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ABSTRACT 

The use of design optimization in the early stages of architectural design process 

has attracted a high volume of research in recent years. However, traditional design 

optimization requires a significant amount of computing time, especially when there are 

multiple design objectives to achieve. What’s more, there is a lack of studies in the 

current research on automatic generation of architectural design knowledge from 

optimization results. This paper presents computational methods for creating and 

improving a closed loop of design optimization and knowledge discovery in architecture. 

It first introduces a design knowledge-assisted optimization improvement method with 

the techniques - offline simulation and Divide & Conquer (D&C) - to reduce the 

computing time and improve the efficiency of the design optimization process utilizing 

architectural domain knowledge. It then describes a new design knowledge discovery 

system where design knowledge can be discovered from optimization through an 

automatic data mining approach. The discovered knowledge has the potential to further 

help improve the efficiency of the optimization method, thus forming a closed loop of 

improving optimization and knowledge discovery. The validations of both methods are 

presented in the context of a case study with parametric form-finding for a nursing unit 

design with two design objectives: minimizing the nurses’ travel distance and 

maximizing daylighting performance in patient rooms.  
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CHAPTER I 

INTRODUCTION 

This chapter addresses two existing problems associated with the present process 

of architectural design. Problem 1:  traditional design optimization and building 

performance simulation are very time consuming and; Problem 2: there is a lack of study 

about generating design knowledge through optimization automatically. It then proposes 

a research framework to solve these problems. It later states the research objectives, 

research questions and the significance of this study. The outline of this study is 

presented lastly. 

1.1 Problem Statement  

This section discusses the existing problems in the present architectural design 

process. These problems include: the complexity in architectural design, limitations in 

traditional design process, the time consuming issue in building performance simulation 

and optimization, and the lack of study to discover knowledge through optimization. 

1.1.1 Design Complexity  

Architectural design is a complex decision-making and goal-oriented activity. It 

can be seen as a Multi-Objective Optimization process aimed at finding optimal 

solutions for multiple objectives (Radford & Gero, 1987). Architects make design 

decisions about the practical functions and physical forms of buildings to meet design 

objectives. Among all types of architectural design, healthcare facilities are one of the 

most complex building types. Therefore, in this dissertation, healthcare design is used as 

an example for architectural design. The reasons are threefold and listed below. 
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First, there are a large number of possible solutions for a given design problem in 

healthcare architectural design. In the traditional design process, architects and planners 

create, develop, and modify a potential design based on assumptions and previous 

experiences.  Due to tight project timelines, the number of design options an architect 

can create and evaluate is often limited. It is difficult to achieve an optimal design 

solution through the limited number of options that can usually be created during a 

traditional design process. Thus, architects might find it difficult to convince clients that 

their proposed solution is ideal; instead, it might just be one of many acceptable 

solutions (Kim & Shepley, 2007). Kim and Shepley pointed out that one of the reasons 

architects’ credibility can be perceived as low is their lack of confidence that their 

proposed design solutions are the absolute best.  

Second, healthcare facilities involve a significant number of design objectives. 

Evidence-Based Design (EBD) is a popular design process wherein decisions about the 

physical space are based on research outcomes. Learning from EBD, we know that the 

design of healthcare facilities is governed by the needs and goals of the physical space, 

such as geometric typology, related functions, travel distance, access to daylight, energy 

consumption, etc. These design objectives often conflict with one another (Radford & 

Gero, 1987). For example, increasing access to views of nature from patient rooms 

might also increase overall energy consumption. It is very difficult to consider and 

balance all of the design objectives through the traditional design process.  
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Third, healthcare facilities not only impact the wellbeing of patients (Dettenkofer 

et al., 2004; Ulrich, 1984), but also affect physicians, staff members, caregivers (Harris 

et al., 2006), and patients’ family members (Conner & Nelson, 1999).  

The complexity of healthcare design can be reflected by the data about healthcare 

design firms’ size and their years in operation (Kim & Shepley, 2007; 2011). Healthcare 

firms generally are older than other types of design firms. About 55% of the healthcare 

firms currently operating were founded before 1970, while 48% of all design firms now 

in operation were established after 1985 (Kim & Shepley, 2007; 2011). In most cases, 

only large firms have the ability to design healthcare projects. About 71% of healthcare 

design firms have more than 20 staff members; only 10% of all architectural firms are of 

approximately that same size (Kim & Shepley, 2007; 2011). These data show that 

healthcare design firms require more specialized knowledge, more experience, and more 

employees.  

Given the complexity of the healthcare industry, there is a need for better 

methods to assist architects with the decision making process, help them create and 

evaluate design options, and optimize design solutions within a reasonable amount of 

time.  

1.1.2 Traditional Design Process and Design Optimization 

At present, architectural design activities usually proceed in the traditional 

fashion.  Mainly, architects use assumptions and previous experiences to create and 

modify potential design solutions in order to arrive at a design that is acceptable in both 

form and function. The number of solutions an architect can create and evaluate within a 
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reasonable timeframe is limited. Thus, there is no guarantee that the final design product 

will be the optimal design solution, or even close to it. Furthermore, due to various 

factors including a large number of building parameters, a variety of design needs which 

often conflict with one another, and an enormous number of possible design solutions, 

the traditional design process often leads to final design outcomes that are far from 

optimal.  

Computer-Aided Architectural Design (CAAD) has reformed architectural 

design through its ability to support the creation and analysis of a design. One of the 

most powerful techniques of computer-aided design is design optimization. Design 

optimization is a design method that searches for the optimum solution – the design that 

best meets all specified requirements, for example, achieving the lowest energy 

consumption, or in a nursing unit design allowing the least amount of walking distance 

for nurses (Ansys, 2007). Compared to the traditional design process, design 

optimization can search for and evaluate a large number of design solutions and pinpoint 

the best-fitting ones, according to the specified design objectives.  

1.1.3 Building Performance Simulations and Design Optimization: Time 

Consuming Process 

Building performance simulations are now regularly being used by building 

professionals to test design alternatives before the construction phase of the project is 

initiated (Hong et al., 2000), although the number of alternatives is limited as discussed 

above. These simulations are commonly used together with design optimization tools to 

find the best performing design alternatives. Both building performance simulations and 
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design optimization are powerful techniques for helping architects make better design 

decisions. However, including building performance simulations in the design 

optimization process has also made the practice of architectural design much more 

complex and time consuming. As a result, the integration of both techniques is often 

unrealistic in real-world design practice; most projects simply have too tight a project 

timeline to apply both.  

The first part of this study focuses on reducing the computing time needed for 

design optimization, utilizing design knowledge, when building simulation techniques 

are involved. The methods used in this research not only facilitate faster optimization, 

but more importantly they enable a much larger search space within the same amount of 

time, which offers a better chance of finding the optimal design.  

1.1.4 Knowledge Discovery through Optimization 

Knowledge discovery is the extraction process of nontrivial information that is 

unclear, previously unknown, and has potentially useful knowledge obtainable from data 

(Piateski & Frawley, 1991). Useful knowledge can be discovered from design 

optimization results. Previous work in the area of knowledge discovery through 

optimization has mostly been on prototypes created for demonstration purposes, and the 

knowledge (design rules) yielded by these simple prototypes have not offered new 

information to designers (e.g., one should use pre-stressed concrete for minimum slab 

thickness, etc.) (Mackenzie & Gero, 1987).  Moreover, existing knowledge discovery 

methods are based on manual and visual analyses of the optimization results.  For 

example, researchers point out that knowledge about design and performance 



 

6 

 

relationships can be obtained through a manual analysis of the results of Pareto 

optimization (Radford & Gero, 1987). As the use of design optimization grows, however, 

there is an increasing need to generate useful knowledge from the results of optimization 

quickly through an automatic process. In the second part of this study, I use an automatic 

data mining approach to generate design knowledge - rules and the relationships among 

design variables and design outcomes - based on optimization results; the learned 

knowledge is the relationship between the objectives (e.g., building performance) and 

the decision variables (e.g., building layouts).  

1.2 Proposed Research 

This study proposes a closed loop of design optimization improvement and 

knowledge discovery in architecture.  This new framework consists of two studies: (1) a 

design knowledge-assisted optimization improvement method that uses the techniques of 

offline simulation and Divide and Conquer to reduce the computing time and improve 

the efficiency of a design optimization process utilizing architectural domain knowledge; 

and (2) a new design knowledge discovery system where design knowledge can be 

generated from optimization through an automatic data mining approach. This new 

knowledge has the potential to further help improve the efficiency of the optimization 

method, thus forming a closed loop of optimization improvement and knowledge 

discovery. The validations of both methods are presented in the context of a case study 

with parametric form-finding for a nursing unit design with two design objectives: 

minimizing the nurses’ travel distance and maximizing daylighting performance in 

patient rooms. Each methodology is explained in detail below. 
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1.2.1 Improving Design Optimization Using Architectural Domain Knowledge 

Integrated with parametric modeling and an improved optimization process, the 

first part of this study examines methods for design optimization improvement using 

architectural domain knowledge. 

Computational simulation is considered as one of the most powerful analytic 

tools to study things (Hensen & Lamberts, 2012). Building performance simulation is 

one kind of computational simulation. It seeks to predict the performance such as energy 

performance of a building in the real world (Hensen & Lamberts, 2012). It is broadly 

used by building professionals to test design alternatives before the construction phase of 

the project (Hong et al., 2000). When design objectives include energy and daylight 

performances in design optimization, building performance simulations (such as energy 

simulations) are needed in the optimization process. Both building performance 

simulation and design optimization are very time consuming and require a significant 

amount of computing power. More time is needed when both techniques are required to 

work together. Thus, the first part of this research focuses on reducing the computing 

time in design optimization when building simulation techniques are involved. This 

reduction in computing time is enabled by the utilization of architectural domain 

knowledge to alleviate the need for expensive simulations.  

This study facilitates a process of simulation and optimization for specific 

architectural design objectives in a healthcare design problem. It focuses on the early 

stages of the design decision-making process and is composed of the following 
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computational methods: parametric modeling, performance simulation, and multi-

objective design optimization.  

1.2.2 Discovering Design Knowledge from Optimization 

The second part of this research study explores data mining techniques in design 

optimization to automatically generate design rules and knowledge using learned 

correlations between optimal performances and design variables. The information 

generated by one optimization problem can be applied to other, similar problems 

(Radford & Gero, 1987). Design knowledge - rules and the relationships among design 

variables and design outcomes - can be learned from the results of multi-objective 

optimization. This knowledge has the potential to be utilized as guidelines for future 

designs that reduce the need for simulation and optimization during the design process. 

1.3 Research Objectives 

The research objectives of this study include providing methods and prototypical 

tools to: (1) improve the efficiency of optimization by reducing simulation needs when 

building simulations are incorporated into design optimization; (2) study how design 

knowledge can be used to speed up the optimization process by reducing the 

computational complexity of the design problem; (3) find a design knowledge discovery 

method towards automatically generating useful correlations and causal relationships 

among decision variables, among design solutions, and between decision variables and 

design solutions for a given optimization problem; the knowledge can form design 

guidelines for specific design problems with similar design variables, constraints, and 
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design objectives and can form general design guidelines in the future to reduce the need 

for costly optimization computations. 

1.4 Research Questions 

The main research question in this study is:  

How can we create a knowledge-based design optimization and optimization-

based knowledge discovery framework for architectural design? 

The answer to this question has the potential to improve the applications of 

optimization in future architectural design practice. 

The main research question can be subdivided into several sub-questions: 

1. How can we reduce the number of simulation runs when building simulations 

are coupled with design optimization? 

Reducing the number of simulation runs will significantly improve the efficiency 

of optimization.  

2. How can we improve computational optimization by reducing the complexity 

of the design problem in optimization? 

Optimization problems are generally very complex, and thus require a long 

computational time.  Reducing the complexity of a problem can greatly benefit 

optimization in terms of the amount of time spent. 

3. How can we automatically generate valuable design knowledge from 

optimization? 

Much useful design knowledge can be gleaned from the results of an 

optimization. Design knowledge generated from previous optimizations has the potential 
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to improve the efficiency of the overall optimization method, thus forming a closed loop 

of optimization improvement and knowledge discovery. 

1.5 Significance 

This research provides a knowledge-based optimization and knowledge 

discovery framework for architectural design practice. It enables an efficient 

optimization method that can improve the productivity of current design optimization, as 

well as a proposed design knowledge discovery system.  In this design knowledge 

discovery system, new design knowledge can be discovered through design optimization 

and, in turn, provide feedback for future design optimization, thus improving the overall 

efficiency of the optimization method. Figure 1.1 shows the relationship between the 

two interrelated components of this study: (1) Design Knowledge Assisted Optimization 

Improvement and (2) Design Knowledge Discovery through Optimization.  

In the first phase of this study, the Design Knowledge Assisted Optimization 

Improvement method facilitates a fast and extensive creation and evaluation of design 

alternatives through a process of searches, simulations, and optimization in order to meet 

specified architectural design objectives. Compared to the traditional optimization 

method, it provides a rapid search process by reducing simulation runs and 

computational complexities for an optimal design using architectural domain design 

knowledge. The improved method used in this research not only provides a faster system 

for optimization, but more importantly it enables a larger search space within the same 

amount of time, which offers a better chance of finding the optimal design. This rapid 
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design optimization method will make optimization more useful for architects in their 

practice.  

In the second phase of this study, useful knowledge about the correlations among 

decision variables and optimal design solutions can be obtained from design 

optimization results. The new knowledge can, in turn, feed back into the optimization 

process to guide and help with future design optimizations.  

This study focuses on the early stages of the design decision-making process. 

While improving today’s practice is the ultimate goal of the project, the major 

contribution of this project is the future potential demonstrated by the present 

advancement of the optimization method. 

Figure 1.1 Conceptual Model of the Research. 

1.6 Outline of Dissertation 

This dissertation is structured as follows: 

Chapter 1 introduces existing problems associated with the present process of 

architectural design and proposes a research framework to solve these problems.  
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Chapter 2 presents a literature review on various topics closely related to this 

study. 

Chapter 3 describes the research methodology used for this study. 

Chapter 4 suggests two methods of improving the Genetic Algorithm process of 

design optimization.  It continues with a case study to validate these methods. 

Chapter 5 proposes a knowledge discovery system to help future design. 

Chapter 6 discusses the reliability and validity of the methods of this study, and 

provides a summary of the study, its findings, and future work. 
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CHAPTER II 

LITERATURE REVIEW 

This chapter presents a literature review on the following topics that are closely 

related to this study: optimal design in architecture, design complexity in healthcare 

architecture, parametric modeling, optimization methods and Genetic Algorithm, the 

time complexity of building simulation, the time complexity of GA, methods for 

improvement of optimization, data mining, and machine learning. 

2.1 Optimal Design in Architecture 

The role of the architect is to design and create buildings that best satisfy users’ 

needs. Three main elements are involved in the design process: requirements, creation, 

and alternatives (Papalambros & Wilde, 2000). Papalambros and Wilde (2000, pp. 11-12) 

define design optimization as: 

“1. The selection of a set of variables to define the design alternatives. 

2. The selection of an objective (criterion), expressed in terms of the

design variables, which we seek to minimize or maximize.

3. The determination of a set of constraints, expressed in terms of the

design variables, which must be satisfied by any acceptable design.

4. The determination of a set of values for the design variables, which

minimize (or maximize) the objective, while satisfying all the constraints.”

 Part of this chapter is reprinted with permission from “Improving Genetic Algorithm for Design 
Optimization Using Architectural Domain Knowledge” by Su, Z., Yan, W., 2014, Proceedings of the 
Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Copyright 
2014 by ACADIA. 
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Generally, architectural design problems are complex and often involve multiple 

design objectives. Besides energy efficiency, other design objectives architects might 

consider throughout the comprehensive architectural design process include: aesthetic, 

structural, functional, social, historical, behavioral, etc. (Lobos & Donath, 2010). Thus, 

architectural design can be seen as a multi-objective optimization process aimed at 

finding optimal solutions for multiple, often conflicting, objectives (Radford & Gero, 

1987).  As stated above, these design objectives may at times be in conflict with one 

another. For example, increasing access to views of nature from patient rooms might, at 

the same time, increase overall energy consumption; reducing nurses’ travel distances 

might also decrease the overall daylight performance in the nursing unit. Some design 

objectives are quantifiable and can be expressed by numerical values; they can be 

maximized or minimized. Other design objectives are unquantifiable and difficult to 

measure. As an example, according to Lobos and Donath (2010), in the realm of 

healthcare architectural design, the design objectives involved during the decision-

making process may include: 

1. Aesthetics: about the physical form of the building. Objective: to provide 

aesthetically pleasing architecture designs; unquantifiable.  

2. Geometric Typology: possible configurations of space distributions such as 

L-shaped, U-shaped, Linear, Rectangular, etc. Objective: to address program needs and 

other considerations such as building site restrictions; unquantifiable.  

3. Functional Relationships: some functions of a space program are more 

closely related to one another, and therefore should be adjacent. Objective: to establish a 
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hierarchy (such as highly, fairly, or scarcely related) in the relationship between 

functions and rooms; quantifiable.  

4. Travel Distance: the travel distance between certain rooms is an important 

consideration in healthcare design, such as in nursing unit design where travel distance is 

a major burden for nurses (Hendrich et al., 2008). Objective: to provide the minimum 

travel distance among rooms; quantifiable. 

5. Functional Efficiency: the net to gross area ratio. Objective: to keep most of 

the area for healthcare functions and less for circulation; quantifiable.  

6. Nature Views: research studies have shown a positive relationship between 

access to views of nature and improvement in patient outcomes such as reductions in 

stress, pain, and length of stay (Ulrich, 1984). Objective: to locate spaces (such as 

patient rooms) and windows in appropriate places and orientations in relation to views; 

unquantifiable.  

7. Daylighting: it has been found that access to daylight contributes to higher 

satisfaction for nurses and can reduce the pain and the incidence of depression for 

patients (Zimring et al., 2008). Objective: to provide sufficient daylight to every room in 

need; quantifiable. 

8. Energy Consumption: sustainable, efficient energy consumption and minimal 

environmental impact have become major objectives in building design (NSF, 2009). 

Objective: to minimize building energy consumption; quantifiable.  
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9. Visual Communication: Nurses can better supervise patients when they have 

better visual communication from nursing stations. Objective: to maximize visual 

communication in certain areas of the building; quantifiable.  

In this study, travel distance and daylighting have been selected as the sample 

quantifiable design objectives in a nursing unit design for the case studies.  

2.2 Design Complexity in Healthcare Architecture 

Among the various types of architectural design, healthcare facilities are one of 

the most complex because they require a wide range of specialized knowledge. Kim and 

Shepley (2011) point out that such specialized knowledge and skills can increase 

healthcare architects’ autonomy. This specialized knowledge includes functional 

complexity, technological complexity, research complexity, aesthetic complexity, and 

interest group complexity (Kim & Shepley, 2011). 

1. Functional complexity. Compared to other building types, healthcare 

facilities have complex functional and circulation systems. There are three main 

functional zones in a contemporary hospital: (1) medical services such as medical units, 

Intensive Care Units, emergency departments, and imaging departments; (2) medical 

supports such as central sterile supply; and (3) general support services such as linen and 

food supply. Healthcare architects need to have specialized knowledge and abundant 

past experience to design any of the above-mentioned functions. Perhaps that is the 

reason that healthcare firms generally are older than other types of design firms. About 

55% of the currently existing healthcare firms were founded before 1970, while 48% of 

all design firms were established after 1985 (Kim & Shepley, 2008). 
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2. Technological complexity. The field of medical technology has gained 

spectacular improvement in the past 50 years (Farncombe & Iniewski, 2013). Hospitals 

around the world are now constantly in need of renovation and expansion in an effort to 

incorporate the latest medical equipment (TMHC Staff, 2014). Healthcare architects 

should have knowledge of the newest medical equipment in order to provide sufficient 

space in their healthcare projects.  

3. Research (scientific knowledge) complexity. Evidence-based design has 

dramatically changed healthcare-focused architectural design.  It shows that healthcare 

facilities not only impact the wellbeing of patients (Dettenkofer et al., 2004; Ulrich, 

1984), but also affect physicians, staff members, caregivers (Harris et al., 2006), and 

patients’ family members (Conner & Nelson, 1999). Kim and Shepley (2011) suggest 

that the research can be categorized into two knowledge domains: medical knowledge 

that focuses on the wellbeing of patients, and environmental psychology that focuses on 

providing a healing and welcoming clinical environment for patients and their families. 

