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ABSTRACT

This dissertation establishes mathematical foundations of connectivity requirements arising in

both abstract and geometric network analysis. Connectivity constraints are ubiquitous in network

design and network analysis. Aside from the obvious applications in communication and transporta-

tion networks, they have also appeared in forest planning, political distracting, activity detection in

video sequences and protein-protein interaction networks. Theoretically, connectivity constraints

can be analyzed via polyhedral methods, in which we investigate the structure of (vertex)-connected

subgraph polytope (CSP).

One focus of this dissertation is on performing an extensive study of facets of CSP. We present

the first systematic study of non-trivial facets of CSP. One advantage to study facets is that a

facet-defining inequality is always among the tightest valid inequalities, so applying facet-defining

inequalities when imposing connectivity constraints can guarantee good performance of the algo-

rithm. We adopt lifting techniques to provide a framework to generate a wide class of facet-defining

inequalities of CSP. We also derive the necessary and sufficient conditions when a vertex separator

inequality, which plays a critical role in connectivity constraints, induces a facet of CSP. Another

advantage to study facets is that CSP is uniquely determined by its facets, so full understanding of

CSP’s facets indicates full understanding of CSP itself. We are able to derive a full description of

CSP for a wide class of graphs, including forest and several types of dense graphs, such as graphs

with small independence number, s-plex with small s and s-defective cliques with small s. Fur-

thermore, we investigate the relationship between lifting techniques, maximum weight connected

subgraph problem and node-weight Steiner tree problem and study the computational complexity

of generation of facet-defining inequalities.

Another focus of this dissertation is to study connectivity in geometric network analysis. In

geometric applications like wireless networks and communication networks, the concept of connec-

tivity can be defined in various ways. In one case, connectivity is imposed by distance, which can

be modeled by unit disk graphs (UDG). We create a polytime algorithm to identify large 2−clique

in UDG; in another case when connectivity is based on visibility, we provide a generalization of

the two-guard problem.
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1. INTRODUCTION

Network is a popular mathematical object comprised of a set of nodes with edges representing

interaction between nodes. Every group of objects that have possible mutual relationship can form

a network. For example, a group of people is a network as they may know each other; a set of

twitter accounts is a network as they may follow each other or retweet others’ comments; a group

of computer is a network as they may connect and communicate to each other in order to finish

one task; the vehicles in the same road can be recognized as a network as well because they follow

the same traffic and may have accidental interaction like crashes. In summary, networks arise

everywhere in our society. A mathematical term that is closely related to and is often used to

represent the concept of a network is a graph. A graph is defined to be a pair of sets G = (V,E),

where V is a set of vertices, which represents nodes in a network, and E is the set of edges between

nodes, which represents the pairwise interactions between nodes. Representing information as a

graph allows for interrelated data to be gathered concisely and in a global context, so analysis of

a graph allows us to search the global properties that cannot be easily observed using only local

information.

Connectivity is such a global property. A graph G is said to be connected if for every pair of

its vertices there exists a path connecting them. Given a graph G with at least two vertices, the

connectivity of G is defined as the minimum number k of vertices that need to be removed in order

for the remaining graph to become disconnected or have just one vertex remaining. Connectivity

plays a critical role in network design and network analysis problems, and its role varies in different

applications.

In some applications, it is necessary to ensure at least 1-connectivity (connectivity for short in the

case that no ambiguity occurs), and enhancing the connectivity of the network may be strongly ben-

eficial. Two examples are the design of telecommunication networks and transportation networks.

It is essential to guarantee connectivity in telecommunication network design applications like de-

sign of a computer network or a telephone network, because the spread of information throughout

the whole network needs to be guaranteed. A network with high connectivity can survive and

function normally when some nodes fail, so in real-life applications such a network is reliable and

thus it is also important to ensure high connectivity. A great amount of research was carried out
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towards designing a reliable telecommunication network with high connectivity, which is summa-

rized in [37, 34, 59, 42]. In construction of a transportation network, connectivity is also a major

concern. One reason is that it is an important task to ensure accessibility of every node. so it is

necessary to ensure connectivity; another reason is that we need to distinguish between nodes with

high connectivity and those with low connectivity and put high capacities in nodes with high con-

nectivity to keep the network robust. Research related to connectivity in transportation networks

includes [47, 50, 70, 85].

In some applications, the focus is only to ensure 1-connectivity. In [21], a forest harvest schedul-

ing problem was studied. One objective of the harvest scheduling was to maintain large contiguous

patches of mature forest in order to protect wildlife habitats. The authors considered the network

consisting of small patches of forest as nodes and pairs of adjacent patches as edges, so it was suffi-

cient to ensure connectivity of this network in order to achieve their objective of wildlife protection.

Another application of connectivity requirements is in political districting [36]. Political districting

is the process by which an area (e.g., a state) is partitioned into smaller districts with almost the

same population of eligible voters. This problem is seemingly unrelated to connectivity, but connec-

tivity requirements are in fact essential in solving this problem, because the realistic methodology

is to split the area into very small pieces ignoring population constraints first and then gather small

pieces together to form districts with roughly the same population. Because Federal laws require

the districts to be contiguous, it is a major task to ensure connectivity in the step of generating

districts.

In other applications, connectivity of the whole network is not required, but it is important to

identify the parts of network that are connected. A mathematical term to represent the connected

part is connected component, which is defined as a maximal by inclusion connected subgraph of

the original graph. Identifying connected components has important applications in the field of

computer vision. For example, one task in image recognition is to detect connected components in

binary digital images [86]. Additionally, when the detection of connected components is integrated

into a more complicated system like human-computer interaction interface system, research shows

more hidden information is derived [24, 95]. Furthermore, in [23], an application of connectivity

in recognition of unusual activities in video sequences was introduced. Recognition of connected

subgraphs (not necessarily the connected components) is also useful in biology. In [30], a protein-

protein interaction network was analyzed. With some scoring on nodes, the authors developed an
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algorithm to find the connected subgraphs with large node scores and asserted they are functional

modules with high probability.

Aside from ubiquity in practice, connectivity requirements are also closely related to many

combinatorial optimization problems in theory. The well-known Steiner tree problem asks for a

shortest connected network which spans a given set of points. Details on this problem can be found

in [52]. Our research shows that there are close connections between connectivity requirements and

the Steiner tree problem. Other examples include the maximum sub-array problem [10] and maximal

sums problem [18]. In computer science, the maximum subarray problem asks for the contiguous

subarray within a one-dimensional array of numbers which has the largest sum, while the maximal

sums problem is to find the sub-vector with the largest sum in a sequence of numbers. Both of

them can be transformed to network optimization problems, where we search for the connected

subgraphs with additional desired properties. In addition, connectivity is directly related to graph

clustering problems like the problems of finding cliques and clique relaxation structures. A clique

is a set of vertices in a graph for which every pair of vertices is directly connected by an edge. It

has the highest connectivity among graphs with the same number of vertices. In [81] it is shown

that one way to relax the concept of a clique is to relax the connectivity requirements.

1.1 Study of Connectivity

There are two major methods to analyze connectivity requirements. One method is based on

the concept of flow network. A flow network is a directed graph where each edge or vertex has a

capacity and receives a flow. The flow must satisfy the restriction that the amount of flow into a

vertex equals the amount of flow out of it, unless it is a source vertex, which can have more outgoing

flow, or sink vertex, which can have more incoming flow, and the amount of flow on an edge or a

vertex cannot exceed its capacity. Net flow in the flow network is defined to be the amount of flow

coming from the source vertex. Replacing each edge of the graph by two directed edges and setting

adequate capacities of vertices and edges, the graph is connected if and only if the corresponding

flow network accepts positive net flow when choosing source and sink vertices arbitrarily. Therefore,

connectivity requirements can be represented by a set of positivity requirements of net flows under

flow restrictions. Consult [34] for an excellent survey that provides a comprehensive overview of

connectivity analysis via flow network method.

The other method is based on the concept of cuts. A vertex cut of a connected graph G is a
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set of vertices whose removal renders G disconnected. Analogously an edge cut of G is a set of

edges whose removal renders G disconnected. In cut-based method, the connectivity requirements

is imposed by making sure that a cut is not completely excluded from the set. The process is

operated by adding cut-based inequalities to the model and it can be conveniently integrated into

branch-and-cut algorithms. Research towards generating good cut-based inequalities and applica-

tion of these inequalities in network analysis includes [43, 41, 16, 44, 3, 13]. For both methods,

connectivity requirements are imposed by connectivity constraints. Connectivity constraints are

inequalities that are satisfied by all connected subgraphs but violated by some subgraphs that are

not connected. In the flow network-based method, the connectivity constraints ensure that net

flows of all source vertices are positive under flow restrictions, while in the cut-based method the

connectivity constraints are cut inequalities. To develop effective algorithms, a connectivity con-

straint is expected to be tight, i.e., it could avoid the occurrence of a large amount of disconnected

subgraphs. The concept of tightness is closely related to the connected subgraph polytope, a polytope

defined by all connected subgraphs, because every facet-defining inequality of this polytope is the

tightest in a sense that no other inequality is strictly stronger than it. However, there is very little

understanding of this polytope currently, while most research was only focused on adding tight

connectivity constraints rather than finding the tightest ones.

1.2 Geometric Networks

Geometric networks are networks with extra geometric structure. In geometric networks the

distribution of edges between nodes is based on certain geometric restrictions. In other words,

two nodes are adjacent if some geometric constraints are satisfied. Tools can be developed to take

advantage of the extra geometric structure not necessarily exhibited by general graphs.

In one type of geometric networks, commonly used to model wireless networks, we assume that

the ability of two wireless nodes in the network to communicate with each other directly completely

depends on the distance between them. Such a network can be modeled by unit disk graphs, where

vertices are given by disks of a unit diameter, and two disks are connected by an edge if they have

a nonempty overlap [26].

Due to the extra properties of unit disk graphs arising from their geometric nature, some prob-

lems become much easier in these graphs than in general. In particular, the maximum clique

problem, which is notoriously hard in general graphs [35], can be solved in polytime when re-
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stricted to unit disk graphs [26]. Therefore, it is interesting to find out if the geometric structure

also helps in solving some clique relaxation problems in unit disk graphs.

In another type of geometric networks, connectivity of nodes can be measured by the concept of

visibility. Let the nodes in a geometric network be given by a finite set of moving objects (guards) on

a plane that also contains some obstacles. Two points are said to be visible if the line segment that

joins them does not intersect any obstacles. The concept of visibility has important applications in

road network surveillance, robotics, motion planning and security [38]. The networks with visibility

conditions may not be easily representable by graph models as the shape of networks’ boundaries

and obstacles have influence on visibility. Instead, the networks are usually represented by polygons,

which are closed regions made up of finite chains of straight line segments in visibility problems. The

two-guard problem is an instance of visibility problems which asks whether two objects can move

on the boundary of a polygon while being visible to each other. This problem was first introduced

in [53], followed by research on multiple generalization of the two-guard problem [66, 76, 77, 89, 12,

99]. All previous work uses a polygon to represent a network. However, in some real-life applications

it is not adequate to use polygons because the boundaries are usually curves. In order to simulate

these situations better it is necessary to propose new concepts that approximate curved boundaries

in visibility problems.

1.3 Contributions and Outline

This dissertation research deals with connectivity requirements and connectivity related prob-

lems arising in network analysis. One focus of this dissertation is on performing an extensive study

of facets of the connected subgraph polytope. The linear inequalities that define facets are the tight-

est by polyhedral theory, thus study of those facets can be utilized with classical branch-and-cut

techniques in mathematical programming in developing effective integer programming algorithms

to solve network analysis problems. We further search for subclasses of networks for which we have

full descriptions of their connected subgraph polytopes. In such subclasses binary constraints of

variables are not necessary, so linear programming techniques can be utilized, which simplify the

study of connectivity requirements significantly.

The other focus of this dissertation is to explore connectivity related problems in different

geometric network models. The unit disk graph model and visibility problems are studied. Tools

that take advantage of various geometric properties are developed.

5



Broadly, this dissertation makes the following contributions. Firstly, we have developed a frame-

work to generate a large class of facets of connected subgraph polytope for general graphs. We have

presented the necessary and sufficient conditions for one class of well-known connectivity constraints

to define facets. This is done using a framework that allows to generate these constraints. Then we

have analyzed the computational complexity of generation process and the relationship between the

maximum weight connected subgraph problem and the node-weighted Steiner tree problem. We

derived several new results for these two problems. In addition, we have provided full description

of connected subgraph polytope for graph that is a forest or satisfies some edge density restric-

tions. Furthermore, we discuss an approximation algorithm for a clique relaxation problem called

the maximum 2-clique problem in a unit disk graph. Finally, we have generalized the two-guard

problem to the case with curved boundaries.

The remainder of this dissertation is organized as follows. Chapter 2 presents key background

information for our research from graph theory, complexity theory, polyhedral theory, and point-set

topology. In Chapter 3, we study the polyhedral structure of connected subgraph polytope and

develop a framework to generate facets utilizing the lifting technique from polyhedral theory. The

relationship between the maximum weight connected subgraph problem, the node-weighted Steiner

tree problem, and the process of generating facets is also analyzed. In Chapter 4, we propose full

description of connected subgraph polytope for subclasses of graphs. Chapter 5 is focused on the

2-clique problem in a unit disk graph. We discuss an algorithm with a guaranteed 1
2 -approximation

ratio for solving this problem. In Chapter 6, we generalize the two-guard problem. We introduce a

new concept of curvilinear polygon to generalize the usual polygon and develop new tools to deal

with the curvilinear polygons. Finally, in Chapter 7, we conclude our study and present potential

directions for future research.

The research in Chapter 3 and 4 is a joint work with Austin Buchanan and Sergiy Butenko.

Some results from Chapter 3 and 4 appear in working papers [94, 20]. The research in Chapter 5

is a joint work with Jeff Pattillo and Sergiy Butenko based on publication [80], which is essentially

a refined and enhanced version of work that originally appeared in [78].
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2. BACKGROUND

This section gives the background information necessary for this dissertation. Definitions and

background needed from graph theory are presented in Section 2.1. The basic understanding from

complexity theory is the focus of Section 2.2. Knowledge necessary from polyhedral theory is

summarized in Section 2.3. The necessary information above convex sets and functions is given in

Section 2.4.

2.1 Graph Theory

For a basic introduction to general graph theory, see [29]. For an introduction of unit disk

graphs, see [26]. For an introduction of flow networks, see [1]. We only provide the notations and

basic definitions necessary in this dissertation.

Throughout this work we consider a finite and simple graph G = (V,E), where V = {1, . . . , n}

and (i, j) ∈ E when vertices i and j are adjacent, with |E| = m. The order of G is the number of

vertices n, and the size of G is the number of edges m. We use V (G) and E(G) to denote the vertex

set and edge set, respectively, of a graph G. When G is undirected, (i, j) and (i, j) represent the

same edge, while in a directed graph, they represent different edges. Except for flow networks, we

assume the graph G is undirected. A weight function W can be associated with vertices and edges

of G, making G a weighted graph. Given a positive integer n and p ∈ [0, 1], a uniform random

graph G(n, p) is a graph with n vertices where the probability that an edge exists between any two

vertices is p.

A graph G′ = (V ′, E′) is a subgraph of G = (V,E) if V ′ ⊆ V and E′ ⊆ E. Given a subset

S ⊆ V , induced subgraph G[S] is derived by deleting all vertices and incident edges in V \ S from

G. The graph obtained by the deletion of a vertex i or a set of vertices S form G is denoted by

G − i and G − S, respectively. Given graphs G1 and G2, the corresponding union graph G1 ∪ G2

is G = (V (G1) ∪ V (G2), E(G1) ∪ E(G2)). G = (∅, ∅) is called a null graph, and G = (V, ∅) is

called a trivial graph. G is called complete if all its vertices are pairwise adjacent, i.e. ∀i, j ∈ V ,

we have (i, j) ∈ E. The complete graph on n vertices is denoted by Kn. The complement graph

of G = (V,E) is defined by Ḡ = (V, Ē), where K|V | = (V,E ∪ Ē). A bipartite graph consists of

two independent sets P and Q such that all edges cross between vertices in P and Q. A complete

bipartite graph where the size of P and Q arep, q respectively is denoted by Kp,q. In particular, the
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graph K1,n is called a star. A path on n vertices, denoted by Pn, is an ordered tuple of vertices

(p1, . . . , pn) such that consecutive vertices are adajacent in G. A graph G where there is a path

between every pair of vertices is called connected.

For i ∈ V , the set NG(i) of vertices adjacent to i in G is called the neighborhood of i, and the set

NG[i] = NG(i) ∪ {i} is the closed neighborhood of i. We will simplify NG(i) and NG[i] to N(i) and

N [i], respectively, when it is obvious what graph G we have in mind. Let degG(i) = |NG(i)| be the

degree of i in G. The maximum and minimum vertex degree in G is denoted by ∆(G) and δ(G),

respectively. Given i, j ∈ V , dG(i, j) denotes the shortest length of a path between i and j in G. In

order to distinguish it from Euclidean distance in the setting of unit disk graphs, we will sometimes

refer to it as the geodesic distance between vertices. By convention, the distance between two

vertices that are not connected is infinity. The diameter of G is diam(G) = maxi,j∈V dG(i, j). For

G = (V,E) and a positive integer k, the kth power of G is Gk = (V,Ek), where Ek = {(i, j)|i, j ∈

V, dG(i, j) ≤ k}.

G is called a k-degenerate graph if every subgraph of G has a vertex of degree at most k. The

degeneracy (k-core number, width) of G is the minimum k such that G is k-degenerate. The

connectivity κ(G) of G is the minimum number of vertices whose removal results in a disconnected

or trivial graph. A clique is a subset of vertices that induces a complete graph in G. Given a

graph G, the maximum clique problem is to find a clique of maximum cardinality in G. The clique

number ω(G) is the cardinality of a maximum clique in G. An independent set(also called stable

set or vertex packing) is a subset of vertices that induce a subgraph with no edges. The maximum

independent set problem to find an independent set of largest cardinality α(G) in G, where α(G)

is called the independent number of G. Obviously, I is an independent set in G if and only if I is

a clique in Ḡ, so α(G) = ω(Ḡ). A clique (independent set) is called maximal if it is not a proper

subset of a larger clique (independent set).

A dominating set in G is a subset of vertices such that every vertex in G is either in this set or has

a neighbor in this set. A dominating set is minimal if it does not contain a smaller dominating set

and minimum if there is no smaller dominating set in G. The minimum cardinality of a dominating

set is called the domination number and denoted by γ(G). If γ(G) ≤ k, G is called k-dominated.

A vertex cover in G is a subset of vertices such that every edge in G has at least one end point in

this set. The minimum cardinality of a vertex cover is called the vertex cover number and denoted

by τ(G).
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Unit disk graphs represent a subclass of graphs that can be realized as a set of equal radius

disks in the Euclidean plane, where edges are completely determined by the distance between the

centers of the disks. In the intersection model, two disks are connected by an edge if and only if

the two disks of equal radius intersect. In the containment model, two disks are connected by an

edge if and only if each disk covers the center of the other. Not every graph can be represented as

a unit disk graph. For instance, the complete bipartite graph K1,7 is not a unit disk graph. The

intersection and containment models of unit disk graphs are equivalent, meaning they specify the

same subset of graphs form the collection of all graphs. However, we will work exclusively with

the containment model in this dissertation when we will analyze the 2-clique problem on unit disk

graphs. All disks in a clique of a unit disk graph pairwise intersect under the containment model.

This fact is crucial to our results.

Let G = (V,E) be a directed graph where every edge (u, v) ∈ E has a non-negative capacity

c(u, v). We assume c(u, v) = 0 if (u, v) 6∈ E. We distinguish two vertices: a source s and a sink t.

A flow network is a real function f : V × V → R with the following three properties for all vertices

u and v:

Capacity constraints: f(u, v) ≤ c(u, v).

Skew symmetry: f(u, v) = −f(v, u).

Flow conservation:
∑
w∈V f(u,w) = 0 unless u = s or u = t.

The value of flow is defined by |f | = ∑v:(s,v)∈E f(s, v). The maximum flow problem is to maximize

|f |, that is, to route as much flow as possible from s to t.

An s, t-cut C = (S, T ) is a partition of V such that s ∈ S and t ∈ T . The capcity of an s, t-cut

is defined by c(S, T ) =
∑

(u,v)∈S×T c(u, v). The minimum s, t-cut problem is to minimize c(S, T ).

Theorem 1 (Max-flow min-cut theorem). In a flow network, the maximum amount of flow |f |

from s to t is equal to the minimum of s, t-cut capacity c(S, T ).

2.2 Complexity Theory

In this section, we give a brief review of basic concepts from the complexity theory; see [35] for

more detail.

In the theory of NP-completeness we deal with the tractability of decision problems, which

answer with either ”yes” or ”no” to questions about a given object. The framework of NP-
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completeness aims to separate decision problems with solutions that are easy to verify but difficult

to compute from those that are easy to compute.

A decision problem Q is said to be in class P if an algorithm A exists that can answer it correctly

in a running time polynomially bounded by its input size. Since polynomial-time algorithms are

regarded to be efficient, problems in class P and the corresponding optimization problems are

considered to be easy. However, many optimization problems are not known to belong to this class,

but belong to a wider class, NP. A decision problem Q belongs to the class NP if there exists

a polynomial-time algorithm A that, given a solution to a yes-instance, uses this solution as a

certificate to verify that this is indeed a yes-instance of the problem. Note that A does not need to

know how to construct a solution for a given yes-instance x but only need to test its correctness,

so such a A is called a non-deterministic polynomial algorithm.

It is clear that P ⊆ NP since any decision problem in P is also included in class NP by

treating the algorithm A as the non-deterministic algorithm required for a problem in NP. The

algorithm for problems in P does not need the information y to solve a yes-instance of the problem

in polynomial time but can construct it.

The notion of NP-completeness was created to identify the most difficult problems in the class

NP. Two problems can be compared for difficulty by a notion of polynomial time reducibility.

Given two decision problems Q1 and Q2, Q1 is polynomial time reducible to Q2 if there exists a

polynomial time algorithm A that, given an instance x to Q1, construct an instance A(x) to Q2,

such that x is a yes-instance of Q1 if and only if A(x) is a yes-instance of Q2. According to this

definition, if Q2 can be solved in polynomial time, so can Q1. Consequently, Q1 is not harder than

Q2. This indicates that if Q2 is in class P, so is Q1, and if Q1 is intractable, so is Q2.

A problem Π is called NP-hard if every problem in class NP is polynomial time reducible to Π.

If an NP-hard problem Π belongs to class NP, then Π is called NP-complete. By transitivity of

polynomial time reducibility, to show that a given problem Π is NP-hard it suffices to find a known

NP-hard problem that is polynomial time reducible to Π. A compendium of known NP-complete

problems can be found in [35].

2.3 Polyhedral Theory

A combinatorial optimization problem is to find an optimal object from a finite set of objects.

