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ABSTRACT 

 

Reconciling a geological static model to the available dynamic information, known as 

history matching, is an essential procedure for the decision-making through predictions of 

fluid displacement in a reservoir. However, there are several challenges in the history 

matching workflow because the geologic models are becoming complex and more detailed 

with a large number of grids. Recently, streamline-based inverse modeling has shown 

great promise for the high resolution geologic model because of many advantages in terms 

of computational efficiency and applicability. However, the current approach is primarily 

focused on handling the water-cut and tracer test data. This dissertation presents a novel 

streamline-based approach to incorporate a variety of dynamic information into the history 

matching process for the forecasting of reservoir behavior with increased confidence. 

We first develop the streamline-based transport tomography by incorporating novel 

tracer technology. The distributed arrival time made available by a novel tracer provides 

a significantly improved flow resolution for reservoir characterization. We demonstrate 

the new approach for streamline-based history matching of distributed water arrival time 

together with aggregated well production data that clearly shows the benefits of the 

transport tomography using novel tracers. 

Second, we propose a new methodology to incorporate bottom-hole pressure data into 

the geologic model using the streamline-based approach. This approach overcomes the 

limitation of the sequential process used in previous applications by facilitating the joint 

inversion, while reproducing reservoir energy during the flow rate matching. The joint 
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inversion with a multiscale approach is suggested to account for the disparity in resolution 

of different types of data. It leads to capturing of the large- and fine-scale heterogeneity 

and reproducing the pressure and water-cut responses efficiently. 

Finally, we extend the streamline-based inverse modeling to the three-phase system 

by adding gas-oil ratio data simultaneously. We validate that the streamline-based 

analytical sensitivity of the gas-oil ratio can provide reasonable approximations for the 

purpose of inverse modeling. The Pareto-front concept is introduced for a multiscale 

multiobjective approach in combination with the streamline approach to overcome the 

challenges in the streamline-based three-phase joint inversion. 

In addition to demonstration of the streamline-based history matching method with a 

variety of dynamic data, we emphasize the applicability of our approach to the field-scale 

reservoir model to satisfy the industry demands. 
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CHAPTER I  

INTRODUCTION AND STUDY OBJECTIVES 

 

The reservoir property models will always have considerable uncertainty because of the 

complexity of reservoirs and limited amount of information. Optimal use of all available 

data will contribute to reducing this uncertainty in the reservoir model. Thus, history 

matching with a variety of information is critical in building reliable reservoir models and 

prediction of future behavior with increased confidence. 

The history matching is the process to reconcile geological models to the dynamic 

data such as production history, well test and time-lapse seismic measurement data. In 

general, the objective of history matching is minimization of data misfit between observed 

historical data and calculated response from the forward simulator by calibrating the 

reservoir properties. There are several approaches to such minimization, in this 

dissertation, we focus on the streamline-based approach.  

 

1.1 Overview of History Matching and Research Objectives 

Over the decades of the history matching technologies development, various automatic 

history matching methods have been developed. They are mainly categorized in 

deterministic (Vega el al. 2004, Hoffman et al. 2006) and stochastic method (Hastings 

1970, Granville et al. 1994). The other classification is gradient and non-gradient 

(derivative-free) method. First, the stochastic method is typically a non-gradient method 

such as evolutionary algorithm (simulated annealing, genetic algorithm etc.), Monte-Carlo 
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methods, and Ensemble Kalman Filter. These methods generally generate multiple history 

matched static models to cover the solution space in a probabilistic manner that can be 

used for uncertainty quantification of future reservoir performance. However, they are 

limited to relatively small number of parameters because of the computational burden 

(Oliver et al. 2008). Secondly, deterministic methods utilize the model sensitivity, which 

is the partial derivative relates the reservoir properties to the well responses, to find a 

solution from a given single prior model. The perturbation method, adjoint method, and 

streamline-based method are belong to this category. The perturbation method is 

computationally prohibitive for large number of parameters because it requires (N+1) 

forward simulation where N is the number of parameters. Adjoint method (Li et al. 2003) 

uses the optimal control theory and mathematically complex and typically requires access 

to the source code of the forward simulator which may not be available (Rey et al. 2009). 

Recently, streamline-based history matching techniques have shown great promise 

for integrating field-scale water-cut and tracer data into high resolution geologic models. 

This approach has many advantages in terms of computational efficiency and applicability 

(Datta-Gupta and King 2007). The main advantage of the streamline-based method is that 

it is able to calculate parameter sensitivity with a single streamline simulation and a post 

process of the finite difference simulation results. The approach can be extended to 

account for the gravity and changing field conditions (He et al. 2002).  

The current status of the streamline-based history matching is mainly focused on the 

water-cut matching (Rey et al. 2009; Hohl et al. 2006; Cheng et al. 2004). However, 

dealing with uncertainties in reservoir models and making reliable static models 
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essentially requires integration of all available dynamic data in the field. Thus, our goal in 

this research is to develop an efficient approach to incorporate the surveillance data from 

novel tracer technology that provides distributed water arrival time along the wellbore 

(transport tomography), three-phase production and pressure data such as water-cut, 

bottom-hole pressure, and gas-oil ratio into geologic model utilizing streamline 

information. 

 

1.2 Dissertation Outline 

This research focuses on the development of the novel streamline-based algorithms to 

establish the history matching process with a variety of dynamic information and the 

applicability to the field-scale reservoir model. Main objectives and corresponding 

chapters of this dissertation are as follows. 

 Develop the streamline-based transport tomography using novel tracer technology 

(Chapter II) 

 Present the pressure sensitivity with respect to reservoir properties and develop a 

joint inversion for water-cut and pressure data with a multiscale approach (Chapter 

III) 

 Extend streamline-based approach to the three-phase flow system by integrating 

pressure and production data (water-cut and gas-oil ratio) simultaneously and field 

application with a multiscale multiobjective approach (Chapter IV) 
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1.3 Software Prototype 

The primary deliverable of this work will be a software prototype called “DESTINY” for 

streamline tracing, streamline-based history matching, and optimization algorithm. All of 

the proposed methods, transport tomography using novel tracer and streamline-based 

history matching for water-cut, bottom-hole pressure, and gas-oil ratio (with a multiscale 

approach), are implemented in this software. The applications in this dissertation have 

been carried out using DESTINY (Appendix B). 
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CHAPTER II  

STREAMLINE-BASED TRANSPORT TOMOGRAPHY USING NOVEL TRACER 

TECHNOLOGY 

 

2.1 Chapter Summary 

Traditional history matching involves calibration of reservoir models using well response 

such as production or tracer data aggregated over multiple producing intervals. With the 

advent of novel tracer technologies, we can now obtain distributed water or tracer arrival 

time information along the length of horizontal or vertical wellbores. This provides 

significantly improved flow resolution for detailed reservoir characterization through 

inversion of distributed water or tracer arrival times in a manner analogous to travel 

tomography in Geophysics. 

In this chapter, we present an efficient approach to incorporate novel tracer 

surveillance data and distributed water arrival time information during history matching 

of high resolution reservoir models. Our approach relies on a novel streamline-based 

workflow that analytically computes the sensitivity of the arrival time with respect to 

reservoir heterogeneity, specifically porosity and permeability variations. The sensitivities 

relate the changes in arrival time to small perturbations in reservoir properties and can be 

obtained efficiently using the streamline-based approach with a single flow simulation. 

                                                 

 Part of data reported in this chapter is reprinted with permission from “Streamline-based Transport 

Tomography Using Novel Tracer Technologies” by Kam, D., and Datta-Gupta, A. 2014, Paper SPE 

169105 Presented at the SPE Improved Oil Recovery Symposium, 12-16 April, Tulsa, Oklahoma, U.S.A. 

Copyright 2014 Society of petroleum Engineers 
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This makes the approach particularly well-suited for high resolution reservoir 

characterization. Finally, the sensitivities are used in conjunction with an iterative 

inversion algorithm to update the reservoir models using existing and proven techniques 

from seismic tomography.  

The power and utility of our proposed approach is demonstrated using both synthetic 

and field examples. These include the SPE benchmark Brugge field, Hill Air Force at 

Utah, and an offshore field in North America. Compared to traditional history matching 

techniques, the proposed tomographic approach is shown to result in improved resolution 

of heterogeneity through matching of water arrival time at individual completions in 

addition to the aggregated well production response. This results in improved performance 

predictions and better identification of bypassed oil for infill targeting and EOR 

applications. 

 

2.2 Introduction 

Integration of dynamic data such as well water-cut, production rate and bottom-hole 

pressure requires least-squares-based minimization to match the observed and calculated 

response (Vasco et al. 1999). There are several approaches to such minimization, and we 

reviewed them in chapter I. Oliver and Chen (2011) summarized the details of the current 

minimization methods for reservoir history matching. In this research, we use sensitivity-

based methods using streamlines that analytically compute the parameter sensitivities 

which are partial derivatives defined as the change in production response because of 

small changes in reservoir parameters. 



 

7 

 

The streamline approach has provided an extremely efficient means for computing 

parameter sensitivities. The parameter sensitivities are formulated in terms of one-

dimensional integrals of analytical functions along the streamlines. Specifically, the 

streamline-based generalized travel time inversion (GTTI) technique has proved to be an 

efficient means for computing parameter sensitivities under changing well conditions as 

commonly encountered in field applications (Cheng et al. 2005; Cheng et al. 2004; He et 

al. 2002). The GTTI history matching approach has been utilized in a large number of 

field applications (Rey et al. 2009; Hohl et al. 2006; Cheng et al. 2004). These applications 

have effectively matched the well water-cut response based on aggregated production data 

from the wellbore. However, it is very common to have multiple producing intervals along 

the wellbore and multiple completions are widely prevalent in horizontal and multi-

segmented wells. Thus, matching the aggregated well response is often inadequate to get 

the high resolution reservoir model constrained to reservoir fluid movements. 

Recently, several novel tracer technologies have been developed and implemented in 

oil and gas fields. In one such approach, the tracer is installed within the completion and 

each well segment can have a different chemical tracer (Figure 2.1) (Williams and Vilela 

2012; Napalowski et al. 2012). With such novel technologies analysis of the effluent tracer 

information can now indicate the location and the timing of water breakthrough at each 

completion along the wellbore. It is similar to vertical tracer profiling (VTP) discussed by 

Maroongroge et al. (1995). For inter-well tracer tests, they demonstrated the advantages 

of sampling tracers at different completions along the depth of the reservoir instead of the 
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conventional tracer tests that measure a single integrated tracer concentration history at a 

well. 

 

 

 

Figure 2.1 Operation of the novel tracer technology in a reservoir. (http://www.resman.no) 

 

 

 

In this chapter, we focus on the reservoir characterization by matching distributed 

water arrival time information along the wellbore. Specifically, we formulate the inverse 

problem related to history matching to combine aggregated well water-cut information 

that is commonly used together with distributed water arrival time data that is now 

provided by the novel tracer technology. We demonstrate that the additional information 

can significantly improve the flow resolution in streamline-based history matching. The 

outline of this chapter is as follows. To start with, we discuss how the novel tracer 

technology is combined to the conventional history matching based on the aggregated well 

response. We then illustrate the approach using a two-dimensional synthetic model. Next, 

we describe the mathematical background for computing the streamline-based analytic 
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sensitivities for aggregated water-cut response and distributed water arrival time. In 

addition, we analyze the effect of the quality and quantity of the tracer data on the 

inversion results. Finally, we demonstrate the history matching applications using SPE 

benchmark Brugge field model, Hill Air Force base, and an offshore field model that the 

novel tracer technology is implemented in. These applications demonstrate the power, 

utility, and effectiveness of our new approach. 

 

2.3 Background and Methodology 

An outline of the procedure for streamline-based inverse modeling approach is given in 

the flow chart in Figure 2.2. We have used a commercial finite-difference simulator 

(ECLIPSE, Schlumberger 2012b) for modeling fluid flow in the reservoir including 

comprehensive physical mechanisms such as compressibility, gravity and crossflow 

effects. The main difference of our proposed approach compared to the previous ones 

(Cheng et al. 2005; He et al. 2002) is in sensitivity computation because we need to 

calculate two different types of sensitivities. For aggregated well water-cut match, we 

implement the generalized travel time inversion (GTTI) technique. The generalized travel 

time is computed by systematically shifting the computed production response toward the 

observed data until the cross correlation between the two is maximized (He et al. 2002). 

The distributed water arrival time at individual completions provided from novel tracer 

technology is matched using travel time inversion (TTI) technique at the specific time that 

water breakthrough happens (Cheng et al. 2005). Note that unlike the well water-cut 

response, the distributed information is not a time series but a single arrival time data at 
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each completion. We will explain in more detail later. Using these two groups of 

sensitivities, we minimize the difference between the observed and calculated response 

for the well water-cut and water arrival times at each completion. Because our approach 

utilizes streamlines for sensitivity calculations, we can easily distinguish the streamlines 

from each well and each completion. Thus, we calculate well sensitivity by GTTI method 

using streamlines from each well and completion sensitivity by TTI method based on 

streamlines from each completion separately without much additional computation time. 

 

 

 

      

  Figure 2.2 Overview of the streamline-based history matching workflow. 
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2.3.1 Illustration of the Method 

Before going into the mathematical details, we illustrate our procedure using a synthetic 

example, which is a two-dimensional two-phase reservoir cross-section consisting of 

100x1x50 grid blocks, with one injector and one producer. Table 2.1 shows the simulation 

properties used in a commercial flow simulator. The reference permeability model is 

generated by sequential Gaussian simulation with well permeability values as conditioning 

data as shown in Figure 2.3b. Location of completions is shown with a black line along 

the wells. The initial permeability model (Figure 2.3a) is also generated by sequential 

Gaussian simulation but with different geostatistical parameters from the reference model. 

The observation data for history matching is obtained from the reference model using a 

commercial reservoir simulator. These include liquid production rate, well water-cut, and 

water arrival time at each completion. Figure 2.3c and Figure 2.3d are the time of flight 

(TOF) along streamlines that reflect the difference of permeability between the initial and 

reference model. Because the TOF is a measure of the travel time from injector to 

producer, streamlines that go through high permeability layers have short TOF at 

producer; meanwhile streamlines that trace low permeability layers have high value of 

TOF. 

We start with the initial model and calibrate the permeability distribution to match the 

aggregated well water-cut and distributed water arrival times at the completions. Two 

cases are compared to examine the effectiveness of our new approach.  
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 Case 1: It corresponds to the traditional approach whereby we calibrate the 

permeability model with aggregated well water-cut information only. The 

generalized travel time inversion method (well GTTI) is used for this purpose. 

 Case 2: It updates the permeability distribution based on both the aggregated well 

water-cut as in Case 1 and additionally, the distributed water arrival times provided 

by the novel tracer technology (well GTTI + completion TTI).  

 

 

Table 2.1: General parameters for numerical simulation 

  Parameters   Input Values   

  Grid number   (nx,ny,nz) = (100,1,50)   

 DX  10 [ft]  

 DY  30 [ft]  

 DZ  2 [ft]  

 Porosity  0.15  

  Rock compressibility   4.0 E-06 [1/psi]   

  Oil density   45 [lb/cf]   

  Water density   62.02 [lb/cf]   

  Oil viscosity   0.91 [cp]   

  Water viscosity   0.96 [cp]   

  Oil formation volume factor   1.12   

  Water formation volume factor  1.00   

 Total simulation time  600 [days]  

 Time step size  50 [days]  
      *PVT properties are at the reference pressure of 4000 psi 
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      (a) Initial permeability distribution         (b) Reference permeability distribution 
 

        
          (c) Initial model streamlines  (d) Reference model streamlines 
 
Figure 2.3 2D permeability distributions and streamlines (color shows TOF) for reference 

and initial models. 

 

 

 

The history matching results are shown in Figure 2.4. Even though well GTTI method 

improves the match of the calculated water-cut response to the observed data (Figure 

2.4a), well GTTI with completion TTI method gives better final permeability model that 

matches better the reference model because of the significantly improved flow resolution 

(Figure 2.4b). Figure 2.5 shows the cross plot of water arrival time between observed and 

calculated data for 1st and 2nd case after history matching. Compared to the initial model, 

Case 1 clearly results in improved match with the observed water arrival time. But Case 2 

shows better agreement between observed and calculated response at all completions. In 

Figure 2.6a and Figure 2.6b, updated permeability models are shown. Streamlines based 

on the two updated models are shown in Figure 2.6c and Figure 2.6d. Compared to the 

Injector Producer
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initial model streamlines, they are similar with the streamline and TOF color of reference 

model because we captured the heterogeneity during history matching process. Next, we 

examine if the changes made to the initial model are consistent with the reference model. 

Figure 2.7a is permeability change needed that is reference permeability minus the initial 

permeability which indicates reducing permeability at top and bottom part and increasing 

permeability in middle layers are required. Figure 2.7b and Figure 2.7c is permeability 

change made during history matching process (final model minus initial model) for the 

two cases. We can see that Case 2 makes permeability changes that are closer to Figure 

2.7a, driving it towards the reference model particularly in the central layers. In addition, 

TOF color in Figure 2.6d (Case 2 streamlines) shows better agreement to the reference 

model streamlines at the middle and bottom part of the reservoir model compared to Case 

1 final model. The effect of this permeability changes can be clearly seen in the water 

saturation distribution that depicts water front propagation during production. We 

compare the water saturation distribution in Figure 2.8. At 100 days, Case 2 final model 

successfully captures the low permeability at the top layers. Thus, there is no water 

breakthrough as in the reference model, but Case 1 has water breakthrough by this time. 

As we have seen in Figure 2.7c, the proposed approach increases the permeability at the 

middle part, causing the water saturation at 300 days for Case 2 to have water 

breakthrough. In contrast, in Case 1 the water front does not reach the producer in the 

central layers at 300 days. At 500 days, the final model with distributed water arrival time 

information (Case 2) shows very similar water saturation distribution when compared with 

the reference model. These results confirm that the integration of aggregated well water-
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cut response together with water arrival time at completions constrain the history matching 

solution effectively with our proposed approach. 

 

 

 

 
(a) Case 1: using aggregated well response 

 
 

 
(b) Case 2: using aggregated well response and distributed water arrival time 

 
Figure 2.4 2D simulation model water-cut history matching results. 

 
 

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

W
a

te
r 

c
u

t

Time [Day]

Reference Model

Initial Model

Final Model

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0 100 200 300 400 500 600

W
a

te
r 

c
u

t

Time [Day]

Reference Model

Initial Model

Final Model



 

16 

 

  
Figure 2.5 Observed and calculated water arrival time at all tracer locations before and 

after history matching. 

 
 
 
 

       
       (a) Case 1 final permeability model      (b) Case 2 final permeability model 

 

        
       (c) Case 1 final model streamlines          (d) Case 2 final model streamlines 

 
Figure 2.6 Updated permeability distribution and streamlines. 
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        (a) Change needed 

 

            
(b) Change made of Case 1    (c) Change made of Case 2 

 
Figure 2.7 Comparison of permeability distribution changes. 

 
 
 

  
 

Figure 2.8 Water saturation distribution at 100 days, 300 days and 500 days after 
production.  