According to Kim and Shepley’s research (2011), there are two main purposes for 

architectural research: program development and design decision making.  

4. Aesthetic complexity. Architects’ professional autonomy with regards to the 

aesthetic components of their designs is decreasing due to external constraints such as 

client requirements and budget (Ferris, 1996). Different people may have different 

aesthetic preferences. These differences may lead to disagreements between architects 

and clients about aesthetics-based design decisions (Kim & Shepley, 2011). 
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5. Interest group complexity. Many interest groups (funders, doctors, nurses, 

managers, etc.) can be involved during the decision-making process for a healthcare 

facility’s design. Multiple voices among various interest groups often result in 

conflicting ideas (Kim & Shepley, 2011). Healthcare design complexity can result in 

task uncertainty. Specialized knowledge, especially research knowledge, should be 

brought in to overcome this uncertainty. The inclusion of specialized knowledge may 

also increase architects’ autonomy (Kim & Shepley, 2011).  

6. Professional autonomy. Autonomy is described as an individual’s level of 

self-governance (DeVinne, 1987). Architects have a high level of autonomy when they 

have the freedom to make design decisions without the limitations of external controls 

and constraints. Healthcare design firms usually lack autonomy with regards to decision 

making. Based on Kim and Shepley’s research (2011), 55% of the architectural firms 

surveyed claimed that they experienced low levels of autonomy. However, firms 

reporting high levels of autonomy (18%) tended to be large firms and more focused on 

healthcare projects (healthcare work made up 65% of all their projects).  

In conclusion, Kim and Shepley (2008, 2011) suggest that specialized domains of 

knowledge in design such as functional efficiency, building technology, medical 

technology, and research knowledge play important roles in healthcare design 

complexity, and healthcare design complexity results in task uncertainty. Specialized 

knowledge, especially research knowledge, should be brought in to overcome this 

uncertainty. Specialized knowledge also increases architects’ autonomy. Specifically, 
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incorporating architectural research into design decisions may raise the level of 

professional autonomy.  

Due to the design complexity of healthcare architecture, the complexity of 

computational optimization methods, and the limitation of available computing power, a 

significantly simplified healthcare architecture case study are selected for this research. 

2.3 Methods for Design Optimization 

Currently, two emerging computer modeling technologies can significantly 

benefit design optimization in architectural design. These two new technologies are 

parametric modeling and Generic Algorithm (GA). Each technology is further explained 

below. 

2.3.1 Parametric Modeling 

Digital modeling has greatly influenced the field of architectural design and 

construction. As new digital tools (such as parametric modeling) emerge, architects are 

able to explore new approaches to conceptual design (Schnabel, 2007; Stavric & Marina, 

2011). Generally speaking, parametric modeling enables architects to use parameters and 

relationships (e.g., by using equations) to describe a complex building form; these 

descriptions can be updated automatically when the parameters change. Existing 

parametric geometry modeling tools used in architectural design include: SolidWorks®, 

Rhino® / Grasshopper®, and GenerativeComponents®, just to name a few. Most of 

these types of tools employ change propagation modeling methods, and some employ 

visual programming methods like Grasshopper® (Eastman et al., 2011; Woodbury, 

2010).  
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2.3.2 Optimization Methods and GA 

2.3.2.1 Optimization Methods 

Design optimization is the process of using optimization methods to find the best 

design solutions that satisfy the project’s requirements. Numerous methods exist for 

conducting such searches and solving such design problems. Besides GA, other 

optimization methods include: differential calculus, linear programming, and dynamic 

programming. Each method has its own advantages and disadvantages, and architects 

should be careful to select the right method based on the types of problems faced and the 

information at hand. The details of each method are discussed below. 

(1) Differential Calculus.   Differential calculus can provide quick, analytical 

solutions to design problems that can be expressed algebraically (Radford & Gero, 1987). 

In other words, the relationship between the design variables and design objectives is 

expressed as a series of continuous and differentiable equations. For example, take a 

public housing development design for which the design objective is to maximize the net 

benefit (Radford & Gero, 1987, pp. 39). A real estate consultant provides the 

relationship between the net benefit N and the target area of the housing to be developed 

as X: N=100 + 100X – 40X2. The problem now is to find the maximum of N, when 

N=100 + 100X – 40X2. By finding the derivative of N, we know that when the housing 

area is X=1.25, the net benefit is the maximum, which is 162.5. It is important to 

remember that differential calculus can only work with a single relationship between 

variables.  When multiple relationships between variables occur, designers should assign 

the additional relationships as constraints (Radford & Gero, 1987).  Differential calculus 
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is useful when a design optimization problem can be formulated in a simple, continuous 

differential equation. The advantage of using differential calculus is that the method is 

simple, straightforward, and involves very little calculation. With a basic knowledge of 

differential calculus, one can quickly solve a problem without the use of a computer. 

Unfortunately, real world architectural design rarely sees design problems as simple as 

the example shown above. In most cases, an architectural design problem involves 

multiple design variables; also, there is usually more than one design objective that the 

designer may want to optimize simultaneously. What’s more, the relationships among 

the design variables and design objectives cannot easily be formulated by equations.  As 

a result, although differential calculus is a simple and elegant analytic method for 

solving optimization problems, rarely can we use it to solve real world architectural 

design optimization problems. 

(2) Linear Programming. Linear programming is a subset of mathematical 

programming (Radford & Gero, 1987). In an optimization problem, when the objective 

can be expressed by a linear function with certain constraints, the problem can be solved 

mathematically by using linear programming. Due to its simplicity and flexibility, linear 

programming methodologies have been widely used in many areas (such as the physical 

and social sciences) since the development of the theory in 1948 (Spivey, 1962). The 

method is well developed and “it guarantees to find the optimum solution in a fixed 

number of steps” (Radford & Gero, 1987, pp. 50). Linear programming cannot solve all 

of the problems in a linear relationship except by satisfying the following three 

conditions. First, all design variables must be continuous, and at the same time greater 
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than or equal to zero. Second, the relationships among the variables and objective 

functions must be expressed linearly. Third, the relationships among the variables and 

constraints must also be expressed linearly (Radford & Gero, 1987). Although linear 

programing is an important and useful method for solving optimization problems, 

generally speaking, a large percentage of design optimization problems do not satisfy the 

above-mentioned requirements.  

(3) Dynamic Programming. Most architectural design problems have discrete, 

nonlinear, and stochastic decision variables; optimization methods such as classical 

calculus and linear programming are not suitable in these situations. Dynamic 

programming can solve design problems with these features by breaking the original 

problem down into a series of sub-problems that can be solved sequentially. Assembling 

the optimal solutions for these sub-problems yields an optimal solution to the original 

problem (Cooper & Cooper, 1981). Dynamic programming is applicable to a problem if 

it satisfies two requirements. First, the original objective function must be separable into 

a series of smaller problems. Second, the original problem must be able to be organized 

in a way that “later decisions do not invalidate earlier ones” (Radford & Gero, 1987, p. 

110). For example, you want to travel from point A to point K as quickly as possible. 

There are many intersections between points A and K (see Figure 2.1). A heuristic 

designer might solve this problem by choosing the road that looks the shortest at every 

intersection. However, this will not guarantee the optimal solution because the designer 

might fail to see the entire picture. We can tackle this problem using an exhaustive 

search, which means finding all of the feasible routes and choosing the shortest.  This 
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would guarantee the finding of the optimal solution, but the process would be very slow. 

A dynamic programming algorithm looks at finding the shortest paths from points H, I, 

and J to point K, and uses those solutions to find the shortest paths from points E, F, and 

G to point K, and eventually the shortest path from point A to point K (Radford & Gero, 

1987).  

 

Figure 2.1.  Finding the Shortest Route From A to K (Image Source: Radford & Gero, 

1987). 

The computational power required for dynamic programming is much smaller 

than for an exhaustive search. However, as the number of design variables in each sub-

problem increases, the computational needs increase exponentially. Conversely, when 

the number of sub-problems increases, the computational needs only increase linearly. 

Therefore, dynamic programming works better for problems that can be separated into 

more sub-problems than those with more design variables in each sub-problem. 

Additionally, there are other limitations to dynamic programming.  Sometimes it is 

impossible to solve even the smallest problem.  In other cases, there are too many sub-

problems to solve (Radford & Gero, 1987). There are no clear and general solutions for 

dynamic programming, as compared to other optimization methods (Radford & Gero, 
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1987). Because dynamic programming can solve problems with discrete, nonlinear, and 

stochastic decision variables, it is suitable for many of the design problems faced in 

architectural design. However, designers need to have a basic knowledge of mathematics 

and should be able to find the logic in each design problem. This may be another 

limitation since not all architects have sufficient training in math. 

2.3.2.2 Genetic Algorithm (GA) 

Since architectural design problems often have discrete, nonlinear, and stochastic 

decision variables with multiple objectives, optimization methods such as classical 

calculus, linear programming, and dynamic programming are not applicable to these 

optimization problems (Radford & Gero, 1987). Generally speaking, GA is more 

suitable for solving many architectural design problems than the other above-mentioned 

optimization methods, for the following three reasons: (1) Most architectural problems 

are complex and involve more than one design objective. Compared to differential 

calculus, linear programming, and dynamic programming, GA not only works well with 

discrete, nonlinear, and stochastic decision variables, but it also can handle problems 

with multiple design objectives.  GA can either convert multi-objective optimization into 

single objective optimization by using a weighted sum of the objective functions, or 

identify a group of equally ranked solutions as the Pareto optimal set (Mackenzie & 

Gero, 1987). (2) A design problem must satisfy certain conditions in order to be solved 

by differential calculus, linear programming, or dynamic programming, which decreases 

the applicability of these methods to architectural design. However, GA has no such 

requirements. It can cover many design problems seen in architecture. (3) Modeling 
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tools such as Rhino have been used widely in architectural design firms. "Popular 

among students and professionals, McNeel Associates’ Rhino modelling tool is endemic 

in the architectural design world. The new Grasshopper environment provides an 

intuitive way to explore designs without having to learn to script" (Day, 2009). The 

integrated Rhino/Grasshopper program provides ready-to-use GA plugins – Galapagos 

and Octopus – for optimization. Galapagos is a single objective GA optimization tool, 

and Octopus is another GA tool for multi-objective optimization. Thus, this study adopts 

GA for design optimization. 

GA mimics natural selection and the process of evolution (Holland, 1975).  

Holland’s research (Holland, 1975) includes two parts.  First, he described and explained 

the adaptive process of natural selection and evolution; second, he designed a software 

program to mimic the most important mechanism in the natural selection system using 

techniques such as inheritance, selection, crossover, and mutation.  

GA is helpful in solving design optimization problems when there is a need to 

search through a large number of possibilities for solutions (Mitchell, 1998). Using 

mechanisms similar to those of natural selection in evolving individuals who adapt to an 

environment over time, GAs provide a robust search process; they have been used in 

optimizing complex and poorly-understood scientific and engineering problems (Gero & 

Louis, 1995) such as automotive design (Mahmoodabadi et al., 2013; Vidal et al., 2012), 

engineering design (Deb, 2012; Gen & Cheng, 2000), medicine (Chen & Chen, 2011), 

etc. In architecture, the applications for GA include structural design (Kociecki & Adeli, 

2013), green building design (Attia et al., 2012; Wang et al., 2005), and space planning 
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(Jo & Gero, 1998; Rawat et al., 2012). Tools (Gerber et al., 2012) are being developed 

that employ GA in the generation of design alternatives.  

The workflow of GA is described as follows. (1) In the beginning, GA randomly 

creates a large population (candidates for design options). (2) GA tests each candidate to 

see how good it is at solving the problem and assigns a fitness score. The fitness function 

is determined by the designer. For example, if the design objective is to minimize nurses’ 

travel distance, the designer must define the fitness function, which in this case is the 

calculation of the nurses’ travel distance in given hospital buildings. (3) GA selects a 

group of candidates with high fitness scores from the current population to act as parents.  

The chance of being selected is proportional to the fitness of the candidates. (4) GA 

crosses over the high-fitness parent solutions to generate child solutions.  Since the 

parent solutions have high fitness scores, their child solutions are expected generally to 

have even higher fitness scores. (5) GA deletes the candidates with low fitness scores 

while maintaining the high score candidates; it also mutates a certain percentage of the 

candidates. These form a new generation. (6) GA repeats steps two through five until an 

optimal or at least a satisfactory candidate is found. Figure 2.2 shows the GA process. 
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Figure 2.2. Evolution Flow of a Genetic Algorithm (Image Source: Liao & Sun, 2011). 

2.3.2.3 Pareto Optimization 

In general, there are two ways to solve multi-objective optimization problems: 1) 

convert the multi-objective optimization into a single objective optimization by using a 

weighted sum of the objective functions, often with arbitrary weights; and 2) search for 

the Pareto optimal set, which is more widely accepted for practical, multi-objective 

optimization because normally there is a set of optimal solutions (design options) rather 

than a single solution for multi-objective optimization (Mackenzie & Gero, 1987). In 

multi-objective optimization, Pareto frontier or Pareto optimal set or Pareto optimal front 

refer to a set of solutions in which none of the objective functions can be improved 

without making at least one other objective value worse off (Hochman & Rodgers, 1969). 

There can be multiple design solutions, but each must meet the following condition: any 

improvement of one objective (e.g., decreasing the nurses’ travel distance in a unit) will 
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degrade at least one other objective (e.g., decreasing the overall daylighting 

performance). These design solutions make up the Pareto optimal set.  

Existing computational algorithms such as NSGA-II (Deb, 2002) and Strength 

Pareto EA (SPEA) (Zitzler & Thiele, 1999) have been devised generally to deal with 

and/or improve multi-objective optimization. Design tools such as Octopus (Vierlinger, 

2014) utilize one such algorithm (SPEA-2) and integrate it with geometric modeling 

tools such as Rhino/Grasshopper. 

2.4 An Improved GA for Design Optimization 

Building performance simulation and genetic algorithm (GA) are powerful 

techniques for helping designers make better design decisions in architectural design 

optimization. However, they are very time consuming and require a significant amount 

of computing power. More time is needed when two techniques work together. This has 

become the primary impediment in applying design optimization to real-world projects. 

2.4.1 The Time Complexity of Building Performance Simulation 

With the growing demand for energy-efficient buildings, numerous building 

energy simulation tools have been developed. Green building standards such as LEED 

(USGBC, 2009) have been issued and implemented in many countries. A more 

sustainable and energy-saving type of design has been advocated by designers, engineers, 

and developers. The applications for building simulations include: building heating and 

cooling load calculation, daylighting calculation and reflective roof analysis, building 

energy management and control system design, building regulations, code checking, cost 

analysis, etc. (Hong et al., 2000). Although many simulation tools exist today, the 
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optimization process, which involves iterative simulations, is inefficient and time 

consuming.  

In addition to the improvement of multi-objective genetic algorithms from the 

general computing point of view, there is a need to research for a more efficient 

optimization method to make the use of simulations (e.g. energy simulations) more 

efficient during the optimization process.  

Time and computational complexity analyses are used to evaluate a system’s use 

of computing and time resources. Previous studies have shown that building simulation 

is a very time-consuming and labor-intensive process. For instance, in a high rise office 

building energy simulation study, the computer will need more than 30 hours to perform 

a one year hourly simulation, and the time required for monthly simulations will vary 

from 36 minutes to around 6 hours, using four desktop computers running at the same 

time (Ahn et al., 2013). Researchers point out that the time and resources needed for 

simulation are one of the reasons that simulation tools have not been fully embraced by 

architects (Shi, 2011). Architectural design firms have been using genetic algorithms as 

a way to search for the optimal design options to assist with the design decision making 

process (Besserud, Skidmore & Merrill, 2008; Claussnitzer et al. 2014). However, due to 

the tight project timeline, architects do not have the time and resources. Most 

optimization projects have a small population. Therefore, the optimal solutions are not 

guaranteed to find.  
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2.4.2 The Time Complexity in GA 

A well-known limitation of GA is that it often takes a tremendous amount of 

search and evaluation iterations before reaching optimal solutions, especially when the 

task involves multiple objectives. A GA optimization process could take days to 

complete using today's conventional computers. In an optimization study of insulation 

usage and space conditioning load, it took GA 50 minutes to run 25 different designs and 

2 hours and 18 minutes to run 100 different designs on a standard laptop (1.7-GHz CPU, 

512-MB RAM) (Shi, 2011). In a study of green building design optimization using 

multi-objective GA, a computer with Windows XP (3.06GHZ Pentium-IV processor, 

512 RAM) took 30 hours to run 29 solutions (Wang et al., 2005). This time-consuming 

aspect of GA could be a serious impediment to design automation, effectively 

discouraging designers from conducting more optimization studies. Both the number of 

generations and solutions in the above GA examples are too few to be of any practical 

use. On the one hand, when GA’s execution time can be saved by using a smaller search 

space, global optimality is unlikely to be achieved. On the other hand, increasing GA 

search space to allow for a greater number of optimal solutions will result in a longer 

execution time, which in turn will prevent GA from being useful in the design process. 

Thus, reducing the run time of GA is essential to its use in design optimization.  

2.4.3 Methods for Improvement 

When a standard GA is used with simulation for optimization, a significant 

computer effort is expected (Renner & Ekárt, 2003). As a result, various methods have 

been researched for increasing the speed of GA. The literature on this topic can be 
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divided into four groups. One involves improving the infrastructure, running GA on a 

faster machine, or using multiple machines working together. The Parallel Genetic 

Algorithm uses a group of cooperating computers to solve complex problems in less 

time (Muhlenbein, 1991). Cloud computing (Armbrust et al., 2010) has also been 

introduced as a way to reduce the computing time of optimization problems. Cloud 

services are now being used in many design firms to speed up the optimization process 

(Claussnitzer et al., 2014). 

The second group of research in the literature investigates the construction of 

approximate simulation models, surrogate models that mimic the actual simulation 

model but use less computing power (Forrester et al., 2006). The computational cost of 

GA can be reduced by replacing computationally expensive fitness evaluations with 

cheap approximation models such as surrogate models (Ong et al., 2003). A review 

paper (Jin, 2005) points out that approximation models are beneficial when (1) the 

computation of the fitness function evaluation in GA is very time consuming; (2) no 

analytical fitness function model exists, the fitness function needed to be evaluate by 

human, for example, in music composition and art design; (3) the results of GA is not 

always consistent; and (4) the fitness landscape has multiple local optimal. Surrogate 

models are used to replace the accurate and time-commuting fitness evaluation. It is 

recommended to use surrogate model with the real/original fitness function to avoid 

having a false optimum in the surrogate model (Jin et al., 2000). The trade-off between 

the fidelity (approximation accuracy) and computational cost is shown in Figure 2.3 (Jin, 

2011). Generally speaking, fitness evaluations with high fidelity are more time-
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consuming, and fitness evaluations with low fidelity are usually less-consuming. The 

user should balance between the needs for accuracy and available computational cost. 

Surrogate models are applicable to many operators in GA, for example, population 

generation, crossover (Anderson & Hsu, 1999), mutation (Abboud & Schoenauer, 2002), 

local search (Ong et al., 2006), global search (Simpson et al., 2001), and fitness 

evaluations (Buche et al., 2005; Jin, 2011). Multiple surrogate models can be applied 

together to a GA problem. For example, researchers (Zhou et al., 2007) combine global 

and local surrogate models to improve the speed of an evolutionary optimization. 

However, surrogate models require simulation knowledge, i.e. how to construct 

approximate simulation models, which architects usually don’t possess. This inspired the 

present project in the reuse of offline or pre-simulation that architects already know how 

to conduct in the optimization process. The proposed methods are expected to be simpler 

for implementation than surrogate models because the original simulation models can be 

used in the optimization process. 



33 

Figure 2.3. The Tradeoff Between Fidelity and Computational Cost (Adapted From Jin, 

2011). 

The third group of research suggests using simplified building simulation tools or 

reducing the number of simulation needs. Sentient building simulation system construct 

a result database of a portion of the search space and interpolate the results based on 

designer’s need (Negendahl et al., 2014).   

The fourth group in the literature focus on making the GA works more efficiently. 

