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ABSTRACT 

 

There has been significant interest in the therapeutic potential of the adult 

stem/progenitor cells from bone marrow called multipotent mesenchymal stromal cells 

(MSCs). Signals from injured tissues activate MSCs to secrete beneficial factors and 

contribute to immune/inflammatory modulation and tissue healing. In order to enhance 

the therapeutic potential of MSCs hanging drop culture method was used to preactivate 

the cells in vitro and eliminate the lag period required for their activation in vivo. 

Stanniocalcin-1 (STC-1) is a potent anti-inflammatory and anti-apoptotic protein 

secreted from activated MSCs and has been considered as a substitute for MSCs in 

several disease conditions; therefore, the effects of STC-1 were studied on monocyte fate 

in vitro and in a mouse model of ischemic myocardial injury.    

Aggregated MSCs in hanging drops were self-activated to produce several 

therapeutic factors such as anti-inflammatory protein STC-1 and TNFα stimulated 

gene/protein 6 (TSG-6). MSCs dissociated from spheroids were also smaller than MSCs 

from standard 2 dimensional cultures, and as a result, larger numbers of them trafficked 

through the lung of mice after intravenous administration. Notably, spheroid MSCs were 

more effective than MSCs from standard cultures in suppressing inflammatory responses 

in a co-culture system with activated macrophages and in a mouse model of peritonitis. 

The data suggest enhanced therapeutic potential of spheroid MSCs for diseases caused 

by unresolved inflammation. Treatment with STC-1 reduced expression of CD14, a co-

receptor for toll-like receptors, in differentiating monocytes/macrophages and 

suppressed the inflammatory responses of the cells to endotoxin. Administration of STC-

1 also reduced CD14 expression in monocytes stimulated with various danger signals 

and in hearts of mice after myocardial infarction. These findings may explain the 

observed decreases in cardiac inflammation following myocardial infarction, and the 

improvements in ejection fraction and infarct size. The results suggest that STC-1 is a 

promising therapy to protect the heart and other tissues from ischemic injury. 
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CHAPTER I  

INTRODUCTION AND LITERATURE REVIEW 

 

I.1 Multipotent Mesenchymal Stromal Cells: Characteristics and Therapeutic 

Potential 

There has been significant interest in the therapeutic potential of the adult 

stem/progenitor cells from bone marrow initially referred to as colony forming units-

fibroblasts (CFU-Fs), then as marrow stromal cells and subsequently as mesenchymal 

stem cells and currently as multipotent mesenchymal stromal cells (MSCs). Each of the 

names reflect a different property or function of the cells. Marrow-derived MSCs are 

easy to isolate and expand in culture. These cells divide well in culture and their progeny 

are further capable of differentiating into one of several mesenchymal phenotypes such 

as osteoblasts, chondrocytes, and adipocytes. In addition, MSCs secrete a variety of 

cytokines and growth factors that have both paracrine and autocrine effects on different 

physiological and pathological processes [1-3]. 

 

I.1.1. Isolation and characteristics of bone marrow-derived multipotent mesenchymal 

stromal cells 

Marrow stromal tissue contains variety of cells plus extracellular matrix to 

support the hematopoietic cells and influence their proliferation and differentiation. In 

addition to adipocytes, osteoblasts, endothelial cells and macrophages; marrow stromal 

cells include spindle-shaped cells, previously known as fibroblast-reticular cells, which 

form the reticular tissue and possess distinct osteogenic potencies [4,5]. The stromal 

fibroblast-reticular cells were considered histogenetically to be independent of the 

hematopoietic cells. These cells were shown to contain recipient genotypes in the 

radiochimeric bone marrow, while macrophages and hematopoietic and lymphoid cells 

were replaced by donor cells. In semisyngeneic heterotopic transplants of bone marrow, 

fibroblast-reticular cells were also found to retain their donor origin independent of host 

hematopoietic cells [4-6]; thus, these cells were considered responsible for the 
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specificity of the microenvironment. Moreover, developments in the in vitro culturing 

system led to better understanding of how the signaling pathways played unique roles 

within the microenvironment of the marrow and characterized the marrow cells within 

the hematopoietic niche. 

In early attempts to culture bone marrow, Friedenstein and colleagues revealed 

that a small fraction of marrow stromal cells adhered to culture dishes. Friedenstein 

observed morphological similarity of the adhered cells to the spindle-shaped fibroblast-

like cells that formed the stroma of marrow [6,7]. Since these cells expanded as single-

cell derived colonies in monolayer cultures, he named them CFU-Fs. The clonal origin 

of the fibroblastic colonies was confirmed, later, using thymidine labeling, time-lapse 

photography and chromosome markers [8,9]. The cells from the colonies were easily 

maintained in vitro. In addition, they were shown to differentiate into bone after 

retransplantation of diffusion chambers under kidney capsules [4,7]. Further studies 

showed that multipotent bone-marrow-derived colony forming stromal cells were 

developmentally originated from mesenchymal tissues and, therefore, were named 

mesenchymal stromal cells (MSCs) [10]. 

During the primary cultures of whole bone marrow aspirate, the hematopoietic 

fraction has been shown to disappear mostly within 2 to 3 weeks. The non-hematopoietic 

plastic-adherent compartment of bone marrow consists of a variety of heterogeneous 

populations of cells; thus, since 1990 several groups of investigators have attempted to 

prepare more homogeneous populations [2,11]. In addition, several multipotent MSC-

like cells were recovered from various tissues, particularly from human adipose tissue, 

umbilical cord blood, placental tissue, and even exfoliated deciduous teeth [12-15]. 

Because various methods are used in different labs to isolate, expand, and characterize 

MSCs and MSC-like cells, interpretation and comparison of their outcomes is difficult. 

Therefore, the Mesenchymal and Tissue Stem Cell Committee of the International 

Society for Cellular Therapy proposed minimal criteria to define human MSCs. First, the 

cells must be plastic-adherent when maintained in standard culture conditions. Second, 

MSCs must express CD105, CD73, and CD90 surface antigens when analyzed by flow 
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cytometry. In addition, they must lack expression of the following hematopoietic 

antigens: CD45, CD34, CD14 or CD11b, CD79a or CD19, and human leukocyte antigen 

(HLA)-DR. Thirdly, MSCs must differentiate into osteoblasts, adipocytes and 

chondrocytes in vitro. While these criteria will most likely require modification as new 

knowledge unfolds, the standardization of the minimum criteria for MSC classification 

will serve to facilitate the exchange of data among investigators [16]. 

Typically, in order to isolate adult human bone marrow-derived MSCs the bone 

marrow aspirates are taken from the iliac crest of normal adult donors. Discontinuous 

density gradient centrifugation is mainly used to separate the mononuclear layer of bone 

marrow aspirates, which contains the MSCs. The mononuclear cells are then cultured in 

the plastic based culture dish. After 24 hours, non-adherent cells are discarded and 

remaining adherent cells are expanded in α-minimal Eagle’s medium (αMEM) 

containing fetal bovine serum (FBS) or fresh human serum [4,17-19]. In some cases, 

MSCs are purified from mononuclear layer based in the expression of the primitive MSC 

marker, STRO-1; otherwise, the cells from passage one or higher are used for 

characterization [20]. After an initial lag phase for MSCs to proliferate in culture, the 

cells divide rapidly, with a donor-dependent average initial doubling time of 12 to 24 

hours. Initial plating density is another factor for MSC proliferation rate. As the cultures 

approach high density, MSCs enter a stationary phase and transform from a spindle-like 

morphology to a larger, flatter phenotype; therefore, for expansion purposes the cells are 

maintained below their confluency level. Typically, the MSCs recovered from a 2-mL 

bone marrow aspirate can be expanded 500-fold over about 3 weeks resulting in 

theoretical yield of 12.5 to 35.5 billion cells. The cells generally retain their 

multipotentiality for at least 6-10 subsequent passages [19]. Since MSCs could be easily 

isolated from adult bone marrow aspirates or other sources and are rapidly expanded in 

regular monolayer culture through 30 or more population doublings, the cells could offer 

broad therapeutic implications for a variety of diseases. 
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I.1.2. The roles of mesenchymal stromal cells in hematopoiesis  

One of the primary roles for marrow-derived MSCs was proposed to be the 

involvement of those cells in the hematopoietic niche. Confluent cultures of MSCs were 

shown to be effective feeder layers for the culture of hematopoietic stem cells (HSCs). 

MSCs were found, subsequently, to influence all stages of hematopoiesis through 

establishing distinct microenvironments in part by production of regulatory 

macromolecules. The extracellular matrix molecules synthesized by MSCs include 

interstitial type I collagen, fibronectin, and the type IV collagen and laminin of basement 

membranes in cultures. MSCs also secrete cytokines in culture, the most important of 

which appear to be interleukin-1 (IL-1), IL-7, IL-11, stem cell factor (c-kit ligand), 

colony-stimulating factor–1 (CSF-1), granulocyte-macrophage-CSF (GM-CSF), and 

macrophage-CSF (M-CSF). These macromolecules could provide molecular signals to 

modulate mitotic, metabolic, and or development states of neighboring cells. Also, 

marrow-derived MSCs were shown to dynamically respond to environmental 

components resulting in modulation of their own mitotic, metabolic, and or 

developmental activity [10,21-24]. The niche role of MSCs was observed in vivo as 

well. Islands of hematopoiesis formed within the ceramic cubes seeded with human 

MSCs, which were transplanted subcutaneously into immunodeficient mice [25]. 

Moreover, this role was supported in clinical trials when autologous MSCs were 

expanded ex vivo and then infused in breast cancer patients. MSCs were shown to hasten 

the recovery of the hematopoietic system after bone marrow transplants [26]. Together, 

these observations demonstrated that the primary role of the cells is to form niches for 

HSCs [3]. 

 

I.1.3. Therapeutic potential of multipotent mesenchymal stromal cells 

I.1.3.1. Engraftment and differentiation paradigm  

Friedenstein et al. originally reported that MSCs became mineralizing cells or 

chondrocytes in vitro and in vivo [9]. Further studies confirmed that isolated marrow-

derived MSCs were capable of differentiating into multiple cell lineages, including bone, 
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fat, tendon and cartilage [9,10,27]. Also, several reports suggested that under specific 

experimental conditions MSCs could differentiate into skeletal and cardiac muscle, 

hepatocytes, glia and neurons [28-35]. Although the exact mechanisms of MSC 

differentiation are not fully understood, multipotent MSCs have been proposed to repair 

injured tissues by engraftment and differentiation. This paradigm was supported by early 

observations that local administration of MSCs improved bone repair [36]. Other studies 

also determined that MSCs administered to animals, either locally or systemically, could 

home to multiple tissues and improve tissue healing [37-39]. These observations led to a 

few clinical trials using MSCs in children with severe osteogenesis imperfecta [40] and 

children with severe lysosomal storage diseases [41]. Notably, minimal adverse effects 

were detected after administration of MSCs; one of the children developed a mild 

allergic reaction to FBS in which the MSCs were expanded [40]. The promising results 

from these experimental studies and clinical trials encouraged investigators to further 

examine the long term engraftment and differentiation potential of MSCs in several 

settings [3].   

Numerous reports described functional improvements after administration of 

MSCs in models for human diseases such as osteogenensis imperfecta [38], stroke [42], 

myocardial infarction [43], acute kidney injury [44], and diabetes [45,46]; however, 

series of technical challenges limited validating engraftment of MSCs and thus 

influenced the interpretation of the outcomes of those studies. For instance, the available 

tracking methods used to follow MSC differentiation in vivo produced unidentifiable 

artifacts. In addition, species differences in characteristics and behaviors of MSCs 

created a significant experimental barrier [3]. Moreover, some of the observations from 

the studies on the fate of administered MSCs in vivo were inconsistent with the 

engraftment and differentiation hypothesis. In fact, after local administration of MSCs 

into animals the majority of cells were reported to disappear within a few weeks [47-49]. 

Observations with whole body imaging techniques also revealed that most MSCs 

became trapped in the lungs after intravenous (i.v.) infusions into rodents [50]. Lee and 

colleagues (2009) employed quantitative polymerase chain reaction (PCR) assay for 
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human Alu sequences to track tissue distribution of MSCs after i.v. infusion. They 

demonstrated that all of the MSCs were cleared from the circulation within 5 minutes of 

infusion. Most of the cells were recovered in the lungs. MSCs in the lungs disappeared 

with a half-life of about 24 hours and the remaining trace amounts of the cells were 

detected in brain, heart, liver, spleen, and kidney [51]. Interestingly in some disease 

models the medium conditioned (CM) by MSCs in cultures was reported to be as 

effective as the cells themselves [52,53]; therefore, all these observations indicate that in 

many situations MSCs could repair injured tissues and improve functions without 

significant engraftment or differentiation.  

I.1.3.2. Crosstalk paradigm 

Because the engraftment and differentiation paradigm failed to explain all of the 

reparative effects of administered MSCs in vivo, other paradigms were proposed. MSCs 

were shown to express a distinct cytokine profile to maintain HSCs in a quiescent state 

as part of the stromal-cells physiological niche. Interestingly, several investigators 

observed that variety of stimuli could alter the profile of MSC cytokine expression to 

promote proliferation, differentiation, and migration of HSCs. Subsequently, others 

reported the crosstalk between MSCs and injured cells in which signals from injured 

cells or MSCs activated other cells to alter the expression of large arrays of genes 

[2,3,54,55]. For instance, Ohtaki and colleagues (2008) reported that local injection of 

human MSCs into the hippocampi of mice following transient cerebral ischemia, 

reduced neuronal death and improved the neurological deficits. Human-specific 

microarrays of RNA from hippocampi demonstrated that in the injured brain, the 

expression of genes involved in modulation of immune and inflammatory responses 

were increased in human MSCs. Assays of the same RNA on mouse-specific 

microarrays revealed that the presence of the human MSCs modulated expression of 

mouse genes involved in immune responses to the ischemic environment [48]. More 

evidence of crosstalk was observed between MSCs and multiple myeloma cells [55]. Co-

culture studies demonstrated that signals from the myeloma cells stimulated the MSCs to 

increase secretion of IL-6. IL-6 was then shown to stimulate the proliferation of 
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myeloma cells. At the same time, the myeloma cells secreted high levels of Dkk-1, an 

inhibitor of Wnt signaling. DKK-1 in turn, inhibited MSCs from differentiating into 

osteoblasts [54]. The dynamic and transient crosstalk between MSCs and injured tissues 

was suggested as a new paradigm to explain some of the beneficial effects of MSCs in 

vivo. Based on the crosstalk theory, MSCs respond to the injured tissue and enhance 

tissue repair via different mechanisms such as promoting endogenous tissue 

regeneration, modulation of immune and inflammatory responses, and reduction in cell 

death [2,3,56]. 

MSCs could promote endogenous regeneration by providing a niche to enhance 

proliferation and differentiation of tissue-specific stem/progenitor cells. Munoz et al. 

(2005) reported that in the experiments in which human MSCs were injected directly 

into the hippocampus of immune-deficient rats, MSCs engrafted briefly in hippocampus 

and enhanced proliferation of the endogenous neural stem cells found in the 

hippocampus. In addition, the cells increased migration of neural stem cells and their 

differentiation into neural cells [47]. 

Numerous investigators have studied the immune modulatory effects of MSCs on 

both innate and adaptive immune responses. The cells could suppress proliferation, 

maturation, and pro-inflammatory functions of different types of immune cells such as 

monocytes, dendritic cells, T-cells, B-cells, and neutrophils. Parallel with suppressing 

pro-inflammatory responses, MSCs have been demonstrated to increase the generation 

of anti-inflammatory immune cells, that include regulatory T-cells as well as anti-

inflammatory phenotypes of macrophages [2]. One of the first preclinical experiments 

focusing on immune modulatory potential of MSCs was done by Bartholomew and 

colleagues (2002). They observed that injection of allogeneic MSCs prolonged skin-graft 

survival in primates [57]. Other investigators also reported i.v. infusion of MSCs 

significantly reduced demyelination of neurons, loss of function, and infiltration of pro-

inflammatory cells in the experimental autoimmune encephalitis (EAE) model for 

multiple sclerosis [58,59]. For the first time, immune modulatory effects of tMSCs were 

reported in clinical trials to improve bone marrow transplants with MSCs: administration 
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of allogeneic MSCs improved the manifestations of graft-versus-host disease (GVHD) in 

a few patients [60]. Despite all the reports about immunosuppressive roles of the cells, 

underlying mechanisms of their actions are partially known. Some observations suggest 

that cell-to-cell contact with immune cells is required for these effects. In addition, 

immune modulatory effects of MSCs may be explained by the soluble factors secreted 

by these cells, including inducible nitric oxide synthase (iNOS), indoleamine 

dioxygenase (IDO), monocyte chemoattractant protein (MCP-1, also known as 

chemokine (C–C motif) ligand 2 (CCL2)), and prostaglandin E2 (PGE2) [2]. 

Recent reports demonstrated that MSCs also modulate inflammation [56]. Even 

though inflammatory responses have essential roles in eliminating foreign agents, 

removing damaged cells, and promoting tissue repair, a growing body of evidence 

suggests accentuation, prolongation, or expansion of inflammation worsen tissue 

deterioration and loss of function. Excessive or non-resolving inflammation has also 

been known to contribute to the pathogenesis of diseases such as obesity, diabetes, 

myocardial infarction, stroke, Parkinsonism, and Alzheimer’s disease [61]. 

Inflammatory stimuli have been shown to activate MSCs to secrete arrays of soluble 

factors and affect different aspects of inflammatory responses; therefore, MSCs could 

modulate excessive inflammation without significant tissue engraftment as was 

suggested in the crosstalk paradigm [56]. Searching for the mechanisms in which MSCs 

reduced inflammation and protected cardiac function in the murine model of myocardial 

infarction, Dr. Lee et al. (2009) analyzed transcriptomal alteration of trapped MSCs in 

the lungs of experimental mice 10 hours after i.v. infusion. Using both human- and 

mouse-specific microarrays for RNA isolated from the lungs, they observed wide ranges 

of human and mouse transcripts upregulated or downregulated post MSCs 

administration. Among several candidate genes, upregulation of human TNFAIP6 gene, 

which encodes tumor necrosis factor (TNF) stimulating gene 6 protein (TSG-6), was 

confirmed by real-time RT-PCR assays [51]. TSG-6 is a 35 kDa secreted protein. 

Previous studies demonstrated that TSG-6 expression has been observed in different 

pathological contexts that are associated with inflammation. The strong anti-
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inflammatory activity of this protein has been studied in both wild-type and transgenic 

mice [62,63]. Experiments with recombinant human TSG-6 and siRNA demonstrated 

that secreted TSG-6 largely accounted for the anti-inflammatory and cardio-protective 

effects of MSCs mouse model of myocardial infarction. Paralleled with in vivo 

observation, treated MSCs with recombinant TNFα in culture were activated to express 

TSG-6 mRNA [51]. Secretion of TSG-6 by MSCs was also demonstrated in a model of 

chemical-induced cornea injury in rats. Intraperitoneal (i.p.) and i.v administration of 

human MSCs were shown to significantly reduce the amount of myeloperoxidase (MPO, 

enzyme released in injured tissue mainly by activated neutrophils) and pro-inflammatory 

cytokines [64]. In addition, MSC therapy decreased development of opacity in the 

cornea. Similar to the mouse model of myocardial infarction, knockdown of the TSG-6 

gene negated the beneficial effects of MSCs. Also, administration of recombinant human 

TSG-6 could reproduce the beneficial outcomes of MSC therapy. A quantitative assay 

for human mRNA for glyceraldehyde 3-phosphate dehydrogenase (GAPDH) 

demonstrated insignificant numbers of MSCs detectable in the corneas of rats 1 day and 

3 days after i.v. or i.p. administration [64]. In a mouse model of zymosan-induced 

peritonitis, Choi et al. (2011) demonstrated that secreted TSG-6 from MSCs and its 

recombinant protein suppressed the initial production of pro-inflammatory cytokines: 

TSG-6 decreased activation of nuclear factor (NF)-κB in the resident macrophages and 

therefore fewer neutrophils were recruited to the site of injury, which led to lesser tissue 

damage [65]. In addition to TSG-6, stimulation of MSCs with different pro-

inflammatory cytokines activated the cells to secrete variety of anti-inflammatory 

mediators such as transforming growth factor beta (TGF-β), PGE2, IL-10, IL-1 receptor 

antagonist (IL-1ra), soluble receptor 1 for TNF (sTNFR1), and stanniocalcin-1 (STC-1) 

indicating that MSCs can suppress inflammation through a variety of mechanisms [56].   

Another therapeutic potential of MSCs was shown to be cytoprotection [56]. 

Hypoxic culture conditions activated MSCs to increase production of several 

angiogenesis and anti-apoptosis factors such as IL-6, vascular endothelial growth factor 

(VEGF), and MCP-1/CCL2 [66]. In addition, Block and colleagues (2009) observed that 
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apoptosis was reduced in the previously UV irradiated fibroblasts co-cultured with 

MSCs in a transwell system [67]. Comparative microarray analysis of cultured MSCs in 

the presence or absence of UV irradiated fibroblasts demonstrated that apoptotic cells 

activated MSCs to secrete STC-1. The use of anti-STC-1 blocking antibody attenuated 

the anti-apoptotic effect of MSCs [67].   

Overall, the current data indicate that although bone marrow-derived MSCs were 

first proposed to differentiate into injured tissue, their therapeutic effects mostly result 

from their broad range of responses to different microenvironments. MSCs release anti-

inflammatory cytokines as well as anti-apoptotic and trophic molecules to protect the 

damaged tissues and promote tissue repair. These cells produce significant beneficial 

effects when administered to experimental animals. Also, they have demonstrated few if 

any adverse effects; therefore, MSCs are likely to continue to be the most widely used 

cells for new clinical trials in patients. 

 

I.2 Stanniocalcin-1: the Multitasking Secretory Protein  

STC-1 is the mammalian homologue of STC, which was originally identified as a 

calcium/phosphate-regulating hormone in bony fish. Formerly called hypocalcin or 

teleocalcin, STC is a homodimeric glycoprotein secreted by small endocrine glands in 

fish called corpuscles of Stannius. STC-1 in mammals is produced by a variety of tissues 

and has been proposed to regulate a variety of physiological and pathological functions 

in a paracrine/intracrine fashion [68-70].  

 

I.2.1. Stanniocalcin in fish 

In 1839, Stannius described corpuscles of Stannius as cream-colored bodies 

located ventrally on the surface of the fish kidney. He thought corpuscles of Stannius 

were fish adrenal glands; therefore, initially emphasis was on identifying their 

steroidogenic capacity, but to no avail [68,71]. More than a century after the discovery 

of corpuscles of Stannius, Fontaine (1964) found that the surgical removal of these 

glands led to a transparent hypercalcemia in European eel. Interestingly, the animals 
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were unperturbed by elevated serum calcium levels in the 5-6 mM range and eventually 

restored their normocalcemia. The mode of recovery is still not completely understood. 

Stanniectomized eels held in acalcemic water did not develop hypercalcemia, which 

suggested the significant role of exogenous calcium in the calcium hemostasis in fish 

[71,72]. Fenwick and his colleagues identified that the gills of eels lacking corpuscles 

had at least 10 fold higher rates of calcium transport [72]. Furthermore, the injection of 

corpuscles of Stannius glandular extracts were found to reduce gill calcium transport, 

both in vivo and in vitro in isolate perfused gills. This finding hinted that an active 

principle(s) or inhibitory factor(s) in the corpuscles of Stannius extracts might regulate 

the rate of gill calcium transport [73,74]. Other investigators showed hypocalcemic 

activity in the corpuscles of Stannius of different types of fish as well [71,75,76]. 