  

REFERENCE

INITIAL

Case 2

100 DAYS 300 DAYS 500 DAYS

Case 1



 

18 

 

2.4 Mathematical Formulations 

In this section, we discuss the mathematical details related to streamline tracing, 

streamline-based sensitivity computations, TTI (Travel Time Inversion), GTTI 

(Generalized Travel Time Inversion), and the related inverse problem. 

 

2.4.1 Time of Flight and Streamline Tracing 

The basic variable in streamline simulation is the time of flight (TOF), which is the travel 

time of a neutral tracer along a streamline (Datta-Gupta and King, 2007). The TOF can be 

expressed as  

 
𝜏 = ∫ 𝑠(𝑥)𝑑𝑟

𝜓

 (2.1) 

The integral is along the streamline trajectory 𝜓, r is the distance along streamline and s 

is the slowness defined by the reciprocal of the interstitial velocity,  

 
𝑠(𝒙) =

1

|�⃗�(𝒙)|
 (2. 2) 

To compute time of flight, we essentially trace the streamline based on velocity field. A 

streamline is defined as the integrated curves that are locally tangential to the direction of 

the velocity. Tracing streamlines is based on the analytical description of a streamline path 

within a gridblock as described by Pollock (1988). Let us consider a gridblock in Figure 

2.9 to illustrate the streamline tracing algorithm. The numerical solution gives the fluid 

velocities (fluxes) at the block faces.  
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Figure 2.9 Streamline tracing in 2D single cell. 

 

 

Pollock’s algorithm uses a sub-gridblock velocity model with the underlying assumptions, 

in which a velocity in each direction varies linearly, and velocities in the other directions 

are independent. This leads to the following cell velocity model Eq. 2.3 and Eq. 2.4, 

𝑢𝑥 = 𝑢𝑥1 + 𝑐𝑥(𝑥 − 𝑥1) (2. 3) 

𝑐𝑥 =
𝑢𝑥2 − 𝑢𝑥1

∆𝑥
 (2. 4) 

where ∆𝑥 is grid size of x-direction and u is total phase velocity. Computations of the 

streamline trajectories and time of flight within the gridblock are available by a direct 

integration of the cell velocities, Eq. 2.5, 

inlet

outlet
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𝑑𝜏

𝜙
=

𝑑𝑥

𝑢𝑥
=

𝑑𝑦

𝑢𝑦
=

𝑑𝑧

𝑢𝑧
 (2. 5) 

where 𝜙 is porosity. We can integrate Eq. 2.5 explicitly, and independently, for each 

direction to obtain the time of flight to each of the face. The integral solution in the x-

direction from location 𝑥0 is calculated by Eq. 2.6. 

Δ𝜏𝑥𝑖

𝜙
= ∫

𝑑𝑥

𝑢𝑥0 + 𝑐𝑥(𝑥 − 𝑥0)

𝑥𝑖

𝑥0

=
1

𝑐𝑥
𝑙𝑛 (

𝑢𝑥𝑖

𝑢𝑥0
) (2. 6) 

The index 𝑖 = 1,2  indicates the face of the grid block in the x-direction. We can also 

calculate in the y- and z-direction using Eq. 2.6. Pollock’s algorithm specifies the correct 

exit face as the on requiring minimum positive transit time (Eq. 2.7). 

Δ𝜏 = 𝑀𝑖𝑛 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒(Δ𝜏𝑥1, Δ𝜏𝑥2, Δ𝜏𝑦1, Δ𝜏𝑦2, Δ𝜏𝑧1, Δ𝜏𝑧2) (2. 7) 

Now, we know the time of flight in grid cell, its exit coordinates can be obtained by 

rearranging Eq. 2.6. 

𝑥 = 𝑥0 + 𝑢𝑥0 (
𝑒𝑐𝑥Δ𝜏/𝜙 − 1

𝑐𝑥
) (2. 8) 

 

2.4.2 Time of Flight Sensitivity Computation 

Using Darcy’s law, the slowness can be written as 

𝑠(𝑥) =
𝜙(𝑥)

𝜆𝑟𝑡𝑘(𝑥)|∇𝑃|
 (2. 9) 
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where 𝜆𝑟𝑡 is total relative mobility and ∇𝑃 is pressure gradient. Because s is a composite 

quantity involving reservoir properties, its first-order variation will be given by Eq. 2.10. 

𝛿𝑠(𝑥) =
𝜕𝑠(𝑥)

𝜕𝑘(𝑥)
𝛿𝑘(𝑥) +

𝜕𝑠(𝑥)

𝜕𝜙(𝑥)
𝛿𝜙(𝑥) (2. 10) 

The partial derivatives of Eq. 2.10 are Eq. 2.11 and Eq. 2.12. 

𝜕𝑠(𝑥)

𝜕𝑘(𝑥)
≈

−𝜙(𝑥)

𝜆𝑟𝑡(𝑘(𝑥))
2

|∇𝑃|
= −

𝑠(𝑥)

𝑘(𝑥)
 (2. 11) 

𝜕𝑠(𝑥)

𝜕𝜙(𝑥)
≈

1

𝜆𝑟𝑡𝑘(𝑥)|∇𝑃|
=

𝑠(𝑥)

𝜙(𝑥)
 (2. 12) 

The approximation in Eq. 2.11 and Eq. 2.12 is that the local perturbations in permeability 

and porosity generate negligible pressure changes. The implication of this assumption is 

that streamlines do not shift because of these small perturbations. Now, it is possible to 

relate the change in travel time 𝛿𝜏 to the change in slowness by integration along each 

streamline trajectory: 

𝛿𝜏 = ∫ 𝛿𝑠(𝑥)𝑑𝑟

𝜓

= ∫ [
𝜕𝑠(𝑥)

𝜕𝑘(𝑥)
𝛿𝑘(𝑥) +

𝜕𝑠(𝑥)

𝜕𝜙(𝑥)
𝛿𝜙(𝑥)] 𝑑𝑟

𝜓

 (2. 13) 

The tracer travel-time sensitivity along a single streamline with respect to permeability 

and porosity for a particular gridblock at location x follows from Eq. 2.13 by simply 

carrying out the integral from the entry to the exit of the streamline within the gridblock, 

𝛿𝜏(𝜓)

𝛿𝑘(𝑥)
= ∫ [−

𝑠(𝑥)

𝑘(𝑥)
] 𝑑𝑟 = −

s(x)

𝑘(𝑥)
Δ𝑟 (2. 14) 
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𝛿𝜏(𝜓)

𝛿𝜙(𝒙)
= ∫ [

𝑠(𝒙)

𝜙(𝒙)
] 𝑑𝑟 =

s(x)

𝜙(𝒙)
Δ𝑟 (2. 15) 

where  𝛥𝑟 is the arc length of the streamline within the gridblock. 

 

2.4.3 Sensitivity of Saturation Front Arrival Time 

Consider two-phase incompressible flow of oil and water described by the Buckley-

Leverett equation using the streamline TOF as the spatial coordinate (Datta-Gupta and 

King, 2007). 

𝜕𝑆𝑤

𝜕𝑡
+

𝜕𝑓𝑤

𝜕𝜏
= 0 (2. 16) 

𝑆𝑤 is water saturation and 𝑓𝑤 is fractional flow of water. The velocity of a given saturation 

𝑆𝑤 along a streamline is given by the characteristic equation. 

(
𝜕𝜏

𝜕𝑡
)

𝑆𝑤

= (
𝑑𝑓𝑤

𝑑𝑆𝑤
)

𝑆𝑤

 (2. 17) 

This equation relates the travel time of water saturation, 𝑡(𝑆𝑤, 𝜏; 𝜓) to the time of flight 𝜏. 

We can now relate the sensitivity of the water saturation arrival time to that of the tracer 

time of flight.  

𝛿𝑡(𝑆𝑤, 𝜏; 𝜓)

𝛿𝑘(𝒙)
=

𝛿𝜏(𝜓)

𝛿𝑘(𝒙)
/

𝑑𝑓𝑤

𝑑𝑆𝑤
 (2. 18) 

𝛿𝑡(𝑆𝑤, 𝜏; 𝜓)

𝛿𝜙(𝒙)
=

𝛿𝜏(𝜓)

𝛿𝜙(𝒙)
/

𝑑𝑓𝑤

𝑑𝑆𝑤
 

(2. 19) 
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2.4.4 Travel Time Inversion (TTI) 

Cheng et al. (2005) have demonstrated that there are several advantages of the travel time 

inversion compared to the traditional amplitude inversion whereby the water-cut response 

is matched directly. It can be shown that the amplitude inversion is highly nonlinear when 

compared to the travel time inversion, which has quasilinear properties (Cheng et al., 

2005). As a result, the travel time inversion is more robust and is less likely to be stuck in 

local minimum. Furthermore, the travel time inversion entails matching only a single data 

point, e.g., the breakthrough time or the arrival time of the peak response. Because of this 

feature, it is applicable to matching distributed water arrival time in our approach. With 

the advent of novel tracer technologies, water breakthrough times are now available for 

all completions along the length of the wellbore. Thus, we can use the travel time inversion 

for matching the distributed water arrival times. During history matching, we calibrate the 

permeability distribution to minimize the difference in water arrival time between the 

observed data and the simulated response for all available completions as shown in Figure 

2.10. 

 

Figure 2.10 Illustration of distributed water arrival time misfit along the wellbore. 

Time (observation & calculation)

C
o

m
p

le
ti

o
n

 n
u

m
b

er

OBS

OBS

OBS

OBS

1

2

3

4
SIM

SIM

SIM

SIM

Δt4

Δt3

Δt2

Δt1

well



 

24 

 

2.4.5 Generalized Travel Time Inversion (GTTI) 

The GTTI is used to match the aggregated water-cut response at the well. Because of the 

favorable properties of travel time inversion, the GTTI poses the amplitude matching as a 

travel time inversion problem (He et al. 2002). Similar concepts have been effectively 

applied in seismic inversion, particularly for full waveform seismic inversion (Luo and 

Schuster 1991). In the GTTI approach, we seek an optimal time shift ∆𝑡 of the data at each 

well so as to minimize the production data misfit at the well. This is illustrated in Figure 

2.11 (left) in which the calculated water-cut response is systematically shifted in small 

time increments toward the observed response and the data misfit is computed for each 

time increment. The optimal shift will be given by the ∆𝑡 that minimizes the misfit 

function as follows: 

𝐸(∆𝑡) = ∑[𝑦𝑐𝑎𝑙(𝑡𝑖 + ∆𝑡)  −  𝑦𝑜𝑏𝑠(𝑡𝑖)]2

𝑁𝑑

𝑖=1

 (2.20) 

Or, alternatively, we can maximize the coefficient of determination given by: 

𝑅2(∆𝑡) = 1 − 
∑ [𝑦𝑐𝑎𝑙(𝑡𝑖 + ∆𝑡)  −  𝑦𝑜𝑏𝑠(𝑡𝑖)]2𝑁𝑑

𝑖=1

∑ [𝑦𝑜𝑏𝑠(𝑡𝑖)  −  𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅   ]
2𝑁𝑑

𝑖=1

 (2.21) 

Thus, the “generalized travel time” at well j is given by the optimal time shift,  ∆�̃�𝑗 that 

maximizes the correlation coefficient as shown in Figure 2.11 (right). 
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Figure 2.11 Illustration of the calculation of generalized travel time for water-cut (He et al. 
2002). 

 

 

 

2.4.6 Sensitivity of the Generalized Travel Time 

In GTTI, we shift the entire observed water-cut data of each well by the optimal shift time. 

He et al. (2002) derived a rather simple expression for the sensitivity of the generalized 

travel time with respect to reservoir parameters m. It is given as the average of the travel 

time sensitivities of all data points. For example, for well j with 𝑁𝑑 data points, the 

generalized travel-time sensitivity will be given as follows: 

𝜕∆�̃�𝑗

𝜕𝑚
= −

∑ (
𝜕𝑡𝑖,𝑗

𝜕𝑚
)

𝑁𝑑
𝑖=1

𝑁𝑑
 

(2.22) 

The negative sign in Eq. 2.22 reflects the sign convention adopted for defining the 

generalized travel-time shift, which is considered positive if the computed response is to 

the left of the observed data as shown in Figure 2.11 (left). 
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2.4.7 Inverse Problem 

Integration of dynamic data for reservoir characterization typically requires the solution 

of an inverse problem for minimizing the data misfit between the computed and observed 

response. The mathematical formulation behind such streamline-based inverse problems 

has been discussed in detail elsewhere (He et al. 2002; Vasco et al. 1999). We start with a 

prior static model that already incorporates geologic, well logs and seismic data, and then 

minimize a penalized misfit function. 

‖𝛿𝑑 − 𝑆𝛿𝑅‖ + 𝛽1‖𝛿𝑅‖ + 𝛽2‖𝐿𝛿𝑅‖ (2.23) 

In Eq. 2.23, 𝛿𝑑 is the vector of the data residuals, S is the sensitivity matrix with respect 

to grid parameters, and 𝛿𝑅 corresponds to the change in the reservoir properties which is 

grid block permeability in this work. The second term, called the norm constraint, 

penalizes deviations from the prior model. This helps preserve geologic realism. The third 

term, roughness penalty, simply recognizes the fact that production data are an integrated 

response and are thus best suited to resolve large-scale rather than small-scale property 

variations. Here L defines the model roughness, a second-spatial difference operator. The 

minimum of Eq. 2.23 can be obtained by an iterative least-squares solution to the 

augmented linear system as follows: 

(
𝑆

𝛽1𝐼
𝛽2𝐿

) 𝛿𝑅 = (
𝛿𝑑
0
0

)  (2.24) 

The weight 𝛽1 and 𝛽2 determine the relative strengths of the prior model and the roughness 

term. The selection of these weights can be somewhat subjective. In our application, the 
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first row in Eq. 2.24, representing the sensitivity and the data residual vector, is divided 

into two sections: aggregated water-cut part at each well and distributed water arrival time 

part at each completion. 

𝑆 = (
𝑆𝑤𝑒𝑙𝑙

𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛
) (2.25) 

 𝛿𝑑 = (
𝛿𝑑𝑤𝑒𝑙𝑙

𝛿𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛
) (2.26) 

In Eq. 2.25, 𝑆𝑤𝑒𝑙𝑙 is well based GTTI sensitivity that is average of travel time sensitivities 

for all data points, and 𝑆𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 is completion travel time sensitivity that is calculated 

at the specific time when water breakthrough happens at individual completion. For the 

well data, 𝛿𝑑𝑤𝑒𝑙𝑙 in Eq. 2.26 is the optimal time shift of overall water-cut responses for a 

well and 𝛿𝑑𝑐𝑜𝑚𝑝𝑙𝑒𝑡𝑖𝑜𝑛 is arrival time misfit for each completion shown in Figure 2.10. An 

iterative least squares solution approach via the LSQR algorithm (Paige and Saunders, 

1982) is used to solve Eq. 2.24 to obtain grid block permeability changes needed to 

minimize the overall data misfit. 
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2.5 Sensitivity Analysis for Quality and Quantity of Tracer Data 

The distributed water arrival time information helps the improvement of history matching 

quality. However, the tracer information can have uncertainty because of packer failure, 

incorrect installation of tracer, or inaccurate lab analysis. In addition, it commonly has 

limited amount of data along the wellbore in the field. Here, we analyze the effect of the 

quality and quantity of the tracer information on the history matching results using simple 

model we have used in section 2.3.1. This analysis shows the importance of quality and 

quantity of tracer data in our approach. 

 

2.5.1 Analysis of Tracer Quality  

We compare three cases. Case 1 is the same as the case in section 2.3.1 using all correct 

tracer information. Case 2 and Case 3 add 20 percent and 50 percent of error in tracer data 

to check the impact of tracer data quality. The case with 20 percent error shows similar 

well response and water breakthrough time to the case that has all correct tracer data (Case 

1) in Figure 2.12. However, when the tracer data has high uncertainty (50 percent error), 

the well response is impaired and the data misfit becomes bigger than the calibrated result 

without tracer data (Table 2.2). Although aggregated well responses are deviated by 

quality of tracer data, a cross plot of water arrival time in Figure 2.13 shows that the two 

cases with error have improvement of tracer data matching. This is because of the local 

permeability changes based on tracer information. 
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Table 2.2: Data misfit in quality analysis 

  Initial model      

  Well response misfit   0.436   
 Tracer data misfit  271.93 [days]  
     
 No tracer data (only well match)    

 Well response misfit  0.117  
 Tracer data misfit  206.15 [days]  
     
 Case 1 (no error)    

 Well response misfit  0.016  
 Tracer data misfit  70.83 [days]  
     
 Case 2 (20% error)    

 Well response misfit  0.068  
  Tracer data misfit   134.34 [days]   
       
  Case 3 (50% error)      

  Well response misfit   0.178   
 Tracer data misfit  157.22 [days]  

 

 

 

 

Figure 2.12 Well responses of tracer quality analysis. 

 

0

0.2

0.4

0.6

0.8

1

0 200 400 600

w
a

te
r-

c
u

t

Days

OBS INI WELL

NO ERROR 20% ERROR 50% ERROR



 

30 

 

 

Figure 2.13 Cross plot of water arrival time of tracer quality analysis. 
 

 

 

2.5.2 Analysis of Tracer Quantity  

We analyze the quantity of tracer data by changing the number of data points, which is the 

location of the observed water arrival time detected along the wellbore. Case 1 has tracers 

at all completions. Case 2 and Case 3 have a reduced number of data, each 50 percent and 

30 percent of the original tracer data, respectively. In Figure 2.14, reduced tracer data 

affects the well response matching. The data misfits of all cases are shown in Table 2.3. 

Although the well response misfits of Case 2 and Case 3 are bigger than Case 1 because 

of sparse data, limited amount of tracer data makes improvement of well response 

matching compared to the only using well data case (no tracer data). It does not worsen 

the result that is shown in the high uncertainty case before. The tracer data misfits (Figure 

2. 15) are also reduced by adding small number of the tracer data though the magnitude is 

insignificant. 
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Table 2.3: Data misfit in quantity analysis 

  Initial model      

  Well response misfit   0.436   
 Tracer data misfit  271.93 [days]  
     
 No tracer data (only well match)    

 Well response misfit  0.117  
 Tracer data misfit  206.15 [days]  
     
 Case 1 (100% tracer data)    

 Well response misfit  0.016  
 Tracer data misfit  70.83 [days]  
     
 Case 2 (50% tracer data)    

 Well response misfit  0.060  
  Tracer data misfit   173.09 [days]   
       
  Case 3 (30% tracer data)      

  Well response misfit   0.107   
 Tracer data misfit  191.23 [days]  

 

 

 

 

 

Figure 2.14 Well responses of tracer quantity analysis 
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Figure 2.15 Cross plot of water arrival time of tracer quantity analysis. 

 

 

 

This analysis demonstrates that the quality and quantity of tracer data affect the history 

matching result of our approach. First, despite the limited amount of data points, we can 

improve the well response compared to only matching the aggregated well data. Second, 

the poor quality of tracer data can impair the history matching results. Thus, quality control 

of tracer data is important. 
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2.6 Applications 

In this section, we demonstrate the applications of our proposed approach. Total three 

examples are presented. The first example is the SPE Brugge benchmark model which 

was designed as part of a comparative study for history matching and reservoir 

optimization via closed loop control technology. The second case is a field tracer test at 

the Hill Air Force, Utah. Detailed tracer sampling with multilevel samplers was carried 

out to characterize a test cell to identify the location and distribution of non-aqueous phase 

liquid contamination. The last case is an offshore field in North America. The novel tracer 

technology is implemented in this offshore field to indicate the location and time of water 

breakthrough along the horizontal well. 

