less per-

formance degradation because there is less work load exists in main memory. Thus,

lowering frequency of main memory does not degradate system performance. for the

memory intensive application, we do not consider only utilization of main memory,

63

but also the shared resource. The packets injected from cores go through the shared

resource and arrive to main memory. Also, responding packets from main memory

go to cores through the shared resource. Figure 5.3(a) and Fig. 5.3(b) show memory

intensive work load distribution. In Fig. 5.3(a), there is less packets in the shared

resource and most of work load is in main memory. In this case, our policy holds

high frequency of main memory to avoid performance degradation. However, our

power management technique holds low frequency of main memory when there is

much work load in the shared resource. In this case, high frequency of memory

sends fast responses to cores, but cannot arrive at cores due to congestion in the

shared resource. In other words, the fast frequency is less effective to avoid system

performance degradation. Also, lowering frequency of memory does not degradate

system performance much compared to faster frequency of memory. In addition,

fast responses from memory possibly make more congestion in the shared resource

and degradate even more performance degradation. Thus, lowering frequency of

main memory contributes saving energy without less performance degradation and

performance increment by solving congestion in the shared resource.

We used three utilization metrics to consider the policies described in Fig. 5.3.

One is the number of instructions, ICORE as core utilization metric. For utilization

of last level cache (LLC) and main memory, we used the number of LLC accesses and

main memory, IUNCORE and IMEM . With the utilization metric, we define global

and local memory utilization rate as shown in Eq. 5.1 and Eg. 5.2.

MemGlobal =
IMEM

ICORE
(5.1)

MemLocal =
IMEM

ILLC
(5.2)

64

Main

Memory

C1

C2

Cn

..
.

Uncore

(a) Memory intensive behavior without con-
gestion of the shared resource

Main

Memory

C1

C2

Cn

..
.

Uncore

(b) Memory intensive behavior with conges-
tion of the shared resource

Figure 5.3: Our shared resource congestion aware memory DVFS.

MemGlobal and MemLocal represent relative memory utilization to cores and LLC,

respectively. When MemGlobal is low, it means that less work load is in memory, and

our policy holds low frequency to save energy. High MemGlobal represents lots of

memory accesses as shown in Fig. 5.3. In this case, we consider MemLocal as well as

MemGlobal. In our technique, high frequency of memory is selected when MemLocal

is also high because high MemLocal represents memory work load is relatively higher

than the one in the shared resource. When MemLocal is low, our policy holds low fre-

quency of memory because shared resource is bottleneck of total system performance.

Lowering frequency of memory in this case does not degradate system performance

while saving more energy.

The proposed main memory DVFS policy adopts simple approach to reduce

implementation cost. If MemGlobal < ΦGlobal, the main memory V/F level is de-

creased by one step. If MemGlobal > ΦGlobal, the main memory V/F level depends

65

on MemLocal. If MemLocal < ΦLocal (MemLocal > ΦLocal), the main memory V/F

level is decreased (increased) by one step. Otherwise, the main memory V/F stays

unchanged. Four thresholds ΦGlobal ΦGlobal, ΦLocal and ΦLocal are employed here.

5.1.2 Coordinated DVFS policy

Many work on power management for certain components have been explored,

there could be the coordination issue on combining them. It means that an efficient

power management technique of a component could be not efficient when it operates

with power management of other components. For instance, a core DVFS technique

and a memory DVFS technique select high frequency when both components have

high work load. On the next control interval, in case of less work load on both of

the cores and memory, the both of the DVFS technique select lower frequencies for

both. However, lowering frequency of the cores reduces work load on the memory

as well. Thus, lowering frequency of memory without coordination may not be nec-

essary and cause performance degradation. As we mentioned in section 5.1.1, the

utilization of memory memory is highly related to the uncore(shared resources)’s

status. Therefore, we also develop an coordinated uncore DVFS technique in sec-

tion 5.1.2.1. And then, we explain our proposed coordinated main memory DVFS

policy in section 5.1.2.2.

5.1.2.1 Coordinated uncore DVFS policy

In this section, we develop an uncore DVFS scheme that is applied in conjunction

with the QoS-driven per-core DVFS. As with several recent works [39, 10, 29, 9, 62],

we consider the case where the on-chip interconnect is implemented with a Network-

on-Chip (NoC) and the entire uncore shares a single voltage/frequency domain. NoCs

have been widely recognized as a scalable approach to cope with increasingly large

demand for on-chip communication bandwidth. While we argue that placing the

66

uncore in one shared V/F domain has a key advantage – it avoids performance and

power overhead of domain-crossing, our technique is conceptually applicable in other

forms of on-chip interconnect, as well as divided uncore V/F domains.

As uncore DVFS policy has been investigated previously [39, 10, 29, 9, 62], a

natural question is whether we can adopt the existing approaches and directly com-

bine them with our QoS-driven per-core DVFS. In the case of Juan et al.’s DVFS

scheme [29], their uncore DVFS policy is tightly coupled with their own core DVFS

policy and is difficult to transplant to our system. Other uncore policies can be

viewed as “stand-alone” and assume that core V/F levels are fixed [39, 10, 9, 62].

In Liang et al.’s approach, uncore V/F is tuned based on the packet injection rate

into the network [39]. There is a risk in directly combining such injection-based

techniques with our core DVFS. When core V/F levels change, the network injection

is not always a true reflection of real traffic demand. A low injection rate due to

the core V/F scaling may mislead to uncore V/F decrease. Then, the consequently

increased RTTs may further decrease core V/F levels. Such false feedback can result

in a downward spiral of both core and uncore V/F even if there is large work/traffic

load and cause large performance loss. Other recent works [9, 62], adjust uncore V/F

according to uncore latency or the RTT excluding DRAM latency. A näıve applica-

tion of these approaches with our core DVFS is prone to oscillation. For example,

when the network is congested, uncore increases its frequency while some cores may

simultaneously decrease their frequencies. This may result in over correction and

underload of the network. The underload then demands uncore frequency decrease,

core frequency increase, and so on.