I.2.1.1. Structure of fish stanniocalcin protein 

Two major active principles were later isolated from corpuscles of Stannius: a 

substance with pressor activity [77] and a glycosylated protein [78,79]. While the 

characteristic of pressor substance was still being investigated [80], the studies for the 

hypocalcemic principle of corpuscles of Stannius of fish, STC, indicated that the protein 

had a unique amino acid sequence as compared to other known mammalian hormones 

[79,81-83]. In most fish species, STC is a homodimeric molecule. On the basis of cDNA 

sequencing in salmonids, the precursor of proSTC monomer is 256 residues in length. A 

hydrophobic segment is cleaved off during translation to yield a 64 kDa proSTC, which 

is then processed over a period of minutes into the mature monomer of 223 residues. 

Glycosylation at an Asn-linked consensus site adds ~5 kDa to the protein core. Two-

dimensional gel electrophoresis indicated the presence of several isoforms of proSTC 

and mature STC molecules that may reflect different stages of maturation of the 

(pro)hormone [71,84]. During translation, 10 of the 11 cysteines form intrachain 

disulfide linkages, leaving the last (Cys169) to form the interchain dimer [83]. In arawana 

and several other osteoglossiform species the 11th cysteine is replaced by arginine 

(Cys169-Arg169), making these the only known vertebrates in which STC exists in 

monomeric form [85]; however, the effect of this mutation on STC bioactivity has not 



 

 12 

yet been addressed. Synthetic N-terminal fragments (1–20) of fish STC monomers were 

shown to have inhibitory effects on gill calcium transport, albeit at much reduced 

potency. Also, the loss of the first four N-terminal amino acids significantly reduced the 

effect of STC [86,87], suggesting that the bioactive portion of this hormone resides in 

the N-terminus. Verbost et al. observed that the midfragment of STC conceivably 

contained a major antigenic site of the hormone [87]. In salmon, the C-terminus of STC 

has been shown to undergo truncation [88], but the effect of this process on hormone 

potency has not yet been identified [71].  

I.2.1.2. Tissue expression of fish stanniocalcin 

STC was originally believed to be made only by corpuscles of Stannius cells in 

fish. However, the gene is now known to be expressed in most tissues at much lower 

levels and could account for the ability of fish to re-establish normal calcium balance 

after stanniectomy. Gonads and kidneys have the highest levels of extra-corpuscular 

gene expression. The ovaries have been shown to produce a more heavily glycosylated 

form of STC hormone [89,90]. The function of this STC variant remains to be seen. 

Despite the tissue pattern of gene expression, the immunoassay of sera from fish 

maintained in waters of wide-ranging calcium concentrations (0.02-10 mM Ca2+) 

indicated that STC was always present in the blood, although not always in its bioactive 

form. Fish serum contained at least four smaller immunoreactive forms of STC in 

addition to the pro and mature hormone. It would appear that fish serum contains factors 

capable of modifying hormone activity, such as proteolytic enzymes cleaving STC at 

one or more sites in the protein core [91]. A rise in serum calcium levels is known to be 

the primary stimulus for promoting STC release from the corpuscles of Stannius glands 

[91]. The sensitivity of the cells to calcium is mediated by membrane-associated calcium 

sensing receptors (CaSR) [92,93]. This mechanism ensures that as serum calcium levels 

rise, STC is released to slow the rate of calcium entry via the gills. Calcium also 

stimulates STC translation [94], stabilizes pre-existing transcript [95], and increases 

transcript levels as much as 6-fold in cultured corpuscles of Stannius cells [71]. Recent 
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studies suggested that Na+ and Cl- ions might regulate STC release from corpuscles of 

Stannius as well [96]. 

I.2.1.3. Function of fish stanniocalcin 

Calcium transport is an important and evolutionarily conserved process. In fish, 

STC regulates serum calcium homeostasis via the inhibition of branchial/ intestinal 

calcium uptake [91]. In addition, STC promotes phosphate reabsorption by the kidneys 

[97], which might be intended to chelate excess calcium in the serum and deposit into 

bone and scales. Although the exact mechanism by which STC inhibits gill calcium 

transport is not known; this biological action of STC has been widely used as a standard 

bioassay to test the hypocalcemic potency of corpuscles of Stannius extracts or the 

recombinant STC protein [79,91,98]. In studies on isolated flounder proximal tubules, 

Renfro and colleagues have shown that STC has dose-dependent stimulatory effects on 

G protein coupled signaling cascade activating the PKA pathway [97]; however, the 

structure of STC receptors in fish or mammals have not been identified. Chloride cells of 

the gills are responsible for regulated calcium transport and have been suggested to be 

sites of STC action [99]. Butler and colleagues have suggested that STC may redirect 

blood flow away from areas of the gill that are rich in chloride cells as a means of 

reducing calcium transport [100]. One other proposed mechanism could be the transfer 

of calcium back to water by yet-uncharacterized transporters. Alternatively, STC might 

promote calcium chelation within the cytosol of chloride cells or its uptake by a 

subcellular organelle such as mitochondria. Then the trapped cation could be released to 

the bloodstream in accordance with normal physiological demands. While studying 

fractionated gills, Flik (1990) ruled out low- and high-affinity Ca2+-ATPases as being 

regulated by STC. He suggested that STC might close calcium channels in the apical 

membranes of chloride cells, thereby reducing their calcium permeability [94]. Recently, 

STC has been found to reduce calcium uptake via the inhibition of epithelial Calcium 

channel mRNA expression [101], which could explain the calcium regulatory 

mechanism of STC in fish.  
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I.2.2. Stanniocalcin-1 in mammals 

Originally, STC was assumed to be unique to fish. No corpuscles of Stannius 

glands or any comparable structures have been identified in mammals. In addition, 

calcium/phosphate homeostasis in mammals has been replaced by parathyroid hormone, 

calcitonin, and 1,25-dihydroxyvitamin D [70]. The first suggestion that there might be a 

mammalian STC was based on immunoreaction of STC with human serum and kidneys 

[102]. Mammalian homologue of STC was thereafter isolated independently in two 

laboratories. Chang et al. (1995) identified a cDNA that was downregulated following 

immortalization of simian virus 40 (SV40) early region-transformed human fibroblasts. 

The sequence of the new cDNA was found to share ~60% identity and ~73% similarity 

with amino acid sequences of various fish STCs. Due to its high degree of homology to 

fish STC, this novel mammalian protein was also named STC [103]. Olsen and 

colleagues (1996) identified the same gene during random sequencing of an early-stage 

human fetal lung cDNA library [98]. Two years after the identification of the 

mammalian STC, a second human and mouse STC gene was identified by several 

groups searching expressed sequence tag (EST) databases for sequences related to 

human STC [104-107]; Consequently, fish and mammalian STC was renamed STC-1 

and STC-related protein was named STC-2. In 2005, fish STC-2 was also cloned from 

various fish species [108].  

I.2.2.1. Structure of mammalian stanniocalcin-1 protein 

The human STC-1 cDNA encodes a protein of 247 amino acids. The level of 

sequence similarity to salmon STC-1 is 92% over the first 204 amino acids; however, the 

last 43 residues at the C-terminus are completely different. The human STC-2 cDNA 

encodes a protein of 302 amino acids that has 34% identity to human STC-1. The 

relatedness of STC-2 to STC-1 is greatest at the N-terminus [109]. In addition, an 

unusual feature of STC-2 is the presence of 15 histidine residues, four of which are 

present as a cluster at the C-terminus of the protein. Moore et al. (1999) utilized a nickel-

chelating column to purify STC-2 [107], which suggest that these histidines may bind to 

transition metals [109]. Together, these findings suggest that STC-1 is more closely 
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related to fish STC-1 than to human STC-2 [107,109]. Nevertheless, mammalian STC-1 

and STC-2 are secreted phosphoglycoproteins and the site of a glycosylation consensus 

sequence [Asn-X- Thr(Ser)] is conserved between the two proteins. They both contain 

PKC/PKA consensus sequences. Another conserved feature of STC proteins is the 

presence and location of cysteine residues, which cause mammalian STC proteins to 

form homodimers in their native state. Also, mammalian stanniocalcin genes have four 

exons and display conserved exon-intron boundaries implying that STC-1 and STC-2 

may be derived from a common ancestral gene [71,110]. 

I.2.2.2. Tissue distribution of mammalian stanniocalcin-1 

Mammalian STC-1 mRNA is expressed in various tissues. The highest level of 

expression is found in the kidney, ovary, prostate, and thyroid [98,103]. It was 

previously assumed that STC-1 protein does not circulate in the blood of mammals 

[111]; however, recent reports suggest that mammalian STC-1 is blood borne and likely 

attached to a soluble protein [110,112]. Interestingly, the distributions of STC-1 mRNA 

and protein do not always parallel. In the kidney for example, STC-1 protein was 

detected along the entire nephron, albeit the mRNA expression that was restricted to the 

cortical and medullary collecting ducts [113,114]. Recently, STC-1 binding protein 

(receptor) has been detected in cells of the kidney, liver, breast, and ovaries using 

stanniocalcin-alkaline phosphatase fusion protein, which can explain the wide 

distributions of STC-1 protein [115-118]. STC-1 binding sites were found mainly on 

mitochondria and to a lesser extent to the external cell membranes and nucleus. Analysis 

of membrane fractions also revealed that STC-1 was associated with the inner matrix of 

mitochondria [115]. Structural information on STC-1 receptor, its role in ligand 

sequestration, or its possible involvement in subsequent hormone action have not yet 

been described. Nevertheless, these findings suggest that STC-1 functions in a 

paracrine/intracrine manner [69].  

Like STC-1, mammalian STC-2 is ubiquitously expressed. The primary sites of 

STC-2 expression are the pancreas, spleen, kidney and skeletal muscle [105,106]. Its 

localization in pancreatic alpha cells suggests involvement of STC-2 in glucose and 
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energy metabolism [107]. Consistent with this, deletion of STC-2 produces overweight 

mice [119]. Abnormalities in the expression of STC-2 have also been associated with 

various malignancies [109]. There is no available information on the serum level of 

STC-2 in mammals and it is believed that STC-2 may function as a paracrine/autocrine 

factor as well.  

I.2.2.3.  Regulation of stanniocalcin-1 expression  

To better understand the possible roles for STC-1 in mammals, regulation of its 

mRNA expression was examine by several investigators. Chang et al. (1995) found that 

the steady-state STC-1 mRNA level in immortalized human fibroblasts was elevated 

almost 10-fold by a 2.5-fold increase in the calcium concentration of the culture medium 

[103]; therefore, mammalian STC-1 mRNA levels are affected by extracellular calcium 

concentration. The active metabolite of vitamin D3 was also shown to increase STC-1 

mRNA levels in rat kidneys more than 3-fold, which could be due to vitamin D3-induced 

hypercalcemia. Interestingly, regulation of STC-1 expression was tissue-specific; 

vitamin D3 metabolite didn’t increase the STC-1 mRNA levels in the ovaries [120]. 

Sheikh-Hamad et al. (2000) also observed 8-fold increase in STC-1 mRNA caused by 

growth in hypertonic medium of canine renal cell line. This induction of STC-1 mRNA, 

however, was dependent upon an extracellular calcium concentration greater than 0.1 

mM, confirming a role for extracellular calcium in STC-1 regulation [121]. 

Likewise, STC-1 mRNA was significantly increased during endothelial 

differentiation of human umbilical vein cells observed by Kahn et al. (2000)  [122] and 

during capillary morphogenesis in 3-dimensional collagen matrices [123]. STC-1 was 

later identified as a downstream target of VEGF/Wnt2 signaling pathway [122,124,125] 

indicating STC-1 involvement in angiogenesis. Utilizing differential display analysis of 

mRNA from human umbilical vein endothelial cells treated with 

lysophosphatidylcholine, a component of oxidized lipoproteins with proatherogenic 

properties, Sato et al. (1998) observed transitory expression of STC-1 mRNA [126]. 

Expression of STC-1 was also found to be induced in human glioblastoma cells and in 

the brain and heart of mice in response to hypoxia [127-129]. A study of temporal gene 
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expression in serum-stimulated human fibroblasts, often used to investigate wound 

repair, demonstrated that STC-1 mRNA was upregulated two hours after stimulation 

[130]. The expression of STC-1 has further been associated with tumor suppression. 

BRCA1 is a tumor-suppressor gene, which its mutations can lead to breast and ovarian 

cancer. In an in vitro study designed to identify transcriptional targets of BRCA1, STC-1 

was shown to be induced by 2-4 fold increases in the expression of BRCA1 [131]. 

Together these results indicate that expression of mammalian STC-1 is controlled in a 

tissue-specific manner by a variety of stimuli and suggest STC-1 may play distinct roles 

in angiogenesis, in wound repair, in the response to hypoxia, and in the pathogenesis of 

carcinogenesis and atherosclerosis.  

Studies on human tumor samples revealed that STC-1 was differentially 

expressed in a number of cancers compared with the relevant normal tissues; some 

examples include breast carcinomas, ovarian cancers, colorectal cancers, hepatocellular 

carcinoma, and non-small cell lung cancers [70,109]. Since, STC-1 mRNA has been 

considered to be a molecular marker for various types and stages of cancers. 

Furthermore, some clinical studies on different cancer types have correlated the high 

expression levels of STC-1 to poor prognostic outcome. For example, the survival rate of 

leukemia patients with high STC-1 mRNA levels in their peripheral blood was lower 

[132]. However, a larger sample size with identified developmental stage is necessary to 

support this diagnostic relationship.  

I.2.2.4. Stanniocalcin-1 function in mammals 

As a result of STC-1 being highly expressed in ovaries and due to the fact it is 

detectable in serum during pregnancy and lactation, its roles in development were 

studied by generating two transgenic STC-1-overexpressing mice. Circulating STC-1 

protein was detectable in both transgenic mouse lines [133,134]. The muscle-specific 

STC-1 transgenic mice displayed the dwarf phenotype. These mice had increased 

cartilage matrix and decreased bone length with smaller muscles. There were 

abnormalities in skulls and long bones of the transgenic mice proposing that STC-1 has a 

role in both intramembranous and endochondral bone formation. Blood pressure and 
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serum phosphate levels were normal, but serum calcium levels were elevated; the latter 

finding was attributed to stimulated osteoclast activity. Notably, transgenic mice were 

hyperphagic compared with wild-type littermates and consumed more oxygen. Muscle-

specific STC-1 transgenic mice also had leaner fat pads and faster clearance of glucose. 

These mice were noted to have mitochondrial swelling [133]that can arise from 

increased respiration and/or enhanced mitochondrial ion transport. In the second STC-1 

transgenic mouse line(s), strong preferential expression of the transgene was detected 

mostly in the liver, heart, brain, endothelial cells, and macrophages [134,135]. 

Overexpression of STC-1 resulted in permanent and severe dwarfism. In addition, the 

reproductive ability of female transgenic mice was compromised. Serum calcium levels 

were normal, while serum phosphate levels were slightly higher. Overall, these 

observations suggested that STC-1 is involved in different stages of development. 

Subsequently, the STC-1 knockout mouse line was generated to identify the 

normal function of this protein. However, no anatomical or histological abnormalities 

were detected in any tissues [136]. Because physiological parameters and animal 

phenotypes are regulated by complex signaling crosstalk and the function of many gene 

products, the observed changes in the knockout and transgenic mice may not accurately 

reflect the functions of STC-1 gene [70]. 

Due to the similarity of STC-1 to its fish counterpart, it seemed likely that 

mammalian STC-1 was involved in regulation of calcium and phosphate concentration at 

a tissue or cellular level. In addition, calcium concentration was shown already to 

influence expression of STC-1. Interestingly, recombinant human STC-1 was shown to 

inhibit branchial calcium transport in fish [98] and intestinal calcium absorption in swine 

and rat [137]. Also, recombinant STC-1 stimulated the renal and intestinal reabsorption 

of phosphate [137,138]. Analysis of phosphate uptake in vesicles isolated from rat renal 

tubular brush-border membrane has suggested that the sodium-phosphate transporter 

may be a target of STC-1 activity [138]. Furthermore, STC-1 was found to play a role in 

bone mineralization via a functional relationship with the type III sodium-phosphate 

transporter in osteoblasts [139]. Sheikh-Hamad et al. (2003) reported a regulatory role of 
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STC-1 on intracellular calcium. STC-1 was shown to inhibit transmembrane calcium 

currents via L-type channels in rat cardiomyocytes [140]. Collectively, these studies 

imply that mammalian STC-1 can locally regulate calcium and phosphate levels [70]. 

The local action of mammalian STC-1 was further studied on neural cells. Zhang 

et al. (2000) observed that treatment of Paju cells with recombinant STC-1 in vitro 

stimulated their uptake of phosphate. Phosphate is known to buffer intracellular free 

calcium and protect neural cells from apoptosis, since elevation of intracellular free 

calcium, during brain injuries such as ischemia, is neurotoxic and can cause apoptosis in 

neural cells. In addition, the cytoprotective role of this protein was studied in STC-1-

overexpressing Paju cells in vitro. The cell viability was significantly increased in these 

cells compared to control cells in response to hypoxia stress as well as toxic levels of 

intracellular free calcium. Interestingly, transient upregulation of STC-1 was seen in 

human and rat brain neurons at the edges of infarcted areas suggesting therapeutic 

potential of STC-1 in neural cells challenged by ischemia and calcium-mediated injuries 

[141]. 

Observations from transgenic mice suggested that STC-1 might regulate 

metabolism of energy via its localization at the inner membrane of mitochondria and its 

concentration-dependent stimulatory effect on electron transfer [115,133]. In order to 

better address the effects of STC-1 on mitochondria, Ellard and colleagues (2007) 

isolated intact mitochondria from rat muscle and liver and exposed them to increasing 

concentrations of recombinant human STC-1.  They observed that respiration rate was 

significantly increased in isolated mitochondria; while ATP synthesis was reduced 

thereby suggesting STC-1 was involved in uncoupling of oxidative phosphorylation 

[142]. Subsequently, Wang et al. (2009) reported that recombinant human STC-1 

upregulated the expression of mitochondrial uncoupling protein-2 (UCP2) in cultured 

macrophages. This finding was concurrent with diminishing mitochondrial membrane 

potential and superoxide generation in both untreated and lipopolysaccharide (LPS)-

stimulated macrophages. Despite of the reduction in cellular ATP level, STC-1 appeared 

to enhance cell viability [143]. UCPs are mitochondrial anion carriers that localize at the 
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inner membrane of mitochondria and facilitate proton leak from the mitochondrial inter-

membrane space to the matrix, which diminishes the proton gradient and uncouples 

oxidative phosphorylation. UCPs are activated by reactive oxygen species (ROS) and 

their metabolites during oxidative stress. Excessive ROS and their products could 

damage cells and induce apoptosis. UCPs create a negative feedback loop to reduce 

production of ROS in mitochondria and protect cells from oxidative damage. UCP2 is 

widely expressed in tissues, including the spleen, thymus, macrophages, hypothalamus, 

pancreatic β-cells, and stomach. UCP3 is another members of the mitochondrial anion 

carrier family, which induces proton leak in skeletal muscle, brown adipose tissue, and 

to a lesser extent in the heart [110,144]. Notably, STC-1 was shown later to upregulate 

expression of UCP3 and reduce superoxide generation in angiotensin II-treated 

cardiomyocytes in vitro. Recombinant STC-1 failed to suppress superoxide generation in 

isolated cardiomyocytes from UCP3-/- mice, suggesting that the effects of STC-1 on 

ROS generation in cardiomyocytes are UCP3-dependent [145]. As mentioned before, 

MSCs were shown to enhance cell survival through upregulation and secretion of STC-1 

[67]. Administration of recombinant STC-1 produced similar effect on hypoxic lung 

cancer cells and was reported to be partly UCP2 dependent [146]. These observations 

revealed that STC-1 acts as a key regulator of ROS generation and protects cells from 

oxidative stress in a tissue-specific manner [70,110]. 

Kanellis et al. (2004) reported that recombinant STC-1 diminished the 

intracellular calcium signals in macrophages and attenuated the responses of cultured 

murine macrophages and human monocytes to chemokines. In addition, they observed 

that STC-1 is strongly induced in the kidney following obstructive injury and in 

macrophages, suggesting STC-1 may serve as endogenous anti-inflammatory agent and 

attenuate the infiltration of inflammatory cells to the site of tissue injury [147].  Later, 

recombinant STC-1 was shown to attenuate the migration of cultured macrophages and 

T cells across a quiescent or cytokine-treated endothelial cells in vitro [148]. As 

mentioned, STC-1 decreased ROS generation in LPS-stimulated macrophages [143]. 

Production of mitochondrial ROS is known to potentiate NF-κB activity in immune 
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cells; therefore, emphasizing an anti-inflammatory role for STC-1 [110,149]. Anti-

inflammatory actions of STC-1 were further studied in the mouse model of anti-

glomerular basement membrane glomerulonephritis. After anti-glomerular basement 

membrane treatment, STC-1 transgenic mice exhibited diminished infiltration of 

inflammatory macrophages in the glomeruli, decreased interstitial fibrosis, reduced 

expression of CXC motif ligand 2 (CXCL2) and TGF-β in the kidney, and preserved 

kidney function when compared with wild-type mice [135]. Anti-inflammatory and 

therapeutic potentials of STC-1 were confirmed in various disease models such as 

ischemia/reperfusion kidney injuries, retinal degeneration, and sepsis, in which STC-1 

reduced generation of ROS and infiltration of immune cells to the injured tissues [150-

152]. Whether these effects are related to antioxidant property of STC-1, regulation of 

intracellular calcium concentration, or other mechanisms remains to be determined.  

Collectively, these observations revealed that through the evolutionary process 

from fish to mammals, STC-1 has maintained functional relevance to calcium/phosphate 

homeostasis, while acquiring additional paracrine/intracrine roles and functions in the 

various organs in which it is expressed. The mechanisms for pleiotropic actions of the 

protein have not been entirely defined; however, most studies emphasized the 

therapeutic applications of STC-1 in numerous diseases.  

 

I.3. Monocytes and Macrophages in Tissue Homeostasis and Disease Pathogenesis 

Monocytes and macrophages are heterogeneous mononuclear phagocytes with 

crucial but distinct roles in tissue homeostasis and immunity. Monocytes play a 

significant role during inflammation and pathogen challenge, while tissue-resident 

macrophages have important functions in development, tissue homeostasis and the 

resolution of inflammation. Moreover, monocytes and macrophages contribute to 

pathogenesis of a broad spectrum of diseases making these cells attractive therapeutic 

targets.  Therefore, novel clinical strategies are essential that aim to manipulate these 

cells. For example, depleting monocytes/macrophages when their effects are detrimental 

or enhancing their mobilization when their activities are advantageous [153].  
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I.3.1. Monocyte and macrophage development  

Monocytes and macrophages as well as dendritic cells (DCs) are part of the 

mononuclear phagocyte system (MPS) originally described as a main phagocytic 

population of bone marrow-derived myeloid cells that could circulate in the blood and 

populate tissues in the steady state and during inflammation [154-156]. Monocytes are a 

conserved population of leukocytes. Mature cells have heterogeneous morphology, 

which are defined by their location, phenotype, characteristic gene, and microRNA 

(miRNA) expression signatures. These cells constitute ∼5–10% of peripheral blood 

leukocytes in mice and humans. In addition, considerable numbers of monocytes are 

stored in the spleen and lungs that can be mobilized on demand [157]. Monocytes arise 

from their precursor cells in primary lymphoid organs, including the fetal liver and bone 

marrow, during both embryonic and adult hematopoiesis. In mice, monocytes are also 

produced from precursors in the spleen during inflammation [158]. Monocyte 

development and survival in mice have been suggested to be completely dependent on 

M-CSF, since mice suffering deficiency in this growth factor or its receptor CSF1R 

exhibit severe monocytopenia [153,156,159]. 

Macrophages are the most plastic cells of the hematopoietic system. These cells 

are found in all tissues. Tissue-resident macrophages are morphologically distinct from 

one another, have different transcriptional profiles, and diverse functional capabilities. 

Ebert and Florey (1939) first reported that monocytes emigrated from blood vessels and 

developed into macrophages in the tissues [155]. Several other investigators also 

observed that circulating monocytes differentiate into macrophages during inflammation. 