Associative parametric models can be used to describe a large and complex geometric 

system with fewer variables, which would make the optimization process faster (von 

Buelow et al., 2010). The Evolutionary Divide & Conquer algorithm reduces the 

complexity of the problem by dividing a large problem into simple sub-problems 

(Valenzuela & Jones, 1993).  
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2.5 Design Knowledge Discovery through Optimization  

Designers are not only interested in the optimum design solution to a specific 

problem, but are also care about the general rules or design knowledge that can be 

applied in any other citations (Radford & Gero, 1987). “The information generated by 

optimization often is generally applicable” (Radford & Gero, 1987, pp. 302). An 

approach to a previous optimization problem can be used to guide future designs, by 

designers or by computer expert systems (Radford & Gero, 1987).  For example, we can 

obtain useful information by using design optimization to investigate the relationship 

between window size and daylighting performance. As the use of design optimization 

increases, there is a need to generate useful knowledge from the results of such 

optimization. Michie (1990) predicted that the next popular research area would be the 

use of machine learning tools for knowledge discovery in large data sets. Radford & 

Gero (1987) also pointed out that the future of computer-aided architectural design lay in 

advanced design systems that could generate and incorporate design knowledge by the 

systems themselves instead of depending on human judgements.  

Knowledge discovery is the extraction of nontrivial information that is unclear, 

previously unknown, and has potentially useful information obtainable from data 

(Piateski & Frawley, 1991). Figure 2.4 depicts the components of a knowledge discovery 

system. The discovery methods used for searching and evaluating in a database make up 

the core of this system. The input includes: data from a database, domain knowledge, a 

data dictionary, and user-defined biases. The output is discovered knowledge. 
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Figure 2.4 The Framework for Knowledge Discovery in Databases (Image Source: 

Frawley et al., 1992). 

Architectural research has already addressed the use of optimization to discover 

rules or principles and generally apply them (Mackenzie & Gero, 1987). One kind of 

knowledge that can be discovered is the types of relationships that exist among design 

objectives (e.g., no conflict between two design objectives, linear relationships, etc., in 

Radford & Gero, 1987). Other kinds of knowledge include the relationships among 

decision variables, and among the objectives and decision variables. For example, the 

information generated can include the relationship between window size and the type of 

external environment, or between building performances and building forms; learning 

these relationships might otherwise require years of practical experience.  
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Figure 2.5 shows five different Pareto optimal sets for two design objectives. The 

relationships between the two objectives can be analyzed using optimization results. 

(a) No conflict exists between two design objectives. The optimized 

performance for one design objective also tends to be the optimized performance for the 

other design objective. The short span of the Pareto set tells us that all performances are 

similar.  

(b) A heavily convex Pareto front. When a heavily convex shape appears in the 

Pareto set, a balance exists between the two design objectives. The optimized 

performance in both design objectives is located at a point. However, improving 

performance in either direction will decrease performance in the other direction. 

(c) Linear relationship. When the Pareto optimal is in a straight line or 

hyperbolic curve, there is a simple mathematical function between both objectives. We 

can use this rule to predict the Pareto performance without using optimization tools.  

(d) A heavily concave Pareto front. When a heavily concave shape happens, 

there is a conflict between the two objectives. Trying to compromise both will result in 

bad performances in both objectives.  

(e) Partly convex and partly concave. The relationship between the two 

objectives changes and there is no simple rule to explain the relationship. 
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Figure 2.5. Patterns of Pareto Optimal Sets for Two Criteria (Image Source:  Radford & 

Gero, 1987). 

However, previous work in knowledge discovery through optimization for 

architectural design is mostly for demonstration purposes and the rules found from the 

simple prototypes are not new to designers, e.g. one should use pre-stressed concrete for 

minimum slab thickness (Mackenzie & Gero, 1987). What is more, existing knowledge 

discovery methods are based on manual and visual analysis of the results. Knowledge 

about the design and performance relationships can be learned through Pareto 

optimization and a manual analysis of the results (Radford & Gero, 1987). As the use of 

design optimization is rapidly growing, there is a need to generate useful knowledge 

from the results of optimization quickly and even automatically. In this study, a data 

mining, automatic approach is used to generate design knowledge based on optimization 

results, the learned knowledge is the relationship between the objectives (e.g. building 

performance) and the decision variables (e.g. building layouts).  
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2.5.1 Data Mining 

2.5.1.1 What is data mining? 

Data mining is the analytical step in the process known as Knowledge Discovery 

in Databases, or KDD (Fayyad et al., 1996).  It involves many interdisciplinary fields of 

research, such as artificial intelligence, machine learning, statistics, and visualization 

(Chakrabarti et al., 2006).  

The main purpose of data mining is to automatically extract useful information 

from large data sets and convert it into a format that is easy to understand. In large data 

sets, many patterns are likely to be uninteresting. However, when strong patterns appear, 

they can provide useful information about the present use and, more importantly, precise 

predictions for future use (i.e., what is happening now, and what will happen in the 

future when similar data sets are present) (Witten and Frank, 2005). 

2.5.1.2 What are the benefits of data mining? 

A large amount of data can be generated from design optimization, especially for 

multi-objective optimization, which may have many Pareto optimal set. It is difficult and 

time consuming to perform knowledge discovery and extraction using the traditional 

methods of data analysis, which largely depend upon manual examination and 

interpretation. What is more, manual inspection is highly subjective and may even be 

impossible in cases of very large data sets (Fayyad et al., 1996).  

One of the advantages of data mining is information sharing, including sharing 

with other companies. This kind of information sharing may or may not be public 

(Clifton & Marks, 1996).  
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Data mining can provide a friendly interface between users, data, and the product 

(Fayyad et al., 1996) (in this study, this interface would be design optimization). 

2.5.1.3 What are the disadvantages of data mining? 

Because data mining can analyze data automatically and is used for information 

sharing, it may cause security issues, privacy issues, and misuses of 

information/inaccurate information (Clifton & Marks, 1996). One solution is to restrict 

access to data or control access to data (Clifton & Marks, 1996). 

2.5.1.4 The use of data mining in the real world 

The data mining for knowledge discovery approach has been utilized in many 

areas, such as:  

 Marketing and business: Data mining is used in marketing and business 

to categorize customers and predict their behaviors (Berry & Linoff, 

2004). Many companies use data mining and genetic algorithms for 

investment; however, most firms will not reveal their systems (Hall, Mani, 

& Barr, 1996). 

 Science and engineering: Data mining has widely been used in many 

science and engineering fields such as electrical power engineering 

(McGrail et al., 2002), bioinformatics (Frank et al., 2004), and 

biomedicine (Zhu, 2007). 

 Medical: Data mining is now used in electronic patient records for 

medical data analysis (Cios and Moore, 2002). 

http://en.wikipedia.org/wiki/Bioinformatics
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 Spatial studies: The purpose of data mining in spatial studies is to find 

useful information in large amounts of geospatial data (Miller and Han, 

2009). 

 Visual Data Mining: Compared to traditional data mining, visual data 

mining is quicker and more intuitive. It allows users to visualize the data 

mining process (Keim, 2002).  

Despite the popular use of data mining techniques in the real world, there is a 

lack of study in the application of data mining to architectural design. The existing 

literature includes research on using data mining to discover patterns that can help 

improving building design in energy efficiency (Kim et al., 2011); and predict building 

performance in building simulation exercises (Morbitzer, Strachan, & Simpson, 2003). 

More studies are needed, especially in the application of data mining to architectural 

design.  

2.5.2 Machine Learning 

Machine learning serves as a technical support for data mining (Witten & Frank, 

2005). It is a subset of artificial intelligence, which is the study and creation of 

intelligence (Poole & Goebel, 1998).  It is used to understand, explain, and predict data 

sets (Witten & Frank, 2005).  Witten and Frank define learning as follows: 

“Things learn when they change their behavior in a way that makes them 

perform better in the future” (Witten and Frank , 2005, pp. xxiii). 
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Intelligent mechanisms can be constructed by: (1) interviewing an expert or 

experts in the relevant field; or (2) using particular case studies to discover and 

generalize knowledge (Quinlan, 2014).  Many knowledge-based mechanisms have been 

constructed using these methods (Michie, 1987, 1989; Quinlan, 2014).   

In this study, data mining supported by machine learning is used to assist in the 

process of knowledge discovery, based on design optimization.       
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CHAPTER III 

METHODOLOGY OVERVIEW 

This chapter presents the methodology used in this study. It begins with a basic 

definition of research, and follows with the principles and guidelines of this project’s 

specific research methodology: design science research methodology (DSRM).  

3.1 Introduction 

 The definition of research, as described by Leedy and Ormrod (2005), is: 

“… a systematic process of collecting, analyzing, and interpreting 

information (data) in order to increase our understanding of a 

phenomenon about which we are interested or concerned.” (pp.2) 

Quality research should originate with a question, hypothesis, or problem, 

proceed with an extensive literature review on related research, continue thereupon with 

a clear articulation of the goal of the research, and finally follow a specific research 

design plan or procedure that will assure the work’s logical consistency, 

implementability, and plausibility (Haber, 2010). The main research question is often 

divided into sub-problems to be solved separately (Leedy & Ormrod, 2005). Proposed 

methods or solutions should be validated by case studies or mathematical proofs, and the 

design process should be clearly described and explained so that other researchers can 

reproduce and verify the process (Hevner et al., 2004). Finally, research requires the 

collection and interpretation of data, a definition of the project’s limitations, and an 

assessment of the research results (Leedy & Ormrod, 2005). 
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3.2 Design Science Research Methodology (DSRM) 

Design Science Research Methodology attempts to improve the functional 

performance of the designed artifact. It is widely used in many disciplines such as 

information systems, computer science, engineering, etc. (Vaishnavi & Kuechler, 2004). 

It seeks to provide innovative ideas, solutions, and products for problem solving through 

analysis, design, evaluation, and implementation. Hevner et al. (2004) list seven 

guidelines and Peffers et al. (2007) provide six steps for DSRM. The seven guidelines 

for DSRM (Hevner et al., 2004) are as follows: 

Guideline 1: The end product of design science research should be an innovative 

and purposeful artifact such as a method, model, construct, or instantiation.  

The end product of this study is computer program prototypical tools and 

methods created using computer modeling, optimization, and building simulation 

methods for improving design optimization and optimization-based design knowledge 

discovery. 

Guideline 2: The main purpose of design science research is to develop and 

implement technically-based solutions to solve important and specific problems.  

The main research objective of this study is to provide methods to improve the 

time complexity issue in building simulation and optimization, and to fill up the gap in 

research on design knowledge discovery through optimization. 

Guideline 3: Evaluation is an important part of this research process. An artifact 

should be evaluated rigorously to demonstrate its value, efficiency, and use. 
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In this study, the proposed methods were validated by mathematical proofs when 

needed, and the process was demonstrated by a simplified case study.  

Guideline 4: Design science research should provide new and interesting 

discoveries in one or more of these areas: design artifacts, design knowledge, and/or 

design methodologies.  

This study provides new discoveries in the area of design methodologies. 

Guideline 5:  The development and assessment of a designed product should be 

conducted rigorously.  

Rigorous methods have been applied in both the construction and evaluation of 

the methods and prototypes in this study.  

Guideline 6:  Design should be seen as a problem solving process searching for a 

desired solution. 

This study begins with identifying the problems in the present architectural 

design process, and then trying to solve the problems with effective methods. 

Guideline 7: The design outcomes should be presented to both technical and 

management personnel. 

Several parts of this study have been presented to technical audiences. More 

details about the publications of this study can be seen in Section 3.7 in this chapter. In 

order to promote the proposed prototypical tools to industry organizations, presenting 

this study to management – oriented audience will be future work. 

Peffers et al. (2007) define the six steps in design science research as follows: 

http://www.wordhippo.com/what-is/another-word-for/assessment.html
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“…problem identification and motivation, definition of the objectives for 

a solution, design and development, demonstration, evaluation, and 

communication.” (pp. 46) 

This study was carried out by following the above-mentioned seven guidelines 

and six steps below. The implementation of the six steps is discussed below. 

3.3 Step 1 - Problem Identification and Motivation 

This study began by identifying an existing problem, which later was confirmed 

by conducting a thorough literature review of related research.  

3.3.1 Problem Identification 

A problem should be addressed before one begins conducting research. Research 

problems usually come from personal experience, something the researcher is interested 

in and of which they have knowledge (Tuckman & Harper, 2012). The research 

problems addressed by this study - the complexity of architectural design, limitations of 

the traditional design process, the time consuming nature of building performance 

simulation and optimization, and the lack of research studies focused on discovering 

knowledge through optimization – were obtained from this researcher’s personal 

experience and experiments. Please refer to Chapter 1, Section 1.1 for a more detailed 

discussion of the research problem addressed in this study. 

3.3.2 Literature Review 

An extensive literature review on related research is presented in this study; it 

covers the following main topics: design optimization methods, Genetic Algorithm (GA), 

building simulations, time spent on GA, time spent on building simulations, methods for 
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time savings on the use of GA, time savings in building simulations, surrogate models, 

offline simulation, Divide & Conquer techniques, machine learning, and knowledge 

discovery through optimization. 

The use of computational design optimization methods in building design has 

been discussed since the 1980s. A large and extensive body of work has been presented 

by John Gero (Gero & Louis, 1995; Jo & Gero, 1998; Mackenzie & Gero, 1987; 

Radford & Gero, 1987). However, in the area of building design, most of the work 

relating to simulation-based optimization is in the area of building system design 

(HVAC) and structural design. The literature review indicates that more research should 

be focused on simulation-based optimization in architectural design. 

3.4 Step 2 - Objective of the Solution 

The term “research objective” describes what a study hopes to accomplish. One 

or more research questions should be developed after the researcher has narrowed down 

the research problem (Tuckman & Harper, 2012). Good research questions are specific, 

clear, refer directly to the research problem, reflect improvement, and address the focus 

participants (Tuckman & Harper, 2012). 

The research objectives of this study include providing methods and prototypical 

tools to: (1) improve the efficiency of optimization by reducing simulation needs when 

building simulations are incorporated into design optimization; (2) study how design 

knowledge can be used to speed up the optimization process by reducing the 

computational complexity of the design problem; (3) find a design knowledge discovery 
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method towards automatically generating useful correlations and causal relationships 

through optimization. 

More discussion about the research objectives and research questions for this 

study are in Chapter 1, Sections 1.3 and 1.4. 

3.5 Steps 3 & 4 – Design, Development, and Demonstration  

Design, development, and demonstration are combined through prototyping in 

this study, and presented in Chapters 4 and 5.  

3.5.1 Prototyping 

This study provides a prototyped proof of concept by using computer modeling 

and building simulation techniques. Prototyping produces an early version of a solution 

in order to test a new hypothesis or design (Budde et al., 2011). Experiments with early 

working versions can provide valuable information for use in future applications. The 

prototyping process provides a channel of communication between users and designers 

(Budde et al., 2011). 

A simplified nursing unit layout design is used as a case study in this study in 

order to verify the proposed methods. More complicated and realistic projects can be 

experimented in the future to improve the methods. 

“Design-science research often simplifies a problem…Such 

simplifications …may not be realistic enough to have a significant impact 

on practice but may represent a starting point… As means, ends, and 

laws are refined and made more realistic, the design artifact becomes 

more relevant and valuable.” (Hevner et al., 2004, pp. 88-89) 
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3.6 Step 5 - Evaluation 

Evaluation in DSRM involves the assessment of design methods and outcomes 

(Pries-Heje, Baskerville & Venable, 2008). Hevner et al. (2004) emphasize that 

researchers should rigorously evaluate the value, efficiency, and property of their 

research. March and Smith (1995) points out that evaluation is one of the two most 

important activities in DSRM, after the building of the artifact. Pries-Heje et al. (2008) 

provide a strategic, two-dimensional evaluation framework. One dimension, ex ante 

(prior) versus ex post (after), concerns the time a researcher takes to evaluate, and offers 

the possibility of evaluating either prior to or after the artifact has been built. The other 

dimension, naturalistic versus artificial, provides the opportunity to evaluate a real 

artifact according to its use by real users, or proving/disproving a hypotheses or artifact 

solely in theory.  

This study evaluates the proposed methods through artificial evaluation 

techniques (mathematical proofs) before undertaking the task, and then evaluates the 

methods a second time through the naturalistic method (a case study).   

 The evaluation methods are presented and discussed in Chapters 4 and 5. Further 

discussion regarding the reliability and validity of this study can be found in Chapter 6.  

3.7 Step 6 - Communication 

Thus far, one manuscript about using the proposed offline simulation method to 

improve genetic algorithm (GA) has been published and presented at the 2014 Annual 

Conference of the Association for Computer Aided Design in Architecture (ACADIA) 

(Su & Yan, 2014). Another manuscript about the combined use of offline simulation and 
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Divide & Conquer (D&C) to effectively improve architectural design optimization  has 

been accepted by the journal Artificial Intelligence for Engineering Design, Analysis, 

and Manufacturing (AI EDAM) (Su & Yan, 2015). A third manuscript about the 

proposed computational methods for creating and improving a closed loop of design 

optimization and knowledge discovery in architecture is under review by a journal. 
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CHAPTER IV 

DESIGN KNOWLEDGE ASSISTED OPTIMIZATION IMPROVEMENT 

4.1 Introduction 

The first part of this study introduces a fast and extensive creation and evaluation 

of design alternatives through a process of searching, simulating, and optimizing, in 

order to meet specified architectural design objectives. Compared to the existing 

optimization workflow, it aims to provide a quick search by reducing simulation runs 

and computational complexities for optimal design using architectural domain 

knowledge. The improved method used in this research not only provides a faster 

optimization, but more importantly, it enables a much larger search space within the 

same amount of time that offers a better chance of finding the optimal design. The fast 

design optimization method will make it more applicable for architects.  

Two techniques, namely offline simulation (Su & Yan, 2014) and Divide & 

Conquer are proposed to reduce the computer run time in optimization based on 

architectural domain knowledge. 

4.2 Offline Simulation 

In existing optimization processes, if building simulation programs are involved, 

simulations must be performed every time when building parameters (chromosomes in 

GA) change to form a new GA solution. The result of each simulation is used in the GA 

fitness function to produce another generation of solutions. This process continues until 

 Part of this chapter is reprinted with permission from “Improving Genetic Algorithm for Design 
Optimization Using Architectural Domain Knowledge” by Su, Z., Yan, W., 2014, Proceedings of the 
Annual Conference of the Association for Computer Aided Design in Architecture (ACADIA), Copyright 
2014 by ACADIA. 
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GA finds the optimal solution or reaches a pre-defined calculation time limit. As a result, 

the simulation program must run until GA finds the optimal solution. The number of 

simulations that need to be conducted is equal or proportional to GA’s population size.  

In this study, the idea of offline simulation is introduced to reduce the number of 

simulations in the early stage of architectural design. Terms such as “offline”, “online” 

or “real-time” have been widely used in engineering and scientific areas for physically-

based animation, physical system modeling, and simulation. The terms “online” or “real-

time” simulation refer to a computer model simulation tool that works at the same rate as 

the actual physical system in real time. In other words, it will take the same amount of 

time in the real world for calculation in a real-time simulation. Offline simulation tools 

usually work within a fixed time (Gole, 2000).  

In the domain of building design, “offline” and “online” concepts have been used 

in building system control design (Yu & Dexter, 2009; Coffey, 2012, 2013; Corbin et al., 

2013; Hu & Karava, 2014). In the above literature, “offline” means that the optimizer is 

not connected with the server that controls the physical system (e.g. the physical 

building is not controlled by the optimizer). The term “online” or “real-time” refers to 

the optimization process that connects the optimizer with a server-client framework 

controlling the building HVAC system (Corbin et al., 2013). Hu and Karava (2014) 

simulated a mixed-zone building using an offline Model Predictive Control (MPC) 

framework with Particle Swarm Optimization (PSO) as an optimizer. Coffey (2012, 

2013) used offline optimization with building simulation tools to approximate MPC with 

lookup tables for optimal control setups. The results from offline optimization - the 
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lookup tables – can be used in real-time building control simulations so that the online 

optimization does not need to run at each time step. With offline optimization, online 

problems are easier to tackle and simulations can be faster (Coffey, 2012, 2013). 

Similarity and difference lie between the above mentioned “offline” methods and the 

way “offline” was used in this study. The similarity is that the results from “offline” 

simulation can provide rules or knowledge for the “online” system later. The difference 

is that in the work mentioned above, the offline optimization is separated from the real-

time control of HVAC systems; in this study, the offline simulation is separated from the 

optimization process and the simulation results can be used and re-used in the 

optimization process later in the early stage of architectural design. 

In conclusion, when the design problem is decomposable into sub-problems, 

where some sub-problems can be solved offline, offline simulation/optimization 

methods can be used to tackle part of the problem by making the original optimization 

problem easier to solve, reducing the computational time, and increasing the search 

space within the same amount of time.  