 

2.6.1 Brugge Benchmark Model 

The Brugge field model was designed for a SPE benchmark project to test the combined 

use of history matching and waterflooding optimization workflow (Peters et al. 2010). The 

structure of Brugge field consists of an east/west elongated half-dome with a large 

boundary fault at its northern edge and one internal fault with a modest throw at an angle 

of approximately 20° to the boundary fault at the northern edge (Figure 2.16). The 

dimensions of the field are roughly 10km x 3km. The reservoir model contains more than 

40,000 active cells representing an undersaturated oil reservoir, so a two-phase simulation 

was sufficient. In total 30 wells are present: 20 producers located in the center of the dome 

and 10 water injectors around the periphery of the dome to provide pressure support in 

addition to the aquifer. A total of 104 realizations were generated by four classes of 
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geologic control parameters: (1) facies association, (2) facies modeling, (3) porosity, and 

(4) permeability. The detailed description of realizations of reservoir properties can be 

found in Peters et al. (2010). 

 

 

 

 

Figure 2.16 Structure of the Brugge model showing the depth and 30 wells. 

 

 

 

We selected two models under the same parameter class among 104 realizations as 

the reference and prior reservoir model (Figure 2.17). Based on the reference model, we 

generated observed production responses such as production rate, water-cut and water 

arrival time at all well completions. For history matching, we will use the well liquid 

production rate as constraint. The prior model is used as the starting model for history 

matching 10 years of production data from the reference model. As before, we calibrate 

reservoir grid block permeability to minimize the difference between the observed and 

simulated well water cut and completion water arrival times. 
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Figure 2.17 Permeability distribution of reference model (left) and prior model (right). 

 

 

        

For the Brugge model we compare two cases for updating permeability distribution 

via history matching. The first case involves using aggregated well water-cut data during 

history matching and the second case uses distributed water arrival time in addition to the 

aggregated well water-cut data. From Figure 2.18 through Figure 2.21, “Final Model 1” 

displays the results of the first case (well GTTI) and “Final Model 2” displays the history 

matched responses of the second case (well GTTI + completion TTI). Compared to initial 

(prior) model responses, both the final models, in particular final model 2, shows 

significant improvements in terms of matching the observed water-cut in Figure 2.18 and 

the observed water arrival times in Figure 2.19. The magnitude of improvements in well 

by well production response is shown in Figure 2.20. Average misfit of distributed water 

arrival time is given as follows: 

Layer 1

Layer 3

Layer 7
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𝐸𝑎𝑣𝑔. =
1

𝑁
∑ |(𝑜𝑏𝑠. 𝑤𝑎𝑡𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒)𝑖 − (𝑐𝑎𝑙. 𝑤𝑎𝑡𝑒𝑟 𝑎𝑟𝑟𝑖𝑣𝑎𝑙 𝑡𝑖𝑚𝑒)𝑖|

𝑁
𝑖=1   (2.27) 

where N is number of completions along the well. Clearly, the additional information of 

distributed water arrival time helped further constrain the model during history matching. 

Finally, we compare the water saturation difference at the last simulation time step in 

Figure 2.21. Three cases are shown: (a) changes needed: the difference between reference 

model water saturation and that of the initial model, (b) changes made of model 1: water 

saturation of final model 1 (using aggregated water-cut) minus that of the initial model, 

and (c) changes made of model 2: water saturation of final model 2 (aggregated water-cut 

and distributed water arrival time) minus that of the initial model. As expected, the final 

models do not capture the saturation differences exactly; nevertheless, the changes made 

follow the large-scale trend of water saturation changes needed, particularly for the final 

model 2 (Figure 2.21c). These results clearly demonstrate the value of the distributed 

water arrival time information during history matching and reservoir characterization. 

With improved characterization, we can better assess various schemes for production 

optimization, identification of bypassed oil for infill targeting and EOR applications.  
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       (a) P10 well     (b) P19 well 

Figure 2.18 Comparison of production data matching for the Brugge model between 
initial, final model 1, and final model 2.  

 

 

 

      

          (a) P10 well     (b) P19 well 

Figure 2.19 Observed and calculated water arrival time at all completions before and after 
history matching for the Brugge model. 
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Figure 2.20 Average misfit of distributed water arrival time between the initial model and 
the final updated models for the Brugge model. 

 

 

   

(a)   (b)   (c) 
Figure 2.21 Comparison of water saturation difference from initial model at the last time 

step: (a) change needed, (b) change made 1, (c) change made 2. 
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2.6.2 The Hill Air Force Base Experiment 

We apply our new approach to the field tracer test. The details of the tracer tests conducted 

at the Hill Air Force Base can be found in the work of Annable et al. (1998) and Datta-

Gupta et al. (2002). Multiple tracers were injected in an isolated test cell 14.2 x 11.4 x 20 

ft. in dimensions using four injection wells. Tracer responses were measured at three 

extraction wells at the opposite end and also at 12 multilevel samplers between the 

injection and extraction wells as shown in Figure 2.22. Although the test involved 

injection of conservative and partitioning tracers, we have history matched the 

conservative tracer viz. bromide for illustration of our method. We model the lower 

portion of the test cell using 14 x 11 x 10 grid blocks with dimensions of 1 ft. horizontally 

and 0.5 ft. vertically. The choice of the grid was largely dictated by the spacing of 

multilevel samplers to capture spatial variations between samplers both laterally and 

vertically.  

 

 

Figure 2.22 Hill Air Force Base test cell diagram (Datta-Gupta et al. 2002). 
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Multilevel samplers here are analogous to the novel tracer technology used in our 

approach and provide distributed tracer arrival times as well as concentration history. We 

match tracer concentration peak arrival times at each sampler using the TTI. We assume 

a mean of permeability of 20 Darcies based on the available data and generate the initial 

permeability distribution using sequential Gaussian simulation (Figure 2.23a). With the 

initial model we perform inverse modeling to capture the heterogeneity of the test cell 

using observed tracer responses at 39 multilevel sampling locations and the three 

producers. We assumed an effective porosity of 0.20 based on the hydraulic tests reported 

by Annable et al. (1998), and it was kept fixed during inversion. Final permeability field 

estimated from the tracer test is shown in Figure 2.23b. The TOF from each cell center 

reflecting tracer front movement in the final model is shown in Figure 2.23c and the 

streamline pattern is shown in Figure 2.24. The improvement of tracer response matching 

is shown in Figure 2.26 at six selected sampling locations. Although only the peak arrival 

times were matched during inverse modeling, we can see a substantial improvement in the 

overall tracer response match. In addition, cross plot of observed and calculated peak 

arrival time at all sampling points, again shows significant improvement compared to the 

initial model (Figure 2.25). 
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 (a) Initial permeability model (md)              (b) Final permeability model (md) 

     

 

 

(c) Time of flight from cell center to producer based on the final model (days) 
 
 

Figure 2.23 Grid properties and time of flight for the Hill Air Force model. 
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Figure 2.24 Three-dimensional streamline pattern of the final model. 

 

 

 

 

Figure 2.25 Observed and calculated tracer peak time at all sampling locations before and 
after inversion for the Hill Air Force model. 
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Location #13                Location #17 

 

Location #25           Location #28 

 

Location #38    Location #41 

 

Figure 2.26 History matching of tracer responses at six selected sampling locations for 
the Hill Air Force model. 
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2.6.3 North America Offshore Field 

This field was discovered in 2006 and has a relatively thin oil column (~52m) overlain by 

a significant gas cap and is underlain by a water leg. The fieldwide net-to-gross ratio is 

90~99%, average permeability is approximately 320mD, and average porosity is 

approximately 22% (Montes et al. 2013). Figure 2.27 shows the field permeability 

distribution and well location with trajectory for four horizontal producers and four 

injectors. Due to the comparatively higher quality of the reservoir and the thinner oil 

column in this field, the risk of early water breakthrough was a major well design 

consideration. In order to mitigate the risk, long horizontal wells were designed with 

Inflow Control Device (ICD) and novel tracer technology to detect water production. The 

inflow tracer systems are combinations of polymers and tracer materials in the form of 

rods and filaments (Figure 2.28). Water tracers installed along the horizontal producers 

are designed to release tracer material to water. Each producer has 4 or 5 tracer sections 

that cover 6 to 7 percent of producing intervals. 

 

     

Figure 2.27 Field permeability distribution (left) and well location with trajectory (right). 
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Collected fluid samples at the surface were analyzed for water tracer content to detect 

the water breakthrough at each tracer location. Figure 2.29 and Figure 2.30 show the 

location of tracers along the wellbore and the tracer responses for P1 and P3 during the 

monitored period. Black line in Figure 2.29b and Figure 2.30b is aggregated well water-

cut response and the other colored lines are tracer responses. By analyzing tracer data with 

water-cut, we found the water breakthrough location and time along the horizontal 

producers. All tracers in P1 were activated during monitoring period and 5 tracers 

information are integrated in inversion process. Most of tracer locations in P1 have water 

breakthrough when well starts to produce water. However, P3 shows only two tracer 

activation at the heel and toe around 640 days. To optimize the use of the tracer data, we 

assumed the inactivated tracers indicate no water breakthrough and the earliest possible 

breakthrough time is the end of monitoring period. Thus, during inversion process if 

calculated water breakthrough time from simulation responses at this specific location of 

tracer is earlier than the end of monitor period, we integrated tracer data to delay the water 

breakthrough until the end of monitoring time. If calculated water breakthrough is later 

than the end of monitoring period, we ignored the tracer information at the location. 
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(a) Tracer filament 
 

 

(b) Tracer rod 
 

Figure 2.28 Tracer rod and filaments being installed wellbore. (http://www.resman.no) 
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     (a) Well trajectory and tracer location. 
 

       

      (b) water tracer responses and water-cut 
 

    Figure 2.29 P1 well tracer location and responses. 
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      (a) Well trajectory and tracer location.  

 

          

         (b) water tracer responses and water-cut. 
 

         Figure 2.30 P3 well tracer location and responses. 
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The history matching is carried out to match four producers’ well water-cut response 

and four producers’ water breakthrough time derived from tracer analysis. Ten iterations 

are conducted; overall water-cut misfit convergence and cross plot of observed and 

calculated water arrival time after history matching are shown in Figure 2.31. Previous 

applications to synthetic and Brugge model have high density of tracer data because we 

assumed all or more than 50% of completion had tracer. As we can see in the well 

trajectory and tracer location (Figure 2.29a and Figure 2.30a), this field has limited tracer 

data. Although tracer data in this field model has covered 6~7 percent of producing 

interval, we see the travel time misfit and amplitude misfit of water-cut are further 

decreased when the distributed tracer information is included. In addition, only using the 

aggregated data result of cross plot does not seem to match the water breakthrough time, 

while using the distributed arrival time result is closer to the observed data from water 

tracer. RMSE of water arrival time between simulated and observed value for initial 

model, aggregated data only, and our new approach are 475.36 (day), 466.15 (day), and 

269.86 (day), respectively. Thus, the additional tracer data in our new approach improves 

the results of history matching for the distributed response misfit as well as aggregated 

response misfit.  
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(a) Aggregated well response misfit. 
 
 

 
(b) Cross plot of observed and calculated water arrival time at the location of tracer 

installed. 
 

Figure 2.31 History matching results for North America offshore field.  
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Figure 2.32 displays the difference of permeability changes after history matching for 

the layer 75 and the layer 90 that the producers are going through in reservoir. The red 

area in the Figure 2.32 shows positive change and the blue area shows negative difference 

between the updated model and the prior model. The calibrated model with the aggregated 

well response and the distributed response from tracer captures more variability, 

particularly around P2 and P3 (black circles) showing the difference of permeability 

changes compared to only using the aggregated information. The higher resolution of 

permeability changes made by the distributed water arrival information improves the well 

water-cut response that is shown in Figure 2.33. Despite the limited tracer information, all 

the well water-cut show closer response to the history data except P1, which was well 

calibrated in prior model, compared to only using aggregated well data. However, it does 

not make a significant improvement compared to the previous applications due to sparse 

tracer data. As we have shown in section 2.5, we can conclude that the quantity as well as 

the quality of the tracer data are important to get better matching reservoir model with our 

new approach. 
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     (a) Layer 75 

 

   

     (b) Layer 90 
 

Figure 2.32 Camparison of permeability change between using aggregated response with 
distributed water arrival response (left) and using aggregated response (right). 
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(a) P1       (b) P2 

 

   
(c) P3       (d) P4 

 
Figure 2.33 Comparison of production data matching for the offshore field case.  
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 2.7 Chapter Conclusions 

We have presented a streamline-based transport tomography for high resolution reservoir 

characterization using novel tracer technology that provides distributed water arrival times 

along the wellbore. We demonstrate the effectiveness of our proposed approach through 

synthetic and field applications. The major findings from this chapter are summarized 

below. 

1. We have proposed the new approach for streamline-based history matching of 

distributed water arrival time made available by novel tracer technology together 

with the aggregated well production data. In our prior works, we matched the 

aggregated water-cut response over the production interval in a well using the 

generalized travel time inversion (GTTI). In this paper, we incorporated the 

distributed water arrival time along the length of wellbore using travel time 

inversion (TTI) in addition to the aggregated well production data by GTTI. 

2. The distributed arrival time information provides significantly improved flow 

resolution for reservoir characterization. Comparison of history matching results 

using the traditional aggregated production data and our proposed approach that 

includes distributed arrival times clearly shows the benefits of the novel tracer 

technology. Specifically, the updated permeability fields are shown to reproduce 

the detailed flow behavior of the reference model much more closely when the 

distributed arrival time information is incorporated during history matching. The 

streamline-based approach presented here provides an efficient and practically 

feasible approach for such history matching. 
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3. We demonstrate that the quantity and the quality of tracer data affect the 

improvement of water-cut matching and distributed responses. Less quantity of the 

tracer (sparse data) reduces the effectiveness of our approach. Moreover, low 

quality (high uncertainty in water arrival time information) of tracer data can impair 

the well matching. Therefore, quality control and correct analysis of tracer data is 

important in the proposed approach. 

4. The field application results confirm that the integration of both aggregated 

production data over the well interval and distributed water arrival time using novel 

tracer technology constrains the history matching solution effectively using our 

proposed approach. With improved reservoir characterization, we can better predict 

the future performance of the reservoir, leading to a better identification of 

bypassed resources for infill drilling and EOR applications. 
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CHAPTER III  

INTEGRATING PRESSURE AND WATER-CUT DATA USING STREAMLINE-

BASED METHOD WITH MULTISCALE APPROACH 

 

3.1 Chapter Summary 

Previously, the streamline based history matching was used to integrate water-cut data, 

assuming that pressure data was integrated with prior model and the pressure match is 

maintained through the streamline-based water-cut matching (Cheng et al. 2007; Yin et 

al. 2010). However, often times calibrating the reservoir properties with streamline-based 

method for production data shifts the pressure data. Thus, iterative process is required to 

integrate both pressure and production data simultaneously. To overcome this problem in 

prior works, we introduce a novel semi-analytic approach to compute the sensitivity of the 

bottom-hole pressure data with respect to reservoir parameters. Now, we can integrate 

pressure sensitivity with water-cut sensitivity for a joint inversion of production data and 

bottom-hole pressure without losing the computational advantages of the streamline-based 

approach. We also suggest the joint inversion with a multiscale approach to capture larger- 

and smaller-scale heterogeneity efficiently. 

We verify the streamline-based pressure sensitivity by comparing with the adjoint 

method. Then, we apply this novel algorithm to the synthetic, Brugge benchmark model, 

and Norne field model with a multiscale approach. It successfully captures the large-scale 

permeability change and reproduces the flow behavior closer to the observed data in both 

pressure and water-cut.  
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3.2 Introduction 

Streamline-based inverse modeling starts with finite-difference simulator or streamline 

simulator by a given prior reservoir model. If we use finite-difference simulator, we trace 

streamline based on velocity or flux information, calculate TOF, and compute parameter 

sensitivity using streamline trajectory and TOF information. Finally, we update the 

parameters to satisfy the objective function to be minimized (Figure 3.1). In this process, 

the main point of integrating the dynamic data is how to calculate the parameter sensitivity.  

 

 

 

Figure 3.1 Workflow of streamline-based inverse modeling. 
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Previous history matching with streamline-based approach have shown great promise 

for integrating field-scale water-cut and tracer data into high resolution geologic models. 

There were several approaches for either water-cut matching or tracer data matching such 

as travel time inversion followed by amplitude inversion (Vasco et al. 1999) and 

generalized travel time inversion (Cheng et al. 2005). Cheng et al. (2005) evaluated these 

methods based on nonlinearity and practical implications. In chapter II, we also show the 

sensitivity of water front arrival time formulations and applications with novel tracer 

information. 

However, we cannot calculate the pressure sensitivity based on streamline, to be 

accurate convective streamline, which is commonly used in this dissertation. In prior 

works, the production flow data (water-cut) and pressure data (bottom-hole pressure) were 

considered separately. Vasco et al. (2000) estimated reservoir properties using transient 

pressure data by an asymptotic formulation of the inverse problem. Kulkarni et al. (2001) 

introduced ‘Diffusive Time of Flight’ along the streamline, which represents the 

propagation of a front of maximum drawdown or buildup corresponding to an impulse 

source or sink, to integrate transient pressure data as prior process. Yin et al. (2010) 

matched the modular dynamic tester (MDT) pressure by calibrating pore volume 

multiplier and permeability multiplier using genetic algorithm followed by streamline-

based water-cut matching. However, water-cut matching commonly shifts the pressure 

matched in pre-process. We need a joint inversion for production flow data and pressure 

data simultaneously. Here the new approach (Tanaka et al. 2015) is proposed to integrate 
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pressure data by introducing pressure drop sensitivity along the streamline with respect to 

reservoir property (permeability). 

We know pressure data is well-suited to capture large-scale variation and saturation 

data captures fine-scale variation effectively (Williams et al. 1998). To account for the 

disparity in resolution of different type of dynamic data, we suggest a joint inversion with 

a multiscale approach for effective minimization of pressure and water-cut data misfit. 

The application of multiscale approach is getting increased attention in both forward 

simulation and integration of dynamic data for history matching. Yoon et al. (2001) 

proposed a multiscale inversion that starts with a coarse reservoir model and gradually 

refines the reservoir grid. Kim et al. (2010) suggested streamline-based dual scale 

approach with optimal coarsening. Although they ran simulations in fine grid and history 

matching was done at coarse scale, it showed savings in computational cost and facilitates 

the convergence to the global solution. Aanonsen (2008) and Stenerud and Lie (2006) also 

identified that a multiscale approach reduces the computational cost and improves the 

history matching quality compared to direct fine scale history matching. 