In addition, studying the fate of monocytes revealed that the cells have a short half-life 

of 20 hours in blood, which together led to the assumption that blood monocytes 

constitute the main precursor reservoirs for tissue-resident macrophages. However, the 

most recent data have demonstrated that monocytes do not significantly contribute to 

most tissue-resident macrophages in the steady state or during certain types of 

inflammation. Adult tissue-resident macrophages are found to originate prenatally from 
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the yolk sac- or fetal liver-derived precursors that seed the tissues before birth. These 

cells can maintain themselves in adults by self-renewal, including the macrophages in 

the central nervous system (CNS) called microglia. Nevertheless, monocytes can, and 

do, give rise to macrophages in certain settings as well as during inflammatory 

circumstances [153,156,160]; for instance, at the tissues with considerable exposure to 

microorganisms and their products such as intestine recruitment and differentiation of 

circulating monocytes have been observed to maintain macrophage pools. That perhaps 

is the result of low-grade chronic inflammation caused by the constant presence of 

commensal microorganisms [161]; therefore, resident macrophages are constituted from 

mixed lineage-committed precursors in healthy adult animals [160]. 

 

I.3.2. Monocyte and macrophage subsets in human and mouse  

Monocytes are divided into subsets on the basis of expression of chemokine 

receptors and the presence of specific surface molecules. Human monocytes were 

initially identified by their expression of large amounts of CD14 (which is a co-receptor 

for LPS). Currently, there are two main human monocyte subpopulations: CD14high 

(CD14hi) monocytes and CD14low monocytes. Differential expression of CD16 (also 

known as Fc receptor FcγRIII) allowed the first population of monocytes to be divided 

into two subsets of CD14hiCD16- and CD14hiCD16+ monocytes. CD14hiCD16- 

monocytes, referred to as classical monocytes, are the most abundant subset of 

circulating monocytes in humans. CD14low monocytes express CD16 as well, which are 

referred to as non-classical monocytes. Distinct expression of chemokine-receptors has 

been recognized between all these subsets [153,162,163]: for example, CD14hiCD16+ 

monocytes expressed CC-chemokine receptor 5 (CCR5), whereas CD14hiCD16- 

monocytes expressed CCR2. 

Murine monocyte subsets were first identified by differential expression of 

CCR2. CCR2 is also expressed in HSCs and is a subset of natural killer (NK) cells 

mediating migration of the leukocytes (monocytes) from bone marrow to the blood 

stream. CCR2+ subset shows higher migratory and infiltration capacity than CCR2- 
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subset of monocytes and was initially considered to be the inflammatory monocyte. 

Currently, mouse monocyte subsets are characterized by differential expression of an 

inflammatory monocyte marker Ly6C (Gr1). The cells are grouped as CD11b+Ly6Chi 

and CD11b+Ly6Clow. Moreover, mouse CD11b+Ly6Chi monocytes, which are similar to 

human CD14hi monocytes, express CCR2 on their surface and have been shown to 

represent approximately 2–5% of circulating white blood cells in an uninfected mouse. 

Whereas, CD11b+Ly6Clow mouse monocytes express low levels of CCR2 and are 

considered being equivalent to human CD14lowCD16+. The latest subset of mouse and 

human monocytes express high levels of CX3-chemokine receptor 1 (CX3CR1) that is 

important in leukocyte adhesion to the endothelial cells [153,163,164]. 

Macrophages are categorized into subpopulations based on their anatomical 

location and functional phenotypes. Specialized tissue-resident macrophages include 

alveolar macrophages (lung), Langerhans cells (skin), osteoclasts (bone), and Kupffer 

cells (liver) [162,165]. Macrophages isolated from the lamina propria have a unique 

phenotype, which is characterized by high phagocytic and bactericidal activity but weak 

production of pro-inflammatory cytokines. Interestingly, this phenotype can be induced 

in peripheral blood-derived macrophages by products of intestinal stromal cells 

indicating the influence of microenvironment on macrophage polarization and function 

[161,162]. In addition to macrophage heterogeneity in different organs, different 

subpopulations of macrophages have been observed in a single organ, such as spleen, 

skin, and CNS [162,165,166].  

There is a great overlap in surface marker expression between the different 

macrophage subsets; thus, a useful characterization approach has been based on the 

profile of gene expression in response to cytokine or microbial stimulation. Several 

macrophage subsets with distinct functions have been described, including classically 

activated macrophages (M1) and alternatively activated macrophages (M2) consist of 

regulatory macrophages and wound-healing macrophages as well as tumor-associated 

macrophages (TAMs). Although there are obvious differences among the M2, regulatory 

macrophages, and TAMs, they all exhibit immune suppressive activity. Numerous 
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studies have documented macrophages switching from one functional phenotype to 

another in response to diverse stimuli indicating that macrophages represent a spectrum 

of activated phenotypes rather than discrete stable subpopulations [165,167]. 

 

I.3.3. Monocyte and macrophage function in tissue homeostasis and disease 

I.3.3.1. Monocyte/macrophage tissue homeostasis in the steady state 

In regards to the fate of circulating monocytes under normal circumstances, there 

is some evidence to suggest that Ly6Chi monocytes differentiate into Ly6Clow cells in the 

circulation. Mouse Ly6Clow monocytes, and their human CD14lowCD16+ equivalent, 

have been demonstrated to patrol the integrity of the luminal side of endothelium of 

small vessels and migrate to non-inflamed organs [163,164,168]. Moreover, Ly6Clow 

cells have recently been shown to coordinate intraluminal stress responses. They induce 

the recruitment of neutrophils, which trigger focal necrosis of endothelial cells and, then, 

Ly6Clow monocytes clear the cellular debris [153,168]. 

The function of Ly6Chi monocytes in the steady state remains poorly defined. 

Highlighting their potential physiological importance, however, it was recently reported 

that Ly6Chi monocytes are mobilized from the bone marrow in diurnal rhythmic waves, 

suggesting a role for these monocytes in supporting the innate immune system against 

predicted environmental challenges. Since chronic inflammatory diseases, such as 

myocardial infarction, asthma, and rheumatoid arthritis, exhibit diurnal clustering in 

humans, circadian release of inflammatory Ly6Chi monocytes might also contribute to 

the pathogenesis of those diseases [153,169]. 

Experimental depletion of tissue-resident macrophages has been shown that, 

under certain conditions, circulating monocytes can reconstitute the populations of 

Langerhans cells, microglial cells, and CX3CR1+ mononuclear phagocytes in the 

intestinal lamina propria. Monocyte-to-macrophage differentiation following the 

experimental depletion of resident macrophages does not necessarily reflect the natural 

processes that occur during the development tissues homeostasis as mentioned before 

[153,162]. Nevertheless, the ability of monocytes to reconstitute distinct tissue 
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macrophage and DC populations suggests an important physiological role for monocytes 

following tissue trauma or infection. 

Metchnikoff initially described macrophages in the late 19th century as 

phagocytic cells. Currently, macrophages are known for their vital roles in tissue 

development and homeostasis in addition to their involvement in immune responses 

[164,165]. Phagocytosis, particularly of apoptotic cells, is a critical function for 

macrophages in the remodeling of tissues during development, for example the 

resolution of the inter-digit areas during limb formation [159]. The importance of 

macrophages in development has been studied in Csf1op/op mice, which lack many 

macrophage populations, and revealed a cluster of developmental abnormalities. Most 

notable among these was the development of osteopetrosis (stone bone). In these mice 

bone formation was unchanged but the tissue remodeling and expression of growth 

factors were deficient, which is caused by the loss of bone-reabsorbing osteoclasts 

[159,170]. Macrophages also have been shown to regulate angiogenesis during 

development through a number of mechanisms [160,171].  

Macrophages are found in mammalian metabolic organs, including liver, 

pancreas and adipose tissue, which function together with parenchymal cells to maintain 

metabolic homeostasis. By regulating this interaction, mammals are able to make 

marked adaptations to changes in their environment and in nutrient availability such as 

during infection. Tissue-resident macrophages are also involved in maintaining tissue 

homeostasis by removing dead or dying cells and toxic materials. For example, alveolar 

macrophages facilitate the removal of allergens from the lung, while Kupffer cells 

participate in the clearance of pathogens and toxins from the circulation [160]. 

Macrophages are also involved in recycling erythrocytes and neutrophils in the spleen 

and liver to maintain the steady state of hematopoiesis [160,172]. Additionally, 

macrophages ingest the extruded nuclei of maturing erythroblasts, which is crucial for 

host survival [173]. All together, these processes occur independently of immune-cell 

signaling, and the removal of apoptotic or dying cells seems to result in little or no 

production of immune responses by unstimulated macrophages.  
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I.3.3.2. Monocyte/macrophage responses to danger signals 

Tissue-resident macrophages and other mononuclear phagocytes are part of first 

line of the host defense. They are located throughout the body and constantly survey 

their surroundings for signs of tissue damage or invading organisms. Sensing danger 

signals is crucial for activation of macrophages. Activated macrophages then largely 

polarized to the inflammatory M1 phenotype to phagocytize pathogens and terminally 

injured cells. They also secrete pro-inflammatory mediators to recruit monocytes and 

neutrophils from their reservoir such as peripheral blood, bone marrow, and spleen to 

migrate to the site of injury or infection. Moreover, these mediators stimulate bone 

marrow to generate large pools of monocytes and neutrophils from HSCs beyond the 

normal requirements of a healthy organism. The production of monocytes and 

neutrophils is dependent on cytokines such as G-CSF and chemokines including MCP-

1/CCL2 and CCL5. Then, a mixture of mature and immature monocytic and 

granulocytic cells exits the bone marrow. Monocytes enter the damaged organs and 

differentiate into a spectrum of mononuclear phagocytes in response to 

microenvironmental signals, and contribute to the establishment of local inflammation, 

host defense, and tissue and wound repair. Antigen-presenting mononuclear phagocytes 

also migrate to the nearest lymph nodes and activate lymphocytes to initiate adaptive 

immunity [61,165,167].  

Mouse Ly6Chi monocytes, and their human CD14hi equivalent, express CCR2 

and can be rapidly mobilized to the injured tissues. During early stages of 

immunity/inflammation, these monocytes are more likely to mature to inflammatory 

mononuclear phagocytes. They have a high phagocytic capability to remove infectious 

agents, apoptotic neutrophils, and cell debris. In addition, these cells secrete pro-

inflammatory mediators such as TNFα, nitric oxide (in murine) and IL-1, which 

participate in the activation of various antimicrobial mechanisms, including oxidative 

processes. ROS and reactive nitrogen intermediates produced by inflammatory 

monocytes and monocyte-derived cells are highly toxic for microorganisms; however, 

they are also highly damaging to neighboring tissues and lead to aberrant inflammation. 
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Therefore, pro-inflammatory and antimicrobial responses must be controlled to prevent 

extensive collateral tissue damage to the host [164,165,167].  

Recruited Ly6Clow monocytes mainly differentiate into M2 phenotype, which 

exhibit potent anti-inflammatory activity. Some of the inflammatory 

monocytes/macrophages might also convert into anti-inflammatory M2 phenotype upon 

exposure to microenvironment. M2 macrophages phagocytose dead cells, debris, and 

other factors that would promote tissue-damaging responses. In addition, expression of 

immunoregulatory factors such as IL-10 by these cells have been shown to decrease the 

magnitude and duration of inflammatory responses and promote wound healing. M2 

macrophages produce growth factors, including TGF-β1 and platelet-derived growth 

factor (PDGF), to stimulate epithelial cells and fibroblasts and regulate wound healing. 

They also secrete matrix metalloproteinases (MMPs) and tissue inhibitors of MMPs 

(TIMPs) that control extracellular matrix turnover. In order to inhibit excessive fibrosis, 

M2 macrophages produce factors that induce apoptosis in activated fibroblasts 

[165,167]; therefore, macrophages and their factors are integrated into all stages of the 

fibrotic process. 

Recently, tissue-resident macrophages were demonstrated to undergo massive 

proliferation in TH2-mediated inflammation. IL-4 produced by TH2 cells was shown to 

be the key factor stimulating macrophage proliferation. Although, the signaling 

mechanism regulated by IL-4 to push macrophages into the cell cycle remains unclear, 

these observations propose that proliferation at site is an alternative mechanism of 

inflammation, which allows macrophages to accumulate in sufficient numbers and 

perform critical functions such as parasite elimination and wound repair in the absence 

of immune cell recruitment [174]. 

Migration, differentiation, and function of monocytes and macrophages are 

crucial for host defense and tissue homeostasis; however, the uncontrolled 

immune/inflammatory responses also have the potential to do harm. For example, 

excessive activation of inflammatory monocytes/macrophages can cause damage to host 

tissues, predispose surrounding tissue to neoplastic transformation and influence glucose 
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metabolism by promoting insulin resistance. On the other hand, disregulation of M2 

macrophages can trigger unwanted fibrosis, which lead to loss of function and 

exacerbate allergic responses. In addition, parasitic, bacterial, and viral pathogens can 

induce the development of anti-inflammatory M2 phenotype to enhance their survival in 

the host. Therefore, maintaining a proper balance between the functions of these 

different phenotypes in vital for the survival of the host [153,165,167]. Better 

understanding of the mechanisms involved in regulation of monocyte-to-macrophage 

differentiation, their polarization and functions would improve therapeutic strategies for 

pathological conditions such as wound healing, autoimmunity, and cancer. 

I.3.3.3. Sensing danger signals via Toll-like receptors and their co-receptor CD14  

The first step for innate immunity and inflammatory responses is to sense the 

danger signals from injured tissues or invading organisms. Tissue-resident macrophages 

are among the first group of cells to detect danger signals through a group of germline-

encoded receptor proteins. These receptors recognize specific patterns that are shared by 

groups of pathogens, but not the host, and are termed pattern recognition receptors 

(PRRs). PRRs are expressed in immune and non-immune cells and detect pathogen-

associated molecular patterns (PAMPs) such as LPS found on the cell surface of Gram-

negative bacteria, or double-stranded RNA present in viruses. It is now evident that 

PRRs also recognize non-infectious material that can cause tissue damage and 

endogenous molecules that are released during cellular injury. These endogenous 

molecules have been named damage-associated molecular patterns (DAMPs) and have 

similar functions as PAMPs in terms of their ability to activate pro-inflammatory 

pathways [61,165,175]. Endogenous DAMPs are normally sequestered intracellularly 

and, therefore, hidden from recognition by immune system. Necrosis, resulting from 

trauma or stress, generates cellular debris that are loaded with these DAMPs, including 

heat-shock proteins, nuclear proteins (e.g. high-mobility group box 1 protein (HMGB1)), 

histones, DNA and other nucleotides, and components of the extracellular matrix [167]. 
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Toll-like receptors (TLRs) are the best characterized class of PRRs and are 

important regulators of innate immune responses. These receptors are type I 

transmembrane glycoproteins, which their cytosolic domain involved in the recruitment 

of different combinations of signaling adaptor molecules such as myeloid differentiation 

primary-response protein 88 (MyD88). Through the adaptor proteins, TLRs can activate 

downstream kinases that stimulate transcription factors such as NF-κB and activator 

protein 1 (AP-1), thus, inducing the production of pro-inflammatory cytokines and type I 

interferons (IFNs). Markedly, the activation of NF-κB pathways has been shown to 

upregulate the expression of anti-inflammatory molecules (e.g. IL-10) [61,176]. Thirteen 

mammalian TLRs have been identified (TLR1-10 in humans, TLR1-9 and TLR11-13 in 

mice), which are associated with the recognition of one or more PAMPs and DAMPs 

[175,176].  

Different types of membrane-bound or soluble co-receptor proteins assist TLRs 

to catch and concentrate scattered ligands and present them to TLRs. In addition, they 

help to define the specificity or increase the affinity of homo- or hetero-TLR dimers for 

a ligand. Co-receptors also deliver TLRs and their ligands to an optimal subcellular 

compartment to activate signals. Interestingly, TLR-co-receptors have been shown to 

transduce TLR-independent signals, which lead to distinct inflammatory responses 

[176,177]. Glycoprotein CD14 is a co-receptor well known for its role in recognition of 

endotoxin ligand, LPS. This protein is either anchored to the outer leaflet of the plasma 

membrane or released in the blood as a soluble mediator. CD14 is predominantly 

expressed by myeloid lineage cells such as monocytes and macrophages; however, 

several studies have shown that it can also be present in non-immune cells, including 

epithelia, smooth muscle cells, and fibroblasts. The co-receptor presents LPS to the 

TLR4 complex and enhances the following TLR4-mediated responses to the endotoxin 

[176,177]. CD14 knockout mice were shown to be less sensitive to LPS and more 

resistant to endotoxic shock, indicating the important role for CD14 [178]. Interestingly, 

this co-receptor is capable of recognizing several types of non-endotoxin ligands and, 

thus, contributing to the inflammatory responses mediated by different TLRs, including 
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TLR2 and TLR3. Lipopeptides, peptidoglycan, HMGB1 as well as dsRNA are examples 

of the identified ligands for different binding sites of CD14 [176,177,179].  

Overall, TLRs and their co-receptors have been recognized as key mediators 

initiating inflammatory responses by immune and non-immune cells and have been 

linked to the pathogenesis of many conditions, including autoimmune diseases, cancers, 

and cardiovascular diseases [175,176]. Therefore, understanding the detailed 

mechanisms regulating the expression and function of TLRs and their co-receptor could 

facilitate developing therapeutic strategies to modulate inflammatory responses by 

activated immune cells such as monocytes/macrophages.   
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CHAPTER II  

PROJECT HYPOTHESES AND SPECIFIC AIMS  

 

II.1. Enhanced Therapeutic Potential of Preactivated Mesenchymal Stromal Cells 

and Their Secretory Factor Stanniocalcin-1 in Models for Acute Injuries and 

Inflammation 

MSCs are a heterogeneous subset of stromal stem cells. These cells are relatively 

easy to isolated from bone marrow of human donors and patients. A large number of the 

cells can also be isolate from adipose and synovial tissues as well as umbilical cord 

blood. In addition, MSCs can expand rapidly for 30 or more population doublings in 

culture are highly clonogenic, but not tumorigenic. They can differentiate into cells of 

the mesodermal lineage, such as adipocytes, osteoblasts and chondrocytes.  Together, 

these attractive features of MSCs offer broad implications in clinic; therefore, 

therapeutic potential of the cells were tested in numerous animal models and in clinical 

trials. Initially, it was assumed that MSCs repaired tissues by engrafting and 

differentiating to replace injured cells. Instead, the cells were shown to enhance tissue 

repair and limit tissue destruction by paracrine secretions, cell-to-cell contacts, and 

transfer of exosomes or mitochondria [180-183].  

The potential paracrine effects of MSCs have been suggested by the observations 

that the cells in culture secrete a large number of cytokines and growth factors; however, 

these cells are activated by danger signals from injured cells to express high levels of 

additional genes [1,54,55]. Several studies have shown that stimulation of MSCs with 

different pro-inflammatory cytokines activated the cells to secrete variety of anti-

inflammatory mediators [56]. One of the anti-inflammatory molecules secreted by MSCs 

is the TSG-6 molecule. Expression of this protein was shown to upregulate in i.v. 

infused MSCs in a mouse model of myocardial infarction. MSCs were aggregated in 

pulmonary microvasculature and activated to secrete TSG-6. During the activation of 

MSCs, however, a large number of the cells underwent apoptosis and necrosis. 

Administration of recombinant human TSG-6 protein produced was shown to reduce 
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inflammation and protect cardiac function after induction of myocardial injury, similar 

to the MSCs treatment [51]. TSG-6 has also been reported to play a major role in anti-

inflammatory and immune modulatory effects of MSCs in several animal models, such 

as zymosan-induced peritonitis, cornea injury, and lung injury [64,65,184]. Interestingly, 

MSCs do not produce TSG-6 in standard 2 dimensional (2D) cultures. Incubation of 

MSCs with recombinant TNF-α in the cultures activates the cells over time to secrete 

TSG-6 [51,65]. Another stress responsive molecule secreted by MSCs is STC-1. 

Expression of STC-1 was upregulated in MSCs by signals from dying cells and is 

involved in anti-apoptosis properties of MSCs [67]. Also, STC-1 was secreted in 

response to caspase activation and inflammatory cytokines in vitro [185,186]. Anti-

inflammatory and anti-apoptotic properties of STC-1 have been reported recently in a 

number of disease models, including anti-glomerular basement membrane 

glomerulonephritis, ischemia/reperfusion kidney injuries, retinal degeneration, and 

sepsis [135,150-152]. In addition to pretreatment of MSCs with exogenous factors, 

modifications of the culture conditions, such as hypoxia and serum deprivation, were 

demonstrated to promote their self-activation and expression of wide ranges of factors 

for cell protection [187].  These observations suggest that stimulation of MSCs in culture 

before administration might enhance their potential for therapeutic applications by 

eliminating the lag period for upregulation of beneficial factors in the host. This 

approach would be especially important in modulation of acute inflammatory phase. 

Recently, there has been increasing interest in culturing cells in non-adherent 3D 

conditions to overcome many limitations of using MSCs and other stem cells for clinical 

applications. The traditional 2D culture and differentiation methods widely used in 

current MSCs research yield single cells with limited cell-to-cell contact and result in 

low differentiation efficacy for the cells [188]. One of the advantages of culturing cells 

in 3D is that it more closely reproduces their natural environment. In 3D cell cultures, 

cells can form aggregates, in which nearly all of cell surface area being exposed to other 

cells or extracellular matrix. These cells extensively interact with each other and with 

their environment via soluble and membrane bound factors. In addition, extracellular 
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matrix is made of complexes of proteins, which are important mediators of numerous 

biological processes. Therefore, growing cells in 3D cultures generates important 

differences in cellular characteristics and behavior such as differentiation, proliferation, 

viability, drug metabolism, gene expression, morphology, and responses to stimuli [189].  

Different 3D culture methods have been used to generate MSC spheroids in vitro, 

that include culture in spinner flask or gyratory rotation system, microcarrier beads, 

microchannel culture system, and hanging drops [189]. A number of investigators have 

demonstrated that assembly into spheroids enhanced many properties of MSCs. For 

instance, culturing MSCs in low adherent plates or on micropatterned glass substrates 

could significantly improve their differentiation potency [188,190,191]. In addition, 

medium conditioned by MSCs cultured in hanging drops was shown to stimulate cell 

survival, proliferation, and in vitro migration and invasion of endothelial cells to a much 

higher extent than CM of 2D-cultured MSCs [192]. 3D cultures also altered expression 

of cell surface molecules responsible for the regulation of MSC homing [193]. Notably, 

MSCs aggregates were shown to attach to the underlying tissue and improve cardiac 

function more efficiently than dissociated cells, when injected into the peri-infarcted 

zone following myocardial infarction in rats [194]. Overall, 3D culture systems were 

indicated as a practical method to preactivate MSCs in culture in order to enhance their 

therapeutic potential in clinic. 

In order to benefit from MSCs in medicine and extend their therapeutic 

applications, alternative approaches have been also considered by investigators. Several 

soluble factors released by activated MSCs have been able to reproduce many of the 

anti-inflammatory responses in the cells suggesting these factors could replace MSC 

therapy. Protein therapy has many attractions; especially for the patients whom cell 

administration is not an option. Also, therapeutic application of recombinant proteins is 

preferred in acute injuries such as myocardial infarction or stroke since immediate care 

is crucial for short- and long-term prognosis after the injury. Several factors secreted by 

MSCs are not promising candidates for medical therapy. Some of them were shown to 

have short half-lives or limited applications and some could generate adverse effects 
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when administered systemically [56]. However, there appears to be adequate reasons for 

testing certain proteins such as STC-1 for therapeutic uses. Administration of STC-1 was 

reported to diminish intracellular calcium signal in macrophages and reduce their 

responses to chemokines. Also, it could suppress ROS production in LPS-stimulated 

macrophages. Moreover, anti-inflammatory and anti-apoptotic effects of STC-1 have 

been demonstrated in several models [150-152]. Thus, STC-1 is considered as a 

potential alternative in several pathological conditions such as acute ischemia-induced 

injuries. 

Myocardial infarction is a leading cause of morbidity and mortality worldwide. 

