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ABSTRACT 

 

High performance computing is an option to increase reservoir simulation 

efficiency. However, highly scalable and efficient parallel application is not always easy 

to obtain from case to case. Load imbalance caused by mesh partitioning and message 

passing through connections between partitions are the main reasons that prevent 

successful parallel implementation. This thesis introduces several mesh partitioning 

methods that assign relatively similar loads to processes and minimize connections 

between partitions to a large scale parallel reservoir simulation model. Their effects on 

enhancing parallel computing performance are discussed. Specifically, the effects are 

evaluated based on two parameters: parallel overhead and load imbalance status. 

The partitioning methods introduced are 2D decomposition, Metis partition, 

Zoltan partitioning, and spectral partitioning. In the first place, their implementation in 

the original reservoir model is researched. Then, they are also applied to the same 

reservoir model with elevated well complexity. In order to increase well complexity, the 

original model’s well geometry and well control constraints are changed. For each 

partitioning strategy, various subdomain number s are used. They are 2, 4, 8, 16, and 32. 

Once the mesh is partitioned, the assignment of each subdomain to process is also 

studied. The fashion of assigning each subdomain’s reservoir model computation to a 

specific process in the cluster affects parallel overhead. When two neighboring 

subdomains are assigned to two physically neighboring processes in the cluster, the 

overhead is much smaller than when they are assigned to two non-neighboring 
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processes. Except for the assignment process, load imbalance are examined as well. In 

the original reservoir model, since the well geometries and well control patterns are not 

very complex, low load imbalance is obtained for parallel simulation based on the four 

partitioning methods introduced. The speedups are scalable. When the well model 

complexity is elevated by introducing horizontal wells and more frequent well control 

constraints changes, an increased load imbalance can be observed in the parallel 

reservoir simulation. Thus, the scalability is undermined. In general, this work allows us 

to better understand the application of various partitioning strategies in terms of load 

imbalance and parallel overhead. 
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NOMENCLATURE 

 

𝑆𝑝 Speedup for a parallel job with p processes, dimensionless 

𝐸𝑝 Efficiency for a parallel job with p processes, dimensionless 

𝑇𝑆𝑒𝑟𝑖𝑎𝑙 Serial job simulation time, second 

𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙 Parallel job simulation time, second 

CPU Central processing unit 

p Number of processes, dimensionless 

PVT Pressure-volume-temperature 

s Serial fraction of a code, dimensionless 
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CHAPTER I  

INTRODUCTION 

 

1.1 Problem statement 

High scalability and efficiency are the targets of high performance computing. 

But the existence of overheads and load imbalance prevents us from getting optimum 

parallel implementation. If overheads and load imbalance are not addressed properly, it 

will be very hard to obtain high speedups and a high cost of high performance 

computing will ensue. 

A critical step to relieve load imbalance is to select an appropriate partitioning 

strategy. There are many mesh partitioning methods and graph partitioning methods to 

our knowledge. Their purposes are to assign relatively similar amount of work to each 

subdomain and minimize the communications between subdomains. However, less 

efforts have been put into the comparison of several major partitioning strategies. For a 

specific computation model, an optimum partitioning approach is able to give the 

parallel implementation low load imbalance and low overhead (Barney 2015). 

Another issue is that many of the partitioning strategies are static and they do not 

take into account additional information other than grid geometries. In petroleum 

reservoir simulation model, a grid represents the geometry of the reservoir. Static 

partitioning strategies take such geometries as inputs and generate various kinds of 

partitioned meshes. This fashion is expected to provide reduced communications 

between cores and satisfactory load balance status in case of simply well geometries and 
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well operating constraints. However, as complexity of well data increase, inter-core 

communications and load variance among cores are expected to increase. As a result, 

parallel efficiency will not be as good as before. This phenomenon needs to be addressed 

as well so that we can understand load imbalance better. 

 

1.2 Background 

Petroleum reservoir simulation has been playing an important role in the oil 

industry. It allows us to understand reservoir statically and dynamically. Typically, to 

represent the reservoir adequately, three phases (oil, gas, and water) of the underground 

fluids are modeled in simulator. Besides, compositional model is also used to represent 

multiple components that make up reservoir fluids. In many cases, fine grids are used so 

that reservoir simulation can be more accurate. Large models often have more than 1 

million grid blocks. These considerations largely increase reliability and accuracy of 

reservoir simulation. 

However, computation in reservoir simulation can be very time-consuming, 

especially in large and complex reservoir models. High costs of simulation are not 

preferred in the field. As a result, speedup based on parallel computing has been studied 

by many (Reinders 2012). Lu et al. (2008) introduces an implementation of a parallel 

reservoir simulator on personal computers based on multi-core CPU. Killough and 

Wheeler (1987) presents the uses of parallel iterative methods for linear equations in 

simulation processes. 
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Parallel computing in reservoir simulation subdivides the reservoir simulation 

mesh into smaller parts and related properties in each part can be computed 

simultaneously (Maliassov and Shuttleworth 2009). Some problems occur as such 

parallel mechanisms are implemented. One of them is load imbalance. This is a field that 

has not been well addressed as others such as parallel solver. Different loads on 

processes extend the total computation time and reduce the scalability of parallel 

implementation. Wang and Killough (2014) proposed a strategy based on over-

decomposition of reservoir model mesh to reach satisfactory load balance status. The 

key to load balance is to assign similar loads to processes while communications 

between partitions are minimum. Several graph partitioning methods can achieve this by 

reading and understanding reservoir model geometry. Karypis and Kumar (1998a) 

introduces a graph partitioning method called Metis. It is able to divide mesh into parts 

with similar grid-block numbers and a relatively small number of connections. Zoltan is 

another data management method that simplifies load balancing and data communication 

(Devine et al. 2002). Spectral partitioning is also a candidate that can partition mesh into 

similar loads. This method requires the adjacency matrix which contains mesh geometry 

information and bisects mesh (McSherry, 2001). If more than two partitions are wanted, 

one can simply repeat the bisection to get more partitions. 

Some efforts have been made to understand the load imbalance in parallel 

implementations. Frachtenberg et al. (2003) talk about methods to mitigate load 

imbalance when parallel computing is applied to very heterogeneous system where 

processes tend to have very different loads. Oliker and Biswas (1998) show a dynamic 
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way to balance loads among processors for adaptive grid calculations. Their method is 

also proved to be effective when there is a large number of processors. Tallent et al. 

(2010) introduce another way to identify the load imbalance in parallel runs. Load 

imbalance in both dynamic and static forms can be identified using their results. Sarje et 

al. (2015) addressed issues in load imbalance and data access manners so that they 

obtained optimized parallel performance in simulations based on meshes. 

It is noticed that many efforts have been put into implementation of successful 

parallel reservoir simulation. However, there is still a need to understand and compare 

the performance of multiple major partitioning strategies. 

 

1.3 Objectives 

Based on previous review, it can be concluded that there is a great possibility of 

reducing serial run time by parallel computing. More details about load balance are 

needed so that we can understand the current major partitioning strategies better. The 

target of this research consists of the following three points. 

(1) Speedups and load imbalance of four mesh partitioning strategies will be 

compared based on their implementation in the original reservoir model. The four 

strategies are 2D, Metis, Zoltan, and spectral. 

(2) The effect of grid array allocation to processes will be studied. 

(3) Mesh partition methods’ ability to reduce load imbalance in a more complex 

reservoir model will be examined. 
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(4) This study is about two dimensional partitioning and the results obtained here 

can be a comparison when we later go to three dimensional partitioning. 

 

1.4 Procedures 

Several procedures are conducted to fulfill goals proposed in objective. First, 

based on the original reservoir model geometry, partitioning methods proposed 

previously are introduced to partition the grid into a number of subdomains. Second, the 

reservoir grid are subdivided into multiple partitions (2, 4, 8, 16, and 32) for parallel 

computing. This fashion are repeated for all partitioning strategies. Third, several 

subdomain-to-process assignment patterns are tested and the resulting overheads are 

analyzed. Fourth, load imbalance in multiple time steps during the simulation are shown 

to sketch the load balance change. Fifth, elevated well specifications are added to the 

existing model and the load balance changes are studied. 
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CHAPTER II  

PROBLEM IDENTIFICATION 

 

2.1 Reservoir model 

A large reservoir model grid is used in this study. There are totally 1 million grid 

blocks in the model. The grid dimension is 100 by 100 by 100. The coordinate system 

here follows the right-hand rule. I-direction numbering is ascending from westernmost to 

easternmost. J-direction is ascending from northernmost to southernmost. J-direction is 

ascending from top to bottom. The reservoir thickness vary with location and it is around 

500 feet. Blocks do not have uniform sizes. Figure 1 presents the reservoir model with 

porosity distribution as shown. Only 850,371 cells are active blocks and the rest are not 

included in the simulation later on. The reservoir around 15000 feet long from north to 

south and 15000 feet long from east to west. The reservoir structure is an anticline with 

oil mainly residing at the top of the structure. Six major faults are observed in the model. 

Four of them are from northwest to southeast and two of them are from northeast to 

southwest. The faults are displayed in Figure 2. In the original model, there are 11 fully 

penetrated producers. They are all vertical wells. Table 1 shows the well locations and 

their type. The primary reservoir drive mechanism is edge water drive. In hydrocarbon 

bearing area, initial oil saturation is 77.5%. The simulation time is 365 days with the 

start date as January 1, 2001. Implicit pressure and explicit saturation method is applied 

to all grid blocks. The computational precision is 1.11×10-16. The simulator takes into 
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account three phases: water, oil, and gas. 8 components are incorporated in the 

simulator. Properties of the 7 hydrocarbon components are recorded in Table 2. 

 

 

 

 

 
Figure 1. Porosity distribution in the million grid block model 
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Figure 2. Faults in the million grid block model 

 

 

 

 

Table 1. Well type and locations 

 

I-durection J-direction Type

1NPF0004 37 70 Producer

1BCP0299 58 56 Producer

1FGP0092 27 40 Producer

1WMX0085 26 59 Producer

1DUW0282 60 34 Producer

1JGD0163 26 51 Producer

1BDO0264 48 44 Producer

1NJP0167 63 41 Producer

1WQA0061 39 46 Producer

1YII0191 42 30 Producer

1HTO0146 44 57 Producer



 

9 

 

Table 2. Hydrocarbon components properties 

 
 

 

 

2.2 Parallel computing specifications 

The simulator is Nexus® version 5000.4.10. The parallel environment of this 

simulator is based on Message Passing Interface, which enables the work to be simulated 

on separate cores (Crockett and Devere 2009). This implementation is expected to 

enhance the performance better than shared memory models (Halliburton 2015). The 

serial run on the Blackgold cluster took 3258.248 seconds. It is noted that in the serial 

run, PVT properties calculation took 47.49% of total CPU time as the most time-

consuming section.  

 Table 3 records CPU time and elapsed time of each part of the simulation. Due 

to licensing limit, up to 32 partitions are available for the cluster to run simultaneously. 