Compared to real-time simulation, offline simulation in this study refers to a 

computer simulation model that can execute at a time different from that of the general 

GA optimization process. In order to save time, building simulation is separated from the 

GA optimization process, all required simulations are conducted in advance, and 

simulation results are reused whenever appropriate in the GA’s fitness evaluation 

process. In other words, the correlations between building performance and decision 

variables can be obtained from offline simulations. These correlations can then be used 



53 

and reused in the GA fitness function. This way, simulations do not need to be repeated 

in GA, and, as a result, a significant amount of time can be saved. 

4.3 Divide & Conquer (D&C) 

The idea of the Divide & Conquer (D&C) technique is to divide a large problem 

into manageable sub-problems. The solution to the original problem can be obtained by 

combining the solutions of the sub-problems. This technique has the potential to be used 

in any complex optimization situation (Valenzuela & Jones, 1993). There are a number 

of different D&C methods already being used in the areas of mathematics and 

computing. For example, dynamic programming solves sub-problems and combines the 

knowledge gained through the process to reach the final solution; this process can be 

conducted without knowing how to decompose the original problem (Bellman, 1956). In 

the area of GA, Potter and De Jong (1994, 2000) presented an evolutionary D&C 

technique called Cooperative Coevolution. In Cooperative Coevolution, the 

subcomponents are described as a collection of cooperating species. The individual 

species are coevolved and solved independently in order to ultimately solve a complex 

problem.  

Prior work on engineering design has used multi-level hierarchical design 

optimization frameworks to solve large and complex design problems (Papalambros, 

2002) and a problem decomposition method called Analytic Target Cascading (ATC) 

(Kim, 2001; Kim et al., 2001). The benefits of the approach include efficiency, 

robustness, and organization. 
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In building design, ATC has been extended to thermal and HAVC design 

(Choudhary et al., 2003; Choudhary, 2004; Choudary & Michalek, 2005). Different 

performance analysis goals may be involved in a complex design problem that requires 

unique and separate analysis tools in order to successfully achieve the results 

(Choudhary et. al., 2003). The decomposition permits sub-problems to be constructed 

separately, allows appropriate simulation and optimizer tools to be chosen from the tool 

repository, and supports optimization based on the individual performance objectives of 

the sub-problems (Choudhary, 2004). In terms of computational expense, simulation 

tools take the majority run-time in this hierarchical framework, and therefore cheap 

simulation models are recommended (Choudhary, 2004). Expensive models can be 

substituted with computationally cheap surrogate models (Papalambros, 2002).  

In Choudhary’s study (2004), the problems are decomposed into sub-problems 

using Object Decomposition (Wagner, 1993) and Aspect Decomposition. Object 

Decomposition divides the problems by physical components such as zones and parts. 

Aspect Decomposition separates the problems by disciplines. While the idea of 

decomposing a problem into sub-problems is similar to the Divide & Conquer method, 

this study demonstrates a sequential object decomposition approach (decomposing the 

design problem into the layout optimization for patient rooms in sequence) that is 

applied to the process of Generic Algorithm in the design of the spatial layout. 

The idea of using the decomposition method to reduce the simulation time can 

also be seen in the work by Welle et al. (2012). The authors developed an automated 

method to decompose and recompose a building model for climate-based daylighting 
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simulation, with great simulation time saving and simulation results that are acceptable. 

This method decomposes a building into many spaces. Each space is then evaluated for 

distinct features and whether it should be simulated. A cloud computing platform is then 

used for the simulations, and the results can be weighted and used for other spaces with 

similar characteristics. This decomposition method is used for daylighting simulation but 

not for optimization purpose as in the present study. 

The specific D&C method used in this paper, described by Watson (2002), is 

based on a decomposable and separable design problem. It is straightforward, easy to 

understand, and easy to conduct from the perspective of an architect. If the variables are 

independent from each other, e.g. in simulations that usually use simplified models of 

the real-world design problems, design problem with a large number of populations can 

be broken into several sub-problems, each with a smaller population, and solve them 

separately with less time. 

Suppose there are N variables in a complex optimization function F, and each 

variable has K possible values. If these variables are independent of each other (which 

means the value of one variable is not affected by the values of others), this problem can 

be broken down into N separable sub-problems, each with only one variable. The 

function F can be expressed as the sum of N individual functions: F(V1,V2,…,VN)= 

F1(V1)+ F2(V2) +…+ FN(VN). To maximize/minimize the function F, the functions F1 to 

FN can be maximize/minimized separately and with less computing time as described 

below. 
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In GA, the computing time needed to solve the problem increases as the number 

of populations of candidate solutions increases. The D&C method decomposes a GA 

problem with a large population into several sub-GA problems with fewer populations.  

For a standard GA, the search space S standard is equal to the population size, which is: 

S standard = KN. For a GA using D&C, the search space is: S D&C = N∙K.   S D&C = 

N∙K<< S standard = KN, especially when K and N are large. 

When the D&C method is applicable, the search space is much smaller. The 

algorithm can be finished with less computing time or the search space within the same 

timeframe can be enlarged. One requirement for the applicability of D&C is that the 

decision variables are independent of one another. In certain architectural design 

optimization problems, this requirement can be satisfied. 

4.4 Case Study 

4.4.1 A Simplified Case Study 

Validations of the above mentioned methods are presented in the context of a 

simplified case study of parametric form-finding for a children’s unit design with two 

design objectives: minimizing the nurses’ travel distance and maximizing the 

daylighting performance in patient rooms.  

The reason for selecting a simplified case study is that it is useful to validate the 

methods and workflow. For a particular optimization problem how does one verify that 

the results are the real optimized solutions, especially in healthcare design, when design 

problems are usually very complex and involve multiple design objectives? For these 

kinds of complex problems, the optimized solutions cannot be foreseen in order to verify 
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the results. However, a complex problem can be converted into a simplified problem to 

validate the optimization method and workflow. The optimization method for the 

simplified problem can then be verified by converting the problem into an analytically 

solvable problem or by using exhaustive search. In contrast, it is generally impossible to 

use exhaustive search for a complex problem because the search space is too big and it 

may take a long time for computers to calculate. 

4.4.2 Design Objectives 

Validations of the method are presented within the context of a case study for 

parametric form-finding in a nursing unit design with two design objectives: (1) to 

minimize nurses’ travel distance from the nurses’ station to each patient room; and (2) to 

maximize the daylight illuminance in all patient rooms using LEED standards 

(healthcare supplement; USGBC, 2009) as a reference. Both design objectives are used 

as sample EBD principles in this case study. 

In any study related to the behavior and working efficiency of the nursing staff, 

one of the most important variables is the distance that a nurse is obligated to walk in a 

hospital. Walking has been identified as a major time-consuming activity for nurses, and 

evidence from previous studies suggest that the time saved by walking can be turned into 

more time spent on patient care activities (Zimring et al., 2004). Individual nurses across 

all study units travel between 1 and 5 miles per 10-hour daytime shift. Average travel 

distance ranges between 2.4 and 3.4 miles with a median of 3.0 miles per 10 hours 

(Hendrich et al., 2008). Unnecessary walking may lead to time waste and add to fatigue 
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and stress. In the case study, the objective is to minimize the total nurses’ walking 

distance. 

Daylight is an essential element for patient wellbeing. Research shows that 

patients in sunny rooms feel less pain and stress, and take less medication as compared 

to patients in rooms with less sunlight (Walch et al., 2005). This case study uses the 

LEED standard as a reference to construct the fitness function for the daylight 

illuminance level calculation. The objective is to achieve maximum daylighting under 

LEED requirement. LEED requires 75% or more of the perimeter area to achieve a 

daylight illuminance level between 110 lux and 5,400 lux. Therefore, in this case study 

the daylight illuminance in every inpatient unit layout design is expected to meet this 

requirement. The daylighting performance is evaluated by a building simulation tool. 

The use of LEED daylighting requirement as a reference to construct the daylighting 

performance fitness function can be found in (Rahmani Asl, etc. 2013). 

It's worth noting that the travel distance and daylighting performance were 

selected as the sample design objectives in this study among all quantifiable design 

objectives involved in nursing unit design, which include construction cost, energy 

consumption, equipment placement, and others. These two objectives were chosen 

because, 1) Travel distance and daylighting are two of the most important concerns in 

nursing unit design; and 2) Travel distance and daylighting may have conflicting 

attributes because daylighting performance may decrease when travel distance is 

reduced (depending on the floor plan design), which needs to be confirmed by case 

studies. Both objectives can be substituted with other objectives since the focus of this 
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study is developing and testing the new optimization methods rather than studying the 

particular design objectives. 

The current tools and techniques used are introduced in Section 4.4.3, and the 

measurable baseline model is discussed in Section 4.4.4. 

4.4.3 Design Platforms and Tools 

Parametric models can generate a very complex building geometry with a 

number of variables, rules, and constraints that are defined by the designers. Several 

design software tools offer parametric modeling features. Of these software options, the 

integrated Rhino/Grasshopper program has widely been used because of its powerful 

modeling capability, intuitive interface, and abundance of plug-ins that greatly expand 

its functionality. It also provides a ready-to-use GA plugin – Galapagos –which can be 

used for optimization. Hence, this case study uses Rhino/Grasshopper as the design 

platform. The following is a complete list of current tools and techniques used in this 

case study:  

(1) Rhinoceros (Rhino), a NURBS (a type of curves) based 3D modeling

program. 

(2) Grasshopper, a visual programming plug-in for parametrically editing

models in Rhino. A user doesn’t need to have programming or scripting knowledge to 

use Grasshopper.  

(3) Galapagos, a single objective optimization GA tool in Grasshopper. A user

only needs to define the genome and fitness (Figure 4.1 left), and modify the settings 

such as population size and mutation rate in Galapagos (Figure 4.1 right). 
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Figure 4.1. The Screenshot of Galapagos in Grasshopper. 

(4) Octopus, a multi-objective optimization GA tool in Grasshopper.

(5) DIVA, a thermal and daylight simulation plugin for Grasshopper. DIVA

conducts daylight analyses for Rhino models through Radiance and DAYSIM daylight 

simulation engines. Together with Galapagos, they have been used in previous work for 

daylight analysis and optimization in the early architectural design process (e.g. Gallas 

& Halin, 2013; Portugal & Guedes, 2012). 

It should be noted that the methodology developed in this study is not limited by 

the tools of choice. The concepts and principles can be generally applied across different 

platforms. 

4.4.4 Baseline Model 

This section presents a simplified yet representative case study used to validate 

the two methods proposed: offline simulation and D&C. The design problem is to find 

the optimal nursing unit layout that would allow for the least travel distance for nurses 
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and a daylight illuminance that meets the LEED standard. The original problem was 

simplified as follows: on a 15 by 15 grid with a total number of 225 cells (discretized 

spatial units), a central nurses’ station with a size of 29 ft by 29 ft is located in the center, 

and there is an 8 ft corridor outside of the central nurses’ station. Twelve patient rooms 

need to be placed on the rest of the grid so that the final optimal layout will have the 

minimal travel distance from the nurses’ station to the center of each patient room, and 

optimal daylight performance in all patient rooms based on the LEED standard 

(healthcare supplement; USGBC, 2009). Figure 4.2 shows the constant parameters in a 

possible layout solution. The number 12 is selected as the number of patient rooms for 

two reasons: 1) numbers such as 12, 18, and 24 are commonly used as the number of 

patient rooms in in-patient unit design because these numbers can be divided by 2, 3, and 

4. It is easier and fair for nurse-patient assignments because all nurses (2, 3, or 4 nurses)

can have an equal number of patients to take care of. 2) The number 12 is simple yet 

representative. A larger number will increase the computer calculation time, and a 

smaller number may not be sufficient. The study here mainly focuses on developing and 

testing the methods thus the selected parameters and their values are only for 

experiments. Therefore, the layout of the nursing unit is defined by a set of parameters, 

restrictions and objectives. The parameters include constants and variables. The 

constants include: (1) a 15 by 15 grid with a total number of 225 cells, each measuring 

15 ft by 15 ft, as possible room spaces; (2) a central nurses’ station represented by the 

blue square, sized 29 ft by 29 ft; (3) an 8 ft corridor outside of the central nurses’ station; 

(4) the city of Boston as the location of the building in DIVA; and (5) a window size of 6
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ft by 6 ft in every patient room. Figure 4.2 shows the constant parameters in a possible 

layout solution; the small red (dark) squares represent the patient rooms. 

Figure 4.2 The Constant Parameters in a Possible Layout Solution. 

The variables are the locations of the 12 patient rooms. A patient room can be 

located in any cell, with the following restrictions: (1) a patient room cannot overlap 

with any other patient room, nurses’ station, or the corridor; and (2) in order to introduce 

natural light into each room, a patient room cannot be surrounded by other rooms in all 

four directions. In other words, at least one of the four cells surrounding each room 

should be vacant for a window opening. 

In this case study, two objectives are converted into a single objective by using a 

weighted sum of the objective functions with pre-defined (architects’ subjective) weights. 

For both travel distance and daylight illuminance, 100 points are given as the highest 

fitness score. The total nurse travel distance is calculated as the sum of the distances 
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from the center of the central nurses’ station to the centers of all the patient rooms. The 

calculation of the nurses’ station to patient room distance and the total distance are 

simplified in the case study. In a practical situation, nurses’ walking distances are 

usually affected by the distance from the nurses’ station to the patient bed, following 

each nurse’s travel path and affected by the order of that nurse’s activities. Neither 

daylight nor travel distance sub-fitness functions should be linear in the overall fitness 

function. For daylight illuminance, losing the same amount of daylight affects more a 

darker room than a brighter room (Rutten, 2011) (see Figure 4.3). The same additional 

increment of travel distance makes a nurse feel much more fatigue, if that nurse has 

traveled a longer distance than someone who has just started a shift (see Figure 4.4). 

A fitness score of 100 is given to the nursing unit layout with the shortest total 

travel distance possible, 388 feet (see Figure 4.5, left), and 0 is given to the layout with 

the furthest total travel distance possible, 1,708 feet (see Figure 4.5, right). For any 

nursing unit layout solution, the fitness score for the travel distance is defined as follows. 

(The power of 2 was chosen in the case study for simplicity of calculation.) 

 , 

Daylight illuminance is evaluated by the percentage of sensor grid points in a 

room achieving a daylight illuminance level between 110 lux and 5400 lux. In this case 

study, the above percentage is 89% if all rooms face south and 70% if all rooms face 

north (and in between for east and west). Fitness values of 100 and 0 are assigned to 

rooms with south-facing and north-facing windows, respectively. For any nursing unit 

layout solution, the fitness score for daylight illuminance is defined as follows: 
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Figure 4.3 The Daylight Illuminance Sub-Fitness-Function is Nonlinear. 

 Figure 4.4 The Travel Distance Sub-Fitness Function is Nonlinear. 
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Figure 4.5 Unit Layouts with the Shortest Travel Distance (Left) and Furthest Travel 

Distance (Right). 

Chromosomes. Coding for the problem is needed before proceeding with GA. 

The design problem may be represented as a series of parameters (genes). These genes 

connect together to become a string of values (chromosome). In my simplified study, the 

genes are the individual location of 12 rooms, and the chromosomes are the layout of the 

12 rooms combined. Each chromosome can be represented by a bit string – an array of 

data structure containing bits. GA will code each design option, which is a layout of the 

12 rooms in this way.    

Crossover. Using the mechanisms of crossover, offspring are reproduced by 

selecting two parents with high fitness scores from the last generation, and recombining 

their genes. Since their parents have high fitness scores, it is expected that the offspring 

will have high fitness scores too. The offspring will keep parts of one individual’s 

(parent) chromosome, and take the remaining parts of the chromosome from the other 

individual (parent) to form a new full-length chromosome (child; Beasley & Martin, 

1993; Figure 4.6). When crossover happens in this simplified study, GA will select two 
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design options with high fitness scores and swap their chromosomes, which are the 

layouts of the 12 rooms between the two design options, and form new design options as 

offspring. For example, the locations of the first 6 rooms in design option A will be 

switched with the locations of the corresponding rooms in design option B to produce 

offspring.  

Figure 4.6 Single Point Crossover. Image Source: Beasley & Martin, 1993. 

Mutation. The mechanism of crossover is designed to improve the solutions in 

the next generation. However, it will tend to decrease the bio-diversity. Mutation is 

brought in to increase the diversity in a population. It will give each gene a small 

probability to alter the gene. The user of GA can define the rate of the probability. 

Figure 4.7 shows the fifth gene being mutated in a chromosome. In my study, a single 

point mutation to a chromosome (one possible layout of the nursing unit) means to 

change one gene (e.g. the location of one room, depending on the actual implementation 

of the Galapagos GA software) in the chromosome.  
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Figure 4.7 Single Point Mutation. Image Source: Beasley & Martin, 1993. 

According to LEED IEQ Credit 8.1 “Daylight and Views-Daylight,” daylight 

illuminance simulations should be conducted under clear sky conditions at two different 

times. In this research, those times were 9 a.m. and 3 p.m. on September 21. Thus, in 

DIVA, "clear sky with sun" and "illuminance" were selected for the sky conditions. 

However, DIVA can only conduct simulations at a specified time point in each run. In 

order to satisfy the LEED requirement, the optimization process must run two separate 

times, one on September 21 at 9 a.m., and the other at 3 p.m. Although the setups of both 

optimization processes have the same objectives and parameters in DIVA (except the 

solar time), the results may be different because daylighting conditions differ. Both a 9 

a.m. and 3 p.m. calculation were performed in this case study.

The DIVA daylight simulation accuracy increases if more sensors are used in the 

patient rooms. However, the more sensors it uses, the more computing time it needs. 

Consequently, designers should balance the need for accuracy with the associated 

computing time, based on the project’s requirements. In the baseline model used in this 

research, one hundred sensors were evenly distributed in each room (1,200 sensors in 12 

rooms total) at the level of desk height. All simulations were run on a standard laptop 
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(ThinkPad series, Windows 7 64-bit, Intel(R) Core(TM) i5-2520M CPU @ 2.50 GHz, 

8GB memory). In Galapagos, the population size per generation is 50, initial boost is 2, 

the inbreeding factor is 75%, and the maintaining factor is 5%. For this particular study, 

a single run of the daylight simulation in DIVA required approximately one to two 

minutes to complete. However, when DIVA is associated with Galapagos in the 

optimization process, it can be very time consuming; each solution requires a simulation. 

In this experiment, 78 hours of DIVA run time + Galapagos could only calculate 13 

generations of GA, and the results were not nearly optimal upon examination. The 

complete optimization could take days, which is not practical even for this simplified 

case study. 

The problems encountered during design optimization when using GA and 

energy simulation as the platform are as follows: (1) due to the limitations of the 

software (Grasshopper + Galapagos + DIVA), only one specific time of a day (e.g., 9 

a.m.) can be calculated per simulation. If design optimization involves a building

simulation at a different time (e.g., 3 p.m.), the entire process must be re-performed. 

Thus, the information from both building simulations cannot be combined into one 

design optimization to find the optimal solution. (2) Design optimization is very time 

consuming and most architectural design projects have tight schedules. Therefore, it is 

unrealistic for architects to spend days on one optimization problem. 

4.4.5 Offline Simulation 

Because the current design optimization process has the above-mentioned 

problems, offline simulation was introduced to (1) integrate multiple building 
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simulations at different times into one optimization problem (e.g., 9 a.m. and 3 p.m.); 

and (2) reduce computing time when a building simulation is coupled with design 

optimization by separating the simulation from the optimization process. The building 

simulation was separated from the GA optimization process and all required simulations 

were conducted in advance. This way, the simulation results could be reused in similar 

situations (e.g., all the rooms with windows facing the same direction will have the same 

daylight illuminance results in any GA generation and across the generations), and time 

consuming simulations would not need to be run for each solution.  

Because the location of patient rooms is the variable, one question is how to 

define the window opening directions. In terms of daylight, a very large window facing 

north and a relatively small window facing south might both satisfy the LEED daylight 

requirement. However, window opening directions not only affect the interior daylight 

level, but also have a significant impact on building energy consumption. In LEED, a 

project can earn up to 24 points in the "energy performance" category. This suggests that 

a building can earn points depending upon the percentage of improvement in building 

energy consumption as compared to its baseline performance. This is calculated using a 

computer simulation model for the entire project based on Appendix G of the 

ANSI/ASHRAE/IESNA Standard 90.1-2007 (ASHRAE, 2007). The baseline model 

performance is defined as an average of the results of four simulations from four 

orientations: the original orientation of the building, and the orientation rotated by 90°, 

180°, and 270°. The results of the thermal energy simulation using DIVA show that the 

building consumes the least amount of heating and cooling energy when the window is 
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facing south. The second best orientation is east, the third is west, and the worst north. 