Despite advances in therapy to reduce mortality in acute phase, the incidence of chronic 

heart failure in patients surviving form myocardial damage has increased [195,196]. 

Following myocardial infarction, infarct area and the non-infarcted myocardium of the 

left ventricle undergo extreme structural alterations, referred to as ventricular 

remodeling. Excessive ventricular remodeling manifests clinically as increased chamber 

dilation and myocardial hypertrophy, which leads to impaired cardiac function and 

subsequently heart failure. The size of the necrotic area and the quality of cardiac repair 

are important factors in development of post-infarct heart failure [196,197]. Cardiac 

repair is supported by a well-orchestrated inflammatory response that serves to clear the 

wound from dead cells and debris, while activates reparative pathways necessary for scar 

formation. Timely repression and containment of inflammatory signals are essential to 

ensure optimal formation of a supportive scar in the infarcted area and to prevent 

development of adverse ventricular remodeling. For instance, excessive early 

inflammation may augment matrix degradation, which causes cardiac rupture. It can also 

activate apoptosis in cardiomyocytes of border zones and expand the scar size. In 

addition, ineffective containment of inflammatory responses may lead to extension of 

inflammation to the non-infarcted myocardium enhancing fibrosis and worsening 

diastolic function [195-197]. Therefore, strategies to regulate post-infarct inflammatory 

pathways will improve the prognosis of patients with myocardial infarction.   
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Myocardial tissue injury induces the release of endogenous danger signals, 

including inflammatory cytokines and chemokines, ROS, and intracellular DAMPs (e.g. 

HMGB1, heat shock proteins, membrane fractions). These signals trigger intense 

inflammatory responses by activating the innate immune system. Timely suppression 

and resolution of post-infarct inflammation requires the coordinated actions of several 

different cell types such as monocytes and macrophages. Several observations from 

experimental animals and patients have indicated that distinct subsets of monocytes are 

recruited at different stages of post myocardial infarction and can differentiate into a 

spectrum of macrophage populations. The first wave of monocytes facilitates the 

removal of dead cardiomyocytes and the later phase promotes the resolution of 

inflammation and tissue repair [163,165]. The detailed mechanisms that regulate 

activation, deactivation, and differentiation of monocytes/macrophages in myocardial 

injury are not defined yet; however, developing multifunctional strategies that regulate 

these processes could help improving the prognosis of patients with acute myocardial 

injuries.  

In this work we proposed two hypotheses: “aggregation of MSCs in 3D cultures 

provides an effective procedure to pre-activate the cells, and thereby, enhance their 

therapeutic effects through reduction in the lag period for secretion of anti-inflammatory 

factors in vivo” and “STC-1, a pleotropic factor secreted by MSCs, modulates 

differentiation and function of monocytes/macrophages and protects heart from ischemic 

cardiac damage in part by suppressing inflammation after myocardial infarction.”  

 

II.2. Specific Aims 

To test these hypotheses, we performed experiments based on two aims.  
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II.2.1.  To study the enhanced therapeutic potentials of spheroid MSCs 

II.2.1.1. Establish the optimal conditions to improve anti-inflammatory properties of 

cultured MSCs in the hanging drop system 

In order to identify a new approach for self-activation of MSCs in vitro, the 

hanging drop method was used to culture the cells in a 3D system. This method is 

simple, inexpensive, and does not require specific equipment. Spheroids produced in the 

hanging drop system are uniform in size and shape. It is also possible to control the 

culture conditions in the hanging drop system. Therefore, this approach could facilitate 

studying the unique properties of 3D-cultured MSCs. There is a wide range of factors 

that can be modified in the hanging drop system and can influence the characteristics 

and the functions of MSCs. Since the main goal of this study was to enhance production 

of anti-inflammatory factors by MSCs, the optimal conditions for hanging drop cultures 

that maximizes expression of TSG-6 were defined. Previous studies on the properties of 

MSCs in standard 2D culture system revealed that morphology of the cells alters in the 

confluent cultures and following several passages. In addition, certain environmental 

modifications could cause remarkable changes in the characteristics of MSCs [19,56]; 

therefore, some of the properties of MSCs dissociated from spheroids were tested, 

including survival rate as well as their colony formation and differentiation potentials. 

The findings of this study would help establish the optimal 3D culture conditions, which 

yield MSCs with enhanced anti-inflammatory potential. As a result, the therapeutic 

benefits of MSCs from donors with low rate of paracrine secretion in standard 2D 

culture, could be improved as well. 

II.2.1.2. Demonstrate anti-inflammatory effects of activated spheroid MSCs in vitro and 

in vivo 

Resident macrophages are stimulated at early stages of tissue injury to secrete a 

large number of pro-inflammatory cytokines and chemokines, activate immune system, 

destroy pathogens, and remove the death cells. The balance between pro- and anti-

inflammatory actions of these cells is important in the outcome of tissue repair [160]. In 

the current work, the effects of spheroids and their derived MSCs were investigated on 
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LPS-stimulated macrophages in vitro. In addition, the enhanced anti-inflammatory 

potential of these cells was compared to the standard 2D cultured cells in a mouse model 

of zymosan-induced peritonitis. Zymosan binds to TLR2 on resident macrophages. This 

complex stimulates NF-κB signaling and secretion of TNF-α and other pro-inflammatory 

cytokines and chemokines. These observations would help determine future therapeutic 

applications of 3D cultured MSCs. 

 

II.2.2. Study the therapeutic benefits of recombinant STC-1 protein 

II.2.2.1. Examine anti-inflammatory effects of recombinant STC-1 on monocyte and 

macrophages in vitro 

In response to danger signals, circulating monocytes activate and migrate to the 

site of injury, where they differentiate into a spectrum of macrophage subsets. 

Regulation of these processes is crucial for the outcomes of different conditions such as 

myocardial injuries and heart failure. Previously, STC-1 was reported to diminish 

intracellular calcium signals in monocytes/macrophages in response to different 

chemokines and reduce their migratory potential in vitro and in vivo [147]. In the current 

work, the effects of STC-1 on monocyte-to-macrophage differentiation by a number of 

stimuli were studied. In addition, the effects of STC-1 treatment on inflammatory 

responses of LPS-stimulated monocytes/macrophages were determined. These results 

can help better understand the mechanisms for anti-inflammatory actions of STC-1. 

II.2.2.2. Demonstrate therapeutic potentials of recombinant STC-1 in preclinical model 

of myocardial infarction 

Suppression of inflammatory pathways has been reported to improve outcome 

after myocardial infarction. Pro- and anti-inflammatory roles of monocytes/macrophages 

are crucial for the progression and resolution of myocardial infarction. To determine the 

effects of STC-1 on cardiac inflammation and function a mouse model of myocardial 

infarction was used. The recombinant protein was intravenously administered to the 

experimental animals and the amounts of inflammatory mediators in the cardiac tissue 

were measured. In addition, cardiac function and infarct size of STC-1 treated mice was 
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compare with controls. These observations, for the first time, revealed anti-inflammatory 

and cardiac protective roles of STC-1 in ischemia-induced myocardial injury. 
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CHAPTER III  

MANUSCRIPT 1: 

AGGREGATION OF HUMAN MESENCHYMAL STROMAL CELLS INTO 3D 

SPHEROIDS ENHANCES THEIR ANTI-INFLAMMATORY PROPERTIES 

 

Previous reports suggested that culture as 3D aggregates or as spheroids can 

increase the therapeutic potential of the adult stem/progenitor cells referred to as 

mesenchymal stem cells or multipotent mesenchymal stromal cells (MSCs). Here we 

used a hanging drop protocol to prepare human MSCs as spheroids that maximally 

expressed TSG-6, the anti-inflammatory protein that was expressed at high levels by 

MSCs trapped in the lung after i.v. infusion and that largely explained the beneficial 

effects of MSCs in mice with myocardial infarcts. The properties of spheroid MSCs 

were found to depend critically on the culture conditions. Under optimal conditions for 

expression of TSG-6, the MSCs also expressed high levels of STC-1, a protein with both 

anti-inflammatory and anti-apoptotic properties. In addition, they expressed high levels 

of three anticancer proteins: IL-24, TNFα-related apoptosis inducing ligand, and CD82. 

The spheroid MSCs were more effective than MSCs from adherent monolayer cultures 

in suppressing inflammatory responses in a co-culture system with LPS-activated 

macrophages and in a mouse model for peritonitis. In addition, the spheroid MSCs were 

about one-fourth the volume of MSCs from adherent cultures. Apparently as a result, 

larger numbers of the cells trafficked through the lung after i.v. infusion and were 

recovered in spleen, liver, kidney, and heart. The data suggest that spheroid MSCs may 

be more effective than MSCs from adherent cultures in therapies for diseases 

characterized by sterile tissue injury and unresolved inflammation and for some cancers 

that are sensitive to anti-inflammatory agents. Bartosh et al., PNAS (2010) [198]. 

 

 

 

 



 

 41 

III.1. Introduction 

There has been considerable interest in the therapeutic potentials of the cells 

from bone marrow referred to initially as colony forming units-fibroblastic, then as 

marrow stromal cells, subsequently as mesenchymal stem cells, and most recently as 

multipotent MSCs [10,16,21,181,199,200]. The cells are relatively easy to isolate from 

human donors or patients, expand rapidly for 30 or more population doublings in culture, 

and differentiate into several cellular phenotypes in vitro and in vivo. These and related 

properties prompted testing the therapeutic potential of the cells in animal models and in 

clinical trials for a large number of diseases (see www.clinicaltrials.gov). The initial 

assumption in exploring the therapeutic benefits of MSCs was that they might engraft 

and differentiate to replace injured cells. Engraftment and differentiation was observed 

in rapidly grown embryos, with extreme tissue injury, or after local administrations of 

large concentrations of the cells. Frequently, however, therapeutic benefits were 

observed without evidence of engraftment. Instead, the cells enhanced tissue repair or 

limited tissue destruction by paracrine secretions or cell-to-cell contacts that modulated 

inflammatory or immune reactions [2,10,180,181]. The potential paracrine effects of the 

cells were suggested by the observations that the cells in culture secrete a large number 

of cytokines [1,55]. Recent reports, however, have demonstrated that MSCs are activated 

by crosstalk with injured cells to express high levels of a large number of additional 

genes [48,51,54,55,67,201]. 

We previously observed [51] that i.v.-infused human MSCs (hMSCs) improved 

cardiac function and decreased scarring in a mouse model of myocardial infarction in 

part because the cells that were trapped in the lung as microemboli were activated to 

secrete the anti-inflammatory protein, TSG-6 [62]. The TSG-6 decreased the 

inflammatory reactions in the heart and thereby limited deterioration of the cardiac 

tissue. However, the hMSCs did not express TSG-6 until 12–24 h after they created 

microemboli in lungs and until about half the hMSCs had undergone destruction through 

apoptosis and necrosis. We also observed that standard cultures of hMSCs did not 
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express TSG-6 but were activated to express the protein if incubated for 24 h or longer 

with the inflammatory cytokine TNFα [51]. 

The observations suggested that appropriate manipulation of hMSCs in culture 

before in vivo administration might enhance their therapeutic benefits by eliminating the 

lag period for activation on the cells by signals from injured tissues. 

Recently there has been a series of publications on aggregation of MSCs either as 

a procedure for enhancing chrondrogenic differentiation of the cells [188,190,191] or to 

increase their therapeutic potential [193,194,202,203]. Because aggregated hMSCs were 

detected in the pulmonary microemboli observed after i.v. infusion of the cells [51,204], 

we tested the hypothesis that aggregation of hMSCs in culture may provide an effective 

procedure to preactivate the cells to express TSG-6, and thereby, enhance their anti-

inflammatory effects through a reduction in the lag period for expression of the gene in 

vivo. 

 

III.2. Materials and Methods 

 

III.2.1. hMSC cell culture  

Frozen vials containing about 1 million passage 1 hMSCs from bone marrow 

were obtained from the Center for the Preparation and Distribution of Adult Stem Cells 

(formerly http://www.som.tulane.edu/gene_therapy/distribute.shtml; currently 

http://medicine.tamhsc.edu/irm/msc-distribution.html). hMSCs were isolated from 1–4 

mL bone marrow aspirates of the iliac crest in normal adult donors. Nucleated cells, 

obtained by density gradient centrifugation (Ficoll-Paque; GE Healthcare), were 

resuspended in CCM: α-MEM (Gibco), 17% (v/v) FBS (Atlanta Biologicals), 100 

units/mL penicillin (Gibco), 100 µg/mL streptomycin (Gibco), and 2 mM L-glutamine 

(Gibco), seeded in 175 cm2 flasks (Nunc), and subsequently cultured at 37 °C in a 

humidified atmosphere with 5% (v/v) CO2. After 24 h, non-adherent cells were 

discarded. Adherent cells were incubated 4–11 d until approximately 70% confluent, 

harvested with 0.25% (w/v) trypsin and 1 mM EDTA (Gibco) for 5 min at 37 °C, and 
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replated at 50 cells/ cm2 in an intercommunicating system of culture flasks (Nunc). The 

cells were incubated for 7–12 d until approximately 70% confluent, harvested with 

trypsin/EDTA, and frozen as passage 1 cells in α-MEM containing 30% (v/v) FBS and 

5% (v/v) DMSO (Sigma). A frozen vial of passage 1 hMSCs (donor 1, 7064 L; donor 2, 

7068 L) was thawed, resuspended in CCM, and plated in a 152-cm2 culture dish 

(Corning). After 24 h, adherent cells were harvested using trypsin/EDTA, plated at 100 

cells/cm2, and expanded for 7 d before freezing. In this study, passage 1 or 2 frozen 

hMSCs were recovered, seeded at 100 cells/cm2 24 h later, and grown 7–8 d in CCM for 

various assays. 

 

III.2.2. Spheroid generation and dissociation 

To generate spheroids, hMSCs were plated as hanging drops on an inverted 

culture dish lid in 35 µL of CCM at 10,000–250,000 cells/drop. The lid was flipped and 

placed on a culture dish containing PBS (Gibco) to prevent evaporation. Hanging drop 

cultures were grown at 37 °C up to 4 d in a humidified atmosphere with 5% CO2. 

Spheroid generation in hanging drops was captured using a Photometrics Coolsnap HQ2 

camera mounted on a Nikon Eclipse Ti-E inverted microscope containing a temperature 

controlled environmental chamber. To collect spheroids, drops were harvested using a 

cell lifter, transferred to a 15 or 50 mL conical tube (Falcon), washed with PBS, and 

centrifuged at 453 × g for 5–10 min. To obtain spheroid derived cells, spheroids were 

incubated with trypsin/EDTA at 37 °C for 5–30 min (5 min for 10k, 10 min for 25k, 20 

min for 100k, and 30 min for 250k spheroids), while pipetting every 2–3 min. When no 

cell aggregates were visible, spheroid derived cells were collected by centrifugation at 

453 × g for 5–10 min to be used in described assays. 

 

III.2.3. Histology  

hMSC spheroids were collected with cell lifter (Corning), transferred into a 15-

mL conical tube, washed twice with PBS, and fixed with 2% (v/v) paraformaldehyde 

(PFA, USB Corporation) in PBS for 15 min at room temperature. Fixed spheroids were 
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washed twice with PBS, centrifuged at 500 × g for 10 min, and incubated at 4 °C 

overnight in 500 µL of 30% (w/v) sucrose solution (Sigma) in 0.1 M phosphate buffer 

(Sigma). After incubation, 800 µL of 30% (v/v) OCT (Sakura Finetek) in sucrose 

solution was added gently and the suspension was transferred into a histology mold. The 

mold was frozen in isopentane (Sigma) chilled by liquid nitrogen and stored at −80 °C. 

Cryosections (6 µm) were prepared with a Microm HM560 cryostat. For H&E staining, 

slides were first incubated at room temperature for 10–15 min, fixed in 4% PFA for 15 

min, and washed twice with deionized water. Rehydration was performed by incubating 

the samples in 100% ethanol (EMD Chemical) for 5 min, 95% ethanol for 2 min, 70% 

ethanol for 2 min, and deionized water twice for 5 min. The slides were stained with 

Mayer’s Hematoxylin (Electron Microscopy Science) for 15 min, rinsed with deionized 

water, incubated with Scott’s Tap Water Substitute (Ricca Chemical Company) for 2 

min, rinsed with deionized water, washed with warm tap water for 20 min, rinsed with 

deionized water, immersed in 95% ethanol for 1 min, and stained with Eosin Y 

(Mallinckrodt Baker) for 1 min. Slides were then dehydrated by immersion in 95% 

ethanol for 1 min, 95% ethanol for 5 min, 100% ethanol for 5 min, and xylene (EMD 

Chemical) for 5 min. Samples were air-dried and overlaid with coverslips for 

examination. Mounting media (VECTA Mount; Vector Laboratories) was used to 

preserve staining. Images were acquired on a Nikon Eclipse 80i upright microscope and 

processed using NiS Elements AR 3.0 software (Nikon). 

 

III.2.4. Real-time RT-PCR assays 

Total RNA was isolated from monolayer and spheroid hMSCs using RNeasy 

Mini Kit (Qiagen) with DNase (RNase-Free DNase Set; Qiagen) digestion step. RNA 

was converted into cDNA with High-Capacity cDNA RT Kit (Applied Biosystems). 

Real-time RT-PCR was performed in triplicate for 18 s, TSG-6 (TNFAIP6), STC1, LIF, 

IL-24, TNFα-related apoptosis inducing ligand (TRAIL), CXC chemokine receptor 4 

(CXCR4), and dickkopf 1 (DKK1) using TaqMan Gene Expression Assays (Applied Bio- 

systems). A total of 15–60 ng of cDNA was used for each 20-µL reaction. Thermal 
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cycling was performed with 7900HT System (Applied Biosystems) by incubating the 

reactions at 95 °C for 20 s followed by 40 cycles of 95 °C for 1 s and 60 °C for 20 s. 

Data were analyzed with Sequence Detection Software V2.3 (Applied Biosystems) and 

relative quantities (RQs) were calculated with comparative CT method using RQ 

Manager V1.2 (Applied Biosystems). If no amplification occurred, CT value of 35 was 

used in calculating the RQs. 

 

III.2.5. Viability assays  

Spheroid viability was measured by flow cytometry (FC500; Beckman Coulter) 

using Annexin V-FITC apoptosis detection kit (Sigma) per manufacturer’s instructions. 

Spheroids were collected and washed in PBS, followed by debris removal with a 40-µm 

cell strainer (Fisher). Spheroids were then transferred into a sterile centrifuge tube by 

inversion of the strainer and subsequently pelleted by centrifugation at 453 × g for 5 

min. The supernatant was aspirated and the spheroids dissociated in a six-well plate 

(Corning) at 37 °C using 2–3 mL trypsin/EDTA. After 5–30 min, the digest was 

neutralized with FBS, filtered through a 40 µm cell strainer to remove nondissociated 

particles, and centrifuged at 453 × g for 5–10 min to acquire a cell pellet. Approximately 

200,000 hMSCs derived from monolayer cultures or spheroids were incubated for 10 

min with 0.5 µg/mL annexin V-FITC and 2 µg/mL propidium iodide (PI) in 400 µL of 

1× binding buffer (10 mM Hepes, 0.14 M NaCl, 2.5 mM CaCl2). The cells were 

immediately placed on ice and analyzed. Cell fragments were removed by 

morphological gating. Cells negative for annexin V-FITC and PI were considered viable, 

annexin V-FITC positive and PI negative considered apoptotic, and annexin V-FITC 

positive and PI positive considered necrotic. 

 

III.2.6. Cell cycle analysis 

The cell cycle distribution in spheroids and monolayer cultures was determined 

by analyzing DNA content of permeabilized hMSCs labeled with PI (Sigma). hMSCs 

derived from monolayer or spheroid cultures were resuspended in 1 mL of ice cold PBS 
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containing 2% FBS followed by fixing with 3 mL cold absolute ethanol added dropwise 

while vortexing. The cells were incubated for 2–4 h in 4 mL of 75% ethanol to complete 

fixation, washed 3 times in PBS, then pelleted by centrifugation at 800 × g for 10 min. 

Cells were incubated with 7 U/mL RNase A (Qiagen) in 1 mL of PBS at room 

temperature. After 1 h, 50 µg/mL PI was added and the cells were incubated overnight at 

4 °C. DNA content was measured with a flow cytometer and data analyzed using 

MultiCycle software (Phoenix Flow Systems). 

 

III.2.7. Cell surface protein detection  

To analyze cell surface markers, hMSCs resuspended at 3.0 × 106 cells/mL in 

αMEM containing 2% FBS were labeled with the antibodies described (Table 1) for 40 

min on ice. The cells were washed 3 times with PBS and surface expression of proteins 

was determined with a flow cytometer. 

 

III.2.8. Spheroid derived cell sizing 

The size of hMSCs derived from adherent monolayers, or from dissociated 

spheroids suspended for 3 d in hanging drops at 10,000, 25,000, 100,000, and 250,000 

cells/drop, was determined by microscopy and flow cytometry. For microscopic 

analysis, the cells were transferred into chambers of a Neubauer improved disposable 

hemocytometer and images captured on a Nikon Eclipse Ti-S inverted microscope using 

a Ds-Fi1 camera (Nikon). Cell diameter of more than 50 cells per group was 

subsequently determined using NIS-Elements AR 3.0 software. For flow cytometric 

analysis of cell size, 2.0 × 105 hMSCs were resuspended in 400 µL αMEM containing 

2% FBS then incubated for 20 min with 100 nM of the live cell viability dye calcein AM 

(Molecular Probes) and 10 min with 2 µg/mL of the dead cell nuclear label 7AAD 

(Sigma). Cell sizes were estimated from the viable population (Calcein+/7AAD−) by 

comparing forward scatter (FS) properties of the cells and beads with a known diameter 

of 3, 7, 15, or 25 µm. Brackets were subsequently applied to the scatter plot at locations 

corresponding to the respective bead size. Gates established based on bead size FS were 



 

 47 

used to group the cells into five populations (<3 µm, 3–7 µm, 7–15 µm, 15–25 µm, and 

>25 µm). 

 

III.2.9. Intravenous Infusion of hMSCs  

Male immunodeficient NOD/scid mice (NOD.CB17-Prkdcscid/J; The Jackson 

Laboratory), 7–8 week of age, housed on a 12 h light/dark cycle, were used to study the 

relative tissue distribution of the i.v. infused hMSCs. All animal procedures were 

performed with approval by the Animal Care and Use Committee of Texas A&M Health 

Science Center and in accordance with guidelines set forth by the National Institutes of 

Health. Mice were anesthetized by i.p. injection of a mixture of ketamine (91 mg/kg) and 

xylazine (9 mg/kg). Total of 106 monolayer or spheroid derived hMSCs suspended in 

150 µL of HBSS were infused slowly into a tail vein. Mice were anesthetized 15 min 

later with ketamine/xylazine (90 mg/kg and 9 mg/kg) and euthanized by exsanguination. 

Heart, lung, liver, spleen, and kidneys were isolated by dissection and stored at −80 °C 

for further analysis. 

 

III.2.10. Isolation of genomic DNA 

After thawing the tissues, 5 mL of 10 mM Tris HCl (pH 8.0) containing 20 µL 

proteinase K (10 mg/mL), 0.1 mM EDTA (pH 8.0), 0.5% (w/v) SDS, and 20 µg/mL 

RNase A was added to each sample. Samples were homogenized (PowerGen Model 125 

Homogenizer; Fisher Scientific) and incubated at 50 °C overnight on a shaker at 200 

rpm. DNA was extracted by mixing 0.5 mL of sample with 0.5 mL phenol/chloroform 

solution (pH 6.7) followed by centrifugation at 15,300 × g for 5 min in 2 mL phase lock 

gel tubes (Phase Lock Gel; Eppendorf/Brinkmann Instruments). To precipitate the DNA, 

1/2 volume of 2.5 M ammonium acetate, and the same volume of 100% ethanol was 

added, followed by overnight incubation at 4 °C. The precipitates were washed with ice 

cold 75% ethanol and resuspended into sterile water. 
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III.2.11. Real-time PCR assays for Alu sequences 

Real-time PCR assays for Alu sequences were performed in 50 µL containing 25 

µL Taqman Universal PCR Master Mix (Applied Biosystems), 900 nM each of the 

forward and reverse primers, 250 nM Taqman probe, and 200 ng of genomic DNA. 