We propose a new uncore DVFS technique in coordination with our core DVFS. It

is a rule-based approach guided by predicted latency effect, and can largely overcome

the aforementioned problems in directly using prior approaches [9, 62]. For core i at

67

the end of control interval j, the predicted latency effect for interval j + 1 is defined

by:

φi,j+1 = λi,j ·
#INJECTIONSi,j

#INSTRUCTIONSi,j
· fi,j+1

fi,j
(5.3)

where λi,j is the average uncore latency and fi,j is the operating frequency of core i

in interval j. The ratio of injection count and instruction count serves as a criticality

factor for the uncore latency. Note that fi,j+1 is computed by core i at the end of

control interval j and is to be executed for interval j + 1. As such, the ratio
fi,j+1

fi,j

predicts the change of injection rate in the next interval. The average predicted

latency effect among all of N cores is

Φj+1 =

∑N
i=1 φi,j+1

N
. (5.4)

The proposed uncore DVFS policy is very simple. If Φj+1 > Φ (Φj+1 < Φ), the

uncore V/F level is increased (decreased) by one step. Otherwise, the uncore V/F

stays unchanged. Two thresholds Φ and Φ are employed here.

A key difference from prior efforts [9, 62] is that our observation variable Φj+1

accounts for the injection rate change due to the future core V/F state in the next

interval. This anticipation reduces the likelihood of oscillation. For example, when

network congestion appears, some cores may lower their V/F levels. Then, the

ratio
fi,j+1

fi,j
would discount the predicted latency effect. If many cores lower their

frequencies, the overall Φj+1 may increase very little despite the uncore latency in-

crease. As such, the uncore may keep its frequency unchanged and therefore reduce

the chance of oscillation. The two-level threshold Φ and Φ is to further reduce the

risk of oscillations. In this regard, the rule-based policy is more flexible than prior

approaches [9, 62] on coping with the oscillations.

68

5.1.2.2 Coordinated main memory DVFS policy

As we mentioned in section 5.1.2, coordination among all separates power man-

agement policy is very important to avoid over performance degradation along with

less power saving. A prior work [15] proposed a power management policy with

the coordination between cores and memory. Also, they assumed in-order processor

model to increase accuracy of the estimation of their power management policy. In

this section, we propose a main memory DVFS policy which is coordinated with our

uncore DVFS scheme and TCP-based DVFS scheme. Our technique can be applied

to more complicated processor model because it is based on the measurements of the

system counter.

As our coordinated uncore DVFS technique, our main memory DVFS technique

also considers the effect of cores’ DVFS and uncore DVFS in the same control interval.

In our main memory DVFS policy, we utilize ICORE, ILLC and IMEM as shown in

Eq. 5.1 and Eq. 5.2. The numbers of instructions are updated by the cores’ DVFS

and uncore DVFS results. For core i at the end of control interval j, the predicted

number of instructions and LLC access for interval j + 1 is defined by:

ICORE,j+1 =
N∑
i=1

#INSTRUCTIONSi,j ·
fi,j+1

fi,j
(5.5)

ILLC,j+1 =
N∑
i=1

#LLCACCESSESi,j ·
fi,j+1

fi,j
(5.6)

where fi,j is the operating frequency of core i in interval j and N is the number

of all cores. Note that fi,j+1 is computed by core i at the end of control interval j

and is to be executed for interval j + 1. As such, the ratio
fi,j+1

fi,j
predicts the change

of instruction and injection rate to LLC in the next interval.

69

IMEM is affected by the results of the cores’ DVFS and the uncore DVFS as

shown in:

IMEM,j+1 =

(
N∑
i=1

#MEMACCESSESi,j ·
fi,j+1

fi,j

)
· fuj+1

fuj
(5.7)

where fuj is the operating frequency of uncore in interval j. In our proposed

coordinated main memory DVFS technique, ICORE,j+1, ILLC,j+1 and IMEM,j+1 are

used to replace ICORE, ILLC and IMEM of Eq. 5.1 and Eq. 5.2, respectively.

5.2 Experimental Results

5.2.1 Experiment Setup

The experimental baseline platform is a 16-core CMP with a 2-level cache hi-

erarchy, split L1i and L1d private caches, a shared L2 last-level cache (LLC), four

DRAM memory controllers and memory subsystem. We adopt a DDR-style memory

subsystem of Ruby memory model of Gem5 [4]. Cache coherence is maintained via

a MESI directory cache coherence protocol. The cores are interconnected via a 4× 4

2D mesh NoC topology. Table 5.1 summarizes the baseline CMP setup and memory

model. Each core, the uncore and the DRAM memory have their own separated

voltage/frequency domain. V/F levels for the cores range from 2.66GHz - 1.6GHz,

following the states found in the Intel Core i7 processor [59]. V/F levels for the

uncore range from 1GHz - 250MHz to facilitate comparison with prior work in un-

core power management [9]. The DRAM V/F levels ranges from 800MHz - 200MHz

which is a standard range of comercial DDR3 models. All parameters along with all

V/F levels and energy model of DDR3 follow Micron’s power calculator [44].

All experiments are conducted using the gem5 simulator system [4] with a 4-

wide O3 core CPU model, X86 ISA, 7-stage pipeline, 192-entry reorder buffer, Ruby

memory model and Garnet NoC model. We used CACTI 6.5 [48], ORION 2.0 [30],

70

Table 5.1: Configuration and parameters of the experiment platform.
Parameter Configuration

Core CPU 4-wide out of order processor

Pipeline 7-stage pipeline

ROB size 192-entry reorder buffer

of cores 16

Core V/F
9 levels, voltage: 1.55V - 0.8V
frequency: 2.66GHz - 1.6GHz

L1 data cache 2-way 256KB, 2 core cycle latency

Directory cache MESI, 4 core cycle latency

L2 cache (LLC)
16-way, 2MB/bank, 32MB/total
10 uncore cycle bank latency

NoC
4x4 2D mesh, X-Y DOR
4-flits per VC

Uncore V/F
10 levels, voltage: 1.35V - 0.8V
frequency: 1GHz - 250MHz

DRAM Memory V/F
10 levels, voltage: 1.575V - 1.475V
frequency: 800MHz - 200MHz

Memory configuration 4 DDR3 channeals, 8 2GB DIMMs

Control interval 50 µs

V/F transition 100 ns

DVFS threshold
ΦGlobal = 0.0015, ΦGlobal = 0.0005

ΦLocal = 0.3, ΦLocal = 0.01

Technology 32nm

McPAT 1.0 [38] and Micron’s power calculator [44] to model the energy of the NoC,

cache, cores and DDR3 memory, respectively. The energy consumption model in-

cludes leakage and dynamic energy based on 32nm process technology.