Based on this analysis, the window opening priority order should be south - east - west - 

north. Using this pre-defined priority list saves time spent computing the GA; if the 

priority list is not used, all possible directions must be included in the search space and 

evaluated the by simulation and fitness functions. The floor plan was divided into four 

sections (see Figure 4.8). A VB Script node was written in Grasshopper to implement 

the following rules, the goal of which was to determine automatically each window’s 

opening direction for the patient rooms during the GA process: (1) if the center of a 

room is in Section 1, the priority of window opening direction is south - east - west - 

north. VB will check the availability of adjacent rooms in the above sequence; (2) If the 

center of the room is in Section 2, the priority is west - south - east – north; (3) If the 

center of the room is in Section 3, the priority is north - south - east – west; (4) If the 

center of the room is in Section 4, the priority is east - south - west – north. The center of 

a room is possible to be on a line that separates two sections. The priority rules for 

window opening directions still hold in this situation: (1) if the center of the room is on 

the line that separates Sections 1 and 2, or 1 and 4, the room has a south window; (2) if 

the center is on the line that separates Sections 3 and 4, the room has an east window; 

and (3) if the center is on the line that separates Sections 2 and 3, the room has a west 

window. Any of the four directions of every room is possible for window opening, 

following the priority rules.  

In more realistic simulations than this present, simplified study, further design 

modifications are required to make the design more practical in real projects: (1) if the 
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patient rooms are away from the corridor (not connected), additional corridors need to be 

added into the design layout; (2) if the door of a room is blocked by other patient rooms, 

further modification to the design layout is needed. For example, in Figure 5, one room 

in the upper left corner needs access to the corridor. 

Figure 4.8 The Floor Plan is Divided into Four Sections in Order to Determine the 

Priority of Window Opening Directions. The Windows’ Locations are Indicated in the 

Figure as Dark Line Segments on the Edges of the Rooms. 

One of the research questions can be stated as follows: since the parameters are 

consistently changing during the optimization process, how to categorize the results of 

each simulation so that each category of simulation only needs a single simulation prior 

to the optimization process? For daylighting simulations, all patient rooms in this study 

share the same parameters (room dimensions, window size and location, building 

materials, number and location of sensors in DIVA), except for room locations and 

window opening directions. However, as long as the patient rooms have the same 

window directions, the daylighting values of the rooms can be regarded as also being the 

same (in a simplified experiment, when shading is ignored). Based on this, the daylight 
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simulations of all patient rooms in this project can be simplified as simulating four 

patient rooms with windows facing south, east, west and north, respectively. Therefore, 

before the start of the GA optimization, a DIVA daylight simulation was conducted to 

calculate the daylight level in every patient room. The location of the rooms does not 

matter for daylight evaluation, only for walking distance calculation. The offline, pre-

simulated daylight illuminance levels of all directions (south, east, west, and north) are 

used in the GA process. During the optimization process, although the room location and 

the window opening direction may change in any design solution, daylight fitness score 

of the entire design solution can be obtained by counting the total percentage of sensors 

that meet the LEED illuminance value.  

Comparing the workflows of existing design optimizations (see Figure 4.9) and 

offline simulation-based optimizations (see Figure 4.10), the difference is that in offline 

simulation-based optimizations, building simulations are performed prior to the 

optimization process. This change can reduce a significant amount of computing time. In 

this simplified case study, it took the computer approximately 40 minutes to calculate 13 

generations of GA when using the offline simulation method (plus about 8 minutes for 

the simulations of the four rooms with windows facing the four different directions), 

while the existing method uses 13 hours for 13 generations of GA. However, due to the 

large population size, although the obtained best nursing unit layout is close to the 

(perceived) optimal solution (an elliptical layout of patient rooms surrounding the nurses’ 

station), the improvement in solutions got very slow after the 13th generation. Again, 

improvements to the GA process still need to be made. 
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Figure 4.9 The Traditional GA Optimization Workflow. 

Figure 4.10 The Improved GA Optimization Workflow with Offline Simulation. 
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4.4.6 Divide & Conquer (D&C) 

The method of Divide & Conquer is evaluated here in an effort to further 

improve GA efficiency and save computing time. This method suggests the use of GA to 

search in sub-problems with fewer populations instead of the entire population. As 

mentioned in Section 3.2, one requirement for the applicability of D&C is that the 

decision variables are independent of one another. This requirement can be satisfied in 

the present case study. In this study, when all 12 genomes (room locations) are used in 

GA, the total population size is: 225224…214 = 1.2491028, where 225 is the 

number of possible locations for the first genome, 224 is the number of possible 

locations for the second genome after the first genome has selected a spot, and so on. 

However, if only one genome is used in one GA run, the population size can be reduced 

to 225 for the first room, 224 for the second room, and so on. The idea here is that 

instead of directly solving an optimization problem with 12 genomes, another equivalent 

problem is solved: optimizing one genome at a time for 12 times. Figure 4.11 shows the 

working process of the nursing unit layout optimization when applying the D&C method. 

Each time one room is added to the previous result. This way, the nursing unit layout 

optimization is completed in 20 minutes. 



75 

Figure 4.11 The Working Process of the Nursing Unit Layout Optimization with the 

D&C Method. 

When the D&C method is applicable, the efficiency of GA can be further 

improved, and coding can be simplified by linking only one genome (the decision 

variable) to the fitness function. In this study, for GA with the D&C method, the fitness 

function for the travel distance is as follows: 

The values 30 ft and 143 ft are the shortest and longest travel distances 

respectively for a single room. The fitness function for daylighting remains the same in 

this study. The two screenshots in Figure 4.12 show the difference in complexity of the 

Grasshopper files. The figures are drawn to scale.  
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Figure 4.12 The Screenshots of Grasshopper Files of the Baseline Model Using 

Standard GA (Top) and the Improved Model Using GA with Offline Simulation and 

D&C (Bottom) in the Same Scale. 

4.4.7 Results 

In this study, first, a multi-objective optimization is converted into a single 

objective optimization by using a weighted sum of the fitness functions with arbitrary 

weights. Figure 4.13 shows two optimization results with different weights in their 

fitness functions. The image on the left is the result when using equal weights for travel 

distance and daylighting. The image on the right is the result when the weights between 

travel distance and daylighting are 1:2. While the optimal solutions are not surprising – 

they are consistent with our intuitive expectations regarding the results – the important 

point is the significant time savings when finding solutions with our new methods. Table 

4.1 shows a comparison of the standard GA, GA with the offline simulation method, and 

GA with both the offline simulation and the D&C methods in terms of total time used, 



77 

time used per generation, and whether the optimal solution is found. For this nursing unit 

optimization case study, using the existing method of GA optimization, the computer 

needed 78 hours to finish 13 generations of GA calculation (6 hours per generation), and 

the final result was not near optimal. By using offline simulation, the computing time 

was significantly reduced to 40 minutes to finish 13 generations of GA calculation (3 

minutes per generation). However, 13 generations are not enough for finding the optimal 

layout, although the result is close to optimal. To further reduce computing time, 

experimentation was completed on the D&C method. This method provides a better 

chance of finding the peak of the fitness landscape by breaking a complicated problem 

down into sub-problems. When offline simulation and D&C were combined in this 

project, no more than 24 generations in 20 minutes (50 seconds per generation) were 

needed to find the optimal layout (each sub-problem’s GA is stopped manually when no 

improvement is observed and therefore more generations are calculated than are 

necessary). In addition, the improved methods also help reduce the size and complexity 

of the model definition in the visual programming environment, Grasshopper.  
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Figure 4.13 The Final Results of the Nursing Unit Layout Optimization with Different 

Weights in the Fitness Functions: (1) Fitness Travel Distance: Fitness Daylighting = 1:1 (Left) (2) 

Fitness Travel Distance: Fitness Daylighting = 1:2 (Right). 

Table 4.1. Comparison Between Standard GA and Improved GAs. 

Methods Time Time/Generation Optimization 

Result 

Standard GA 78 hours 6 hours Not found 

GA With Offline Simulation 40 minutes 3 minutes Close 

GA with Offline Simulation and 

D&C 

20 minutes 50 seconds Found! 

Both techniques can also contribute great time saving in multi-objective 

optimization. However, current method does not support viewing many design options 

when the D&C method is used.  

4.5 Conclusions and Discussions 

In the previous case study, a multi-objective optimization is converted into a 

single objective optimization by using a weighted sum of the fitness functions with 
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arbitrary weights. Both offline simulation and D&C methods are expanded to Pareto 

Pareto optimization for multiple design objectives. Octopus, a multi-objective 

optimization tool in Grasshopper is used as the optimization engine.  

Offline simulation is first tested. It works well with the standard multi-objective 

optimization. Figure 4.13 shows the results in Octopus after around 9 hours of 

calculation. The optimization results are close to optimum. The benefits of using multi-

objective optimization instead of single-objective optimization is that the designer can 

view multiple Pareto optimal solutions and compare the tradeoff between them. Figure 

4.14 shows two Pareto optimal solutions in the Octopus results. The one on the left 

prioritizes more on the walking distance compared to the one on the right. However, 

Rhino crashed in the process when searching for the final Pareto optimal solutions when 

Octopus is in used the offline simulation. Further study is needed to investigate the 

problem. 
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Figure 4.14 Results of Multi-Objective Optimization with Offline Simulation in 

Rhino/Grasshopper (Left and Right) and Octopus (Middle).  

D&C method is then tested together with offline simulation in multi-objective 

optimization. It also works well here and Octopus finds the optimal design in about 20 

minutes, about the same amount of time cost in single-objective optimization using 

Galapagos. However, D&C method only consider one genome in each optimization, so 

the Pareto optimal solutions showed in the Octopus (right image in Figure 4.15) are the 

ones when one genome is taken into account in each sub-problem. As a result, it will be 

more complex to visualize the Pareto optimal solutions for the entire optimization 

problem, thus losing the benefit of multi-objective optimization. Future study will 

further examine and resolve the problem. 



81 

Figure 4.15 Results of Multi-Objective Optimization with Offline Simulation and D&C 

in Rhino/Grasshopper (Left) and Octopus (Right).  

In this paper, two techniques were presented—offline simulation and Divide & 

Conquer—to achieve a more efficient GA optimization. The use of the two techniques (1) 

demonstrate significant time savings in the case study; and (2) provide a larger GA 

search space in the same amount of time, which offers a better chance of finding the 

optimal design. The use of GA in architectural design has become a trend in design 

optimization. Currently, however, only the general method of GA has been applied to 

architectural problems. A new type of study that utilizes architectural domain knowledge 

to customize GA techniques has been presented, and as a result the design optimization 

time has been significantly improved. 

The tools used in this study, Rhino, Grasshopper, Galapagos, and DIVA are 

widely available existing tools that facilitate the development of the present methods. 

The methods presented in this paper, however, are not tied to these tools. Instead, the 

methods can be applied to similar tools, and even new implementations of such tools in 

more efficient programming languages.  
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 The D&C method can be used to reduce computing time in optimization 

problems when the original problem can be broken down into several manageable sub-

problems. In the case study, the D&C method required manual work to separately start 

the GA for each sub-problem in sequence, due to limitations in the software. It is 

expected that future GA software products will be capable of automatically starting the 

GA for each sub-problem in sequence. The offline simulation technique is beneficial 

when building simulations can be separated from the optimization process and 

conducted in advance. The simulation results can be reused in order to save computing 

time. 

While the fitness function for daylighting performance is simplified, offline or 

pre-simulation is used with full daylighting simulation instead of surrogate models or 

approximate simulation models. The results of offline simulation are reused in the fitness 

functions of the optimization process. The simplified fitness functions can be substituted 

with more sophisticated fitness functions for different design objectives, but the method 

of reusing offline simulation in the process will remain the same for different design 

problems. 

There are limitations in the use of the offline simulation and D&C methods. In 

offline simulation, the simulation result of each genome is pre-computed, so there is no 

mutual feedback among genomes. For example, self-shading (e.g. a room may cast 

shadow to other rooms) is ignored in our simplified case study, thus the effect of shading 

was not included in the daylight illumination result. If obstruction is considered in more 

complex spatial layouts, offline simulation may not be appropriate. One solution to this 
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problem is to find and pre-compute all possible shading situations in advance. This may 

increase manual labor and computing time for offline simulation, but it can be assisted 

by scripting to automate the process. In a complex problem, designers may need to 

optimize the total GA computing and offline simulation time. The D&C method has a 

similar limitation. In D&C, a genome that is newly added into GA has no impact on the 

genomes that have already been placed, but in actual problems the genomes may be 

dependent (again, e.g. a room may cast shadow to other rooms affecting their 

illumination). When genomes are not independent of one another, designers may group 

the sub-problems into sets of sub-problems to enable feedback among genomes within 

each set of sub-problems. Future study is needed to further examine and resolve the 

limitations of both offline simulation and D&C. 

To discover these improvement techniques, architectural domain knowledge was 

needed. For example, if two identical rooms (same shape, same windows, and same 

shading) in a building are facing the same direction, they have the same illuminance at 

any given time because the sun is far enough away that the difference in light angles 

between the two rooms is negligible. Another example is that in many cases in the 

northern hemisphere, the best window direction for optimal thermal performance is 

south, followed by east, west and north. This knowledge was confirmed by our thermal 

simulation and used in the offline simulation. To sum up, designers can play an 

important role in improving optimization efficiency. An architect’s design knowledge 

should be utilized to customize the optimization process; a process that would 
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significantly save in computing time and eventually make optimization practical for 

architectural design.  

In future work, the application of the methods to more complex case studies with 

more detailed building models and more sophisticated design objectives should be 

investigated. These techniques will be expanded to Pareto Optimization for multiple 

design objectives and investigate the utilization of more specific design knowledge, e.g. 

evidence-based design knowledge found in research of healthcare facility design, and 

correlations or causal relationships among decision variables, among design solutions, 

and between decision variables and design solutions that can be acquired from building 

science, Post-Occupancy Evaluation, etc. When more specific or complex design 

knowledge is embedded into GA and its improvement methods with more case studies, 

more interesting findings about the advantages and limitations of techniques such as 

offline simulation and D&C could be made. Guidelines can be developed about when 

the techniques can be utilized and what kind of design optimization problems can be 

applied.  
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CHAPTER V 

DESIGN KNOWLEDGE DISCOVERY SYSTEM 

5.1 Introduction 

The second part of this study applies existing data mining techniques to 

automatically generate design rules and knowledge using learned correlations between 

the decision variables and the optimal design performances. This valuable knowledge 

can be obtained from the design optimization results. It can, in turn, improve the 

efficiency of optimization and even serve as a guideline for future designs, reducing the 

need for simulation and optimization during the design process. The research objectives 

of this part of the study are to provide a method and prototypical tools to: (1) discover 

useful correlations and causal relationships among the decision variables, among the 

design solutions, and between the decision variables and design solutions in an 

optimization problem; (2) discover knowledge that can form design guidelines for 

specific design problems with similar design variables, constraints, and design objectives; 

and (3) discover knowledge that can form general design guidelines in the future and 

reduce the need for costly computing for optimization. 

5.2 Problems with Previous Knowledge Discovery 

Previous work in this area has mostly been for demonstration purposes; the rules 

derived from the simple prototypes produced have not been new to designers (e.g., one 

should use pre-stressed concrete for minimum slab thickness, etc.) (Mackenzie & Gero, 

1987). Moreover, existing knowledge discovery methods are based on manual and visual 

analyses of the results.  Knowledge about the design and performance relationships can 
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be obtained from Pareto optimization and a manual analysis of the results (Radford & 

Gero, 1987). As the use of design optimization grows, so does the corresponding need to 

generate useful knowledge from the results of optimization quickly, and even 

automatically.  

5.3 Knowledge Discovery System 

In this study, the term “knowledge” refers to the useful information in 

optimization results that is of interest to designers and that can be used in future design 

practice and design optimization. This learned knowledge is intertwined with the 

relationships among a project’s various objectives and decision variables. For example, 

one piece of knowledge could be: “walking distance and daylighting in patient rooms are 

two conflicting attributes in patient unit design; increasing the performance of one 

attribute will decrease the performance of the other.” Another piece of knowledge might 

be: “if walking distance is the main objective in designing a patient unit with less than 

24 patient rooms, the best design layout is a circle.” The knowledge obtained is likely to 

be much more complex if more design conditions and payoffs are involved. The main 

objective of this study is to develop a process to help designers discover useful and 

practical knowledge for use in enhancing their design.  

The knowledge discovery process in this study is divided into three main steps. 

The first step is identifying project requirements and key design objectives. Every design 

project is unique, with unique site restrictions, client requirements/demands, design 

objectives, and design parameters.  Site restrictions can be set as constraints later on in 

the design optimization process. The design leader should discuss the design 



87 

requirements/demands with his or her clients and identify key design objectives early in 

the design process. Once the major design objectives are settled, the design leader should 

identify any design parameters that might have an impact on these objectives.   

The second step is conducting building simulations and design optimizations; 

two improvement methods were discussed in Chapter 4.  Both building simulation and 

design optimization are very time consuming. Two methods - offline simulation, and 

D&C - were introduced and demonstrated.  The goal was to reduce simulation runs and 

expedite the optimization process. By using the improved methods, more optimization, 

data, and knowledge can be obtained in the same amount of time. This step generates a 

large amount of data, especially when multiple design objectives (with possibly 

conflicting attributes) are involved in the optimization.  

The third step is using data mining and machine learning techniques to analyze 

the results. An automatic system was developed to extract knowledge from the 

optimization results; the goal was to help with improving efficiency and providing 

guidelines for future design decision making and planning. 

5.3.1 Maximal Information Coefficient (MIC) and Validations 

The second part of this dissertation study presents an optimization-based method 

for knowledge discovery. The parametric form finding nursing unit case study used in 

the first part of this study was used again here to test the method for identifying the 

shape of the final optimal design. 

A data mining tool called Maximal Information Coefficient (MIC) (Reshef et al., 

2011) is used in this new optimization-enabled knowledge discovery system. With this 
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tool, the computer is able to identify the simple shapes in the final design form (such as a 

circle, square, line, etc.) as the layouts of rooms, and correlate these layouts with the 

corresponding optimal performances. This knowledge can be used as a guideline for 

future design projects with similar design variables and objectives. Compared to the 

existing knowledge discovery methods that are based on manual and visual inspection of 

the results, the proposed knowledge discovery system has the potential to be automated. 

Therefore, more knowledge could be discovered in the same amount of time.  

MIC was developed by Reshef and associates (2001) to measure and identify 

novel relationships and the strength of the correlations among the variables in large and 

complex datasets with thousands of variable pairs. Figure 5.1 shows the comparison 

between MIC and other statistic techniques such as the Pearson correlation coefficient, 

Spearman, mutual information, maximal correlation, and the principal curve–based 

dependent measure (Reshef et al., 2011). Pearson correlation coefficient measures the 

linear dependence between two variables (Pearson, 1895). Spearman rank correlation is 

a nonparametric statistical measure of monotonic relationship between two variables 

(Spearman, 1905). Mutual information investigates the dependence between two 

variables in experimental time series (Moon, Rajagopalan & Lall, 1995). CorGC is the 

principal curve-based measure of dependence (Reshef et al., 2011). Maximal correlation 

is another method to measure the dependence of two variables (Sarmanov, 1962).  The 

highlighted areas in Figure 5.1 show the scores given to different noiseless relationships 

by the above mentioned statistic techniques.  Higher value numbers (shown in dark red) 

indicate stronger relationships can be detected by the corresponding statistic methods. A 
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low value number (in light red or white) means this method does not work well to 

identify a certain relationship. Different methods have different upper score limits. For 

example, the highest number in MIC is 1. This figure shows that MIC can identify and 

provide better results to various noise or noiseless functional relationships than other 

statistic techniques (Reshef et al., 2011). MIC has been verified for its generality (MIC 

will capture relationships with sufficiently sized bodies of data) and equitability 

(different types of data with the same noisy relationships should receive similar results in 

MIC) (Reshef et al., 2011). MIC belongs to a larger family - the maximal information-

based nonparametric exploration statistics - which can find valuable connections in data. 