Reactions were incubated at 50 °C for 2 min and at 95 °C for 10 min followed by 40 

cycles at 95 °C for 15 s and 60 °C for 1 min. Real-time PCR assays for human and 

mouse GAPDH genes were performed in 50 µL containing 25 µL SYBR Green Master 

Mix (Applied Biosystems), 200 nM each of the forward and reverse primers and 200 ng 

of genomic DNA. All real-time PCR assays were performed in duplicate or triplicate and 

average values are presented. The final value for total DNA in the sample was corrected 

by parallel real-time PCR assays with primers that amplified both the human and mouse 

GAPDH genes [51,204,205].  

 

III.2.12. Differentiation assays  

hMSCs derived from high density monolayer (5,000 cells/cm2) or hanging drop 

cultures (25,000 cells/drop), grown for 3 d, were seeded at low density (100 cells/cm2) 

on six-well dishes and were grown until 80–90% confluent. To induce adipogenesis, 

hMSCs were cultured in CCM supplemented with 500 nM dexamethasone (Sigma), 500 

nM isobutylmethylxanthine (Sigma), and 50 µM indomethacin (Sigma) for 14 d with 

medium changes every 3–4 d. To induce osteogenesis, hMSCs were cultured in CCM 

supplemented with 10 nM dexamethasone, 10 mM β-glycerolphosphate (Sigma), and 50 

µM Ascorbate-2-phosphate (Sigma) for 14 d with medium changes every 3–4 d. Parallel 

control cultures were maintained in CCM for 14 d with medium changes every 3–4 d. 

All wells were washed with PBS and fixed with 10% (v/v) neutral buffered formalin 

(Sigma) for 1 h. The adipogenic differentiation and control wells were washed with PBS 

and stained with 0.6% (w/v) Oil-Red-O (Sigma) solution in 60% isopropanol (Sigma) 

and 40% PBS for 20 min followed by washing with PBS. The osteogenic differentiation 

and control wells were washed with deionized water and stained with 40 mM Alizarin 
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Red S (Sigma) solution, pH 4.2, in water for 20 min followed by washing with water. 

Images were captured on a Nikon Eclipse Ti-S inverted microscope. 

 

III.2.13. Growth curves  

hMSCs derived from high density monolayer or hanging drop cultures were 

seeded at 100 cells/cm2 in 55-cm2 dishes (Corning) in quadruplicate and cultured for 7 d 

in CCM with medium changes every 3 d. After 7 d, cells were lifted with trypsin/EDTA, 

counted with hemocytometer, and replated. The process was repeated until cells reached 

senescence. 

 

III. 2.14. CFU-F assays 

hMSCs derived from high density monolayer or hanging drop cultures were 

seeded onto 55 cm2 dishes at 1.5 cells/cm2 in quadruplicate and cultured for 14 d in 

CCM. Medium was changed every 3–4 d. After 14 d, the plates were stained with 3% 

(w/v) crystal violet (Sigma) in 100% methanol (Sigma) for 5 min, washed with water, 

and air-dried. Plates were scanned on an EPSON Perfection 4490 Photo scanner and 

images were processed with Adobe Photoshop CS3. 

 

III.2.15. Microarrays  

hMSCs from two donors grown at low density for 7 d and at high density or in 

hanging drops for 3 d were harvested for total RNA. A total of 2 µg of RNA from each 

sample was applied for microarrays using Whole Transcript Sense Target Labeling 

Assay protocol (Affymetrix) according to manufacturer’s directions. Briefly, to 

minimize the background and thereby increasing the array detection sensitivity and 

specificity, rRNA reduction was performed for samples containing the Poly-A RNA 

controls (GeneChip Eukaryotic Poly-A RNA-Control Kit; Affymetrix) using the 

RiboMinus Transcriptome Isolation Kit (Invitrogen) with Magna-Sep Magnetic Particle 

Separator (Invitrogen) and Betaine (Sigma). RNA was concentrated with GeneChip IVT 

cRNA Cleanup Kit (Affymetrix) and used to prepare double stranded cDNA with 
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GeneChip WT cDNA Synthesis Kit (Affymetrix). Generated cDNA was used to produce 

cRNA with GeneChip WT cDNA Amplification Kit (Affymetrix), followed by cleanup 

with GeneChip Sample Cleanup Module (Affymetrix). The amount of cRNA was 

determined with spectrophotometer (SmartSpec Plus; Bio Rad) and 10 µg was used to 

generate cDNA with GeneChip WT cDNA Synthesis Kit (Affymetrix) followed by 

cRNA hydrolysis and cleanup of single-stranded cDNA with GeneChip Sample Cleanup 

Module. The amount of cDNA was determined with spectrophotometer and 5.5 µg was 

used for fragmentation with GeneChip WT Terminal Labeling Kit (Affymetrix). The 

fragmented cDNA was labeled using GeneChip WT Terminal Labeling Kit and 

hybridized (GeneChip Hybridization Oven 640; Affymetrix) on Human Exon 1.0 ST 

arrays (Affymetrix) using GeneChip Hybridization, Wash, and Stain Kit (Affymetrix). 

Arrays were washed and stained (GeneChip Fluidics Station 450; Affymetrix) using 

GeneChip Hybridization, Wash, and Stain Kit followed by scanning with GeneChip 

Scanner (Affymetrix). Data were normalized using robust multiarray (RMA) algorithm 

and gene level analysis was performed with Partek Genomics Suite 6.4 (Partek). Genes 

that were either up- or downregulated in spheroids at least twofold, compared with their 

monolayer counterparts, were used in hierarchical clustering. Significant Gene Ontology 

terms for up- and downregulated genes in spheroids were determined using the Partek 

software. The raw microarray data files will be available at the Gene Expression 

Omnibus website (http://www.ncbi.nlm.nih.gov/geo/). 

 

III.2.16. Analysis of hMSC-secreted soluble anti-inflammatory factors 

For TSG-6, STC-1, and LIF ELISAs, monolayer, spheroids, and spheroid derived 

hMSCs were seeded at equal cell density (200,000 cells/well or 8–25k spheroids/well) 

on tissue culture treated six-well dishes in 1.5 mL of CCM. In addition, hMSC spheroids 

were also suspended at 8 spheroids/well on non-adherent six-well dishes (Corning). 

After 24 h, images were acquired, conditioned medium was collected, and the cells were 

lyzed with 100 µL of modified RIPA buffer containing HALT protease/phosphatase 

inhibitors (Thermo Scientific). Conditioned medium was cleared of cellular material by 
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centrifugation at 500 × g for 10 min and stored at −80 °C. Total cellular protein was 

measured in whole cells lysates using the bicinchoninic acid (BCA)-dependent 

colorimetric detection method (Micro BCA Protein Assay Kit; Thermo Scientific). 

Human TSG-6 protein levels in conditioned medium were determined by ELISA as 

described [51] with some modifications. Briefly, wells of microplate strips (Costar) were 

coated overnight at 4 °C with 10 µg/mL TSG-6-specific monoclonal antibody (clone 

A38.1.20; Santa Cruz Biotechnology, Inc.) in 50 µL of 0.2 M bi- carbonate buffer (pH 

9.2). The plates were washed 3 times with 400 µL of 1× wash buffer (R&D Systems), 

blocked with 100 µL of 1× PBST (Cell Signaling) containing 0.5% BSA (Thermo), and 

incubated for 2 h with 50 µL of sample or recombinant human TSG-6 protein standards 

(R&D Systems) diluted in blocking buffer. Wells were subsequently washed and 

incubated with 0.5 µg/mL biotinylated antihuman TSG-6 (R&D Systems) in 50 µL of 1× 

PBST. After 2 h, the samples were incubated for 20 min with 50 µL of streptavidin-HRP 

(R&D Systems), then with 100 µL substrate solution (R&D Systems). The colorimetric 

reaction was terminated after 15 min with 2 N sulfuric acid (R&D Systems) and the 

optical density determined on a plate reader (FLUOstar Omega; BMG Labtech) at an 

absorbance of 450 nm with wavelength correction at 540 nm. Human STC-1 and LIF 

proteins were detected with commercially available ELISA kits (R&D Systems) 

following procedures described by the manufacturer. Two hundred µL of sample/well 

was used for the LIF ELISA and 100 µL for the STC-1 ELISA. The obtained values 

were normalized to total cellular protein content to account for loss of cell/spheroid 

transfer. 

 

III.2.17. Macrophage inflammatory assay 

J774A.1 mouse macrophages (ATCC) were cultured on 15-cm bacteriological 

dishes (Falcon) in high glucose DMEM (Invitrogen) supplemented with glutamax, 10% 

FBS, and penicillin/streptomycin. Subcultures were prepared by washing the cells from 

the dish every 2–3 d and replating at a ratio of 1:5 to 1:10 (v/v). For the inflammatory 

assay, macrophages (MФ) were seeded in the upper chamber of a 24-mm transwell 
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insert with 0.4-µm pores (Corning) at 400,000 cells/well followed by stimulation with 

0.1 µg/mL of LPS (Sigma). After 90 min, LPS was removed and the cultures replaced 

with fresh medium. Total of 200,000 monolayer hMSCs, 200,000 spheroid derived cells, 

or 8–25k spheroids were transferred to the plate beneath the transwell. After 5 h, 

medium conditioned by the macrophages was collected and clarified by centrifugation at 

500 × g for 10 min. A total of 50 µL of conditioned medium was used for mTNFα 

ELISA (Quantikine Kit; R&D Systems). Mouse macrophages were washed with PBS 

and harvested for RNA to quantify mTNFα expression levels by Real-time RT-PCR 

using Taqman Gene Expression Assay. 

 

III.2.18. Mouse model of peritonitis 

Male C57BL/6J mice (Jackson Laboratories), 6–8 week of age and housed on a 

12 h light/dark cycle, were used to study the anti-inflammatory action of hMSC 

spheroids on zymosan-induced peritonitis. All animal procedures were performed with 

approval by the Animal Care and Use Committee of Texas A&M Health Science Center 

and in accordance with guidelines set forth by the National Institutes of Health. The 

inflammatory compound Zymosan A (Sigma) was prepared at a concentration of 1 

mg/mL in PBS and autoclaved for 15 min to sterilize. To induce inflammation, 1 mL of 

the 0.1% (w/v) zymosan solution was administered i.p. Fifteen minutes later, either 1.5 × 

106 monolayer hMSCs, 1.5 × 106 spheroid derived cells, or 60–25k spheroids were 

administered i.p. through a 20-gauge needle or catheter in 150–200 µL of HBSS (Gibco). 

After 6 h, animals were killed by cervical dislocation and the exudates retrieved by 

peritoneal lavage using 1.5 mL sterile PBS, pH 7.4, containing a 1× concentration of 

Halt protease inhibitors (Thermo Scientific) and 5 mM EDTA (Thermo Scientific). The 

lavage volume was recorded and the cells removed by centrifugation at 500 × g for 10 

min. The protein-rich supernatants were then transferred to fresh microcentrifuge tubes, 

cleared of debris by centrifugation for 10 min at 10,000 × g, and stored at −80 °C. 

Amounts of peritoneal exudation were determined by subtracting the measured lavage 

volume of each sample from the averaged baseline volume. Twenty-four hours after cell 



 

 53 

delivery, blood was collected from the right ventricle of anesthetized mice and 

transferred to Capiject clot activating tubes (Terumo Medical Corporation). The tubes 

were inverted 8–10 times and incubated at room temperature for 20–30 min to facilitate 

clot formation. The samples were centrifuged at 1500 × g for 10 min and the serum layer 

collected for measurements of plasmin activity. 

 

III.2.19. Measurements of inflammation in peritoneal exudates and blood serum 

Levels of inflammatory molecules TNFα, IL-1β, CXCL2, and PGE2 were 

determined from the peritoneal lavage using commercially available ELISA kits (R&D 

Systems). Fifty microliters of sample per well was used for the detection of TNFα, 25 µL 

for IL-1β (1:2 dilution), 6.7 µL for CXCL2 (1:7.5 dilution), and 3 µL for PGE2 (1:50 

dilution). Secreted MPO, a marker of neutrophil activity, was measured from the cell-

free lavage fluid with a mouse-specific MPO ELISA kit (Hycult Biotech) per 

manufacturer’s instructions. Total protein was evaluated with the Micro BCA protein 

detection kit (Thermo Scientific). Serum plasmin activity, a marker of inflammatory 

status, was ascertained by measuring time dependent cleavage of the chromogenic 

substrate Chromozym PL (Roche Applied Science) into 4-nitranline in 50 mM Tris-HCl 

(pH 7.4) and 0.9% NaCl. Absorbance at 405 nm was measured every 2 min for 30 min 

using the plate reader. The values were expressed as average change in absorbance/min. 

 

III.2.20. Data analysis 

Data are summarized as mean ± SD. Student’s t test was used to calculate the 

levels of significance (NS, P ≥ 0.05; *P < 0.05; **P < 0.01; ***P < 0.001). 

 

III.3. Results 

 

III.3.1. Aggregation of hMSCs in hanging drops into spheroids 

To aggregate hMSCs, we used a hanging drop protocol. Time-lapse microscopy 

demonstrated that hMSCs cultured in hanging drops first formed a loose network and 
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then numerous small aggregates that gradually coalesced into a single central spheroid 

along the lower surface of the drop (Fig. III.1A). Once assembled, the spheroid did not 

increase in size but progressively compacted between 48 and 96 h. H&E staining of 

sections revealed the spheroids were solid throughout with small round cells evenly 

distributed and embedded in matrix (Fig. III.1B). The surface of the spheroid had a layer 

of epithelium-like cells that were more elongated and flatter. As expected, the sizes of 

the spheroids were dependent on the number of hMSCs suspended in the hanging drops 

(Fig. III.1E). hMSC spheroids of all sizes expressed and secreted very high levels of the 

anti-inflammatory molecule TSG-6 compared with either low or high density monolayer 

cultures, but spheroids of 25,000 cells (Sph 25k) showed the highest expression and 

secretion of TSG-6 (Fig. III.1C and D). Moreover, TSG-6 expression increased in a time 

dependent manner with spheroids of 25,000 hMSCs and was consistently much higher 

than in standard cultures of adherent hMSCs (Fig. III.1F). 
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Figure III. 1. The expression of TSG-6 was increased as hMSCs aggregated into spheroids in hanging 
drops. (A) Phase contrast microscopy showing the time course of the aggregation of 25,000 hMSCs into a 
spheroid in a hanging drop. (Scale bar, 500 µm.) (B) H&E staining of hMSC spheroid sections from 3-d 
hanging drop cultures. Surface (Top), and center (Middle and Bottom) of a spheroid. (Scale bar, 50 µm.) 
(C) Real-time RT-PCR measurements of TSG-6 expression in hMSCs shown as relative to Adh Low 
sample (n = 3). (D) ELISA measurements of TSG-6 secretion over 24 h from hMSCs grown for 3 d at 
high density or as hanging drops at different cell densities (n = 4). (E) Sizes of spheroids generated by 
hMSCs from two donors grown in hanging drops for 3 d. Sizes were measured from captured images of 
transferred spheroids (n = 7–13). (F) Real-time RT-PCR measurements of TSG-6 expression in hMSCs 
grown at high density or in hanging drops at 25,000 cells/drop for 1–4 d shown as relative to hMSCs 
grown at low density (n = 3). Values are mean ± SD. Abbreviations: RQ, relative quantity; Adh Low, 
hMSCs plated at 100 cells/cm2 for 7–8 d until about 70% confluent; Adh High, hMSCs harvested from 
same Adh Low cultures, plated at 5,000 cells/cm2 and incubated for 3 d; Sph 10k-250k, hMSCs harvested 
from same Adh Low cultures and incubated for 3 d in hanging drops at 10,000-250,000 cells/drop. Bartosh 
et al., PNAS (2010) [198]. 
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Figure III. 2. Viability of hMSCs in spheroids. (A and B) Viability of hMSCs as determined by flow 
cytometry measuring PI uptake and annexin V-FITC labeling. Spheroids were dissociated with 
trypsin/EDTA. Representative log fluorescent dot plots and summary of the data are shown. Values are 
mean ± SD (n = 3). Abbreviations: As in Fig. 1 with 1 d to 4 d indicating days of incubation. Bartosh et al. 
PNAS(2010) [198]. 
 
 
 
III.3.2. Viability of hMSCs in spheroids  

Because hMSCs in spheroids may have less access to nutrients, it was of interest 

to establish whether the cells remained viable. In 3-d cultures of spheroids of 10,000 or 

25,000 hMSCs, almost 90% of the harvested cells were viable as assayed by PI uptake 

and labeling with annexin V-FITC (Fig. III.2A). The number of apoptotic or necrotic 

cells was greater in spheroids prepared with 100,000 or 250,000 hMSCs (Fig. III.2A). 
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Also, the number of apoptotic or necrotic cells increased slightly when the incubation 

period was extended from 3 d to 4 d (Fig. III.2B). 

 

III.3.3. Analysis of spheroid hMSC size in vitro and relative tissue distribution after i.v. 

infusion 

As suggested by histological sections (Fig. III.1B), hMSCs in spheroids appeared 

smaller than hMSCs from standard monolayer cultures. The cells released from 

spheroids by trypsinization were nearly half the diameter and approximately one-fourth 

the volume of hMSCs derived from adherent monolayers as shown by flow cytometry 

(Fig. III.3 and Fig. III.4A) and microscopy (Fig. III.4B). 

To test if the smaller size of the hMSCs dissociated from spheroids would allow 

the cells to traffic through the lung microvasculature and therefore distribute more 

efficiently into other tissues, both monolayer and spheroid hMSCs were injected i.v. into 

the tail vein of NOD/scid mice. Real-time PCR for human Alu sequences in the lungs 

collected 15 min after hMSC infusion suggested that the number of trapped cells 

decreased by about 25% with spheroid derived hMSCs compared with monolayer 

hMSCs, At the same time, a larger fraction of infused spheroid hMSCs were recovered 

in the liver, spleen, kidney, and heart (Fig. III.4C). 
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Figure III. 3. Analysis of spheroid derived hMSC size by flow cytometry. Flow cytometric determination 
of hMSC size from 3-d cultures of adherent monolayers (Adh High) or spheroids (Sph 25k) labeled with 
the viability dyes calcein AM (live cells, blue) and 7AAD (dead cells, red). (A) Representative log 
fluorescent dot plots. (B) Histogram of bead standards with diameters of 3, 7, 15, and 25 µm. (C) 
Representative linear scatter plots of the calcein AM+/7AAD− cell populations. Brackets were applied to 
the scatter plot at locations corresponding to the appropriate bead size (I = 0, J = 3 µm, K = 7 µm, L = 15 
µm, and M = 25 µm). Assays were performed at the same voltages. Bartosh et al., PNAS (2010) [198]. 
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Figure III. 4. Size analysis and i.v. infusion of spheroid hMSCs. (A) Assays of cell size by flow cytometry 
(n = 3). hMSC sizes were estimated from forward scatter (FS) (Inset) properties of the viable population 
(calcein AM+/7AAD−) relative to beads with known diameters (3, 7, 15, and 25 µm). (B) Cell size assayed 
by microscopy. (C) Relative tissue distribution of i.v. infused hMSCs. NOD/scid mice were infused i.v. 
with 106 monolayer or spheroid derived hMSCs. After 15 min, tissues were harvested for genomic DNA 
and tissue distribution of hMSCs was determined with real-time PCR for human Alu and GAPDH (n = 4–
5) and shown as relative to Adh High sample. *P < 0.05, **P < 0.01, and ***P < 0.001. Values are mean ± 
SD. Abbreviations: as in Fig. 1. Bartosh et al., PNAS (2010) [198]. 
 
 
 
III.3.4. Human MSCs dissociated from spheroids retain the properties of adherent 

hMSCs 

Human MSCs dissociated from spheroids retained the ability to differentiate into 

mineralizing cells and adipocytes (Fig. III.5A and B). The dissociated cells expanded 

more slowly during an initial passage and then more rapidly than adherent hMSCs 

through four passages before reaching senescence at about the same number of 
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population doublings (Fig. III.5C and Fig. III.6A). In addition, the dissociated cells 

readily generated colonies (CFUs) when plated at clonal densities (Fig. III.5D and Fig. 

III.6B). Consistent with the data on rates of propagation (Fig. III.5C), the number of 

CFUs from spheroid cells was initially less than the number of CFUs from adherent 

cultures but was greater in later passages (Fig. III.5D and Fig. III.6B). The surface 

epitopes of the hMSCs dissociated from spheroids were similar to the surface epitopes of 

hMSCs from adherent monolayers when dissociated under the same conditions with 

trypsin (10 min at 37 °C): the dissociated cells were negative for hematopoietic markers, 

and they were slightly less positive for CD73, CD90, and CD105, apparently because of 

the smaller size of the cells (Fig. III.5E, Figs. III.7–9, and Table III.1). 
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Figure III. 5. Spheroid hMSCs retain the properties of hMSCs from adherent cultures. (A) Differentiation 
of hMSCs in osteogenic medium (Osteo Dif) and control medium (Osteo Con). Cultures were stained with 
Alizarin Red after 14 d. (Scale bar, 200 µm.) (B) Differentiation of hMSCs in adipogenic medium (Adipo 
Dif) and control medium (Adipo Con). Cultures were stained with Oil Red O after 14 d. (Scale bar, 200 
µm.) (C) Growth of hMSCs (donor 2) as monolayers from high density and hanging drop cultures plated at 
low density (5,500 cells/plate) and passaged every 7 d (n = 4). Cumulative population doublings (PDs) 
after each passage are shown (Inset). (D) CFU-F assays of hMSCs (donor 2) plated at 83 cells/plate and 
incubated for 14 d (n = 4). Representative plates at passage 1 and passage 2 after transfer. Values are mean 
± SD. (E) Flow cytometry of surface protein expression on hMSCs. Abbreviations: as in Fig. 1 with P1 to 
P10 indicating passage number. Bartosh et al., PNAS (2010) [198]. 
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Figure III. 6. hMSCs from spheroids exhibit similar growth characteristics and clonogenicity to monolayer 
cultures. (A) Growth of hMSCs (donor 1) as monolayers from high density and hanging drop cultures 
plated at low density (5,500 cells/plate) and passaged every 7 d. Cumulative population doublings (PDs) 
after each passage are shown (Inset). (B) CFU-F assays of hMSCs (donor 1) plated at 83 cells/plate and 
incubated for 14 d. Representative plates at passage 1 and passage 2 after transfer. Values are mean CFU-
F percentage ± SD (n = 4). Bartosh et al. PNAS (2010) [198]. 
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Figure III. 7. Surface phenotype of hMSCs cultured as monolayers at low cell density. Flow cytometry 
measurements of characteristic hMSC surface proteins. Passage 2 hMSCs were plated at 100 cells/cm2 and 
grown for 7 d until approximately 70% confluent before analysis. The cells were harvested by incubation 
with trypsin/EDTA for 5 min. Bartosh et al. PNAS (2010) [198]. 
 
 
 
 

 

 
 

Fig. S3. Surface phenotype of hMSCs cultured as monolayers at low cell density. Flow cytometry measurements of characteristic hMSC surface proteins.
Passage 2 hMSCs were plated at 100 cells/cm2 and grown for 7 d until approximately 70% confluent before analysis. The cells were harvested by incubation
with trypsin/EDTA for 5 min.

Bartosh et al. www.pnas.org/cgi/content/short/1008117107 6 of 11
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Figure III. 8. Surface phenotype of hMSCs cultured as monolayers at high cell density and harvested by 
incubation with trypsin for 10 min. Flow cytometry measurements of characteristic hMSC surface 
proteins. Passage 3 hMSCs were plated at 5,000 cells/cm2 and grown for 3 d before analysis. The cells 
were harvested by incubation with trypsin/EDTA for 10 min. Bartosh et al. PNAS (2010) [198]. 
 