Combinatorial optimization problems arise frequently in science and engineering. In many such
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problems, although the set of objects is finite, exhaustive search is not feasible. A majority of

combinatorial optimization problems are actually NP-hard, which indicates that they may be

not be able to solve efficiently. A wide array of techniques including exact algorithms, heuristic

methods, approximation algorithms, randomized algorithms and global optimization techniques

exist to approach different combinatorial optimization problems. Many books have been written

on combinatorial optimization problems that focused on different aspects of the study.

The purpose of this section is to provide a brief review of integer programming and polyhedral

techniques for solving combinatorial optimization problems. One can consult [72, 87] for more

detail.

Polyhedral theory allows one to use linear programming (LP) methods for solving integer pro-

gramming and combinatorial optimization problems. The LP problem can be stated as follows:

max{cTx|Ax ≤ b},

where the column vector c ∈ Rn, b ∈ Rm and matrix A ∈ Rm×n are given. The feasible region

defined by the solution sets of a LP problem is called a polyhedron. P is said to be a rational

polyhedron if A and b are rational; it is called integral if its extreme points are integral vectors. A

bounded polyhedron is called a polytope.

Most combinatorial optimization problems can be formulated as integer programs with one-to-

one correspondence between their feasible solutions are the combinatorial objects of interest. Given

a graph G = (V,E) and a subset of vertices D ⊆ V , a binary vector x ∈ {0, 1}|V | is a characteristic

vector of D if xi = 1 if and only if i ∈ D.

An integer programming (IP) problem in a general form is given by:

max{cTx|Ax ≤ b, x ∈ Zn}

where A, b and c are as before. Denote by Q = {x ∈ Zn|Ax ≤ b} the set of feasible solutions to

this IP, and by PI = conv(Q) – its convex hull.

Theorem 2 (see [72]). A set P is a polytope if and only if there exists a finite set Q such that P

is the convex hull of Q.

Because in combinatorial optimization problems the solution sets are finite, the polyhedron
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considered in this dissertation is always a polytope by this theorem. If we have a complete linear

description of PI , the corresponding combinatorial optimization problem can be solved efficiently

via LP approaches. However, finding the complete linear description of PI is very difficult. Instead,

we can consider the LP relaxation polyhedron PL of the integer program above. Obviously PI ⊆ PL,

so maximizing over PL provides an upper bound on the maximum over PI . Therefore, improving

the LP relaxation using additional constraints that do not cut off any feasible integer solutions can

help approaching the maximum of PI .

Now the concepts related to strengthening the LP relaxation are introduced. A linear inequality

πx ≤ π0 is valid for a polyhedron P if P ⊆ {x|πx ≤ π0}. A valid inequality πx ≤ π0 is said to

dominate a valid inequality µx ≤ µ0 if there exists u > 0 such that π ≥ uµ and π0 ≤ uµ0 and

(π, π0) 6= (uµ, uµ0). A valid inequality πx ≤ π0 is said to be dominated by k valid inequalities

πix ≤ πi0,i = 1, . . . , k if there exist ui > 0, i = 1, . . . , k such that (
∑k
i=1 uiπ

i)x ≤ ∑k
i=1 uiπ

i
0

dominates πx ≤ π0.

A valid inequality restricted to be an equation represents a hyperplane. It is called a cutting

plane or a cut. A polyhedron P ⊆ Rn is called full-dimensional if P contains n linearly independent

directions.

Theorem 3 (see [72]). If P is a full-dimensional polyhedron, it has a unique minimal description

P = {x ∈ Rn|aix ≤ bi, i = 1, . . . ,m}

where each inequality is unique to within a possible multiple.

This theorem indicates a polyhedron P can be represented by a set of cuts uniquely when P is

full-dimensional.

Recall that vectors x1, . . . , xk ∈ Rn are affinely independent if the k − 1 directions x2 −

x1, . . . , xk − x1 are linearly independent. The dimension of P , denoted by dim(P ), is one less

the maximum number of affinely independent points in P . F is a face of the polyhedron P if

F = {x ∈ P |πx = π0} for some valid inequality πx ≤ π0 of P . Meanwhile πx ≤ π0 is said to

represent or define the face F . F is a facet of P if F is a face and dim(F ) = dim(P )− 1. At this

time the corresponding inequality πx ≤ π0 which defines F is called a facet-defining inequality.

Theorem 4 (see [72]). If P is full-dimensional, a valid inequality πx ≤ π0 is necessary in the
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description of P if and only if it defines a facet of P .

Essentially this theorem indicates a full-dimensional polyhedron is full described by its facets

and facets are the strongest among the valid inequalities. Thus facets play a crucial role in analysis

of a polyhedron.

It should be noted that the number of facet-defining inequalities can be exponentially larger than

the size of the original combinatorial problem. Hence, for a polytime solvable problem, it is not

wise to take a cutting plane approach. This issue can be dealt with using the ellipsoid method [61]

utilizing the the concepts of separation and optimization. A comprehensive introduction of this

method is in [40]. We only present the basic ideas of separation and optimization problems. Given

a rational polytope P ⊆ Rn and a rational vector v ∈ Rn, the separation separation asks to either

conclude that v ∈ P , or find a valid inequality πx ≤ π0 of P but violated by v. Given a rational

polytope P ⊆ Rn and a rational vector c ∈ Rn, the optimization problem asks to either find x∗ ∈ P

that maximize cTx over all x ∈ P , or conclude that P = ∅.

Theorem 5 ( [27]). For any proper class of polyhedron, the optimization problem is polytime

solvable if and only if the corresponding separation problem is polytime solvable.

This theorem indicates that the complexity in an optimization problem is equvalent to the

complxity of corresponding separation problem, not the number of facets. Therefore, if a polynomial

time algorithm exists to solve a combinatorial problem, cutting-plane approaches can be applies to

find one.

2.4 Convex Sets and Functions

In this section, we are focused on necessary information about convex sets and convex functions

in order to formally define the concept of curvilinear polygon. A comprehensive reference on convex

functions and convex optimization is [11]. A good reference on convex sets is [65].

First, we introduce definitions concerning convex sets. A path between x and y in Rn is a

continuous function τ : [0, 1] → Rn such that τ(0) = x and τ(1) = y. A set in Rn is said to be

(path)-connected if for each x1, x2 ∈ S, there exists a path between x1 and x2. The definition of

path-connectedness can be used as the definition of connectedness because the concepts of path-

connectedness and connectedness are the same in Rn [65].

A set S ⊆ Rn is said to be convex if for each x1, x2 ∈ S, the line segment λx1 + (1 − λ)x2 for

λ ∈ (0, 1) belongs to S. By the definition, every convex set is connected.
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Given x ∈ Rn, an open neighborhood of x is an open ball of positive radius centered at x;

similarly a closed neighborhood of x is a closed ball of positive radius centered at x .

Given a set S and a point x ∈ S, x is called an interior point of x if there exists a open

neighborhood of x that is also a subset of S. The set of interior points of S is denoted by int(S).

Denote ∂S = S \ int(S) the boundary of S.

A set S ⊆ Rn is called open if S = int(S). A set S ⊆ Rn is called closed if Rn \ S is open. The

closure of set S is the intersection of all the closed sets containing S and denoted by cl(S).

Proposition 1 (see [65]). If S is a convex set, then cl(S) is also a convex set.

A set S is said to be locally convex if for every x ∈ S, there exists a closed neighborhood of x

whose intersection with S is convex.

Theorem 6 (see [65]). A closed connected set S ⊆ Rn is convex if and only if it is locally convex.

A supporting hyperplane of a set S ⊆ Rn is a hyperplane that S is entirely contained in one of the

two closed half-spaces bounded by the hyperplane and S has at least one point on the hyperplane.

Let S ⊆ Rn and x ∈ ∂S, then S is weakly supported at x locally if there exists a closed neighhood

N(x) of x and a linear function f 6= 0 such that the following holds:

if y ∈ N(x) and f(y) > f(x), then y 6∈ S.

Proposition 2 (see [65]). Let S ⊆ Rn and x ∈ ∂S, if there exists a closed neighborhood N(x) of

x whose intersection with S is convex, then S is weakly supported at x locally.

Theorem 7 (Tietze’s Theorem, see [65]). Let S be an open connected subset of Rn, then S is

convex if and only if S is weakly supported locally at each of its boundary points.

A Jordan arc γ in R2 is the image of a injective continuous map φ : [0, 1]→ R2. Further if φ is

differentiable on (0, 1) and the derivative of φ is continuous, then γ is smooth.

Every smooth Jordan arc γ could be written as γ = r(t) = (x(t), y(t)), t ∈ [0, 1] while both x(t)

and y(t) are continuously differentiable functions of t on (0, 1). Further, the right derivatives of

x(t) and y(t) exist on t = 0 and the left derivatives of x(t) and y(t) exist on t = 1. For details, see

[91].

The tangent line to a smooth curve γ at the point P = r(t) ∈ γ is the straight line through the

point P in the direction of vector r′(t).
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A convex curve is a Jordan arc that is a connected boundary component of a convex set in R2.

Proposition 3 (see [91]). Every point on a convex curve γ has a supporting line (supporting

hyperplane in R2). Furthermore, if γ is smooth, then it has tangent line and the tangent line is

always a supporting line.
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3. FACETS OF CONNECTED SUBGRAPH POLYTOPE

In this chapter, we introduce the (vertex-) connected subgraph polytope P(G) and utilize lifting

technique to develop a framework to generate a large class of its facets. We also perform a study

of computational complexity of this framework in different contexts.

This chapter is organized as follows. We begin in Section 3.1 with the related work about

polyhedral study of connectivity and connected subgraphs and introduce the polytope P(G) we

study with. We then discuss fundamental properties of P(G) in Section 3.2. In Section 3.2 we

start with trivial facts of P(G) and then introduce lifting technique to generate non-trivial facets.

As an example, we provide necessary and sufficient conditions for vertex separator inequalities to

induce facets. Finally, in Section 3.3, we study the computational complexity of lifting procedure.

We show that it is NP-hard in general but polytime solvable for special graphs. We also provide

insights concerning the relationship between the complexity of lifting procedure and the maximum

weight connected subgraph (MWCS) problem.

3.1 Motivation

As discussed in the introduction, a polyhedral study of connected subgraph polytope is critical

to study the connectivity. However, there is only a little research focused on this topic. A possible

reason is that the connectivity does not have heredity property, which means the subgraph of a

connected graph is not necessarily be connected. Heredity property is essential in polyhedral study

of cliques, independent sets [31, 63] and clique relaxations [7] as it is essential to build independence

systems [15].

Grötschel, Monma and Stoer [43, 41, 44] started the study of polyhedral structure of connectivity

constraints arising in network design problems. Their focus was on derivation of tight inequalities

of edge-connected subgraph polytope and application of these inequalities in the cutting plane

method. Bäıou and Mahjoub [69, 4] generalized their methods and described 2-edge connected

subgraph polytope and Steiner 2-edge connected subgraph on series-parallel graphs. Barahona and

Mahjoub [9] further proposed a full description of those polytopes on Halin graphs. Chopra [25]

and Biha et al. [14] showed structures of k-edge connected subgraph polytope on special types of

graphs. Bäıou et al. [3] provided a polyhedral study on partition inequalities that are closely related

to connectivity. Biha et al. [13] investigated the structure of edge connected subgraph polytope. In
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all these studies, the authors considered the edge connected subgraph polytope

eCSP (G) := conv
({
xF ∈ {0, 1}|E| | G[F ] is connected

})
,

where xF denotes the characteristic vector of F ⊆ E.

However, to the best of our knowledge, a similar but more general (as we will show later)

polytope, (vertex) connected subgraph polytope, has not been considered in the literature.

Definition 1. The vertex connected subgraph polytope (CSP) of a graph G = (V,E) is

P(G) := conv
({
xS ∈ {0, 1}|V | | G[S] is connected

})
,

where xS denotes the characteristic vector of S ⊆ V .

For convenience, we assume the trivial graph ({v}, ∅) and the null graph (∅, ∅) are connected,

thus allowing single-vertex and zero-vertex solutions. This ensures an important property that

every graph’s connected subgraph polytope is full-dimensional.

An integer programming formulation for P(G) can be obtained by enforcing the usual 0 − 1

constraints and also all vertex separator inequalities, i.e., inequalities of the type

(a, b-separator inequality) xa + xb −
∑
i∈C

xi ≤ 1,

where a and b are nonadjacent vertices and C is an a, b-separator. Recall that an a, b-separator C is

a vertex subset (containing neither a nor b) such that nonadjacent vertices a and b are disconnected

in G[V \ C]. Whenever a and b lie in different connected components of G, the empty set is an

a, b-separator. Since these vertex separator inequalities are all valid, a natural question to ask is

when a separator inequality is tight, i.e., when such inequality defines a facet.

A closely related problem to P(G) is the maximum-weight connected subgraph (MWCS) prob-

lem. The MWCS problem is first considered by Kerivin and Ng [60] where weight are only set on

edges. They showed that version of MWCS and the prize-collecting Steiner Tree problem as defined

in Johnson et al. [55] and in Geomans and Williamson [39] are equivalent optimization problems.

So that problem is NP-hard, even when restricted to planar graphs of maximum degree three with

all weights either 1 or −1 [54, 93]. Using a similar approach as Feigenbaum et al. [32], that version
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of MWCS is shown to be NP-hard to approximate within a constant factor.

A integer programming approach to general MWCS where weights are set in both vertices and

edges can be found in [2]. It is helpful to note that by adding one vertex in the middle of each edge,

general MWCS can be reformulated as the version where weights are only set on vertices.

Problem: Maximum-Weight Connected Subgraph (MWCS).

Input: a graph G = (V,E), a weight wv (possibly negative) for each v ∈ V .

Output: a maximum-weight subset S ⊆ V such that G[S] is connected.

One of major reasons for studying P(G) and eCSP (G) (as in [13]) is the fact that the maximum

weight connected subgraph problem can be formulated as the linear program

max wTx

s.t. x ∈P(G) or eCSP (G).

We view P(G) to be more general than eCSP (G) because study of P(G) corresponds to general

MWCS while study of eCSP (G) corresponds to MWCS where weights are set to edges only.

In general it is not practical to write out a full description of P(G). However, there is a close

correspondence between the complexity of MWCS and the complexity of P(G). Namely, if a class

of MWCS instances is difficult, we can expect the corresponding polytopes P(G) to be rather

complex as well. Put differently, if we are seeking nice descriptions of P(G), we should probably

restrict ourselves to easy cases of MWCS. For example, a MWCS instance on a tree is solvable in

polytime, so we can expect that P(G) where G is a tree has rather simple structure. Our another

focus is on G with a fixed independence number α(G) because we show MWCS is polytime solvable

if α(G) is bounded.

3.2 Fundamental Properties of P(G)

In this section, we describe fundamental properties of P(G), including when the 0-1 bounds

and separator inequalities induce facets. Lifting arguments are the primary tool used in generation

of facets, so we also provide some background information about lifting.
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3.2.1 Trivial Facets

Proposition 4 (full-dimension; 0-1 facets). The connected subgraph polytope P(G) of graph G is

full-dimensional. Moreover, for each i ∈ V (G),

1. xi ≥ 0 induces a facet, and

2. xi ≤ 1 induces a facet if and only if G is connected.

Proof. The usual n + 1 affinely independent points 0 and ei, i = 1, . . . , n suffice to show full-

dimension. The points 0 and ej , j 6= i show that xi ≥ 0 induces a facet. When G is connected,

consider the vertices i = v1, v2, . . . , vn in a depth-first traversal ordering starting from i. Then the

n affinely independent points
∑k
j=1 evj for k = 1, . . . , n show that xi ≤ 1 induces a facet. When G

is not connected, then consider a vertex j that belongs to a different component of G than i. Then

the valid inequalities xi + xj ≤ 1 and −xj ≤ 0 imply xi ≤ 1, meaning that xi ≤ 1 cannot induce a

facet.

Lemma 1. Consider a graph G = (V,E) and a valid inequality
∑
i∈V πixi ≤ π0 for P(G). If

S ⊆ V , then
∑
i∈S πixi ≤ π0 is valid for P(G[S]).

Proof. Suppose that D ⊆ S is connected in G[S]. Then, D is also connected in G, so

∑
i∈S

πix
D
i =

∑
i∈V

πix
D
i ≤ π0.

This concludes the proof.

The previous proposition shows that the facets of P(G) depend on whether G is connected. We

expound upon this in the following lemma, showing that P(G) is determined by its components’

connected subgraph polytopes.

Theorem 8. Let {Gi = (Vi, Ei)}i be the (connected) components of a graph G = (V,E) and

consider (π, π0) ∈ Rn × R. Then the following are equivalent.

1. For each Gi, the inequality
∑
j∈Vi

πjxj ≤ π0 induces a facet of P(Gi).

2. The inequality
∑
j∈V πjxj ≤ π0 induces a facet of P(G).
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Proof. Suppose that for each Gi, the inequality
∑
j∈Vi

πjxj ≤ π0 induces a facet of P(Gi). Then

any subset D of vertices that induces a connected subgraph of G must belong to a single component

of G, say Gk. So,

∑
i

∑
j∈Vi

πjx
D
j =

∑
j∈Vk

πix
D
j ≤ π0,

and thus
∑
i

∑
j∈Vi

πjxj ≤ π0 is valid for P(G). Define ni := dim(P(Gi)) = |Vi|. Then because∑
j∈Vi

πjxj ≤ π0 is facet-defining for P(Gi), there exist ni affinely independent vectors xD
q
i , q =

1, . . . , ni satisfying
∑
j∈Vi

πjx
Dq

i
j = π0. Add an adequate number of 0’s so that xD

q
i ∈P(G). Then,

∑
i

∑
j∈Vi

πjx
Dq

i
j =

∑
j∈Vi

πjx
Dq

i
j = π0.

The total number of such vectors xD
q
i is

∑
ni = dim(G) and the vectors are affinely independent,

so
∑
i

∑
j∈Vi

πjxj ≤ π0 is facet-defining for P(G).

If
∑
i

∑
j∈Vi

πjxj ≤ π0 is facet-defining for P(G), then obviously
∑
j∈Vi

πjxj ≤ π0 is valid

for P(Gi). Since it induces a facet of P(G) there is a set of n affinely independent vectors

xD1 , . . . , xDn ∈ P(G), each satisfying
∑
i

∑
j∈Vi

πjx
Di
j = π0. Since each of the vertex sets

D1, . . . , Dn must belong to a single component ofG, for eachDq, there is a Vi such that
∑
j∈Vi

πjx
Dq

j =

π0. It can be argued that Ni := {q | Dq ⊆ Vi} has cardinality |Vi| and that the vectors xDq , q ∈ Ni
are affinely independent, implying that

∑
j∈Vi

πjxj ≤ π0 is facet-defining for P(Gi).

Corollary 1. Let {Gi = (Vi, Ei)}i be the components of a graph G. Then, for any U ⊆ V such

that |U ∩ Vi| = 1 for each Vi, the inequality
∑
j∈U xj ≤ 1 induces a facet of P(G).

Proof. By Proposition 4, for any j ∈ U ∩ Vi, xj ≤ 1 is facet-defining for G[Vi]. Then by Theorem

8,
∑
j∈U xj ≤ 1 is facet-defining for P(G).

Corollary 2. For a graph G = (V,E) and independent set S ⊆ V , the inequality
∑
j∈S xj ≤ 1

induces a facet of P(G[S]).

While studying how inequalities define facets of P(G), we also need to understand when in-

equalities do not define facets of P(G). We use the following lemma throughout this dissertation

to prove a inequality is not facet-defining. It is rather simple, but since we use it so often, we state

it explicitly.
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Lemma 2. If ax ≤ b and cx ≤ d are valid inequalities for a full-dimensional polyhedron P , where

(a, b) is not a scalar multiple of (c, d), then the inequality (a + b)x ≤ (c + d) is not facet-inducing

for P .

3.2.2 Basics of Lifting

Corollary 2 shows that we can easily generate the facet-defining inequality
∑
i∈S xi ≤ 1 for

P(G[S]), where S is an independent set. However, we want facet-defining inequalities for P(G)

and this inequality is perhaps not even valid for P(G). Lifting is the procedure whereby this or

other seed inequalities are altered so that they induce facets of P(G).

Lifting was first introduced by Balas [5] as a computational tool to solve integer programming

problems with binary constraints. The idea of lifting is to consider the integer programming problem

not in the original space, but in some space of lower dimension by enforcing certain variables to zero

at the beginning. Systematic lifting procedure can be utilized to obtain strong valid inequalities

and facets of polyhedra [74, 71, 43, 41, 44]. There are a variety of lifting principles, each is utilized

in different fields. The lifting principle we apply is as below.

Proposition 5 (Lifting zero-valued variables, Prop. 1.1 on pp. 261 of [72]). Suppose that F ⊆

{0, 1}n, F δ = F ∩ {x ∈ {0, 1}n | x1 = δ} for δ ∈ {0, 1}, and
∑n
j=2 πjxj ≤ π0 induces a facet of

conv(F 0). If F 1 6= ∅, then

(π0 − ζ)x1 +

n∑
j=2

xj ≤ π0 (3.1)

induces a facet of conv(F ), where ζ = max{∑n
j=2 πjxj | x ∈ F 1}.

We can rewrite this lifting proposition specifically in terms of the connected subgraph polytope.

It is somewhat simplified since our lifting problem is always feasible.

Corollary 3 (Lifting for P(G)). Suppose the inequality
∑
j∈V \{v} πjxj ≤ π0 induces a facet of

P(G− v), then the inequality

(π0 − ζ)xv +
∑

j∈V \{v}

πjxj ≤ π0
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induces a facet of P(G), where

ζ := max
S⊆V

 ∑
j∈V \{v}

πjx
S
j

∣∣∣∣∣∣ xSv = 1 and G[S] is connected

 .

This lifting principle provides a way to generate facets for P(G) from facets of its subgraphs’

polytopes. A key idea is that this can be applied sequentially based on some lifting order. This

machinery is vital for our proofs.

3.2.3 Vertex Separator Facets

We provide a good characterization for when the separator inequalities induce facets.

Theorem 9 (a, b-separator facets). Consider a connected graph G = (V,E); distinct, nonadjacent

vertices a and b; and a vertex subset C ⊆ V \ {a, b}. Then, the inequality

xa + xb −
∑
j∈C

xj ≤ 1

induces a facet of P(G) if and only if C is a minimal a, b-separator.

Proof. ( =⇒ ) Suppose that C is not an a, b-separator. Then there exists a path from a to b in

G[V \C]. Let P be the set of vertices in the path (including a and b). Then G[P ] is connected, but

xPa + xPb −
∑
j∈C

xPj = xPa + xPb = 2 > 1,

so xa + xb −
∑
j∈C xj ≤ 1 is not valid. This shows that C is an a, b-separator. Now suppose C is

not a minimal a, b-separator. Then there exists k ∈ C such that C \ {k} is an a, b-separator. Then

the two valid inequalities −xk ≤ 0 and xa + xb −
∑
j∈C\{k} xj ≤ 1 imply xa + xb −

∑
j∈C xj ≤ 1,

so the last cannot induce a facet. This shows that C is a minimal a, b-separator.