Our coordinated DVFS techniques for uncore and memory are compared against

a baseline, no-DVFS design, the full set of static V/F levels, a conventional memory

DVFS approach [15] and a technique of co-scaling V/F levels of cores and memory

proposed by Deng and et al. [13].

In the figures found in this section, the following V/F settings and policies of our

coordinated DVFS (uncore and memory) are examined:

71

• (C)Max+(U)Max+(M)Max: All cores, the uncore and the memory constantly

run at the maximum voltage/frequency. This result is the baseline, to which

the other results are normalized.

• (C)Min+(U)Min+(M)Min: All cores, the uncore and the memory constantly

run at the minimum V/F level. These results provide an approximated lower

bound on energy dissipation.

• (M)Memscale: Memory runs DVFS using the method proposed by Deng [15]

while all cores and the uncore run at its maximum V/F level.

• (M)Global: Memory runs accoring to Eq. 5.1 in Section 5.1.1 while all cores

and the uncore run at its maximum V/F level.

• (M)Local: Memory runs accoring to Eq. 5.2 in Section 5.1.1 while all cores and

the uncore run at its maximum V/F level.

• (M)Glo+Loc: Memory runs our proposed shared resource aware DVFS (Sec-

tion 5.1.1) while all cores and the uncore run at its maximum V/F level.

• (C/M)Coscale: All cores and memory run a conventional coordinated DVFS [13]

while the uncore runs at its maximum V/F level.

• (C/M)Coord.DVFS: All cores and memory run our proposed coordinated DVFS

and the uncore runs at its maximum V/F level. This setting is conducted to

compare with the conventional work [13].

• (C/U/M)Coord.DVFS: All cores, uncore and memory run our proposed coor-

dinated DVFS.

The application testcases are taken from the PARSEC shared-memory, multi-

processor, benchmark suite [3]. We use the eight PARSEC benchmarks currently

72

supported in our infrastructure, blackscholes, bodytrack, canneal, fluidanimate, fre-

qmine, swaptions, vips, x264. In the experiments, all benchmarks are executed to

the end of simulation, but only the Region Of Interest (ROI) is evaluated.

5.2.2 PARSEC Application Cases and Analysis of Coordinated DVFS

Figure 5.4 shows energy distribution of multi-thread applications, PARSEC [3],

in CMP (cores and uncore) and main memory. CMP including cores and uncore

takes about 68% of entire energy consumption while main memory takes 32% in our

environment setup. This graph proves that cores and memory takes large portion

of entire energy and cores and memory power management is very essential to save

entire energy.

 0%

 20%

 40%

 60%

 80%

 100%

b
la

c
k
s
c
h

o
le

s

b
o

d
y
tr

a
c
k

c
a

n
n

e
a

l

fl
u

id
a

n
im

a
te

fr
e

q
m

in
e

s
w

a
p

ti
o

n
s

v
ip

s

x
2

6
4

g
e

o
m

e
a

n

P
e

rc
e

n
ta

g
e

 o
f

e
n

e
rg

y
 c

o
n

s
u

m
p

ti
o

n
s

Memory
Uncore
Cores

Figure 5.4: Energy distribution of PARSEC [3] applications in CMP and main mem-
ory.

This graph also shows each applications have different characteristic, and so di-

verse energy distribution. For instance, energy consumption of uncore in canneal

73

takes 25% of total energy consumption (Core+Uncore+Memory). Even though

overall energy consumption of uncore is relatively small, 15%, it is not negligible

and more important even for some uncore intensive applications such as canneal and

vips.

5.2.2.1 Overall results of proposed coordinated DVFS for CMP and memory

We describe the results of our proposed coordinated DVFS for CMP(cores and

uncore) and memory in this section. Our technique is compared to maximum and

minimum frequencies for all CMP and memory.

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

(C
)M

a
x
+

(U
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(U
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

+
(U

)M
a
x

(C
/U

/M
)C

o
o
rd

.D
V

F
S

(C
)M

a
x
+

(U
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(U
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

+
(U

)M
a
x

(C
/U

/M
)C

o
o
rd

.D
V

F
S

(C
)M

a
x
+

(U
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(U
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

+
(U

)M
a
x

(C
/U

/M
)C

o
o
rd

.D
V

F
S

(C
)M

a
x
+

(U
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(U
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

+
(U

)M
a
x

(C
/U

/M
)C

o
o
rd

.D
V

F
S

(C
)M

a
x
+

(U
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(U
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

+
(U

)M
a
x

(C
/U

/M
)C

o
o
rd

.D
V

F
S

(C
)M

a
x
+

(U
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(U
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

+
(U

)M
a
x

(C
/U

/M
)C

o
o
rd

.D
V

F
S

(C
)M

a
x
+

(U
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(U
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

+
(U

)M
a
x

(C
/U

/M
)C

o
o
rd

.D
V

F
S

(C
)M

a
x
+

(U
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(U
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

+
(U

)M
a
x

(C
/U

/M
)C

o
o
rd

.D
V

F
S

(C
)M

a
x
+

(U
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(U
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

+
(U

)M
a
x

(C
/U

/M
)C

o
o
rd

.D
V

F
S

N
o
rm

a
liz

e
d
 E

n
e
rg

y

blackscholes			 bodytrack			 canneal			 fluidanimate			 freqmine			 swaptions			 vips			 x264			 geomean			

Memory
Uncore
Core

(a) Normalized energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

blackscholes bodytrack canneal fluidanimate freqmine swaptions vips x264 gmean

N
o

rm
a

liz
e

d
 P

e
rf

o
rm

a
n

c
e

(C)Max+(U)Max+(M)Max
(C)Min+(U)Min+(M)Min
(C/M)Coscale+(U)Max
(C/U/M)Coord.DVFS

(b) Normalized performance

Figure 5.5: Full-system simulation results of PARSEC benchmark suite [3].