 

 

COMPONENT
Molecular 

Weight
Ωa Ωb

Critical 

Temperature, 

R

Critical 

Pressure, 

psia

Critical Gas 

Compressibility 

Factor

Acentric 

factor

Volume 

Shift 

Parameter

Parachor

P1 34.08 0.457236 0.077796 671.76 1296.19 0.28358 0.1 -0.115478 97.3714

P2 44.01 0.457236 0.077796 547.56 1069.87 0.27404 0.225 -0.0943467 125.743

P3 16.0633 0.457236 0.077796 342.87 786.53 0.33879 0.008054 -0.181405 45.8953

P4 53.9334 0.457236 0.077796 732.24 571.601 0.27484 0.180321 -0.0618549 154.095

P5 131.895 0.457236 0.077796 1107.74 336.801 0.25336 0.459627 -0.241669 392.138

P6 263.455 0.457236 0.077796 1390.17 268.456 0.27733 0.748941 -0.125251 752.477

P7 528.436 0.457236 0.077796 1935.43 133.059 0.16754 1.15346 -0.022134 1509.82
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Table 3. Serial run time distribution 

 
 

 

 

The Blackgold cluster has 5 nodes. Each node has 32GB RAM. One out of the 

five nodes has 2 Intel® Xeon® X5672 processors. X5672 has 4 cores and 8 threads. It has 

12M cache. Four out of the five nodes have two processors on each node. The processor 

is Intel® Xeon® E5-2665 with 20 M cache and base frequency of 2.4 GHz. Each E5-2665 

processor has 8 cores and 16 threads. Within one node, the parallel architecture is shared 

memory. Between nodes, the memory architecture is distributed memory. This hybrid of 

architectures is beneficial for parallel implementation performance enhancement since it 

does not have strong local overheads on each node. 

CPU Seconds % Total Run Elapsed Seconds % Total Run

INPUT 1.894 0.06 1.893 0.06

OUTPUT 2.266 0.07 2.298 0.07

INITIALIZATION 138.909 4.26 138.828 4.26

PVT PROPERTIES 1547.332 47.49 1546.336 47.48

ROCK PROPERTIES 36.697 1.13 36.733 1.13

EQUATION SETUP 68.287 2.1 68.251 2.1

NETWORK/WELLS 5.845 0.18 5.795 0.18

SOLVER 1123.242 34.47 1122.59 34.47

UPDATE 124.557 3.82 124.594 3.83

MISC. 209.219 6.42 209.26 6.43

Total Run 3258.248 100.00 3256.579 100.00
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Table 4. Processor specifications 

 

 

 

 

Processor Node Type Frequency Cache Cores Threads RAM

1 1 X5672 3.2GHz 12M 4 8 32GB

2 1 X5672 3.2GHz 12M 4 8 32GB

3 2 E5-2665 2.4GHz 20M 8 16 32GB

4 2 E5-2665 2.4GHz 20M 8 16 32GB

5 3 E5-2665 2.4GHz 20M 8 16 32GB

6 3 E5-2665 2.4GHz 20M 8 16 32GB

7 4 E5-2665 2.4GHz 20M 8 16 32GB

8 4 E5-2665 2.4GHz 20M 8 16 32GB

9 5 E5-2665 2.4GHz 20M 8 16 32GB

10 5 E5-2665 2.4GHz 20M 8 16 32GB
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CHAPTER III  

PARTITIONING STRATEGIES 

 

3.1 Introduction 

In order to distribute the work to processes, the reservoir model needs to be 

divided into subdomains. The decomposition methods discussed here are static, which 

means that these methods take into consideration the reservoir model mesh before any 

simulation is actually run. A good partitioning strategy leads to scalable speedup and 

high parallel computing efficiency. Four methods are introduced here: 2D 

decomposition, Metis partitioning, spectral partitioning, and Zoltan partitioning. All 

results presented in this chapter has an orientation of north on the top. 

 

3.2 2D decomposition 

2D decomposition is a major decomposition method. It subdivides the mesh into 

blocks on x-direction and y-direction. In this study, the simulator can utilize this strategy 

by modifying the grid input file. Figure 3 shows an example of 2D decomposition in the 

reservoir model. In this example, the mesh is divided into 16 subdomains. Simulation 

grid numbers are marked with various colors in the picture. By repeating this pattern, 

meshes with other partition numbers are also obtained and shown in Figure 4, Figure 5, 

Figure 6, and Figure 7. 
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Figure 3. Example of 2D decomposition with 16 partitions 
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Figure 4. Example of 2D decomposition with 2 partitions 
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Figure 5. Example of 2D decomposition with 4 partitions 
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Figure 6. Example of 2D decomposition with 8 partitions 
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Figure 7. Example of 2D decomposition with 32 partitions 

 

 

 

3.3 Metis partitioning 

Metis is a graph partitioning algorithm that can be applied to partitioning 

unstructured graphs and partitioning meshes. Generally speaking, this method has an 

untraditional algorithm of reading and partitioning meshes. Traditional methods directly 

read the mesh or graph while Metis pre-processes them first and then partition them. 

With such improvement, Metis is very fast and efficient to partition grids, especially for 

large grids like the one in this research (Karypis and Kumar, 1998b). From the practice 

in the million grid block decomposition case, it usually takes several seconds to partition 

the mesh with one million blocks. This saves some pre-processing time. In addition, 
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partitions generated by Metis have small numbers of communications in between. Metis 

graph partition mainly has two routines: multilevel recursive bisection and multilevel k-

way partitioning. In this research, Metis k-way graph partitioning feature is used since it 

can offer minimized communications between partitions and also ensure that partitions 

are contiguous. These are both preferred to address load imbalance issues. 

According to Karypis and Kumar (1998c), the multilevel k-way graph 

partitioning is a satisfactory partitioning algorithm. Although both multilevel k-way 

partitioning and multilevel recursive bisection involve graph coarsening, the multilevel 

k-way partitioning requires only one time coarsening. The multilevel recursive bisection 

strategy first coarsens a large graph into a new graph with less vertices, then the new 

graph is partitioned into two. Based on the partition, the coarsened graph is then 

projected back into the original graph with more vertices. To repeat this bisection 

strategy, the process is repeated recursively. During this recursive bisection, many 

coarsening and refining are done. However, this repetitive process is simplified in 

multilevel k-way graph partitioning. In this partitioning, the original graph only needs to 

be coarsened for once. Once the coarsened graph is partitioned, a refinement method 

called Kernighan-Lin algorithm is used to refine the coarsened graph back into the 

original graph with more vertices. This algorithm involves switching vertices between 

partitions to reduce the number of edge cuts. It is worth mentioning that this refinement 

algorithm is also used in the spectral partitioning method and it is proved to be very 

efficient to reduce edge cuts for spectral partitioning. When switching vertices, the 

algorithm also makes sure that the number of vertices in each partition is not changed.  



 

19 

 

Two factors regarding the reservoir model are taken into consideration while 

applying Metis partitioning. The first is grid geometry. An adjacency matrix is 

introduced to represent grid geometry. The column or row number of the matrix is equal 

to the total grid block number. Each grid block’s neighboring blocks are stored in its 

corresponding row in the adjacency matrix. In Metis, Compressed Row Storage (CSR) is 

used so that the partitioning speed is largely increased. The second consideration is the 

transmissibility field. Transmissibility distribution is highly related to reservoir related 

computation. Since the x-direction transmissibility and y-direction transmissibility 

distribution are nearly identical, only the first layer’s x-direction transmissibility field is 

put into Metis as weighting factor. Figure 8 shows the Metis k-way partitioning result 

for four subdomains. Figure 9 shows the x-direction transmissibility field. It is easily 

noticed that Metis tends to assign smaller size of partitions to areas where 

transmissibility is high. The reason is that high transmissibility leads to larger property 

changes. As a result, more iterations are required to reach convergence for each time 

step in the simulation. To present this trend more clearly, an exaggerated case is 

generated. In this case, the transmissibility is manually increased to 0.5 RB-CP/DAY-

PSI for a square from i=1 to i=30 and j=1 to j=30. Thus, the transmissibility is extremely 

high for the upper-left section of the model. In other words, this part of the grid has very 

high weighing factors. Figure 10 is the partitioning result. As expected, very fine 

subdomains are partitioned for the upper-left corner while the rest of the gird is assigned 

very coarse partitions. 
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Figure 8. 4 Metis k-way partitions 
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Figure 9. X direction transmissibility field 
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Figure 10. Metis k-way partition result in the extreme case 

 

 

 

Figure 11 to Figure 14 show the partitions for this study from 2, 8, 16, to 32. It 

can be observed that each subdomain has similar amounts of grid blocks. Also, the edge 

cuts between neighboring partitions are limited. 

It is worth mentioning that in the k-way partition for 16 subdomains, the 

subdomain containing coordinate (50, 5) and the one containing (50, 40) actually belong 

to the same partition. This assignment has the potential to increase overheads during the 

parallel run. However, since these two partitions are relatively small and the weights 

assigned to them are low, the negative effects of this partitioning pattern is expected to 

be small. 
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Figure 11. 2 Metis k-way partitions 
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Figure 12. 8 Metis k-way partitions 
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Figure 13. 16 Metis k-way partitions 
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Figure 14. 32 Metis k-way partitions 
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3.4 Spectral partitioning 

Spectral partitioning is based on matrices established from the mesh or graph. An 

adjacency matrix and a degree matrix is generated based on the graph. They then form a 

Laplacian matrix, whose second eigenvector (Fiedler vector) divides the graph into two. 

If more than two partitions are needed, one can repeat this manner as recursive bisection 

(Fiedler 1975). A description of a spectral bisection procedure is given in the following 

paragraph. 

According to Pothen et al. (1990), the second eigenvector is the eigenvector 

corresponding to the second smallest eigenvalue. For a graph with n vertices, a median 

value 𝑥𝑙 is calculated based on all the values in the second eigenvector with n 

components. All vertices are separated into two groups: one group contains vertices with 

components larger than 𝑥𝑙 and the other group contains vertices with components 

smaller than 𝑥𝑙. In the case that there are components with a value equal to 𝑥𝑙, they can 

be arbitrarily assigned to either group one or group two. The only restriction is that the 

difference of numbers of components in the two groups should be at most one. Then an 

edge separator is calculated and integrated to the two-group separation. In this study, the 

partitioning package Chaco has an option, the Kernighan-Lin algorithm, to minimize 

communications between partitions. 

Similar to Metis partitioning, weights can be added to vertices and edges of the 

graph to reflect important areas and less important areas. Figure 15, Figure 16, Figure 

17, Figure 18, and Figure 19 show spectral strategies with 2, 4, 8, 16, and 32 partitions 

with Kernighan and Lin algorithm. Figure 20 and Figure 21 show two partition results 
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for 2-process and 4-process without Kernighan and Lin algorithm. The difference 

brought in by this algorithm is discussed in the following paragraph. 

Generally, spectral methods can partition very large meshes into subdomains. 