(⇐= ) Suppose that C is a minimal a, b-separator and define

A := {v ∈ V | v and a belong to the same component of G[V \ C]}

B := {v ∈ V | v and b belong to the same component of G[V \ C]}

D := V \ (A ∪B ∪ C)
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Claim 1: xa + xb ≤ 1 induces a facet of P(G[A ∪ B]). Because C is an a, b-separator, A and

B are disjoint. Further, each of G[A] and G[B] is connected, so by Corollary 1, xa + xb ≤ 1 is

facet-defining for P(G[A ∪B]).

Claim 2: xa +xb−
∑
j∈C xj ≤ 1 induces a facet of P(G[A∪B ∪C]). Suppose C = {v1, . . . , vc}

and let C0 := ∅, Ci := {v1, . . . , vi}, and Gi := G[A ∪ B ∪ Ci]. We use induction to show that, for

i = 0, 1, . . . , c, the inequality xa + xb −
∑
j∈Ci

xj ≤ 1 induces a facet of P(Gi). When i = 0, the

statement is true as above. Assume the statement holds when i = k − 1. Now consider i = k. By

the induction assumption, xa + xb −
∑
j∈Ck−1

xj ≤ 1 is facet-defining for P(Gk−1). Define

ζ := max
S⊆A∪B∪Ck

xSa + xSb −
∑

j∈Ck−1

xSj

∣∣∣∣∣∣ xSvk = 1 and G[S] is connected

 .

On one hand,

xa + xb −
∑

j∈Ck−1

xj ≤ xa + xb ≤ 2,

so ζ ≤ 2. Also, because C is a minimal separator of a and b, there is a path from a to b in

G[(V \ C) ∪ {vk})], let T be the set of vertices in this path, then xT is feasible for the lifting

problem, and

xTa + xTb −
∑

j∈Ck−1

xTj = xTa + xTb = 2,

so ζ ≥ 2. This implies that ζ = 2, and by the lifting principle, the inequality

(1− ζ)xvk + xa + xb −
∑

j∈Ck−1

xj = xa + xb −
∑
j∈Ck

xj ≤ 1

induces a facet of P(Gk), so the statement is true when i = k and in general. Thus, xa + xb −∑
j∈C xj ≤ 1 is facet-defining for P(Gc) = P(G[A ∪B ∪ C]).

Claim 3: xa + xb −
∑
j∈C xj ≤ 1 induces a facet of P(G). For any u ∈ D, let σ(u) be the

length of a shortest path from u to (a vertex of) C measured in terms of the number of edges.

Note that C is nonempty and G is connected, so σ(u) is well-defined, i.e., 0 < σ(u) < ∞,∀u ∈ D.

Order D = {u1, . . . , ud} such that σ(us) ≤ σ(ut),∀s ≤ t, e.g., by breadth-first search. Let D0 =

∅, Di = {u1, . . . , ui}, and Hi = G[(V \D)∪Di]. We use induction to show that, for i = 0, 1, . . . , d,

the inequality xa + xb −
∑
j∈C xj ≤ 1 induces a facet of P(Hi). When i = 0, we already know
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that xa + xb −
∑
j∈C xj ≤ 1 is facet-defining for P(H0). So, assume the statement holds when

i = k−1, and consider i = k. By the induction assumption, xa+xb−
∑
j∈C xj ≤ 1 is facet-defining

for P(Hk−1). Define

ζ := max
S⊆V (Hk)

xSa + xSb −
∑
j∈C

xSj

∣∣∣∣∣∣ xSuk
= 1 and G[S] is connected

 .

Consider a feasible solution S ⊆ V (Hk) to the lifting problem. On one hand, if xSa +xSb −
∑
j∈C x

S
j >

1, then both a and b belong to S. But, for G[S] to be connected, there must exist q ∈ C ∩ S. So

xSa + xSb −
∑
j∈C

xSj ≤ xSa + xSb − xSq = 1,

which is a contradiction. This shows ζ ≤ 1. Now we show the reverse inequality. Let T1 be the set

of vertices in a shortest path from uk to C in G and suppose q ∈ C is the other end point in the

path. Then T1 ∩ C = {q}, since otherwise T1 is not a shortest path. Further, since C is a minimal

a, b-separator, there is a path from a to b in G[(V \ C) ∪ {q}]. Let T2 be the set of vertices in this

path, and let T = T1∪T2. Then G[T ] is connected, a, b, uk, q ∈ T and T ∩C = {q}, so xT is feasible

for the lifting problem and

xTa + xTb −
∑
j∈C

xTj = xTa + xTb − xTq = 1,

so ζ ≥ 1. Thus ζ = 1, and by the lifting principle, the inequality xa + xb −
∑
j∈C xj ≤ 1 induces

a facet of P(Hk). So, the statement is true when i = k and is true in general. Thus xa + xb −∑
j∈C xj ≤ 1 is facet-defining for P(Hd) = P(G).

3.3 Complexity of Lifting

One may wonder how difficult it is to generate a facet-defining inequality for P(G) via lifting.

In this section, we show that this problem is hard in general, but is polytime solvable in several

special cases.

Lemma 3. Consider a facet-defining inequality
∑
i∈V πixi ≤ π0 of P(G). Then π0 ≥ 0. If the

inequality is not a multiple of −xi ≤ 0, then π0 > 0.

Proof. As the empty set is connected, π0 ≥ 0. Suppose that π0 = 0. Then πi ≤ 0 for each vertex
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i ∈ V (since the trivial graphs are connected). Further suppose that at least two coefficients are

negative, say πu and πv. Then
∑
i∈V πixi ≤ 0 is implied by the valid inequalities −πuxu ≤ 0 and∑

i∈V \{u} πixi ≤ 0. These two new inequalities are distinct, so Lemma 2 shows that
∑
i∈V πixi ≤ 0

cannot be facet-defining.

Lemma 4 (Bounds on lifting). Suppose
∑
i∈V \{v} πixi ≤ π0 is facet-defining for P(G− v). Then,

when lifting in v, the objective ζ of the lifting problem satisfies:

1. if v is isolated, then ζ = 0;

2. if v is not isolated, then π0 ≤ ζ ≤ |NG(v)|π0.

Proof. The single-vertex solution {v} implies that ζ ≥ 0. When v is isolated, the only feasible

solution is {v}, in which case ζ = 0. So, from now on we will suppose that NG(v) 6= ∅.

Consider an optimal solution D ⊆ V (G) to the lifting problem. Here, v ∈ D and G[D] is

connected. Suppose NG(v) = {u1, . . . , us}. Partition D′ := D \ {v} into s (possibly empty) subsets

as follows. Let D1 denote the set of vertices in D′ connected to u1 by some path of G[D′]. Then

for p = 2, . . . , s, let Dp denote the vertices of D′ \ (D1 ∪ · · · ∪Dp−1) that are connected to up by

some path in G[D′]. Each G[Dp] is a connected subgraph of G − v, so by the validity of the seed

inequality, ∑
j∈V (G)

πjx
Dp

j =
∑
j∈Dp

πj ≤ π0,

implying that

ζ =
∑

j∈V (G−v)

πjx
D
j

=

s∑
p=1

∑
j∈Dp

πj

+
∑

j∈V (G)\D

πjx
Dp

j

≤ sπ0 + 0

= |NG(v)|π0.

Now suppose NG(v) 6= ∅, and choose u ∈ NG(v). Let G′ = (V ′, E′) be the connected component

of G − v that includes u. Then, by Theorem 8,
∑
j∈V ′ πjxj ≤ π0 is facet-defining for P(G′).

Moreover, there must be at least one connected vertex subset D ⊆ V ′ containing u for which∑
j∈V ′ πjx

D
j = π0, since otherwise the inequality could not induce a facet. Then, G[D + v] is
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connected and has weight π0, so ζ ≥ π0.

3.3.1 Lifting in Bipartite Subgraphs

Here we show that lifting arguments find a nontrivial closed-form facet for bipartite subgraphs.

However, for a different lifting order, the lifting problem is NP-hard.

The easy and hard lifting orders are only slightly different, and we find the stark contrast in

complexity very interesting. Let the vertex partitions of the bipartite graph be A and B, where

A = {a1, . . . , ap} and B = {b1, . . . , bq}. When the lifting order is

a1, . . . , ap, b1, . . . , bq

then the resulting facet can be generated in linear time. In fact, changing the order of vertices

within A (or within B) does not change the facet. However, the slightly different lifting order

a2, . . . , ap, b1, . . . , bq, a1

results in the NP-hard problem of lifting in vertex a1.

Theorem 10 (Bipartite lifting–easy case). For a bipartite graph G = (V,E) with independent

partitions A ⊆ V and B = V \A, the following inequality induces a facet of P(G).

∑
j∈A

xj −
∑
j∈B

(|NG(j)| − 1)xj ≤ 1.

Proof. Suppose B = {v1, . . . , vb} and let B0 = ∅, Bi = {v1, . . . , vi}, and Gi = G[A ∪ Bi]. We use

induction to prove that ∑
j∈A

xj −
∑
j∈Bi

(|NG(j)| − 1)xj ≤ 1

induces a facet of P(Gi).

When i = 0, the inequality
∑
j∈A xj ≤ 1 induces a facet of P(G0) = P(G[A]), which follows

by Corollary 2. Suppose the statement is true for i = k−1, and consider i = k. To apply the lifting

principle, define

ζ = max
S⊆A∪Bk

∑
j∈A

xSj −
∑

j∈Bk−1

(|NG(j)| − 1)xSj

∣∣∣∣∣∣ xSk = 1 and G[S] is connected

 .
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First see that ζ ≥ |NG(vk)|, since vertex vk along with its neighborhood (a subset of A) provides

a solution with xk = 1 of weight |NG(vk)|. The reverse inequality ζ ≤ |NG(vi)| follows by Lemma

4. So, ζ = |NG(vk)|, and by the lifting principle,
∑
j∈A xj −

∑
j∈Bi

(|NG(vj)| − 1)xj ≤ 1 is facet-

defining for P(Gi), so the statement is true when i = k. Thus the statement is true in general,

and ∑
j∈A

xj −
∑
j∈B

(|NG(vj)| − 1)xj ≤ 1

is facet-defining for P(G) = P(Gb).

Theorem 11 (Bipartite lifting–hard case). Lifting a vertex v into a given facet-defining inequality

of P(G− v) is NP-hard, even when graph G is bipartite and 2-degenerate.

Proof. The reduction is from 3OCC-3SAT, a special case of 3SAT in which each variable appears at

most three times and each literal appears at most twice. This remains NP-complete; cf. Theorem

16.5 of [75]. Let the instance Φ =
∧m
j=1(c1j ∨ c2j ∨ c3j ) of 3OCC-3SAT be defined over variables

x1, . . . , xn. We construct a graph G = (V,E) and a lifting order for which the final lifting problem

has objective 2n+m if and only Φ is satisfiable. In contrast, a linear-time algorithm computes all

other lifted coefficients.

ti

bi

li ri

y1
iy1

i

y2
i y2

i

x1
ix1

i

x2
i x2

i

c1j c2j c3j

d1
j d2

j d3
j

Figure 3.1: Variable gadget (left) and clause gadget (right).

For each variable xi and for each clause cj in the 3-OCC-3SAT instance, construct a gadget,

as shown in Figure 3.1. Connect the gadgets as follows. Connect each literal xi(xi) from a clause
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Figure 3.2: The construction of graph G− v when given 3OCC-3SAT instance Φ = (x1 ∨x2 ∨x3)∧
(x1 ∨ x2 ∨ x4) ∧ (x1 ∨ v2 ∨ x4).

gadget to a literal x1
i or x2

i (x1
i or x2

i ) from the corresponding variable gadget. Because each literal

appears in at most two clauses, we can suppose that no pair of clause vertices are connected to

the same variable gadget literal. This is illustrated in Figure 3.2. Finally, add a new vertex v and

connect it to every clause vertex of the type ckj and to all vertices of the type y1
i , y2

i , y1
i and y2

i .

Since the number of vertices of G is only 12n+ 6m+ 1 the reduction is polynomial.

First see that G is bipartite, with partitions A and B:

A = {v} ∪
(

n⋃
i=1

{li, ri, bi, ti, x1
i , x

2
i , x

1
i , x

2
i }
)
∪

 m⋃
j=1

{d1
j , d

2
j , d

3
j}

 ;

B =

(
n⋃
i=1

{y1
i , y

2
i , y

1
i , y

2
i }
)
∪

 m⋃
j=1

{c1j , c2j , c3j}

 .

Now we show G is 2-degenerate. Suppose not; then there is a subgraph H of G in which all

vertices have degree at least three. Then H cannot contain a vertex of the type dkj , li, ri, ti, or

bi, since these vertices have degree at most two in G. Now, if those vertices do not belong to

H, then H cannot contain a vertex of the type y1
i , y

2
i , y

1
i , y

2
i , or ckj . This implies that V (H) ⊆

28



{v} ∪
(⋃n

i=1{x1
i , x

2
ix

1
i , x

2
i }
)
, meaning that V (H) is independent, but this contradicts that H has

minimum degree at least three.

Since G′ = G − v is bipartite with partitions A \ {v} and B, Theorem 10 implies that the

following inequality induces a facet of P(G′).

∑
j∈A\{v}

xj −
∑
j∈B

2xj ≤ 1 (3.2)

Now, consider the problem of lifting v into inequality (3.2), i.e., solving for

ζ := max
S⊆V

 ∑
j∈A\{v}

xSj −
∑
j∈B

2xSj

∣∣∣∣∣∣ xSv = 1 and G[S] is connected

 .

Claim 1: There is an optimal solution D ⊆ V to the lifting problem that satisfies:

• for each i, either {y1
i , y

2
i } ⊆ D or {y1

i , y
2
i } ⊆ D, but not both; and

• for each j, exactly one of c1j , c
2
j , and c3j belongs to D.

If an optimal solution D ⊆ V to the lifting problem does not fit these criteria, it can be modified

so that does. Recognize that v ∈ D and consider the following cases.

1. Three or more of {y1
i , y

2
i , y

1
i , y

1
i } belong to D. Without loss of generality, suppose that

{y2
i , y

1
i , y

1
i } ⊆ D, thus we can assume that x2

i ∈ D. Then D′ = D \ {y2
i , x

2
i } is connected,

contains v, and has a larger weight than D, a contradiction.

2. Two of {y1
i , y

2
i , y

1
i , y

1
i } belong to D. If either {y1

i , y
2
i } ⊆ D or {y1

i , y
2
i } ⊆ D, then Claim

1 is satisfied. Otherwise, without loss of generality, suppose that y1
i and y1

i belong to D.

Then ti cannot belong to D by connectivity. We can assume that x1
i belongs to D. Now,

D′ = D ∪ {y2
i , ti} \ {x1

i , y
1
i } is connected, contains v, and has the same weight.

3. One of {y1
i , y

2
i , y

1
i , y

1
i } belongs to D. Without loss of generality, suppose that y1

i belongs to

D. Then D′ = D ∪ {y2
i , ti, ri} is connected, contains v, and has the same weight.

4. None of {y1
i , y

2
i , y

1
i , y

1
i } belong to D. Then D′ = D∪{y1

i , y
2
i , ti, bi, li, ri} is connected, contains

v, and has the same weight.

5. Two or more of {c1j , c2j , c3j} belong to D. Without loss of generality, suppose that c1j , c
2
j ∈ D.

We can assume that d1
j , d

2
j , d

3
j ∈ D, and that c1j has a neighbor, say w, from a variable gadget
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and w also belongs to D. Then D′ = D \ {c1j , d2
j , w} is connected, contains v, and has the

same weight.

6. None of {c1j , c2j , c3j} belong to D. Then D′ = D∪{c1j , d1
j , d

2
j} is connected, contains v, and has

the same weight.

These steps can be applied repeatedly until D satsfies the claim.

Claim 2: ζ ≤ 2n+m. Consider an optimal solution D ⊆ V to the lifting problem that satisfies

Claim 1. See that any weight +1 vertex in D must have a weight −2 neighbor in D. There are

2n+m vertices of weight −2 in D and each has three weight +1 neighbors in G. So,

ζ =
∑

j∈A\{v}

xDj −
∑
j∈B

2xDj

=
∑

j∈A\{v}

xDj − 2(2n+m)

≤ 3(2n+m)− 2(2n+m) = 2n+m.

Claim 3: If Φ is satisfiable, then ζ ≥ 2n+m. Given a satisfying assignment x∗ for Φ, construct

a solution D to the lifting problem as follows.

• For each i: if x∗i = 1, choose y1
i and y1

i ; otherwise, select y1
i and y2

i . Note that this is, in a

sense, the opposite of the satisfying assignment.

• For each j: the satisfying assignment makes clause j evaluate to true by some literal, say ckj ;

choose vertex ckj and also the neighboring vertex from the variable gadget.

• Add v and all positive-weight vertices that neighbor a previously chosen vertex.

This solution D is feasible, since all negative-weight vertices are adjacent to v, and their positive-

weight neighbors were chosen. One negative-weight vertex was chosen from each clause gadget, and

two negative-weight vertices were selected from each variable gadget. So, there are 2n+m vertices

of negative-weight in D. Each of these negative-weight vertices has three positive-weight neighbors.

All that remains is to demonstrate that no two negative-weight vertices of D share a neighbor of

positive weight. The proof of this is straightforward but tedious, so we omit it. Thus D has weight

(2n+m)(−2 + 3(1)) = 2n+m.
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Claim 4: If ζ ≥ 2n+m, then Φ is satisfiable. Consider an optimal solution D ⊆ V that satisfies

Claim 1 and has weight at least 2n+m. Then,

• for each i, either {y1
i , y

2
i } ⊆ D or {y1

i , y
2
i } ⊆ D, but not both; and

• for each j, exactly one of c1j , c
2
j , and c3j belongs to D.

The following assignment x∗ will be shown to satisfy Φ. For each i: if {y1
i , y

2
i } ⊆ D, then set

x∗i = 0; otherwise, set x∗i = 1. Then ζ = 2n+m by Claim 2, and this equality holds if and only if

no two negative-weight vertices in D have a common neighbor (of positive weight).

We argue that, for each j, x∗ makes clause j evaluate to true. Let c
kj
j be the vertex from clause

j that belongs to D. Suppose that the neighbor of ckj from the variable gadget is

• xδi for some δ ∈ {1, 2}. Then, yδi does not belong to D, so y1
i and y2

i belong to D and thus

x∗i = 1, which satisfies clause j.

• xδi for some δ ∈ {1, 2}. Then, yδi does not belong to D, so y1
i and y2

i belong to D and thus

x∗i = 0, which satisfies clause j.

So x∗ is a satisfying assignment.

By Claim 3 and 4, the final lifting problem has objective 2n + m if and only Φ is satisfiable.

Then, since 3OCC-3SAT is NP-hard and since the reduction is polynomial, the problem of lifting

in v into inequality (3.2) is NP-hard.

3.3.2 Polytime Cases of Lifting

As noted previously, lifting v into a facet of P(G − v) is an instance of the MWCS problem.

So we derive the following theorem.

Theorem 12. Consider a connected graph G = (V,E) and an independent set S ⊆ V with |S| =

polylog(n). Then there exists an order of lifting in V \ S such that the lifting procedure from S via

that order can be done in polynomial time of n.

Proof. By Corollary 2,
∑
vi∈S xi ≤ 1 is facet-defining for P(G[S]). Arbitrarily choose v ∈ S

and order the set V \ S as v1, . . . , vm in a depth-first traversal ordering starting from v. Let

Di = S ∪ {v1, . . . , vi} then NG[Di−1](vi) 6= ∅, so by lemma 4, ζ ≥ π0 and then πi ≤ 0 for any

vi ∈ V \ S. In every calculation of ζ, we in fact solve a maximum weight connected subgraph

problem(MWCSP ) for G[Di] with weight function w : Di−1 → R such that w(vi) = πi and a
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terminal vi. As πi > 0 only for vi ∈ S, the number of positive weight vertices in MWCSP is

bounded by C, so MWCSP can be solved in time O(4Cpoly(n)) [94], so every calculation of ζ can

be done in polynomial time of n and then the lifting procedure can also be done in polynomial time

of n.
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4. DESCRIPTION OF CONNECTED SUBGRAPH POLYTOPE

In this chapter, we focus on classes of graphs G where all facets of P(G) can be generated by

lifting procedure. First, in Section 4.1, we present a counterexample to show this is not true for

general G. We then investigate three classes of G where this is true: the first one is graphs whose

independence number is no more than two, while in this case we in fact show vertex separator

inequalities together with bound inequalities characterize P(G); the second one is 3-plex and 3-

defective cliques; the third one is forests, and we further develop a linear-time algorithm to generate

every facet. In Sections 4.2, 4.3 and 4.4 we discuss the three cases respectively.

4.1 Facets Not Generated by Lifting

Lifting is powerful tool to generate facets of connected subgraph polytope. However, in each step

that we apply lifting principle in corollary 3, the right-side value of the inequality never changes,

and then the right-side value should always be equal to the value of a positive coefficient in a facet-

defining inequality because we start the lifting procedure by corollary 2. Therefore, not all facets

of P(G) can be generated by lifting procedure for a general graph G because not all facets have

this property. In fact, let G be a 3-cube as in the figure,

1

5

67

2

8

3

4
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then x1 + x2 + x3 + x4 − x5 − x6 − x7 − x8 ≤ 2 is facet-defining for P(G) by computation,

however, this facet can not be generated by lifting procedure as all positive coefficients are 1 while

the right-side value is 2.

Moreover, there exist facet-defining inequalities that the right-side values can be arbitrarily large

while all positive left-side coefficients are 1.

Proposition 6. Let G = (V,E) with v = [1..2n] and E = {(i, j)|i ∈ [1..n], j ∈ [n+1, 2n], i+n 6= j},

then

−
n∑
i=1

xi +

2n∑
j=n+1

xj ≤ n− 2

defines a facet of P(G).

Proof. For any induced connected subgraph G[D], if D ∩ [1..n] = ∅, because [n + 1, 2n] ⊂ V is an

independent set, |D ∩ [n+ 1, 2n]| ≤ 1 and −∑n
i=1 x

D
i +

∑2n
j=n+1 x

D
j ≤ 1.

If |D ∩ [1..n]| = 1, suppose D ∩ [1..n] = {i}, then i + n 6∈ D, so |D ∩ [n + 1..2n]| ≤ n − 1, thus

−∑n
i=1 x

D
i +

∑2n
j=n+1 x

D
j ≤ n− 2; if |D ∩ [1..n]| ≥ 2, −∑n

i=1 x
D
i +

∑2n
j=n+1 x

D
j ≤ n− 2. Therefore,

−
n∑
i=1

xi +

2n∑
j=n+1

xj ≤ n− 2

is valid in P(G).