74

In the Fig. 5.5, minimum frequency simulation, (C)Min+(U)Min+(M)Min, shows

48.7% energy savings while showing over 50% performance degradation compared to

the maximum frequency simulation. It is also referred as maximum energy savings.

The huge performance degradation derives more total energy consumption which

includes other components of the system beyond CMP and memory. Also, 50%

performance degradation is enough users to feel slowness of the system, so the mini-

mum V/F level is not appropriate for the power management policy. Especially, the

minimum frequency simulation of x264 shows more energy consumption than maxi-

mum frequency simulation due to huge performance degradation. Overall, our policy

shows similar energy savings, 47%, to the minimum frequency setting while showing

negligible performance degradation, 2.3%. In addition, our policy saves energy more

than 30% for all various applications. In some applications, our power management

policy shows more energy saving than minimum frequency simulation by negligible

performance degradation. Comparing to a conventional work [13], our results show

0.4% performance increment and 12% more energy savings of total energy which

includes cores, uncore and memory.

In Fig. 5.5(a), our technique shows similar energy savings of cores, over 50%, to

minimum frequency simulations. For some core-bound applications such as blacksc-

holes and fluidanimate, our technique chooses higher V/F level to avoid much perfor-

mance degradation even though with less energy savings. In this application, energy

savings are shown at uncore, memory or both. Regarding that there is little room to

save energy of cores in core-bound applications, our technique saves energy in uncore

and memory for blackscholes and memory for fluidanimate. Overall energy savings

of uncore in our policy is about 30% to minimize total performance degradation due

to lowering V/F level. It means that uncore usually has high utilization in both of

core-bound and memory-bound applications. Energy saving of memory in our pol-

75

icy is over 60% compared to maximum frequency simulations and 20% more energy

savings than the conventional work [13].

5.2.2.2 Comparison with conventional work for coordinated power management

In this section, we compare our coordinate DVFS technique to a conventional

DVFS technique for CMP cores and memory [13]. The previous work is about

power management policy based on estimated performance and energy consumption

for CMP cores and memory. This work does not include uncore DVFS policy. In

summary of their work, they find a combination of V/F levels of cores and memory

through exploration of all possible V/F levels. Also, the combination of V/F levels

stays within certain performance degradation. For fair comparison, uncore V/F

level is fixed to maximum frequency in all simulations. Figure 5.6 shows normalized

energy consumption and performance to maximum V/F level for cores and memory.

In Fig. 5.6(b), our results show overall 2% performance degradation compared to

maximum frequency simulations. In our experiment of the conventional work [13],

we set allowed performance degradation to 2% for fair comparison with our proposed

technique.

In the Fig. 5.6, minimum frequency simulations for cores and memory shows

44.6% energy savings while showing over 40% performance degradation compared

to the maximum frequency simulation. The conventional work [13] shows 35.1% to-

tal energy savings with 2.7% performance degradation. Our proposed work shows

44% energy savings which is almost similar to the minimum frequency simulations

only with 1.7% performance degradation. Regarding that the minimum frequency

simulations shows 40% performance degradation, our proposed coordinate power

management technique is more efficient than the minimum frequency simulation.

Also, compared to the conventional work, our policy works more efficiently. While

76

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

(C
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

(C
/M

)C
o
o
rd

.D
V

F
S

(C
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

(C
/M

)C
o
o
rd

.D
V

F
S

(C
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

(C
/M

)C
o
o
rd

.D
V

F
S

(C
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

(C
/M

)C
o
o
rd

.D
V

F
S

(C
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

(C
/M

)C
o
o
rd

.D
V

F
S

(C
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

(C
/M

)C
o
o
rd

.D
V

F
S

(C
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

(C
/M

)C
o
o
rd

.D
V

F
S

(C
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

(C
/M

)C
o
o
rd

.D
V

F
S

(C
)M

a
x
+

(M
)M

a
x

(C
)M

in
+

(M
)M

in
(C

/M
)C

o
s
c
a
le

(C
/M

)C
o
o
rd

.D
V

F
S

N
o
rm

a
liz

e
d
 E

n
e
rg

y

blackscholes			 bodytrack			 canneal			 fluidanimate			 freqmine			 swaptions			 vips			 x264			 geomean			

Memory
Uncore
Core

(a) Normalized energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

blackscholes bodytrack canneal fluidanimate freqmine swaptions vips x264 geomean

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

(C)Max+(M)Max
(C)Min+(M)Min
(C/M)Coscale
(C/M)Coord.DVFS

(b) Normalized performance

Figure 5.6: Full-system simulation results of PARSEC benchmark suite [3] (Uncore
frequency is fixed to maximum frequency.

their approach is based on the estimated performance degradation and energy con-

sumption, it is not trivial to acquire accurate model and requires more complicated

model for multi-threads applications.

5.2.2.3 Overall results of our proposed memory DVFS technique

In this section, we analyze the effect of our proposed memory DVFS technique

with a conventional work [15]. Figure 5.7(a) shows normalized energy of memory

and total energy to maximum frequency simulation. The total energy consumption

includes cores, uncore and memory. System performance of our proposed technique

77

is shown in Fig. 5.7(b).

In Fig. 5.7, we analyze three proposed policies. The V/F levels of cores and

uncore is set to maximum V/F level at all simulations in the graph. First policy,

(M)Global, is based on global memory access ratio as shown in Eq. 5.1. Second,

we analyze (M)Local which is only depends on local memory access ratio as shown

in Eq. 5.2. Finally, our proposed memory DVFS technique, (M)Glo+Loc, combines

those two policies as shown in right most bars in the graphs. We also added maximum

and minimum frequency simulations and a conventional work [15] for comparison.