 

 

Fig. S4. Surface phenotype of hMSCs cultured as monolayers at high cell density and harvested by incubation with trypsin for 5 min. Flow cytometry
measurements of characteristic hMSC surface proteins. Passage 3 hMSCs were plated at 5,000 cells/cm2 and grown for 3 d before analysis. The cells were
harvested by incubation with trypsin/EDTA for 5 min.

Fig. S5. Surface phenotype of hMSCs cultured as monolayers at high cell density and harvested by incubation with trypsin for 10 min. Flow cytometry
measurements of characteristic hMSC surface proteins. Passage 3 hMSCs were plated at 5,000 cells/cm2 and grown for 3 d before analysis. The cells were
harvested by incubation with trypsin/EDTA for 10 min.

Bartosh et al. www.pnas.org/cgi/content/short/1008117107 7 of 11
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Figure III. 9. Surface phenotype of hMSCs derived from spheroids. Flow cytometry measurements of 
characteristic hMSC surface proteins. Passage 3 hMSCs were suspended in hanging drops at 25,000 
cells/drop and cultured for 3 d before analysis. The spheroids were dissociated for 10 min with 
trypsin/EDTA to obtain the spheroid cells. Bartosh et al. PNAS (2010) [198]. 
 

 

 
 
 

Fig. S6. Surface phenotype of hMSCs derived from spheroids. Flow cytometry measurements of characteristic hMSC surface proteins. Passage 3 hMSCs were
suspended in hanging drops at 25,000 cells/drop and cultured for 3 d before analysis. The spheroids were dissociated for 10 min with trypsin/EDTA to obtain the
spheroid cells.

Fig. S7. Cell cycle analysis of monolayer and spheroid hMSCs. Representative cell cycle distribution in hMSCs for donor 1 grown at low density (A), at high
density (B), and as spheroids (C) was determined by analyzing DNA content of permeabilized hMSCs labeled with PI. DNA content was measured with a flow
cytometer and data analyzed using MultiCycle software. (D) Summary of the cell cycle analysis data. Values are mean ± SD (n = 3).

Bartosh et al. www.pnas.org/cgi/content/short/1008117107 8 of 11
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Table III. 1. List of antibodies used to detect the expression of cell surface proteins in hMSC  
 
 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
 
 
Total of nine different protocols were run for each hMSC sample to determine the surface proteins 
expressed. Bartosh et al. PNAS (2010) [198]. 
 

 

Table S1. List of antibodies used to detect the expression of cell surface proteins in hMSCs

Protocol Protein Fluorochrome Isotype Clone Manufacturer

Protocol 1 CD36 FITC Ms IgG-1 FA6.152 Beckman-Coulter
CD34 PE Ms IgG-1 581 Beckman-Coulter
CD19 ECD Ms IgG-1 J3.119 Beckman-Coulter
CD11b PE-Cy5 Ms IgG-1 Bear1 Beckman-Coulter
CD45 PE-Cy7 Ms IgG-1 J.33 Beckman-Coulter

Protocol 2 PCLP1 FITC Ms IgG-2a 53D11 MBL International
CD166 PE Ms IgG-1 3A6 Beckman-Coulter
CD90 PE-Cy5 Ms IgG-1 Thy1/310 Beckman-Coulter

Protocol 3 CD49b FITC Ms IgG-1 Gi9 Beckman-Coulter
CD105 PE Ms IgG-3 IG2 Beckman-Coulter
CD184 APC Ms IgG-2a 12G5 BD Biosciences
CD3 PE-Cy7 Ms IgG-1 UCHT1 Beckman-Coulter

Protocol 4 CD147 FITC Ms IgG-1 HIM6 BD Biosciences
CD49c PE Ms IgG-1 C3 II.1 BD Biosciences
CD29 PE-Cy5 Ms IgG-1 MAR4 BD Biosciences

Protocol 5 CD59 FITC Ms IgG-2a P282E Beckman-Coulter
CD146 PE Ms IgG-2a TEA1/34 Beckman-Coulter
CD79a PE-Cy5 Ms IgG-1 HM47 Beckman-Coulter

Protocol 6 Class I HLA FITC Ms IgG-1 G46-2.6 BD Biosciences
CD271 PE Ms IgG-1 C40-1457 BD Biosciences
CD49f PE-Cy5 Rat IgG-2a GoH3 BD Biosciences
CD117 PE-Cy7 Ms IgG-1 104D2D1 Beckman-Coulter

Protocol 7 Class II HLA FITC Ms IgG-2a TU39 BD Biosciences
CD73 PE Ms IgG-1 AD2 BD Biosciences
CD106 PE-Cy5 Ms IgG-1 51–10C9 BD Biosciences

Protocol 8 HGFR FITC Rat IgG-1 eBioclone97 eBioscience
CD49d PE Ms IgG-1 9F10 BD Biosciences
CD14 ECD Ms IgG-2a RMO52 Beckman-Coulter
CD44 APC Ms IgG-2b G44-26 BD Biosciences

Protocol 9 Isotypes FITC Ms IgG-1 679.1Mc7 Beckman-Coulter
PE Ms IgG-2a 7T4-1FS Beckman-Coulter
FITC Ms IgG-2a G155-178 BD Biosciences
FITC Rat IgG-1, k eBioscience
PE Ms IgG-1, k MOPC-31C BD Biosciences
PE Ms IgG-3 Santa Cruz
ECD Ms IgG-1 679.1MC7 Beckman-Coulter
ECD Ms IgG -2a 7T4-1F5 Beckman-Coulter
PE-Cy5 Ms IgG-1 679.1Mc7 Beckman-Coulter
PE-Cy5 Rat IgG-2a R35-95 BD Biosciences
APC Ms IgG-2a 7T4-1F5 Beckman-Coulter
APC Ms IgG-2b 27–35 BD Biosciences
PE-Cy7 Ms IgG-1 679.1Mc7 Beckman-Coulter

Total of nine different protocols were run for each hMSC sample to determine the surface proteins expressed.

Bartosh et al. www.pnas.org/cgi/content/short/1008117107 10 of 11
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III.3.5. Transcriptome changes in the spheroid hMSCs 

Surveys with microarray assays demonstrated that 236 genes were upregulated 

and 230 genes were downregulated in a comparison of spheroid cells with hMSCs from 

adherent monolayers (Fig. III.10A and Table III.2). There were increases in genes with 

ontologies for extracellular region, regulation of cell adhesion, receptor binding, cell 

communication, extracellular matrix, and negative regulation of cell proliferation (Fig. 

III.10A). Also, there were parallel decreases in genes with ontologies for cytoskeleton 

organization and biogenesis, mitosis, cell cycle, and extracellular matrix (Fig. III.10A). 

Of special interest was the increase in genes with ontologies for response to wounding 

and inflammatory response (Fig. III.10A). Real-time RT-PCR assays (Fig. III.11A) 

demonstrated marked increases in the expression of TSG-6; STC-1, an anti-

inflammatory/anti-apoptotic protein; leukemia inhibitory factor (LIF), a cytokine for 

growth and development; IL-24, a tumor suppressor protein; TRAIL, a protein with 

selectivity for killing certain cancer cells; and CXCR4, a receptor involved in MSC 

homing. As expected from its stimulatory effect of MSC proliferation [206], there was 

decreased expression of DKK1, an inhibitor of Wnt signaling (Fig. III.11A).  
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Figure III. 10. Microarray assays of hMSCs from two donors. (A) Hierarchical clustering of differentially 
expressed genes. Genes that were either up (236 genes) or downregulated (230 genes) in spheroids (Sph 
25k) at least twofold compared with their adherent culture counterparts (Adh Low and Adh High), were 
used in hierarchical clustering. The most significant Gene Ontology terms for upregulated genes (red) and 
downregulated genes (blue) are shown next to the heat map. (B) Flow cytometry of differentially 
expressed surface epitopes on hMSCs. Abbreviations: as in Fig. 1. Bartosh et al. PNAS (2010) [198]. 
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Table III. 2. Selected genes upregulated in hMSC spheroids 
 
 
 

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Values are fold changes of 25k Sph sample compared with either Adh Low or Adh High for two donors. 
Bartosh et al. PNAS (2010) [198]. 

Table S2. Selected genes up-regulated in hMSC spheroids

Gene (GeneID)

Donor 1 Donor 2

25k Sph vs.
Adh Low

25k Sph vs.
Adh High

25k Sph vs.
Adh Low

25k Sph vs.
Adh High

Secreted molecules
IL8 (3576) 78 82 38 34
TSG-6 (7130) 55 61 51 40
IL1B (3553) 3 24 19 12
BMP2 (650) 16 14 23 12
CXCL1 (2919) 14 12 7 3
SPP1 (6696) 13 12 4 5
GDF15 (9518) 12 6 17 6
IL11 (3589) 11 10 9 10
LIF (3976) 10 12 7 9
SMOC1 (64093) 10 8 6 4
IL1A (3552) 9 7 5 3
IGFBP5 (3488) 8 11 11 14
C1S (716) 8 4 9 3
BMP6 (654) 7 8 3 4
TRAIL (8743) 7 7 11 6
PTHLH (5744) 6 6 3 3
NMB (4828) 6 5 5 3
APOD (347) 6 5 7 3
PLTP (5360) 6 7 5 4
IL24 (11009) 6 6 10 7
IL6 (3569) 6 3 3 3
STC1 (6781) 6 7 6 10
NAMPT (10135) 5 5 3 3
Cell surface receptors
ITGA2 (3673) 26 23 13 18
EDNRA (1909) 21 15 7 9
GPR84 (53831) 18 13 11 5
BDKRB2 (624) 10 10 9 6
CXCR4 (7852) 7 7 4 5
DPP4 (1803) 7 6 5 4
CD82 (3732) 6 5 7 4
PLA2R1 (22925) 6 5 7 4
PTGDR (5729) 6 7 7 5
ICAM1 (3383) 5 6 8 5
COLEC12 (81035) 5 4 7 6
C3AR1 (719) 5 5 4 3
Extracellular matrix molecules
MMP13 (4322) 64 66 39 37
CHI3L1 (1116) 42 33 72 36
TFPI2 (7980) 25 55 15 53
MMP3 (4314) 14 15 9 6
MMP1 (4312) 10 11 25 16
ADAMTS5 (11096) 8 7 5 3
GPC6 (10082) 6 4 3 2
LUM (4060) 6 3 6 3
LAMA4 (3910) 5 3 5 3
Transcription factors
NR4A2 (4929) 11 12 13 10
ETV1 (2115) 10 11 6 6
MAFB (9935) 9 9 6 6
SATB1 (6304) 6 6 7 5

Values are fold changes of 25k Sph sample compared with either Adh Low or Adh High for two donors.

Bartosh et al. www.pnas.org/cgi/content/short/1008117107 11 of 11
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Figure III. 11. Spheroid hMSCs express high levels of anti-inflammatory and anti-tumorigenic molecules. 
(A) Real-time RT-PCR measurements for anti-inflammatory genes (TSG-6, STC-1, and LIF), anti-
tumorigenic genes (IL-24 and TRAIL), gene for an MSC homing receptor (CXCR4), and gene for the Wnt 
signaling inhibitor (DKK1) for two donors. Values are mean RQ ± 95% confidence interval from triplicate 
assays compared with Adh Low sample. (B) Images of high density monolayer (Adh High), spheroids 
(Sph 25k), and spheroid derived hMSCs (Sph 25k DC) 24 h after transfer onto adherent (Adh) or non-
adherent (Non adh) surfaces. Cultures were in six-well plates containing 1.5 mL CCM and either 200,000 
hMSCs from high density cultures, eight spheroids, or 200,000 hMSCs dissociated from spheroids. After 
24 h, medium was recovered for ELISAs and cells lyzed for protein assays. (Scale bar, 200 µm.) TSG-6 
(C), STC-1 (D), and LIF (E) ELISAs on medium, normalized to total cellular protein. Values are mean ± 
SD (n = 3). Abbreviations: as in Fig. 1 with ND indicating not detectable and Sph 25k DC-Adh indicating 
hMSCs dissociated from Sph 25k and plated on cell adherent surfaces. Bartosh et al., PNAS (2010) [198]. 
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III.3.6. Changes in cell surface protein expression and cell cycle distribution in hMSC 

spheroids 

Assays by flow cytometry demonstrated decreased expression of podocalyxin-

like protein (PODXL), an anticell-adhesion protein; and α4-integrin (CD49d), an 

integrin subunit associated with lymphocyte homing (Figs. III.7-9). There was partial 

downregulation of the melanoma cell adhesion molecule (MCAM or CD146) that is 

used as a marker for endothelial cells and pericytes, and of ALCAM (CD166), a cell 

adhesion molecule (Fig. III.10B). At the same time, there was increased expression of an 

integrin subunit for cell adhesion (α2-integrin of CD49b), and a protein associated with 

suppression of metastases (CD82) (Fig. III.10B). As expected from microarray results, 

assays by flow cytometry also demonstrated a decrease of spheroid hMSCs in S-phase 

compared with monolayer hMSCs (Fig. III.12A–D). 

 
 
 
 
 
 

 

 

 

 

 

 

 

 

 
 
 
 
Figure III. 12. Cell cycle analysis of monolayer and spheroid hMSCs. Representative cell cycle 
distribution in hMSCs for donor 1 grown at low density (A), at high density (B), and as spheroids (C) was 
determined by analyzing DNA content of permeabilized hMSCs labeled with PI. DNA content was 
measured with a flow cytometer and data analyzed using MultiCycle software. (D) Summary of the cell 
cycle analysis data. Values are mean ± SD (n = 3). Bartosh et al. PNAS (2010) [198]. 
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III.3.7. Spheroid hMSCs secrete anti-inflammatory proteins 

Spheroids of hMSCs plated on adherent culture surfaces gradually generated 

spindle-shaped cells that migrated away from the spheroids (Fig. III.11B). No migration 

was seen with spheroids plated on non-adherent surfaces (Fig. III.11B). ELISAs 

demonstrated that hMSCs either in spheroids or dissociated from spheroids continued to 

secrete TSG-6, STC-1, and LIF when plated on culture dishes for 24 h (Fig. III.11C–E). 

The levels of all three factors were much higher than with adherent monolayer hMSCs. 

About the same levels of STC-1 and LIF were observed in spheroids cultured directly 

either on adherent or non-adherent plates, but spheroids cultured on non-adherent dishes 

secreted more TSG-6 (Fig. III.11C–E). The levels of TSG-6, STC-1, and LIF decreased 

when the hMSCs were dissociated from spheroids and cultured on adherent plates but 

the levels remained much higher than with adherent monolayers (Fig. III.11C–E). 

 

III.3.8. Spheroid hMSCs decrease activation of macrophages in vitro and inflammation 

in vivo 

The increased secretion of anti-inflammatory molecules TSG-6 and STC-1 by the 

spheroid hMSCs suggested that the cells would be more effective than adherent 

monolayer cultures of hMSCs in reducing inflammatory responses. To test this 

prediction, mouse macrophages were preactivated with LPS in the upper chamber of a 

transwell, followed by a transfer of the chamber to a test well (Fig. III.13A). Under the 

conditions of the experiment, the presence in the test well of hMSCs from adherent 

monolayers had no significant effect on the expression or secretion of TNFα by the 

stimulated macrophages (Fig. III.13B and Fig. III.14A). In contrast, TNFα expression 

and secretion was decreased significantly by the presence in the test well of intact 

spheroids or hMSCs dissociated from spheroids (Fig. III.13B and Fig. III.14A). The 

results indicated therefore that the spheroid derived hMSCs secreted more effective anti-

inflammatory factors. 
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Figure III. 13. hMSC spheroids exhibit enhanced anti-inflammatory effects in vitro and in vivo. (A) 
Schematic of the mouse macrophage (mMΦ) assay. mMΦs were seeded in the upper chamber of a 
transwell, stimulated with LPS for 90 min, the LPS was removed, and the chamber transferred to a six-
well dish plated with monolayer (Adh), spheroid (Sph), or spheroid derived hMSCs (Sph DC) at the same 
cell density. MΦ:hMSC (2:1). After 5 h, medium was collected for ELISAs. (B) ELISA for mTNFα in 
medium from cocultures (n = 3). (C–F) Anti-inflammatory activity of hMSCs in a mouse model of 
peritonitis. C57BL/6 mice were injected i.p. with zymosan to induce inflammation. After 15 min, the mice 
were injected i.p. with 1.5 × 106 monolayer hMSCs, 60 spheroids, or 1.5 × 106 spheroid derived cells. 
After 6 h, peritoneal lavage was collected and mTNFα (C), mMPO (D), and mCXCL2 (E) levels were 
determined with ELISAs. Total amounts of the specific molecules in the lavage are shown (n = 4–8). After 
24 h, blood was collected and plasmin activity was measured from serum (n = 3–6). Values are mean ± 
SD. Not significant (NS) P ≥ 0.05, *P < 0.05, **P < 0.01, and ***P < 0.001. Abbreviations: as in Figs. 1 
and 6. Bartosh et al. PNAS (2010) [198]. 
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Figure III. 14. hMSC spheroids show increased anti-inflammatory effects in vitro and in vivo. (A) Real-
time RT-PCR assays of RNA for mouse TNFα in mouse macrophages (MΦs). MΦs were seeded in the 
upper chamber of a transwell, stimulated with LPS for 90 min, the LPS was removed, and the chamber 
transferred to a six-well dish plated with monolayer (Adh), spheroid (Sph), or spheroid derived (Sph DC) 
hMSCs at equal cell density. MΦ:hMSC (2:1). After 5 h, MΦs were lyzed, RNA was isolated, and mTNFα 
expression was determined with real-time RT-PCR. Values are mean ± SD (n = 3) normalized to MΦ 
sample without LPS stimulation. (B–D) Anti-inflammatory activity of hMSCs in a mouse model of 
peritonitis. C57BL/6 mice were injected i.p. with zymosan to induce inflammation. After 15 min, the mice 
were injected i.p. with 1.5 × 106 monolayer hMSCs (Adh), 60 spheroids (Sph), or 1.5 × 106 spheroid 
derived cells (Sph DC). After 6 h, peritoneal lavage was collected and lavage protein content (B), volume 
(C), and mIL-1β (D) were determined. Values are mean ± SD (negative control, n = 4; vehicle control, n = 
6; Adh treated, n = 6; Sph treated, n = 8; Sph DC treated, n = 6). Not significant (NS) P ≥ 0.05, *P < 0.05, 
**P < 0.01, and ***P < 0.001. Bartosh et al. PNAS (2010) [198]. 
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To test the effects of spheroid hMSCs on inflammation in vivo, a mouse model 

of zymosan-induced peritonitis was used [207]. Six hours after i.p. administration of 

monolayer, spheroid, or spheroid derived hMSCs, inflammatory exudates were collected 

and used in estimating the level of inflammation. hMSC spheroids significantly 

decreased the protein content of the lavage fluid (Fig. III.14B) and the volume (Fig. 

III.14C), neutrophil activity, as assayed by secreted MPO (Fig. III.13D), and levels of 

the pro-inflammatory molecules TNFα (Fig. III.13C), CXCL2 (Fig. III.13E), and IL-1β 

(Fig. III.14D). In addition, serum levels of plasmin activity, an inflammation associated 

protease that is inhibited by TSG-6 [62], were decreased significantly by hMSC 

spheroids (Fig. III.13F). Serum plasmin activity was reduced approximately to the levels 

of non-inflammatory control animals 24 h after spheroid injection (Fig. III.13F). 

Spheroid derived hMSCs also substantially decreased levels of the inflammatory 

markers assayed, although to a lesser extent than intact spheroids (Fig. III.13C–F and 

Fig. III.14B–D). Moreover, hMSC spheroids were significantly more effective than 

adherent monolayer hMSC in suppressing inflammation (Fig. III.13C–F and Fig. 

III.14B). 

 

III.4. Discussion  

Classically hMSCs were isolated and expanded as adherent monolayer cultures, 

but it was soon recognized that centrifugation of the cells to form micropellets or large 

aggregates greatly enhanced their chondrogenic differentiation that slowly occurred over 

several weeks [191,208]. However, several recent publications demonstrated that culture 

of MSCs in 3D or as spheroids for shorter periods of time improved their therapeutic 

potential by increased expression of genes such as CXCR4 to promote adhesion to 

endothelial cells or of IL-24 that has tumor suppressing properties [193,194,203]. The 

experiments presented here were designed to prepare hMSCs as spheroids that 

maximally expressed TSG-6, the anti-inflammatory protein that produced beneficial 

effects in mice with myocardial infarcts because it was expressed at high levels after i.v.-

infused hMSCs were trapped in the lung [51]. 
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The results demonstrated that the properties of hMSCs cultured as spheroids 

depend critically on the experimental conditions. In hanging drops, the cells first formed 

a network and then most of the cells coalesced into a single spheroid. Optimal levels of 

TSG-6 expression were observed with spheroids approximately 500 µm in diameter and 

incubated for 3 d. Expression levels remained high but were lower in larger spheroids, 

and more of the cells became apoptotic or necrotic in the larger spheroids. Also, more of 

the cells became apoptotic or necrotic with longer times of incubation. The cells in 

spheroids retained most of the surface epitopes of hMSCs from adherent cultures. Also, 

hMSCs dissociated from spheroids retained the potential to differentiate into 

mineralizing cells and adipocytes. They also expanded at a similar rate as hMSCs from 

adherent monolayer cultures after a delay through one passage. In addition, spheroid- 

dissociated hMSCs remained highly clonogenic.  

As was observed previously with large hMSC spheroids [192] and hMSCs in 3D 

culture [203], surveys with mRNA/cDNA microarrays demonstrated marked differences 

in the transcriptomes compared with hMSCs from adherent cultures. Quantitative assays 

confirmed some of the important differences. As expected, there was a marked decrease 

in the anticell-adhesion protein PODXL [204] and a decrease in cell cycling. Of special 

note was that several of the differences had important implications for the potential 

therapeutic uses of hMSCs. There were higher levels of expression of the anti-

inflammatory protein TSG-6 than previously observed by preincubation of hMSCs with 

TNFα [51]. Also, there was a high level of expression of STC-1, a protein with both 

anti-inflammatory and anti-apoptotic effects [67,135]. The high levels of expression of 

both TSG-6 and STC-1 were maintained for at least 1 d after the cells were dissociated 

from the spheroids. Therefore the results suggested that both spheroids and spheroid 

derived hMSCs may be more effective than hMSCs from adherent cultures in 

modulating inflammatory reactions. The suggestion was confirmed by the demonstration 

that the spheroids and spheroid derived hMSCs were more effective in suppressing 

TNFα production by LPS-stimulated macrophages in culture. In addition, they were 

more effective in suppressing inflammation in an in vivo model for zymosan-induced 
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peritonitis. Also of special interest was that the spheroid hMSCs expressed high levels of 

transcripts for the tumor suppressor protein IL-24, an observation made previously with 

3D cultures of hMSCs prepared using spinner flasks and a rotating wall vessel bioreactor 

[203]. In addition, the spheroid hMSCs prepared under the conditions optimized to 

express TSG-6 also expressed high levels of transcripts for TRAIL that is selective for 

killing certain cancer cells [209,210] and for CD82 that suppresses some metastases 

[211]. Therefore, spheroids and spheroid derived hMSCs may be particularly effective as 

an adjunct therapy for some types of cancers, particularly for therapy of cancers 

sensitive to anti-inflammatory agents such as aspirin or steroids [212]. A further 

advantage of the spheroid hMSCs was that they were less than one-fourth the volume of 

hMSCs from adherent cultures. Therefore a significantly smaller number was trapped in 

the lung after i.v. infusion and thus larger numbers were found in many tissues [51,204]. 