To show that −∑n
i=1 xi +

∑2n
j=n+1 xj ≤ n − 2 defines a facet in P(G), we need to find 2n

affinely independent xD such that −∑n
i=1 x

D
i +

∑2n
j=n+1 x

D
j = n− 2.

In fact, for i ∈ [1..n] let Di = [n+ 1..2n]∩ {i} \ {n+ i}, for i ∈ [n+ 2, 2n] let Di = [n+ 1, 2n]∩

{1, i− n} and Dn+1 = [n+ 1, 2n] ∩ {2, 3}, obviously every G[Di] is connected and

−
n∑
i=1

xDi
i +

2n∑
j=n+1

xDi
j = n− 2

for every Di, i ∈ [1..2n].

Next we show xDi , i ∈ [1..2n] are linearly independent and thus affinely independent. Let

D = (xD1 , xD2 , ..., xDn)T , then

D =

 In 1− In
S 1


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Where 1 is a n× n matrix of ones and

Sn×n =



0 1 1

1 1 0 0
...

. . .

... 0 . . .

1 1


Easy calculations show

detD = det

 In 1− In
0 (S)− 1

 > 0

So xDi , i ∈ [1..2n] are linearly independent and thus

−
n∑
i=1

xi +

2n∑
j=n+1

xj ≤ n− 2

defines a facet of P(G).

4.2 When Vertex Separator Inequalities Characterize P(G)

The 0-1 bounds and vertex separator inequalities provide a natural integer programming for-

mulation for P(G). Namely, the integer hull of the polytope

Q(G) :=
{
x ∈ [0, 1]|V |

∣∣∣ x satisfies all vertex separator inequalities
}

is precisely P(G). Note that Q(G) provides a tractable relaxation for P(G), as one can optimize

overQ(G) in polytime via the ellipsoid method or reformulation ofQ(G) by network flow constraints.

4.2.1 Reformulation of Q(G)

Consider a simple graph G = (V,E). For convenience, let the set E of complement edges include

both directions. The polytope F (G) is is the set of all (x, f) satisfying the following flow network

constraints.
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−xi +
∑

j∈N(i)

fabij ≤ 0, ∀ab ∈ E, ∀i ∈ V (4.1)

xa + xb −

 ∑
j∈N(a)

fabaj −
∑

j∈N(a)

fabja

 ≤ 1, ∀ab ∈ E (4.2)

∑
j∈N(i)

fabji −
∑

j∈N(i)

fabij = 0, ∀i ∈ V \ {a, b}, ∀ab ∈ E (4.3)

0 ≤ xi ≤ 1, ∀i ∈ V (4.4)

0 ≤ fabij ≤ 1, ∀ij ∈ E, ∀ab ∈ E (4.5)

Lemma 5. projx(F (G)) ⊆ Q(G).

Proof. Let (x, f) ∈ F (G). Consider arbitrary ab ∈ E and an a, b-separator C ⊆ V \ {a, b}. Let A

be the set of vertices reachable from a in G[V \C] and let B = V \ (A∪C). For convenience, define

fabij = 0 whenever {i, j} /∈ E. Then,

xa + xb − 1 ≤
∑
j∈V

fabaj −
∑
j∈V

fabja (4.6)

=
∑

i∈A∪C

∑
j∈V

fabij −
∑
j∈V

fabji

 (4.7)

=
∑

i∈A∪C

∑
j∈A∪C

(
fabij − fabji

)
+
∑

i∈A∪C

∑
j∈B

(
fabij − fabji

)
(4.8)

=
∑

i∈A∪C

∑
j∈B

(
fabij − fabji

)
(4.9)

=
∑
i∈C

∑
j∈B

(
fabij − fabji

)
(4.10)

≤
∑
i∈C

∑
j∈B

fabij (4.11)

≤
∑
i∈C

∑
j∈V

fabij (4.12)

≤
∑
i∈C

xi. (4.13)
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Thus, xa + xb −
∑
i∈C xi ≤ 1 and 0 ≤ x ≤ 1, so x ∈ Q(G).

Lemma 6. Q(G) ⊆ projx(F (G)).

Proof. Let x ∈ Q(G). Consider arbitrary ab ∈ E and the maximization problem

F = max
∑

j∈N(a)

fabaj

s.t.
∑

j∈N(i)

fabij ≤ xi, ∀i ∈ V

∑
j∈N(i)

fabji −
∑

j∈N(i)

fabij = 0, ∀i ∈ V \ {a, b}

0 ≤ fabij ≤ 1, ∀ij ∈ E, ∀j 6= a

fabia = 0, ∀ia ∈ E

This is a maximum network flow problem with node capacities. Ford and Fulkerson [33, Chapter

I.11] studied this problem and according to them the maximum flow value is equal to the capacity

of the a, b−separator with minimum capacity, i.e., F = minC
∑
i∈C xi where C is a a, b-separator.

Because x ∈ Q(G), for any a.b-separator C, we have
∑
i∈C xi ≥ xa +xb− 1, so F ≥ xa +xb− 1,

therefore the system

∑
j∈N(a)

fabaj ≥ xa + xb − 1

∑
j∈N(i)

fabij ≤ xi, ∀i ∈ V

∑
j∈N(i)

fabji −
∑

j∈N(i)

fabij = 0, ∀i ∈ V \ {a, b}

0 ≤ fabij ≤ 1, ∀ij ∈ E, ∀j 6= a

fabia = 0, ∀ia ∈ E

is feasible and suppose fab is a feasible solution. Obviously fab satisfies (1) through (5) for the

given a,b. Let f be fab though all ab ∈ E, then f satisfies (1) through (5) and thus (x, f) ∈ F (G),

so x ∈ projx(F (G)).
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Theorem 13. Q(G) = projx(F (G)).

Proof. It is a combination of Lemma 5 and 6.

The number of constraints to define F (G) is bounded by O(|V |4), so linear optimization problem

over F (G) in polytime solvable.

4.2.2 When P(G) = Q(G)

It is interesting to find out when the LP relaxation Q(G) is tight. This question is answered in

Theorem 14 below.

Theorem 14 ([94, 19]). The equality P(G) = Q(G) holds if and only if α(G) ≤ 2.

It should be noted that the description of Q(G) can involve exponentially many inequalities,

even when α(G) = 2 [94].

Proposition 7. The following inclusions hold and are sharp.

P(G) ⊆ Q(G) ⊆ [0, 1]n ⊆ α(G)P(G).

Proof. The first two inclusions are trivial. Consider x∗ ∈ [0, 1]n and a facet-defining inequality∑
i∈V πixi ≤ π0 of P(G). Let S = {i ∈ V | πi > 0}.

If |S| = 0, then π0 = 0, since otherwise no feasible point could satisfy it at equality. By Lemma

3, the inequality must a nonnegativity bound πjxj ≤ 0, in which case

∑
i∈V

πix
∗
i = πjx

∗
j ≤ 0 = α(G)π0.

Now suppose |S| ≥ 1, so π0 > 0. Then S must be an independent set. For each vertex i ∈ S,

we have πi ≤ π0 and x∗i ≤ 1, so

∑
i∈V

πix
∗
i ≤

∑
i∈S

πix
∗
i ≤ |S|π0 ≤ α(G)π0.

Thus x∗ ∈ α(G)P(G). The inclusions are sharp for the complete graph Kn, since α(Kn) = 1.

Proposition 7 shows that the 0-1 bounds—and hence Q(G)—approximate P(G) well when the

graph is very dense. This is not true for sparse graphs. Indeed, for the star graph K1,n and any
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ε > 0, we have

Q(K1,n) 6⊆
(

1

2
− ε
)
α(K1,n)P(K1,n). (4.14)

This is demonstrated as follows. Let v be the center vertex of K1,n, and let the leaves be numbered

1, . . . , n. Consider the valid inequality (cf. Theorem 19)

(1− n)xv +

n∑
i=1

xi ≤ 1.

and the point y = (yv, y1, . . . , yn) = (0, 1
2 , . . . ,

1
2 ). The point y is feasible for Q(K1,n), but it does

not belong to
(

1
2 − ε

)
α(K1,n)P(K1,n), since

(1− n)yv +

n∑
i=1

yi =
n

2
>

(
1

2
− ε
)
n =

(
1

2
− ε
)
α(K1,n).

In this sense, Q(G) provides an O(α(G)) approximation for P(G) but no better.

4.3 3-Plex and 3-Defective Cliques

G = (V,E) is called a s-plex if the degree of every vertex v satisfies deg(v) ≥ |V |−s. G is called

a s-defective clique if |E(Ḡ)| ≤ s. We consider both cases with s = 3.

For a 3-defective cliuqe G, if G is also a 2-defective clique, obviously α(G) ≤ 2 and in the previous

section, we have described full description of P(G). Otherwise, there exists an independent set

{u, v, w} ⊆ V . Thus (u, v), (u,w), (v, w) ∈ E(Ḡ) and as |E(Ḡ)| ≤ 3, E(Ḡ) = {(u, v), (u,w), (v, w)}.

At this time, we derive the following proposition. Its proof involves the following lemmata.

Lemma 7 ([94, 19]). In a facet-defining inequality
∑
i∈V πixi ≤ π0 of P(G), no pair of adjacent

vertices can have positive coefficients.

Lemma 8 ([94, 19]). Suppose that
∑
i∈V πixi ≤ π0 induces a facet of P(G). If πu, πv, and π0 are

its only positive coefficients, then πu = πv = π0.
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Proposition 8. Let G = (V,E) with E(Ḡ) = {(u, v), (u,w), (v, w)}, then P(G) =

{x ∈ [0, 1]n|x satisfies (4.15), (4.16), (4.17), (4.18)}.

xu + xv −
∑

s∈V \{u,v,w}

xs ≤ 1 (4.15)

xu + xw −
∑

s∈V \{u,v,w}

xs ≤ 1 (4.16)

xv + xw −
∑

s∈V \{u,v,w}

xs ≤ 1 (4.17)

xu + xv + xw − 2
∑

s∈V \{u,v,w}

xs ≤ 1 (4.18)

Proof. For any facet-defining inequality
∑
i∈V πixi ≤ π0 expect for 0 − 1 bounds, we show it is in

form (4.15), (4.16), (4.17) or (4.18).

We first show πu, πv, πw ≥ 0. In fact, if πu < 0, for any connected G[D], let D′ = D \ {u},

then G[D′] is still connected, so
∑
i∈V \{u} πix

D
i =

∑
i∈V πix

D′

i ≤ π0. Thus,
∑
i∈V \{u} πixi ≤ π0

is valid and
∑
i∈V πixi ≤ π0 is implied by

∑
i∈V \{u} πixi ≤ π0 and πuxu ≤ 0. Then by Lemma 2,∑

i∈V πixi ≤ π0 is not facet-defining. This contradiction shows πu ≥ 0, and by the same reason,

πv, πw ≥ 0.

Next, for any s ∈ V \ {u, v, w}, let D = {u, v, w, s}, then G[D] is connected and thus πu + πv +

πw+πs ≤ π0. Let k = π0−πu−πv−πw, so πs ≤ k. If πs < k, obviously
∑
i∈V \{s} πixi+kxs ≤ π0 is

valid and as
∑
i∈V πixi ≤ π0 is implied by

∑
i∈V \{s} πixi+kxs ≤ π0 and (πs−k)xs ≤ 0, by Lemma 2,

we know
∑
i∈V πixi ≤ π0 is not facet-defining. This contradiction shows πs = k = π0−πu−πv−πw.

Next we show πu, πv, πw = 0 or π0. Since G[{u}], G[{v}] and G[{w}] are connected, this implies

that πu, πv, πw ≤ π0. If πu + πv + πw ≤ π0, then inequalities πuxu + πvxv + πwxw ≤ π0 and∑
i∈V \{u,v,w} πixi ≤ 0 are valid (at least one of xi, i ∈ V \ {u, v, w}

6
= 0 as we suppose it is not a

0 − 1 bound), so the aggregated inequality
∑
i∈V πixi ≤ π0 cannot induce a facet (by Lemma 2).

Thus, we will assume that πu + πv + πw > π0. For contradiction purposes, suppose that at least

one of πu,πv and πw is between 0 and π0. Without loss of generality, suppose that 0 < πu < π0.

Define

ε :=
1

|V | min{πu + πv + πw − π0, π0 − πu, πu}.

Note that πu + πv + πw − π0 > 0 and 0 < πu < π0, so ε > 0. Also, πu + ε < π0, πu − |V |ε > 0

and for every i ∈ S \ {u, v, w}, we have πi + ε = π0 − πu − πv − πw + ε < 0. Consider the following
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inequalities.

(πu + ε)xu + πvxv + πwxw +
∑

i∈V \{u,v,w}

(πi − ε)xi ≤ π0 (4.19)

(πu − ε)xu + πvxv + πwxw +
∑

i∈V \{u,v,w}

(πi + ε)xi ≤ π0. (4.20)

For any connected G[D], when u 6∈ D, obviously (4.19) is valid and for (4.20), let D′ = D ∪ {u},

G[D′] is still connected, so

(πu − ε)xDu + πvx
D
v + πwx

D
w +

∑
i∈V \{u,v,w}

(πi + ε)xDi

≤ πvxDv + πwx
D
w +

∑
i∈V \{u,v,w}

πix
D
i + |V |ε

≤
∑
i∈V

πix
D′

i ≤ π0.

So (4.20) is also valid.

When u ∈ D, if neither of v, w belongs to D, obviously both (4.19) and (4.20) are valid; if at

least one of v, w belongs to D, as G[D] is connected, there exists s ∈ D ∩ (V \ {u, v, w}). So,

(πu + ε)xDu + πvx
D
v + πwx

D
w +

∑
i∈V \{u,v,w}

(πi − ε)xDi

≤ (πu + ε)xDu + πvx
D
v + πwx

D
w + (πs − ε)xDs

≤
∑
i∈V

πix
D
i ≤ π0.

Thus, (4.19) is valid and by the same reason (4.20) is also valid.
∑
i∈V πixi ≤ π0 is implied by

(4.19) and (4.20), by Lemma 2, it is not facet-defining and this contradiction shows πu, πv, πw = 0

or π0.

As πu + πv + πw > π0, at least two of πu, πv, πw are π0. If exactly two of πu, πv, πw are π0,

as πs = π0 − πu − πv − πw,∀s ∈ V \ {u, v, w}, the inequality is either (4.15), (4.16) or (4.17). If

πu, πv, πw = π0, still as πs = π0 − πu − πv − πw,∀s ∈ V \ {u, v, w}, the inequality is (4.18).

For a 3-plex G, if G is also a 2-plex, still α(G) ≤ 2 and in the previous section, we have derived

full description of P(G). Otherwise, we have the following proposition.
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Proposition 9. Let G = (V,E) be a 3-plex and |V | = n, then

P(G) = {x ∈ [0, 1]n | x satisfies all a, b-separator inequalities and (4.21)} .

xu + xv + xw − 2
∑

s∈V \{u,v,w}

xs ≤ 1 ∀ independent set {u, v, w}. (4.21)

Proof. For any facet-defining inequality
∑
i∈V πixi ≤ π0, let S = {k|πk > 0} and N = |S|. If

N ≥ 4, by Lemma 7, for any i, j ∈ S, (i, j) 6∈ E, so for any i ∈ S, δ(i) ≤ |V | − 4, a contraction. So

N can be 0, 1, 2, 3.

When N = 0 or 1, we can show that the facet-defining inequalities are upper or lower bound.

WhenN = 2, suppose πa, πb > 0 and πi ≤ 0,∀i 6= a, b, then by Lemma 7, a and b are not adjacent

and as π0 ≥ πa > 0, by Lemma 8, πa = πb = π0. Because G is a 3-plex, deg(a),deg(b) ≥ n−3. Note

a and b are not adjacent, |N(a) ∩N(b)| ≥ n− 4 and |N(a) \N(b)| ≤ 1, |N(b) \N(a)| ≤ 1. For any

u ∈ N(a)∩N(b), because G[{a, b, u}] is connected, πu ≤ π0−πa−πb = −π0; if πu < −π0, obviously∑
i∈V \{u} πixi−π0xu ≤ π0 is valid and as

∑
i∈V πixi ≤ π0 is implied by

∑
i∈V \{u} πixi−π0xu ≤ π0

and (πu−π0)xu ≤ 0, by Lemma 2, we know
∑
i∈V πixi ≤ π0 is not facet-defining. This contradiction

shows πu = −π0.

Further, if there exists v ∈ N(a) \N(b), we have two cases.

1. N(v) \ {a} ⊆ N(a) ∩N(b), then we show πv = 0. In fact, if πv < 0, note for any connected

G[D] including a and b, let D′ = D \ {v}, G[D′] is still connected, so
∑
i∈V \{u} πix

D
i =∑

i∈V πix
D′

i ≤ π0; for any connected G[D] not including both a and b,
∑
i∈V \{v} πix

D
i ≤ π0,

so
∑
i∈V \{v} πixi ≤ π0 is valid and

∑
i∈V πixi ≤ π0 is implied by

∑
i∈V \{v} πixi ≤ π0 and

πvxv ≤ 0. Then by Lemma 2,
∑
i∈V πixi ≤ π0 is not facet-defining. This contradiction shows

πv = 0 (as we suppose πv ≤ 0).

2. N(v) \ {a} 6⊆ N(a) ∩N(b), then there exists w ∈ N(b) ∩N(v) \N(a). As |N(a) \N(b)| ≤ 1

and |N(b) \ N(a)| ≤ 1, u ∈ N(a) ∩ N(b),∀u ∈ V \ {a, b, v, w}. By the same arguments as
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above, we have πv + πw = −π0. If −π0 < πv, πw < 0, obviously both

π0xa + π0xb − π0xv +
∑

i∈V \{a,b,v,w}

πixi ≤ π0

π0xa + π0xb − π0xw +
∑

i∈V \{a,b,v,w}

πixi ≤ π0

are valid and
∑
i∈V πixi ≤ π0 is implied by these two inequalities. So by Lemma 2,

∑
i∈V πixi ≤

π0 is not facet-defining. This contradiction shows πv = −π0, πw = 0 or πw = −π0, πv = 0.

So, in general the facet-defining inequality can be simplified as xa + xb −
∑
vi∈C xi ≤ 1, where

C = {u|πu = −π0}. By Theorem 9, C is a minimal (a, b)−separator. So the inequality is an

a, b-separator inequality.

When N = 3, suppose πu, πv, πw > 0 and πi ≤ 0,∀i 6= u, v, w. Note |N(u)| ≥ n − 3 but

v, w 6∈ N(u), so s ∈ N(u),∀s ∈ V \ {u, v, w}. For the same reason, s ∈ N(u) ∩N(v) ∩N(w),∀s ∈

V \ {u, v, w}. Thus, the arguments in Proposition 8 still holds and the facet-defining inequalities

have the form (4.21).

So, the proposition is true in general.

4.4 The Case of Forests

In this section, we focus on P(G) in the case that G is a forest. The objective is to show

that every facet-defining inequality of P(G) can be generated via lifting from the seed inequality

xi ≤ 1 (with every other variable initially fixed to zero). This does not hold for arbitrary graphs.

Moreover, for any lifting order, the entire facet-defining inequality can be generated in time O(n).

Along the way, we show several interesting structural properties about P(G). We conclude by

providing closed-form descriptions of P(G) for path and star graphs.

Lemma 9. Consider a tree G = (V,E) with |V | ≥ 2 and a facet-defining inequality
∑
i∈V πixi ≤ π0

of P(G) with π0 > 0. If v is a leaf, then πv ≥ 0.

Proof. For contradiction purposes, suppose that v is a leaf with πv < 0. Note that πvxv ≤ 0 is valid.

We argue that 0xv +
∑
i∈V \{v} πixi ≤ π0 is also valid. Suppose that D ⊆ V induces a connected
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subgraph. Then, since v is a leaf, G[D′] is also connected, where D′ = D \ {v}. Thus,

0xDv +
∑

i∈V \{v}

xDi =
∑
i∈V

πix
D′

i ≤ π0,

so the new inequality is valid. Further, it is not the 0x ≤ 0 inequality. The inequality
∑
i∈V πixi ≤

π0 is distinct from the new inequality and from πvxv ≤ 0, yet it is implied by them. Thus, Lemma

2 shows that
∑
i∈V πixi ≤ π0 cannot induce a facet, a contradiction.

Lemma 10. Consider a tree G = (V,E) with |V | ≥ 2, a leaf v of G, its stem s, and a facet-defining

inequality
∑
i∈V πixi ≤ π0 of P(G) with π0 > 0. Then for any a ∈ [0, π0], the following inequality

is valid.

axv + (πv + πs − a)xs +
∑

i∈V \{v,s}

πixi ≤ π0. (4.22)

Moreover, (πv + πs)xs +
∑
i∈V \{v,s} πixi ≤ π0 induces a facet of P(G− v).

Proof. First we show that inequality (4.22) is valid. Consider a subtree G[D] of G. We consider

two cases.

In the first case, suppose that s /∈ D. Then D = {v} or v /∈ D. If D = {v}, then

axDv + (πv + πs − a)xDs +
∑

i∈V \{v,s}

πix
D
i = a ≤ π0,

and if v /∈ D, then

axDv + (πv + πs − a)xDs +
∑

i∈V \{v,s}

πix
D
i =

∑
i∈V

πix
D
i ≤ π0.

Thus, if s /∈ D, then the inequality is valid.
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In the second case, suppose that s ∈ D. Then G[D′] is connected, where D′ = D ∪ {v}, so

axDv + (πv + πs − a)xDs +
∑

i∈V \{v,s}

πix
D
i

≤ axD′v + (πv + πs − a)xD
′

s +
∑

i∈V \{v,s}

πix
D′

i

=
∑
i∈V

πix
D′

i ≤ π0.

Thus, inequality (4.22) is valid in all cases.

By setting a = 0, we see that the inequality

(πv + πs)xs +
∑

i∈V \{v,s}

πixi ≤ π0 (4.23)

is valid for P(G). We argue that inequality (4.23) induces a facet of P(G − v). It is valid by

Lemma 1. Because P(G) is full-dimensional and by assumption that
∑
i∈V πixi ≤ π0 induces a

facet of P(G), there exist n affinely independent points xD1 , . . . , xDn satisfying
∑
i∈V πix

Dj

i = π0.

For each xDj , delete the element in position v to get an n− 1 dimensional vector yj .

Now we argue that the yj vectors can be used to show that the face where inequality (4.23)

holds at equality has dimension n − 2. By Lemma 9, πv ≥ 0. We consider two cases. In the first

case, πv = 0. Then for each yj ,

(πv + πs)y
j
s +

∑
i∈V \{v,s}

πiy
j
i =

∑
i∈V

πix
Dj

i = π0.

Because rank(xD2 − xD1 , . . . , xDn − xD1) = n − 1, we have rank(y2 − y1, . . . , yn − y1) ≥ n − 2, so

there are n− 1 affinely independent vectors among y1, . . . , yn and each satisfies inequality (4.23) at

equality, so inequality (4.23) induces a facet of P(G− v) as dim(P(G− v)) = n− 1.