Our (M)Global shows over 60% energy saving in overall. However, it shows less

energy savings in canneal. In canneal, our (M)Local shows much energy savings,

75%, which is similar to minimum frequency simulations. It however does not save

much energy on some core -bound applications such as blackscholes, fluidanimate

and swaptions. Our final technique, (M)Glo+Loc, shows much energy saving, 75%,

in canneal and showing 15% performance increment. This means that lowering V/F

of memory when uncore has many packets or congestion affects energy saving and

performance increment.

We also compared our technique to a convention work for memory DVFS [15].

Our technique shows 20% more energy saving with 3.4% performance increment

compared to the work. As we described in section 5.2.1, we uses out-of-order model

of CPUs to simulate more realistic architecture. This results proves that our tech-

nique is efficient in realistic architecture regarding that it is not trivial to estimate

processing time of instructions in the convention approach [15]. In summary, our

final technique, (M)Glo+Loc, shows 65% energy saving of memory and 20% total

energy saving even with slight performance increment, 1.2%, compare to maximum

frequency simulation.

78

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

(M
)M

a
x

(M
)M

in
(M

)m
e

m
s
c
a

le
(M

)G
lo

b
a

l
(M

)L
o

c
a

l
(M

)G
lo

+
L

o
c

(M
)M

a
x

(M
)M

in
(M

)m
e

m
s
c
a

le
(M

)G
lo

b
a

l
(M

)L
o

c
a

l
(M

)G
lo

+
L

o
c

(M
)M

a
x

(M
)M

in
(M

)m
e

m
s
c
a

le
(M

)G
lo

b
a

l
(M

)L
o

c
a

l
(M

)G
lo

+
L

o
c

(M
)M

a
x

(M
)M

in
(M

)m
e

m
s
c
a

le
(M

)G
lo

b
a

l
(M

)L
o

c
a

l
(M

)G
lo

+
L

o
c

(M
)M

a
x

(M
)M

in
(M

)m
e

m
s
c
a

le
(M

)G
lo

b
a

l
(M

)L
o

c
a

l
(M

)G
lo

+
L

o
c

(M
)M

a
x

(M
)M

in
(M

)m
e

m
s
c
a

le
(M

)G
lo

b
a

l
(M

)L
o

c
a

l
(M

)G
lo

+
L

o
c

(M
)M

a
x

(M
)M

in
(M

)m
e

m
s
c
a

le
(M

)G
lo

b
a

l
(M

)L
o

c
a

l
(M

)G
lo

+
L

o
c

(M
)M

a
x

(M
)M

in
(M

)m
e

m
s
c
a

le
(M

)G
lo

b
a

l
(M

)L
o

c
a

l
(M

)G
lo

+
L

o
c

(M
)M

a
x

(M
)M

in
(M

)m
e

m
s
c
a

le
(M

)G
lo

b
a

l
(M

)L
o

c
a

l
(M

)G
lo

+
L

o
c

N
o

rm
a

liz
e

d
 E

n
e

rg
y

blackscholes		 bodytrack		 canneal		 fluidanimate		 freqmine		 swaptions		 vips		 x264		 geomean		

Memory
Core+Uncore

(a) Normalized total energy

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

blackscholes bodytrack canneal fluidanimate freqmine swaptions vips x264 gmean

N
o
rm

a
liz

e
d
 P

e
rf

o
rm

a
n
c
e

(M)Max
(M)Min
(M)memscale
(M)Global
(M)Local
(M)Glo+Loc

(b) Normalized performance

Figure 5.7: Full-system simulation results of PARSEC benchmark suite [3] (Frequen-
cies of cores and uncore are fixed to maximum).

79

5.2.2.4 Comparison with static V/F

We also conducted some static simulations to compare with our proposed tech-

nique for memory power management. Figure 5.8 shows normalized energy and

performance compared to maximum V/F level simulation of average of eight PAR-

SEC testcases, blackscholes, bodytrack, canneal, fluidanimate, freqmine, swaptions,

vips, x264. For the static V/F levels, we selected all V/F levels which are used in

our DVFS policy. The left ten clusters show the effects of the static simulations.

Lower V/F level shows more energy saving of memory and more total energy saving

in some high V/F levels. However, the two lowest V/F levels of memory, 267MHz

and 200MHz, show less total energy saving even though with more memory energy

savings because of lots of performance degradation. Performance degradation (or

run-time increment) affects more energy consumption. In summary, our method

shows similar energy saving of memory compared to minimum frequency simulation.

Also, total energy saving of our technique is over all static simulations while there is

no performance degradation in our technique.

5.2.2.5 Cache coherence traffic analysis

In this section, we analyze the traffic of cache coherence protocol as one of the

congestion metric of uncore (LLC + interconnect). In general, operating frequency

affects the timing of cache access through each cores and main memory. The oper-

ating frequency of memory responds (or injects) packets by requests of each cores.

Lower frequency of memory injects packets to uncore slower than higher frequency.

The slow injection from memory and other injection from each cores change cache

coherence protocol among private caches and shared cache. In some applications

which have less shared resource, there have more chance to vary cache coherence

traffic due to varying operating frequency.

80

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

(M)800MHz (M)733MHz (M)667MHz (M)600MHz (M)533MHz (M)467MHz (M)400MHz (M)333MHz (M)267MHz (M)200MHz (M)Coord.DVFS

N
o
rm

a
liz

e
d
 E

n
e
rg

y
 (

o
r

P
e
rf

o
rm

a
n
c
e
)

Memory energy Total Energy Performance

Figure 5.8: Comparison with static memory V/F levels (Frequencies of cores and
uncore are fixed to maximum).