The MINE software program is an implementation of MIC and it is developed by David 

Reshef and Yakir Reshef. (http://www.exploredata.net/Downloads).  

http://www.exploredata.net/Downloads
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Figure 5.1 Comparison Between MIC and Other Methods (Image Source: Reshef et al., 

2011). 

The validation of the design knowledge discovery process using the MIC 

technique is presented in a series of tests with simple forms or relationships, such as a 

linear relationship, parabolic relationship, circle, square, and U-shape. The purpose of 

conducting these tests on different shapes is to verify whether MIC can yield distinct 

feature values for different forms or relationships. The test results of the various forms 

are used in our case study later in the chapter.  

There are five metrics for the MIC results: MIC, MAS, MEV, MCN, and MIC-

R2 (see Figure 5.2). 
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Figure 5.2 The MIC Results of a Linear Relationship. 

(1) MIC (Maximal Information Coefficient) (a measure of strength): MIC measures the 

linear correlation between two variables. MIC assigns 0 to uncorrelated variables and 1 

to correlated noiseless variables. To accomplish this measurement, MIC overlays a grid 

on the data sets of two variables and increases the resolution of the grid until it reaches 

the maximum resolution in order to effectively detect the correlation among the data 

(Reshef et al., 2011). With a large sample size:  

 “(i) MIC assigns a perfect score of 1 to all never-constant noiseless 

functional relationships, (ii) MIC assigns scores that tend to 1 for a 

larger class of noiseless relationships, and (iii) MIC assigns a score of 0 

to statistically independent variables.” (Reshef et al., 2011, pp. 1520). 

(2) MAS (Maximum Asymmetry Score) (a measure of non-monotonicity): MIC has 

three key indices that can be used to discover non-linear relationship in the data: MAS, 

MEV, and MCN (Caban et al., 2012). MAS can detect deviations from monotonicity 

(Reshef et al., 2011).  



92 

“MAS is useful, for example, for detecting periodic relationships with 

unknown frequencies that vary over time, a common occurrence in real 

data.” (Reshef et al., 2011, pp. 1522).  

(3) MEV (Maximum Edge Value) (a measure of functionality). This value measures the 

closeness to being a function and calculates the degree to which the variables are from a 

continuous function.  MEV ranges from 0 to 1. A high MEV value indicates well-

behaved functions (Caban et al., 2012). 

(4) MCN (Minimum Cell Number) (a measure of complexity). MCN counts the number 

of cells needed to get a MIC value. A well-behaved and monotone function requires a 

small number of cells. A poorly defined, non-monotone function requires a large number 

of cells to reach MIC (Caban et al., 2012).  

(5) MIC − ρ2 (nonlinearity, represented by MIC-R2 in MINE - a software 

implementation of MIC): The statistic MIC − ρ2 measures linear dependence. It assigns 

values near 0 for variables with linear relationships and high values for variables with 

non-linear relationships, together with high values of MIC. It is a useful index for 

discovering novel, non-linear relationships (Reshef et al., 2011).  

Below are some of the relationships and shapes tested in this study. The tools 

used include: Rhino/Grasshopper (as the drawing platform), the R programming 

language, and the MINE package hosted in R (http://www.exploredata.net/Downloads). 

(1) Linear relationship

http://www.exploredata.net/Downloads
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To validate this method, I used the MIC technique with the MIME program twice 

for each test. First, I drew the shape as the ground truth directly in R and used MINE to 

calculate the metrics. Second, I drew the shape in Rhino/Grasshopper, extracted the 

points on the shape, and imported them into MINE.  MINE calculated the metrics values 

and detected the shape of the data. For example, in this linear relationship test (see 

Figure 5.3, bottom left), I drew 10 points in Rhino/Grasshopper. The X values of these 

10 points were random points from 0 to 1 (the randomness was defined by Grasshopper). 

The Y value equals to 3x+2. The definitions of the points are as follows: 

X = 10 random numbers from 0 to 1 

Y = 3x+2 

The top and the bottom left images in Figure 5.3 show the results and linear 

relationship when the shape (known as the ground truth) was drawn directly in MINE 

using linear equations above. The image on the bottom right shows the results in MINE 

when the shape was drawn in Rhino/Grasshopper. The results of both tests are identical. 
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Figure 5.3 Top: The Results in MINE when the Shape was Drawn Directly in MINE 

(the Ground Truth). Bottom Left: The Linear Relationship Shown in MINE (the Ground 

Truth). Bottom Right: The Results in MINE When the Test Shape was Drawn in 

Rhino/Grasshopper.  

On the one hand, based on the test results of a linear relationship, we can see that 

the metrics in MINE show: MIC=1, MAS=0, MEV=1, MCN=2, and MIC− ρ2 ≈ 0. On 
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the other hand, when we have these metrics shown in MINE, we see that the variables 

have a linear relationship. Additional similar tests were performed, as shown below.  

(2) Parabolic relationship (see Figure 5.4)

X = 1000 random numbers from 0 to 1 

Y2 = 4*(x-0.5)^2 

Figure 5.4 Top: The Results in MINE When the Shape was Drawn Directly in MINE 

(the Ground Truth). Bottom Left: The Parabolic Relationship Shown in MINE (the 

Ground Truth). Bottom Right: The Results in MINE When the Test Shape was Drawn in 

Rhino/Grasshopper   . 
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(3) Sinusoidal function (see Figure 5.5)

t = points in sequence with interval value 0.2 (as the ground truth), or 0.25 (test case in 

Rhino/Grasshopper), from -2*pi to 2*pi 

y1 = sin (2*t) 

Figure 5.5 Top : The Results in MINE When the Shape was Drawn Directly in MINE 

(the Ground Truth). Bottom Left: The Sinusoidal Relationship Shown in MINE (the 

Ground Truth). Bottom Right: The Results in MINE When the Test Shape was Drawn in 

Rhino/Grasshopper. 

(4) Circle shape (see Figure 5.6)

X and Y are the coordinates of points on a circle. 
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Radius is 1 in the ground true, and 19.5 in Rhino/Grasshopper. 

Figure 5.6 Top: The Results in MINE When the Shape was Drawn Directly in MINE 

(the Ground Truth). Bottom Left: The Circle Shape Shown in MINE (the Ground Truth). 

Bottom Right: The Results in MINE When the Test Shape was Drawn in 

Rhino/Grasshopper. 

. 
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The examples shown above indicate that different shapes/relationships have 

different metrics values in MINE. Additional tests confirm that the values in MINE are 

distinctly different for different shapes/relationships, and the values are consistent for the 

same shapes. When the design optimization (the hospital layout test) was completed for 

the case study, I was able to categorize the shapes in the optimized design according to 

the shapes produced using the metrics obtained in MINE, and identify the relationship 

between the design’s performance and the found room layout shape in the optimized 

design. 

5.3.2 Benchmarks 

Two important indexes influence the MINE results. One is the sample size, and 

the other one is the alpha value (). The value  affects the resolution of the search grid, 

and thus the computing time (the larger  is, the higher the resolution and the greater the 

computing time required) (Filosi et al., 2014). The authors of MINERVA have pointed 

out that  refers to the exponent value in its original Java programming code. The value 

range for  is from 0 to 1. The default value 0.6 for  (the exponent of the search grid 

size B(n) = na) was chosen based on experiences to achieve a plausible approximation 

without requiring that the process be extremely time consuming (Filosi et al., 2014). 

Users should increase  up to 1 if the sample size is small so that the results will 

be closer to the ground truth. In this project, due to the fact that the case study had a 

small sample size of 12, =1 was used to calculate the theoretical values for the 

benchmark, as well as for the test data (the x and y coordinates of the rooms). Table 5.1 

shows the benchmarks of five distinct shapes or relationships with their corresponding 
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values in MINE. These results, obtained from the case study, were compared with the 

benchmark values to determine if the optimal design (the room layout) was close to any 

of the shapes that had been tested previously. 

Table 5.1 The Benchmarks of Five Different Shapes and Corresponding MINE Metrics 

Values. 

Relationship Type MIC MAS MEV MCN MIC-R2 Sample Size and  Value 

Linear 1 0 1 2 0 

12 points total, =1 

Parabolic 1 0.68 1 2.58 1 

Circle 0.65 0 0.42 3.16 0.65 

Square 0.15 0 0.04 2.58 0.16 

U-shape 0.32 0.27 0.32 2.58 0.32 

5.3.3 Mean Square Error (MSE) 

The statistical concept Mean Square Error (MSE) (Lehmann  & Casella, 1998) 

was used to measure the “errors,” which are the differences between the measured 

MINE results and the previously discussed benchmarks. In other words, the MINE 

results of each optimized design layout were compared with the benchmark MINE 

values in each relationship type that had been calculated beforehand (Table 5.1). The 

goal was to find the expected relationship type in the benchmark for which the optimized 

design layout had the smallest MSE value (also in the benchmark).  

If Ŷ is the predicted value, and Y is the true value, the MSE of the predictor is 

calculated as:  
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MSE =
1

n
 ∑ (Ŷ − Y)2n

n=1

In Grasshopper, several equations are written in VB code to calculate an MSE 

value. For example, the equation for calculating the MSE value between predicted 

MINE values and the linear relationship in the benchmark is: 

MSE =
1

5
( (MIĈ −  MIClinear)2 + (MAŜ −  MASlinear)2 +  (MEV̂ −

MEVlinear)2 +  (MCN̂ −  MCNlinear)2 +  (MICR2̂ − MICR2linear)2)

5.3.4 Implementation 

Two major sets of tools are used in this knowledge discovery system, including: 

(1) Rhino/Grasshopper, with the Galapagos plugin (a single objective optimization tool)

and the gHowl plugin (for exchanging information with other applications such as 

Excel); (2) the MINE application package (for computing MIC values as well as other 

statistics (http://www.exploredata.net/Downloads/MINE-Application)).  Excel is used to 

transfer information between Grasshopper and the R program.  

The diagram in Figure 5.7 lists the programs used, as well as the workflow of this 

knowledge discovery system. First, after the design optimization is completed in 

Grasshopper, the chromosomes (in this study, the locations of patient rooms) from the 

optimized design are exported into an Excel spreadsheet. Then R reads the spreadsheet 

and calculates the MINE results, which are then saved in another Excel spreadsheet. 

Next, Grasshopper analyzes the data in the spreadsheet via the MSE method and VB 

scripting, and puts out the following message in a dialog: [given certain conditions] “the 

optimal design is a circle” (meaning that the optimal layout for the rooms is a circle 

shape).  

http://www.exploredata.net/Downloads/MINE-Application
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Figure 5.7 The Workflow of the Knowledge Discovery System. 

All of the complex calculation processes in the workflow are automatic. There 

are a few manual starts for different programs (e.g., starting the R program after the 

optimization process is completed in Grasshopper), but they can also be automated with 

improved program interoperability. 

5.3.5 Results 

I applied the methods to the nursing unit layout optimization examples with two 

different sets of weights for the fitness functions. Figure 5.8 shows the MINE results 

after the coordinates of the 12 rooms in the optimal solution were imported into MINE.  
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Figure 5.8 The MINE Results of the Nursing Unit Layout Optimization With Different 

Weights for the Fitness Functions: (1) Fitness Travel Distance: Fitness Daylighting = 1:1 (Top); 

(2) Fitness Travel Distance: Fitness Daylighting = 1:2 (Bottom). The Small Circles in the Graphs

Represent the Points/Locations of the Rooms Obtained From the Optimization Results.

Figure 5.9 shows the message boxes as outputs from Grasshopper. The results 

indicate that when the optimization design problem has equal weights for travel distance 
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and daylighting, the system finds the optimized layout shape to be best interpreted as a 

circle (for which the MSE is the smallest among all the shapes tested. The second best 

was a square shape.). The system automatically pops up the following message as 

discovered knowledge: “When the ratio of the fitness weights = 1.0:1.0, for travel 

distance and daylighting, the optimal layout of the patient rooms is a circle shape.” 

When the ratio of the weights of travel distance to daylighting is 1:2, the final 

optimized design/room layout shape is best interpreted as a U-shape (for which the MSE 

is the smallest among all the shapes tested). The automatic output message is: “When the 

ratio of the fitness weights = 1.0:2.0, for travel distance and daylighting, the optimal 

layout of the patient rooms is a U shape.” 
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Figure 5.9: The Simple Messages Representing Generated Design Knowledge in the 

Case Study are Automatically Printed in Grasshopper for the Nursing Unit Layout 

Optimization with Different Weights for the Fitness Functions: (1) Fitness Travel Distance: 

Fitness Daylighting = 1:1 (Top); and (2) Fitness Travel Distance: Fitness Daylighting = 1:2 (Bottom). 
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5.4 Conclusions and Discussions 

When MIC is used in the optimization process, the system is able to 

automatically identify some simple shapes in the final form of the design (such as a 

circle, square, etc.) and generate correlations between the shapes as design parameters 

and the corresponding design performance. These correlations or knowledge can be used 

to form design guidelines for specific design problems in future design projects with 

similar design variables and objectives. In the future, when more optimization and 

knowledge generation are conducted, general knowledge can be discovered to form 

general design guidelines and reduce the need for the costly computing of additional 

optimizations. 

As mentioned earlier, the MINE result is affected by two parameters: the sample 

size and the alpha value (). Additional experiments were carried out to investigate how 

both parameters influence the results. These experiments show that: 

1. when the sample size is small, one should use  = 1 to get a result that is closer

to the theoretical value unless the user is expecting a simple relationship type

(such as linear) where no differences show between the small and large  values

even if the sample size is small (see Table 5.2). More differences can be seen

when the relationship becomes more complex.
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Table 5.2 Comparisons of the MINE Results With a Small Sample Size of 12 and  

Values of 0.6 (Top) and 1 (Bottom). 

Relationship Type MIC MAS MEV MCN MIC-R2 Sample Size and  Value 

Linear 1 0 1 2 0 

12 points total, =0.6 

Parabolic 0.31 0 0.31 2 0.31 

Circle 0.08 0 0.08 2 0.08 

U-shape 0.1 0 0.1 2 0.07 

Square 0 0 0 2 0 

Relationship Type MIC MAS MEV MCN MIC-R2 Sample Size and  Value 

Linear 1 0 1 2 0 

12 points total, =1 

Parabolic 1 0.68 1 2.58 1 

Circle 0.65 0 0.42 3.16 0.65 

U-shape 0.41 0.29 0.4 2.58 0.37 

Square 0.15 0 0.04 2.58 0.16 

2. when the sample size is large (such as 100), changing  from 0.6 to 1 won’t

make much of a difference in the results (see Table 5.3). Increasing  will result

in more computing time. However, the extra execution time in MINE is only

approximately 1 second in the present tests. A longer amount of additional time

is expected when the sample size is larger.
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Table 5.3 Comparisons of MINE Results with a Large Sample Size of 100 and  Values 

of 0.6 (Top) and 1 (Bottom). 

Relationship Type MIC MAS MEV MCN MIC-R2 Sample Size and  Value 

Linear 1 0 1 2 0 

100 points total, = 0.6 

Parabolic 1 0.68 1 3.9 1 

Circle 0.61 0 0.32 3.16 0.61 

U-shape 0.79 0.59 0.79 2.58 0.79 

Square 0.55 0 0.25 3.58 0.55 

Relationship Type MIC MAS MEV MCN MIC-R2 Sample Size and  Value 

Linear 1 0 1 2 0 

100 points total, = 1 

Parabolic 1 0.68 1 3.9 1 

Circle 0.76 0 0.49 3.58 0.76 

U-shape 0.79 0.59 0.79 2.58 0.79 

Square 0.55 0 0.25 3.58 0.55 

3. for simpler relationship types such as those that are linear, sample size and 

value do not matter.

Besides using optimization with the MIC technique, other existing and future

data mining methods are possible for use in automatically discovering design knowledge 

using our proposed system. 

It is important to understand that the discovered knowledge is based on specific 

design variables and constraints, and cannot simply be generalized to other design 
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problems without further tests. For example, in nursing unit design optimization, when 

the number of patient rooms is specific and with certain constraints, the optimized 

results show that a circular layout of units will provide an optimal solution for the nurse 

travel distance and daylighting objectives. However, we cannot claim that a circular 

layout of units is the best solution in other situations.  Nonetheless, as more constraints 

are added into the optimization problems, new knowledge can be generated to refine the 

previously discovered knowledge. The method of generating new knowledge - 

correlations between the optimal design performance and the design parameters 

(decision variables) - will become more generalizable and applicable to discovering 

knowledge that will resolve real world problems. The generated knowledge will, in turn, 

improve the efficiency of the optimization process, and even serve to provide guidelines 

for future designs and reduce the need for simulation and optimization during the design 

process. 
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CHAPTER VI 

DISCUSSIONS AND CONCLUSIONS 

This chapter discusses the reliability and validity of the methods of this study, 

and provides a summary of the study, its findings, and future work. 

6.1 Reliability and Validity 

The reliability of a method measures the degree to which the method provides 

consistent results. To be considered reliable, the same experiment must be able to 

produce the same results when performed by other researchers. Reliability is crucial to 

establishing a study as reliable, and being considered reliable enhances the strength of 

that study’s results (Shuttleworth, 2008). An evaluation of the validity of a method 

considers whether that method meets scientific research standards (Shuttleworth, 2008). 

All studies must be considered both reliable and valid if they are to receive recognition 

in the scientific community. Internal validity indicates the extent to which cause-effect 

or causal relationships about a study is assured with minimal bias (Brewer, 2000). 

External validity measures the degree to which the results of a study can be broadly 

generalized in other circumstances (Louis & Jolley, 2012).  The internal validity of this 

study is discussed in Section 6.1.1 and Section 6.1.2. The external validity needs to be 

verified in future studies because this study uses specific design objectives, fitness 

functions and tools. More discussion about future study is in Section 6.3.  

The reliability of this study can be ensured, due to the following: (1) The 

methods developed in this study are based on mathematical deduction or computational 

logics, and the process is presented in the following discussion; (2) not only the methods, 
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but also the variables used in each step of this study are presented to allow other 

researchers to duplicate the results; (3) no human judgment involved in this study 

compromises the reliability of this study.  

The proposed framework has two steps.  The first step is a design optimization 

process that finds the optimal design based on the given objectives, and the second step 

is a design knowledge discovery process that can help with future designs by converting 

the knowledge discovered into design guidelines. The validation of this proposed 

framework can be broken down into two parts: (1) the validation of the design 

optimization process - whether the optimal design can be obtained by using design 

optimization; and (2) the validation of the design knowledge discovery process – 

whether or not accurate knowledge can be discovered. If both can be verified, then it is 

safe to say that the proposed process can actually lead to improvement in both design 

optimization methods and knowledge discovery methods.   

The validation of the first step - whether the optimal design can be obtained by 

using design optimization - is discussed below. 

6.1.1 How to Identify the Optimal Design 

Optimization is the search for the best set of solutions to a system or a problem 

with explicit objective(s), variables, and constraints (Radford & Gero, 1987). Numerous 

optimization methods can be used to conduct such a search, such as a gradient search 

(Salomon, 1998), linear programming and nonlinear programming (Luenberger, 1973), 

quadratic programming (Frank & Wolfe, 1956), a stochastic search (Goel & Richter, 

1974), genetic algorithms (Holand, 1975), discrete methods, etc. A discussion regarding 
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the differences between differential calculus, linear programming, dynamic 

programming, and genetic algorithms is presented in Chapter 2, Section 2.3.2. 

Among the various kinds of optimization methods, some approaches (such as 

differential calculus, linear programming, and dynamic programming) belong to the area 

of mathematical optimization. Mathematical optimization searches for the best solution(s) 

in a set of available alternatives. It is useful in solving analytical problems in 

mathematics, economics, and computer science (Dantzig, 2010). For analytically 

solvable problems in mathematical optimization, it is mathematically guaranteed that 

there is at least one optimal solution or a set of optimal solutions, and the optimal 

solution(s) can be proven mathematically. As a result, researchers (e.g. Holland, 1992; 

Forrest, 1993) have suggested using mathematical optimization instead of evolutionary 

algorithms (such as genetic algorithms) to tackle analytically solvable problems. 

Because evolutionary algorithms are based on biological evolution, there is no 

mathematically perfect solution in nature or in any problem of biological adaptation 

(Marczyk, 2004).  

However, mathematical optimization is not suitable for all optimization problems, 

especially architectural problems, due to the nature of architectural problems that include 

discrete, nonlinear, and stochastic decision variables (Mackenzie & Gero, 1987). For 

optimization methods (such as evolutionary algorithms) that cannot be proved 

mathematically, other methods can be used to validate the optimal solutions to a problem. 