Now suppose πv > 0. Then for any xDj consider the following cases.

1. x
Dj
v = x

Dj
s . In this case,

(πv + πs)y
j
s +

∑
i∈V \{v,s}

πiy
j
i = (πv + πs)x

Dj
s +

∑
i∈V \{v,s}

πix
Dj

i

=
∑
i∈V

πix
Dj

i = π0.
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2. x
Dj
v = 1 and x

Dj
s = 0. Then Dj = {v}.

3. x
Dj
v = 0 and x

Dj
s = 1, let D′j = Dj ∪ {v}, then D′j is still connected and

∑
i∈V πix

D′j
i =∑

i∈V πix
Dj

i + πv > π0, so this case cannot happen.

So if xDj is not the zero vector with a one in position v, then x
Dj
v = x

Dj
s . Thus there must

be n − 1 affinely independent vectors xD1 , . . . , xDn−1 for which x
Dj
v = x

Dj
s . As x

Dj
v = x

Dj
s for

j = 1, . . . , n− 1 and by definition of yj , we have

rank(y2 − y1, . . . , yn−1 − y1) = rank(xD2 − xD1 , . . . , xDn−1 − xD1) = n− 2,

and, as shown above, each yj satisfies inequality (4.23) at equality. Thus, inequality (4.23) induces

a facet of P(G− v) when πv > 0. This concludes the proof.

Lemma 11. Consider a tree G = (V,E) and a facet-defining inequality
∑
i∈V πixi ≤ π0 of P(G)

with π0 > 0. Then, for each i ∈ V , π0 divides πi.

Proof. The proof is by induction on |V |. In the base case, where |V | = 1, the inequality must be a

multiple of x1 ≤ 1, so the statement is true. Now suppose the statement holds when |V | = k − 1

and consider a tree with |V | = k ≥ 2. Since G is a tree with |V | ≥ 2, it has a leaf v, and consider

its stem s. By Lemma 9, πv ≥ 0. Since G[{v}] is connected, πv ≤ π0.

Suppose 0 < πv < π0. Then by Lemma 10, both of the following inequalities are valid for P(G).

(πv + πs)xs +
∑

i∈V \{v,s}

πixi ≤ π0

π0xv + (πv + πs − π0)xs +
∑

i∈V \{v,s}

πixi ≤ π0.

By multiplying the first inequality by 1− πv

π0
and the second by πv

π0
and by Lemma 2,

∑
i∈V πixi ≤ π0

cannot be facet-defining. The contradiction shows πv = 0 or πv = π0. In both cases, π0 divides πv.

Now we must show that other coefficients are also divisible by π0. By Lemma 10, (πv +πs)xs +∑
i∈V \{v,s} πixi ≤ π0 induces a facet of P(G−v). Because |V (G−v)| = k−1 and by the induction

assumption, π0 divides πi for each i ∈ V \ {v, s}. Also π0 divides πv + πs, implying that it divides

πs. Thus, every coefficient of the inequality
∑
i∈V πixi ≤ π0 is divisible by π0 when |V | = k, and

the statement is true in general.
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Remark 1. By Lemma 11, we can suppose that if G is a tree and π0 > 0, then π0 = 1 and each

πi is an integer.

Lemma 12. Consider a tree G = (V,E) and a valid inequality
∑
i∈V πixi ≤ 1 for P(G). If∑

i∈V πi = 1 and every πi is an integer, then there is a vertex v ∈ V such that πv = 1− |NG(v)|.

Proof. If |V | = 1, then the statement clearly holds, so consider |V | ≥ 2. First we show that πi ≥

1− |NG(i)| for every vertex i ∈ V . Suppose there is a vertex v ∈ V with πv < 1− |NG(v)|. We can

partition V \{v} into |NG(v)| sets—specifically the vertex sets of the components {Gj = (Vj , Ej)}j
of G−v. Since

∑
i∈V πixi ≤ 1 is valid, and since each Gj is connected,

∑
u∈Vj

πu =
∑
i∈V πix

Vj

i ≤ 1.

Then,

∑
i∈V

πi = πv +
∑
j

∑
u∈Vj

πu ≤ πv + |NG(v)| < 1,

which contradicts that
∑
i∈V πi = 1. So πi ≥ 1− |NG(vi)| for every i ∈ V .

Suppose there is no vertex v satisfying πv = 1 − |NG(v)|. Then, πi ≥ 2 − |NG(i)| for every

i ∈ V . Let L denote the set of leaves of G. For any leaf l ∈ L, we have πl = 1. This follows because

πl ≥ 2− |NG(l)| = 1, and πl ≤ 1 since {l} is connected. Because G is a tree,

∑
i∈V \L

|NG(i)| = 2|V \ L|+ |L| − 2.

Thus, we have

1 =
∑
i∈V

πi =
∑
i∈V \L

πi + |L|

≥ 2|V \ L| −
∑
i∈V \L

|NG(i)|+ |L|

= 2|V \ L| − (2|V \ L|+ |L| − 2) + |L| = 2.

This contradiction shows there must exist v ∈ V such that πv = 1− |NG(v)|.

Lemma 13. Consider a tree G = (V,E) with |V | ≥ 2 and a facet-defining inequality
∑
i∈V πixi ≤ 1

of P(G). If
∑
i∈V πi = 1 and πv = 1−|NG(v)|, then each component G′ = (V ′, E′) of G−v satisfies∑

i∈V ′ πi = 1.
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Proof. As in the proof of Lemma 12, we can partition V \ {v} into |NG(v)| sets—the vertex sets of

the components {Gj = (Vj , Ej)}j of G− v. Then,

1 =
∑
i∈V

πi = πv +
∑
j

∑
i∈Vj

πi ≤ πv + |NG(v)| = 1,

where the inequality holds since G[Vj ] is connected and since
∑
i∈Vj

πixi ≤ 1 is valid (by Lemma

1). So, for each Vj , we must have
∑
i∈Vj

πi = 1.

Lemma 14. Consider a forest G = (V,E), a vertex v ∈ V , and a facet-defining inequality∑
i∈V \{v} πixi ≤ 1 of P(G − v). Then, when lifting in v, the resulting facet-defining inequality∑
i∈V πixi ≤ 1 of P(G) has πv = 1− |NG(v)|.

Proof. When solving the lifting problem, ζ ≤ |NG(v)| by Lemma 4. The lower bound ζ ≥ |NG(v)|

holds by choosing v and all components of G−v that v neighbors in G (each component has weight

1 by Lemma 13). Thus, by Corollary 3, when πv = 1 − ζ = 1 − |NG(v)|, the inequality induces a

facet.

Lemma 15. For a tree G = (V,E), the inequality
∑
i∈V πixi ≤ 1 induces a facet of P(G) if and

only if

1.
∑
i∈V πixi ≤ 1 is valid for P(G),

2. for each i ∈ V , πi is an integer, and

3.
∑
i∈V πi = 1.

Proof. ( ⇐= ) Suppose
∑
i∈V πixi ≤ 1 is valid, each πi is an integer, and

∑
i∈V πi = 1. We show

the inequality is facet-defining by induction on |V |. When |V | = 1, the only inequality satisfying

the conditions is xi ≤ 1 and it is facet-defining by Proposition 4, so the statement is true.

Now suppose the statement is true when |V | < k, and consider |V | = k. By Lemma 12, there

is a vertex v ∈ V such that πv = 1 − |NG(v)|. By Lemma 13, each component Gj = (Vj , Ej)

satisfies
∑
i∈Vj

πi = 1. Also,
∑
i∈Vj

πixi ≤ 1 is valid for G[Vj ] by Lemma 1 and |Vj | < k. So, by

the induction assumption, for each Vj , the inequality
∑
i∈Vj

πixi ≤ 1 induces a facet of P(G[Vj ]).

Theorem 8 then implies that
∑
j

∑
i∈Vj

πixi ≤ 1 induces a facet of P(G − v). Lemma 14 shows

that for πv = 1−|NG(v)|, the inequality
∑
i∈V πixi ≤ 1 induces a facet of P(G). So the statement

is true when |V | = k, and it is true in general.
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( =⇒ ) Suppose
∑
i∈V πixi ≤ 1 induces a facet of P(G). Then it is valid and by Lemma 11,

each πi is an integer. We use induction to show that
∑
i∈V πi = 1.

When |V | = 1, the only facet-defining inequality is xi ≤ 1, so the statement is true. Now

suppose the statement is true when |V | < k, and consider |V | = k. Let v be a leaf and s be its

stem. By Lemma 10, the inequality

(πv + πs)xs +
∑

i∈V \{v,s}

πixi ≤ 1

induces a facet of P(G− v). Then, by the induction assumption,

∑
i∈V

πi =
∑

i∈V \{v,s}

πi + (πv + πs) = 1.

So, the statement is true when |V | = k, and it is true in general.

Theorem 15. For a forest G = (V,E), the inequality
∑
i∈V πixi ≤ 1 induces a facet of P(G) if

and only if each component G′ = (V ′, E′) of G satisfies

1.
∑
i∈V ′ πixi ≤ 1 is valid for P(G′),

2. πi is an integer for each i ∈ V ′, and

3.
∑
i∈V ′ πi = 1.

Proof. Directly from Theorem 8 and Lemma 15.

Lemma 16. Consider a tree G = (V,E) with |V | ≥ 2 and a facet-defining inequality
∑
i∈V πixi ≤ 1

of P(G). If there is a vertex v ∈ V with πv = 1− |NG(v)|, then
∑
i∈V \{v} πixi ≤ 1 induces a facet

of P(G− v).

Proof. By Lemma 15,
∑
i∈V πi = 1 and each πi is an integer. So, by Lemma 12, there exists v ∈ V

such that πv = 1 − |NG(v)|. Consider the components {Gj = (Vj , Ej)}j of G − v. By Lemma 13,

each Vj satisfies
∑
i∈Vj

πi = 1. Also, for each Vj , the inequality
∑
i∈Vj

πixi ≤ 1 is valid for G[Vj ] by

Lemma 1 and each πi is an integer, so by Theorem 15,
∑
i∈Vj

πixi ≤ 1 induces a facet of P(G[Vj ]).

Thus, by Theorem 8,
∑
i∈Vj

πixi ≤ 1 induces a facet of P(G− v).

Now we can state our main theorem.
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Theorem 16. For a forest G = (V,E), an inequality
∑
i∈V πixi ≤ π0 with π0 > 0 induces a facet

of P(G) if and only if it can be obtained via some lifting order from an xi ≤ 1 seed inequality for

some i ∈ V .

Proof. (⇐= ) By repeatedly applying Corollary 3, i.e., sequential lifting.

( =⇒ ) By Lemma 11, we can suppose that π0 = 1 and each πi is an integer. The proof is

by induction on |V |. In the base case, where |V | = 1, the statement holds since the facet-defining

inequality must be xi ≤ 1 for some i ∈ V .

So suppose the statement holds for |V | < k, and consider |V | = k. Let G′ = (V ′, E′) be a

component of G. By Theorem 15,
∑
i∈V ′ πi = 1. Then, since

∑
i∈V ′ πixi ≤ 1 is valid for P(G′) by

Lemma 1, Lemma 12 shows that there exists v ∈ V ′ such that πv = 1−|NG′(v)|. By Lemma 16, the

inequality
∑
i∈V ′\{v} πixi ≤ 1 induces a facet of P(G′ − v). Then, by Theorem 8, the inequality

∑
i∈V \{v}

πixi ≤ 1 (4.24)

induces a facet of G− v. Since G− v is a forest, and by the induction assumption, inequality (4.24)

can be obtained via lifting from an xi ≤ 1 seed inequality. Thus, by Lemma 14, lifting in v by

setting πv = 1 − |NG(v)| results the facet-defining inequality
∑
i∈V πixi ≤ 1. So the statement is

true when |V | = k, and it is true in general.

Theorem 17. Given a forest G = (V,E) and a vertex order (i1, . . . , in), the entire sequentially-

lifted facet-defining inequality for P(G) can be generated in time O(n) from the seed inequality

xi1 ≤ 1.

Proof. Here is the algorithm.

1. S ← ∅;

2. for j = 1, . . . , n do

• πij ← 1− |NG(ij) ∩ S|;

• S ← S ∪ {ij};

3. return inequality
∑
i∈V πixi ≤ 1;
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It can be shown by induction on k and by Lemma 14 that, in iteration k of the loop, the

inequality
∑k
j=1 πijxij ≤ 1 induces a facet of P(G[∪kj=1{ij}]). So the final inequality induces a

facet of P(G).

To achieve a runtime of O(n), we can represent G in adjacency list format and S as a boolean

n-vector. In iteration j of the loop, we compute πij by counting the number of ij ’s neighbors that

belong to S. Since G is a forest, the total number of neighbors to check over all iterations is less

than 2n.

Theorem 18 (P(G) for path graphs). Consider the n-vertex path graph

Pn = ([n], {{1, 2}, . . . , {n− 1, n}}) . (4.25)

For any odd-length subsequence (i1, . . . , iq) of (1, . . . , n), the following path inequality induces a

facet of P(Pn).

∑
j∈[q]
j odd

xij −
∑
j∈[q]
j even

xij ≤ 1. (4.26)

Moreover, the nonnegativity bounds and path inequalities (4.26) fully describe P(Pn). Consequently,

the number of facets of P(Pn) is

n+
∑
k∈[n]
k odd

(
n

k

)
.

Proof. Each coefficient of a path inequality (4.26) is integer, and their sum is 1. So, by Theorem

15, to show that inequality (4.26) induces a facet, we only need to show that it is valid. This is

done by induction on q (incrementing by 2 each time). When q = 1 or q = 3 it is obviously valid.

Suppose it holds for odd q < k, and consider odd q = k ≥ 5. By the induction assumption, the
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following path inequalities are valid.

∑
j∈[q−2]
j odd

xij −
∑

j∈[q−2]
j even

xij ≤ 1

∑
j∈[q]\{1,2}
j odd

xij −
∑

j∈[q]\{1,2}
j even

xij ≤ 1

xi1 − xi2 + xiq ≤ 1.

Then, the Chvátal-Gomory procedure, c.f. [72], applied to these inequalities with each weight equal

to 1/2 shows that the path inequality (4.26) is valid for P(Pn).

Now, we show that if a facet-defining inequality
∑n
i=1 πixi ≤ π0 of P(Pn) is not a nonnegativity

bound, then it is a path inequality (4.26). By Lemmata 3 and 11, we can suppose that π0 = 1 and

each πi is integer. Further, by Theorem 15,
∑n
i=1 πi = 1. Let S = {i ∈ [n] | πi > 0} denote the

set of vertices with positive coefficients. Since the coefficients are integer and bounded by π0 = 1,

this means each i ∈ S has πi = 1. For any pair of vertices u, v ∈ S with u < v such that no k ∈ S

satisfies u < k < v, the path Vuv connecting them is feasible, so
∑n
i=1 πix

Vuv
i ≤ 1. This implies a

vertex k between them with πk < 0, and, in fact, πk ≤ −1 by integrality of π. Further, k is the

unique vertex between u and v with πk ≤ −1, and the equality πk = −1 must hold. If otherwise,

then we would have
∑n
i=1 πi < 1, a contradiction. Thus,

∑n
i=1 πixi ≤ 1 must be a path inequality

(4.26).

The number of nonnegativity bounds is n, and the number of path inequalities is
∑

k∈[n]
k odd

(
n
k

)
,

so the total number of facets of P(Pn) is as stated.

Theorem 19 (P(G) for star graphs). Consider the (n+ 1)-vertex star graph K1,n with vertex set

V = {v} ∪ [n], where v is the center vertex. For any S ⊆ [n], the following star inequality induces

a facet of P(K1,n).

(1− |S|)xv +
∑
i∈S

xi ≤ 1. (4.27)

Moreover, the nonnegativity bounds and star inequalities fully describe P(K1,n). Consequently, the

number of facets of P(K1,n) is 2n + n+ 1.

Proof. By Theorem 15, to prove that inequality (4.27) induces a facet, it is enough to show that it
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is valid. Consider a vertex subset D that induces a connected subgraph. If v /∈ D, then D must

be empty or a single vertex, so the inequality holds trivially. Otherwise, v ∈ D, and the inequality

reduces to
∑
i∈S xi ≤ |S|, which is also trivially satisfied.

Now we show that if a facet-defining inequality
∑
i∈V πixi ≤ π0 is not a nonnegativity bound,

then it is a star inequality (4.27). By Lemmata 3 and 11, we can suppose that π0 = 1 and each πi

is integer. Further, by Theorem 15,
∑
i∈V πi = 1.

Let S = {i ∈ [n] | πi > 0}. Then each i ∈ S has πi = 1. The subgraph induced by S′ = S ∪ {v}

is connected, and πv + |S| = ∑i∈V πix
S′

i ≤ 1, so πv ≤ 1− |S|. Since πi ≤ 0 for each i ∈ [n] \ S, the

only way to achieve
∑
i∈V πi = 1 is to have πv = 1− |S| and πi = 0 for each i ∈ [n] \ S. Thus, the

inequality is a star inequality (4.27), as desired.

The number of star inequalities is
∑n
k=0

(
n
k

)
= 2n, and the number of nonnegativity bounds is

n+ 1, so the total number of facets of P(K1,n) is 2n + n+ 1.
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5. 2-CLIQUES IN UNIT DISK GRAPHS

We change our focus to clique relaxations in unit disk graphs in this chapter. As discussed in

the introduction, clique and clique relaxations have direct correspondence to connectivity and the

class of unit disk graphs is an important tool to model geometric networks. In this dissertation,

we discuss a clique relaxation problem called the maximum 2-clique problem in unit disk graphs.

We first introduce our motivation of this problem in Section 5.1 and definitions and notations in

addition to background chapter in Section 5.2. Then in Section 5.3 we present our main observation

to solve the 2-clique problem, which states that any 2-clique in a unit disk graph is dominated by no

more than 4 vertices. We also mention it is not the case for general graphs in section 5.4. Finally,

in Section 5.5 we discuss how to solve the maximum 2-clique problem effectively in unit disk graphs

using our observation, ultimately establishing a 1
2 -approximation ratio for our polytime algorithm,

as well as how the proposed method performs on random unit disk graphs, showing both theoretical

and computational results.

5.1 Motivations

A unit disk graph (UDG), which can be defined as the intersection graph of closed disks of equal

(e.g., unit) diameter, provide a convenient modeling tool for wireless networks, where the ability

of two wireless nodes to communicate depends on whether they are within the unit Euclidean

distance away from each other. While many of the classical optimization problems on graphs, such

as the maximum independent set, minimum vertex cover, graph coloring, minimum dominating set,

and minimum connected dominating set problems, remain NP-hard when restricted to UDGs [26],

there are some notable exceptions. In particular, the maximum clique problem, which is NP-hard

in general, is polynomially solvable in UDGs. This can be shown as follows [26]. Let r ≤ 1 be

the largest Euclidean distance between a pair of nodes, a and b, of disks belonging to a maximum

clique C of a given UDG. Then all nodes of C must belong to the area of overlap (referred to as

a lens) of a pair of disks of radius r centered at a and b, respectively (see Fig. 5.1). Observe

that the line between a and b bisects the lens into two half-lenses, such that any two points from

the same half-lens are distance at most r from each other. Hence, the set of nodes of the UDG

belonging to the same half-lens forms a clique, implying that the nodes located in the lens induce a

co-bipartite graph (i.e., the compliment of a bipartite graph). Since the maximum clique problem

54



a b
r

1

Figure 5.1: The lens formed by two disks with distance r ≤ 1 between their centers a and b.

in a co-bipartite graph is equivalent to the maximum independent set problem in a bipartite graph,

it can be solved in O(n2.5) time, where n is the number of nodes [51]. Thus, by computing a

maximum clique for every such “lens subgraph”, we can solve the maximum clique problem in the

original UDG in O(n4.5) time [26]. The reader is referred to [17, 84, 6] for more information on

algorithms for the maximum clique problem in UDGs.

The present work is motivated by the practical importance of UDGs and increasing interest

in clique relaxation models, which relax various elementary graph-theoretic properties implicitly

enforced by the definition of clique in order to obtain structures that are less restrictive than cliques,

but are still sufficiently cohesive for a particular application of interest [82]. Several such models

have been studied in the literature from the optimization perspective, including the edge density-

based relaxation called γ-quasi-clique [79]; the degree-based clique relaxations called s-defective

clique and s-plex [96, 7]; and the distance-based relaxations known as s-clique and s-clubs [8, 92].

To the best of our knowledge, none of the corresponding optimization problems have been studied in

UDGs. Since small distance between the nodes is one of the key requirements in designing routing

protocols in wireless communication networks [62], the distance-based clique relaxations restricted

to UDGs deserve a special attention. Hence, this dissertation focusses on the maximum 2-clique

and 2-club problems in UDGs.

5.2 Definitions and Notations

This section introduces definitions, notation, and some known facts used in the dissertation. To

avoid ambiguity in terminology, we will use the term node to describe a vertex of a graph, while

reserving the term vertex for points in R2 representing certain geometric objects such as angles,

55



triangles, and lenses. In addition, we will reserve the term distance for graph-theoretic distances;

whenever we will refer to Euclidean distances, we will explicitly state so. We will denote the given

UDG by G = (V, E), where V is its set of nodes and E is its set of edges. We will use the containment

model of UDG, in which the nodes are given by points in R2, and two nodes are connected by an

edge if and only if one of the corresponding points is inside the unit-radius circle centered at the

other point. We will use a capital Latin letter to represent a unit-radius circle, and we will use the

same letter in bold face to describe the corresponding disk. For a unit-radius disk (circle) A, we

will denote its center and the corresponding graph node by the same, but lower-case, letter a. Due

to one-to-one correspondence between the nodes of G and the disks they represent, we can also refer

to a disk A as the corresponding node of G whenever this simplifies the presentation. For a set of

points S ⊆ R2, we will denote by V(S) = {a ∈ V : a ∈ S} the subset of nodes of G that are given

by points from S.

Assume that a pair of circles A and B intersect in exactly two points P1 and P2, i.e., A ∩ B =

{P1, P2}. Then the intersection A∩B of the corresponding pair of disks is called a lens, and P1, P2

are the vertices of this lens. Consider a set of three distinct pairwise overlapping disks A,B and

C. We will call this set triangular if either (1) S = A ∩B ∩C 6= ∅ and the boundary of S consists

of three circular arcs, each belonging to a different circle; or (2) A ∩ B ∩ C = ∅ and there is a

nonempty area S with boundary consisting of three circular arcs, one from each circle, that has

no points in the interior belonging to any of the disks (see Fig. 5.2). Then we call S a convex

circular triangle in the first case and a concave circular triangle in the second case, respectively.