In this chapter, we incorporate a multiscale approach for joint inversion with grid-

connectivity-based transformation (GCT), a novel re-parameterization method (Bhark et 

al. 2011), to identify a large-scale heterogeneity of reservoir model. It is followed by the 

streamline-based history matching for pressure and water-cut data by calibrating fine scale 

(cell by cell) reservoir properties.  
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3.3 Bottom-hole Pressure Sensitivity 

To incorporate the observed bottom-hole pressure data based on streamline, we must know 

the parameter sensitivity that relates the pressure change with respect to the reservoir 

properties (Figure 3.2). We introduce the bottom-hole pressure sensitivity and verify the 

analytical sensitivity calculated by the proposed method in one-dimensional and two-

dimensional models by comparing with the adjoint method implemented in a commercial 

simulator (Schlumberger 2012b). 

 

 

 

 

Figure 3.2 Bottom-hole pressure sensitivity along the streamline. 
 

 

 

 

3.3.1 Mathematical Formulation 

We construct a pressure equation along streamlines while considering the given boundary 

condition, and then we take a derivative with respect to the grid properties. Here, we show 
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 Pressure Drop Sensitivity 

First, the pressure drop is evaluated along streamlines between wells by summation from 

start to end point of the node (Eq. 3.1). The sensitivity of the pressure drop with respect to 

the permeability of i-th grid block is calculated approximately (Eq. 3.2).  

∆𝑝𝑤𝑒𝑙𝑙 = ∑ ∆𝑝𝑖

𝑖=𝑛𝑜𝑑𝑒

 (3.1) 

𝜕∆𝑝𝑤𝑒𝑙𝑙

𝜕𝑘𝑖
=

𝜕

𝜕𝑘𝑖

(∆𝑝1 + ∆𝑝2 + ⋯ + ∆𝑝𝑖 + ⋯ + ∆𝑝𝑛) ≈
𝜕∆𝑝𝑖

𝜕𝑘𝑖
 (3.2) 

Using Darcy’s equation, the pressure drop at the i-th grid is as follows, 

Δ𝑝𝑖 = −
𝑞

𝜆𝑡,𝑖𝑘𝑖

𝐿

𝐴
+ �̅�𝑖𝑔Δ𝐷 (3.3) 

By combining Eq. 3.2 and Eq. 3.3 with an assumption that Darcy’s equation can be applied 

along the streamline, we have the pressure drop sensitivity along the streamline. 

∂Δ𝑝𝑖
𝑠𝑙

𝜕𝑘𝑖
=

𝑞𝑠𝑙,𝑖
𝑒𝑓𝑓

𝜆𝑡,𝑖

𝐿𝑖

𝐴𝑖

1

𝑘𝑖
2 =

∆𝑝𝑖
𝑠𝑙 − �̅�𝑖𝑔Δ𝐷

𝜌𝑒𝑓𝑓 𝑘𝑖
 (3.4) 

where 𝑞𝑠𝑙
𝑒𝑓𝑓

 is an effective rate along the streamline. The cross section (A) and distance (L) 

are given later. For compressible fluid, it is no longer constant along streamline. It is 

calculated by Eq. 3.5. 

𝑞𝑠𝑙,𝑖
𝑒𝑓𝑓

=
𝑞𝑠𝑙,0

𝜌𝑒𝑓𝑓
 (3.5) 
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𝑞𝑠𝑙,0 is flow rate along the streamline at starting point. 𝜌𝑒𝑓𝑓 is ‘effective density’ that 

captures the changes in the fluid volume with pressure and can be conveniently and 

efficiently traced along streamlines (Cheng et al. 2006). 

To get the correct sensitivity, ∆𝑝𝑖
𝑠𝑙 is calculated using half-cell pressure drop between 

neighboring grid blocks. Because pressure drop is defined as differences between 

neighboring cells, perturbation of permeability at grid i will change its pressure of 

neighbor grids that is described in Figure 3.3. For half-cell pressure drop, ∆𝑝𝑖
𝑠𝑙 in Eq. 3.4 

is weighted by half-cell transmissibility (Eq. 3.6 and Eq. 3.7). Finally, pressure drop at i-

th cell is summation of weighted pressure drop in sub-grids (Eq. 3.8). 

 

 

 

 

Figure 3.3 Half-cell pressure drop at i-th cell. 
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Δ𝑝𝑖−
𝑠𝑙 = Δ𝑝𝑖−1/2

𝐿𝑖−

𝑘𝑖𝐴𝑖−

(
𝐿𝑖−

𝑘𝑖𝐴𝑖−
+

𝐿𝑖−1+

𝑘𝑖−1𝐴𝑖−1+
)

 (3.6) 

Δ𝑝𝑖+
𝑠𝑙 = Δ𝑝𝑖+1/2

𝐿𝑖+

𝑘𝑖𝐴𝑖+

(
𝐿𝑖+

𝑘𝑖𝐴𝑖+
+

𝐿𝑖+1−

𝑘𝑖+1𝐴𝑖+1−
)

 (3.7) 

Δ𝑝𝑖
𝑠𝑙 = Δ𝑝𝑖−

𝑠𝑙 + Δ𝑝𝑖+
𝑠𝑙  (3.8) 

where A (area) and L (length) can be calculated using streamline information (Eq. 3.9 and 

Eq. 3.10). It is described in Figure 3.4. 

 

 

 

Figure 3.4 Area and length along the streamline: red line is a streamline and black dotted 
lines show a streamtube. 
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𝐴𝑖 =
𝑞𝑠𝑙,𝑖Δ𝜏𝑖

𝜙𝑖𝐿𝑖
 (3.9) 

𝐿𝑖 = √Δ𝑥𝑖
2 + Δ𝑦𝑖

2 + Δ𝑧𝑖
2 (3.10) 

Eq. 3.4 is the sensitivity along the streamline. To solve the inverse problem by calibrating 

cell properties such as permeability or porosity, we need the sensitivity on the grid. When 

we calculate the grid sensitivity, we consider all streamline that are reached at well p. 

Then, the sensitivity at each grid is a summation of all the sensitivities weighted by the 

flux ratio based on the streamlines passing through the i-th grid (Eq. 3.11). 

𝜕∆𝑝𝑖,𝑝

𝜕𝑘𝑖
= ∑ (

𝑞𝑎𝑙𝑜𝑛𝑔 𝑡ℎ𝑒 𝑠𝑖𝑛𝑔𝑙𝑒 𝑠𝑙,𝑘

∑ 𝑞𝑠𝑙,𝑗𝑗=𝑎𝑙𝑙 𝑠𝑙 𝑡𝑜 𝑡ℎ𝑒 𝑤𝑒𝑙𝑙 𝑝

∂Δ𝑝𝑖
𝑠𝑙

𝜕𝑘𝑖
)

𝑎𝑙𝑙 𝑠𝑙 𝑝𝑎𝑠𝑠 𝑡ℎ𝑟𝑜𝑢𝑔ℎ 
𝑖−𝑡ℎ 𝑔𝑟𝑖𝑑,𝑝

𝑘=1

 
(3.11) 

 Bottom-hole Pressure Sensitivity 

The Eq. 3.2 is applicable if one of well constraints is constant pressure. In this case, the 

pressure drop sensitivity is equivalent with bottom-hole pressure sensitivity. For example, 

if injector is constrained by pressure, we can get the bottom-hole pressure sensitivity at 

producer using Eq. 3.12. 

𝜕∆𝑝𝑤𝑒𝑙𝑙

𝜕𝑘𝑖
=

𝜕(𝑝𝑏ℎ𝑝
𝑖𝑛𝑗

)
𝑟𝑎𝑡𝑒

− 𝜕(𝑝𝑏ℎ𝑝
𝑝𝑟𝑜𝑑)

𝑝𝑟𝑒𝑠𝑠

𝜕𝑘𝑖
= −

∂𝑝𝑏ℎ𝑝
𝑝𝑟𝑜𝑑

𝜕𝑘𝑖
≈

𝜕∆𝑝𝑖

𝜕𝑘𝑖
 (3.12) 

However, when both wells connected by streamline are constrained by rate, the Eq. 3.2 is 

not applicable. For the rate-rate constraint case, we use the Eq. 3.13 which computes the 
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bottom-hole pressure sensitivity by weighting the rate-pressure constraint sensitivity 

based on the time of flight ratio. 

𝜕(𝑝𝑏ℎ𝑝
𝑝𝑟𝑜𝑑)

𝜕𝑘𝑖
|

𝑟𝑎𝑡𝑒
⟷𝑟𝑎𝑡𝑒

=
𝜕(𝑝𝑏ℎ𝑝

𝑝𝑟𝑜𝑑)

𝜕𝑘𝑖
|

𝑝𝑟𝑒𝑠𝑠
⟷𝑟𝑎𝑡𝑒

𝜏𝑖

𝜏𝑡𝑜𝑡𝑎𝑙
 (3.13) 

where 𝜏𝑡𝑜𝑡𝑎𝑙 is total time of flight between injector or aquifer (boundary) and producer. 𝜏𝑖 

is the time of flight from injector to the i-th grid. At this point, we do not have a 

mathematical derivation for this. However, intuitively we think that as we approach the 

producer the sensitivity should increase. This is the rationale behind the weighting 

factor 𝜏𝑖/𝜏𝑡𝑜𝑡𝑎𝑙. We will compare the sensitivities with adjoint method later in the chapter. 

Now, we can construct sensitivity matrix for bottom-hole pressure and solve it like 

Eq. 2.23. However, we have two misfit terms that have different units and magnitude. We 

normalize it by inverse of standard deviation of measurement error as 𝛼1 and  𝛼2 (Eq. 

3.14). 

𝛼1‖𝛿𝑑𝑤𝑐𝑡 − 𝑆𝑤𝑐𝑡𝛿𝑅‖ + 𝛼2‖𝛿𝑑𝑏ℎ𝑝 − 𝑆𝑏ℎ𝑝𝛿𝑅‖ + 𝛽1‖𝛿𝑅‖ + 𝛽2‖𝐿𝛿𝑅‖ (3.14) 

The data misfit of pressure term in the matrix is the difference between simulated pressure 

and observation data, which are averaged over all the data points. This is a similar way of 

GTTI that makes one equation for each well data to reduce the size of the minimization 

matrix. It makes it possible to run inverse problems of high resolution reservoir model.  
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3.3.2 One-dimensional Sensitivity Verification 

We verify the proposed analytic pressure sensitivity using a simple 1D heterogeneous 

model with 100 grids in Figure 3.5. The permeability ranges from 1 to 100 md, and the 

porosity is constant at 0.4. The initial condition is 1,550 psi. 

 

 

 

Figure 3.5 Permeability distribution used for 1D pressure sensitivity verification. 

 

 

 

Analytic sensitivity is compared to the adjoint based method implemented in a commercial 

simulator (E300, Schlumberger 2012b). We test two models; the first case is rate-pressure 

constraint, and the second one is rate-rate constraint. 

 Case 1 – injector: 2,898 psi, producer: 0.4 stb/day 

 Case 2 – injector: 0.5 stb/day, producer: 0.49 stb/day 

Case 1 uses Eq. 3.12 and Case 2 uses Eq. 3.13 to calculate the pressure sensitivity. As 

shown in Figure 3.6 and Figure 3.7, the sensitivity of producer bottom-hole pressure shows 

positive values. Because increasing the permeability between well pairs decreases the 

pressure drop, which results in pressure increase at the producer. They show good 

agreement with adjoint sensitivity. Therefore, we can apply the proposed pressure 
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sensitivity to the inversion process to capture the heterogeneity in a reservoir based on 

bottom-hole pressure history data. 

 

 

 

 

Figure 3.6 Bottom-hole pressure sensitivity between injector and producer (Case 1) 

 

 

 

Figure 3.7 Bottom-hole pressure sensitivity between injector and producer (Case 2) 
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3.3.3 Two-dimensional Sensitivity Verification 

The model we use for 2D verification is a 50 by 50, 5-spot heterogeneous model (Figure 

3.8). Producers are constrained by a rate of 500 stb/day, and an injector is constrained by 

5,900 psi. The initial condition is 5,863 psi with zero water saturation. The simulation time 

is 0.5 days. 

 

  

Figure 3.8 Premeability distribution for 2D sensitivity verification. 

 

 

 

 

 
(a) Adjoint method   (b) Streamline-based approach 

 
Figure 3.9 Bottom-hole pressure sensitivity of P2 well compared with the adjoint method. 
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 (a) Adjoint method   (b) Streamline based approach 
 

Figure 3.10 Bottom-hole pressure sensitivity of P4 well compared with the adjoint 
method. 

 

 

Figure 3.9 and Figure 3.10 are the sensitivity of P2 and P4 producer using adjoint method 

(left) and streamline based method (right). They show very good agreement in the main 

trend between the injector and producer. The difference is observed around the other 

producers’ area, which has negative value based on adjoint sensitivity. However, the 

streamline-based method has no sensitivity value there because our approach calculates 

along the streamline between specific well pairs to be evaluated. Thus, the negative values 

nearby other producers are not included in the proposed method. This 2D model will be 

used for application of the inversion problem in section 3.4. 
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3.4 Application of History Matching 

With bottom-hole pressure sensitivity we have shown in section 3.3, we start history 

matching for water-cut and bottom-hole pressure simultaneously. Here, we use same 

model in section 3.3.3 for 2D sensitivity verification and will show the field-scale 

application with a multiscale approach in section 3.5. 

Initial permeability is shown in Figure 3.8 and reference permeability for making 

history data is shown in Figure 3.11. It has south-west to north-east trend of low and high 

permeability distribution. Two permeability distributions are generated by sequential 

Gaussian simulation but with different geostatistical parameters. The detail model 

description is in Table 3.1 and Figure 3.12. The objective function of this problem is to 

minimize the water-cut and bottom-hole pressure data misfit of four producers by 

calibrating an initial permeability model. 

 

 

 

 

Figure 3.11 Reference permeability model for joint inversion with 2D synthetic model. 
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Table 3.1: General parameters for 2D five spot model for joint inversion 

  Parameters   Input Values   

  Grid number   (nx,ny,nz) = (50,50,1)   

 DX  32.8 [ft]  

 DY  32.8 [ft]  

 DZ  32.8 [ft]  

 Porosity  0.25  

  Rock compressibility   8.1 E-06 [1/psi]   

  Oil density   52.1 [lb/cf]   

  Water density   63.29 [lb/cf]   

  Oil viscosity   0.29 [cp]   

  Water viscosity   0.31 [cp]   

  Oil formation volume factor   1.305 [rb/stb]   

  Water formation volume factor  1.04 [rb/stb]   

 Total simulation time  2080 [days]  

 Time step size  260 [days]  
*PVT values for oil are at the reference pressure of 2897.1 psi 
*Values for water and rock are at the reference pressure of 5863.8 psi 
*Density is surface condition (14.7 psi) 

 
 
 
 

   

 Figure 3.12 Oil-water relative permeability data for 2D five spot synthtic model. 
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To show the effectiveness of joint inversion, we compare the two cases; 

 1st case: only water cut matching. 

 2nd case: joint inversion for water-cut and bottom-hole pressure simultaneously. 

Figure 3.13 shows the convergence of data misfit. Two cases after 10 iterations have the 

same convergence for water-cut data misfit (around 50% reduced). However, bottom-hole 

pressure data misfit clearly explains the impact of pressure data integration. Only water-

cut matching (blue line) reduces 30% of pressure misfit, but proposed joint inversion (red 

line) decreases 80% of initial data misfit. 

The well responses of water-cut and bottom-hole pressure are shown in Figure 3.14. 

As we have seen in the misfit convergence, the water-cut response is well matched with 

reference data, and two cases have very comparable results. However, joint inversion 

makes much closer bottom-hole pressure response to the reference data. This application 

confirms the necessity of integrating pressure data. For example, updated pressure data of 

P3 and P4 has been impaired when only water-cut data is considered during history 

matching. Permeability needs to be increased for early water breakthrough of P4 water-

cut, whereas, reduction of permeability is required to decrease pressure response. They 

appear conflicting, but our joint inversion with proposed pressure sensitivity successfully 

matches the two objectives simultaneously. 
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(a) Convergence of water-cut data misfit. 

 

(b) Convergence of bottom-hole pressure data misfit. 

 
Figure 3.13 Convergence of the objective function through iteration. 
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Figure 3.14 Final well responses of water-cut (left) and bottom-hole pressure (right) for 4 
producers. 
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The final permeability model made by integrating two objectives is displayed in 

Figure 3.15. In Figure 3.16, left side is the permeability change needed (reference model 

– initial model) and right side is the permeability change made (final model – initial 

model). Although initial model does not have high and low permeability trend, inversion 

process captures the trend of reservoir property and reproduces well responses to be 

consistent with the reference model. Thus, after history matching, final model has a high 

permeability between P2, P4 and I1. In addition, it captures low permeability at south-east 

area.  

Although integration of pressure data provides more information compared to the 

conventional streamline-based approach that is only matching the water-cut data, we need 

additional information such as seismic data to generate more consistent permeability 

distribution with reference model.  

 
 

 

 
 

Figure 3.15 Final permeabiltiy distributioution after joint inversion. 
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Figure 3.16 Change needed (left) and change made (right) during history matching. 

 

 

3.5 Applications of Joint Inversion with Multiscale Approach 

The joint inversion for water-cut and bottom-hole pressure in section 3.4 reconciles two 

different types of data. As we know, pressure data is well-suited to capture a large-scale 

variation of heterogeneity, and saturation data is good for reproducing a small-scale 

variation. Williams et al. (1998) have presented a structured approach that sequentially 

adjusts from global (fieldwide), then to flow units, followed by local changes in model 

parameters. They first matched the pressure to correctly distribute fluids, followed by 

saturation matching to mimic the movement of water and free gas in the reservoir. Cheng 

et al. (2008) showed a similar structured approach for assisted probabilistic history 

matching. Here, we suggest the multiscale approach based on streamline for joint 

inversion to account for the disparity in resolution of different types of data.  
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3.5.1 Methodology of Multiscale Approach 

The multiscale approach has two stages as displayed in Figure 3.17. For the large-scale 

update, the geological model is parameterized using a Grid Connectivity Transform (GCT) 

basis (Bhark et al. 2011), and then the inversion problem is solved using streamline-based 

sensitivity to update coefficients in spectral domain. The second stage for the fine-scale 

update is the same as a joint inversion by calibrating grid properties in section 3.4. 

 

 

 

 

Figure 3.17 Multiscale approch with two stage workflow. 
 

 

 

Grid Connectivity Transform (GCT) 

GCT is a linear transformation that is characterized by the spectral modes of the reservoir 

model grid system. A multiplication of the grid properties with the GCT basis, which is 

constructed from the eigenvectors of a grid Laplacian, performs the transformation from 

the spatial to spectral domain. Bhark et al. (2012) described how to construct grid 

1st Stage

• Large scale update

• Parameterization & 

update coefficient (v)

• Optimization using 

streamline sensitivity

2nd Stage

• Fine scale update

• Streamline-based 

sensitivity & update 

grid cell perm (k)



 

78 

 

Laplacian based on grid connectivity well. These eigenvectors can be generalized as the 

“natural vibration modes” and corresponding eigenvalues can be generalized as the 

“associated natural frequencies.” This parameterization method is efficient for the 

estimation of reservoir parameters by reducing the dimensionality and the enforcement of 

spatial continuity or smoothness in the process of calibration. 