The molecular forces that increase expression of anti-inflammatory and anti-

tumorigenic genes in hMSCs assembled into spheroids are intriguing but unclear. Cells 

in spheroids are in close association with each other and probably signal cues to each 

other much easier than in monolayer cultures, where only a very small part of the cell 

can touch another cell and secreted molecules must be present in high amounts to ensure 

communication. The changes in the hMSCs as they form spheroids are probably the 

result of the non-adherent culture conditions, high degree of confluency, nutrient 

deprivation, air-liquid interface, and “microgravity” of hanging drops. More detailed 

studies of each of these and other possible factors must be conducted to have a better 

understanding of the changes hMSCs accrue when they aggregate into spheroids. 

The results presented here indicated that hMSCs can be activated non-chemically 

in hanging drops to secrete substantial quantities of potent anti-inflammatory proteins 

and express anti-tumorigenic molecules. Therefore spheroid hMSCs may have 

advantages for many therapeutic applications. In addition, hMSCs dissociated from 

spheroids provide extremely small activated cells that could have major advantages for 

i.v. administration. 
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CHAPTER IV  

MANUSCRIPT 2: 

STANNIOCALCIN-1 SUPPRESSES MACROPHAGE RESPONSE TO DANGER 

SIGNALS BY REDUCING CD14 EXPRESSION AND ATTENUATES 

ISCHEMIC CARDIAC INJURY 

 

Stanniocalcin-1 (STC-1) is a multifunctional glycoprotein that ameliorates 

inflammation and tissue injury by reducing oxidative stress. Cardiomyocyte necrosis in 

the ischemic heart generates ‘danger’ signals that trigger an often detrimental 

inflammatory reaction involving monocyte recruitment and differentiation. Therefore, 

we evaluated the effects of recombinant STC-1 (rSTC-1) on monocyte fate and in a 

mouse model of myocardial infarction. Using an established protocol to differentiate 

human monocytes to macrophages, we demonstrated that rSTC-1 did not alter 

macrophage morphology or expression of the monocyte/macrophage marker CD11b and 

toll-like receptor (TLR) 4. However rSTC-1 treatment prior to monocyte differentiation 

decreased expression of the TLR4 co-receptor CD14 and levels of TNFα, CXCL2, and 

CCL2 produced by the differentiated cells in response to the TLR4 ligand 

lipopolysaccharide. Moreover, rSTC-1 treatment reduced CD14 expression in 

monocytes stimulated with endogenous danger signals, and in the ischemic mouse heart.  

Intravenous administration of rSTC-1 also suppressed levels of IL-1β and MPO, and 

formation of scar tissue in the infarcted heart while enhancing cardiac function.  The 

data suggests that one of the beneficial effects of STC-1 might be attributed to 

suppression of CD14 on recruited monocytes/macrophages that limits their inflammatory 

response.  STC-1 may be a promising therapy to protect the heart and other tissues from 

ischemic injury. 
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IV.1.  Introduction  

STC-1 is a conserved glycoprotein with an unusual history both in terms of its 

evolution and as a subject for biological research [69,70,110]. STC-1, formerly called 

hypocalcin, was named after it was discovered to be secreted by the corpuscles of 

Stannius, small endocrine glands that were found in bony fish and that were initially 

assumed to be adrenal glands because of their location on the ventral surface of the 

kidneys. However, surgical removal of the glands caused toxic hypercalcemia and led to 

the finding that STC-1 is a critical regulator of plasma calcium and phosphate 

homeostasis in the fishes. This role has since been replaced in mammals by parathyroid 

hormone, calcitonin, and 1, 25-dihydroxyvitamin D [70]. Instead, STC-1 in mammals is 

produced by a variety of tissues and has been proposed to regulate a variety of 

physiological and cellular functions in a paracrine/intracrine fashion.  A major 

intracellular target for STC-1 is mitochondria, the organelle also targeted by other 

intracrines such as angiotensin II, TGF-β, growth hormone, atrial natriuretic peptide, and 

Wnt 13 [69]. Binding sites for STC-1 have been identified on cell membrane fractions 

and on mitochondria [118], but the major effects of STC-1 have been difficult to define. 

Some observations demonstrated that STC-1 reversibly inhibits transmembrane calcium 

currents through L-type channels in cardiomyocytes [140] and decreases cytokine-

induced intracellular calcium signals in macrophages [147] suggesting that it has a 

continuing but diminished role in calcium metabolism. Other observations emphasized 

that STC-1 increases expression of mitochondrial UCPs that dissipate the proton 

gradient and thereby effectively uncouple oxidation from phosphorylation [142,143]. 

The increase in UCPs reduces the surge of ROS that is often seen with tissue injury and 

appears to explain, at least in part, the anti-inflammatory and anti-apoptotic properties of 

STC-1 in mouse models of sepsis [152], glomerulonephritis [135], and retinal 

degeneration [151]. The decrease in ROS production also appears to explain some of the 

effects of STC-1 in altering macrophage function [186], and protecting cardiac myocytes 

from angiotensin II-mediated injury [145]. However, the role of STC-1 on macrophage 

differentiation and in ischemic myocardial injury has not been studied. 
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Myocardial infarction is a leading cause of morbidity and mortality worldwide 

despite advances in therapy [195,197]. Myocardial tissue injury induces the release of 

endogenous inflammatory mediators or ‘danger’ signals including cytokines, ROS, and 

numerous intracellular factors that are inaccessible to the immune system but that are 

liberated from necrotic cells [197]. TLRs are among the cellular receptors that sense 

many danger signals released by necrotic cells and provide a key molecular link between 

tissue injury and inflammatory response [195]. A growing body of evidence suggests 

that inflammation after ischemic cardiac injury, especially when persistent, can 

exacerbate pathological remodeling of the heart and promote heart failure; therefore, 

strategies to regulate inflammatory pathways will improve prognosis after myocardial 

infarction [196,197]. 

Accordingly in the present report, we tested the hypotheses that STC-1 regulates 

macrophage phenotype and response to inflammatory mediators, reduces inflammation 

in the post-infarcted heart, and protects the heart from damage associated with ischemic 

injury. 

 

IV.2. Material and Methods 

 

IV.2.1. Cell culture 

The human monocyte cell line U937 was purchased from American Type Culture 

Collection (ATCC, Rockville, MD). The cells were cultured in a humidified atmosphere 

at 37°C and 5% (v/v) CO2 in macrophage medium consisting of RPMI-1640 (ATCC) 

supplemented with 10% (v/v) heat-inactivated fetal bovine serum (FBS, Atlanta 

Biologicals, Flowery Branch, GA), 100 units/ml penicillin and 100 µg/ml streptomycin 

(Gibco, Grand Island, NY).  

 

IV.2.2. Monocyte differentiation assay 

To induce macrophage differentiation of U937 monocytes, the cells were 

suspended at 500,000 cells/ml in petri dishes (VWR international, Radnor, PA) and 
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stimulated for 48 hours with 100 ng/ml of phorbol 12-myristate 13-acetate (PMA, 

Sigma-Aldrich, St. Louis, MO). In separate experiments, U937 cells were stimulated 

concurrently with 5 µg/ml recombinant human HMGB1 (R&D systems, Minneapolis, 

MN) and recombinant human TNFα, IL-1β, and IL-6 (10 ng/ml each, R& D Systems).  

Differentiation assays were performed in the presence or absence of 1.0 µg/ml of human 

rSTC-1 (BioVendor Research and Diagnostic Products, Asheville, NC or Czech 

Republic). After 48 hours, images of the cells were captured on a Nikon Eclipse Ti-S 

inverted microscope using a Ds-Fi1 camera (Nikon, Melville, NY) and managed with 

NiS Elements AR 3.0 software (Nikon). The differentiated macrophages were 

subsequently harvested, counted, and processed for real-time RT-PCR or flow cytometry 

analysis. 

 

IV.2.3. In vitro inflammatory assay 

U937 monocytes stimulated for 48 hours with PMA (in the presence or absence 

of rSTC-1) were seeded at 600,000 cells/ml into 24-well culture plates (Corning 

Incorporated, Corning, NY). After a 3 hour recovery period, 50 ng/ml of LPS (Sigma-

Aldrich) was added to the cultures. In some experiments cultures of differentiated 

macrophages were treated with 1.0 µg/ml rSTC-1 just prior to LPS stimulation. Five 

hours later, CM of unstimulated or LPS-stimulated macrophages were collected. Cells 

and debris were removed from the CM by centrifugation at 500 x g for 5-10 minutes. 

Several aliquots were prepared from the CM and stored at -80°C until they were used for 

ELISA. 

 

IV.2.4. Ischemic cardiac injury model 

The experimental protocols were approved by the Institutional Animal Care and 

Use Committee of Texas A&M University Health Science Center and in accordance 

with guidelines set forth by the National Institutes of Health. Male immunodeficient 

NOD/scid mice (NOD.CB17-Prkdcscid/J, Jackson Laboratory, Bar Harbor, Maine), 7–8 

weeks of age and 25-30 grams of body weight, were used for this study to reduce the 



 

 83 

immune reaction to human protein. The mice were kept on a 12 hour light-dark cycle 

and were provided sterile food and water ad libitum. To induce ischemic cardiac injury, 

mice were mechanically ventilated and maintained under anesthesia with isoflurane 

(1.5%, v/v) during the course of the procedure. The thoracic cavity was opened via an 

incision made at the left 5th intercostal space to visualize the left anterior descending 

coronary artery (LAD). An 8-0 prolene suture (Ethicon, Somerville, NJ) was positioned 

around the LAD distal to the first diagonal branch and permanently tied. After 

myocardial infarction was confirmed by ventricular blanching, the chest was closed.  

rSTC-1 (2.0 mg/kg body weight) in 0.9% (w/v) sodium chloride (Sigma-Aldrich) or 

equal volume of saline was injected intravenously 1 hour and 24 hours after ligation. To 

alleviate post-operative discomfort, buprenorphine (0.1 mg/kg) was administered 

subcutaneously twice daily for up to 5 days.  For endpoint assays, the mice were 

euthanized by intraperitoneal injection of ketamine (80 mg/kg) and xylazine (8 mg/kg). 

Levels of inflammatory mediators in the heart were determined from cardiac tissue 

lysates prepared 48 hours after ligation. Cardiac function was evaluated on day 21 and 

mice were euthanized to determine infarct size. 

 

IV.2.5. Evaluation of cardiac function 

Cardiac ejection fraction was determined by transthoracic echocardiography 21 

days after ligation of the LAD (LLDCA) using a 30 MHz transducer supported by a 

Vevo 2100 ultrasound instrument (VisualSonics Inc., Toronto, Canada). The procedure 

was performed on mice under isoflurane anesthesia. Heart rate was maintained at 350-

400 beats per minute. Left ventricular ejection fraction (LVEF) was evaluated from 

parasternal long axis position. The average of two separate recordings containing 3 

consecutive cardiac cycles were used per animal to obtain the LVEF. 

 

IV.2.6. Infarct size measurement   

Measurements of infarct size were performed on hearts obtained 21 days after 

surgery. Hearts were perfused with 3-5 ml of saline, excised from the chest, and fixed in 
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10-15 ml of 10% (v/v) formalin (Sigma-Aldrich) to be processed for staining. Paraffin-

embedded heart samples were cut into 5 µm sections from the apex to the base.  Every 

20th section was stained with Masson Trichrome. Quantitative assays for infarct size 

were performed as described by Takagawa and colleagues [213]. Images of every fifth 

stained section covering both ventricles (total of 10 sections per heart) were acquired 

using a Photometrics Coolsnap HQ2 camera mounted on a Nikon Eclipse Ti-E inverted 

microscope (Nikon). NiS Elements AR 3.0 software (Nikon) was used to measure 

midline infarct length of heart.    

 

IV.2.7. Real-time RT-PCR  

Total RNA was isolated from cells using RNeasy Mini Kit (Qiagen, Valencia, 

CA) with DNase I (RNase-Free DNase Sel, Qiagen) digestion step. The isolated RNA 

was quantified with nanodrop spectrophotometer (ThermoFisher Scientific, Rockford, 

IL) and converted to cDNA with High-Capacity cDNA RT Kit (Applied Biosystems, 

Technologies, Grand Island, NY). Real-time RT-PCR was performed in triplicate for 

expression of human GAPDH, CD11b (ITGAM), CD14, TLR2, and TLR4 using 

TaqMan® Gene Expression Assays (Applied Biosystems, Technologies) and TaqMan® 

Fast Master Mix (Life Technologies). Total of 20 ng of cDNA was used for each 20 µl 

reaction. Thermal cycling was performed with 7900HT System (Applied Biosystems, 

Technologies) by incubating the reactions at 95° C for 20 seconds followed by 40 cycles 

of 95° C for 1 second and 60° C for 20 seconds. Data were analyzed with Sequence 

Detection Software V2.3 (Applied Biosystems, Technologie) and relative quantitation 

(RQ)s were calculated with comparative critical threshold (Ct) method using RQ 

Manager V1.2 (Applied Biosystems, Life Technologies).  

 

IV.2.8. Enzyme-linked immunosorbent assay (ELISA) for markers of inflammation 

 Levels of the inflammatory mediators TNFα, CXCL2, and CCL2 were 

determined in cell-free U937 CM using commercially available ELISA Kits (TNFα and 

CCL2 were from R&D Systems and CXCL2 from Abnova, Taipei City, Taiwan). To 
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determine levels of inflammation in the heart, ventricular tissue was minced with 

surgical scissors, transferred to tissue extraction reagent I (Life Technologies) containing 

1x of Halt protease inhibitor cocktail (ThermoFisher Scientific), and homogenized using 

a PowerGen model 125 tissue grinder (ThermoFisher Scientific).  The lysates were 

centrifuged at 1,000 x g for 10 minutes 4°C.   The protein rich supernatant was 

transferred to new tubes and centrifuged at 12,000 x g for 10 minutes.  Several aliquots 

were prepared from the supernatants and stored at -80°C.  Protein concentration was 

determined with micro BCA protein assay kit (ThermoFisher Scientific) per 

manufacturer’s instructions. Levels of mouse MPO, CD14, and IL-1β were measured 

using commercially available ELISA Kits (CD14 and IL-1β were form R&D Systems 

and MPO from Hycult Biotech, Plymouth Meeting, PA). The optical density was 

determined on a plate reader (FLUOstarOmega; BMG Labtech) at an absorbance of 450 

nm with wavelength correction at 540 nm. Where appropriate, samples were diluted 

prior to running the assay so that the optical density detected for the sample fit within the 

standard curve of the ELISA kit. 

 

IV.2.9. Flow cytometry analysis 

Cell surface expression of CD11b and CD14 was determined by flow cytometry. 

U937 cells were suspended at 2,000 cells/µl in 100 µl of cold PBS (Gibco) containing 

2% (v/v) FBS and then incubated for 20 min with 20 µl of human Fc receptor binding 

inhibitor (Affymetrix eBioscience, San Diego, CA). Without washing, cell suspensions 

were labeled with 0.2 µg of fluorescein-conjugated antibodies to CD11b (Clone Bear1, 

Beckman Coulter, Brea, CA) or CD14 (Clone RMO52, Beckman Coulter) for 20 min at 

room temperature. Isotype matched antibodies were used as controls. After 2 washes in 

PBS, cells were again suspended in PBS containing 2% FBS and analyzed on an FC500 

flow cytometer (Beckman Coulter). A minimum of 10,000 events was examined from 

the viable cell population.  Data were analyzed using CXP Software (Beckman Coulter). 
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IV.2.10. Statistical analyses 

Unpaired two-tailed Student’s t-test was used to compare data sets consisting of 

two treatment groups. One-way ANOVA was used to calculate levels of significance 

between multiple groups. Statistical analysis was performed with Graphpad Prism 5 

software. 

 

IV.3. Results 

 

IV.3.1. Recombinant STC-1 modulates the inflammatory response of differentiated 

human monocytes in vitro 

  To evaluate the effects of rSTC-1 treatment on monocyte differentiation and 

inflammatory response, we modified an established protocol that uses the protein kinase 

C (PKC) activator PMA to promote the differentiation of U937 human monocytes into 

macrophages [214]. Here, U937 cells were stimulated with 100 ng/ml of PMA for 48 

hours in the presence or absence of 1 µg/ml rSTC-1. The differentiated U937 cells were 

harvested, re-plated, and activated with 50 ng/ml of LPS. Five hours later, CM of the 

macrophages were collected (Fig. IV.1A) and used to evaluate levels of inflammatory 

cytokines/chemokines. As shown, PMA-differentiated U937 cells secreted high levels of 

TNFα, CXCL2, and CCL2 in response to LPS (Figs. IV.1B-D).  Addition of rSTC-1 to 

the cultures prior to PMA treatment significantly reduced the secretion of these 

cytokines and chemokines (Figs. IV.1B-D). We then examined the effects of rSTC-1 on 

inflammatory response of newly differentiated macrophages.  In these experiments, 

U937 monocytes were first differentiated with PMA for 48 hours and then treated with 

rSTC-1 just prior to LPS stimulation (Fig. IV.1E). Secretion of TNFα, CXCL2, and 

CCL2 in response to LPS was unchanged by treatment with rSTC-1 when it was applied 

to the cultures after the cells were differentiated (Figs. IV.1F-H). These results indicate 

that rSTC-1 therapy, during monocyte differentiation but not after, suppresses 

macrophage r esponse to inflammatory stimuli. 
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Figure IV. 1. Recombinant stanniocalcin-1 (rSTC-1) treatment, prior to monocyte differentiation but not 
after, suppressed the inflammatory response of macrophages to danger signals. (A) Schematic illustrating 
the strategy used to evaluate the effects of rSTC-1 pre-treatment on macrophage response to 
lipopolysaccharide (LPS). Human U937 monocytes were induced to differentiate into macrophages by 
treatment with 100 ng/ml of phorbol 12-myristate 13-acetate (PMA) in the presence or absence of 1 µg/ml 
of rSTC-1. After 48 hours, differentiated macrophages were harvested, plated, and incubated for another 3 
hours. Then, macrophages were stimulated with 50 ng/ml of LPS. After 5 hours, media conditioned (CM) 
by unstimulated or LPS-stimulated macrophages were collected and used to evaluate changes in levels of 
secreted TNFα (B), CXCL2 (C), and CCL2 (D) by ELISA. (E) Schematic illustrating the strategy used to 
evaluate the effects of rSTC-1 on the response of differentiated macrophages to LPS. U937 monocytes 
were plated in macrophage medium supplemented with 100 ng/ml of PMA for 48 hours. Differentiated 
macrophages were harvested, re-plated, and incubated with or without 1 µg/ml of rSTC-1. After 3 hours, 
macrophages were stimulated with LPS for an additional 5 hours. The CM was collected, clarified by 
centrifugation and used to determine levels of TNFα (F), CXCL2 (G), and CCL2 (H) by ELISA. Values 
are presented as mean + SEM (n=3). Statistical significance was determined using ANOVA (B-D) or 
student’s t-test (F-H) (not significant, ns p≥ 0.05; ***p< 0.001). 
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IV.3.2. Recombinant STC-1 regulates the expression of surface markers on 

differentiating macrophages  

To explore the mechanism(s) that drive the inhibitory effects of rSTC-1 on 

differentiating monocytes, we evaluated phenotypic changes of U937 cells in response to 

PMA and rSTC-1. In these experiments, U937 cells were stimulated with PMA for 48 

hours in the presence or absence of rSTC-1 and then analyzed by microscopy, flow 

cytometry, and real-time RT-PCR (Fig. IV.2A). In culture, undifferentiated U937 

monocytes propagate in suspension as single cells that ultimately form adherent colonies 

in the presence of PMA (Fig. IV.2B).  Analysis by microscopy revealed that cells treated 

simultaneously with PMA and rSTC-1 shared a similar morphology to cells incubated 

with PMA alone (Fig. IV.2B). We next assayed for changes in expression of 

monocyte/macrophage surface markers by flow cytometry. We observed a dramatic 

increase in cell surface expression of CD11b and CD14 on PMA-differentiated 

macrophages (Fig. IV.2C). Interestingly, rSTC-1 treatment caused a marked reduction in 

cell surface expression of CD14 without changing CD11b levels (Fig. IV.2C). Since 

CD14 is a well-known co-receptor for TLR2 and TLR4 [176], we examined mRNA 

levels of these TLRs in addition to CD11b and CD14 by real-time RT-PCR. As 

expected, the expression of CD11b, CD14, TLR2, and TLR4 was increased in U937 

cells differentiated with PMA (Figs. IV.2D-G); however, we detected a notable decline 

in CD14 message levels after treatment with PMA and rSTC-1 (Fig. IV.2E) but did not 

detect significant effects of rSTC-1 on amount of CD11b and TLR4 mRNA (Figs. IV.2D 

and F). In contrast, the expression of TLR2 was significantly increased in U937 cells 

treated with rSTC-1 (Fig. IV.2G). These data suggest that rSTC-1 suppresses 

macrophage response to danger signals by attenuating the up-regulation of the TLR co-

receptor CD14 in differentiating macrophages.  
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Figure IV. 2. Expression of CD14 was reduced in differentiating monocyte/macrophages by treatment 
with recombinant stanniocalcin-1 (rSTC-1). Human U937 monocytes were incubated in macrophage 
medium supplemented with 100 ng/ml of phorbol 12-myristate 13-acetate (PMA) in the presence or 
absence of 1.0 µg/ml of rSTC-1. After 48 hours, morphology of differentiated macrophages was evaluated 
by light microscopy. Then, macrophages were harvested and processed for real-time RT-PCR or flow 
cytometry analysis. (A) Schematic showing the workflow. (B) Representative images of undifferentiated 
U937 monocytes (No Treatment), PMA-differentiated U937 macrophages (PMA), and U937 cells 
stimulated with PMA and rSTC-1 (PMA+ rSTC-1). 10x magnification (C) Cell surface expression of 
CD11b and CD14 was assessed by flow cytometry. Real-time RT-PCR for CD11b (D), CD14 (E), TLR4 
(F), and TLR2 (G) in undifferentiated U937 monocytes and cells stimulated with PMA for 48 hours (with 
and without rSTC-1 treatment). Values are expressed as mean + SEM (n=3). Data was analyzed using 
ANOVA (not significant, ns p≥ 0.05, *p< 0.05, **p< 0.01, ***p< 0.001). 
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IV.3.3. The effect of rSTC-1 on CD14 is PMA independent 

To further explore the role of STC-1 on monocyte-to-macrophage differentiation, 

we evaluated the effects of rSTC-1 on expression of CD11b and CD14 in U937 

monocytes in response to numerous inflammatory stimuli classically associated with 

ischemic tissue injury. As shown, U937 cells were stimulated with a pro-inflammatory 

cocktail consisting of 5 µg/ml human HMGB1 and 10 ng/ml each of recombinant human 

TNFα, IL-1β, and IL-6 (Figs. IV.3A).  After 48 hours, differentiated macrophages were 

lysed to quantify mRNA levels of CD11b and CD14 by real-time RT-PCR.  The 

expression of CD11b was increased significantly after the cells were stimulated with the 

inflammatory cocktail in the presence and absence of rSTC-1 (Fig. IV.3B). In contrast, 

we observed a dramatic reduction in U937 cell expression of CD14 (Fig. IV.3C) similar 

to that observed previously with PMA treated cells. The data indicates that STC-1 

suppresses inflammatory response of newly differentiated macrophages driven by the 

ischemic tissue microenvironment, such as observed with myocardial infarction, by 

inhibiting CD14 expression. 

 

IV.3.4. CD14 expression and inflammatory response in the ischemic heart were 

diminished by intravenous administration of rSTC-1  

Based on our observations demonstrating the inhibitory effects of rSTC-1 on 

macrophage CD14 expression and response to LPS, we hypothesized that rSTC-1 

treatment reduces inflammation following acute myocardial infarction and protects the 

ischemic heart. For these experiments a myocardial infarct was generated in NOD/scid 

mice by permanent LLDCA and rSTC-1 was administered intravenously (2.0 mg/kg) 1 

hour and 24 hours after ligation. To study the effects of rSTC-1 on inflammation, the 

mice were euthanized 48 hours after surgery and the heart tissues were processed (Fig. 