Figure 5.9(a) shows cache coherence traffic among private caches and shared

cache. We conducted two simulations, maximum and minimum frequency of mem-

ory while keeping maximum frequencies for cores and uncore. Our results show 34%

increment of cache coherence traffic at minimum frequency of memory. However,

canneal shows 25% decrement of cache coherence traffic. Referring canneal ’s behav-

ior, each cores randomly choose two data sets and swap or not according to certain

rule. And, each cores keep one of the previous grabbed data and choose new data

to increase data reuseness. While the cores choose two data sets, there could be

conflicts among the cores. For instance, same data can be chosen by more than one

core and swapped from the cores. The conflict represents this situation and requires

recovery process. The recovery process may increase the number of cache accesses

and coherence traffic. Our result of canneal shows decrement of cache coherence

traffic. In means that maximum frequency of memory injects more packets into un-

core within certain amount of time and generates more conflicts and cache coherence

81

 0

 0.5

 1

 1.5

 2

 2.5

blackscholes bodytrack canneal fluidanimate freqmine swaptions vips x264 AVG

N
o
rm

a
liz

e
d
 C

o
h
e
re

n
c
e
 T

ra
ff
ic

M(Max) M(Min)

(a) Normalized cache coherence traffic

 0

 0.2

 0.4

 0.6

 0.8

 1

 1.2

 1.4

 1.6

 1.8

blackscholes bodytrack canneal fluidanimate freqmine swaptions vips x264 AVG

N
o
rm

a
liz

e
d
 T

o
ta

l
T

ra
ff
ic

M(Max) M(Min)

(b) Normalized total traffic (coherence + noncoherence)

Figure 5.9: Cache coherence traffic in the shared source

traffic.

We also conducted additional simulation to analyze total traffic which includes

non coherent protocol as shown in Fig. 5.9(b). Our results show 7.5% increment

overally and 6% decrement in canneal.

DVFS policy, we considered shared resource along with cores in CMP and main

memory. Our key idea is that high V/F level of memory is not useful when shared

resource is congested. Instead, lowering V/F level of memory saves more energy

by reducing V/F level of memory without performance degradation. Additionally,

lowering V/F level of memory reduces congestion of the shared resource and con-

tributes performance increment. Full system simulations of our proposed memory

82

power management technique on PARSEC benchmarks shows 66% energy saving of

main memory and 18% energy saving of total energy consumption without perfor-

mance degradation. In addition to memory DVFS, our coordinated DVFS technique

for core, uncore and main memory shows 47% energy saving with less than 2.3%

performance degradation.

83

6. CONCLUSION AND FUTURE WORK

6.1 Conclusion

This work focused on power management through dynamic voltage and frequency

scaling (DVFS) for cores and uncore of CMP and main memory. The cores of CMP

and main memory take large portion of CMP energy consumed. As such, the CMP

uncore constitutes a significant and increasing part of overall CMP power dissipation

to achieve consistent performance scalability in these designs to satisfy the demands

of application data growth, requires a super-linear expansion in uncore. More specif-

ically, the first work focused on DVFS technique for the uncore (i.e. LLC and on-

chip communication fabric). In this work, various Artificial Neural Network-based

(ANN) techniques are proposed to achieve the best power savings while maintain-

ing negligible performance degradation. Also, we propose novel approach, wherein a

Proportional Integral (PI) controller, which can adapt to short system changes, but

lacks long-term pattern recognition, is used in tandem with the ANN. In addition to

uncore power management, we propose a resource sharing-driven DVFS technique

for CMP cores’ designs. Our technique shows benefits of performance increment

even with energy saving for intensive shared resource-based applications. As such,

significant energy saving is obtained with negligible performance loss and sometimes

performance gain. For the last work, we propose a power management technique

with coordination among CMP cores, uncore and main memory. Our technique uses

CMP uncore utilization factor because uncore plays an important role as a path(or

bottleneck) between CMP cores and main memory. Full system simulation results

show that this technique can reduce energy dissipation by over 47% with almost no

performance degradation (sometimes performance gain) compared to baseline.

84

REFERENCES

[1] N. Agarwal, T. Krishna, L.-S. Peh, and N. K. Jha. GARNET: a detailed on-

chip network model inside a full-system simulator. In Proceedings of the IEEE

International Symposium on Performance Analysis of Systems and Software,

pages 33–42, 2009.

[2] L. Barroso and U. Holzle. The Datacenter as a Computer: An Introduction to

the Design of Warehouse-Scale Machines. Morgan & Claypool, 2009.

[3] C. Bienia, S. Kumar, J.P. Singh, and K. Li. The PARSEC benchmark

suite: characterization and architectural implications. In Proceedings of the

ACM/IEEE International Conference on Parallel Architectures and Compila-

tion Techniques, pages 72–81, 2008.

[4] N. Binkert, B. Beckmann, G. Black, S. K. Reinhardt, A. Saidi, A. Basu, J. Hes-

tness, D. R. Hower, T. Krishna, S. Sardashti, R. Sen, K. Sewell, M. Shoaib,

N. Vaish, M. D. Hill, and D. A. Wood. The gem5 simulator. ACM Computer

Architecture News, 39(2):1–7, May 2011.

[5] R. Bitirgen, E. Ipek, and J. F. Martinez. Coordinated management of multiple

interacting resources in chip multiprocessors: A machine learning approach. In

Proceedings of the IEEE/ACM International Symposium on Microarchitecture,

pages 318–329, 2008.

[6] P. Bogdan, R. Marculescu, S. Jain, and R. T. Gavila. An optimal control

approach to power management for multi-voltage and frequency islands mul-

tiprocessor platforms under highly variable workloads. In Proceedings of the

ACM/IEEE International Symposium on Networks-on-Chip, pages 35–42, 2012.

85

[7] E. Bolotin, I. Cidon, R. Ginosar, and A. Kolodny. QNoC: QoS architecture and

design process for network on chip. Elsevier Journal of Systems Architecture,

50(2-3):105–128, February 2004.

[8] L. S. Brakmo and L. L. Peterson. TCP Vegas: end to end congestion avoid-

ance on a global internet. IEEE Journal of Selected Areas in Communications,

13(8):1465–1480, October 1995.

[9] X. Chen, Z. Xu, H. Kim, P. Gratz, J. Hu, M. Kishinevsky, and U. Ogras

ad R. Ayoub. Dynamic voltage and frequency scaling for shared resources in

multicore processor designs. In Proceedings of the ACM/IEEE Design Automa-

tion Conference, 2013.

[10] X. Chen, Z. Xu, H. Kim, P. Gratz, J. Hu, M. Kishinevsky, and U. Ogras. In-

network monitoring and control policy for dvfs of cmp networks-on-chip and

last level caches. In Proceedings of the ACM/IEEE International Symposium on

Networks-on-Chip, pages 43–50, 2012.