Using orthogonal basis, a discrete spatial field (u) is mapped to the transform domain 

(v) as 

𝐯 = 𝚽𝑻𝐮  ⟺   𝐮 = 𝚽𝐯 (3.15) 

where u has N×1 dimension (N is the discretization of the estimable property field such as 

permeability or porosity). The column vector v is M-length of the parameter set in the 

transform domain. Ф is a (N×M) matrix containing M-columns that defines the discrete 

basis functions of each length N. It is well displayed in Figure 3.18. Because most of the 

energy is compressed in the fewest coefficients, M is much smaller than N, typically less 

than one percent of the original dimension in the spatial domain (Kang et al. 2014). 

For model calibration in history matching, a spatial multiplier field instead of a 

permeability field itself has been applied like Eq. 3.16. 

𝐮 = 𝐮𝟎  ∘  𝚽𝐯 (3.16) 

where 𝐮𝟎 is the prior (initial) property and 𝚽𝐯 defines the multiplier field in the spatial 

domain. A multiplication operator (∘) is the element-wise product (Schur product).  
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Figure 3.18 Transformation between spatial domain (u) and spectral domain (v). 

 

 

 

Large-scale update workflow 

The suggested large scale history matching workflow is presented in Figure 3.19. As we 

mentioned, a permeability multiplier is used instead of a cell property itself. The multiplier 

at each cell is assigned an initial value of unity, and it is parameterized and adjusted in the 

large-scale update. The parameterization is accomplished by projecting the spatial field 

onto basis functions. The linear transform results in a set of spectral coefficients, which 

will be updated by streamline-based sensitivity. After updating coefficients in the spectral 

domain, it back-transforms to the multiplier in the spatial domain by multiplication of the 

coefficient vector with GCT basis. Finally, the multiplier field is applied to the prior model 

to check the data misfit between simulation data and historical data. This whole process 

works iteratively until the maximum number of iterations or data misfit is less than 

tolerance we set. 
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Figure 3.19 1st stage workflow  including (a) large-scale update using GCT basis for 
calibrating coefficient in spectral domain and (b) streamline-based coefficient sensitivity 

calculation. 

 

 

 

 

Transform parameter sensitivity 

Here, we explain the Figure 3.18b that is a calculation of streamline-based sensitivity with 

respect to the coefficient in a spectral domain and LSQR minimization we used in Chapter 

II. Bhark et al. (2011) used a gradient-based method for updating coefficients. Although 

this problem is parameterized and a less ill-posed inverse problem, formulation of the 

sensitivity matrix is still computationally expensive. Kang et al. (2014) used streamline-

derived coefficient sensitivity for water-cut matching. Here, we apply this approach to the 
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joint inversion of pressure and water-cut. To calibrate coefficients, we need to calculate 

partial derivatives to relate well response to the coefficient (v) as follows, 

𝜕𝐴

𝜕v𝑖
=

𝜕𝐴

𝜕u

𝜕u

𝜕v𝑖
 (3.17) 

where A is a well response that can be travel time for water-cut matching and bottom-hole 

pressure difference for pressure matching in our approach. In RHS of Eq. 3.17, we know 

how to calculate 
𝜕𝐴

𝜕u
, sensitivity of well response (bottom-hole pressure and water-cut 

travel time) with respect to the reservoir properties. The model parameter u is a linear 

combination of coefficients weighted by basis function. Thus, we can calculate 
𝜕u

𝜕v𝑖
 using 

Eq. 3.15. 

𝜕u

𝜕v𝑖
=

𝜕(Φv)

𝜕v𝑖
= Φ𝑖 (3.18) 

If we use a multiplier field instead of a reservoir property itself, Eq. 3.18 can be  

𝜕u

𝜕v𝑖
=

𝜕(u0 ∘ Φv)

𝜕v𝑖
= u0 ∘ Φ𝑖 (3.19) 

Finally, we can calculate the coefficient sensitivity by combining Eq. 3.17 with Eq. 3.18 

or Eq. 3.19. 

𝜕𝐴

𝜕v𝑖
=

𝜕𝐴

𝜕u
Φ𝑖 (3.20) 

or,
𝜕𝐴

𝜕v𝑖
=

𝜕𝐴

𝜕u
(u0 ∘ Φ𝑖) (3.21) 
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dAs we have mentioned before, (∘) is the element wise multiplication and the other one 

is dot product. Therefore, Eq. 3.20 and 3.21 make a single value (1×1) for each 

corresponding coefficient. After calculation of the coefficient sensitivity, we minimize the 

penalized misfit function (Eq. 3.14) to update parameters in a spectral domain.  

𝑜(𝛿𝑣) = 𝛼1‖𝛿𝑑𝑤𝑐𝑡 − 𝑆𝑤𝑐𝑡𝛿v‖ + 𝛼2‖𝛿𝑑𝑏ℎ𝑝 − 𝑆𝑏ℎ𝑝𝛿v‖ + 𝛽1‖𝛿v‖ (3. 22) 

However, we do not have the ‘smoothness’ term in the objective function (Eq. 3.22). The 

parameterization with GCT basis captures the large-scale geologic continuity and makes 

the smoothness of reservoir properties during the history matching.  

 

3.5.2 Brugge Benchmark Model 

Joint inversion with the multiscale approach is tested in the Brugge benchmark model in 

section 2.6. The information of this model is described in the previous chapter. It has a 

total of 104 realizations and we selected three of them (1, 67 and 92) to account for the 

uncertainty of the prior model. Figure 3.20 shows the permeability distribution of three 

initial models. They also have different porosity and net-to-gross ratio. 

We start with a large-scale update using GCT basis to update coefficient in spectral 

domain. It uses the permeability multiplier that has a value of unity for all cells initially in 

this application. When data misfit does not decrease, we move to the second stage. Our 

objective is matching water-cut and bottom-hole pressure for 20 producers.  
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Figure 3.20 Permeability distribution of three layers (by row) for three initial models 
(column). 

 

 

 

In spectral domain, the permeability multiplier field is a linear combination of bases 

and coefficients like in Figure 3.21. It clearly illustrates the Eq. 3.16. In this problem, we 

use 100 basis vectors which is much less than one percent of the total grid number. 

 

 

 

 

Figure 3.21 Parameterization of the permeability multiplier field as the weighted linear 
combination of GCT basis vectors. 
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The history matching is conducted with two different scenarios to validate the 

effectiveness of the multiscale approach in joint inversion. The first scenario is the 

multiscale approach that updates the large-scale permeability field followed by the fine 

scale updating, and the second one is direct fine scale updating. Figure 3.22 shows the 

convergence of water-cut and pressure data misfit through 10 iterations of the Brugge 

model. The black dot line in the middle of the figure is the starting point of the second 

stage history matching. All three models with the multiscale approach show the better 

convergence of objective functions compared to the fine scale only results. The result of 

the multiscale approach has 50% decrease in water-cut and 50% to 70% of pressure misfit 

reduction. However, the fine scale only makes 30% to 40% reduction in water-cut and 

10% to 30% reduction of pressure misfit. Particularly, the no.1 model with the multiscale 

shows much smaller pressure misfit and most of the improvement happens in the first 

stage. This is because realization no.1 has a different trend of permeability distribution 

and a huge misfit of bottom-hole pressure data exists initially. It also shows the large-scale 

updating reproduces the pressure response effectively, and water-cut is well matched by 

both multiscale and fine-scale approaches. The other two models also have smaller data 

misfit for both water-cut and bottom-hole pressure when we apply the proposed joint 

inversion with the multiscale approach. These results support the importance of updating 

larger- before smaller-scale heterogeneity. 
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(a) 

 
(b) 

 
 (c) 

Figure 3.22 Convergence of objective function for three prior model (a) No. 1, (b) No. 67, 
and (c) No. 92 realization. 
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Figure 3.23 is the final permeability distribution after 10 iterations with large- and 

fine-scale calibration. There is no unrealistic permeability change that is seen occasionally 

when we match pressure data by calibrating the fine-scale model directly. The result of 

the permeability change is shown in Figure 3.24. Fine-scale only shows the permeability 

change along the streamline. However, the multiscale approach makes a smoother change 

of reservoir parameters and captures the large-scale permeability change. Therefore, it has 

a smaller data misfit in Figure 3. 22 and, particularly, better pressure matching of well 

responses in Figure 3.25. 

 

 

 

 
 
Figure 3.23 Three final updated permeability models (by row) for all 9 layers (column) by 

multiscale approach. 
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Figure 3.24 The change of permeability (updated model – initial model) after only fine 
scale history matching (left column) and multiscale history matching (right column) with 

realization No. 67. 

 

 

 

Last, in Figure 3.25 bottom-hole pressure and water-cut well responses are shown, 

respectively, for selected 16 wells that have a water breakthrough. Although a few wells 

have small changes (P-12, P-13, P-19, and P-20), most of the wells show improvement. 

P1 is one of the wells with no water breakthrough and it has only pressure term in the 

objective function. Again, Figure 3.24 supports the effectiveness of the multiscale 

approach in the proposed joint inversion for bottom-hole pressure and water-cut matching. 
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Figure 3.25 Bottom-hole pressure (left column) and water-cut (right column) responses at 
each production well corresponding to the reference, initial, and calibrated Brugge model 

of realization No. 67 by fine scale only and multiscale approach. 
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Figure 3.25 continued. 
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Figure 3.25 continued. 
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Figure 3.25 continued. 
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An example of the streamlines connected to P-14 explains the improvement of well 

responses after history matching. Based on the initial well response of P-14, higher 

bottom-hole pressure and early water breakthrough are required during the inversion 

process. By comparing the streamlines of initial and updated models in Figure 3.26, the 

calibration of permeability field makes additional support from I-1 and aquifer to P-14 and 

a new connection between I-8 and P-14 (circle with solid line). It results in increasing 

bottom-hole pressure. Based on the time-of-flight, we identify that the water flows faster 

to the producer after history matching (circle with dotted line). It results in accelerating 

the water-cut response. 

 

 

 

                

Figure 3.26 Streamlines connected to the P-14 at initial (top) and after multiscale history 
matching (bottom) (The colour means the time-of-flight from the producer).  

Initial

Updated
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Analysis of convergence of multiscale approach 

We analyze the effect of the multiscale approach on pressure and water-cut matching. 

Here, coarse scale basis functions, corresponding to low modal frequencies, are applied 

first to enable adjusting of the large-scale heterogeneity. Then, we increase the number of 

parameters by adding higher modal frequencies to capture the smaller-scale spatial details. 

Figure 3.27 shows the convergence of our objectives. It indicates that the large-scale 

updating with the smaller number of basis decreases the pressure data misfit drastically. 

The small-scale updating with the large number of basis and the fine-scale updating (cell 

by cell) successfully reduces the water-cut data misfit with maintaining the pressure 

matched in the large-scale process. Thus, it demonstrates the importance of the multiscale 

approach for pressure and water-cut matching and confirms that the large-scale approach 

matches the pressure well and the small-scale approach achieves the water-cut 

improvement. 

 

 

Figure 3.27 Analysis of multiscale approach.  
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3.5.3 Norne Field  

We demonstrate the practical feasibility of our proposed joint inversion with a multiscale 

approach through the history matching of Norne field. The field was discovered in 1991 

and it started production in November 1997. It is located on the Norwegian continental 

shelf approximately 200 kilometers offshore of central Norway. The geologic model 

consists of five zones: Garn, Not, Ile, Tofte and Tilje. Oil is mainly found in the Ile and 

Tofte formations, and gas is found in the Garn formation. The sandstone are buried at a 

depth of 2500-2700m. The porosity is in the rage of 25-30%, while permeability varies 

from 20 to 2500mD (Steffensen and Karstadt, 1996; Osdal et al. 2006). The reservoir 

model has 113,334 grid cells (44,927 of active cells) and contains 36 wells (9 injectors 

and 27 producers) as shown in Figure 3.28. We consider the production period from 1997 

to 2006 for the history matching of water-cut and bottom-hole pressure data. The actual 

simulation model, containing all grid information and properties, and historical production 

data were provided by the operator. The details of the data set is described in Rwechugura 

et al. (2012). 

Watanabe et al. (2013) matched history data with acoustic impedance using a 

combination of stochastic and streamline based approach. The objective of history 

matching is different with our application because it incorporates the seismic data (related 

with pressure and saturation effect) first and matches well water-cut sequentially. Thus, it 

still has the issue we mentioned that the water-cut matching shifts the pressure data 

matched before.  
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Figure 3.28 Structure and well location of Norne field (colour shows permeability 
distribution.) 

 

 

History matching results 

The history matching workflow is the same as the application in the Brugge model (Figure 

3.17 and Figure 3.19). As discussed before, we start with the large-scale update using GCT 

basis, followed by the streamline-based fine-scale update. First, we adjust the WOC for 

E-3AH based on the previous work (Rwechungura et al. 2012). Second, we apply our 

proposed approach to the model. We have a much smaller number of unknown values 

when we parameterize the permeability field. Thus, we can match the pressure amplitude 

instead of the average misfit of pressure data applied in the Brugge model. In the Norne 

field model, most of the calculated pressure responses are similar with history data because 

this field was already calibrated to match the reservoir energy (regional pressure by pore 

volume multipliers). Therefore, after 13 iterations, bottom-hole pressure shows less 
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improvement compared to water-cut matching (Figure 3.29). Figure 3.30 shows the well 

response after history matching. Most of the wells show closer well responses to the 

history data and maintain the initial responses if it was already well calibrated. Although 

water-cut matching of E-4AH is deteriorated, pressure matching shows significant 

improvement (we do not include E-4AH for the misfit calculation in Figure 3.29). This 

phenomenon might have happened because of a potential conflict between two objectives. 

We will explain this issue in more detail in chapter IV. The final updated model is shown 

in Figure 3.31. The permeability change in the large-scale update and the fine-scale update 

are compared in Figure 3.32. As we expected, the 1st stage with GCT parameterization 

captures the large-scale heterogeneity and the 2nd stage adjusts the small-scale 

permeability change to match our objectives. 

 

 
Figure 3. 29 The comparison of the nomalized objective function for water-cut and 

bottom-hole pressure among prior (after WOC calibration), large-scale matching, and fine-
scale matching. 
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Figure 3.30 Bottom-hole pressure (left column) and water-cut (right column) at each 
production well corresponding to the reference, initial, and calibrated Norne field model 

by joint inversion with multiscale approach. 
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Figure 3.30 continued. 
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Figure 3.31 Five selected layers (each column) of the prior, updated permeability, and 

permeability change (by each row). 

 

 

 

 
Figure 3.32 Permeability change in 1st and 2nd stage for the selected five layers.  
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3.6 Chapter Conclusions 

We have presented a new approach to calculate pressure sensitivity based on streamline. 

Using this analytical sensitivity, we propose a streamline-based joint inversion with a 

multiscale approach. We demonstrate the effectiveness of the joint inversion through a 

synthetic model and showed the importance of multiscale approach for the joint inversion 

through the Brugge benchmark model and Norne field application. The major findings 

from this chapter are summarized below. 

1. We have proposed a new methodology for the streamline-based analytic approach 

to calculate sensitivity of bottom-hole pressure with respect to the reservoir 

permeability. We validated the bottom-hole pressure sensitivity by comparison 

with the adjoint method. 

2. We apply the joint inversion for bottom-hole pressure and water-cut matching 

simultaneously to the synthetic model and compare with the only water-cut 

matching case. Adding pressure data makes significant improvement in inversion. 

We can avoid the problem in the sequential process, matching pressure data 

followed by water-cut history matching that was used in prior works, by 

introducing the pressure sensitivity calculation based on streamline. 

3.  We suggested the joint inversion with a multiscale approach. Brugge benchmark 

application with the multiscale approach shows better convergence and improves 

well response matching compared to the only fine-scale history matching. The 

multiscale approach with GCT captures the large-scale heterogeneity and makes a 

smooth change of permeability. In addition, we show the importance of updating 
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larger- before smaller-scale heterogeneity by analysis of the convergence of data 

misfit in the multiscale approach; large-scale matches the pressure and small-scale 

achieves the water-cut improvement. 

4. The Norne field application results confirm that the joint inversion with the 

multiscale approach constrains the history matching solution effectively and 

reproduces the well responses through the large and fine scale inversion.  
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CHAPTER IV 

STREAMLINE-BASED THREE-PHASE HISTORY MATCHING AND FIELD 

APPLICATION 

 

4.1 Chapter Summary 

It is well known that integration of pressure data is essential for the history matching in 

the three-phase system because the gas phase is sensitive to pressure. The prior works 

matched the pressure data, followed by integration of water-cut and gas-oil ratio (Cheng 

et al. 2005, Oyerinde et al. 2009). As the pressure sensitivity based on streamline was 

derived in chapter III, now we can integrate the pressure data and the three-phase 

production data simultaneously. In this chapter, we present the calibration of reservoir 

properties for the three-phase reservoir model using the sensitivities for bottom-hole 

pressure, water-cut, and gas-oil ratio, all based on streamlines.  

By applying our approach to synthetic models with water injector or gas injector, we 

demonstrate the improvement of gas phase matching by incorporating pressure data and 

production data (water-cut and gas-oil ratio) in the three-phase reservoir. We show the 

practical applications using the field cases and validate the utility of our approach. Finally, 

we test the Norne reservoir model again for the three-phase history matching by a 

combination of the evolutionary algorithm and the streamline-based method. 
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4.2 Introduction 

Reconciling reservoir model with a variety of data is one of the most demanding tasks in 

reservoir characterization. The streamline-based history matching started from the two-

phase system, and previous researchers were trying to apply it to the three-phase problem. 

Recently, streamline simulation was extended to the three-phase flow model. Cheng et al. 

(2006) generalized streamline model to compressible flow by introducing the concept of 

“effective density” that captures the changes in the fluid volume with pressure for 

compressible flow. This density term can be conveniently and efficiently traced along 

streamlines. Cheng et al. (2007) proposed an approach to the history matching of three-

phase flow using a novel compressible streamline formulation and streamline-derived 

analytic sensitivities. They assumed the pressure is matched before, or they first matched 

the bottom-hole pressure manually, followed by a joint inversion of water-cut and gas-oil 

ratio. It had an issue we mentioned in chapter III that joint inversion shifts the pressure 

matching done in the pre-processing. Oyerinde et al. (2009) applied the previous approach 

with pressure data. However, it required the pressure matching before the gas-oil ratio 

matching. They carried out the pressure matching in the frequency domain by taking a 

Fourier transform of the pressure data following the procedure outlined by Vasco and 

Karasaki (2006). Now, we know how to calculate the pressure sensitivity based on 

streamline which is explained in chapter III. Therefore, three-phase flow production data 

and pressure data can be matched simultaneously using streamlines.  

Multi-objective problems such as minimizing water-cut, bottom-hole pressure, and 

gas-oil ratio etc. that we are considering can be potentially conflicting because the data 
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comes from different sources, collected from different measurements, and has different 

level of uncertainties. For example, minimizing the water-cut misfit can increase the 

bottom-hole pressure error, and vice versa. To consider the objectives separately, multi-

objective optimization evolutionary algorithm (MOEA) is designed. It searches solutions 

in the Pareto optimal front (Deb et al. 2002). Park et al. (2013) applied MOEA with GCT 

coefficient as parameter to the history matching of production and seismic data. Watanabe 

et al. (2013) matched production history data with acoustic impedance (AI) using MOEA 

with the streamline-based approach. Here, we also consider the evolutionary algorithm to 

avoid relative weighting issues in the streamline-based joint inversion. This proposed 

approach will be explained in detail later. 