However, the details of the subdomains sometimes are not optimum in terms of edge 

cuts. Also, this method sometimes assign two discrete subdomains to one partition, 

which will definitely increase the overhead during simulation in a multi-core cluster. For 

example, Figure 20 shows two partitions: partition 1 and partition 2. It is very obvious 

that there are two subdomains for partition 1 and two subdomains for partition 2. Such 

partitioning fashion significantly increase edge cuts and communications between 

processes when it is implemented in a parallel job. Similar phenomenon is also observed 

for a 4-piece partitioning job in Figure 21. This kind of result is generated by spectral 

strategy is because the spectral method primarily emphasizes on load balance among 

partitions. Edge cuts and communications are not minimized (Hendrickson and Kolda 

2000). To find a balance between balanced grid block numbers among partitions and 

smallest possible communications, a local refinement strategy called Kernighan-Lin 

algorithm is introduced. It is applied right after a mesh is primitively partitioned by the 

spectral method (Hendrickson and Leland 1995). With this local refinement, scattered 

subdomains that belong to the same partition are connected and communications are 

reduced. This modification can be observed by comparing Figure 15 and Figure 20 for 

2-partition job, and Figure 16 and Figure 21 for 4-partition job. 
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Figure 15. 2 spectral partitions 
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Figure 16. 4 spectral partitions 
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Figure 17. 8 spectral partitions 
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Figure 18. 16 spectral partitions 
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Figure 19. 32 spectral partitions 
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Figure 20. Spectral partitioning for 2 without Kernighan Lin algorithm 
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Figure 21. Spectral partitioning for 4 without Kernighan Lin algorithm 

 

 

 

3.5 Zoltan partitioning 

Zoltan graph partitioner is able to balance grid blocks among subdomains while 

minimizing edge cuts. This method is already incorporated in the simulator. A keyword 

“ZOLTAN_OPTIONS” is used to control this partitioner. However, this implementation 

is not as efficient as other partitioning strategies since it does not utilize all the processes 

assigned in a parallel run. The following picture Figure 22 is a Zoltan partition targeted 

for 32 subdomains. However, with the embedded partitioning package’s modification, it 

only generates totally 7 partitions. 
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Figure 22. 7 Zoltan partitions 

 

 

 

3.6 Conclusions 

This chapter discussed several partitioning strategies: 2D decomposition, Metis 

partitioning, spectral partitioning, and Zoltan partitioning. It is noted that except for the 

Zoltan partitioner, all the rest can generate partitions up to 32 as needed in this study. 

Besides, Metis and spectral partitioning results have less communications among 

partitions than 2D decomposition. 

More partitions result in more communications among partitions and this 

consequently increases the system overheads. A phenomenon is observed for both Metis 
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and spectral partitioning that they both may return partitioning results that assign two 

non-neighboring subdomains into one partition. This assignment largely increases 

parallel implementation’s overhead. Fortunately, if the Kernighan-Lin algorithm is used 

to modify the result, this phenomenon is removed. After the introduction of the 

algorithm, communications among partitions are reduced while the balance of grid 

blocks among partitions is still maintained. 

Table 5 to Table 9 have 2D decomposition, Metis partitioning, and spectral 

partitioning’s partitioning results with each partition’s grid block number. Table 10 has 

the edge-cuts of the three partitioning strategies. They show that 2D decomposition has 

the least edge-cuts while Metis has the highest edge-cuts. 

 

 

 

Table 5. Each partition's grid block number, 2 partitions 

 
 

 

 

 

Table 6. Each partition's grid block number, 4 partitions 

 

Partition 2D Metis Spectral

1 500000 422600 689300

2 500000 577400 310700

Partition 2D Metis Spectral

1 250000 162000 349900

2 250000 257600 187200

3 250000 316700 339400

4 250000 263700 123500
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Table 7. Each partition’s grid block number, 8 partitions 

 
 

 

 

Table 8. Each partition’s grid block number, 16 partitions 

 

Partition 2D Metis Spectral

1 125000 71900 204400

2 125000 157300 113800

3 125000 140500 194200

4 125000 173800 78500

5 125000 56500 145500

6 125000 126200 73400

7 125000 60400 145200

8 125000 213400 45000

Partition 2D Metis Spectral

1 62500 104200 101800

2 62500 99000 76800

3 62500 64400 114200

4 62500 24700 55700

5 62500 78800 84600

6 62500 102400 41500

7 62500 52400 103600

8 62500 54600 32700

9 62500 104600 102600

10 62500 76600 37000

11 62500 44700 80000

12 62500 21300 22800

13 62500 16400 60900

14 62500 39200 31900

15 62500 79200 41600

16 62500 37500 12300
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Table 9. Each partition’s grid block number, 32 partitions 

 
 

 

 

 

Table 10. Edge-cuts summary 

 

 

 

 

 

 

Partition 2D Metis Spectral Partition 2D Metis Spectral

1 31200 41700 53600 17 31200 49000 48200

2 31200 26500 50700 18 31200 19500 26100

3 31200 43000 60600 19 31200 24500 53600

4 31200 15300 31800 20 31200 11600 23900

5 31200 53300 69800 21 31200 9300 14800

6 31200 55500 34100 22 31200 13100 7400

7 31200 34400 67200 23 31200 33800 36400

8 31200 19200 15800 24 31200 18300 16900

9 31200 31300 74000 25 31200 78000 28600

10 31200 15900 23100 26 31200 19900 13900

11 31200 30300 34300 27 31400 53000 45700

12 31200 54100 14900 28 31400 55900 7900

13 31200 7300 46500 29 31400 63100 14400

14 31200 6400 21100 30 31400 40400 10800

15 31200 9600 27200 31 31400 18200 14400

16 31200 8800 6600 32 31800 39800 5700

Partition 2D Metis Spectral

2 100 129 113

4 200 274 239

8 400 532 436

16 600 820 677

32 1002 1249 1032
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CHAPTER IV  

PARALLEL PERFORMANCE OF THE ORIGINAL MODEL 

 

4.1 Results of 2D decomposition 

Enhanced performance is obtained by applying 2D decomposition. To 

quantitatively present load imbalance, at a certain time, the maximum load is regarded as 

100% load and other processes’ load are normalized with this maximum value. Table 11 

and Table 12 show computation time distribution among different sections of a 2-

process parallel run and a 16-process parallel run. These two tables are just generated to 

show the time distribution for subsections of the simulator and these data are not used 

for later discussions. The load balance and inter-process communication data are 

recorded in Table 13, Table 14, Table 15, Table 16, and Table 17 for 2-, 4-, 8-, 16-, 

and 32-process parallel runs respectively. The cases described by Table 11 and Table 12 

are run in a different job file other than the one used for cases recorded from Table 13 to 

Table 16. As a result, the total simulation time on process 2 in Table 11 is not the same 

as the total time on process 2 in Table 13. Also, the total time on process 16 in Table 12 

is not the same as the total time on process 16 in Table 16.  
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Table 11. Process 2 work distribution for 2-process run 

 
 

 

 

 

Table 12. Process 16 work distribution for 16-process run 

 
 

 

 

 

Table 13. Message passing and load balance status for the 2-process run 

 

2 Processes CPU Seconds % Total Run Elapsed Seconds % Total Run

INPUT 1.897 0.09 1.898 0.09

OUTPUT 1.124 0.06 0.956 0.05

INITIALIZATION 71.198 3.56 71.16 3.56

PVT PROPERTIES 667.276 33.38 667.026 33.39

ROCK PROPERTIES 18.079 0.9 18.075 0.9

EQUATION SETUP 35.817 1.79 35.798 1.79

NETWORK/WELLS 4.68 0.23 5.009 0.25

SOLVER 819.481 40.99 819.094 41

UPDATE 77.973 3.9 77.895 3.9

MISC. 301.471 15.08 300.911 15.06

Total Run 1998.996 100.00 1997.822 100.00

16 Processes CPU Seconds % Total Run Elapsed Seconds % Total Run

INPUT 2.137 0.25 2.421 0.29

OUTPUT 1.2 0.14 1.48 0.18

INITIALIZATION 13.465 1.6 14.469 1.72

PVT PROPERTIES 21.099 2.51 21.235 2.52

ROCK PROPERTIES 2.251 0.27 2.258 0.27

EQUATION SETUP 21.504 2.56 21.215 2.52

NETWORK/WELLS 5.427 0.65 5.988 0.71

SOLVER 454.452 54.1 454.425 53.99

UPDATE 44.892 5.34 44.892 5.33

MISC. 273.529 32.58 273.228 32.46

Total Run 839.956 100 841.611 99.99

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 0.363 5.580 5.943 2221.893 2215.950 99.73% 428666

2 6.348 342.393 348.741 2222.189 1873.448 84.31% 421705

Total M-P, s 354.684 Average Load 92.02%

Message Passing CPU Total
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Table 14. Message passing and load balance status for the 4-process run 

 
 

 

 

 

 

Table 15. Message passing and load balance status for the 8-process run 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 2.093 59.153 61.246 1205.102 1143.856 94.92% 208400

2 4.533 30.202 34.735 1205.662 1170.927 97.12% 215022

3 6.287 187.476 193.763 1205.651 1011.888 83.93% 211407

4 7.265 484.525 491.790 1205.664 713.874 59.21% 215542

Total M-P, s 781.534 Average Load 83.79%

Message Passing CPU Total

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 5.602 370.954 376.556 880.489 503.933 57.23% 100918

2 3.980 55.628 59.608 881.116 821.508 93.23% 107482

3 4.258 57.649 61.907 881.116 819.209 92.97% 106742

4 6.872 332.421 339.293 881.121 541.828 61.49% 108280

5 8.386 398.044 406.430 881.119 474.689 53.87% 102703

6 5.322 139.929 145.251 881.121 735.870 83.52% 108704

7 6.990 339.124 346.114 881.120 535.006 60.72% 106969

8 7.869 499.043 506.912 881.122 374.210 42.47% 108573

Total M-P, s 2242.071 Average Load 68.19%

Message Passing CPU Total
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Table 16. Message passing and load balance status for the 16-process run 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 4.912 397.545 402.457 767.830 365.373 47.59% 48951

2 6.302 172.944 179.246 768.706 589.460 76.68% 53020

3 6.715 196.048 202.763 768.702 565.939 73.62% 52121

4 7.853 374.724 382.577 768.671 386.094 50.23% 51471

5 7.271 233.260 240.531 768.697 528.166 68.71% 51967

6 4.580 117.394 121.974 768.704 646.730 84.13% 54462

7 4.527 101.007 105.534 768.704 663.170 86.27% 54621

8 6.136 210.703 216.839 768.701 551.862 71.79% 56809

9 7.518 245.783 253.301 768.700 515.399 67.05% 50622

10 4.665 70.688 75.353 768.705 693.352 90.20% 57059

11 6.436 188.324 194.760 768.704 573.944 74.66% 53381

12 6.953 343.887 350.840 768.689 417.849 54.36% 55126

13 7.970 403.097 411.067 768.672 357.605 46.52% 52081

14 7.677 317.091 324.768 768.684 443.916 57.75% 51645

15 7.598 399.404 407.002 768.679 361.677 47.05% 53588

16 8.003 413.227 421.230 768.670 347.440 45.20% 53447

Total M-P, s 4290.242 Average Load 65.11%

Message Passing CPU Total
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Table 17. Message passing and load balance status for the 32-process run 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 4.908 423.767 428.675 947.026 518.351 54.73% 25126

2 11.457 376.947 388.404 952.394 563.990 59.22% 25764

3 10.494 225.157 235.651 951.373 715.722 75.23% 26263

4 9.115 190.181 199.296 952.613 753.317 79.08% 29403

5 10.837 235.682 246.519 950.624 704.105 74.07% 25384

6 11.531 268.984 280.515 952.561 672.046 70.55% 24170

7 11.846 373.538 385.384 949.832 564.448 59.43% 24814

8 12.049 423.160 435.209 952.617 517.408 54.31% 24639

9 11.491 387.710 399.201 950.710 551.509 58.01% 26337

10 9.978 160.092 170.070 952.794 782.724 82.15% 27847

11 8.611 153.742 162.353 951.362 789.009 82.93% 27886

12 8.314 148.882 157.196 951.888 794.692 83.49% 28791

13 9.338 180.784 190.122 945.994 755.872 79.90% 25815

14 9.279 144.850 154.129 952.394 798.265 83.82% 26605

15 10.015 174.835 184.850 950.289 765.439 80.55% 27833

16 11.079 389.056 400.135 952.227 552.092 57.98% 26745

17 11.682 375.380 387.062 951.320 564.258 59.31% 25675

18 10.460 165.779 176.239 952.863 776.624 81.50% 27174

19 8.356 114.564 122.920 951.579 828.659 87.08% 29833

20 9.074 122.472 131.546 952.900 821.354 86.20% 29443

21 10.648 223.054 233.702 951.127 717.425 75.43% 26077

22 11.272 252.724 263.996 952.925 688.929 72.30% 25013

23 11.049 330.968 342.017 951.746 609.729 64.06% 26742

24 11.511 399.335 410.846 952.887 542.041 56.88% 26231

25 11.441 405.305 416.746 952.126 535.380 56.23% 27092

26 11.334 387.749 399.083 952.114 553.031 58.08% 27005

27 11.058 317.101 328.159 952.038 623.879 65.53% 27176

28 11.234 335.524 346.758 952.099 605.341 63.58% 26711

29 11.558 401.108 412.666 948.714 536.048 56.50% 25926

30 12.010 408.371 420.381 952.891 532.510 55.88% 25558

31 11.892 408.320 420.212 951.987 531.775 55.86% 26156

32 12.149 415.002 427.151 952.801 525.650 55.17% 25137

Total M-P, s 9657.193 Average Load 68.28%

Message Passing CPU Total
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Figure 23. Load charts 

 

 

 

There is an obvious trend that the total computation time decreases as process 

number increases. It is also observed that the parallel jobs with relatively small numbers 

of processes have a better load balance status than the ones with more processes. 