[11] S. Damaraju, V. George, S. Jahagirdar, T. Khondker, R. Milstrey, S. Sarkar,

S. Siers, I. Stolero, and A. Subbiah. A 22nm IA multi-CPU and GPU system-on-

chip. In Proceedings of the IEEE International Solid-State Circuits Conference,

pages 56–57, 2012.

[12] H. David, C. Fallin, E. Gorbatov, U. R. Hanebutte, and O. Mutlu. Memory

power management via dynamic voltage/frequency scaling. In Proceedings of the

ACM International Conference on Autonomic computing, pages 31–40, 2011.

[13] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini.

Coscale: Coordinating cpu and memory system dvfs in server systems. In

Proceedings of the IEEE/ACM International Symposium on Microarchitecture,

pages 143–154, 2012.

86

[14] Q. Deng, D. Meisner, A. Bhattacharjee, T. F. Wenisch, and R. Bianchini. Mul-

tiscale: Memory system dvfs with multiple memory controllers. In Proceedings

of the ACM/IEEE International Symposium on Low Power Electronics and De-

sign, pages 297–302, 2012.

[15] Q. Deng, D. Meisner, L. Ramos, T. F. Wenisch, and R. Bianchini. Memscale:

Active low-power modes for main memory. In Proceedings of the ACM Inter-

national Conference on Architectural Support for Programming Languages and

Operating Systems, pages 225–238, 2011.

[16] R. H. Dennard, F. H. Gaensslen, H.-N. Yu, V. L. Rideout, E. Bassous, and

A. R. Leblanc. Design of ion-implanted MOSFET’s with very small physical

dimensions. IEEE Journal of Solid State Circuits, SC-9(5):256–268, October

1974.

[17] E. Ebrahimi, C. J. Lee, O. Mutlu, and Y. N. Patt. Fairness via source throttling:

a configurable and high-performance fairness substrate for multi-core memory

systems. In Proceedings of the ACM International Conference on Architectural

Support for Programming Languages and Operating Systems, pages 335–346,

2010.

[18] S. Eyerman and L. Eeckhout. Fine-grained DVFS using on-chip regulators. ACM

Transactions on Architecture and Code Optimization, 8(1):1–24, April 2011.

[19] K. Flautner, N. S. Kim, S. Martin, D. Blaauw, and T. Mudge. Drowsy caches:

simple techniques for reducing leakage power. In Proceedings of the ACM/IEEE

International Symposium on Computer Architecture, pages 148–157, 2002.

[20] B. Grot, J. Hestness, S. W. Kecklet, and O. Mutlu. Kilo-NOC: a heterogeneous

network-on-chip architecture for scalability and service guarantees. In Proceed-

87

ings of the ACM/IEEE International Symposium on Computer Architecture,

pages 401–412, 2011.

[21] B. Grot, S. Keckler, and O. Mutlu. Preemptive virtual clock: a flexible, ef-

ficient, and cost-effective qos scheme for networks-on-chip. In Proceedings of

the IEEE/ACM International Symposium on Microarchitecture, pages 268–279,

2009.

[22] L. Guang, E. Nigussie, L. Koskinen, and H. Tenhunen. Autonomous DVFS

on supply islands for energy-constrained NoC communication. Lecture Notes

in Computer Science: Architecture of Computing Systems, 5455/2009:183–194,

2009.

[23] Simon S. Haykin. Neural networks: a comprehensive foundation. Prentice Hall

International, 1999.

[24] Sebastian Herbert and Diana Marculescu. Analysis of dynamic volt-

age/frequency scaling in chip-multiprocessors. In Proceedings of the ACM/IEEE

International Symposium on Low Power Electronics and Design, pages 38–43,

2007.

[25] International Technology Roadmap for Semiconductors (ITRS) Working Group.

International Technology Roadmap for Semiconductors (ITRS), 2011 Edition.

[26] C. Isci, A. Buyuktosunoglu, C.-Y. Cher, P. Bose, and M. Martonosi. An analy-

sis of efficient multi-core global power management policies: maximizing perfor-

mance for a given power budget. In Proceedings of the IEEE/ACM International

Symposium on Microarchitecture, pages 347–358, 2006.

[27] R. Iyer. CQoS: a framework for enabling QoS in shared caches of CMP platforms.

In Proceeding of the ACM International Conference on Supercomputing, pages

88

257–266, 2004.

[28] Anil K. Jain, Jianchang Mao, and K.M. Mohiuddin. Artificial neural network:

A tutorial. IEEE Computer, 29:31–44, 1996.

[29] D.-C. Juan and D. Marculescu. Power-aware performance increase vis

core/uncore reinforcement control for chip-multiprocessors. In Proceedings of

the ACM/IEEE International Symposium on Low Power Electronics and De-

sign, pages 97–102, 2012.

[30] A. B. Kahng, B. Li, L.-S. Peh, and K. Samadi. ORION 2.0: a power-area

simulator for interconnection networks. TVLSI, 20(1):191–196, January 2012.

[31] E. Kakoulli, V. Soteriou, and T. Theocharides. Intelligent hotspot prediction

for network-on-chip-based multicore systems. IEEE Transactions on Computer-

Aided Design, 31(3):418–431, March 2012.

[32] W. Kim, M. S. Gupta, G. Wei, and D. Brooks. System level analysis of fast,

per-core DVFS using on-chip switching regulators. In Proceedings of the IEEE

International Symposium on High-Performance Computer Architecture, pages

123–134, 2008.

[33] Cyril Kowaliski. Gelsinger reveals details of Nehalem, Larrabee, Dunnington,

2008.

[34] R. Kumar and G. Hinton. A family of 45nm IA processors. In Proceedings of

the IEEE International Solid-State Circuits Conference, pages 58–59, 2009.

[35] J. W. Lee, M. C. Ng, and K. Asanovic. Globally-synchronized frames for guar-

anteed quality-of-service in on-chip networks. In Proceedings of the ACM/IEEE

International Symposium on Computer Architecture, pages 89–110, 2008.