The outline of this chapter is as follows. To start with, we analyze the gas-oil ratio 

sensitivity formulation and show the applicability to history matching. We then illustrate 

the three-phase history matching with a synthetic model that has a water injector or gas 

injector. We demonstrate our approach using field-scale models (SPE9 and modified 

Brugge benchmark model) to show the effectiveness of adding gas-oil ratio information 

in the inverse modeling. Lastly, the Norne reservoir model is tested with the multiscale 

approach that is a combination of Pareto-based method and streamline-based approach. 
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4.3 Gas-oil Ratio Sensitivity 

Before going into the application of history matching, we discuss the gas-oil ratio arrival 

time sensitivity. A main advantage of streamline model is that the sensitivities with respect 

to the reservoir parameters can be computed analytically using a single flow simulation. 

This benefit is also applicable to the gas-oil ratio sensitivity.  

 

4.3.1 Mathematical Formulation 

Cheng et al. (2007) proposed an approach for the history matching of three-phase flow 

based on streamline. To compute the gas-oil ratio arrival time sensitivity, the gas 

saturation equation along streamlines can be obtained starting with the mass conservation 

equation for the gas. 

𝜙
𝜕

𝜕𝑡
(

𝑆𝑔

𝐵𝑔
+

𝑆𝑜𝑅𝑠

𝐵𝑜
) + ∇ ∙ (𝑢𝑡⃗⃗ ⃗⃗

𝑓𝑔

𝐵𝑔
+ 𝑢𝑡⃗⃗ ⃗⃗

𝑓𝑜𝑅𝑠

𝐵𝑜
) = 0 (4. 1) 

By transformation to the streamline time of flight coordinate using operator identity (Eq. 

4.2) and noting ∇ ∙ �⃗⃗� = 𝑐, we have the Eq. 4.3. 

𝑢 ∙ ∇= 𝜙
𝜕

𝜕𝜏
 (4. 2) 

𝜕

𝜕𝑡
(

𝑆𝑔

𝐵𝑔
+

𝑆𝑜𝑅𝑠

𝐵𝑜
) +

𝜕

𝜕𝜏
(

𝑓𝑔

𝐵𝑔
+

𝑓𝑜𝑅𝑠

𝐵𝑜
) = − (

𝑓𝑔

𝐵𝑔
+

𝑓𝑜𝑅𝑠

𝐵𝑜
)

𝑐

𝜙
 (4. 3) 

From the rules of an implicit function derivative, 
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𝜕𝑡

𝜕𝑚
= −

𝜕𝑆𝑔
′

𝜕𝜏
𝜕𝜏
𝜕𝑚

𝜕𝑆𝑔
′

𝜕𝑡

 (4. 4) 

Here, 𝑆𝑔
′  represents the quantity 

𝑆𝑔

𝐵𝑔
+

𝑆𝑜𝑅𝑠

𝐵𝑜
. Finally, we combine the Eq. 4.3 and Eq. 4.4 in 

order to obtain the arrival-time sensitivity of 𝑆𝑔
′ , 

𝜕𝑡

𝜕𝑚
=

𝜕
𝜕𝜏

(
𝑆𝑔

𝐵𝑔
+

𝑆𝑜𝑅𝑠

𝐵𝑜
)

𝜕𝜏
𝜕𝑚

𝜕
𝜕𝜏

(
𝑓𝑔

𝐵𝑔
+

𝑓𝑜𝑅𝑠

𝐵𝑜
) + (

𝑓𝑔

𝐵𝑔
+

𝑓𝑜𝑅𝑠

𝐵𝑜
)

𝑐
𝜙

 (4. 5) 

This equation consists of the time of flight sensitivity and a pre-factor that is a function of 

saturation and pressure. All terms in Eq. 4.5 are readily available along the streamlines. 

 

4.3.2 Gas-oil Ratio Sensitivity Analysis 

Now, we analyze the sensitivity with various boundary conditions. At first, we test with 

the 1D homogeneous model by comparing the analytical sensitivity with numerical 

sensitivity. The detail properties of the model are described in Table 4.1 and fluid 

properties are shown in Figure 4.1. The initial pressure is 4,477 psi and the bubble point 

pressure is 4,400 psi. The gas phase exists in the reservoir after production starts. Oyerinde 

et al. (2009) verified that the divergence of flux term in Eq. 4.5 tend to dominate at early 

times and the fractional flow term dominates when the flow is fully developed. Here, we 

test the cases after water breakthrough. Additional analyses are conducted in Appendix A.   
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Table 4.1: General parameters of 1D model  for GOR sensitivity analysis 

  Parameters   Input Values   

  Grid number   (nx,ny,nz) = (100,1,1)   

 DX  10 [ft]  

 DY  10 [ft]  

 DZ  10 [ft]  

 Porosity  0.3  

 Permeability  50 [md]  

  Rock compressibility   3.6 E-06 [1/psi]   

  Oil density   32.0 [lb/cf]   

  Water density   60.11 [lb/cf]   

 Gas density  0.1062 [lb/cf]  

  Water viscosity   0.65 [cp]   

  Water formation volume factor  1.04 [rb/stb]   

 Injector location  (1,1,1)  
 Producer location  (100,1,1)  

*Values for water and rock are at the reference pressure of 1990.3 psi 

*Density is surface condition (14.7 psi) 

 

 

 

 

 

Figure 4.1 Fluid properties for 1D GOR sensitivity analysis.  
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The numerical perturbation method is calculated by 3 steps. First, we run a simulation 

with an original permeability and measure the time of the specific GOR (2.0 Mscf/stb for 

example). Second, we change the permeability by 5% at each cell and measure the arrival 

time of GOR at 2.0. Because the production response is discontinuous by time step size, 

we interpolate linearly between the data points to find the exact time. Finally, we calculate 

the sensitivity of 𝑑𝑡/𝑑𝑘 and then continue this whole process to the entire grid blocks. 

 

1D: BHP-BHP constraint 

The first case is both wells have pressure constraints. The injector is constrained at 5,000 

psi and the producer is controlled at 3,800 psi. Figure 4.2 shows the sensitivity of 

numerical perturbation and the analytical sensitivity based on streamline. As gas phase is 

released around grid 78, sensitivities have small fluctuation. They show good agreement 

in this boundary condition.  

 

 

Figure 4.2 GOR sensitivity comparison between numerical and analytical in BHP-BHP 
constraint case.  
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1D: BHP-Rate constraint 

The well constraints are changed in this case. The injector has a pressure constraint (4800 

psi) but the producer is constrained by rate (3.0 rb/day). Although the magnitude of 

sensitivity is different, numerical and analytical values show a similar trend in Figure 4.3.  

Particularly, the cells where the gas phase exists (𝑝𝑐𝑒𝑙𝑙 < 𝑝𝑏ℎ𝑝) have a difference. The 

reason of the difference in this condition might be that the sensitivity formulation does not 

explicitly include the pressure term, though it is considered implicitly by the pre-factor in 

the formulation. However, we will show in the applications later that this approximation 

of sensitivity may be adequate to the practical history matching. 

 

 

 

 

Figure 4.3 GOR sensitivity comparison between numerical and analytical in BHP-Rate 
constraint case.  
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2D: Rate-Rate constraint 

Now, we test using a 2D homogeneous model with rate constraints for both wells. We 

simulate a water injection case in a quarter five-spot pattern. The detailed reservoir 

information is described in Table 4.2 and Figure 4.4. It starts with bubble-point pressure. 

As the pressure drops, solution gas comes out from the oil phase. We perturb 5% of 

permeability at each grid block and compute the partial derivative of the arrival time of a 

fixed gas-oil ratio value.  

 

 

Table 4.2: General parameters of 2D model  for GOR sensitivity analysis 

  Parameters   Input Values   

  Grid number   (nx,ny,nz) = (21,21,1)   

 DX  52.86 [ft]  

 DY  52.86 [ft]  

 DZ  37 [ft]  

 Porosity  0.1  

 Permeability  81.2 [md]  

  Rock compressibility   3.8 E-06 [1/psi]   

  Oil density   49.1 [lb/cf]   

  Water density   64.79 [lb/cf]   

 Gas density  0.065 [lb/cf]  

  Water viscosity   1.0 [cp]   

  Water formation volume factor  1.0 [rb/stb]   

 Initial reservoir pressure  3000 [psi]  

 Injector location  (21,21,1)  
 Producer location  (1,1,1)  
 Injection rate  500 [rb/day]  
 Production rate  625 [rb/day]  

*Values for water and rock are at the reference pressure of 2200 psi 

*Density is surface condition (14.7 psi) 
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(a) Oil and gas PVT properties 

 
 (b) Three-phase relative permeability data 

 
Figure 4.4 Fluid properties (a) and relative permeability data (b) of 2D model for GOR 

sensitivity analysis. 

 

 

 

 

 

Figure 4.5 Comparison of numerical (left) and analytical sensitivity (right) in a quarter-five 
spot pattern. 
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Figure 4.5 shows the numerical (left) and the analytical (right) gas-oil ratio sensitivity. We 

obtain good agreement between numerical and analytical arrival time sensitivity using Eq. 

4.5. The location and area of the negative and positive sensitivities are also in close 

agreement. The shape is slightly different since the analytical sensitivity is calculated 

along the streamlines. Thus, the shape of the analytical sensitivity is in accordance with 

streamline trajectory. The other reason of this differences is because of the inherent 

approximations in the analytical computation, particularly the assumption of streamline-

based sensitivity that the streamlines do not shift because of small perturbation in grid 

properties. In spite of the approximations, the overall size of the main negative part (blue) 

inside of the white dotted line is similar. The gas-oil ratio sensitivity at the injector area is 

slightly different from the producer area (non-symmetric). The analytical sensitivity also 

captures the differences. 

 

4.4 Application for History Matching 

We will show several applications from synthetic to the field model that have a water 

injector or gas injector. These confirm the applicability of our approach to the three-phase 

history matching. In addition, by comparing two cases that are with and without a gas-oil 

ratio term in the objective function, we verify the effectiveness of our approach on the 

three phase flow model. 
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4.4.1 Two-dimensional Synthetic Model 

The synthetic case is a two-dimensional three-phase reservoir model with a five spot 

pattern. The model of initial and reference permeability is the same as the one we used in 

chapter III (Figure 3.7 and Figure 3.10). PVT properties are in Figure 4.4. Due to BHP-

Rate constraints, the reservoir has a continual pressure drop and more free gas in the 

reservoir in the vicinity of the producers. 

 

 

Table 4.3: General parameters of 2D model  for history matching 

  Parameters   Input Values   

  Grid number   (nx,ny,nz) = (50,50,1)   

 DX  30 [ft]  

 DY  30 [ft]  

 DZ  10 [ft]  

 Porosity  0.15  

  Rock compressibility   3.8 E-06 [1/psi]   

  Oil density   49.1 [lb/cf]   

  Water density   64.79 [lb/cf]   

 Gas density  0.065 [lb/cf]  

  Water viscosity   1.0 [cp]   

  Water formation volume factor  1.0 [rb/stb]   

 Initial reservoir pressure  3000 [psi]  
 Injection constrain  3200 [psi]  
 Production constrain  200 [rb/day]  

*Values for water and rock are at the reference pressure of 3000 psi 

*Density is surface condition (14.7 psi) 
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Case 1: Three-phase model with water injector 

The previous approach by Cheng et al. (2007) and Oyerine et al. (2009) for the three-phase 

flow model matches water-cut and gas-oil ratio with an assumption that pressure data was 

matched reasonably by a pre-processing. However, the primary objective in our approach 

is reproducing the water-cut, gas-oil ratio, and bottom-hole pressure responses 

simultaneously by calibrating the permeability field.  

The first case has a water injector at the center of reservoir, and only dissolved gas 

exists initially. Figure 4.6 shows the reduction of data misfit through 15 iterations. Three 

objectives are decreased simultaneously. Although the gas-oil ratio sensitivity is an 

approximation, it works properly for the three-phase history matching. 

 

    
   (a)               (b) 

 
 (c) 

Figure 4.6 Convergence of the objective function for (a) GOR, (b) WCT, and (c) BHP for 
water injection case. 
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Figure 4.7 BHP (1st column), GOR (2nd column), and WCT (3rd column) of four procuers (by 
each row) corresponding to the reference, initial and calibrated model. 

 

 

 

Figure 4.7 shows well responses of four producers. Water phase has weak dependence on 

the pressure; water-cut was usually well matched in previous applications. However, gas 

phase properties (solution gas-oil ratio, gas formation volume factor) are very sensitive to 

the pressure. Thus, integration of pressure and gas phase flow data should be considered 
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simultaneously. Our approach here seems to successfully reproduce the three-phase flow 

well responses. 

 

Case 2: Three-phase model with gas injector 

In this case, we use the same model but replace the water injector with a gas injector. The 

reservoir has not only dissolved gas, but also free gas from a gas injector. This case has 

very limited water production which is not considered; our objective is matching gas-oil 

ratio and pressure together. Figure 4.8 shows the convergence of 10 iterations. As we 

expected, the data misfits are continually reduced, and the final misfit is less than 20% of 

initial one. Well responses after history matching (Figure 4.9) show good agreement with 

the historical data. Therefore, the Eq. 4.5 is also applicable to the gas injection case. 

 

 

 

    
   (a)               (b) 

 
Figure 4.8 Convergence of the objective function for (a) GOR and (b) BHP for gas injection 

case. 
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Figure 4.9 BHP (1st column) and GOR (2nd column) of four procuers (by each row) 
corresponding to the reference, initial, and calibrated model in gas injection case. 
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4.4.2 Three-dimensional Three-phase Field Scale Model 

In this section, we demonstrate the feasibility of our approach for field studies by 

application to the three-dimensional three-phase field-scale models (SPE9 and modified 

Brugge benchmark model). 

 

Case 1: SPE 9 

The first field-scale model is a slightly modified version of the SPE 9 comparative study 

(Killough et al. 1995). This study investigates a waterflood in a dipping reservoir with 

natural water support from an aquifer at a bottom part. The reservoir has 24x25x15 mesh 

with rectangular coordinates (Figure 4.10). The grid blocks in both X and Y directions are 

300 feet and cell (1,1,1) is at a depth of 900 feet subsea. The remaining cells dip in the X 

direction at an angle of 10 degrees. The detailed reservoir properties such as porosity and 

permeability can be found in the paper by Killough (1995). 

 

 

 
 

Figure 4.10 Modified SPE9 model with water saturation at 900 days. 



 

119 

 

The solution gas-oil ratio, gas and oil formation volume factors, and relative 

permeabilities are the same as those provided for the comparative study. The initial 

pressure at 9,035 feet is 3,600 psi and there is no free gas initially. The oil/water contact 

is 9,950 feet. After 900 days of production, there is considerable free-gas saturation in the 

reservoir. Figure 4.11 is the gas phase streamline at three different time steps. It clearly 

shows the gas phase comes out from the right top area (the farthest point from the injector) 

as pressure depleted. After 900 days production, most of the area has the gas phase except 

for an aquifer part under 9,950 feet.  

 

 

 

 

Figure 4.11 Gas phase streamlines at three time steps with TOF from producer along the 
streamlines. 

 

 

 

In this application, the original permeability of the comparative study is used for a 

reference permeability model to generate production histories (flow rate and pressure 

data). An initial permeability distribution, the starting point of history matching, is 

generated geostatistically as random realization of a sequential Gaussian simulation using 

120 days 300 days 900 days
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the value at the well locations of original model. There are 25 producers and one injector 

as shown in Figure 4.10. The injector has completions from layer 1 through 11. Most of 

the producers except for 9, 17, 23, and 26 are completed from layer 1 to 13. The producers 

9, 17, 23, and 26 are completed from layer 1 through 5 to avoid completions in the water 

leg. 

In the previous section, we have analyzed the gas-oil ratio sensitivity. Although it has 

assumptions and approximates the sensitivity, it captures the overall trend of the numerical 

sensitivity. With the synthetic model, we have shown the applicability of the sensitivity to 

the three-phase inversion problem. Here, we verify the effectiveness of adding the gas-oil 

ratio term in the history matching by comparing two cases. 

 The 1st case is matching the water-cut and bottom-hole pressure data that we did 

in chapter III. Because the gas phase is sensitive to the pressure, this case shows 

the impact of pressure matching to the gas-oil ratio matching (blue line in Figure 

4.12).  

 The 2nd case is matching the water-cut, bottom-hole pressure, and gas-oil ratio 

together. It can show the effectiveness of gas-oil ratio sensitivity in a history 

matching process (red line in Figure 4.12). 
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Figure 4.12 Convergence of the objective function of two cases for GOR, BHP, and WCT 

in SPE 9 model. 
 

 

 

The data misfit convergence demonstrates significant improvement of the gas-oil ratio 

matching when we add the gas phase sensitivity (Figure 4.12). Although the first case 

shows a reduction of data misfits, the second case has a much smaller gas-oil ratio misfit 

as well as additional reductions of bottom-hole pressure and water-cut data misfit 

compared to the first case. The calibrated model in the 2nd case can be closer to the true 

solution when adding the gas phase term. Thus, all objectives have a smaller value and 

show a faster convergence. Figure 4.13 shows well responses of two cases after history 

matching. Most well responses show better matching when we add the gas-oil ratio 

sensitivity. This comparison indicates that the streamline-based analytic sensitivity can 

provide reasonable approximations for the purpose of production history matching. 
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Moreover, it shows that the history matching with a gas-oil ratio term in the three-phase 

flow model is essential and our approach is applicable to the field-scale model. 

 

 

 

 

 

 

 

 

Figure 4.13 GOR (1st column), BHP (2nd column), and WCT (3rd column) of produers (by 
each row) corresponding to the reference, initial, calibrated model for BHP-WCT 

matching, and calibrated model for GOR-BHP-WCT matching. 
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Figure 4.13 continued. 
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Figure 4.13 continued. 

 

 

 

Because we have access to the reference permeability field in the SPE9 case, we can 

conduct more detailed analyses on the results. First, we check the gas phase streamlines 

to the producer in Figure 4.14. They have different streamline trajectories and TOF values 

between the initial and reference models. However, the calibrated models show good 

agreement in the cover area of gas phase streamline, which is where the gas phase exists. 

Thus, it makes good gas-oil ratio matching of well responses shown in Figure 4.13. For 

example, P3 and P21 have smaller areas covered by streamlines after inversion, thus the 

gas-oil ratio is decreased and closer to the reference data. On the contrary, P5 streamlines 

stretch out over a broad area and the gas-oil ratio response is increased. 
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(a) well P3 
 

 

(b) well P5 
 

 

 (c) well P21 
 

Figure 4.14 Gas phase streamlines of selected three producers based on initial, referecne, 
and calibrate model.  

Initial model Reference model Calibrated model
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Second, we compare the permeability distribution between reference, initial, and 

calibrated models in Figure 4.15. We select a total of 6 layers; we take two layers from 

the top, middle, and bottom parts. Based on the permeability field in Figure 4.15, it is 

difficult to observe the changes made to the initial model, because the inversion algorithm 

is aimed to preserve the geologic model using penalty terms in Eq. 3.14. In Figure 4.16, 

we have shown the differences that are change needed (top row) and change made (bottom 

row) to examine if the change is consistent with the reference model. Change made cannot 

capture all the differences in change needed. However, our inversion algorithm makes 

consistent permeability changes in block dotted ellipse areas. 