Besides, it is easy to note that processes corresponding to partitions far away from 

partition 1 have lower loads than processes with partitions closer to the first process. The 
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reason is that the first partition is always assigned to the master process (process 1). 

Communications between the master process and faraway processes are larger and 

faraway processes need more time for communications and their non-idle time is 

consequently decreased.  

For the 2D decomposition partitioning strategy, all subdomains have the same 

shape and size. This partitioning fashion reflects an interesting phenomenon that 

processes corresponding to those partitions in the central area have higher loads. As for 

those processes corresponding to partitions at the boundary of the reservoir model, their 

loads are generally lower. For example, in the 32-process parallel case, process 1, 

process 8, process 9, process 16, process 17, process 24, process 25, and process 32 are 

the processes at the left boundary and the right boundary. Loads on these processes are 

the lowest. Inversely, process 4, process 11, process 12, process 13, process 19, process 

20 and several other processes adjacent to these processes have very high loads. All 

these processes are among the central area of the reservoir model. This phenomenon can 

be explained by the fact that communications required by processes at the center are less 

than those needed by the processes at the boundaries. 

In work distribution tables, it is noticed that the percentage of total run of each 

section is different from what observed from the original serial run on a single process. 

The time percentage of PVT properties computation is significantly reduced in parallel 

mode. This reduction is particularly obvious for the 16-process parallel simulation. In 

the 16-process parallel job, PVT properties computation only takes about 2% of total 

runtime, while it takes 47% of total runtime in the serial run. The reason of this 
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reduction is that PVT calculations are local. For each grid block, the calculation of 

properties related to pressure, volume, and temperature can be conducted in the block 

without the need of communications with data from neighboring blocks. Thus, parallel 

computation performance enhancement is especially efficient for PVT computation part. 

In contrast, the time percentage of solver increases. This is justified by the fact that 

solver needs data from all subdomains and each process must wait until data from all the 

other processes are ready. 

Message passing data and average load of all processes are also discussed. From 

the data provided, it is noticed that total message passing time increase as process 

number increases. The total message passing time here is defined as the sum of all 

processes’ communication time. This time can be larger than the total parallel simulation 

time since communication time on each process is added and some of communication 

time are added repetitively. However, this time is only used to reflect the overheads cost 

of a parallel implementation. Besides, the average load decreases as process number 

increases. This is related to the increases communications as process number goes up. In 

fact, communications are related to the way partitions are assigned to processes. The 

relationship between communications and grid-to-process allocation will be discussed 

later in details. 

The speedup and efficiency of these parallel jobs are also studied. These two 

concepts are key parameters evaluating a parallel implementation. Equation (4.1) and 

Equation (4.2) show the computation for speedup and efficiency for a p-process job 

respectively. Figure 24 shows the speedup and efficiency’s relationship with process 
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numbers.  Figure 25 shows elapsed time’s relationship with process numbers. The 

related data are in Table 18. The potential of speedup and efficiency improvement is 

limited by the Amdahl’s Law in Equation (4.3) and (4.4). The serial portion of the code 

implies the maximum speedup and efficiency a parallel implementation could obtain. 

 

 

 

𝑆𝑝 =
𝑇𝑆𝑒𝑟𝑖𝑎𝑙

𝑇𝑃𝑎𝑟𝑎𝑙𝑙𝑒𝑙
                                                                                                     (4.1) 

𝐸𝑝 =
𝑆𝑝

𝑝
                                                                                                              (4.2) 

𝑆𝑝 =
𝑝

𝑠𝑝+(1−𝑠)
                                                                                                     (4.3) 

𝐸𝑝 =
1

𝑠𝑝+(1−𝑠)
                                                                                                    (4.4) 

 

 

 

 

 

 
Figure 24. Speedup and efficiency against processes 
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Figure 25. Elapsed time against process number 

 

 

 

Table 18. Elapsed time and speedup data 

 
 

 

 

The two figures are very representative of the performance enhancement by 2D 

decomposition. The parallel job with 16 processes has the greatest speedup of 4.23. It is 

also noted that the 32-process job is not the faster parallel implementation although it 

utilizes 32 processes. This is also substantiated by efficiency data: the 32-process job has 

the lowest efficiency. Although the speedup is not the optimum, the 2-process job has 

the highest efficiency of 0.73 in all the parallel implementations. Generally speaking, the 

Processes Simulation Time, s Efficiency Speedup

1 3258.248 1 1

2 2221.893 0.733214 1.466429

4 1205.664 0.675613 2.702451

8 881.122 0.46223 3.69784

16 768.705 0.264914 4.238619

32 952.891 0.106854 3.419329
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8-process implementation is the optimum choice because it has a very satisfactory 

speedup and an acceptable efficiency. However, if the selection is based primarily on 

efficiency, which is closely related to hardware costs, one should use 2-process or 4-

process parallel job. 

It can be concluded for 2D decomposition that a large number of processes does 

not guarantee a good speedup. In addition, as process number increases, the efficiency 

always decreases. This fact requires us to find the balance between speedup and 

efficiency when we are implementing 2D decomposition strategy. 

 

4.2 Results of Metis partitioning 

Parallel jobs with Metis partitioning are run for partitions of 2, 4, 8, 16, and 32. 

Work distributions in terms of computation time and process load distributions are given 

in tables. Table 19 and Table 20 record the 2-process parallel run and the 16-process 

parallel run’s simulator subsection time distributions on a selected node. Table 21, 

Table 22, Table 23, Table 24, and Table 25 record processes’ load distribution for 

Metis partitioning’s all parallel run results. Again, Table 19 and Table 20’s process 

running time is only used to present simulator’s subsection time distribution and has 

nothing to do with the data recorded from Table 21 to Table 25. 
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Table 19. Process 2's work distribution for 2 Metis partitions 

 
 

 

 

 

Table 20. Process 9's work distribution for 16 Metis partitions 

 
 

 

 

 

Table 21. Load distribution among 2-process Metis partitioning 

 

2 processes CPU Seconds % Total Run Elapsed Seconds % Total Run

INPUT 2.298 0.11 2.298 0.11

OUTPUT 7.759 0.37 7.536 0.36

INITIALIZATION 81.326 3.84 81.277 3.84

PVT PROPERTIES 919.107 43.45 918.587 43.45

ROCK PROPERTIES 21.298 1.01 21.281 1.01

EQUATION SETUP 49.837 2.36 49.67 2.35

NETWORK/WELLS 4.897 0.23 4.838 0.23

SOLVER 818.175 38.68 817.635 38.67

UPDATE 115.49 5.46 115.683 5.47

MISC. 95.179 4.49 95.353 4.51

Total Run 2115.366 100 2114.158 100

16 processes CPU Seconds % Total Run Elapsed Seconds % Total Run

INPUT 2.446 0.23 2.466 0.23

OUTPUT 4.556 0.43 4.314 0.4

INITIALIZATION 18.879 1.78 19 1.78

PVT PROPERTIES 134.649 12.7 135.793 12.69

ROCK PROPERTIES 3.772 0.36 3.788 0.35

EQUATION SETUP 25.703 2.42 25.7 2.4

NETWORK/WELLS 6.595 0.62 6.852 0.64

SOLVER 558.695 52.69 563.955 52.72

UPDATE 232.527 21.93 234.648 21.93

MISC. 72.618 6.84 73.28 6.85

Total Run 1060.44 100 1069.796 99.99

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 28.152 495.410 523.562 2120.178 1596.616 75.31% 351359

2 3.683 5.119 8.802 2120.518 2111.716 99.58% 499012

Total M-P, s 532.364 Average Load 87.45%

Message Passing CPU Total
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Table 22. Load distribution among 4-process Metis partitioning 

 
 

 

 

 

 

Table 23. Load distribution among 8-process Metis partitioning 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 27.563 635.222 662.785 1450.938 788.153 54.32% 130358

2 12.994 197.719 210.713 1451.254 1240.541 85.48% 218462

3 4.443 211.251 215.694 1451.245 1235.551 85.14% 274502

4 9.751 40.261 50.012 1451.249 1401.237 96.55% 227049

Total M-P, s 1139.204 Average Load 80.37%

Message Passing CPU Total

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 25.678 544.762 570.440 1162.402 591.962 50.93% 58771

2 15.631 422.993 438.624 1162.879 724.255 62.28% 132192

3 15.308 222.627 237.935 1162.876 924.941 79.54% 123062

4 13.031 483.550 496.581 1162.879 666.298 57.30% 149655

5 30.154 548.086 578.240 1162.877 584.637 50.28% 48194

6 20.794 498.900 519.694 1162.878 643.184 55.31% 101344

7 28.043 496.202 524.245 1162.880 638.635 54.92% 54497

8 3.369 13.448 16.817 1162.881 1146.064 98.55% 182656

Total M-P, s 3382.576 Average Load 63.64%

Message Passing CPU Total
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Table 24. Load distribution among 16-process Metis partitioning 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 4.585 484.646 489.231 1033.339 544.108 52.66% 87158

2 4.708 19.250 23.958 1034.141 1010.183 97.68% 87382

3 13.677 383.641 397.318 1034.139 636.821 61.58% 55059

4 19.876 562.792 582.668 1034.139 451.471 43.66% 22779

5 11.222 352.302 363.524 1034.14 670.616 64.85% 68153

6 8.779 563.235 572.014 1034.141 462.127 44.69% 88183

7 15.205 389.849 405.054 1034.136 629.082 60.83% 46263

8 16.308 613.945 630.253 1034.135 403.882 39.06% 46767

9 8.053 445.914 453.967 1034.14 580.173 56.10% 87733

10 11.144 378.503 389.647 1034.143 644.496 62.32% 66297

11 18.197 558.029 576.226 1034.14 457.914 44.28% 35250

12 21.326 662.573 683.899 1034.138 350.239 33.87% 18291

13 22.891 738.487 761.378 1034.143 272.765 26.38% 13404

14 17.769 467.752 485.521 1034.146 548.625 53.05% 33895

15 13.328 598.654 611.982 1034.145 422.163 40.82% 62356

16 18.113 486.642 504.755 1034.142 529.387 51.19% 31401

Total M-P, s 7931.395 Average Load 52.06%

Message Passing CPU Total
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Table 25. Load distribution among 32-process Metis partitioning 