Let A ∩ B = {P1, X}, A ∩ C = {P2, Y }, and B ∩ C = {P3, Z}, where {P1, P2, P3} ⊂ S are the

“corner” points of S. We call P1, P2, and P3 the vertices of the circular triangle and use the notation

4P1P2P3 to represent a circular triangle in both cases. A triangular set of disks defines one circular

triangle (convex or concave) and three lenses. The vertices P1, P2, P3 of the circular triangle are also

vertices of the corresponding lenses. We will call these three lens vertices the inner vertices, while

the remaining three lens vertices, X,Y, Z, will be referred to as outer vertices. If P1 = P2 = P3,

i.e., A, B, and C all intersect in one point, Johnson’s circle theorem [56] claims that the triangles

4XY Z and 4abc are similar.

Consider a set S of points on the plane overlapped by multiple disks, and suppose the boundary

of S is formed by a set of k different circles. We will refer to these circles as border circles, as in

Fig. 5.3 (left). Note that in the lens A∩B corresponding to two arbitrary border circles A and B,
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Figure 5.2: Circular triangles.

the set A ∩ B \ S will consist of at most two continuous regions, S′ and S′′ (see Fig. 5.3, right).

Helly’s theorem in two dimensions [28] states that if F is a finite family of at least 3 convex sets

on the 2-dimensional plane and every 3 members of F have a common point, then there is a point

common to all members of F .

Next we review some terminology and notation from graph theory. Given a simple undirected

graph G = (V, E), if (u, v) ∈ E we call u and v adjacent or neighbors, and say that u and v dominate

each other. Let NG [v] = {v} ∪ {u ∈ V : (u, v) ∈ E} be the closed neighborhood of v in G. We call

a subset S of nodes k-dominated in G if there is a subset D ⊆ V of at most k nodes such that for

any u ∈ S \ D there is v ∈ D such that (u, v) ∈ E . The subgraph induced by a subset of nodes S

is denoted by G[S]. We denote by dG(u, v) the distance between u, v ∈ V in G and by diam(G) the

graph-theoretic diameter of G. A subset of nodes C is called a clique if for any u, v ∈ C we have

(u, v) ∈ E . For a positive integer s, a subset of nodes K is called an s-clique if for any u, v ∈ K we

have dG(u, v) ≤ s. An s-clique K is called an s-club if diam(G[K]) ≤ s. Note that for s = 1 both

s-clique and s-club become a clique. In this paper we consider the case of s = 2. For a positive

integer t, the tth power Gt of graph G is given by Gt = (V, Et), where Et = {(u, v) : dG(u, v) ≤ t}.

Clearly, K is an s-clique in G if and only if K is a clique in Gs.
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Figure 5.3: Border circles and a lens corresponding to two border circles.

5.3 Domination of 2-Cliques in Unit Disk Graphs

In this section we show that all 2-cliques in a UDG are 4-dominated, a result that is at the core

of the proposed approximation algorithm. Note that this is not true for 2-cliques in general graphs.

It is shown in [67] how to construct graphs of diameter 2 with minimum dominating set exceeding

any size k.

Proposition 10. Any 2-clique in a UDG is 4-dominated.

Proof. Let K be an arbitrary 2-clique in a UDG G. A key detail to note is that we do not require the

elements in a dominating set for K to be members of K. Since we are working with the containment

model of UDG, every pair of disks A and B in the 2-clique K must intersect and there must be

a node of G in A ∩ B to ensure that dG(a, b) ≤ 2. We break our proof down into two cases. In

the first case we assume that there exist three disks A, B, and C in K that intersect pairwise but

A ∩B ∩C = ∅. In the other case we have A ∩B ∩C 6= ∅ for any three disks A, B, and C in K.

Case 1: There exist A, B, and C in K such that A ∩B ∩C = ∅. Consider three disks A, B, and

C in K that yield a concave circular triangle with the largest area. We prove in Lemmas 19

and 21 (in subsection 5.3.1) that every other disk in K must overlap at least one entire lens

A ∩B, A ∩C, or B ∩C. Since each of these lenses must contain a node of G for A, B, and
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C to be in a 2-clique, taking one node from each lens provides three nodes dominating the

entire 2-clique. Thus, K is 3-dominated in this case.

Case 2: A∩B∩C 6= ∅ for any A, B, and C in K. By Helly’s theorem there exists a set of points S

in R that are common for all members of K (see Fig. 5.3, left). Clearly, if there is a node of G

in S, the 2-clique is 1-dominated. Assume that S contains no nodes of G. Then we choose an

arbitrary pair of border disks A and B in K corresponding to non-consecutive pieces of the

border of S and consider their intersection. Since A and B belong to the 2-clique K, there

must be a node p of G in A ∩ B \ S. Further, since A and B are border disks for S that

do not define consecutive border pieces, S will divide A ∩ B into two parts, S′ and S′′, as

in Fig. 5.3 (right). If both parts contain the graph’s nodes, p′ and p′′, respectively, then it is

impossible to insert a disk between these two points without changing the border of S, which

would be a contradiction since all disks must overlap S entirely. This implies that the 2-clique

is 2-dominated by p′ and p′′. Thus, we only need to consider the case where only one of the

sets S′, S′′ contains a node p of the graph. Without loss of generality (WLOG), suppose all

such nodes lie in S′. In this case, we will use a finite sequence of steps to identify three border

disk of S in K, such that no node of the graph belonging to S′ lies inside their intersection.

Let C1, C2, . . . , Ck be the circles defining the common border of S and S′ listed in the order in

which the corresponding pieces appear as the common border S∩S′ is navigated from A to B.

Let C0 = A. Starting with i = 1, we consider the intersection A∩B∩Ci. If A∩B∩Ci does

not contain a node of G, we stop. Otherwise, noting that V(B∩Ci) ⊂ V(B∩Ci−1) ⊂ S′, we

set A = Ci and restart the procedure for the new pair A,B. Since every repetition reduces

the number of border disks between A and B by one, we eventually will produce two border

disks A and B close enough together on the border of S such that V(A ∩ B) ∩ S′ 6= ∅, but

V(Ci ∩A ∩ B ∩ S′) = ∅. Since V(Ci ∩A ∩ B) ⊂ S′, this implies that V(Ci ∩A ∩ B) = ∅.

We have produced three border disks A,B and C = Ci such that A ∩ B ∩ C contains no

nodes of G. Thus, each of A ∩ B, A ∩ C, and B ∩ C must contain a different node of the

graph. Let v1, v2, and v3 be arbitrary nodes of G belonging to A ∩ B, A ∩ C, and B ∩ C,

respectively. Note that V1, V2 and V3 intersect pairwise, since a, b, and c belong to the

corresponding lenses. Thus, they produce either a convex circular triangle ∆′ or a concave

circular triangle ∆′′, depending on whether all three discs have points in common. In either
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Figure 5.4: An illustration to Case 2 of the proof of Proposition 10.

case, K cannot contain a node corresponding to a point outside V1 ∪ V2 ∪ V3 ∪ ∆′′ since

this would imply that one of the circles A, B, or C is not a border circle of S (see Fig. 5.4).

Thus, if V1 ∩V2 ∩V3 6= ∅ then {v1, v2, v3} dominates K and the 2-clique is 3-dominated. It

remains to consider the case where V1 ∩V2 ∩V3 = ∅. Then ∆′′ 6= ∅ and it is possible that

there is a node d in K that belongs to ∆′′ (see Fig. 5.4). Then we show in Lemma 22 (in

subsection 5.3.2) that one of A, B, or C, whose centers belong to V1 ∩ V2, V1 ∩ V3, and

V2 ∩V3, respectively, must cover the entire ∆′′ and hence the proof is complete.

Corollary 4. Any 2-club in a UDG is 3-dominated.

Proof. Note that in Proposition 10, we could not conclude that 2-cliques are 3-dominated only in

the the Case 2 of the proof, where V1 ∩V2 ∩V3 = ∅. However, by definition of a 2-club, v1, v2,

and v3 must be in the 2-club, which is in contrast to 2-cliques. Thus, we are in fact in Case 1, for

which we have already proven 3-domination. Thus, 2-clubs are always 3-dominated.

Note that the fact that all 2-clubs are 3-dominated can potentially be used in designing exact

algorithms for the maximum 2-club problem as follows. Instead of solving the problem for the
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original graph, we can solve it for induced subgraphs of all subsets of 3 vertices together with their

neighbors. This may help solving instances where all such subgraphs are substantially smaller than

the original graph.

Above, we established the upper bound of 4 on the minimum size of a dominating set for a

2-clique in a UDG. While producing an example of a 2-clique that is not 3-dominated appears to

be difficult, if not impossible, we can show that our upper bound is nearly tight by providing an

example of a 2-clique that is not 2-dominated. To do so, we adapt the example discussed in [22].

This example is similar to the one in [46], where it is proven that for a set of congruent disks that

intersect pairwise, the piercing number, which is the fewest points in space that intersect every

object in a given set, is precisely 3.

Example 1. An example of a 3-dominated 2-clique in a UDG.

a
b

c

a1 a2

b1

b2

c2

c1

x2

x1
x

yy1y2 z
z1z2

1

Figure 5.5: A 2-clique with a minimum dominating set of 3 vertices.

To construct the required 2-clique, which is also a 2-club, we consider a set of 3k unit disks

{Ai,Bi,Ci}k−1
i=0 , where B ≡ B0, and C ≡ C0. We position the centers of disks A, B, and C at

distance 2 away from each other. Let A′, B′, and C ′ be circles of radius 2 centered at a, b, and c,
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respectively. We position nodes ai ∈ A ∩ C ′, bi ∈ B ∩ A′, and ci ∈ C ∩ B′, i = 1, . . . , k − 1 and

xi ∈ A, zi ∈ B, yi ∈ C, i = 0, . . . , k−1, where x ≡ x0, y ≡ y0, z ≡ z0, as shown in Fig. 5.5. Note that

for i = 0, . . . , k−1, xi, yi, and zi are midpoints between a and bi, c and ai, and b and ci, respectively.

Let Vk = {ai, bi, ci, xi, yi, zi : i = 0, . . . , k − 1}, then |Vk| = 6k and no two disks contain more than

5k nodes combined, while Vk is dominated by {a, b, c}. Thus, Vk is a 3-dominated 2-clique that is

not 2-dominated.

5.3.1 When ∃A,B,C ∈ K s.t. A ∩B ∩ C = ∅

In this part, we prove several lemmas about the case that A ∩B ∩ C = ∅.

Lemma 17. Let A,B and C be circles of equal radius r with the centers a, b and c, respectively.

Assume that 4abc is acute, and has circumradius ρ > 0. Let A ∩B = {P1, P
′
1}, A ∩C = {P2, P

′
2},

and B∩C = {P3, P
′
3} be the intersection points of the pairs of circles, with P ′1, P ′2, and P ′3 being the

three outer vertices of the corresponding lenses, and let δ = sign(r2−ρ2). Let ρ′ be the circumradius

of 4P ′1P ′2P ′3 and let ρ′′ be the circumradius of 4P1P2P3. Then

0 ≤ ρ′, ρ′′ ≤ r ≤ ρ ≤ ρ′ + ρ′′ if δ < 0

0 ≤ ρ, ρ′′ ≤ r ≤ ρ′ ≤ ρ+ ρ′′ if δ > 0.

Proof. This is an adaptation of Theorems 3 and 4 in [68].

Lemma 18. If three disks A, B, and C overlap pairwise but A∩B∩C = ∅, then the triangle formed

by connecting their centers is acute. Moreover, all points of each circle that belong to another disk

are located on its arc with the central angle less than π.

Proof. Consider the midpoint m of side bc, which lies in B∩C as in Fig. 5.6 (left). Since A∩B∩C =

∅, it must be that |am| > 1. Consider a circle M̄ of radius |mc| centered at m. Then a cannot be

inside this circle. Consider the point Q of intersection of the side ab with M̄ . Then angle ∠bQc is a

right angle. But this means ∠bac is acute because triangle 4cQa has right angle ∠cQa. By similar

arguments we can conclude that angles ∠bca and ∠abc are acute and hence 4abc is acute.

To prove the second statement, consider any of the three circles, e.g., B. All points that this

circle shares with A or C are located on its arc between X and Z, hence it suffices to show that

∠XbZ < π. We have ∠XbZ = 2∠QbP1 + ∠P1bP3 + 2∠P3bm ≤ 2∠abc < π since ∠abc is acute.
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Figure 5.6: Illustrations to the proofs of Lemmas 18 and 20.

Lemma 19. Let A, B, and C be three disks centered at three nodes of 2-clique K with A∩B∩C = ∅

that produce a concave circular triangle 4P1P2P3 of area σ. Then any other disk Q corresponding

to q ∈ K that does not contain 4P1P2P3 and does not form a concave circular triangle of area

larger than σ with any two of the disks A,B,C must contain one of the lenses A ∩B, A ∩C, or

B ∩C entirely.

Proof. Since the concave circular triangle 4P1P2P3 has larger area than a concave circular triangle

that Q forms with any two of the disks A,B,C, the circle Q must intersect the boundary of

4P1P2P3. Then there is at least one vertex among P1, P2, and P3 that is not in Q. There are

two possible subcases: only one of the vertices P1, P2, P3 is not in Q (subcase 1); and two of the

vertices P1, P2, P3 are not in Q (subcase 2).

Subcase 1: Let the vertex not in Q be P2. Since q ∈ K, Q must have a nonempty overlap with

A, B, and C. Let X1 and X2 denote the intersections of circles Q and A, and Y1 and Y2

denote the intersections of circles Q and C. If Q contains neither A ∩ B nor B ∩ C, then

one of the points of intersection of circles Q and A (WLOG it is X1) must lie in A ∩B, and

one of the points of intersection of circles Q and C (let it be Y1) must lie in B ∩ C. Also

because circle Q passes through X1 ∈ A ∩B, Y1 ∈ B ∩C and must intersect P1P2 or P2P3,

it must intersect B at two points Z1 and Z2 inside the circular arc XP1Z (as in Fig. 5.7,
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Figure 5.7: An illustration to the proof of Lemma 19.

left). Let X ′1 and Y ′1 , respectively, be the points of intersection of the line passing through

X1 and Y1 with the circle B. Then, the circle B circumscribes the triangle X ′1Z1Y
′
1 , the

circle Q circumscribes the triangle X1Z1Y1, and since both circles are of same diameter, we

have
|X′1Y

′
1 |

sin(∠X′1Z1Y ′1 ) = |X1Y1|
sin(∠X1Z1Y1) . Since |X ′1Y ′1 | > |X1Y1| and ∠X ′1Z1Y

′
1 > ∠X1Z1Y1, the

angle ∠X1Z1Y1 must be acute. Then the angle ∠X1qY1 corresponding to the circular arc

containing Z1 is ∠X1qY1 = 2(π −∠X1Z1Y1) > π. Since X1 ∈ A, Y1 ∈ C, this contradicts the

second statement of Lemma 18 applied to circles A,C, and Q. Thus, Q contains at least one

of the lenses A ∩B, B ∩C, and the proof of subcase 1 is complete.

Subcase 2: Let the vertices not in Q be P2 and P3 (see Fig. 5.7, right). Then rotate Q around X1

so that Y2 coincides with P3. Let Q′ be the disk obtained from Q as the result of this rotation.

Then we arrive at subcase 1 implying that Q′ contains A∩B. Noting that Q′ ∩A ⊆ Q∩A,

we conclude that Q contains A ∩B.

Lemma 20. Suppose three disks A, B, and C overlap pairwise but A∩B∩C = ∅. Let X, Y , and

Z be the outer vertices of the lenses A∩B, A∩C, and B∩C, respectively. Then 4XY Z is acute.

Proof. Draw another circle Q as in Fig. 5.6 (right) that passes through the inner vertex of A∩B, so

that A∩B ∩Q = {P1}, and through a point Z ′ 6= Z that lies on the circle B and belongs to B∩C.

64



Note that we can select such Z ′ arbitrarily close to Z so that ε = ∠Z ′XZ can be chosen as small

as needed. By Lemma 19, since Q cannot overlap B∩C, it must be that Q contains A∩C. Thus

Y is inside Q and ∠ZXY ≤ ∠ZXY ′ = ∠Z ′XY ′ + ε. By Johnson’s circle theorem [56], 4Z ′XY ′ is

similar to the triangle made of the centers of the three circles, which is acute by Lemma 18. Thus

∠Z ′XY ′ is acute and since ε can be made arbitrarily small, ∠ZXY is also acute. We can use the

same argument to conclude ∠ZY X and ∠XZY are also acute, so the triangle is acute.

Lemma 21. Let disks A, B, and C, where A ∩B ∩C = ∅, be nodes of 2-clique K that produce a

concave circular triangle 4P1P2P3. Then any other disk Q in K that overlaps 4P1P2P3 entirely

must contain one of the lenses A ∩B, A ∩C, or B ∩C.

Proof. Suppose by way of contradiction that a disk Q could contain the concave circular triangle

and not overlap a lens entirely. Then Q must intersect the border of each lens at two points. Call

these points J,K,M,N,R, and S, as in Fig. 5.8 (left). From the figure, if Q is to overlap the entire

∠Z′XY ′ is acute and since ε can be made arbitrarily small, ∠ZXY is also acute. We can use the
same argument to conclude ∠ZY X and ∠XZY are also acute, so the triangle is acute. �

Lemma 6.5 Let disks A, B, and C, where A∩B∩C = /0, be nodes of 2-clique K that produce a
concave circular triangle 4P1P2P3. Then any other disk Q in K that overlaps 4P1P2P3 entirely
must contain one of the lenses A∩B, A∩C, or B∩C.

Proof Suppose by way of contradiction that a disk Q could contain the concave circular triangle
and not overlap a lens entirely. Then Q must intersect the border of each lens at two points. Call
these points J,K,M,N,R, and S, as in Fig. 7 (left). From the figure, if Q is to overlap the entire
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Figure 7: An illustration for the proof of Lemma 6.5.

concave circular triangle, its center q and a must be on the opposite sides of the line passing through
J and N. Similarly q and b (q and c) must be separated by the line passing through K and S (R and
M). This is sufficient to ensure that q must be strictly within the triangle4XY Z. If any of X , Y , or
Z is inside Q then Q covers an entire lens and we have contradicted our assumption above. Thus it
must be that |qX |> 1, |qY |> 1, and |qZ|> 1. Suppose WLOG the minimum of {|qX |, |qY |, |qZ|}
is |qX |. If we draw a circle centered at q with radius |qX |, then Y and Z must still be outside this
circle. Thus this circle must have intersection points with both XY and XZ, which we will call
U and V , respectively. Since 4XY Z is acute by Lemma 6.4, we have |UV | < |Y Z| (this can be
easily shown by, e.g., applying the cosine law to compute |UV | and |Y Z|). Let ρ be the radius of the
circumcircle through X , Y , and Z, then ρ = |Y Z|

2sin(∠Y XZ) >
|UV |

2sin(∠Y XZ) =
|UV |

2sin(∠UXV ) = |qX |> 1. Let τ
be the radius of the circle through a, b, and c. Clearly τ > 1 since A∩B∩C = /0. Then Lemma 6.1
says that since δ = sign(1− τ2) < 0, it must be that 0 ≤ ρ ≤ 1, where ρ is the circumradius of
the circle passing through the outer intersections X ,Y and Z of circles A, B, and C. But this is a
contradiction to ρ > 1 above and thus it must be impossible that a circle Q exists as described. �
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Figure 5.8: An illustration for the proof of Lemma 21.

concave circular triangle, its center q and a must be on the opposite sides of the line passing through

J and N . Similarly q and b (q and c) must be separated by the line passing through K and S (R and
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M). This is sufficient to ensure that q must be strictly within the triangle4XY Z. If any of X, Y , or

Z is inside Q then Q covers an entire lens and we have contradicted our assumption above. Thus it

must be that |qX| > 1, |qY | > 1, and |qZ| > 1. Suppose WLOG the minimum of {|qX|, |qY |, |qZ|}

is |qX|. If we draw a circle centered at q with radius |qX|, then Y and Z must still be outside this

circle. Thus this circle must have intersection points with both XY and XZ, which we will call U

and V , respectively. Since 4XY Z is acute by Lemma 20, we have |UV | < |Y Z| (this can be easily

shown by, e.g., applying the cosine law to compute |UV | and |Y Z|). Let ρ be the radius of the

circumcircle through X, Y , and Z, then ρ = |Y Z|
2 sin(∠Y XZ) >

|UV |
2 sin(∠Y XZ) = |UV |

2 sin(∠UXV ) = |qX| > 1.

Let τ be the radius of the circle through a, b, and c. Clearly τ > 1 since A ∩ B ∩ C = ∅. Then

Lemma 17 says that since δ = sign(1 − τ2) < 0, it must be that 0 ≤ ρ ≤ 1, where ρ is the

circumradius of the circle passing through the outer intersections X,Y and Z of circles A, B, and

C. But this is a contradiction to ρ > 1 above and thus it must be impossible that a circle Q exists

as described.

5.3.2 When A ∩B ∩ C 6= ∅, ∀A,B,C ∈ K

In this part we prove a lemma used in the case that A ∩B ∩ C 6= ∅

Lemma 22. Suppose A, B, and C are three disks that intersect pairwise, but A ∩B ∩C = ∅, so

that they define a concave circular triangle 4P1P2P3. Suppose WLOG that B ∩ C has area less

than or equal to that of A ∩B and A ∩C. Then a unit-radius circle D centered at any d ∈ B ∩C

will cover the entire circular triangle 4P1P2P3.

Proof. It is sufficient to show the circle D centered at the outer vertex d of B∩C covers the vertices

of the circular triangle, specifically P1 and P2 since they are most distant from d. Assume WLOG

that A ∩ B has smaller area than A ∩C, in which case we rotate circle B around P1 to create a

new circle B′ such that A∩B′ and C∩B′ are equal, as in Fig. 5.9. It is clear that A∩B′ ⊆ A∩B.

Let d′ be the intersection of B′ and C, and let d′′ be the point on B′ obtained from d as a result of

the rotation. Since d is on arc P2d
′ of C, it is clear that |P2d

′| ≥ |P2d|. Since |P1d| = |P1d
′′| and

d′′ is on arc P1d
′ of B′, we have |P1d

′| ≥ |P1d|. Also |ab′| = |cb′| ≥ |ac| because the area of lens

A ∩C is larger than that of lens A ∩B, which is larger than the area of lens A ∩B′.
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Lemma 6.6 Suppose A, B, and C are three disks that intersect pairwise, but A∩B∩C = /0, so
that they define a concave circular triangle 4P1P2P3. Suppose WLOG that B∩C has area less
than or equal to that of A∩B and A∩C. Then a unit-radius circle D centered in any d ∈ B∩C
will cover the entire circular triangle4P1P2P3.

a c

b

P1

P2

b′

P3

d

d′d′′

1

a c

P1

P2

b′

P ′
3

d′

1

Figure 8: An illustration to the proof of Lemma 6.6.