1. Test functions. First, common standard test functions can be used to evaluate

and test the efficiency and reliability of optimization algorithms (Andrei, 2008). Figure 
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6.1 displays several standard test functions for single-objective optimization problems. 

The examples offered here are based on the work of Back (1996), Haupt & Haupt (2004), 

and Oldenhuis (2009). The first column lists the names of the test functions. The second 

column outlines the three-dimensional landscapes of the test functions. The third and 

fourth columns include the objective functions and the optimal (minimized) solutions. 

The last column is the search domain for the optimal solutions.  

Figure 6.1 Test Functions for the Single-Objective Optimization Problem (Image 

Source: Wikipedia: http://en.wikipedia.org/wiki/Test_functions_for_optimization). 

Figure 6.2 includes some common test functions in multi-objective optimization 

problems. The examples are taken from Deb (2001) and Binh and Korn (1997). The first 

column lists the names of the functions. The second column describes the plot of the 
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Pareto optimal sets. The third and fourth columns depict the objective functions and the 

constraints. The last column outlines the search domain of the optimal solutions. 

Figure 6.2 Test Functions for Multi-Objective Optimization Problems (Image Source: 

Wikipedia: http://en.wikipedia.org/wiki/Test_functions_for_optimization). 

More test functions can be found in (Bingham, 2014). The above mentioned test 

functions are useful for validating new algorithms or comparing new algorithms to 

existing algorithms. In my study, I used the Beale’s function and the Goldstein-Price 

function to validate Galapagos, the single-objective optimization tool. Figure 6.3 and 

Figure 6.4 show the two functions and Figure 6.5 and Figure 6.6 show the corresponding 

results in Galapagos. The results indicate that Galapagos works well for single-objective 

optimization and can quickly find the accurate minimum values in both test functions.  
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Figure 6.3 Beale’s Test Function for Single-Objective Optimization (Image Source: 

Wikipedia: http://en.wikipedia.org/wiki/Test_functions_for_optimization). 

Figure 6.4 The Minimum Value Found by Galapagos in the Beale’s Test Function (x = 3, 

y = 0.5, and f(x,y) = 0).  

Figure 6.5 Goldstein-Price Test Function for Single-Objective Optimization (Image 

Source: Wikipedia: http://en.wikipedia.org/wiki/Test_functions_for_optimization). 

http://en.wikipedia.org/wiki/Test_functions_for_optimization
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Figure 6.6 The Minimum Value Found by Galapagos in the Goldstein-Price Test 

Function (x = 0, y=-1, and f(x,y) = 3).  

Octopus, the multi-objective optimization tool used in this study, is validated by the 

SCH test function. The SCH test function was used in Deb et al. study (2002) to verify 

the multi objective Genetic Algorithm NSGA-II. There is one variable in the SCH test 

function; the bounds of that variable are from -103 to 103. This problem has two 

objective functions, and there is no constraint. More details about the SCH test function 

can be found in Figure 6.7.  

Figure 6.7 SCH Test Function for Multi-Objective Optimization (Image Source: Deb, et 

al. 2002). 
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Figure 6.8 Left: The Pareto Optimal Set Found by NSGA-II and PAES for the SCH Test 

Function (Image Source: Deb, et al. 2002). Right: The Pareto Optimal Set Found by 

Octopus for the SCH Test Function.  

What we found when comparing the SCH test function results among NSGA-II, 

PAES (see Figure 6.8, left), and SPEA-2 genetic algorithm that is used by Octopus is 

that Octopus finds a similar spread of solutions (see Figure 6.8, right). The reliability and 

efficiency of the algorithms for multi-objective optimization used in this study can be 

ensured. 

2. The simplified version of the problem and exhaustive search. Test

functions can be used to verify optimization algorithms. However, for a particular 

optimization problem we must ask:  how do we verify that the results are the real 

optimized solutions (especially in healthcare design) when design problems are usually 

very complex and involve multiple design objectives? For these kinds of complex 

problems, the optimal solutions cannot be known in advance in order to verify the results. 

However, a complex problem can be converted into a simplified version of the original 
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problem and experiment upon the methods and workflow with this simplified problem. 

This simplified problem then can be verified by converting it into an analytically 

solvable problem, or by using an exhaustive search. It is generally impossible to use an 

exhaustive search for a complex problem because the search space is too big and it may 

take a prohibitively long time for computers to calculate the solution. However, the 

search space for a simplified problem is much smaller (compared to the original problem) 

so an exhaustive search is feasible to verify these methods. After carefully verifying the 

methods, we can apply them to complex problems and trust the results to be optimal.  

3. A Case Study. A simplified study – a parametric form-finding for a nursing

unit design – is used in this research to verify the methods. The design objectives are to: 

(1) minimize nurses’ travel distance from the nurses’ station to each patient room; and

(2) obtain an optimal level of daylight illuminance in all patient rooms, based on the

LEED standard (healthcare supplement) (USGBC 2009). The two objectives are 

converted into a single objective by using a weighted sum of the objective functions with 

pre-defined (architects’ subjective) weights. For any nursing unit layout solution, the 

fitness scores for travel distance and daylight illuminance can be defined using the 

function below.  

Overall Fitness = Weighttravel distance   Fitnesstravel distance + Weightdaylighting  

Fitnessdaylighting 

The optimized results are not surprising (see Figure 6.9). The image on the left is 

the result when using equal weights for travel distance and daylighting. The image on 

the right is the result when the weights of the travel distance and daylighting are at a 1:2 
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ratio. If we increase the weight of daylighting performance from 1 to 2, then fewer 

rooms will appear on the north side of the nurses’ station because a room will receive the 

least amount of daylight when it is on the north side with a north-facing window. The 

result – U shape layout – confirms the expectation.  

Figure 6.9 The Final Results of the Nursing Unit Layout Optimization with Different 

Weights in the Fitness Functions: (1) Fitness Travel Distance: Fitness Daylighting = 1:1 (Left) (2) 

Fitness Travel Distance: Fitness Daylighting = 1:2 (Right). 

Although we can say that the final results are consistent with our intuitive 

expectations, intuition cannot be used to verify these results. Exhaustive search can be 

used in order to validate whether or not the results have truly been optimized. However, 

compared to GA, exhaustive search may require a long time to complete. There are 12 

variables in the simplified study.  The number of possible locations for the first variable 

is 225-9=216 (225 is the total number of cells, and there are 9 reserved cells for the 

nurses’ station and 8’ corridor); and the number of possible locations for the second 

variable is 216-1=215 (216 minus the location of the first variable). Therefore, the total 

population is 216215214…205 =7.61027. It will take the computer a long time to 

complete the calculation, though theoretically the optimal result can be verified 
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mathematically. For simpler problems with less alternatives, optimal solutions can be 

found through exhaustive search. In this study, the exhaustive search for the case study 

optimization was not conducted for verification because of the time limitation. Instead, 

the optimization tool (Galapagos)’s validation and qualitative examination of the 

optimization results of the case study were used for validation of the methods. 

6.1.2 How to Ensure the Discovered Knowledge is Accurate 

The purpose of the second part of this study is to find design knowledge - 

correlations between optimal solutions and design parameters - using design 

optimization and techniques such as Maximal Information Coefficient (MIC) (Reshef et 

al., 2011). MIC has been proven in its generality (MIC captures relationships with data 

of sufficient size) and equitability (different types of data with the same noisy 

relationships receive similar results in MIC) (Reshef et al., 2011). In this study, MIC is 

used to allow the computer to automatically identify some simple shapes of the final 

forms (spatial layouts) of the design (such as a circle or a U shape.), and generate the 

correlation of each shape with the corresponding design performance.  

The validation of the design knowledge discovery process using the MIC 

technique is presented in a series of case study tests with simple forms or relationships 

(such as linear relationship, nonlinear relationship, parabolic relationship, sinusoidal 

relationship, circle, and square). Please refer to Chapter 5, Section 5.3.2 for more details 

about and a greater discussion of this series of tests. The purpose of testing on different 

shapes is to verify that MIC will give distinct values to different forms or relationships. 

The examples shown in Section 5.3.2 indicate that different shapes/relationships will 
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have different metrics values in MINE. In this study, when the design layout 

optimization is finished, the shapes of the optimized design can be classified into one of 

the shapes/relationships using the values in MINE. By doing this, we can be sure that no 

incorrect knowledge can be generated.  

6.2 Conclusion and Discussion 

Design optimization in the early stages of architectural design received wide 

attention in recent years. This study presents computational methods for creating and 

improving a closed loop of design optimization and knowledge discovery in architecture, 

which aims at addressing some of the shortcomings of traditional design optimization. 

The first part of this study – design knowledge-assisted optimization 

improvement – presents two techniques: offline simulation and Divide & Conquer 

(D&C). They demonstrate great time savings in building simulation and optimization 

process, and can provide a larger GA search space in the same amount of time, which 

offers a better chance of finding the optimal design. The second part of this study –

optimization-based knowledge discovery – describes a new design knowledge discovery 

system where design knowledge can be discovered from optimization through an 

automatic data mining approach. The discovered knowledge has the potential to further 

help improve the efficiency of the optimization method, thus forming a closed loop of 

improving optimization and knowledge discovery. 

The method of D&C was proved mathematically before undertaking the task, and 

the method of offline simulation was supported by comparing the time spent before and 

after the use of the method. The validation of the use of data mining technique was 
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demonstrated in a series case study tests with simple forms or relationships. A simplified 

nursing unit layout design was used as a case study in order to verify the proposed 

methods.  

It should be noted that the main purpose of this study is to develop and test new 

methods and prototypes in order to improve design optimization and optimization-based 

design knowledge discovery. The case study used here was merely to validate the 

methods and to demonstrate the work process. Because of that, the design objectives 

(minimize walking distance and maximize daylighting in a patient unit), the fitness 

function (see Chapter 4, Section 4.4.4), and tools (Rhino, Grasshopper, DIVA, 

Galapagos, Octopus, MIC, etc.) can be substituted with different or more sophisticated 

corresponding elements. The methods such as reusing offline simulation, breaking down 

a complex problem into easier problems, and using the data mining technique to extract 

design knowledge will remain the same for different design problems. These proposed 

methods can be applied to fields other than architectural design after being carefully 

tested.  More tests are needed to investigate the generalizability of the methods. 

Necessary modification to the methods may be needed for a sophisticated problem or 

with different tools.   

6.3 Limitations and Future Study 

There are some limitations in the proposed methods. No mutual feedback exists 

among genomes in the present proposed technique of offline simulation, because the 

simulation result of each genome is pre-computed. One possible solution is to find and 
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pre-computer all possible situations in advance, however, this may increase the 

computing time.  

A similar limitation occurs in D&C method, that a newly added genome has no 

impact on the previously placed genomes. When genomes are not independent of one 

another, designers may group the sub-problems into sets of sub-problems to enable 

feedback among genomes within each set of sub-problems. The detailed discussion 

about these limitations can be found in Section 4.5. 

In the design knowledge discovery system, the learned knowledge presented in 

this study cannot simply be generalized to other design problems because it was limited 

to specific design variables, constraints and design objectives. However, more 

generalizable knowledge can be obtained when more tests with different design variables, 

constraints and design objectives are performed.  

In the future, more realistic and sophisticated case studies should be tested. The 

detailed planning for future studies is described as below. 

First, a real world healthcare design project - Camarillo State Hospital Children’s 

Unit Addition Design1 - will be used as a case study to test the offline simulation and 

D&C methods, as well as the knowledge discovery method. In this future study, the 

method for walking distance calculation will be improved, compared to the how it is 

done in the simplified case study. The new walking distance calculation method will 

consider nurses’ actual walking patterns. The paths to other supporting areas such as 

medication room, nutrition room, clean utility and soiled utility etc. will also be taken 

1 The Camarillo State Hospital Children’s Unit Addition Design program is generously provided by  
Professor Mardelle Shepley.  
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into consideration. Path finding algorithms will be used in generating paths. Single-

objective optimization will first be used and then the proposed methods will be expanded 

to Pareto optimization for multiple design objectives to ensure their practicability in the 

real world architectural design process. 

Second, other design objectives, fitness functions, design tools will be tested with 

the proposed methods to ensure the external validity of this study. More complex case 

studied and detailed building simulation modeling will be used.  

Third, future study is needed to further examine the possible solutions for solving 

the above-mentioned limitations of both the offline simulation and D&C methods. 

Last, the proposed methods and prototypical tools need to be presented to the 

management-oriented audiences to promote the research of optimization and the 

improved methods in the industry.  



124 

REFERENCES 

Abboud, K., & Schoenauer, M. (2002, January). Surrogate deterministic mutation: 

Preliminary results. In Artificial Evolution (pp. 104-116). Springer Berlin 

Heidelberg. 

Ahn, Ki-Uhn., Young-Jin Kim., Deu-Woo Kim., Sung-Hwan Yoon., & Cheol-Soo Par. 

(2013) Difficulties and issues in simulation of a high-rise office building. In 

Proceedings of the 13th Conference of International Building Performance 

Simulation Association, pp 842-831.  

Anderson, K. S., & Hsu, Y. (1999). Genetic crossover strategy using an approximation 

concept. In Evolutionary Computation, 1999. CEC 99. Proceedings of the 1999 

Congress on (Vol. 1). IEEE. 

Andrei, N. (2008). An unconstrained optimization test functions collection. Adv. Model. 

Optim, 10(1), 147-161. 

Ansys, I. (2007). ANSYS Advanced Analysis Techniques Guide. Ansys Help. 

Armbrust, M., Fox, A., Griffith, R., Joseph, A. D., Katz, R., Konwinski, A., & Zaharia, 

M. (2010). A view of cloud computing. Communications of the ACM, 53(4), 50-58.

ASHRAE (2007). ANSI/ASHRAE/IESNA Standard 90.1- 2007, Energy Standard for 

Buildings Except Low-Rise Residential Buildings. Atlanta: American Society of 

Heating, Refrigerating and Air-Conditioning Engineers. 

Attia, S., Gratia, E., De Herde, A., & Hensen, J. L. (2012). Simulation-based decision 

support tool for early stages of zero-energy building design. Energy and Buildings, 

49, 2-15. 



 

125 

 

Back, T. (1996). Evolutionary Algorithms in Theory and Practice. Oxford Univ. Press. 

Beasley, D., Martin, R. R., & Bull, D. R. (1993). An overview of genetic algorithms: 

Part 1. Fundamentals. University Computing, 15, 58-58. 

Bellman, R. (1956). Dynamic programming and Lagrange multipliers. Proceedings of 

the National Academy of Sciences of the United States of America, 42(10), 767. 

Berry, M. J., & Linoff, G. S. (2004). Data Mining Techniques: for Marketing, Sales, and 

Customer Relationship Management. John Wiley & Sons. 

Besserud, K., Skidmore, O., & Merrill, L. L. P. (2008). Architectural Genomics. 

Silicon+ Skin> Biological Process and Computation, 238-245. 

Binh, T. T., & Korn, U. (1997, June). MOBES: A multiobjective evolution strategy for 

constrained optimization problems. Proceedings of the Third International 

Conference on Genetic Algorithms (Mendel 97) (pp. 176-182). 

Bingham, D. (2014, September). Optimization Test Problems. Retrieved April 13, 2015, 

from http://www.sfu.ca/~ssurjano/optimization.html 

Buche, D., Schraudolph, N. N., & Koumoutsakos, P. (2005). Accelerating evolutionary 

algorithms with Gaussian process fitness function models. Systems, Man, and 

Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 35(2), 183-

194. 

Budde, R., Kautz, K., Kuhlenkamp, K., & Zllighoven, H. (2011). Prototyping: An 

Approach to Evolutionary System Development. Springer Publishing Company, 

Incorporated. 

http://www.sfu.ca/~ssurjano/optimization.html


 

126 

 

Brewer, M. B. (2000). Research design and issues of validity. Handbook of Research 

Methods in Social and Personality Psychology, 3-16. 

Caban, J. J., Bagci, U., Mehari, A., Alam, S., Fontana, J. R., Kato, G. J., & Mollura, D. J. 

(2012, August). Characterizing non-linear dependencies among pairs of clinical 

variables and imaging data. Proceedings of Engineering in Medicine and Biology 

Society (EMBC), 2012 Annual International Conference of the IEEE (pp. 2700-

2703). IEEE. 

Chakrabarti, S., Ester, M., Fayyad, U., Gehrke, J., Han, J., Morishita, S., ... & Wang, W. 

(2006). Data mining curriculum: A proposal (Version 1.0). Intensive Working 

Group of ACM SIGKDD Curriculum Committee.  

Chen, K. C., & Chen, C. Y. C. (2011). Stroke prevention by traditional Chinese 

medicine? A Genetic Algorithm, Support Vector Machine and Molecular Dynamics 

Approach. Soft Matter, 7(8), 4001-4008. 

Choudhary, R., Malkawi, A., & Papalambros, P. Y. (2003). A hierarchical design 

optimization framework for building performance analysis. Proceedings of the 8th 

IBPSA Conference, Eindhoven, NL. 

Choudhary, R. (2004) A Hierarchical Optimization Framework for Simulation-Based 

Architectural Design. Diss. University of Michigan. 

Choudhary, R., & Michalek, J. (2005). Design optimization in computer aided 

architectural design. Proceedings of CAADRIA, The Association for Computer-

Aided Architectural Design Research in Asia. New Delphi, India, 149-158. 



 

127 

 

Claussnitzer, S., Katz, N., Shaxted, M., Park. S.K., & Yori, R. (October 20-22 2014). 

Workshop – High-throughput computing (HTC) for parametric exploration by 

SOM. Proceedings of the Annual Conference of the Association for Computer 

Aided Design in Architecture (ACADIA), October 23-25, 2014. Los Angeles, 

California. 

Clifton, C., & Marks, D. (1996, May). Security and privacy implications of data mining. 

In ACM SIGMOD Workshop on Research Issues on Data Mining and Knowledge 

Discovery (pp. 15-19). 

Cios, K. J., & Moore, G. W. (2002). Uniqueness of medical data mining. Artificial 

Intelligence in Medicine, 26(1), 1-24. 

Coffey, B. (2012). Using building simulation and optimization to calculate lookup tables 

for control. PhD Dissertation. 

Coffey, B. (2013). Approximating model predictive control with existing building 

simulation tools and offline optimization. Journal of Building Performance 

Simulation, 6(3), 220-235. 

Conner J. M., & Nelson E. C. (1999). Neonatal intensive care: Satisfaction measured 

from a parent's perspective. Pediatrics, 103 (1 Suppl E), 336–349. 

Cooper, L., & Cooper, M. W. (1981). Introduction to dynamic programming (pp. 197-

207). New York: Pergamon Press. 

Corbin, C. D., Henze, G. P., & May-Ostendorp, P. (2013). A model predictive control 

optimization environment for real-time commercial building application. Journal 

of Building Performance Simulation, 6(3), 159-174. 



 

128 

 

Dantzig, G. B. (2010). The nature of mathematical programming. Mathematical 

Programming Glossary. 

Deb, K. (2001). Multi-objective optimization using evolutionary algorithms (Vol. 16). 

John Wiley & Sons. 

Deb, K. (2012). Optimization for engineering design: Algorithms and examples. PHI 

Learning Pvt. Ltd. 

Deb, K., Pratap, A., Agarwal, S., & Meyarivan, T. A. M. T. (2002). A fast and elitist 

multiobjective genetic algorithm: NSGA-II. Evolutionary Computation, IEEE 

Transactions on, 6(2), 182-197. 

Dettenkofer M., Seegers S., Antes G., Motschall E., Schumacher M. ,& Daschner F. D. 

(2004). Does the architecture of hospital facilities influence nosocomial infection 

rates? A systematic review. Infection Control and Hospital Epidemiology, 25 (1), 

21–25.  

DeVinne P (Ed.) (1987) The American heritage illustrated encyclopedic dictionary. 

Boston: Houghton Mifflin. 

Eastman, C., P. Teicholz, R. Sacks, & K. Liston. (2011). BIM handbook: A guide to 

building information modeling for owners, managers, designers, engineers and 

contractors. Wiley. 

Fayyad, U., Piatetsky-Shapiro, G., & Smyth, P. (1996). From data mining to knowledge 

discovery in databases. AI Magazine, 17(3), 37.  