 
 

 

 

Load imbalance and system overheads due to inter-process communications are 

observed for Metis partitioning parallel implementation. For the simplest parallel 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 12.699 482.735 495.434 1252.406 756.972 60.44% 36083

2 23.244 467.427 490.671 1259.861 769.190 61.05% 24403

3 20.947 558.810 579.757 1257.874 678.117 53.91% 35711

4 28.375 764.790 793.165 1259.996 466.831 37.05% 13134

5 17.547 468.911 486.458 1257.359 770.901 61.31% 44707

6 17.769 647.346 665.115 1260.043 594.928 47.21% 46410

7 21.874 416.823 438.697 1257.254 818.557 65.11% 29377

8 27.603 695.661 723.264 1260.193 536.929 42.61% 15156

9 22.504 431.778 454.282 1257.167 802.885 63.86% 27303

10 27.430 616.354 643.784 1260.3 616.516 48.92% 13448

11 24.307 598.002 622.309 1256.829 634.520 50.49% 23335

12 19.255 629.533 648.788 1259.276 610.488 48.48% 42802

13 30.791 806.180 836.971 1257.772 420.801 33.46% 5427

14 30.767 821.406 852.173 1259.813 407.640 32.36% 5371

15 30.056 795.328 825.384 1257.304 431.920 34.35% 7896

16 30.184 782.532 812.716 1259.119 446.403 35.45% 7252

17 18.979 428.448 447.427 1259.882 812.455 64.49% 39864

18 26.567 654.869 681.436 1259.486 578.050 45.90% 17263

19 25.406 631.320 656.726 1256.277 599.551 47.72% 20980

20 28.504 684.098 712.602 1260.613 548.011 43.47% 10546

21 29.444 739.428 768.872 1259.318 490.446 38.95% 7883

22 28.153 697.175 725.328 1260.459 535.131 42.46% 11093

23 21.064 453.248 474.312 1255.854 781.542 62.23% 29210

24 25.737 598.467 624.204 1260.324 636.120 50.47% 16816

25 8.234 25.231 33.465 1259.821 1226.356 97.34% 67913

26 26.574 656.842 683.416 1260.177 576.761 45.77% 17707

27 16.010 381.096 397.106 1260.162 863.056 68.49% 48091

28 17.857 649.871 667.728 1259.744 592.016 46.99% 46126

29 16.211 655.613 671.824 1260.103 588.279 46.68% 53906

30 20.949 680.175 701.124 1260.577 559.453 44.38% 35580

31 27.800 765.316 793.116 1260.334 467.218 37.07% 15126

32 22.121 709.055 731.176 1260.673 529.497 42.00% 34452

Total M-P, s 20138.830 Average Load 50.01%

Message Passing CPU Total
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implementation of the 2-process case, the total message passing time of the two 

processes is 532,364 seconds. This value jumps to 20138 seconds for the 32-process 

parallel run, indicating that the system overheads are much larger for the parallel run 

with many processes. An explanation to this increase in message passing is that as 

partition number increases, the edge cuts also increase. The 32-process has much more 

edge cuts than the 2-process case and it contributes to the increased inter-process 

communications. Besides, the tables above point out that as processes increase, the 

average load decreases. The 2-process parallel case and the 4-process parallel case have 

average load of above 80% while the rest only have average load of 50%-60%. 

Load imbalance status and each process’s corresponding grid block numbers for 

the Metis partitioning strategy is depicted in Figure 26. In this figure, each process’s 

load and assigned grid block numbers are both presented the same time. The red column 

stands for the load and the green column stands for the grid block numbers (cells). 

Unlike the 2D decomposition discussed in the previous section, partitions obtained by 

Metis do not have equal size. As a result, it is important to show the load and the 

corresponding grid block number together. Generally speaking, a process with more grid 

blocks tends to have a larger load. However, this is not the case in every process. The 

master process does not have a very large load in all 5 cases because the first partition is 

usually assigned a small number of grid blocks and the master process needs to remain 

idle to wait for a large amount of information from other processes. There is also a trend 

that processes with grid blocks at the center of the reservoir model have large loads. For 

example, in the 32-process parallel implementation, process 13 and process 14 only have 
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less than 10000 active blocks, which is very small compared with other processes, and 

their loads are around the same level of adjacent processes’ loads. 

 

 

 

 

 
Figure 26. Load imbalance status for Metis partitioning parallel run 
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An analysis of speedup and efficiency is conducted for Metis partitioning 

strategy. Figure 27 presents the speedup and efficiency. Figure 28 shows the 

computation time. 

 

 

 

 
Figure 27. Speedup and efficiency versus processes 
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Figure 28. Time versus processes 

 

 

 

Results have proved that Metis partitioning has very good scalability in this case. 

Although the increase of processes to more than 16 did not improve speedup, when 

processes are less or equal than 16, more processes result in better speedup. Besides, as 

processes increase, the efficiency decreases. 16 processes give the fastest simulation, but 

the efficiency related to it is the second lowest. 4-process and 8-process are slower than 

16-process parallel job, but they generally have higher efficiency and acceptable 

speedup. 

4.3 Results of spectral partitioning 

This section records the parallel job outputs with spectral partitioning. Table 26 

to Table 30 show the load imbalance status for 2, 4, 8, 16, and 32-process cases. 
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Table 26. Load distribution among 2-process spectral partitioning 

 
 

 

 

 

Table 27. Load distribution among 4-process spectral partitioning 

 
 

 

 

 

Table 28. Load distribution among 8-process spectral partitioning 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 0.133 2.634 2.767 2424.721 2421.954 99.89% 590072

2 62.036 800.957 862.993 2425.143 1562.150 64.41% 260299

Total M-P, s 865.760 Average Load 82.15%

Message Passing CPU Total

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 0.187 4.158 4.345 1672.355 1668.010 99.74% 301303

2 32.073 641.930 674.003 1672.678 998.675 59.71% 155851

3 11.220 560.397 571.617 1672.679 1101.062 65.83% 288769

4 41.580 707.041 748.621 1672.680 924.059 55.24% 104448

Total M-P, s 1998.586 Average Load 70.13%

Message Passing CPU Total

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 0.309 18.989 19.298 1185.553 1166.255 98.37% 174778

2 21.244 526.247 547.491 1186.041 638.550 53.84% 91389

3 6.870 188.381 195.251 1186.048 990.797 83.54% 164850

4 23.053 338.791 361.844 1186.044 824.200 69.49% 69234

5 13.379 268.434 281.813 1186.045 904.232 76.24% 126525

6 24.871 465.175 490.046 1186.048 696.002 58.68% 64462

7 16.488 695.391 711.879 1186.048 474.169 39.98% 123919

8 32.104 744.784 776.888 1186.047 409.159 34.50% 35214

Total M-P, s 3384.510 Average Load 64.33%

Message Passing CPU Total



 

60 

 

Table 29. Load distribution among 16-process spectral partitioning 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 3.755 335.181 338.936 962.799 623.863 64.80% 87593

2 12.951 437.306 450.257 963.609 513.352 53.27% 59982

3 5.382 265.628 271.010 963.626 692.616 71.88% 96754

4 13.099 225.458 238.557 963.632 725.075 75.24% 49598

5 8.596 129.501 138.097 963.639 825.542 85.67% 72893

6 17.137 400.281 417.418 963.637 546.219 56.68% 36011

7 8.119 469.122 477.241 963.639 486.398 50.48% 88740

8 19.818 500.916 520.734 963.63 442.896 45.96% 25195

9 4.991 49.278 54.269 963.642 909.373 94.37% 87185

10 18.214 474.588 492.802 963.643 470.841 48.86% 31407

11 10.581 289.570 300.151 963.643 663.492 68.85% 68096

12 20.062 518.355 538.417 963.64 425.223 44.13% 19636

13 14.267 499.636 513.903 963.64 449.737 46.67% 53632

14 17.892 446.532 464.424 963.643 499.219 51.81% 28451

15 18.031 587.058 605.089 963.64 358.551 37.21% 35179

16 22.987 660.536 683.523 963.639 280.116 29.07% 10019

Total M-P, s 6504.828 Average Load 57.81%

Message Passing CPU Total
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Table 30. Load distribution among 32-process spectral partitioning 

 
 

 

 

From the table above, load imbalance and inter-process data communication can 

be read. It is noticed that, in all five parallel implementations, the last process always has 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 9.516 578.772 588.288 1232.565 644.277 52.27% 43400

2 18.397 604.508 622.905 1238.894 615.989 49.72% 39319

3 13.463 290.664 304.127 1233.355 929.228 75.34% 51786

4 20.001 365.931 385.932 1240.001 854.069 68.88% 27992

5 8.951 54.316 63.267 1233.802 1170.535 94.87% 60434

6 20.834 457.488 478.322 1236.552 758.230 61.32% 29138

7 14.104 593.693 607.797 1238.876 631.079 50.94% 57778

8 26.946 700.090 727.036 1240.277 513.241 41.38% 12230

9 8.399 78.183 86.582 1232.611 1146.029 92.98% 62575

10 23.656 489.828 513.484 1235.233 721.749 58.43% 19982

11 22.195 624.747 646.942 1233.999 587.057 47.57% 27506

12 25.665 612.759 638.424 1236.681 598.257 48.38% 12957

13 17.822 562.201 580.023 1236.8 656.777 53.10% 40999

14 23.532 535.502 559.034 1237.888 678.854 54.84% 18265

15 23.699 685.831 709.530 1234.189 524.659 42.51% 23404

16 29.317 792.045 821.362 1235.447 414.085 33.52% 5293

17 16.549 499.276 515.825 1236.761 720.936 58.29% 44193

18 23.932 614.135 638.067 1238.741 600.674 48.49% 20663

19 17.135 658.085 675.220 1238.331 563.111 45.47% 44968

20 22.408 536.261 558.669 1240.933 682.264 54.98% 21606

21 26.860 744.339 771.199 1238.405 467.206 37.73% 12459

22 28.246 717.123 745.369 1240.687 495.318 39.92% 6873

23 21.537 690.097 711.634 1237.749 526.115 42.51% 30962

24 26.480 647.928 674.408 1241.063 566.655 45.66% 12965

25 22.137 532.556 554.693 1237.141 682.448 55.16% 24610

26 27.175 747.299 774.474 1240.614 466.140 37.57% 11425

27 16.931 348.227 365.158 1238.55 873.392 70.52% 40590

28 28.260 720.307 748.567 1240.229 491.662 39.64% 6679

29 26.627 711.925 738.552 1238.724 500.172 40.38% 12633

30 26.835 677.722 704.557 1241.044 536.487 43.23% 10186

31 27.048 759.875 786.923 1237.743 450.820 36.42% 11775

32 29.496 798.342 827.838 1240.931 413.093 33.29% 4726

Total M-P, s 19124.208 Average Load 51.73%

Message Passing CPU Total
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the lowest load. There are two reasons. The first is that the last spectral partition does not 

have a very large size. The second reason is that the last process is far away from the 

master process and the communications take a very long time, which makes the idle time 

of the last process very large. Another observation is that the total message passing 

(communications) time increases as processes increase. This is because increased 

partition number means increased edge cuts. More edge cuts result in more inter-process 

communications. Besides, there does not exist a clear correlation between a process’s 

grid block number and the same process’s load. A process with a large amount of grid 

blocks is not guaranteed a large load. This is depicted in Figure 29. For the 2-process, 4-

process, and 8-process spectral parallel implementations, the load on the master process 

is very large (above 99%). 
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Figure 29. Spectral partitioning load imbalance 

 

 

 

Figure 30 and Figure 31 show spectral partitioning parallel jobs’ performance 

enhancement in terms of speedup, efficiency, and total time. The maximum speedup is 

achieved by the 16-process parallel run with a speedup of 3.4. Efficiency is decreasing 

as process number increases. The 32-process parallel implementation is not the fastest 

because the overheads of a 32-process run are too large. 
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Figure 30. Speedup and efficiency versus processes 

 

 

 

 

 
Figure 31. Elapsed time versus processes 
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4.4 Results of Zoltan partitioning 

The implementation the embedded Zoltan partitioner in the simulator is limited 

due to limited control over its partitioning. First of all, the software arbitrarily assign 

subdomains to processes and the partitions are solely geometry based. When 32 

subdomains are prescribed, Zoltan automatically assigns 7 processes to then and it 

results in a total simulation time of 2026.794 seconds. When 16 partitions are input as 

desired partitioning number, Zoltan returns a partitioning result of 5 partitions and the 

corresponding simulation time is 1501.310 seconds. Table 31 and Table 32 show the 

load imbalance for 5-process and 7-process parallel runs. Figure 32 is the load 

imbalance graph. From these results, Zoltan also gives subdomains with similar sizes 

and the load imbalance is not too strong. However, it does not allow all processes on the 

parallel machine to be used and a better speedup is not obtainable. In addition, it does 

not return partition number same as other partitioning methods (2, 4, 8, 16, and 32). 