Proof It is sufficient to show the circle D centered at the outer vertex d of B∩C covers the vertices
of the circular triangle, specifically P1 and P2 since they are most distant from d. Assume WLOG
that A∩B has smaller area than A∩C, in which case we rotate circle B around P1 to create a new
circle B′ such that A∩B′ and C∩B′ are equal, as in Fig. 8. It is clear that A∩B′ ⊆ A∩B. Let
d′ be the intersection of B′ and C, and let d′′ be the point on B′ obtained from d as a result of the
rotation. Since d is on arc P2d′ of C, it is clear that |P2d′| ≥ |P2d|. Since |P1d|= |P1d′′| and d′′ is
on arc P1d′ of B′, we have |P1d′| ≥ |P1d|. Also |ab′|= |cb′| ≥ |ac| because the area of lens A∩C
is larger than that of lens A∩B, which is larger than the area of lens A∩B′.

Note that |aP2| = |cP2| = |cP′3| = |b′P′3| = |b′P1| = |aP1| = 1. Let α = ∠P2ac = ∠P2ca, β =
∠P2aP1 = ∠P2cP′3, γ = ∠P1ab′ = ∠P1b′a = ∠P′3b′c = ∠P′3cb′, and δ = ∠P1b′P′3.

The key to the proof is showing that β≤ δ. First note that γ≤ α since α corresponds to half-arc
of the lens A∩C and γ corresponds to the half-arc of the lens B′∩C, which is not larger than A∩C.
Next, suppose for contradiction that δ < β. Then |P1P′3| < |P1P2| = |P2P3|. But at the same time
∠P1P2P′3 = 2π−∠aP2P1−∠aP2c−∠cP2P′3 = 2α+β. Similarly ∠P2P′3P1 = 2γ+ β

2 +
δ
2 . If δ < β

then ∠P2P′3P1 = 2γ+ β
2 +

δ
2 < 2α+β = ∠P1P2P′3 since we know γ ≤ α. But ∠P2P′3P1 < ∠P1P2P′3

implies that |P1P2| < |P1P′3|, contradicting to the opposite inequality |P1P′3| < |P1P2| established
above. Hence, δ≥ β.

14

Figure 5.9: An illustration to the proof of Lemma 22.

Note that |aP2| = |cP2| = |cP ′3| = |b′P ′3| = |b′P1| = |aP1| = 1. Let α = ∠P2ac = ∠P2ca,

β = ∠P2aP1 = ∠P2cP
′
3, γ = ∠P1ab

′ = ∠P1b
′a = ∠P ′3b′c = ∠P ′3cb′, and δ = ∠P1b

′P ′3.

The key to the proof is showing that β ≤ δ. First note that γ ≤ α since α corresponds to half-arc

of the lens A∩C and γ corresponds to the half-arc of the lens B′∩C, which is not larger than A∩C.

Next, suppose for contradiction that δ < β. Then |P1P
′
3| < |P1P2| = |P2P3|. But at the same time

∠P1P2P
′
3 = 2π −∠aP2P1 −∠aP2c−∠cP2P

′
3 = 2α+ β. Similarly ∠P2P

′
3P1 = 2γ + β

2 + δ
2 . If δ < β

then ∠P2P
′
3P1 = 2γ+ β

2 + δ
2 < 2α+β = ∠P1P2P

′
3 since we know γ ≤ α. But ∠P2P

′
3P1 < ∠P1P2P

′
3

implies that |P1P2| < |P1P
′
3|, contradicting to the opposite inequality |P1P

′
3| < |P1P2| established

above. Hence, δ ≥ β.

Since β ≤ δ, we can conclude that ∠d′cP2 = 2γ+β ≤ 2γ+δ = ∠cb′a ≤ π
3 since |ab′| = |cb′| ≥ |ac|.

This implies that |d′P2| ≤ |CP2| = 1. Also, ∠d′b′P1 = ∠cb′a ≤ π
3 , implying |d′P1| ≤ 1. Thus,

|P1d| ≤ |P1d
′| ≤ 1, |P2d| ≤ |P2d

′| ≤ 1, and the circle centered at d covers both P1 and P2.

5.4 Domination of Graphs with Diameter 2 in General Graphs

Proposition 10 implies that the minimum dominating set problem is polynomially solvable in

UDGs of diameter 2. In this section we show that this is not the case, unless P = NP, for

general diameter-two graphs. Let Dominating Set (DS) be the decision version of the minimum
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dominating set problem, which, given a graph G = (V, E) and a positive integer k ≤ |V| asks if

there is a subset D of k nodes in G such that each node not in D has at least one neighbor in D.

Proposition 11. Dominating Set remains NP-complete when restricted to graphs of diameter

two.

Proof. Let us denote by DS2 the DS problem restricted to graphs of diameter two. Clearly, DS2 is

in NP. To show NP-completeness, we use a reduction from Vertex Cover (VC) problem, which,

given a graph G = (V, E) and a positive integer k ≤ |V| asks if there is a subset C of k nodes

in G such that every edge in E has at least one endpoint in C. VC is a classical NP-complete

problem [35]. Given an instance of VC, we construct an instance G′ = (V ′, E ′) of DS2 in polynomial

time as follows. For each edge (i, j) ∈ E , i < j, we introduce two distinct nodes vij and vji in

G′. Let V ′1 = {vij , vji : (i, j) ∈ E , i < j} be the set of all such nodes. In addition, for each two

edges (i, j) and (p, q) with no common endpoint in G and i < j, i < p < q, we introduce four nodes

vpqij , v
qp
ij , v

pq
ji , v

qp
ji in G′. Let V ′2 = {vpqij , vqpij , vpqji , vqpji : (i, j), (p, q) ∈ E , i < j, i < p < q, p 6= j 6= q}.

Then the graph G′ = (V ′, E ′) is given by

V ′ = V ∪ V ′1 ∪ V ′2; E ′ = E ′1 ∪ E ′2 ∪ E ′3,

where E ′1 = {(v′, v′′) : v′, v′′ ∈ V ∪ V ′2, v′ 6= v′′}, E ′2 = {(v, vij) : v ∈ V, vij ∈ V ′1, v = i or v = j},

and E ′3 = {(vrs, vpqij ) : vrs ∈ V ′1, vpqij ∈ V ′2, (r = i& s = j) or (r = p& s = q)}. The construction is

illustrated in Figure 5.10. It is easy to check that diam(G′) = 2 and G has a vertex cover of size at

most k if and only if G′ has a dominating set of size at most k.

5.5 An Effective Algorithm to Find 2-Cliques in a Unit Disk Graph

Now we apply proposition 10 to develop an effective algorithm for 2-clique problem in a unit

disk graph.

Proposition 12. There exists a 1
2 -approximation algorithm for the maximum 2-clique problem in

a UDG G = (V, E) that runs in O(|V|4.5) time.

Proof. We claim that we can find the largest 2-clique dominated by 2 elements in any graph in

polynomial time. First, for a pair {v1, v2} of nodes consider a graph G′(v1, v2), which is the subgraph

of G2 induced by the union of their closed neighborhoods NG [v1] ∪NG [v2]. Since both NG [v1] and
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clique V ∪ V ′2

1

Figure 5.10: An illustration to the proof of Proposition 11.

NG [v2] are cliques in G2, G′(v1, v2) is a co-bipartite graph. Recall that the maximum clique problem

can be solved in polynomial time on co-bipartite graphs [26]. Also, solving the maximum clique

problem in G′(v1, v2) produces a maximum 2-clique in G that is dominated by v1 and v2. Hence, by

considering all pairs of nodes corresponding to intersecting disks in G, we can identify the largest

2-clique K′ dominated by 2 elements in G in O(|V|4.5) time [26]. Also, since all 2-cliques are 4-

dominated in a UDG by Proposition 10, at least half of the nodes of a maximum 2-clique K∗ in G

must be dominated by 2 nodes. Since a subset of a 2-clique of G is a 2-clique in the same graph,

we conclude that |K′| ≥ 1
2 |K∗|.

A uniform random UDG G(n, p) on n nodes is a UDG obtained by generating, uniformly and

randomly, a set of n points within the square [0, r] × [0, r] in R2, where r is chosen such that an

edge between a pair of points exists with probability p. The value of r can be determined by, e.g.,

using the results established in [83], where a formula for the probability distribution for Euclidean
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distance between random points in a box is established.

In a uniform random UDG, the approximation ratio of our algorithm can be better.

Proposition 13. There exists an algorithm that finds, with asymptotic probability 1, a 2
3 -approximate

solution to the maximum 2-clique problem in a uniform random UDG G(n, p) in O(n4.5) time.

Proof. As shown in [48], given a set of random points in a punctured unit disk, with asymptotic

probability 1, there exist two points that will cover all the points in the unit disk (i.e., are Euclidean

distance no more than 1 from any point in the unit disk). In the case where there is a nonempty set

S overlapped by all disks (Case 2 in the proof of Proposition 10), we can take any point in S as the

center of a punctured unit disk that will cover all points of the 2-clique, since all members of the 2-

clique are within the circle of radius 1 of every point in S. In this case, with asymptotic probability

1, the set of disks in such a 2-clique is 2-dominated. In the other case, where A ∩B ∩C = ∅ for

any three disks (Case 1 in the proof of Proposition 10), we proved that the 2-clique is 3-dominated.

Combining these results we conclude that our solution to the maximum 2-clique problem is, with

asymptotic probability 1, a solution with 2
3 -approximation ratio to the 2-clique problem in uniform

random UDGs.

While the above proposition can guarantee that the largest 2-clique in a uniform random UDG

can be found with 2/3-approximation ratio with asymptotic probability 1, the algorithm performs

even better in practice. In a sample set of experiments, we generated 3,500 uniform random UDGs

of 50 nodes and 100 random UDGs of 100 nodes for each density in the range from .05 to 1 in

increments of .05. In all 70,000 experiments with 50-node instances and all 2,000 experiments with

100-node instances, the size of the maximum 2-clique (computed using Österg̊ard’s algorithm [73]

for the maximum clique in G2) and the 2-clique found by the proposed approximation algorithm

matched.
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6. THE TWO-GUARD PROBLEM IN CURVILINEAR POLYGONS

In this chapter, we generalize the two-guard problem from a simple polygon to a piecewise

locally-convex polygon. We first describe the two-guard problem and the concept of piecewise

locally convex polygons formally in Section 6.1. This problem asks whether such a polygon is

walkable. Then we analyze the properties of piecewise locally convex polygons to solve the two-

guard problem in Section 6.2. After that, we investigate necessary and sufficient conditions for a

piecewise locally convex polygon to be walkable in analogy to the original two-guard problem in

Section 6.3 and Section 6.4. Finally, we develop an algorithm to construct the solution when the

polygon is walkable in Section 6.5.

6.1 Problem Description

In the previous chapter, we discussed the UDG model which defines connectivity via distance

constraints. However, several other problems, like art gallery problems and guards problems, con-

sider visibility as the connectivity requirement. Next, we define the concept of visibility formally.

Definition 2. Given a set P ∈ Rn, we say that a point x ∈ P is visible from a point y ∈ P if and

only if the connecting line segment xy is entirely contained in P .

The two-guard problem asks for a walk of two points (guards) on the boundary of a simple

polygon P from the starting vertex s to the ending vertex t, one clockwise and one counterclockwise,

such that the guards are always mutually visible.

Definition 3.

1. A walk on P with s, t on the boundary of P is a pair (l, r) of continuous functions such that:

(a) l : [0, 1]→ L, r : [0, 1]→ R,

(b) l(0) = r(0) = s, l(1) = r(1) = g,

(c) l(t) is visible from r(t) for all t ∈ [0, 1].

Any line segment l(t)r(t) is called a walk line segment of the walk. The point r(t) is the walk

partner of l(t), and vice versa.

2. A walk on P from s to t is called straight if both l and r are non-decreasing with respect to

the orientation of L and R.
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3. P from s to t is called walkable if it admits a straight walk.

TWO-GUARD: Given a polygon P and s, t on the boundary of P , is P walkable from s to t?

The two-guard problem is first introduced by Icking and Klein [53], who developed an O(nlogn)

time algorithm to decide whether P is walkable. There has been a considerable amount of research

towards generalizing this problem on varied aspects. Heffernan [49] proposed a linear-time algorithm

to solve this problem. Crass et al. studied a modified-version called ∞−searcher in an open-edge

“corridor”. Several researchers [66, 76, 77, 89, 12, 99] generalized two-guard problem in the setting

of rooms, in which a room is a simple polygon with a designated point on its boundary called the

door. In a more general sense, Suzuki and Yamashita [88] formulated the framework of polygon

search problems and [90, 57, 98, 64, 97] contributed to this framework.

In all of these generalizations, polygon is supposed to be made of line segments, however,

we observe that in real-life applications the boundaries are often curves instead of line segments.

Therefore, we intend to generalize the concept of a simple polygon to a polygon with curves as its

boundaries and solve the two-guard problem in that case. Such a polygon is called a curvilinear

polygon. The idea of curvilinear polygons is introduced by Karavelas [58]. The curvilinear polygon

defined in [58] is both piecewise locally convex and made up of convex arcs in order to admit the

triangulation technique. However, in our application of generalization of two-guard problem, the

curvilinear polygon is only required to be piecewise locally convex.

Definition 4. Let v1, ..., vn, n ≥ 2 be a sequence of points and let a1, ..., an be a set of curvilinear

arcs such that ai has the points vi and vi+1 as endpoints and every ai is a smooth Jordan arc.

Assume that the arcs ai and aj (i 6= j) intersect only if i = j + 1 or j = i + 1, and at that time

they only intersect at vi or vi+1. Define a curvilinear polygon P to be the closed region of the plane

delimited by the arcs ai. The points vi are called vertices of P . P is called a piecewise locally

convex polygon, if for every point p on the boundary of P , except of P ′s vertices, there exists a disk

centered at p, say Dp, such that P ∩Dp is convex.

Figure 6.1 is an example of a piecewise locally convex polygon, while s is the vertex with

exception. In the two-guard problem, we are interested in analyzing how to ensure visibility by

avoidance of obstacles, so we would like to get rid of the impact of local structures that eliminate

visibility. Thus, it is natural to require piecewise locally convexity on curvilinear polygons because

this property can ensure visibility locally.
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Figure 6.1: Illustration of a piecewise locally convex polygon.

The two-guard problem in piecewise locally convex polygons is stated as follows.

CURVILINEAR TWO-GUARD: Given a piecewise locally convex polygon P and s, t on the bound-

ary of P , is P walkable from s to t?

6.2 Properties of Piecewise Locally Convex Polygons

In this section, we develop tools to solve the CURVILINEAR TWO GUARD problem.

Given a piecewise locally convex polygon P with v1, . . . , vn, n ≥ 2 as its vertices and a1, . . . , an

as its arcs such that ai has the points vi and vi+1 as endpoint, consider vi and ai (see Figure 6.2).

𝑣𝑣𝑖𝑖

𝑢𝑢 

𝑎𝑎𝑖𝑖 

𝑇𝑇𝑎𝑎𝑖𝑖(𝑣𝑣𝑖𝑖) 

f(x) = f(𝑣𝑣𝑖𝑖) 

 

S 

Figure 6.2: Illustration of vi and ai.
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Proposition 14. Suppose vi and ai are as above, then there exists u ∈ ai such that the set S made

up of the line segment viu and the segment of ai between vi and u (denoted by ai[vi, u]) is a convex

set.

Proof. Because P is not necessarily locally convex in only n points v1, . . . , vn, it is obvious that there

exists u ∈ ai such that the open line segment viu ⊂ intP and ai[vi, u] is entirely contained in one

half-plane defined by f(x) = f(vi). Suppose W.L.O.G., for any x ∈ ai[vi, u] we have f(x) ≤ f(vi).

Let S be the set made up of ai[vi, u] and viu. Then by definition, int(S) is weakly supported at vi

locally with any N(vi) and f . Because S is locally convex at all points in S other than vi, int(S) is

weakly supported at its boundary points other than vi locally by Proposition 2. So by Theorem 7,

int(S) is convex and by Proposition 1, S is convex.

This theorem shows ai[vi, u] is a convex arc and by knowledge in Section 2.4, the tangent line

of ai[vi, u] at vi exist; denote it by Tai(vi), as illustrated in Figure 6.3. By the definition of tangent

lines, Tai(vi) is decided by ai in the neighborhood of vi, so it is only related to the choice of u.

Thus we have the following definitions.

𝑣𝑣𝑖𝑖

𝑢𝑢 

𝑎𝑎𝑖𝑖 

𝑇𝑇𝑎𝑎𝑖𝑖(𝑣𝑣𝑖𝑖) 

Figure 6.3: Illustration of vi and ai.

Definition 5. Suppose s and t are given, two routes from s to t are called L and R.

1. Let vi−1, vi, vi+1 be three consecutive vertices on L (if vi = s, vi−1 is the first vertex on R

from s; if vi = t, vi+1 is the first vertex on R from t) and ai−1 and ai are the arcs whose
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endpoints are vi−1,vi and vi, vi+1, respectively. Let tangents at vi as an endpoint of ai−1 and

as an endpoint of ai be Tai−1
(vi) and Tai(vi), respectively.

2. Obviously, if Tai−1
(vi) is outside P in an area around vi, Tai(vi) is also outside P in this

area, and vice versa. At that time we call vi a straight vertex. Otherwise we call vi a reflex

vertex.

3. If vi is a reflex vertex, let d−(vi) be the direction of Tai−1
(vi) from outside P to inside P and

let d+(vi) be the direction of Tai(vi) from outside P to inside P . Define the first intersection

point (except vi) of the ray starting from vi in the direction of d−(vi) and P to be t−(vi).

Analogously, t+(vi) is the first intersection point (except vi) of the ray starting from vi in the

direction of d+(vi) and P (see Figure 6.4).

 

  

 

 

  
t 

s 
v2 

 v3 
v4 

Ta2
(v3) Ta3

(v3) 

 a3 
a2 

 

t+(𝑣3 ) 
t−(𝑣3 ) 

Figure 6.4: Definition of t+(vi),t
−(vi),Tai−1(vi), and Tai(vi).

By Proposition 3, Tai(vi) is a supporting line of S, so S is entirely in one half-plane formed by

Tai(vi). This shows ai in a neighborhood of vi is entirely in one half-plane formed by Tai(vi). Next

lemma shows for any point u in the piecewise locally convex polygon P that lies in the different

half-plane, we can find a point w on ai in the neighborhood of vi such that u and w are not visible.

For simplicity, in next lemma we suppose ai is entirely in one half plane formed by Tai(vi), but it

is easy to see the lemma is still correct in general case.

Lemma 23.
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𝑣𝑣𝑖𝑖 𝑎𝑎𝑖𝑖 

𝑇𝑇𝑎𝑎𝑖𝑖(𝑣𝑣𝑖𝑖) 

𝑡𝑡+(𝑣𝑣𝑖𝑖) u

w
w ′

u′ 

Figure 6.5: u is not visible from w.

• Let ai, vi and t+(vi) are as shown in Figure 6.5. Suppose u is on boundary of P and it is in

the different half-plane formed by Tai(vi) from ai, then there exists w ∈ ai such that u and

w are not visible. Furthermore, if u′ is also on the boundary of P and the order is u′, u and

t+(vi), then w and u′ are not visible.

• Similarly, if u is on the boundary of P and it is in the different half-plane formed by Tai−1(vi)

from ai−1, then there exists w ∈ ai−1 such that u and w are not visible. Furthermore, if u′ is

also on the boundary of P and the order is t−(vi), u and u′, then w and u′ are not visible.

Proof. Because Tai(vi) is a tangent line of ai, it is easy to see the line through u and vi should

interest ai in another point; suppose it is w′. Because u is in the different half-plane formed by

Tai(vi) from ai, every line segment from u to a point on ai in P should pass the line segment Tai(vi)

from vi to t+(vi). Thus, it is obvious that any point w ∈ ai(vi, w′) is not visible from u as the line

segment between u and w cannot pass the line segment Tai(vi) from vi to t+(vi). Furthermore,

when u′ is also on the boundary of P and the order is u′, u and t+(vi), if w is visible from u′,

also note w is visible from t+(vi), it is easy to show that the set made of line segments l[w, u′],

l[w, t+(vi)] and the boundary of P from u′ to t+(vi) is convex. So, w should be visible from u, and

this is a contradiction. Thus, the first statement is true.

The proof of the second statement is similar.
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6.3 Necessary Condition for P to be Walkable

In this section, we develop a necessary condition for a piecewise locally convex polygon P to be

walkable. This part is quite simple and summerized in the following lemma.

Lemma 24. Let the two chains from s to t in a piecewise locally convex polygon P be L and R.

If any of the following cases happen for any reflex vertices p,q in P , then P is not walkable. (Here

p < q means p is before q when walking from s to t along L or R.)

1. p > t−(p) ∈ L or p < t+(p) ∈ L or p < t+(p) ∈ R or p > t−(p) ∈ R.

2. p ∈ L q ∈ R q < t+(p) ∈ R p < T+(q) ∈ L or p ∈ L q ∈ R q > t−(p) ∈ R p > T−(q) ∈ L.

3. p, q ∈ L p < q t−(q) < t+(p) ∈ R or p, q ∈ R q < p t−(p) < t+(q) ∈ L.
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Figure 6.6: Illustration of three cases

Proof. If case 1 applies, W.L.O.G., we suppose the first alternative applies, see the left image in

Figure 6.6. Denote the boundary curve through p and t−(p) by a, then by Lemma 23, for any point

p ∈ R, there exists v ∈ a such that v is invisible from p. So P is not walkable.

If case 2 applies, W.L.O.G., we suppose the first alternative applies, see the middle image in

Figure 6.6. Because q < t+(p) ∈ R, choose v ∈ R with q < v < t+(p). By Lemma 23, there exists
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p′ > p such that p′ is not visible form v and any point in R<v where R<v means all points before v

in R. So, a walking partner p̄ of p′ satisfies p̄ > v. Symmetrically, choose u ∈ L with p′ < u < t+(q),

we can find q′ with q′ < v (so q′ < p̄) whose walking partner q̄ satisfies q̄ > u > p′. If P is walkable,

q̄ > p′ means a walk go through p′ before q′ while p̄ > q′ means a walk go through q′ before p′.

This is a contradiction. So P is not walkable.

If case 3 applies, still W.L.O.G. we suppose the first alternative applies, see the right image in

Figure 6.6. Choose u, v ∈ R with t−(q) < u < v < t+(p). As before, there exist p′ whose walk

partner p̄ > v and q′ whose walk partner q̄ < u. So q̄ < p̄. But p < q, this is a contradiction. So P

is not walkable.

So, if any of the three cases happens, P is not walkable.

6.4 Sufficient Conditions for P to be Walkable

In the previous section we have shown that the necessary condition for P to be walkable is that

none of the cases in Lemma 24 happen for any reflex vertex. In this section, we are focused on the

sufficient condition. P is assumed to be a piecewise locally convex polygon.

Definition 6. For every reflex vertex p in L, define

hiP (p) = min{q|q is a vertex in R,L 3 t+(q) > p}

hiS(p) = min{t−(p′) ∈ R|p′ is a vertex in L>p}

hi(p) = min{hiP (p), hiS(p), t}

loP (p) = max{q|q is a vertex in R,L 3 t−(q) < p}

loS(p) = max{t+(p′) ∈ R|p′ is a vertex in L<p}

lo(p) = max{loP (p), loS(p), s}.