 

 

 

 

Figure 4.15 Permeability distribution of six layers for reference (1st column), initial (2nd 
column), and calibrated model (3rd column). 

 

Reference model Initial model Calibrated model

Layer 2

Layer 3

Layer 8
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Figure 4.15 continued. 

 

 

Figure 4.16 Change needed (1st row) and change made (2nd row) after history matching for 

SPE9 model.  

Reference model Initial model Calibrated model

Layer 9

Layer 13

Layer 14

Layer 14Layer 13Layer 8 Layer 9Layer 2 Layer 3

-500           0             500
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The three-phase history matching with the streamline-based sensitivity works well for 

calibrating the permeability field of SPE9. Figure 4.12 through Figure 4.14 show that the 

inversion algorithm with a gas-oil ratio sensitivity successfully reproduces the reservoir 

responses. However, as might be expected, the permeability distribution has discrepancies 

between the reference model and the calibrated one. It is due to the combination of several 

issues. First, this algorithm preserves the initial model. Second, the production data for 

each well is the sum of the flow rate from each completion. Pressure data is measured at 

one point of the well trajectory. Therefore, we need additional information like the 

distributed production data (layer resolution) (Kam and Datta-Gupta, 2014) or PLT 

(production logging tool) data. If seismic data is available, we are able to capture the high 

resolution reservoir model (Watanabe et al. 2013).   
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Case 2: Modified Brugge benchmark model  

The original Brugge model we have used in chapter II and chapter III is a two-phase 

system. For the three-phase history matching test, we modify the Brugge model. Figure 

4.17 is PVT data and Figure 4.18 is relative permeability we used for the modified Brugge 

model. 

 

 

Figure 4.17 Fluid properties for the modified Brugge benchmark model. 

 

 

 

 

Figure 4.18 Relative permeability model for the modified Brugge benchmark model. 
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The model description is already shown in chapter II. Here, we selected two models for 

reference model (No. 103) to make three-phase production data (gas-oil ratio and water-

cut) and bottom-hole pressure history. The initial model is realization no.1, that is, the start 

point of history matching. We changed the type of injector from water to gas to check the 

applicability of our approach to the field-scale gas injection model. Figure 4.19 shows the 

permeability distribution of the reference model, the initial model, and the calibrated 

model after 10 iterations. 

 

 

 
 

Figure 4.19 Permeability distribution of reference, initial, and calibrated model (by each 
row) for layer 1 (1st column), layer 4 (2nd column), and layer 7 (3rd column). 

 

 

 

Figure 4.20 shows the convergence of data misfit during 10 iterations. Gas-oil ratio and 

water-cut misfit are reduced 50%, and bottom-hole pressure is decreased around 80% from 

the original misfit. Although the initial model is far from the reference model particularly 

the layer 1, the data misfits are successfully reduced. Well responses of ten selected 

Reference model 

Initial model 

Calibrated model
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producers are shown in Figure 4.21. Most of the wells have good agreement with reference 

well responses. Thus, our approach is also applicable to the field-scale gas injection model 

for the three-phase history matching problem. 

 

 

 

Figure 4.20 Convergence of objective function of GOR (left), BHP and WCT (right) for the  
three-phase modified Brugge benchmark model. 

 

 

 

 

 

 

Figure 4.21 GOR (1st column), BHP (2nd column), and WCT (3rd column) of produers (by 
each row) corresponding to the reference, initial, and calibrated model. 
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Figure 4.21 continued. 
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Figure 4.21 continued. 
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4.5 Multiscale History Matching Workflow for Three-phase Flow (Norne Field 

Application) 

Initially, we apply our streamline-based joint inversion method to Norne field to match 

gas-oil ratio, bottom-hole pressure, and water-cut. As we have shown in chapter III, the 

streamline-based pressure and water-cut matching is applicable to the Norne reservoir 

model. However, we find issues in the application of the three-phase streamline-based 

workflow to Norne field as below. 

 Inapplicability of GTTI to the gas-oil ratio matching in Norne field: We 

applied the GTTI method to the three-phase flow models in previous applications 

(SPE9 and modified Brugge model). They showed the effectiveness of our 

streamline-based approach. If the gas-oil ratio data has monotonic responses with 

small fluctuation, the GTTI approach is applicable because we can correctly 

calculate the maximum correlation between observed data and shifted simulation 

response. Although Oyerinde et al. (2009) applied GTTI and showed good 

matching of gas-oil ratio in the field case, the matching was available because the 

well response was simple and a monotonic trend. However, Norne field has a non-

monotonic trend in gas-oil ratio data like Figure 4.22a and c. Thus, it is difficult to 

find the correct optimal shift time for the gas-oil ratio matching in Norne field.  

 Potential Conflict between objectives: As we have seen in previous history 

matching results for the pressure and water-cut case in the Norne reservoir model, 

some wells show the conflict between objectives. For example, if one objective 

(pressure misfit) is decreased, the other one (water-cut misfit) is increased because 
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of changing reservoir permeability (E-4AH in Figure 3.28). The objectives we are 

using in the three-phase problem can be potentially conflicting. It will be explained 

in more details later. 

 

 

 

  
 (a)       (b) 

  
 (c)       (d) 

Figure 4.22 GOR responses before (a,c) and after (b,d) transformation for E-3AH (the first 
row) and D-1H (the second row). 

 

 

 

To overcome the GTTI issue, we transform the production data and eliminate high 

frequency details in gas-oil ratio data. Rey et al. (2009) applied this approach to the water-

cut matching for discontinuous and non-monotonic responses. Based on Eq. 4.6 we 

recalculate the gas-oil ratio response.  
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𝐺𝑂𝑅𝑛 =
∆𝑉𝑔𝑎𝑠

∫ 𝑞𝑜 𝑑𝑡
𝑡+∆𝑡𝑛

𝑡

 (4. 6) 

where n is number of data point, ∆𝑉𝑔𝑎𝑠 is a fixed desired volume of gas, and ∆𝑡𝑛 is 

production time for fixed gas volume. This transformation deletes high frequency 

responses, particularly the shut-in interval, and keeps a main trend, making it more 

amenable to calculate an optimal travel time in GTTI. For example, well response of E-

3AH is more suitable for GTTI after transformation (Figure 4.22a and b). However, most 

of the well responses still have a non-monotonic trend and a primarily amplitude 

difference rather than travel time difference (Figure 4.22c and d). Therefore, most wells 

are unsuitable for applying GTTI to the gas-oil ratio matching in this model. 

Finally, we suggest that the pareto-based method (Deb et al. 2002) be used for global 

matching at first, followed by streamline-based history matching. This is a similar 

workflow to the multiscale approach in chapter III. The pareto-based multi-objective 

genetic algorithm (MOGA) with GCT coefficient as parameter for history matching was 

presented by Park et al. (2013). This approach is well suited to minimize multiple 

objectives that are potentially conflicting to each other. MOGA is designed to find a set 

of solutions in the Pareto optimal front which can be useful for the uncertainty analysis. 

Watanabe et al. (2013) applied this approach to the Norne reservoir model to match 

seismic data and water-cut sequentially. 

In this dissertation, our objective is calibrating pore volume and permeability 

multipliers globally using MOGA with GCT coefficient, followed by streamline-based 

permeability updating to match gas-oil ratio, bottom-hole pressure, and water-cut 
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simultaneously. Our proposed process is primarily focused on the well production data 

and keeping the matched responses in the global stage (large-scale calibration) by 

considering all three objectives simultaneously in the local calibration using streamline-

based sensitivities. 

 

4.5.1 Global History Matching with Pareto-based Method 

Before we start the global history matching, we calibrate the water/oil contact (WOC) that 

can highly affect the water-cut magnitude. Norne field has total 5 equilibrium regions in 

Figure 4.23. Rwechungura et al. (2012) lowered the WOC for E-segment wells (3rd 

region), from 2618.0 m to 2648.2 m. We change two more WOC levels manually; this 

raises from 2692 m to 2658 m for the 1st region, and from 2693.3 m to 2688.3 m for the 

5th region. (In this section, prior model in the results is the one after manual WOC 

calibration.) 

 

 
 

Figure 4.23 Equilibrium regions of Norne field. 
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Global history matching workflow is shown in Figure 4.24. We update the parameters 

at each stage using MOGA, a derivative-free method. The detailed algorithm is well 

described by Deb et al. (2002). Although it is computationally expensive, we do not 

require any sensitivity calculation. Particularly, we can avoid the gas-oil ratio matching 

issues when we apply the GTTI to this problem. 

At first, we update pore volume (PORV) to match field total production (total field 

water production (FWPT) and total field gas production (FGPT)) and well bottom-hole 

pressure. Pore volume of the model was already calibrated to match a reservoir energy by 

the operator, so we reduced the range of PORV multiplier between 0.5 and 2.0. Our 

variable is 10 GCT coefficients per layer (total 220 coefficients). After pore volume 

calibration, we select one of the 1st rank candidates and move to the second stage: 

calibrating permeability multiplier with updated PORV multiplier. In the second step, we 

use 20 GCT coefficients (Figure 4.25) per layer (total 440 coefficients) to get higher 

resolution of reservoir model by matching well production responses (water-cut, gas-oil 

ratio, bottom-hole pressure).  The multiplier fields of the first and second stage in global 

updating are shown in Figure 4.26. 
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Figure 4.24 Workflow of global matching with MOGA in the Norne reservoir model. 

 

 

 

 

 

Figure 4.25 Parameterization of the multiplier field as the weighted linear combination of 
leading GCT basis. 
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Figure 4.26 Final multiplier field of pore volume (left) and permeability (right) in global 
matching. 

 

 

 

Figure 4.27 shows the population in the first and last generation at each stage. It 

demonstrates that MOGA makes diverse initial population around the prior model (red 

dot) at first. It also successfully reduces the misfit of field production rate in the first stage 

and well responses in the second stage. In addition, it makes the clear pareto-front between 

three different objectives and the majority of gas-oil ratio misfit reduction and bottom-

hole pressure misfit reduction is achieved in the global phase.  

The second reason we are using the MOGA in this problem is because both pore 

volume and permeability multiplier calibration may have conflicting issues. The misfit of 

bottom-hole pressure and water-cut makes a clear pareto-front (Figure 4.28) that indicates 

the nature of the trade-off between different objectives. It explains the reason of the final 

well responses of E-4AH in chapter III (Figure 3.28). Finally, we select one of the 

candidates in the pareto-front, and then we move to the local calibration based on 

streamline. 
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(a)         (b) 

 
(c)           (d) 

Figure 4.27 MOGA results comparison between initial population (first column) and final 
population (second column) by calibration of pore volume multiplier (a and b) and 

permeability multiplier (c and d). Red dot is the initial model at each stage. 

 
 
 

          
Figure 4.28 Pareto-front between FWPT and BHP (left), and between WCT and BHP (right). 
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4.5.2 Local History Matching with Streamline-based Method 

Now, streamline-based inversion is applied to the calibration of cell by cell permeability. 

We start with the updated models in global stage and integrate well data such as gas-oil 

ratio, bottom-hole pressure, and water-cut data using sensitivities derived by streamlines.  

The data misfit is continually reduced from the prior model, after global matching, 

and after local matching (Figure 4.29). As we mentioned, the majority reduction of 

bottom-hole pressure and gas-oil ratio misfit is achieved in the global matching using 

MOGA. Streamline-based calibration also improves the bottom-hole pressure and gas-oil 

ratio. Local history matching primarily improves the water-cut result while maintaining 

the matched well responses in the global phase.  

 

 

 

 

Figure 4.29 The comparison of normalized objective function for WCT, BHP, and GOR 
among prior, global matching model, and local matching model. 
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Figure 4.30 shows the well response after history matching. Overall, we have 

acceptable matches to the observed data. Most of well responses are improved or 

maintained for three objectives. For the gas-oil ratio, B-1H, D-2H, D-4AH, and E-3AH 

are key wells because their magnitude of gas-oil ratio responses are much bigger than the 

other wells. Thus, matching these four wells has a primary effect on the gas-oil ratio misfit 

reduction. In chapter III, E-4AH showed the conflicting issue. However, the final well 

response of this approach improves pressure data and maintains well water-cut that has 

good agreement initially. 

 

 

 

 

 

 

Figure 4.30 BHP (left column), WCT (middle column), and GOR (right column) at each 
production well corresponding to the reference, initial, and calibrated Norne field model 

by the three-phase joint inversion with multiscale approach. 
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Figure 4.30 continued. 
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Figure 4.30 continued. 

 

 

 

The final permeability field is shown in Figure 4.31 and the permeability change made 

during the global and local matching are displayed in Figure 4.32. A majority of 

permeability changes happens in the global phase with MOGA. It captures the large-scale 

heterogeneity and makes a smooth permeability change as we have shown in chapter III. 

To maintain the results of global matching in streamline-based local phase, the norm 

coefficient has a high value in Eq. 3.14. Thus, the local change of permeability is 

insignificant. An illustration of this permeability preservation is seen in Figure 4.33 

through the statistics and histogram of permeability in prior, after global matching, and 

after local matching models. After global matching, permeability distribution is a little 

deviated from the prior model. On the contrary, final permeability statistics are very close 
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to the one after global matching, because local permeability update is minimal for the 

preservation of the calibration model in global phase. 

 

 

 

 

Figure 4.31 Initial (left) and final permeability distribution (right) for Norne reservoir 
model. 

 

 

 

Figure 4.32 Permeability change in global (1st row) and local (2nd row) phase for the 
selected five layers in Nore reservoir model. 
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(a) 

 
                    (b)                    (c) 

 
Figure 4.33 Histogram and statstics of the permeability distribution as prior model (a), 

after global matching (b), and after local matching (c).  
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4.6 Chapter Conclusions 

We have extended the streamline-based joint inversion to the three-phase flow system 

using the analytical sensitivity of water-cut, bottom-hole pressure, and gas-oil ratio. We 

demonstrate the applicability and effectiveness of our approach through synthetic and field 

scale three-phase models. Finally, we apply it to Norne field with the multiscale approach. 

The major findings from this chapter are summarized below. 

1. We analyze the gas-oil ratio sensitivity at first by comparing it with numerical 

sensitivity (perturbation method). Although the streamline-based analytical 

sensitivity cannot capture the exact one, it can calculate reasonable approximations 

for the numerical sensitivity by following the trend of it. 

2. We test our analytical sensitivities in the three-phase synthetic models with a water 

injector or gas injector. The streamline-based joint inversion for gas-oil ratio, 

bottom-hole pressure, and water-cut reproduces the well responses. It supports that 

approximate gas-oil ratio sensitivity based on streamline is reliable for the purpose 

of production history matching. 

3. The field scale applications demonstrate the feasibility of our approach for the 

inversion problem. Adding gas-oil ratio information to the joint inversion of water-

cut and bottom-hole pressure creates better convergence of data misfits, 

particularly gas-oil ratio, and reproduces closer well responses compared to only 

matching pressure and water-cut. Therefore, the streamline-based three-phase 

history matching workflow is applicable and effective on the practical history 

matching problem. 
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4. In the Norne field application, we have two issues in which GTTI is not applicable 

due to non-monotonic gas-oil ratio data and multi-objectives in history matching 

problem can be potentially conflicting. To avoid these issues, we suggest the 

multiscale approach by combining a multi-objective genetic algorithm (MOGA) 

for global matching and a streamline-based approach for local calibration. It 

successfully reduces the data misfit of water-cut, bottom-hole pressure, and gas-

oil ratio simultaneously while keeping the prior reservoir properties. The calibrated 

model has substantially improved well responses. 
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CHAPTER V 

CONCLUSIONS AND RECOMMENDATIONS 

 

5.1 Conclusions 

This study summarized the development and applications of streamline-based history 

matching. We presented how to incorporate diverse data types related to multiphase flow 

and pressure with the streamline-based inversion process. In addition to the demonstration 

of our method, we emphasized the applicability of our approach to the field-scale reservoir 

model to satisfy the industry demands. 

First, we have presented the streamline-based transport tomography for high 

resolution reservoir characterization using a novel tracer technology. 

Second, we have proposed a new approach to calculate the streamline-based bottom-

hole pressure sensitivity at the wells. It makes the joint inversion with a multiscale 

approach treatable. 

Lastly, the streamline-based joint inversion is extended to the three-phase flow model 

by integrating gas-oil ratio, bottom-hole pressure, and water-cut data simultaneously.  

The summary of all the works and findings are listed below. 

 We have proposed a new approach for streamline-based history matching of 

distributed water arrival time together with the aggregated well production data. 

 The distributed water arrival information provides significantly improved flow 

resolution for reservoir characterization. The calibrated model with transport 
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tomography reproduces the detailed flow behavior of the reference model more 

closely.  

 The proposed bottom-hole pressure sensitivity based on streamline is validated by 

a comparison to the adjoint method. 

 The joint inversion for bottom-hole pressure and water-cut simultaneously avoids 

the limitation in a sequential approach and makes significant improvements in 

inversion results. 

 We suggest the joint inversion with a multiscale approach. It shows better 

convergence of data misfits and improves the well response matching compared 

to direct fine-scale history matching. It captures the large-scale heterogeneity and 

makes smooth changes in permeability.  

 We showed that the streamline-based gas-oil ratio sensitivity can provide 

reasonable approximations for the purpose of history matching. 

 The field-scale applications demonstrated the feasibility of our streamline-based 

approach for practical history matching. We examined the impact of adding gas-

oil ratio information to the three-phase joint inversion. 

 In the Norne field application, we suggested the multiscale approach by combining 

a multi-objective genetic algorithm (MOGA) for global matching with a 

streamline-based approach for local calibration. This approach resolves the issues 

related to the inapplicability of GTTI and the potential conflict between objectives. 

Therefore, our approach is recommended to the field-scale history matching 

problem. 
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5.2 Recommendations 

There are several recommendations that can be drawn from this study. 

 Including seismic information (acoustic impedance or inversed pressure and 

saturation data) into our approach of matching the three-phase production data, 

will improve the resolution of calibrated reservoir models. 

 Incorporating different types of data requires normalization. We normalized it 

based on the inverse of standard deviation of measurement errors. However, 

typically such measurement errors are not available and the approach needs to be 

generalized. Particularly, it will be critical when we develop the joint inversion of 

seismic data with production data. 

 Gas-oil ratio sensitivity is a reasonable approximation for the history matching. 

However, arrival time sensitivity is not applicable to the non-monotonic well 

response which is common in field cases. We need to develop new algorithms.  

 In chapter IV, we tried the global phase by calibrating PORV and permeability 

multiplier sequentially. However, two variables can contradict. Simultaneous 

consideration of them can result in a more accurate estimation of reservoir 

properties. 

 Currently, we have an ability to trace streamlines in an irregular grid systems. 