 

 

 

Table 31. 32-subdomain Zoltan partitioning load balance 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 12.149 202.653 214.802 1500.294 1285.492 85.68% 162833

2 18.447 108.084 126.531 1501.306 1374.775 91.57% 150553

3 23.348 457.380 480.728 1036.597 555.869 53.62% 146657

4 8.073 280.403 288.476 1501.307 1212.831 80.79% 222678

5 19.353 429.111 448.464 1501.310 1052.846 70.13% 167650

Total M-P, s 1559.001 Average Load 76.36%

Message Passing CPU Total
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Table 32. 16-subdomain Zoltan partitioning load balance 

 
 

 

 

 

 
Figure 32. Zoltan load imbalance 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 10.252 530.626 540.878 2019.714 1478.836 73.22% 130484

2 13.868 24.891 38.759 2024.697 1985.938 98.09% 148970

3 22.683 328.902 351.585 2025.541 1673.956 82.64% 123048

4 28.213 530.505 558.718 2026.703 1467.985 72.43% 110898

5 28.096 631.849 659.945 2024.574 1364.629 67.40% 112465

6 28.157 504.901 533.058 2026.794 1493.736 73.70% 108874

7 24.778 170.307 195.085 2024.388 1829.303 90.36% 115632

Total M-P, s 2878.028 Average Load 79.69%

Message Passing CPU Total
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4.5 Comparisons 

Four graph partitioning strategies are studied. Three of them turn out to be 

effective partitioning strategies and Zoltan does not allow us to use maximum amount of 

processes. Based on the results presented in this chapter, the performance of 2D 

decomposition, spectral partitioning, and Metis partitioning are compared. Figure 33 

shows the comparison of speedup of the three partitioning strategies. Figure 34 is the 

comparison of three strategies’ efficiency. Figure 35 is the comparison of simulation 

time. Figure 36 is the comparison of the total message passing time. 

 

 

 

 
Figure 33. Speedup comparison 
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Figure 34. Efficiency comparison 

 

 

 

 

 

 
Figure 35. Simulation time comparison 
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Figure 36. Total message passing time comparison 

 

 

 

From these figures, it can be concluded that 2D decomposition gives the fastest 

parallel performance. The 16-process 2D case reaches a speedup of 4.23 while the other 

two methods only have the largest speedup of 3.15 and 3.38. 2D decomposition also has 

the highest efficiency and smallest simulation time. Figure 13 shows that 2D message 

passing is the smallest. This is especially true for the 32-process cases. For the 32-

process cases, the 2D implementation has a total message passing time of 9657 seconds 

while Metis has 20138 seconds and spectral has 19124 seconds. 

Load imbalance comparison is shown in Figure 37. In general, 2D 

decomposition has larger load in processes and the fluctuation is smaller than the other 

two methods. Also, the range of the load of 2D decomposition is smaller than the other 

two methods. The 32-process parallel implementation especially presents that 2D 

decomposition has the largest load on most of the processes. 
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2D decomposition turns out to be the optimum partitioning methods based on the 

original reservoir model. Although it does not take into consideration weighting factors, 

it is capable enough to give a result with relative small load imbalance. For Metis and 

spectral methods, weighting factors are considered. In this study, the first layer’s 

transmissibility field is used as weighting factors. However, the first layer is not 

representative of all the 100 layers and this is the reason why weighted spectral and 

Metis partitioning did not result in a faster parallel implementation performance than the 

geometric 2D decomposition. Theoretically, an area with a higher transmissibility 

usually have larger PVT property changes. As a result, more iterations are required to 

reach convergence, which means that more computation is needed in this area. If 

weighted Metis and weighted spectral partitioning works well, such areas will be 

partitioned as subdomains with small size so that a process can simulate for it more 

efficiently. Weighted Metis and spectral partitioning is also used for a reservoir model 

with elevated complexity in the next chapter and it managed to reduce the inter-process 

communications. 
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Figure 37. Load imbalance comparison 

 

 

 

4.6 Conclusions 

This chapter talked about the parallel performance based on several partitioning 

strategies. In general, all the partitioning strategies can speed up the reservoir simulation 

and they all run faster than the serial simulation.  The scalability is good when process 

number is under 16 for 2D decomposition, Metis partitioning, and spectral partitioning. 

When there are more than 8 processes, the scalability is not as good. For cases with 16 
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processes, the speedup is the largest. However, its corresponding efficiency is very low 

and the parallel implementation is not preferable if one selects parallel implementation 

based on efficiency. For cases with 32 processes, the speedup is smaller than 8-process 

parallel jobs. This is largely due to the communications among processes. 

Efficiency of a parallel implementation decreases as process number increases 

and this is true for all partitioning strategies. When there are more than 8 processes, the 

efficiency of a single process drops below 50%. The efficiency even drops below 10% 

when there are 32 processes. All these indicate that one should not go with 32-CPU 

parallel jobs. 
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CHAPTER V  

ELEVATED RESERVOIR MODEL COMPLEXITY 

 

5.1 Horizontal well 

The original model only has vertical wells, whose geometry is relatively simple. 

Horizontal wells are often introduced to increase hydrocarbon production. It is also 

widely used in unconventional reservoirs in conjunction with hydraulic fractures. 

Horizontal wells typical have longer wellbores than vertical wells. The inflow 

mechanism is also different from vertical wells. In consequence, the complexity of 

reservoir simulation is increased in cases with reservoir models.  

To introduce a new horizontal well, well 1YII0191, originally as a vertical well, 

is converted to a horizontal well. The horizontal wellbore starts at layer 57 and stretches 

to the east with a length of 4500 feet. The serial run on the cluster took 3606.828 

seconds. 

Metis partitioning strategy is applied to the modified model. Since the change of 

load balance is the priority here, only load balance among processes are studied while 

work distribution is ignored. Table 33 to Table 37 show the load imbalance of the 

horizontal well model based on Metis partitioning and Figure 38 show the load 

imbalance graphically. Figure 39 is the comparison of load imbalance between the 

original vertical scenario and the horizontal scenario. Table 38 records the comparison 

of simulation time and message passing time (system overheads) between these two 

scenarios. 
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Table 33. Load imbalance for 2 Metis partitions 

 
 

 

 

 

 

Table 34. Load imbalance for 4 Metis partitions 

 
 

 

 

 

 

Table 35. Load imbalance for 8 Metis partitions 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 28.499 501.275 529.774 2162.151 1632.377 75.50% 351359

2 3.978 5.015 8.993 2162.690 2153.697 99.58% 499012

Total M-P, s 538.767 Average Load 87.54%

Message Passing CPU Total

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 27.339 641.249 668.588 1482.295 813.707 54.90% 130358

2 12.812 201.242 214.054 1482.639 1268.585 85.56% 218462

3 4.690 214.674 219.364 1482.632 1263.268 85.20% 274502

4 10.470 37.979 48.449 1482.635 1434.186 96.73% 227049

Total M-P, s 1150.455 Average Load 80.60%

Message Passing CPU Total

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 31.352 638.740 670.092 1317.532 647.440 49.14% 58771

2 20.193 468.046 488.239 1317.522 829.283 62.94% 132192

3 20.153 270.822 290.975 1317.105 1026.130 77.91% 123062

4 17.444 529.104 546.548 1318.706 772.158 58.55% 149655

5 36.389 605.457 641.846 1318.075 676.229 51.30% 48194

6 23.083 537.068 560.151 1318.610 758.459 57.52% 101344

7 32.108 551.543 583.651 1318.664 735.013 55.74% 54497

8 3.723 12.126 15.849 1317.139 1301.290 98.80% 182656

Total M-P, s 3797.351 Average Load 63.99%

Message Passing CPU Total
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Table 36. Load imbalance for 16 Metis partitions 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 4.611 484.366 488.977 1056.186 567.209 53.70% 87158

2 4.973 22.367 27.340 1057.285 1029.945 97.41% 87382

3 13.895 385.052 398.947 1057.27 658.323 62.27% 55059

4 20.080 566.243 586.323 1057.242 470.919 44.54% 22779

5 11.446 352.848 364.294 1057.278 692.984 65.54% 68153

6 9.002 567.869 576.871 1057.265 480.394 45.44% 88183

7 15.522 394.111 409.633 1057.252 647.619 61.25% 46263

8 16.542 619.057 635.599 1057.245 421.646 39.88% 46767

9 8.302 450.417 458.719 1057.26 598.541 56.61% 87733

10 11.405 379.972 391.377 1057.26 665.883 62.98% 66297

11 18.445 561.367 579.812 1057.265 477.453 45.16% 35250

12 21.544 666.704 688.248 1057.236 368.988 34.90% 18291

13 23.054 745.696 768.750 1057.218 288.468 27.29% 13404

14 17.983 470.388 488.371 1057.247 568.876 53.81% 33895

15 13.569 605.729 619.298 1057.259 437.961 41.42% 62356

16 18.333 489.092 507.425 1057.247 549.822 52.01% 31401

Total M-P, s 7989.984 Average Load 52.76%

Message Passing CPU Total
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Table 37. Load imbalance for 32 Metis partitions 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 12.659 510.762 523.421 1324.459 801.038 60.48% 36083