IV.4A) for ELISA. The amount of CD14 protein was increased in heart lysates following  
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Figure IV. 3. Recombinant stanniocalcin-1 (rSTC-1) reduced CD14 expression in monocyte/macrophages 
stimulated with danger signals. Human U937 monocytes were stimulated with 5 µg/ml human high 
mobility group box1 (HMGB1) and 10 ng/ml each of recombinant human tumor necrosis factor alpha 
(TNFα), interleukin 1 beta (IL-1β), and IL-6 in the presence or absence of 1.0 µg/ml rSTC-1 treatment. 
After 48 hours, cells were lysed for real-time RT-PCR. (A) Schematic showing the workflow. The fold 
changes of mRNA levels for CD11b (B) and CD14 (C) were measured in unstimulated U937 monocytes, 
stimulated U937 monocytes, and stimulated cells treated simultaneously with rSTC-1. Values are 
expressed as mean + SEM (n=3). Data were analyzed with ANOVA (not significant, ns p≥ 0.05, *p< 0.05, 
**p< 0.01, ***p< 0.001).  
 
 
 
infarction. In a manner similar to our in vitro data using U937 cells, administration of 

rSTC-1 significantly reduced levels of CD14 protein (Fig. IV.4B). Moreover rSTC-1 

treatment reduced cardiac levels of MPO (Fig. IV.4C); a bio-marker of tissue injury that 

is produced mainly by activated neutrophils and macrophages, and that has powerful 

pro-oxidative and pro-inflammatory properties [197,215]. Since the life span of 

inflammatory cells can be prolonged in the pro-inflammatory environment due to the 

effects of several cytokine mediators such as IL-1β [216], we measured levels of IL-1β 

in the heart lysate. We observed that IL-1β amount was increased 48 hours after 

LLDCA; however, the amount of this cytokine was significantly reduced after rSTC-1 

treatment (Fig. IV.4D). Collectively, these data suggest that STC-1 suppresses levels of 
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inflammatory mediators in the heart following myocardial infarction and can protect 

cardiomyocytes from injury directly caused by MPO. 

 
 

 

 

 

 

 

 

 

 

 

 

 
 
 
 
Figure IV. 4. Intravenous administration of recombinant stanniocalcin-1 (rSTC-1) reduced the expression 
of CD14 in cardiac tissue and attenuated inflammation following myocardial infarction. NOD/scid mice 
were subjected to ischemic cardiac injury by permanent ligation of the left anterior descending coronary 
artery (LLDCA). At 1 hour and 24 hours after ligation, 2.0 mg/kg of rSTC-1 or equal volume of 0.9% 
sodium chloride (saline) was administered intravenously. Mice were euthanized 48 hours after LLDCA to 
collect heart tissue and assess inflammatory response. (A) Diagram showing the workflow of the cardiac 
injury model. Amounts of CD14 (B), myeloperoxidase (MPO) (C), and interleukin 1 beta (IL-1β) (D) were 
determined by ELISA on heart tissue lysates prepared 48 hours after LLDCA. Values are expressed as 
mean (n=4-9). Statistical significance was determined using student’s t-tests (* p< 0.05, ** p< 0.01). 
 
 
 
IV.3.5. Intravenous administration of rSTC-1 improves heart function and reduced scar 

formation in ischemic cardiac injury 

To examine the therapeutic effects of rSTC-1, myocardial infarction was induced 

in NOD/scid mice followed by 2 injections of rSTC-1 (2.0 mg/kg) as described 

previously. Changes in heart function were determined with echocardiography by 

measuring LVEF on anesthetized mice 21 days after LLDCA (Fig. IV.5A). The results 
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showed a substantial decrease in LVEF following coronary artery ligation that was 

improved significantly by treatment with rSTC-1 (Fig. IV.5B). After cardiac function 

was evaluated, the hearts were removed from the chest and infarct size measured from 

paraffin embedded sections stained with Masson Trichrome (Figs. IV.5C and D). We 

observed that rSTC-1 decreased the length of the ventricular infarct region (Figs. IV.5C 

and D).  Thus, STC-1 treatment results in reduced cardiac scarring and functional 

improvements of the ischemic heart.   

 
 
 
 

 

 

 

 

 

 

 
 
Figure IV. 5. Recombinant stanniocalcin-1 (rSTC-1) administered intravenously improved heart function 
and reduced infarct size. NOD/scid mice were subjected to ischemic cardiac injury by permanent ligation 
of the left anterior descending coronary artery (LLDCA). At 1 hour and 24 hours after ligation, 2.0 mg/kg 
of rSTC-1 or equal volume of 0.9% sodium chloride (saline) was administered intravenously. Twenty one 
days after permanent LLDCA, NOD/scid mice were anesthetized and their left ventricular ejection fraction 
(LVEF) was evaluated. Then, mice were euthanized to collect heart tissue and assess infarct size. (A) 
Diagram showing the workflow of the cardiac injury model. (B) Each data point represents the average 
LVEF of 2 independent recordings with 3 consecutive cardiac cycles (n=3-6). (C) Representative images 
showing fibrosis in heart sections stained with Masson Trichrome. 4x magnification. Infarct size was 
measured at the ventricular midline of each section and expressed as the percent length of the fibrotic 
region relative to the ventricular midline length. (D) Each data point represents the average of ten infarct 
size measurements per heart (n=10-12). Data was analyzed using student’s t-tests (*p< 0.05, **p< 0.01). 
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IV.4. Discussion 

Macrophages and their precursor -monocytes- are among important immune 

effector cells that instruct inflammatory processes to defend against pathogens and 

promote wound healing [160]. Upon tissue injury or infection, monocytes are recruited 

to foci of inflammation and, in response to a variety of signals emanating from the 

microenvironment, differentiate into functional tissue macrophages [160,197]. Tight 

control of these processes is essential to prevent excessive inflammation and collateral 

tissue destruction. 

The glycoprotein STC-1 originally identified as a calcium regulatory hormone in 

fish [70,110] has emerged, for multiple reasons, as a candidate to modulate monocyte 

behavior and inflammatory response. First, STC-1 expression is widely distributed and 

responsive to numerous stress-inducing factors including hypoxia [128,129], oxidative 

stress, and inflammation [147,152]. We reported previously that STC-1 expression is 

upregulated in mesenchymal stem cells (MSCs) by signals from dying cells [67,185,217] 

and in response to caspase activation and inflammatory cytokines [185]. Second, STC-1 

is reported to blunt the rise in levels of mitochondrial ROS generated in stimulated 

macrophages [143] and decrease activation of the NLRP3 inflammasome [186], a 

cytosolic multiprotein complex present in myeloid cells that promotes cytokine 

maturation [61,218]. While mechanisms for the pleiotropic actions of STC-1 have not 

been entirely defined, most studies emphasize that the antioxidant property of the protein 

involves induction of UCPs and dissipation of the mitochondrial proton gradient 

[143,145,146]. 

In exploring the effects of STC-1 here, we discovered that STC-1 can potentially 

regulate inflammation by controlling monocyte phenotype independent of its effects on 

ROS. Specifically, we observed that STC-1 suppresses the PKC-dependent rise in 

monocyte expression of CD14, a myeloid cell receptor that detects indicators of ‘danger’ 

originating from pathogens or damaged tissue, and delivers these products to specific 

pro-inflammatory TLRs.  In subsequent experiments, we observed similar suppressive 

effects of STC-1 on CD14 expression in monocytes stimulated with a variety of 
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cytokines and danger signals classically associated with tissue injury.  Interestingly, the 

effects on CD14 expression in monocytes were relatively specific given that STC-1 

treatment did not alter levels of CD11b or TLR4 and promoted a moderate increase in 

expression of TLR2. 

Our immune system is designed to combat the threat of both infection and injury 

by responding to a particular set of molecular cues or patterns that are normally 

undetectable or absent.  TLRs play a major role in this process by distinguishing the 

conserved motifs of pathogens (PAMPs), and the endogenous factors released upon 

sterile tissue injury (DAMPs). There is considerable evidence that both PAMPs and 

DAMPs share many TLRs on macrophages and perpetuate inflammatory cytokine 

production [61]. There is also considerable evidence indicating that DAMP-mediated 

TLR signaling is implicated in the pathobiology of numerous inflammatory and 

autoimmune diseases [219-221]. For this reason, TLRs and factors associated with TLR 

signaling have become attractive therapeutic targets [61,195]. 

One of these factors, CD14, can be highly expressed by monocytes/macrophages 

and is heavily implicated in the behavior of these cells.  It is best known as a pattern 

recognition receptor of the innate immune system that directly interacts with bacterial 

endotoxin (LPS) to induce intracellular pro-inflammatory signaling cascades through 

TLR4. However, CD14 also recognizes peptidoglycans and products of 

apoptotic/necrotic cells such as the transcription factor HMGB1 [179].   The role of 

CD14 in disease progression has become apparent with studies revealing that CD14 

deficient mice are protected against LPS-induced cardiac inflammation [222], ischemic 

tissue injury [223], and septic shock [178]. Moreover, several studies have demonstrated 

that TLR4 inhibition with antibodies or knockout strategies is associated with cardiac 

benefits following infarction that include attenuation of myocardial inflammation and 

reduction in infarct size [224-226]. 

Together these findings here and from others support our initial observation that 

STC-1 effectively reduced cytokine production by monocytes/macrophages stimulated 

with LPS but only when the protein was applied concurrently with PMA to prevent the 
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cells from acquiring a CD14 positive phenotype. These findings also explain, at least in 

part, our observations that STC-1 treatment suppressed inflammation in the heart and 

improved cardiac function after ischemic injury by reducing levels of cardiac CD14. 

Similar to the sequence of events that accompany ischemic injury in many 

tissues, myocardial ischemia and the resulting formation of necrotic cells triggers an 

intense inflammatory reaction that is important for monocyte recruitment and tissue 

repair but when lingering can become disadvantageous for tissue function [195-197]. It 

has been shown that both DAMP/TLR and IL-1 signaling can exacerbate post-infarction 

cardiac inflammation and lead to symptoms of heart failure [195,197].  Here we showed 

that STC-1 can potentially protect the heart by reducing levels of IL-1β suggesting that it 

could be employed in therapeutic regimens for treatment of patients suffering from 

ischemic cardiac injury.  Previous studies support this concept having demonstrated that 

STC-1 inhibits ischemic injury to the kidney [227] and brain [128]. The improvements 

we noted in heart function with STC-1 treatment were also preceded by efficient 

reduction in levels of MPO, an enzyme found in neutrophils that catalyzes production of 

hypochlorous acid and other highly reactive moieties with important microbicidal 

properties [228]. However, MPO can be toxic to cells and detrimental to the remodeling 

process after myocardial infarction therefore, reduction in levels of MPO can prevent 

deterioration of cardiac tissue. Our data suggest that STC-1 treatment might reduce 

cardiac MPO through downregulation of CD14 in the heart and subsequent decrease in 

macrophage response to DAMPs that signal through CD14.  Alternatively, reduction of 

MPO in the infarcted heart could be a result of the ability for STC-1 to decrease 

permeability of vascular endothelial cells [229] and prevent migration of neutrophils. 

Regardless, STC-1 is an intriguing protein that exerts multiple beneficial effects 

in damaged mammalian tissue. Yet, the signaling pathways that drive STC-1 action have 

not been clearly defined and specific receptors that bind STC-1 have not been 

determined.  Moreover, knowledge of the distribution of STC-1 following intravenous 

administration is lacking as well as our understanding of how STC-1 might regulate 

monocyte function in vivo. Future studies are being designed to find answers to these 
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concepts.  With a recent study identifying a reservoir of splenic monocytes that are 

deployed to the infarcted heart [157], it is feasible to hypothesize that STC-1 does not 

suppress inflammation by directly binding to cardiac cells but instead associates with 

monocytes from the blood and spleen, and suppresses CD14 expression in these cell 

populations.  This hypothesis is supported by previous observations that TLR inhibition 

prevents systemic inflammation following myocardial infarction [224-226,230-232]. 

In conclusion, as shown in Figure IV.6, our data demonstrate the STC-1 regulates 

monocyte phenotype in response to a variety of differentiation stimuli and, in turn, 

suppresses levels of inflammatory factors produced by activated 

monocytes/macrophages.  Moreover, we demonstrate that STC-1 treatment effectively 

attenuates inflammation in the ischemic heart and improves cardiac function.  Our 

observations provide a novel mechanism for STC-1 action that could be important for 

tissue repair by preventing excessive inflammatory response without disrupting the 

tissue healing properties of macrophages.    
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Figure IV. 6. Summary of recombinant stanniocalcin-1 (rSTC-1) effects on monocyte/macrophage 
differentiation and function. Tissue injury induces release of differentiation stimuli (such as pathogen-
associated molecular pattern molecules (PAMPs), damage-associated molecular pattern molecules 
(DAMPs), cytokines, and chemokines) that promotes monocyte differentiation and recruitment to the site 
of injury. Differentiation stimuli cause an increase in expression of surface molecules such as CD11b and 
CD14 in monocyte/macrophage and enhance secretion of inflammatory cytokines and chemokines (for 
example TNFα, IL-1β, CXCL2, and CCL2) in these cells. Administration of rSTC-1 during differentiation 
process reduces the expression of CD14 in monocyte/macrophage, which decreases the secretion of 
inflammatory cytokines and chemokines and reduces the inflammatory response to the tissue injury. 
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CHAPTER V  

CONCLUSION 

 

Inflammation is an essential mechanism for removing infectious agents, 

protecting tissue from insults, and promoting repair in damaged organ. The usual 

outcome of the acute inflammatory action is successful elimination of infection and 

repair of tissue damage. However, failure in removing offending agents, or constant 

exposure to the irritants can lead to persistent activation of immune cells. The production 

of proteases, ROS, and growth factors by activated neutrophils and macrophages can 

cause tissue destruction. In addition, aberrant collagen formation by activated fibroblasts 

leads to excessive scarring and loss of organ function; therefore, activated immune cells 

such as monocytes/macrophages function as a double-edged sword with both offensive 

as well as defensive actions at a site of injury.  

Multipotent MSCs can respond to the microenvironment of injured tissues. The 

cells generate immune-modulatory and anti-inflammatory effects via cell-to-cell 

interaction, secretion of regulatory factors, and exosomes. The dramatic beneficial 

effects of MSCs observed in various disease models have supported their use in 

numerous clinical trials. Since MSCs have low immunogenicity with limited risks of 

tumorigenicity, their applications for allogeneic transplantation are known to be safe. 

Signals from injured tissues activate MSCs to secrete beneficial factors and contribute in 

immune/inflammatory modulation and tissue healing; however, several reports indicate 

that MSCs have a short half-life in the host [3]. Different strategies have been considered 

in order to activate MSCs prior to in vivo administration, which could eliminate the lag 

period required to upregulate expression of appropriate genes, and thus, enhance the 

therapeutic potentials of the cells. In addition, application of secreted proteins from 

MSCs has been tested as an alternative approach in different disease models.  

In the present work, the effects of 3D cultures on production of anti-

inflammatory factors by aggregated MSCs were tested. A hanging drop culture method 

was used to produce uniform MSC aggregates as spheroids in culture. Gene expression 
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and secretion of anti-inflammatory proteins such asTSG-6 and STC-1 were shown to 

increase dramatically early after incubation of the cells in the drops. Previous studies 

reported that MSCs do not secrete TSG-6 and STC-1 in standard 2D cultures; however, 

MSCs dissociated from spheroids could maintain high levels of TSG-6 and STC-1 

expression for at least one day in standard 2D culture highlighting the enhanced anti-

inflammatory potential of spheroid and spheroid derived MSCs as compared to the non-

activated MSCs. Interestingly, spheroid MSCs, cultured in the conditions optimized for 

secretion of TSG-6 and STC-1, retain the properties of MSCs from standard 2D cultures. 

The enhanced anti-inflammatory effects of spheroids and spheroid derived cells were 

further examined in a co-culture system with LPS-stimulated macrophages and a mouse 

model of zymosan-induced peritonitis. These observations suggest that the rapid anti-

inflammatory effect of spheroid MSCs reduces the early cascade of inflammatory 

responses in the host, and therefore, improve the therapeutic potential of MSCs in acute 

tissue injuries.  

Data from microarray assays demonstrated significant differences in the 

transcriptomes of spheroid MSCs compared with cells from standard 2D cultures. 

Several of these differentially expressed genes suggest potential therapeutic uses of 

spheroid MSCs, including anticancer proteins (TRAIL, IL-24, and CD82) and 

chemokine receptor CXCR4 as well as anti-inflammatory factors. Thus, while a large 

number of non-activated MSCs from 2D cultures undergo cell death during activation in 

vivo, self-activated spheroid MSCs generate a variety of beneficial factors right after 

their administration into the host. In addition, the media conditioned by spheroid MSCs 

in drops contain high concentrations of these factors and can potentially be used in 

different pathological conditions.  

In this study, local administration of spheroid MSCs was shown to reduce acute 

peritonitis in mice. MSCs have been previously demonstrated to reduce inflammation 

and tissue injuries from distance site in a number of mouse models, including 

myocardial infarction and cornea injury [51,64]. Therefore, intraperitoneal 

administration of intact spheroid can also be used for systemic modulation of 
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immune/inflammatory responses. Another potential therapeutic advantage of spheroid 

MSCs was their size.  MSCs dissociated from spheroids were about one/forth the 

volume of 2D cultured MSCs, and thus, larger numbers of these cells could pass through 

pulmonary microvasculature and home to other tissues. Together these results suggest 

that intact spheroids and spheroid derived MSCs may have major advantages for 

different strategies of MSC administration.   

Spheroid MSCs are in close contact with each other comparable as they are in 

vivo. In addition, the cells experience nutrient deprivation, air-liquid interface, and 

microgravity. These factors alter the microenvironment in hanging drops and could lead 

to activation of MSCs in spheroids. Bartosh and colleagues have demonstrated recently 

that caspase-dependent IL-1 signaling, activated by aggregated MSCs in hanging drops, 

was required for upregulation of TSG-6, STC-1, and another potent anti-inflammatory 

factor PGE2 in MSCs [185]. Since the cells can produce similar aggregates in vivo, these 

results can explain, at least in part, the beneficial effects of MSCs in animal models. 

More detailed studies can help identify the key factors for self-activation of MSCs in 

vitro and in vivo in order to optimize culture conditions for different therapeutic 

potentials of the cells. Meanwhile, the hanging drop method can be used to produce 

MSCs with enhanced therapeutic potential for different diseases; therefore, it is essential 

to determine any loss of activity in freshly thawed cells from frozen cell banks to 

evaluate the clinical applications of spheroids and spheroid derived MSCs.  

Previous studies have shown that STC-1 produces some of the beneficial effects 

of MSCs in vitro and in vivo. This protein can protect injured tissues by reducing the 

generation of ROS, apoptosis, and immune/inflammatory response, and thereby, its 

therapeutic potential has been considered for various diseases.  

In the present work, the effects of STC-1 on stimulated monocytes/macrophages 

were studied. Monocytes differentiate to pro-inflammatory macrophages in the early 

stages of tissue damage and play important roles in immune/inflammatory actions. 

Administration of recombinant human STC-1 concurrent with monocyte-to-macrophage 

differentiation was shown to suppress the secretion of inflammatory mediators (TNFα, 
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CCL2, and CXCL2) by differentiated cells in response to LPS in vitro; however, 

treatment with this protein after maturation of monocytes/macrophages did not have any 

significant effects on their inflammatory actions. Therefore, the distinct characteristics of 

the differentiating monocytes/macrophages in the presence or absence of STC-1 were 

tested. Treatment with STC-1 was shown to reduce the expression of TLR4 co-receptor 

CD14 in monocytes/macrophages stimulated with both PMA and various endogenous 

danger signals, whereas there were no significant differences in the expression of TLR4 

or monocyte/macrophage marker CD11b. In contrast, the expression of TLR2 was 

increased. These observations suggest that STC-1 can modulate inflammatory responses 

of stimulated monocytes/macrophages by regulating the expression of CD14.  

CD14 is predominantly expressed by myeloid cells. This TLR co-receptor plays 

major roles in recognition and responses of immune cells to numerous PAMPs and 

DAMPs [176,177,179]. In addition, the involvement of CD14 in progression of different 

diseases such as cardiac inflammation has been demonstrated recently [178,222,223]; 

Although little is known about the factors controlling the expression of CD14 on 

monocytes/macrophages, a number of factors have been reported to reduce the 

transcription of CD14 such as IL-4 [233]. Therefore, it would be of interest to determine 

the correlation between STC-1 and expression level of these factors, especially IL-4, in 

differentiating monocytes/macrophages.  

Also, mechanisms for the pleiotropic actions of STC-1 have not been entirely 

defined; nevertheless, the expression of mammalian STC-1 is responsive to numerous 

stress-inducing factors. The protein has been identified to modulate the calcium influx, 

which suggests its regulatory role on the calcium-dependent signaling pathways; 

therefore, in order to determine the key factors involved in inhibition of CD14 

expression, differentiation assay could be performed in the presence or absence of 

calcium channel blockers. The downregulation of CD14 in differentiating 

monocytes/macrophages blocked for calcium entry would suggest the mechanisms for 

STC-1 action on modulation of CD14 expression. This hypothesis could be further tested 
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to demonstrate STC-1 binding to the calcium channels in stimulated 

monocytes/macrophages using immunoprecipitation assay.  

In addition, STC-1 has been shown to suppress generation of mitochondrial ROS, 

at least in part, by upregulation of UCPs. To identify the role of UCPs in expression of 

CD14, first the mRNA levels of UCP2 should be determined in differentiating 

monocytes/macrophages. If STC-1 treatment results in upregulation of UCP2, small 

interfering RNA (siRNA) could be used to suppress the expression of this protein in 

monocytes prior to differentiation assay. The upregulation of CD14 in UCP2 knocked-

down cells, despite presence or absence of STC-1, would suggest an UCP-dependent 

controlling mechanism for CD14 expression in myeloid cells.  

  Interestingly in the current study, i.v. administration of STC-1 decreased the 

amount of CD14 in the hearts of mice after LLDCA. CD14 is expressed in other immune 

cells as well as non-immune cells, which makes it difficult to assume that STC-1 therapy 

reduced the expression of CD14 only in monocytes/macrophages. Detailed studies, 

including immunostaining for co-expression of CD14 and monocyte/macrophage 

markers in the heart sections as well as flow cytometry of immune cells isolated from 

blood and spleen of healthy and injured animals would lead to better understand anti-

inflammatory and immune modulatory potentials of STC-1.  

STC-1 also reduced the amount of cardiac IL-1β and MPO. Mature form of IL-

1β is involved in a wide range of immune/inflammatory responses and can exacerbate 

post-infarction cardiac injury [197]. Excessive MPO can be toxic to cardiomyocytes and 

deteriorate ventricular remodeling; therefore, STC-1 can protect cardiomyocytes and 

prevent heart failure by reducing these inflammatory mediators. Since STC-1 

administration reduced the amount of CD14 in the heart, it can be suggested that 

decreased sensitivity of monocytes/macrophages to DAMPs can result in reduction of 

these mediators. STC-1 has been previously shown to decrease permeability of vascular 

endothelial cells and prevent migration of immune cells [148,229]; thus it can also be 

suggested that STC-1 inhibits cardiac inflammation by reducing the migration of 
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immune cells to the site of injury. This hypothesis could be examined by counting the 

number of infiltrated cells to the heart in the sections.  

Long-term evaluation of experimental mice demonstrated that cardiac function 

and infarct size were improved three weeks after STC-1 treatment. CD14 deficiency has 

been shown to protect CD14 knockout mice against LPS-induced cardiac inflammation 

and ischemic tissue injury [222,223]; therefore, it can be assumed that STC-1 protects 

heart from excessive inflammation and supports tissue repair by a novel mechanism to 

control monocyte/macrophage functions. 

In conclusion, the current study demonstrates that self-activated MSCs in 

spheroids provide enhanced therapeutic potential for the clinical use of the cells. Also, 

this study reveals a novel mechanism for STC-1 and promotes the potential therapeutic 

use of STC-1 for tissue injury. 
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