Obviously, lo and hi are monotonically increasing functions in vertices of L.

Similarly, we can define lo and hi for vertices of R

Next two lemmata show the important relationship between lo and hi.

Lemma 25.

1. If q < lo(p) then hi(q) < p; if q > hi(p), then lo(q) > p.
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2. p ∈ [lo(q), hi(q)] if and only if q ∈ [lo(p), hi(p)].

Proof. 1. First prove the first statement. If lo(p) = loS(p), q < loS(p). By definition of loS(p),

∃p′ < p q < t+(p′) ∈ R, so by definition of hiP (q), hi(q) ≤ hiP (q) ≤ p′ < p. If lo(p) =

loP (p),q < loP (p). So loP (p) ∈ L>q and t−(loP (p)) < p, so hi(q) ≤ hiS(q) ≤ t−(loP (p)) < p.

2. The second statement can be proved using the same methods. If q 6∈ [lo(p), hi(p)], then

q > hi(p) or q < lo(p). By the first statement, p < lo(q) or p > hi(q), and we get contradiction

in both cases.

Lemma 26. If none of the conditions in Lemma 24 applies in any vertex p, then lo(p) ≤ hi(p) for

every vertex p in P .

Proof. We prove by contradiction. If lo(p) > hi(p) for some vertex p ∈ P , W.L.O.G., suppose

p ∈ L. Then lo(p) 6= s and hi(p) 6= t. There are four cases.

1. hi(P ) = hiP (p), lo(P ) = loS(P )

In this case, let q = hiP (p) ∈ R, then t+(q) > p. loS(p) = t+(p′) for some p′ ∈ Lp, so

t+(p′) > q and t+(q) > p > p′. The first alternative of condition 2 in Lemma 24 applies.

2. hi(P ) = hiS(p), lo(P ) = loS(P )

In this case, hiS(p) = t−(p′) for some p′ ∈ L>p. loS(p) = t+(p′′) for some p′′ ∈ L<p. So,

p′′ < p′ and t+(p′′) > t−(p′). The first alternative of condition 3 in Lemma 24 applies.

3. hi(P ) = hiP (p), lo(P ) = loP (P )

In this case, hiP (p) = q′ ∈ R with t+(q′) > p. loP (p) = q ∈ R with t−(q) < p. So, q′ < q and

t−(q) < t+(q′). The second alternative of condition 3 in Lemma 24 applies.

4. hi(P ) = hiS(p), lo(P ) = loP (P )

In this case, hiS(p) = t−(p′) for some p′ ∈ L>p. loP (p) = q ∈ R with t−(q′) < p. So,

t−(p′) < q and t−(q′) < p < p′. The second alternative of condition 2 in Lemma 24 applies.

So, in general, lo(p) ≤ hi(p) for every vertex p in P .

Next two lemmata indicate the reason why we analyze lo and hi. In fact, these concepts play

critical roles in checking whether P is walkable.
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Lemma 27. Each walk partner of a vertex p is contained in [lo(p), hi(p)].

Proof. Let p̄ be a walk partner of p. We want to show lo(p) ≤ p̄ ≤ hi(P ). If lo(p) = s or hi(p) = t,

it is trivial. So, the following four situations are remaining.

1. lo(p) = loP (p).
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Figure 6.7: Illustration of the four situations in the proof of Lemma 27.

See the leftmost picture of Figure 6.7. Suppose q = loP (p). Then by Lemma 23, there is a

sequence of points {qn} with R 3 qn ≤ q and qn → q, qn is not visible from L≥p. If p̄ < q,

∃qN s.t. p̄ < qN < q, then qN does not have a walk partner.

2. lo(p) = loS(p).

See the second from the left image of Figure 6.7. Suppose t+(q) = loS(p). If p̄ < loS(p), by

Lemma 23, there is a sequence of points {qn} with L 3 qn ≥ q and qn → q, qn is not visible

from R≤p̄. Any member of {qn} does not have a walk partner.

3. hi(p) = hiS(p).

See the second from the right picture of Figure 6.7. Suppose t−(q) = hiS(p). If p̄ > hiS(p),

by Lemma 23, there is a sequence of points {qn} with L 3 qn ≤ q and qn → q, qn is not visible

from R≥p̄. Any member of {qn} does not have a walk partner.

4. hi(p) = hiP (p).
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See right most figure of Fig 6.7. Suppose q = hiP (p). Then by Lemma 23, there is a sequence

of points {qn} with R 3 qn ≥ q and qn → q,qn is invisible from L≤p. If p̄ > q, ∃qN s.t.

p̄ > qN > q, then qN does not have a walk partner.

Lemma 28. Suppose condition 1 in Lemma 24 does not apply in any reflex vertex p ∈ P . If p ∈ P

satisfies lo(p) ≤ hi(p), then [lo(p), hi(p)] is visible from p.

Proof. W.L.O.G., suppose p ∈ L.

If lo(p) = loS(p), ∃L 3 p′ < p such that lo(p) = t+(p′), so p′ is visible from lo(p). If lo(p) =

loP (p), let p′ = t−(loP (p)), then p′ < p and p′ is visible from lo(p). If lo(p) = s, let p′ = s, p′ is

visible from lo(p). Thus, ∃L 3 p′ < p, p′ is visible from lo(p). Similarly, ∃L 3 p′′ > p, p′′ is visible

from hi(p).

If p is not visible from lo(p), the boundary of P must intersects plo(p). If L>p′′ ∪ R>hi(p)
intersects plo(p), it must intersect p′′hi(p), so p′′ is not visible from hi(p), which is a contradiction.

If L<p′ ∪R<lo(p) intersects plo(p), it must intersect p′lo(p), so p′ is not visible from lo(p), which is

also a contradiction.

If L[p′,p] intersects plo(p), then there is a vertex p′′′ ∈ L[p′,p] such that L 3 t+(q) > p or

R ∈ t+(q) > lo(p), both are contradictions. For the same reason, L[p,p′′] does not intersect plo(p).

If R[lo(p),hi(p)] intersects plo(p), there is a vertex q ∈ R[lo(p),hi(p)] such that R 3 t−(q) < lo(p) or

L ∈ t−(q) < p, both are contradictions. So, none of L ∪ R intersects plo(p), and thus p is visible

from lo(p). Similarly, p is visible from hi(p).

∀q ∈ [lo(p), hi(p)], by definition of lo and hi, we have t−(q) ≥ p and t+(q) ≤ p. Now, if the

boundary of P intersects pq, it must intersect one of plo(p),phi(p),t−(q)q and t+(q)q, but all of

them cause contradictions. Therefore, [lo(p), hi(p)] is visible from p.

Now we are ready to present the sufficient condition for P to be walkable.

Lemma 29. Let the two chains from s to t in P be L and R. If none of the cases in Lemma 24

applies, then P is walkable.

Proof. We show P is walkable by construction of a straight walk. This task is equivalent to finding

a walk instruction that decides the location of two guards at each time moment to keep them visible
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to each other. First, we partition P in small pieces and discuss the walk instruction for each small

piece.

It is proved in Lemma 26 that lo(p) ≤ hi(p) for every vertex p. Then it follows by Lemma 28

that [lo(p), hi(p)] is visible from p. Choose lo(p) to be a walk partner of p for every vertex p in L.

Because lo is monotonically increasing in L, no two walk line segments cross.

For every vertex q ∈ R, if it does not have a walk partner yet, then there exist consecutive

p, p′ ∈ L with p < p′ and lo(p) < q < lo(p′). It follows from Lemma 25 that p < hi(p) < p′.

Choose hi(q) to be walk partner of q so that no pairs of plo(p) and qhi(q) will cross. Since hi is

also monotonic, no two walk line segments will cross.
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Figure 6.8: Partition when all vertices in L have partners (left) and all vertices have partners
(right).

Now P is partitioned into a sequence of lenses (made of two curves), curvilinear triangles (made

of three curves), and quadrilaterals (made of three curves). Figure 6.8 is an example of such a

partition. Set A is an example of a lens, set B is an example of a curvilinear triangle, and sets C

and D are examples of quadrilaterals.

For a lens A, it is obvious that one (non-smooth) vertex must be s or t. In Lemma 14, we have

already shown A is convex, so W.L.O.G., assume s is a vertex in A and one curve of A is a part of

L. The walk instruction is to keep the guard on R at S while the guard on L moves from s to the

other end point.

Next we need to present a walk instruction in every curvilinear triangle and quadrilateral.
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For curvilinear triangles, if one of three vertices p is in L and the other two q1 and q2 (q1 < q2)

are in R, we need to show q1, q2 ∈ [lo(p), hi(p)]. There are three cases.

1. q1 = lo(p) and q2 = hi(p).

If hi(p) < q2, then by Lemma 25 lo(q2) > p, which is a contradiction. So lo(p) = q1 < q2 ≤

hi(p), and the walk instruction is to keep one guard in p and let the other guard walk from

q1 to q2.

2. q2 = lo(p) and hi(q1) = p.

It means q1 < lo(p), by Lemma 25 hi(q1) < p, so this case is impossible.

3. p = hi(q1) = hi(q2).

If lo(p) > q1,by Lemma 25 hi(q1) < p = hi(q1), which is a contradiction. If hi(p) < q2, by

Lemma 25 lo(q2) > p = hi(q2), which is also a contradiction. So, lo(p) = q1 < q2 ≤ hi(p) for

the same reason as in case 1, and we can generate the walk instruction.

If two of the three vertices, p1 and p2 (p1 < p2) are in L and the other one q is in R, then

lo(p1) = lo(p2) = q. If p1 < lo(q), by Lemma 25 hi(p1) < q = lo(p1), which is a contradiction. If

p2 > hi(q), by Lemma 25 lo(p2) > q = lo(p2), which is also a contradiction. So, lo(q) = p1 < p2 ≤

hi(q), then the triangle is convex and it is easy to generate the walk instruction.

Each quadrilateral Q is made up of two consecutive vertices p < p′ ∈ L and two points q <

q′ ∈ R. Thus q = lo(p) or p = hi(q); q′ = lo(p′) or p′ = hi(q′). If Q is not locally convex in p,

then p must be a reflex vertex in P . At that time, if t+(p) > q′, then by definition of loS(p′),

lo(p′) > q′. By Lemma 25, hi(q′) > p′. They contradict to both cases of q′ = lo(p′) or p′ = hi(q′).

Thus t+(p) ≤ q′. Similarly, when Q is not locally convex in either of q, p′, q′, we have t+(q) ≤ p′,

t−(p′) ≥ q, and t−(q′) ≥ p, respectively.

If Q is not locally convex in both p and q, then t+(q) > p and t+(p) > q, and case 2 in Lemma 24

applies. So, Q must be locally convex in at least one of p, q. Similarly, Q must be locally convex

in at least one of p, q. If Q is locally convex in p, q, p′, and q′, the quadrilateral is convex since it

is locally convex in all boundary points. If Q is not locally convex in only one of p, q, p′, q′, say

p, then q < t+(p) ≤ q′. The triangle made up of p, q and t+(p) and the quadrilateral made up of

p, t+(p), p′, q′ are both convex since it is locally convex in all boundary points. If Q is not locally

convex in one of p, q and one of p′, q′, by symmetry, there are two cases.
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Figure 6.9: Walk instruction of quadrilaterals.

1. p, p′ are the point of local non-convexity. See Figure 6.9 (left). Then q < t+(p), t−(p′) ≤ q′.

If t+(p) > t−(p′), case 3 in Lemma 24 apples, so t+(p) ≤ t−(p′). Then the triangle made up

of p, q and t+(p), the triangle made up of p′, q′ and t−(p′) and the quadrilateral made up of

t−(p′), t+(p), p′, q′ are all convex due to local convexity in all boundary points.

2. p, q′ are the point of local non-convexity. See Figure 6.9 (right). At that time q < t+(p) ≤ q′

and p < t+(q) ≤ p′.The triangle made up of p, q and t+(p), the triangle made up of p′, q′ and

t−(q′) and the quadrilateral made up of p, t+(p), p′, q′ are all convex since all boundary points

are locally convex.

In each case, we divide Q into at most 3 convex pieces, each of which obviously admits a walk

instruction. Putting them together, we get a walk instruction for Q.

Now we generate the walk instruction for every piece, and putting the piece instructions together

we get a walk instruction for P , so P is walkable.

6.5 Construction of Solutions

In this section, we summarize the results in previous sections and develop an algorithm to check

whether a piecewise locally convex polygon is walkable in quadratic time. We also develop an

algorithm to generate the walk instruction if the polygon is walkable in quadratic time.

Theorem 20. Let the two chains from s to t in a piecewise locally convex polygon P with n reflex

vertices be L and R. P is walkable if and only if none the cases in Lemma 24 applies. With tangent

information of reflex vertices of P at hand, there is an algorithm running in time O(n2) to check

whether P is walkable.
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Proof. Combining Lemma 24 and Lemma 29, we know P is walkable if and only if none the cases

in Lemma 24 applies.

To check the conditions in Lemma 24, for each reflex vertex p that is the intersection of boundary

curves a and b, it takes O(n) time to compare the intersection points of Ta(p), Tb(p) and every

boundary curve other than a,b to derive t−(p) and t+(p) by the similar method as in [45]. So it

takes O(n2) time to derive t−(p) and t+(p) for all reflex vertices.

With information of t−(p) and t+(p) for every reflex vertex p, we need O(n) time to check

condition 1 in Lemma 24 as we only need to compare p with t−(p) and t+(p) for the n reflex

vertices. It takes O(n2) time to check condition 2 in Lemma 24 as we need to compare each pair of

p, q with t−(p) ,t+(p), t−(q) and t+(q). For the same reason, it takes O(n2) time to check condition

3 in Lemma 24. So, the total time required to check whether P is walkable is O(n2).

Corollary 5. There is an algorithm running in time O(n2) to construct a walk instruction if P is

walkable.

Proof. See Algorithm 1.

Algorithm 1 Construction of a walk instruction.

1: Derive t−(p) and t+(p) for every reflex vertex p.
2: Calculate hi(p) and lo(p) for every reflex vertex p.
3: For every reflex vertex p ∈ L, connect p and lo(p); then if for some reflex vertex q ∈ R, q is not

connected with any reflex vertex p ∈ L, connect q and hi(q). As a result, P is partitioned into
small pieces.

4: Construct a walk instruction for every piece.

By Theorem 20, step 1 takes O(n2) time. With known t−(p) and t+(p) and by definition of lo

and hi, it takes O(n2) time to finish step 2. Obviously step 3 needs O(n) time and the resulting

small pieces are lenses, curvilinear triangles and quadrilaterals by Lemma 29. The total number of

small pieces is at most 2n and by Lemma 29, it takes O(1) time to construct a walk instruction

for every small piece, so the total time required for step 4 is O(n). Therefore, the time complexity

of this algorithm is O(n2). The correctness of this algorithm follows directly from Lemma 29 and

Theorem 20.
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7. CONCLUSION AND FUTURE WORK

This dissertation explored connectivity requirements and connectivity related problems arising in

network analysis. It investigated the structural properties of vertex connected subgraph polytope

in a systematic fashion for the first time. Knowledge of these properties can be utilized within

classical branch-and-cut techniques in mathematical programming for developing effective integer

programming algorithms to solve network analysis problems. This dissertation further searched for

subclasses of networks whose connected subgraph polytopes can be fully described, which simplifies

the study of connectivity requirements in such subclasses significantly. In addition, this dissertation

investigated connectivity related problems in different geometric network models. The unit disk

graph model and visibility problems were studied. Tools that take advantage of the varied geometric

structures were developed. We now go into more detail about our precise contributions and discuss

areas for possible future research.

7.1 Facets of Connected Subgraph Polytope

The first contribution of this dissertation is the extensive study of facets of a vertex connected

subgraph polytope P(G). We noted the inequality
∑
j∈S xj ≤ 1 induces a facet of P(G[S]) while

S is an independent set of G and expanded it to a facet of P(G) by applying a type of lifting

principle sequentially. We showed this lifting procedure could generate a large class of facets of

P(G), especially the widely-used vertex-separator inequalities xa + xb −
∑
j∈C xj ≤ 1, where C is

a minimal a, b-separator, could be derived by this procedure. This investigation answered the open

question when the vertex-separator inequalities are tight (i.e. define facets of P(G)). Meanwhile,

we saw that not all facets can be generated by the lifting procedure. In fact, we showed the right

side of a facet-defining inequality is unbounded while all positive coefficients are kept at 1.

We considered the computational complexity of the lifting procedure. We proved this procedure

is NP-hard in general, which means general graphs and general lifting orders. Our result shows

the procedure remains NP-hard when the graphs are restricted to be bipartite and 2-degenerate.

On the other side, we presented a linear algorithm to do lifting when graphs are acyclic graphs (i.e.

1-degenerate). Also we showed for every graph there exists a specified order such that the lifting

procedure takes polytime.

There are virous directions for future research. Firstly, although not all facets can be generated
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by lifting, it is open whether all facets with right-hand side 1 can be generated by lifting. Our

preliminary computational experiment showed about 80 percent of facets have right-hand side 1,

so the power of lifting procedure will be more convincing if the conjecture is true. Secondly, it is

interesting if we could also apply different types of lifting principle. The main idea of the lifting

principle we apply is to fix one variable to zero at first, and then relax it. It is natural to consider

another lifting principle: fix one variable to one at first, and then relax it. The new lifting principle

may bring potential benefits because the right-hand side is expected to change when applying the

new lifting principle, while it remains the same now, resulting in a larger class of facets. Finally,

an interesting and challenging task is to generalize the study of connected subgraph polytope to

k-connected subgraph polytope. The generalization is not trivial, for example, the corresponding

vertex separator inequality kxa + kxb −
∑
j∈C xj ≤ k is valid for k-connected subgraph polytope,

but is not facet-defining.

7.2 Description of Connected Subgraph Polytope

The second contribution of this dissertation is in fully describing P(G) for special graphs by

linear inequalities. Such a description plays an important role in integer programming because

with the description, we are able to omit the binary constraints that are usually necessary in graph-

related optimization problems, so that linear programming techniques can be utilized to simplify the

study of connectivity requirements significantly. In this dissertation, we discussed full description

for three classes of graphs: the first one is graphs whose independence number α(G) ≤ 2; the second

one is 3-plex and 3-defective cliques; the third one is acyclic graphs.

When α(G) ≤ 2, vertex separator inequalities together with bound inequalities characterize

P(G). If we define

Q(G) :=
{
x ∈ [0, 1]|V |

∣∣∣ x satisfies all vertex separator inequalities
}
,

then P(G) = Q(G). We were also interested in the structure of Q(G) for general G. The number

of linear inequalities to describe Q(G) may be exponential with respect to |V (G)| (although linear

optimization over Q(G) is polytime solvable by ellipsoid method), however, we were able to derive

an extended formulation of Q(G) whose number of linear inequalities is O(|V (G)|4) by utilizing

knowledge of network flow theory.

If G is a complete graph, α(G) = 1, so G with α(G) ≤ 2 is a type of clique relaxation. Thus
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it is natural to consider other clique relaxations. As a result, we explored the full description of

P(G) for a 3-plex and a 3-defective clique. In those two cases, only one kind of extra inequalities

is necessary to characterize P(G) besides vertex separator inequalities and bound inequalities.

When G is an acyclic graph, we developed one concise necessary and sufficient condition for an

inequality to define a facet of P(G). This condition could be converted into a linear time algorithm

to generate every facet of P(G). In addition, we derived closed-form characterization of P(G) for

a path graph and a star graph G.

In the future, the relationship between P(G) and Q(G) is of interest to us. Q(G) is a linear

relaxation of P(G), so an interesting question is how good is this relaxation. It is obvious P(G) ⊆

Q(G) ⊆ cP(G) when c = |V (g)|, and we hope for c = o(|V (G)|). We also conjecture c is a function

of α(G) because for α(G) = 2, we have proved c = 1 and for α(G) = |V (G)|, Q(G) 6⊆ cP(G) for

any c < |V (G)|. Meanwhile, it would also be interesting if we could generalize our characterization

of P(G) to G with α(G) = 3, 4, . . . . We think it is possible because MWCS is polytime solvable

when α(G) is bounded [94].

7.3 2-Cliques In Unit Disk Graphs

The third contribution of this dissertation is in establishing a highly effective approximation

algorithm for solving the maximum 2-clique problem on unit disk graphs, which are often used to

model wireless communication networks. Our algorithm is proved to have a 1
2 approximation ratio

in the worst case, however, it appears is more effective in practice. In fact, the algorithm found the

exact solution for all of the numerous random unit disk graphs we used in experiments.

There are many interesting problems concerning 2−clique and, more generally, k−clique problem

on unit disk graphs left for future research. One immediate question which still needs to be answered

is, what is the computational complexity of the maximum k−clique problem in unit disk graphs?

This question is still open even for k = 2. Interestingly, the notoriously difficult in general maxim

clique problem (i.e., k = 1) can be solved in polynomial time on unit disk graphs. We conjecture that

the maximum k−clique problem is NP-hard on unit disk graphs for k ≥ 2. However, establishing

this appears to be very challenging.

Another question to investigate is whether a better analysis of approximation ratio can be done

to improve the factor from 1
2 to 2

3 by showing that a 2-clique in unit disk graphs is, in fact, 3-

dominated. So far, we were able to establish 4-domination only, however, we failed to produce an
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example where more than 3 dominating nodes are required.

Developing algorithms for closely related maximum 2-club problem is another interesting topic

for future research.

7.4 The Two-Guard Problem in Curvilinear Polygons

The forth contribution of this dissertation is in generalizing the two-guard problem to piecewise

locally convex polygons. The two-guard problem is a visibility problem which asks whether a

polygon is walkable. This problem, like other visibility problems, are usually solved for simple

polygons. We generalized the concept of a simple polygon to piecewise locally convex polygon. By

carefully analyzing the properties of piecewise locally convex polygons, we were able to develop tools

necessary to solve the two-guard problem on such curvilinear polygons. We presented an algorithm

running in quadratic time to decide whether a piecewise locally convex polygon is walkable. In

addition, we derived another algorithm running in quadratic time that generates a valid walk if the

polygon is walkable.

There exists an algorithm running in time O(nlogn) to solve the original two-guard problem but

it cannot be generalized to solve our problem. Instead, our algorithm runs in quadratic time. It is

an interesting topic for future research if the running time of our algorithm can be improved from

quadratic time to O(nlogn) time. Such an improvement requires improvement on shortest path

queries in a curvilinear polygon, which is itself an interesting problem in computational geometry.

There are many modified versions and generalizations of the two-guard problem, and all of

them assume that the polygon is simple, defined by line segments. As our generalization considers

curvilinear polygons, it is natural to consider curvilinear polygons in the modified or generalized

two-guard problems in the future research. These include the two-guard problem in counter-walk

polygons, the two-guard problem in the setting of rooms, and polygon search problems.
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