2 23.146 507.466 530.612 1345.463 814.851 60.56% 24403

3 21.039 599.577 620.616 1345.194 724.578 53.86% 35711

4 28.302 804.116 832.418 1349.721 517.303 38.33% 13134

5 17.517 501.024 518.541 1336.631 818.090 61.21% 44707

6 17.917 679.666 697.583 1336.339 638.756 47.80% 46410

7 21.674 449.970 471.644 1326.412 854.768 64.44% 29377

8 27.569 733.218 760.787 1343.164 582.377 43.36% 15156

9 22.368 467.776 490.144 1330.543 840.399 63.16% 27303

10 27.384 652.405 679.789 1345.465 665.676 49.48% 13448

11 24.045 639.620 663.665 1336.575 672.910 50.35% 23335

12 19.210 668.828 688.038 1343.323 655.285 48.78% 42802

13 30.638 822.130 852.768 1325.92 473.152 35.68% 5427

14 30.805 845.900 876.705 1341.309 464.604 34.64% 5371

15 29.973 823.970 853.943 1339.344 485.401 36.24% 7896

16 29.906 816.056 845.962 1348.027 502.065 37.24% 7252

17 18.672 426.303 444.975 1343.999 899.024 66.89% 39864

18 26.379 654.612 680.991 1348.614 667.623 49.50% 17263

19 25.316 633.824 659.140 1342.655 683.515 50.91% 20980

20 28.308 691.546 719.854 1349.43 629.576 46.65% 10546

21 29.159 747.941 777.100 1346.876 569.776 42.30% 7883

22 28.015 704.222 732.237 1349.891 617.654 45.76% 11093

23 20.786 452.212 472.998 1345.809 872.811 64.85% 29210

24 25.580 600.124 625.704 1348.755 723.051 53.61% 16816

25 8.271 29.000 37.271 1344.826 1307.555 97.23% 67913

26 26.437 651.247 677.684 1344.466 666.782 49.59% 17707

27 15.794 373.871 389.665 1343.292 953.627 70.99% 48091

28 17.660 647.934 665.594 1348.884 683.290 50.66% 46126

29 16.222 652.667 668.889 1345.514 676.625 50.29% 53906

30 20.896 673.750 694.646 1348.388 653.742 48.48% 35580

31 27.661 767.096 794.757 1339.883 545.126 40.68% 15126

32 22.091 706.003 728.094 1347.297 619.203 45.96% 34452

Total M-P, s 20676.235 Average Load 51.87%

Message Passing CPU Total
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Figure 38. Load imbalance for horizontal well case 
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Figure 39. Load comparison between horizontal and vertical cases 
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Table 38. Simulation time and message passing time 

 
 

 

 

 

From these results, it is noted that the load imbalance status is basically the same 

between the vertical case and the horizontal case. Their difference is nearly negligible. 

However, the horizontal well case increases the total simulation time, which is true for 

all 5 parallel implementations. The introduction of horizontal well also increased the 

communications between processes and the overheads increase. This is substantiated by 

data provided in Table 38. In this table, it is noticed that for 2-, 4-, 8-, 16-, and 32-

process parallel runs, horizontal message passing time is always greater than vertical 

message passing time. An important reason of the increased overheads is that the 

horizontal well is across several different partitions and more communications among 

processes are needed for the horizontal well related computations. 

It is concluded from this section that the introduction of horizontal well does not 

significantly change the load imbalance status in this case. However, it does increase the 

simulation load and also increase overheads among processes. 

 

 

Processes Horizontal Vertical Horizontal Vertical

1 3606.828 3258.248 -- --

2 2162.690 2120.518 538.767 532.364

4 1482.639 1451.249 1150.455 1139.204

8 1318.706 1162.881 3797.351 3382.576

16 1057.285 1034.146 7989.984 7931.395

32 1349.891 1260.673 20676.235 20138.830

Message Passing, sSimulation Time, s
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5.2 New vertical wells with weighted partitioning strategies 

Another scenario with elevated complexity is considered. In this scenario, 10 

new wells are added to an area in the reservoir model so that the computation load is 

increased on purpose in that area. 2D decomposition, weighted spectral partitioning, and 

weighted Metis partitioning are applied in this scenario to understand their effects on 

load balancing. For each of the three partitioning strategies, a 4-partition mesh and an 8-

partition mesh are generated. In consequence, we have totally 6 cases in this section of 

study. 

The weighting factor here for Metis and spectral is no longer transmissibility. As 

discussed in the previous chapter, the weighting factor as transmissibility field has it 

limitation and is not representative of all the 100 layers. If one wants to better represent 

the reservoir’s horizontal transmissibility, a 3D partitioning may be used. By using the 

3D partitioning, the reservoir mesh can be portioned vertically and horizontal 

transmissibility from several different layers can be used as weighting factors. It applied 

well, it can cancel out the increased overheads caused by increased partitions and 

ultimately reaches a satisfactory speedup and load balance. 

Instead, the location of well is selected to be the weighting factor for Metis and 

spectral here. A weight is given to each well so that the partitioner can take into account 

the well’s effects on load imbalance. Figure 40 and Figure 41 are the weighted 

partitioning results for 4-partition and 8-partition.  
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Table 39 to Table 44 record load imbalance for 2D, Metis, and spectral parallel 

implementations. Figure 42 is the load imbalance comparisons of the three partitioning 

methods. 

 

 

 

 
Figure 40. Weighted Metis partitioning 

 

 

 

 

 

 
Figure 41. Weighted spectral partitioning 
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Table 39. 4-process 2D decomposition load imbalance 

 
 

 

 

 

 

Table 40. 8-process 2D decomposition load imbalance 

 
 

 

 

 

 

Table 41. 4-process Metis partitioning load imbalance 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 1.997 207.534 209.531 2828.850 2619.319 92.59% 208400

2 4.059 105.532 109.591 2830.061 2720.470 96.13% 215022

3 6.319 415.520 421.839 2830.034 2408.195 85.09% 211407

4 7.404 876.609 884.013 2830.044 1946.031 68.76% 215542

Total M-P, s 1624.974 Average Load 85.64%

Message Passing CPU Total

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 5.540 629.606 635.146 2142.648 1507.502 70.36% 100918

2 4.112 122.808 126.920 2143.528 2016.608 94.08% 107482

3 4.495 127.917 132.412 2143.536 2011.124 93.82% 106742

4 7.147 495.277 502.424 2143.530 1641.106 76.56% 108280

5 8.656 636.318 644.974 2143.529 1498.555 69.91% 102703

6 5.734 239.763 245.497 2143.532 1898.035 88.55% 108704

7 7.273 579.571 586.844 2143.531 1556.687 72.62% 106969

8 8.159 770.070 778.229 2143.533 1365.304 63.69% 108573

Total M-P, s 3652.446 Average Load 78.70%

Message Passing CPU Total

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 1.345 244.326 245.671 3078.597 2832.926 92.02% 229036

2 6.185 138.986 145.171 3079.096 2933.925 95.29% 212447

3 13.659 502.227 515.886 3079.093 2563.207 83.25% 176994

4 5.548 606.904 612.452 3079.092 2466.640 80.11% 231894

Total M-P, s 1519.180 Average Load 87.67%

Message Passing CPU Total
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Table 42. 8-process Metis partitioning load imbalance 

 
 

 

 

Table 43. 4-process spectral partitioning load imbalance 

 
 

 

 

Table 44. 8-process spectral partitioning load imbalance 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 1.527 729.235 730.762 2260.895 1530.133 67.68% 131200

2 9.938 312.621 322.559 2262.025 1939.466 85.74% 90582

3 8.089 441.305 449.394 2262.026 1812.632 80.13% 105392

4 9.521 268.304 277.825 2262.031 1984.206 87.72% 87453

5 5.628 410.838 416.466 2262.025 1845.559 81.59% 122605

6 7.005 145.869 152.874 2262.031 2109.157 93.24% 105616

7 8.310 213.220 221.530 2262.033 2040.503 90.21% 93996

8 6.148 296.392 302.540 2262.029 1959.489 86.63% 113527

Total M-P, s 2873.950 Average Load 84.12%

Message Passing CPU Total

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 1.843 692.880 694.723 3114.931 2420.208 77.70% 258161

2 13.669 368.779 382.448 3115.907 2733.459 87.73% 189926

3 7.024 216.020 223.044 3115.899 2892.855 92.84% 231145

4 15.662 223.377 239.039 3115.906 2876.867 92.33% 171139

Total M-P, s 1539.254 Average Load 87.65%

Message Passing CPU Total

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 2.849 761.187 764.036 2394.897 1630.861 68.10% 129925

2 10.780 542.959 553.739 2395.685 1841.946 76.89% 97616

3 6.531 353.255 359.786 2395.691 2035.905 84.98% 118437

4 13.257 457.737 470.994 2395.675 1924.681 80.34% 82059

5 5.440 333.189 338.629 2395.674 2057.045 85.86% 128236

6 9.919 250.229 260.148 2395.682 2135.534 89.14% 92310

7 7.281 263.212 270.493 2395.686 2125.193 88.71% 112708

8 9.581 205.286 214.867 2395.679 2180.812 91.03% 89080

Total M-P, s 3232.692 Average Load 83.13%

Message Passing CPU Total
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Table 45. Message passing time and average load comparison 

 
 

 

 

Based on these results, it is easy to notice that Metis and spectral decrease the 

overheads in parallel implementation. Also, Metis and spectral increase the average load. 

From Table 45, Metis has the lowest overheads (message passing time) for both 4-

process parallel run and 8-process parallel run. Metis also has the highest average load 

among all the three partitioners. Comparatively, 2D decomposition does not give the 

optimum average load or the smallest overheads. The load distribution is better 

illustrated in Figure 42. The comparison column charts also show that Metis and 

spectral parallel runs have smaller load variations than the 2D decomposition parallel 

run. The range of 2D decomposition loads is from 68.76% to 96.13%, while the range of 

Metis loads is 80.11% to 95.29% and the range of spectral loads is 77.70% to 92.33%. 

4-process 8-process 4-process 8-process

2D 1624.974 3652.446 85.64% 78.70%

Metis 1519.18 2873.95 87.67% 84.12%

Spectral 1539.254 3232.692 87.65% 83.13%

Message Passing Time, s
Partitioner

Average Load
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Figure 42. Load imbalance comparison 

 

 

 

5.3 Conclusions 

This chapter studies two new scenarios: horizontal well and drilling new vertical 

wells. It is concluded that the introduction of horizontal well both increases the total 

simulation time and the system overheads. However, horizontal well does not 
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significantly change the load distribution among processes. It is also concluded that 

Metis and spectral partitioning strategies using well location as weighting factor are 

capable of reducing overheads and increasing average load on processes. It also 

decreases the load imbalance among processes. 
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CHAPTER VI  

GRID-TO-PROCESS ASSIGNMENT 

 

6.1 Introduction 

After the mesh is partitioned, each partition needs to be assigned to a process so 

that its corresponding portion of work can be run on this designated process. Intuitively, 

a partition with small enough size leads to less work load and faster computation. This 

trend can be justified by looking at the data presented in previous sections. The actually 

non-idle CPU time is shorter for parallel jobs with more partitions. However, it is also 

overserved in these cases that the best speedup is not realized in jobs with the most 

processes (32-process jobs). 8-process and 16-process jobs often result in faster 

speedups than 32-process jobs. The main reason of the lowered parallel implementation 

performance is that more partitions bring more communications between processes and 

it consequently increases system overheads. 

From the discussion in previous chapters, the 32-process parallel implementation 

has the lowest average load and also larger variation in terms of individual process loads. 

This is largely because of the increased inter-process communications in the 32-process 

architecture. 

Not all parallel jobs have communications. If the computations within a partition 

does not need data from neighboring or any other partitions, no communications will 

happen. In this research, PVT related properties are calculated in this fashion. By 

looking at  
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 Table 3 and Table 17, one can notice that the time percentage of PVT property 

calculations change largely from the serial run to a 32-process parallel run. PVT 

calculations took 1527.332 seconds in the serial run and it is 47.49% of the total 

simulation time. After a 32-partition parallel job is used, this time is reduced 

significantly. Although different processes have slightly different lengths of time, they 

are close. For example, PVT calculations on process 1 took 16.748 seconds and it is only 

2.56% of the total simulation time.  These facts show that parallel implementation is 

capable of bringing in great performance enhancement for PVT property calculations. In 

other words, effects of communications among processes are irrelevant in this situation. 