Farncombe, T., & Iniewski, K. (Eds.). (2013). Medical Imaging: Technology and 

Applications. CRC Press. 



 

129 

 

Ferris, R. (1996) Introduction. In SS William (ED.), Reflections on architectural 

practices in the nineties. New York: Princeton Architectural Press, pp.8-11. 

Filosi, M., Visintainer, R., Albanese, D., Riccadonna, S., Jurman, G., & Furlanello, C. 

(2014) Minerva: Minerva: Maximal information-based nonparametric exploration 

R package for variable analysis. Retrieved March 23, 2015, from http://cran.r-

project.org/web/packages/minerva/, 2014, August 26. 

Forrest, S. (1993). Genetic algorithms: principles of natural selection applied to 

computation. Science, 261(5123), 872-878. 

Forrester, A. I., Bressloff, N. W., & Keane, A. J. (2006). Optimization using surrogate 

models and partially converged computational fluid dynamics simulations. 

Proceedings of the Royal Society A: Mathematical, Physical and Engineering 

Science, 462(2071), 2177-2204.  

Frank, E., Hall, M., Trigg, L., Holmes, G., & Witten, I. H. (2004). Data mining in 

bioinformatics using Weka. Bioinformatics, 20(15), 2479-2481. 

Frank, M., & Wolfe, P. (1956). An algorithm for quadratic programming. Naval 

Research Logistics Quarterly, 3(1‐2), 95-110. 

Frawley, W. J., Piatetsky-Shapiro, G., & Matheus, C. J. (1992). Knowledge discovery in 

databases: An overview. AI magazine, 13(3), 57. 

Gallas, M. A., & Halin, G. (2013). DaylightGen: From daylight intentions to 

architectural solutions. eCAADe 2, 107-116. 

Gen, M. & Cheng, R. (2000). Genetic algorithms and engineering optimization (Vol. 7). 

John Wiley and Sons. 

http://cran.r-project.org/web/packages/minerva/
http://cran.r-project.org/web/packages/minerva/


 

130 

 

Gerber, D. J., Lin, S. H. E., Pan, B. P., & Solmaz, A. S. (2012, March). Design 

optioneering: Multi-disciplinary design optimization through parameterization, 

domain integration and automation of a genetic algorithm. Proceedings of the 2012 

Symposium on Simulation for Architecture and Urban Design (p. 11). Society for 

Computer Simulation International. 

Gero, J. S. & Louis, S. J. (1995). Improving Pareto optimal designs using genetic 

algorithms. Computer‐Aided Civil and Infrastructure Engineering, 10(4), 239-

247. 

Gole, A. M. (2000). Simulation tools for system transients: an introduction. InPower 

Engineering Society Summer Meeting, 2000. IEEE (Vol. 2, pp. 761-762). IEEE. 

Goel, N. S., & Richter-Dyn, N. (1974). Stochastic models in biology. Academic Press. 

Haber, J. (2010). Research Questions, Hypotheses, and Clinical Questions. Retrieved 

March 27, 2015, from: 

http://www.us.elsevierhealth.com/media/us/samplechapters/9780323057431/Chapt

er%2002.pdf  

Hall, J., Mani, G., & Barr, D. (1996). Applying computational intelligence to the 

investment process. Proceedings of CIFER-96: Computational Intelligence in 

Financial Engineering. Washington, DC: IEEE Computer Society. 

Harris D. D., Shepley M. M., White R. D., Kolberg K. J. S. ,& Harrell J. W. (2006). The 

impact of single family room design on patients and caregivers:  Executive 

summary. Journal of Perinatology, 26, S38–S48. 

Haupt, R. L., & Haupt, S. E. (2004). Practical genetic algorithms. John Wiley & Sons. 



 

131 

 

Hendrich, A., Chow, M., Skierczynski, B., & Lu, Z. (2008). A 36-hospital time and 

motion study: How do medical-surgical nurses spend their time? The Permanente 

Journal, 12(3), 25–34. 

Hensen, J. L., & Lamberts, R. (Eds.). (2012). Building performance simulation for 

design and operation. Routledge. 

Hevner, A.R.; March, S.T.; and Park, J. (2004). Design research in information systems 

research. MIS Quarterly, 28, 1, 75–105. 

Hochman, H. M., & Rodgers, J. D. (1969). Pareto optimal redistribution. The American 

Economic Review, 542-557. 

Holland, J. H. (1975). Adaptation in natural and artificial systems: An introductory 

analysis with applications to biology, control, and artificial intelligence. U 

Michigan Press. 

Holland, J. (1992) Genetic algorithms. Scientific American, July, p. 66-72. 

Hong, T., Chou, S. K., & Bong, T. Y. (2000). Building simulation: an overview of 

developments and information sources. Building and Environment, 35(4), 347-361. 

Hu, J., & Karava, P. (2014). Model predictive control strategies for buildings with 

mixed-mode cooling. Building and Environment, 71, 233-244. 

http://www.exploredata.net/Downloads [3-27-2015] 

http://www.exploredata.net/Downloads/MINE-Application [3-27-2015] 

Jin, Y., Olhofer, M., & Sendhoff, B. (2000, July). On evolutionary optimization with 

approximate fitness functions. In GECCO (pp. 786-793). 

http://www.exploredata.net/Downloads
http://www.exploredata.net/Downloads/MINE-Application


 

132 

 

Jin, Y. (2005). A comprehensive survey of fitness approximation in evolutionary 

computation. Soft Computing, 9(1), 3-12. 

Jin, Y. (2011). Surrogate-assisted evolutionary computation: Recent advances and future 

challenges. Swarm and Evolutionary Computation, 1(2), 61-70. 

Jo, J. H. & Gero, J. S. (1998). Space layout planning using an evolutionary approach. 

Artificial Intelligence in Engineering, 12(3), 149-162. 

Keim, D. A. (2002). Information visualization and visual data mining. Visualization and 

Computer Graphics, IEEE Transactions on, 8(1), 1-8. 

Kim, D. S., & Shepley, M. M. (2007). Healthcare architects' professional autonomy: 

interview case studies. HERD, 1(2), 14-26. 

Kim, D. S., & Shepley, M. M. (2011). Healthcare design complexity, specialized 

knowledge, and healthcare architects’ professional autonomy. Journal of 

Architectural and Planning Research, 28(3), 194-210. 

Kim, H. M. (2001). Target cascading in optimal system design. Ph. D. dissertation, 

University of Michigan. 

Kim, H. M., et al. (2001). Analytical Target Cascading in Automotive Vehicle Design. 

Proceedings of the 2001 ASME Design Automation Conference, September 9-12, 

2001. Pittsburgh, Pennsylvania.  

Kim, H., Stumpf, A., & Kim, W. (2011). Analysis of an energy efficient building design 

through data mining approach. Automation in Construction, 20(1), 37-43. 



 

133 

 

Kociecki, M., & Adeli, H. (2013). Two-phase genetic algorithm for size optimization of 

free-form steel space-frame roof structures. Journal of Constructional Steel 

Research, 90, 283-296. 

Leedy, P. D., & Ormrod, J. E. (2005). Practical research: Planning and design. , 

Prentice-Hall, Upper Saddle River, NJ. 

Lehmann, E. L., & Casella, G. (1998). Theory of point estimation (Vol. 31). Springer 

Science & Business Media. 

Liao, Y. H., & Sun, C. T. (2001). An educational genetic algorithms learning tool. IEEE 

Trans. Education, 44(2), 20. 

Lobos, D., & Donath, D. (2010). The problem of space layout in architecture: A survey 

and reflections. Arquitetura Revista, 6(2), 136-161.  

Luenberger, D. G. (1973). Introduction to linear and nonlinear programming (Vol. 28). 

Reading, MA: Addison-Wesley. 

Mackenzie, C. A. & Gero, J. S. (1987). Learning design rules from decisions and 

performances. Artificial Intelligence in Engineering, 2(1), 2-10. 

Mahmoodabadi, M. J., Safaie, A. A., Bagheri, A., & Nariman-Zadeh, N. (2013). A novel 

combination of Particle Swarm Optimization and Genetic Algorithm for Pareto 

optimal design of a five-degree of freedom vehicle vibration model. Applied Soft 

Computing, 13(5), 2577-2591. 

March, S. T., & Smith, G. F. (1995). Design and natural science research on information 

technology. Decision Support Systems, 15(4), 251-266. 



 

134 

 

Marczyk, A. (2004, 4 23). Genetic algorithms and evolutionary computation. Retrieved 

from http://www.talkorigins.org/faqs/genalg/genalg.html 

McGrail, A. J., Gulski, E., Groot, E. R. S., Allan, D., Birtwhistle, D., & Blackburn, T. R. 

(2002). Datamining techniques to assess the condition of high voltage electrical 

plant. CIGRE Paris WG15, 11. 

Michie, D. (1987, October). Current developments in expert systems. Proceedings of the 

Second Australian Conference on Applications of Expert Systems (pp. 137-156). 

Addison-Wesley Longman Publishing Co., Inc.. 

Michie, D. (1989). Problems of computer-aided concept formation. Applications of 

Expert Systems, 2, 310-333. 

Michie, D. 1990. March 15 Interview. AI Week 7(6): 7–12 

Miller, H. J., & Han, J. (Eds.). (2009). Geographic data mining and knowledge 

discovery. CRC Press. 

Mitchell, M. (1998). An introduction to genetic algorithms. MIT press. 

Mitchell, M., & Jolley, J. (2012). Research design explained. Cengage Learning. 

Morbitzer, C., Stratchan, P. & Simpson, C. (2003). Application of data mining 

techniques for building simulation performance prediction analysis. In: Schellen 

and van der Spoel, ed. Building Simulation '03, 8th International IBPSA 

Conference, Eindhoven, Netherlands, September 18-21, 2003, 911-918.  

Muhlenbein, H. (1991). Evolution in time and space-the parallel genetic algorithm. In 

Foundations of Genetic Algorithms. 

http://www.talkorigins.org/faqs/genalg/genalg.html


 

135 

 

Moon, Y. I., Rajagopalan, B., & Lall, U. (1995). Estimation of mutual information using 

kernel density estimators. Physical Review E, 52(3), 2318-2321. 

Negendahl, K., Perkov, T., & Heller, A. (2014). Approaching sentient building 

performance simulation systems. Proceedings of eCAADe 2014. September 10-12, 

2014. Newcastle, UK. 

NSF, 2009. The challenge of sustainable energy. National Science Foundation. 

Oldenhuis, R. (2009, 2, 28). Test functions for global optimization algorithms. Retrieved 

from http://www.mathworks.com/matlabcentral/fileexchange/23147-test-functions-

for-global-optimization-algorithms 

Ong, Y. S., Nair, P. B., & Keane, A. J. (2003). Evolutionary optimization of 

computationally expensive problems via surrogate modeling. AIAA Journal, 41(4), 

687-696. 

Ong, Y. S., Nair, P. B., & Lum, K. Y. (2006). Max-min surrogate-assisted evolutionary 

algorithm for robust design. Evolutionary Computation, IEEE Transactions on, 

10(4), 392-404. 

Papalambros, P. Y. (2002). The optimization paradigm in engineering design: promises 

and challenges. Computer-Aided Design, 34(12), 939-951. 

Papalambros, P. Y., & Wilde, D. J. (2000). Principles of optimal design: modeling and 

computation. Cambridge university press. 

Pearson, K. (1895). Note on regression and inheritance in the case of two parents. 

Proceedings of the Royal Society of London, 58(347-352), 240-242. 

http://www.mathworks.com/matlabcentral/fileexchange/23147-test-functions-for-global-optimization-algorithms
http://www.mathworks.com/matlabcentral/fileexchange/23147-test-functions-for-global-optimization-algorithms


 

136 

 

Peffers, K., Tuunanen, T., Rothenberger, M. A., & Chatterjee, S. (2007). A design 

science research methodology for information systems research. Journal of 

Management Information Systems, 24(3), 45-77. 

Piateski, G., & Frawley, W. (1991). Knowledge discovery in databases. MIT press. 

Poole, D., Mackworth, A. & Goebel, R. (1998). Computational intelligence: A logical 

approach, Oxford University Press, New York  

Portugal, V. & Guedes, M. (2012, November). Informed parameterization: optimization 

of building openings generation. Plea2012 - 28th Conference, Opportunities, 

Limits & Needs Towards an Environmentally Responsible Architecture, Lima, Perú. 

Retrieved from http://www.plea2012.pe/pdfs/T07-20120130-0053.pdf  

Potter, M. A. & De Jong, K. A. (1994). A cooperative coevolutionary approach to 

function optimization. In Parallel Problem Solving from Nature—PPSN III (pp. 

249-257). Springer Berlin Heidelberg. 

Potter, M. A. & De Jong, K. A. (2000). Cooperative coevolution: An architecture for 

evolving coadapted subcomponents. Evolutionary Computation, 8(1), 1-29. 

Pries-Heje, J., Baskerville, R., & Venable, J. (2008). Strategies for design science 

research evaluation. ECIS 2008 Proceedings, 1-12. 

Quinlan, J. R. (2014). C4. 5: Programs for machine learning. Elsevier. 

Rahmani Asl, M., Zarrinmehr, S., & Yan, W. (2013). Towards BIM-based Parametric 

Building Energy Performance Optimization, Proceedings of The Association for 

Computer Aided Design in Architecture (ACADIA), October 24-27, 2013. 

Cambridge, Ontario, Canada. 



 

137 

 

Radford, A. D. & J. S. Gero. (1987). Design by optimization in architecture, building, 

and construction. John Wiley and Sons, Inc. 

Rawat, C. D., Shahani, A., Natu, N., Badami, A., & Hingorani, R. (2012). A genetic 

algorithm for VLSI floor planning. International Journal of Engineering Science & 

Advanced Technology, 2(3), 412-415. 

Renner, G. & Ekárt, A. (2003). Genetic algorithms in computer aided design. Computer-

Aided Design, 35(8), 709-726. 

Reshef, D. N., Reshef, Y. A., Finucane, H. K., Grossman, S. R., McVean, G., Turnbaugh, 

P. J., ... & Sabeti, P. C. (2011). Detecting novel associations in large data sets. 

Science, 334(6062), 1518-1524. 

Rutten, D. (2011, March 7). Define “Fitness”…. Retrieved December 10, 2014, from 

https://ieatbugsforbreakfast.wordpress.com/2011/03/07/define-fitness/ 

Salomon, R. (1998). Evolutionary algorithms and gradient search: similarities and 

differences. Evolutionary Computation, IEEE Transactions on, 2(2), 45-55.  

Sarmanov, O. V. (1962). Maximum correlation coefficient (nonsymmetric case). 

Selected Translations in Mathematical Statistics and Probability, 2, 207-210. 

Spearman, C. (1904). The proof and measurement of association between two things. 

The American Journal of Psychology, 15(1), 72-101. 

Schnabel, M. A. (2007). Parametric Designing in Architecture. In Computer-Aided 

Architectural Design Futures (CAAD Futures) 2007 (pp. 237-250). Springer 

Netherlands. 

https://ieatbugsforbreakfast.wordpress.com/2011/03/07/define-fitness/


 

138 

 

Shi, X. (2011). Design optimization of insulation usage and space conditioning load 

using energy simulation and genetic algorithm. Energy, 36(3), 1659-1667. 

Shuttleworth, M. (Oct 20, 2008). Validity and reliability. Retrieved Jan 08, 2015 from 

Explorable.com: https://explorable.com/validity-and-reliability 

Simpson, T. W., Mauery, T. M., Korte, J. J., & Mistree, F. (2001). Kriging models for 

global approximation in simulation-based multidisciplinary design optimization. 

AIAA Journal, 39(12), 2233-2241. 

Spivey, W A. (1962). Linear programming. Science, 135(3497), 23-27. 

Stavric, M., & Marina, O. (2011). Parametric modeling for advanced architecture. 

International Journal of Applied Mathematics and Informatics, 5, 9-16. 

Su, Z., Yan, W. (2014) Improving Genetic Algorithm for Design Optimization Using 

Architectural Domain Knowledge, Proceedings of the Annual Conference of the 

Association for Computer Aided Design in Architecture (ACADIA), October 23-25, 

2014. Los Angeles, California. 

Test functions for optimization. (2015, March 31). Retrieved April 13, 2015, from 

https://en.wikipedia.org/wiki/Test_functions_for_optimization  

TMHC Staff. (2014, March 24). 30 most technologically advanced hospitals in the world. 

Retrieved November 9, 2014, from http://www.topmastersinhealthcare.com/30-

most-technologically-advanced-hospitals-in-the-world/ 

Tuckman, B. W., & Harper, B. E. (2012). Conducting educational research. Rowman & 

Littlefield Publishers. 

http://www.topmastersinhealthcare.com/30-most-technologically-advanced-hospitals-in-the-world/
http://www.topmastersinhealthcare.com/30-most-technologically-advanced-hospitals-in-the-world/


 

139 

 

Ulrich, R. (1984). View through a window may influence recovery. Science,224(4647), 

224-225. 

USGBC. (2009). Green building design and construction. (2009 Edition ed.). 

Washington, DC. 

Valenzuela, C. L. & Jones, A. J. (1993). Evolutionary divide and conquer (I): A novel 

genetic approach to the TSP. Evolutionary Computation, 1(4), 313-333. 

Vaishnavi, V., & Kuechler, W. (2004). Design research in information systems. 

Vidal, T., Crainic, T. G., Gendreau, M., Lahrichi, N., & Rei, W. (2012). A hybrid 

genetic algorithm for multidepot and periodic vehicle routing problems. 

Operations Research, 60(3), 611-624. 

Vierlinger, R. (n.d.). Octopus. Retrieved October 30, 2014, from 

http://www.food4rhino.com/project/octopus?ufh 

von Buelow, P., Falk, A., & Turrin, M. (2010). Optimization of structural form using a 

genetic algorithm to search associative parametric geometry. Proceedings of 

Structure and Architecture. 

Walch, J. M., Rabin, B. S., Day, R., Williams, J. N., Choi, K., & Kang, J. D. (2005). The 

effect of sunlight on postoperative analgesic medication use: a prospective study of 

patients undergoing spinal surgery. Psychosomatic Medicine, 67(1), 156-163. 

Wagner, T. (1993). A general decomposition methodology for optimal system design. 

Ph.D. dissertation. University of Michigan. 



 

140 

 

Wang, W., Zmeureanu, R., & Rivard, H. (2005). Applying multi-objective genetic 

algorithms in green building design optimization. Building and Environment, 

40(11), 1512-1525. 

Watson, R. A. (2002). Compositional evolution: interdisciplinary investigations in 

evolvability, modularity, and symbiosis. Proceedings of the 8th International 

Conference on Parallel Problem Solving from Nature (PPSN-VIII) (pp. 161-171). 

Springer. 

Welle, B., Rogers, Z., & Fischer, M. (2012). BIM-Centric Daylight Profiler for 

Simulation (BDP4SIM): A methodology for automated product model 

decomposition and recomposition for climate-based daylighting simulation. 

Building and Environment, 58, 114-134. 

Witten, I. H., & Frank, E. (2005). Data Mining: Practical machine learning tools and 

techniques. Morgan Kaufmann. 

Woodbury, R., (2010). Elements of parametric design, Routledge. 

Yu, Z., & Dexter, A. (2009). Simulation based predictive control of low energy building 

systems using two-stage optimization. Proc. IBPSA’09, 1562-1568. 

Zhou, Z., Ong, Y. S., Nair, P. B., Keane, A. J., & Lum, K. Y. (2007). Combining global 

and local surrogate models to accelerate evolutionary optimization. Systems, Man, 

and Cybernetics, Part C: Applications and Reviews, IEEE Transactions on, 37(1), 

66-76. 

Zhu, X. (Ed.). (2007). Knowledge discovery and data mining: Challenges and realities. 

Igi Global. 



 

141 

 

Zimring, C., Joseph, A., & Choudhary, R. (2004). The role of the physical environment 

in the hospital of the 21st century: a once-in-a-lifetime opportunity. Concord, CA: 

The Center for Health Design. 

Zimring, C. M., Ulrich, R. S., Zhu, X., DuBose, J. R., Seo, H. B., Choi, Y. S., ... & 

Joseph, A. (2008). A review of the research literature on evidence-based healthcare 

design. Health Environments Research & Design, 1(3), 61-125. 

Zitzler, E., & Thiele, L. (1999). Multiobjective evolutionary algorithms: a comparative 

case study and the strength Pareto approach. Evolutionary Computation, IEEE 

Transactions on, 3(4), 257-271. 

 