89

[36] M. M. Lee, J. Kim, D. Abts, M. Marty, and J. W. Lee. Probabilistic distance-

based arbitration: providing equality of service for many-core CMPs. In Proceed-

ings of the IEEE/ACM International Symposium on Microarchitecture, pages

509–519, 2010.

[37] B. Li, L. Zhao, R. Iyer, L.-S. Peh, M. Leddige, M. Espig, S. E. Lee, and

D. Newell. CoQoS: coordinated QoS-aware shared resources in NoC-based SoCs.

Elsevier Journal of Parallel and Distributed Computing, 71(5):700–713, May

2011.

[38] S. Li, J. H. Ahn, R. D. Strong, J. B. Brockman, D. M. Tullsen, and N. P.

Jouppi. Mcpat: An integrated power, area, and timing modeling framework

for multicore and manycore architecture. In Proceedings of the IEEE/ACM

International Symposium on Microarchitecture, pages 469–480, 2009.

[39] G. Liang and A. Jantsch. Adaptive power management for the on-chip commu-

nication network. In Proeedings of the Euromicro Conference on Digital System

Design, pages 649–656, 2006.

[40] S. H. Low, L. Peterson, and L. Wang. Understanding Vegas: A duality model.

Journal of the ACM, 49(2):207–235, March 2002.

[41] J. Luo, N. K. Jha, and L.-S. Peh. Simultaneous dynamic voltage scaling of

processors and communication links in real-time distributed embedded systems.

TVLSI, 15(4):427–437, April 2007.

[42] J. F. Martinez and E. Ipek. Dynamic multicore resource management: a machine

learning approach. IEEE Micro, 29(5):8–17, September 2009.

[43] W.S. McCulloch and W. Pitts. A logical calculus of ideas immanent in nervous

activity. Bull. Mathematical Biophysics, 5:115–133, 1943.

90

[44] Micron. Calculating Memory System Power for DDR3, 2007.

[45] R. Miftakhutdinov, E. Ebrahimi, and Y. N. Patt. Predicting performance im-

pact of dvfs for realistic memory system. In Proceedings of the IEEE/ACM

International Symposium on Microarchitecture, pages 155–165, 2012.

[46] Marvin L Minsky and Seymour A Papert. Perceptrons - Expanded Edition: An

Introduction to Computational Geometry. MIT press Boston, MA:, 1987.

[47] A. K. Mishra, R. Das, S. Eachempati, R. Iyer, N. Vijaykrishnan, and C. R. Das.

A case for dynamic frequency tuning in on-chip networks. In Proceedings of

the IEEE/ACM International Symposium on Microarchitecture, pages 292–303,

2009.

[48] N. Muralimanohar, R. Balasubramonian, and N. P. Jouppi. CACTI 6.0: a tool

to model large caches. Technical report, HP Laboratories, 2009.

[49] O. Mutlu and T. Moscibroda. Parallelism-aware batch scheduling enhancing

both performance and fairness of shared DRAM systems. In Proceedings of the

ACM/IEEE International Symposium on Computer Architecture, pages 63–74,

2008.

[50] K. J. Nesbit, N. Aggarwal, J. Laudon, and J. E. Smith. Fair queuing mem-

ory systems. In Proceedings of the IEEE/ACM International Symposium on

Microarchitecture, pages 208–222, 2006.

[51] K. J. Nesbit, J. Laudon, and J. E. Smith. Virtual private caches. In Proceedings

of the ACM/IEEE International Symposium on Computer Architecture, pages

57–68, 2007.

[52] U. Y. Ogras, R. Marculescu, and D. Marculescu. Variation-adaptive feedback

control for networks-on-chip with multiple clock domains. In Proceedings of the

91

ACM/IEEE Design Automation Conference, pages 614–619, 2008.

[53] A. Rahimi, M. E. Salehi, S. Mohammadi, and S. M. Fakhraie. Low-energy GALS

NoC with FIFO-monitoring dynamic voltage scaling. Microelectronics Journal,

42(6):889–896, June 2011.

[54] F. Rasheed. Artificial neural network circuit for spectral pattern recognition.

Master’s thesis, Texas A&M University, College Station, 2013.

[55] Srinivas Shakkottai and R. Srikant. Foundations and Trends in Networking:

Network Optimization and Control, volume 2. Now, 2007.

[56] L. Shang, L. Peh, and N. K. Jha. Power-efficient interconnection networks:

dynamic voltage scaling with links. IEEE Computer Architecture Letters, 1(1),

2002.

[57] S. W. Son, K. Malkowski, G. Chen, M. Kandemir, and P. Raghavan. Integrated

link/CPU voltage scaling for reducing energy consumption of parallel sparse

maxtrix applications. In IPDPS, 2006.

[58] V. Soteriou, N. Eisley, and L.-S. Peh. Software-directed power-aware intercon-

nection networks. ACM Transactions on Architecture and Code Optimization,

4(1), March 2007. Article No. 5.

[59] V. Spiliopoulos, S. Kaxiras, and G. Keramidas. Green governors: A framework

for continuously adaptive DVFS. In Proceedings of the International Green

Computing Conference and Workshops, pages 1–8, 2011.

[60] R. Stefan, A. Molnos, A. Ambrose, and K. Goossens. A TDM NoC supporting

QoS, multicast, and fast connection set-up. In Proceedings of the ACM/IEEE

Design Automation and Test in Europe, pages 1283–1288, 2012.

92

[61] G. Steven, R. Anguera, C. Egan, F. Steven, and L. Vintan. Dynamic branch

prediction using neural networks. In Euromicro Symposium on Digital Systems

Design, pages 178–185, 2001.

[62] J.-Y. Won, X. Chen, P. Gratz, J. Hu, and V. Soteriou. Up by their bootstraps:

online learning in artificial neural networks for cmp uncore power management.

In Proceedings of the IEEE International Symposium on High-Performance

Computer Architecture, 2014, c© 2014 IEEE.

[63] J.-Y. Won, P. Gratz, S. Shakkottai, and J. Hu. Having your cake and eating it

too: Energy savings without performance loss through resource sharing driven

power management. In Proceedings of the ACM/IEEE International Symposium

on Low Power Electronics and Design, 2015, c© 2015 IEEE/ACM.

93