However, PVT property calculations are just a small part in this simulation. 

There are many other simulation works that need information communications with 

other processes. By still looking at the two tables brought up in the previous paragraph, 

some new information can be found. The time percentage the solver needs actually 

increases in the 32-process case. The solver took 40.99% of total time in the serial run 

while it took 62.94% of the time in the 32-process parallel run. This is because during 

the simulation, each process needs data from other processes so that the solver can be 

applied to the mesh assigned to the process. It is also noted that in the 32-process parallel 

run, the total elapsed time on process 1 is 822.747 seconds, which is about 2 times of the 

same process’s actual non-idle CPU time. The negative effect of overhead is especially 

conspicuous here. 
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Communications are related to how partitions are assigned to processes. In order 

to understand this relationship, this chapter studies some scenarios of grid-to-process 

assignment. 

 

6.2 Overheads of shared-memory and distributed memory 

As introduced at the beginning, the cluster has 5 nodes. From its specification, 

there are totally 72 cores and 144 threads. Within each processor, it has either 4 or 8 

cores and these cores are based on shared-memory. Thus, unlike distributed-memory for 

inter-processor, inner-processor communications are not as time-consuming as those 

take place across nodes. In the assignment, if equal or less than 8 partitions are assigned 

to one node, it is guaranteed that the communications among these partitions which 

belong to the same node are not as much as those which belong to different processes. 

Two cases are compared in this section to demonstrate that the using the 

distributed memory architecture to the maximum degree can help reduce the overheads. 

Both cases study a 32-process partition and the 8-core processors are used. The first case 

assigns every 8 partitions into 8 cores which belong to the same processors. In this 

fashion, totally 4 processors are used for the 32 partitions. Table 46 has the results. The 

second case uses totally 6 processors for the 32 partitions.  Each of the first 4 processors 

takes 5 partitions while each of the last 2 processor takes 6 partitions. The second run’s 

results are in Table 47.  
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Table 46. Case 1 results, 32-process 

 
 

 

 

Table 47. Case 2 results, 32-process 

 
 

 

 

The results show that the second case runs faster than the first case. However, the 

first case has smaller overheads than the second case and the average load of case 1 is 

also larger than case 2. From Table 25, the original assigning pattern of the 32 partitions 

gives a parallel simulation time of 1260.673 seconds and this is between the two cases 

studied in this section.  

The different performances are because of the nature of parallel machine 

architecture. As mentioned before, the architecture of Blackgold is a hybrid of 

distributed memory and shared memory. Shared memory can largely reduce the 

communications if processes are assigned to cores within one node. This feature 

definitely reduces system overheads. However, shared memory architecture also has its 

Processor Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 13.836 159.731 173.567 1335.883 1162.316 87.01% 244981

2 38.320 597.716 636.036 1336.381 700.345 52.41% 132834

3 31.546 224.852 256.398 1336.378 1079.980 80.81% 153655

4 4.732 106.938 111.670 1336.376 1224.706 91.64% 318901

Total M-P, s 1177.671 Average Load 77.97%

Message Passing CPU Total

Processor Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 14.951 394.624 409.575 1198.427 788.852 65.82% 88183

2 22.325 420.933 443.258 1198.977 755.719 63.03% 55059

3 32.756 845.538 878.294 1198.976 320.682 26.75% 87733

4 29.197 545.250 574.447 1198.974 624.527 52.09% 31401

5 15.475 52.284 67.759 1198.975 1131.216 94.35% 87158

6 5.823 566.825 572.648 1198.976 626.328 52.24% 35250

Total M-P, s 2945.981 Average Load 59.05%

Message Passing CPU Total
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disadvantages. In shared memory architecture, multiple processes usually share the same 

memory and this may affect the information transition between CPUs and memory. As a 

result, limited cache would largely restrict the parallel performance. On the contrary, in 

the distributed memory architecture, each process has its own memory and this memory 

is not shared with any other processes. Thus, the caching issue that exists in shared 

memory is no longer a problem in distributed memory architecture. This means that 

distributed memory architecture can compute faster. This feature of distributed memory 

is especially useful to achieve a parallel implementation with good scalability. With 

more nodes used, shared memory’s low overheads are slightly sacrificed while the 

scalability of the entire parallel implementation is improved.  

In the results, the 6-processor parallel run turns out to be the fastest while the 4-

processor parallel run has the lowest overheads. The original Metis implementation has a 

much stronger overheads since the grid-to-process assignment is random. 

This section proves that shared memory is capable of reducing overheads while 

distributed memory is capable of increasing parallel implementation’s scalability. 

Finding the balance between this two architectures can reduce the cores needed and 

increase the efficiency. 

 

6.3 Overheads of non-neighboring processes 

In the original grid-to-process assignment, a partition is assigned to a process 

with the same number. For example, partition 1 is assigned to CPU 1 and partition 2 is 
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assigned to CPU2. This method at least guarantees that some of the neighboring 

partitions are assigned to CPUs that are neighbors. 

This section wants to know what will change in terms of overheads if two 

neighboring partitions are assigned to non-neighboring cores. Partitions are intentionally 

assigned to cores that are not neighbors. As a result, the communications between CPUs 

will take longer time. This effect is especially significant for communications between 

CPUs that are not in the same node. The 16-partition Metis case is studied in this 

section. Two assignments are compared here. In the first assignment, 16 partitions are 

assigned to 6 nodes. 4 out of 6 nodes have 3 partitions on each of them and the rest have 

2 partitions on each of them. Neighboring partitions are assigned to non-neighboring 

cores on purpose. In the second assignment, partitions are randomly assigned to CPUs. 

This randomness does not guarantee that neighboring partitions are assigned to different 

nodes. Table 48 and Table 49 show how partitions are assigned in the two assignment 

patterns. 
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Table 48. Assignment 1 results 

 
 

 

 

Table 49. Assignment 2 results 

 

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 4.653 482.947 487.600 1012.049 524.449 51.82% 87158

2 8.934 561.162 570.096 1013.024 442.928 43.72% 88183

3 16.467 612.357 628.824 1013.026 384.202 37.93% 46767

4 17.889 433.154 451.043 1013.038 561.995 55.48% 33895

5 23.005 713.908 736.913 1013.031 276.118 27.26% 13404

6 4.886 19.726 24.612 1013.035 988.423 97.57% 87382

7 8.192 399.589 407.781 1013.039 605.258 59.75% 87733

8 19.988 547.947 567.935 1013.031 445.096 43.94% 22779

9 13.788 383.994 397.782 1013.039 615.257 60.73% 55059

10 13.391 556.912 570.303 1013.033 442.730 43.70% 62356

11 18.179 451.363 469.542 1013.044 543.502 53.65% 31401

12 21.448 635.082 656.530 1013.036 356.506 35.19% 18291

13 11.363 358.443 369.806 1013.04 643.234 63.50% 68153

14 11.253 339.109 350.362 1013.034 662.672 65.41% 66297

15 18.313 523.585 541.898 1013.036 471.138 46.51% 35250

16 15.399 390.195 405.594 1013.039 607.445 59.96% 46263

Total M-P, s 7636.621 Average Load 52.88%

Message Passing CPU Total

Process Initialization, s Timesteps, s M-P Total, s Elapsed Time, s Non-idle Time, s Load Cells

1 5.137 548.991 554.128 1005.25 451.122 44.88% 88183

2 13.718 368.696 382.414 1006.053 623.639 61.99% 55059

3 8.097 389.655 397.752 1006.048 608.296 60.46% 87733

4 18.120 435.064 453.184 1006.049 552.865 54.95% 31401

5 8.384 473.225 481.609 1006.053 524.444 52.13% 87158

6 18.233 502.941 521.174 1006.054 484.880 48.20% 35250

7 16.384 594.742 611.126 1006.051 394.925 39.25% 46767

8 17.789 413.172 430.961 1006.048 575.087 57.16% 33895

9 4.825 30.271 35.096 1006.051 970.955 96.51% 87382

10 19.941 556.722 576.663 1006.054 429.391 42.68% 22779

11 11.304 362.482 373.786 1006.056 632.270 62.85% 68153

12 11.237 343.736 354.973 1006.053 651.080 64.72% 66297

13 22.961 713.764 736.725 1006.053 269.328 26.77% 13404

14 21.397 638.162 659.559 1006.054 346.495 34.44% 18291

15 13.373 563.406 576.779 1006.055 429.276 42.67% 62356

16 15.398 399.938 415.336 1006.053 590.717 58.72% 46263

Total M-P, s 7561.265 Average Load 53.02%

Message Passing CPU Total
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The results show that assignment 1 has a longer simulation time and also a longer 

message passing time. The reason is that assignment 1 has more communications across 

processes and this decreases the efficiency of the parallel system. 
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CHAPTER VII  

CONCLUSIONS 

 

Running parallel reservoir simulation jobs on the cluster, this research studies 

load imbalance and some other issues related to parallel implementation performance. 

Many variables are analyzed in the study such as partitioning strategies, well geometries, 

well constraints, and grid-to-process assignment patterns. Some conclusions are drawn 

as follow. 

(1) 2D decomposition can distribute grid blocks evenly into partition. 

However, it does not take into account of weights and cannot address 

reservoir models with some degree of heterogeneity. 

(2)  2D, Metis, and spectral partitioning are good at distributing grid blocks 

evenly into subdomains as well as minimizing communications between 

these subdomains. 

(3) Metis and spectral partitioning can incorporate weighting factors when 

partitioning. Transmissibility field is a good weighting factor. Metis and 

spectral partitioning give high transmissibility areas finer partitions so 

that load can be better balanced among partitions. 

(4) There is a limitation of using weighting factors in Metis and spectral 

methods. In this model, planar partitioning is used. However, the vertical 

variety is very strong and each of the 100 layers presents different 

transmissibility field. In this study only the transmissibility field from one 
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layer is used. To better represent transmissibility’s vertical diversity, 

three-dimensional partitioning needs to be applied. 

(5) Both Metis and spectral can partition the mesh very fast.  

(6) Using well locations as weighting factors in Metis and spectral 

partitioning can reduce the system overheads. 

(7) When partition sizes are similar, processes corresponding to partitions at 

the center of the model have larger loads than processes assigned with 

grid blocks at the boundary of the mesh. 

(8) Zoltan embedded in the simulator used in the study has very limited 

flexibility and its parallel implementation cannot utilize all available 

cores. 

(9) The parallel implementation significantly reduces PVT property 

computation time. The more partitions are used, the less time PVT 

property computation needs. 

(10) Parallel implementation does not reduce solver’s time percentage. 

(11) Horizontal well increases overheads and simulation time. However, it 

does not significantly affect the load distribution among cores. 

(12) Intentionally assigning neighboring partitions to CPUs that belong to the 

same node decreases overhead and improve efficiency. 

(13) Intentionally assigning neighboring partitions to CPUs in different nodes 

increases overheads and decrease efficiency. 
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(14) An optimum implementation of the hybrid of distributed memory 

architecture and shared memory architecture can reduce the nodes needed 

and still obtain a satisfactory parallel performance. 

(15) There are a few things to do in the future. The first is to go to three 

dimensional decomposition to honor the vertical variations of reservoir 

properties. The second is to increase number of nodes involved in the 

parallel runs to see how efficiency and parallel performance will change. 

Linear performance’s relationship with partitioning strategies is also 

worth noting. 
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