Thus, we can develop the joint inversion in unstructured grids with mostly coarse 

grids except for well areas that have fine grids.  
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NOMENCLATURE 

 

ATM = amplitude misfit 

BHP = bottom-hole pressure 

GCT = grid connectivity based transformation 

GOR = gas-oil ratio 

GTTI = generalized travel time inversion 

MOGA = multi-objective genetic algorithm 

RMSE = root mean square error 

TOF = time of flight 

TTI = travel time inversion 

TTM = travel time misfit 

WCT = water-cut 

 

A = Area 

𝐵𝑜 = oil formation volume factor 

𝐵𝑔 = gas formation volume factor 

c  = divergence of the velocity field 

D = depth 

𝐸 = misfit function 

f = total fractional flow of phase  

g  = gravity acceleration constant 
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𝑘 = permeability 

L = length 

𝑳 = spatial difference operator 

𝑚 = reservoir parameter 

𝑁𝑑 = number of dynamic data observations 

p = pressure 

𝑝𝑏ℎ𝑝 = bottom hole pressure 

q = flow rate 

𝑅2 = coefficient of determination 

𝑅𝑠 = solution gas/oil ratio 

𝑠 = slowness 

S  = saturation of phase  

𝑡 = time 

𝑢𝛼 = velocity of phase α 

u = parameter in spatial domain 

v = parameter set in transform domain 

𝑦𝑜𝑏𝑠 = observed response 

𝑦𝑜𝑏𝑠̅̅ ̅̅ ̅̅  = averaged observed response 

𝑦𝑐𝑎𝑙 = calculated response 

𝛽1 = weighting factor for the prior model 

𝛽2 = weighting factor for the roughness term 

∆𝑡 = travel-time shift 
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∆�̃� = generalized travel time 

𝜆𝑡 = total mobility 

𝜏 = time of flight 

𝜙 = porosity 

Φ = basis matrix 

𝜓 = streamline trajectory 
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APPENDIX A 

ANALYSIS OF GAS-OIL RATIO ARRIVAL TIME SENSITIVITY 

 

We validated gas-oil ratio (GOR) arrival time sensitivity in chapter IV. Here, we conduct 

additional analyses to clarify when the formulation (Eq. 4.5) is applicable. Adedayo et al. 

(2009) showed that the divergence of flux dominates the GOR sensitivity at early times 

and the fractional flow term dominates the sensitivity when the flow is fully developed 

(Figure A.1). They used the numerical sensitivity (left column in the figure) to show the 

dominance in the analysis. 

 

 

Figure A.1 Comparison between GOR sensitivity and divergence of flux (Adedayo et al. 
2009)  
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Watanabe and Datta-Gupta (2012) also showed this characteristic in cross-covariance map 

between cell permeability and well GOR response (Figure A.2). 

 

 

Figure A.2 Cross-covariance map between permeability and GOR at three different times 
(Watanabe and Datta-Gupta, 2012). 

 

Here, we analyze when the streamline-based GOR arrival time sensitivity formulation is 

applicable using the models in section 4.3. Figure 4.2 and Figure 4.3 are the sensitivities 

after water breakthrough. They have showed good agreement with the numerical 

sensitivity. However, when the water front has not arrived the producer (the flow is not 



 

165 

 

fully developed), there are issues in the analytical sensitivity. First, we test the BHP-BHP 

case, which means injector and producer are constrained by pressure. Figure A.3 shows 

the behavior of properties used in the sensitivity formulation (Eq. 4.5). The numerical and 

analytical sensitivities are not matched in this condition. The analytical sensitivity has two 

peaks; the first one is because of the water front and the second is because of the gas 

phase (𝑝𝑐𝑒𝑙𝑙 < 𝑝𝑏). The water front makes the difference between two sensitivities. The 

behavior of the numerical sensitivity is similar with the shape of divergence of flux (rising 

sharply), though the location of peak does not exactly match. 

 

 

 
      (a)      (b) 

   
     (c)      (d) 

Figure A.3 (a) Fractional flow and saturation of gas phase, (b) fractional flow and 
saturation of water phase, (c) divergence of flux, and (d) sensitivity comparison before 

water breakthrough in 1D BHP-BHP case. 

0

0.02

0.04

0.06

0.08

0.1

0 20 40 60 80 100

fg
, S

g 
(d

im
e

n
si

o
n

le
ss

)

Grid number

fg Sg

0

0.2

0.4

0.6

0.8

1

1.2

0 20 40 60 80 100

fw
, S

w
 (

d
im

e
n

si
o

n
le

ss
)

Grid number

fw Sw

-1.00E-04

-5.00E-05

0.00E+00

5.00E-05

1.00E-04

1.50E-04

0 20 40 60 80 100

D
iv

er
ge

n
ce

 o
f 

fl
u

x 
(d

im
en

si
o

n
le

ss
)

Grid number

-1

-0.5

0

0.5

1

1.5

2

-1

0

1

2

3

4

0 20 40 60 80 100

se
n

si
ti

v
it

y
 (

w
rt

 k
)

Grid number

numerical analytic



 

166 

 

Figure A.4 shows the behavior of properties and sensitivities after water breakthrough in 

BHP-BHP case (same condition with Figure 4.2). The sensitivities show the small 

fluctuation when gas phase exists, but they are not dominated by the divergence term and 

show good agreement in Figure A.4 (d). 

 

 
     (a)      (b) 

  
     (c)      (d) 
 

Figure A.4 (a) Fractional flow and saturation of gas phase, (b) fractional flow and 
saturation of water phase, (c) divergence of flux, and (d) sensitivity comparison after 

water breakthrough in 1D BHP-BHP case. 
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sensitivity. The peak of divergence is due to gas phase soaring, which is related to the 

water front. However, the numerical sensitivity shows the different behavior when the gas 

phase is released. It also has an upsurge as closing to the water front, which is similar 

location with peak of divergence. But the numerical sensitivity increases much smoother 

and broader compared to the divergence behavior and analytical sensitivity. In this 

condition, the numerical sensitivity does not seem to be only dominated by the divergence 

of flux. The producer is constrained by rate, so it can be affected by pressure change due 

to the permeability perturbation.  

 

 
     (a)      (b) 

  
     (c)      (d) 

Figure A.5 (a) Fractional flow and saturation of gas phase, (b) fractional flow and 
saturation of water phase, (c) divergence of flux, and (d) sensitivity comparison before 

water breakthrough in 1D BHP-Rate case. 
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However, when the flow is fully developed the sensitivities have good agreement (similar 

trend) in Figure A.6 (d). Both numerical and analytical sensitivities have different 

behavior with the divergence of flux. 

 

 
     (a)      (b) 

  
     (c)      (d) 
 

Figure A.6 (a) Fractional flow and saturation of gas phase, (b) fractional flow and 
saturation of water phase, (c) divergence of flux, and (d) sensitivity comparison after 

water breakthrough in 1D BHP-Rate case. 
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vaguely a similar trend as the numerical sensitivity by showing an arc. However, the 

analytical sensitivity has the flow-dominated behavior along the diagonal direction 

between wells, which is the same trend as the streamline trajectory. The numerical 

sensitivity (Figure A.7 (a) on the left) seems to be dominated by the divergence that is 

shown in Figure A.1. Therefore, we have a different shape of the sensitivity before the 

water breakthrough. On the other hand, we have good agreement when the flow is fully 

developed (Figure A.7 (b)). 

 

 
(a) 

 
(b) 

Figure A.7 Comaprison of sensitivity between numerical (left) and analytical based on 
streamline (right) at (a) before water breakthrough and (b) after water breakthrough in 2D 

Rate-Rate case. 
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Our GOR arrival time sensitivity formulation makes reasonable approximations when the 

flow is fully developed and it is applicable to the history matching problem (Chapter IV). 

However, it has a limitation: the analytical sensitivity cannot represent the numerical 

sensitivity when the flow is not fully developed (before the water breakthrough). Thus, we 

need additional efforts to figure out this issue. 

 The water front makes an effect on the analytical sensitivity when the flow is not 

fully developed. It is one of the reasons in the sensitivity differences. 

 The pressure effect by the permeability perturbation is considered implicitly 

because the saturation and fractional flow etc. in the Eq. 4.5 are the function of 

pressure. In history matching, the analytical sensitivity can be applicable because 

we add pressure sensitivity separately in this dissertation. However, we need to 

think about the necessity of the pressure term explicitly to obtain the accurate 

sensitivity regardless of the development of the flow. 
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APPENDIX B 

USER MANUAL MULTI-PURPOSE SOFTWARE (DESTINY) FOR STREAMLINE 

TRACING, HISTORY MATCHING AND RESERVOIR MANAGEMENT 

 

B.1 Introduction 

This is manual for streamline-based tool called “DESTINY”. The applications in this 

dissertation have been carried out using it and all new features of streamline-based history 

matching are implemented. The DESTINY has been developed for multi-purpose; 

streamline tracing, history matching, and reservoir management & development. Here, I 

briefly show how it works and objective of this software. In addition, how to construct 

input data for DESTINY because it has new input after implementing the new features 

shown in this dissertation. 

 

B.2 Overview of DESTINY 

Figure B.1 shows the DESTINY workflow. It interfaces with several commercial 

simulators under window and Linux system. In this dissertation, we use ECLIPSE 

developed by Schlumberger for a simulation and Petrel and Tecplot for a visualization. 

 

B.3 Objectives 

The main objectives of DESTINY are to trace streamline even in complex corner 

point and faulted (non-neighbor connection) geometry as well as the sensitivity 
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coefficient computation of generalized travel time inversion (He et al., 2002; Cheng et 

al., 2005; Oyerinde et al., 2007). 

 

 

Figure B.1 Overview of DESTINY working environment. 

 

 

In addition, DESTINY provides reservoir management tool such as drainage and 

swept volume calculation. Besides, it has ability to do rate optimization either for 

injection rate or for production rate based on simple analytic approach (Park and 

Datta-Gupta, 2011). Following summarizes main features in DESTINY (Figure B.2): 

 Streamline Tracing and Visualization in corner point geometry and faulted 

cells from finite difference velocity field 

 Streamline-based assisted History Matching for calibration of high resolution 

geologic models to production data. 

 Reservoir  Management/Optimization  for  analyzing  and  optimizing 

drainage/swept volumes, well connectivity using flood efficiency maps 

 Reservoir Development for optimal infill well placement 

VIP

Output for visualization 

software

DESTINY
• Streamline tracing

• History matching

• Optimization 

(Rate optimization)

• Reservoir management 
(Drainage volume, Flood efficiency) 

Input 

from simulators
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Figure B.2 DESTINY main features. 

 

 

 

B.4 Structure of input data 

DIP file is an input file for DESTINY where we enter correct information about the 

simulation model that we are going to run and specify task with keywords, as we desire. 

This section gives details about keywords in input file.  

 

 
DIP_DATA_FILE 

File with general model information 

This keyword defines the file holding the main ECLIPSE input deck. This file will be 

used to make the system call to run ECLIPSE in batch mode and should have the full 

ECLIPSE input data structure. 

 

DIP_STREAMLINE_NUM 

Number of Streamlines and output 

The keyword is followed by a line with two records. The records are defined as follows, 

1
st 

INTEGER  Number of Streamlines to be used 

Flow Visualization History Matching
Reservoir 

Management
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2
nd 

BOOLEAN  Defines if output files with streamlines is desired. The default  

   streamline output in DESTINY satisfies binary FLOVIZ/PETREL 

   formats 

 

DIP_FORWARD_SIMULATOR 

Defines simulator to be used 

The keyword is followed by a line with five records. The records are defined as follows, 

1
st 

STRING   Define which simulator is to be used for tracing and inversion. 

   DESTINY is interfaced to work with ECLIPSE/VIP/FRONTSIM 

   (Use simulator name to select the proper system calls) 

2
nd 

BOOLEAN  Define if utility/debug files are required (TRUE:: REMOVE || 

   FALSE::KEEP). It is recommended to leave this record as FALSE 

3
rd 

STRING  Define which format is used for Summary / Restart files from 

   simulator (BINARY / ASCII). Default is BINARY. 

4
th 

STRING  Define if we want to run the FORWARD simulator or not. If 

   ‘STOP’ is selected there must be and available set of output files  

   including summary file and restart files etc. (RUN/STOP) 

5th BOOLEAN    "PRE-SCREENING  BOOLEAN" which  to  ask  if  user  want  to 

   check the data setup for running DESTINY(TRUE/FALSE) ;  

   TRUE means we will screen data setup and show prescreening 

   report. If it is OK, we keep run simulation. Otherwise, we stop 
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   simulation and show a report that asks user to make correction on 

   data set. 

 

DIP_TRACING_SETTING 

Defines setting for tracing 

The keyword is followed by a line with thirteen records. The records are defined as 

follows, 

1
st 

STRING               Phases involved in forward model. This will set DESTINY readers 

   to scan phase fluxes as reported by the selected simulator. Use  

   mnemonics OIL, WAT and GAS in any order followed by PHASE 

2
nd 

STRING                Phases involved in tracing. This will set DESTINY to perform 

   tracing based on single/multi phases. Use mnemonics OIL, WAT 

   and GAS in any order followed by PROD if streamlines are starting 

   from producers only. Use mnemonics OIL, WAT and GAS in any 

   order followed by SINK if streamlines are starting from any cell. 

3
rd 

STRING                 Define if tracing is to be done at (ALL) schedule dates or at a 

   (SINGLE) date. 

4
th 

STRING             If SINGLE date tracing is selected in 3
rd 

argument, this record sets 

   the schedule date in which tracing is to be done. 

5
th 

FLOAT  Set a flag to request (ASCII/BINARY) output from streamlines. No 

   action will be taken when BINARY is selected. 

6
th 

STRING  Define if the number of streamlines per completion is defined 
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   based on flux (STCFLUX) or should be uniformly (STCUNI)  

   distributed. Default is defined based on fluxes, even if the keyword 

   is not included in DIP file. 

7
th 

STRING  Define the type tracing to tackle faults and NNC connections. The 

   default in DESTINY for inversion purposes is POLLOCK's  

   construction (POLLOCK/ MODPOLLOCK/LBLJIMENEZ) 

8
th 

STRING  Define the type discretization for tracing. The default in DESTINY 

   is HORIZNRAND (Random discretization in Horizontal).  

   (HORIZNRAND/HORIZONTAL/VERTICAL/SQUARE) 

9
th 

BOOLEAN  Define if inversion process is applied (TRUE: TRACING ONLY 

   ||FALSE:  INVERSION APPLIED). Keep this as “TRUE” for  

   tracing and reservoir management purposes. 

10
th 

STRING  (FEMAP/FALSE) 

   FEMAP is going to additionally print both Flux connectivity map 

   and average of TOF map. FALSE is printing NORMAL  

   s treamlines (this is normal and default) 

11
th 

STRING  (NORMAL/INJ2PROD) 

   This option switches tracing option to the injector to producer. The 

   default is to trace from producer to injector. 

12
th 

BOOLEAN This option is to define whether we consider “free gas only” or not. 

   If “TRUE” is chosen, we do not consider “Dissolved gas”. 
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13
th 

BOOLEAN Set as TRUE if we are going to use 'COARSEN' keyword and use 

   it for tracing and inversion 

 

DIP_ECLRUN_SETTING 

This setting aims to provide correct command to call simulator. Depending on working 

system (either Linux or window, also depending on setting up in their own system), the 

command to call simulator is different as shown in example below. Thus, in this setting 

we can specify about how to call simulator by command. If this setting is void, then 

DESTINY will activate its own default command which is $eclipse (for window) and 

@eclipse (for Linux run). 

 

DIP_SENS_TUNING 

Defines setting for sensitivity tuning 

The keyword is followed by a line with seven records on each line. The records are 

defined as follows, 

1
st 

STRING  When set to TRUE sensitivity normalization for equalization of the 

   sensitivities is applied. The normalization facilitates the inversion 

   algorithm based on data misfit. 

2
th 

FLOAT        Normalizing value for bottom hole pressure sensitivity in joint  

   inversion. 

3
th 

FLOAT  Normalizing value for gas-oil ratio sensitivity in joint inversion. 

4
th 

STRING       When set to PERCCUTOFF, a percentile based cutoff will be 
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   applied to WWCT sensitivities on a well-basis. It is used to reduce 

   unusual high and low sensitivity values. Default record is NONE 

5
th 

FLOAT  Define the lower percentile for the WWCT sensitivity cut-off. 

6
th 

FLOAT  Define the upper percentile for the WWCT sensitivity cut-off. 

7
th 

STRING       When set to TOFCUTOFF, a time of flight based cutoff will be 

   applied to WWCT sensitivities on a well-basis. Used to eliminate 

   the sensitivities in stagnation region which may cause distort  

   inversion performance. Default record is NONE 

8
th 

FLOAT                  Defines  the  threshold  of  the  time  of  flight  for  the  water  cut/gas 

   oil ratio sensitivity cut-off. This Maximum Time of Flight cut off  

   value is automatically calculated by multiplication of actual  

   producing time period with input multiplier value. 

9
th 

FLOAT  Define the threshold of the time of flight for the bottom hole  

   pressure sensitivity cut-off. 

10
th 

BOOLEAN           Flag to sensitivity files print out. If set to FALSE, the sensitivity 

   files are not going to be generated even not calculated.  

   (TRUE/FALSE) 

 

DIP_DATA_MISFIT 

Defines misfit tolerance to stop inversion 

The keyword is followed by a line with two records. The records are defined as follows, 

1
st 

FLOAT  Overall travel time misfit defined along all wells (WCT) 
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2
nd 

FLOAT  Overall amplitude misfit defined along all wells (WCT) 

3
rd 

FLOAT  Overall amplitude misfit defined along all wells (BHP) 

These values will be used to stop the inversion whenever the specified tolerance is 

satisfied. 

 

DIP_INV_TUNNING 

Defines tuning parameters for running LSQR minimization 

The keyword is followed by a line with five records. The records are defined as follows, 

1
st 

FLOAT  Number of LSQR iterations 

2
nd 

FLOAT  Decrease  factor  to  be  applied  over  the  norm  and  smoothing 

   constraints through iterations. 

3
rd 

FLOAT  Maximum weight given to permeability changes at each iteration. 

4
th 

FLOAT  Minimum weight given to permeability changes at each iteration. 

5
th

FLOAT  Default weight given to permeability changes in the each iteration 

 

DIP_INV_CONSTRAINTS 

Defines norm and smoothing constraints to minimize objective function 

The keyword is followed by three lines with three records on each line. The records are 

defined as follows, 

1
st 

FLOAT FLOAT FLOAT Norm constraint 

2
nd 

FLOAT FLOAT FLOAT Horizontal smoothing constraint 
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3
rd 

FLOAT FLOAT FLOAT Vertical smoothing constraint 

 

DIP_INV_INTEGRATION #INT 

Defines type of production data integration (added new options for Chapter II,III, and IV) 

The keyword is followed by an integer (#INT). This integer defines the number of 

subsequent lines to be scanned. The records are defined as follows, 

1
st 

STRING  Define which inversion type is applied 

   (WWCT/WGOR/BHP/BHPWCT/BHPGOR/BHPWCTGOR) 

2
nd 

STRING  Define inversion method, specifically method to calculate data  

   misfit. ‘RATE’ or ‘PRESSURE’ depends on the well constraint for 

   BHP inversion (Chapter III). ‘COMP’ is needed for transport  

   tomography in Chapter II. 

   (GTT/TTM/AMP/GTTRATE/GTTPRESSURE/GTTCOMP/  

   TTMCOMP) 

3
rd   

FLOAT  Defines no. of iteration to run 

 

DIP_INV_SETTINGS 

Defines setting for inversion 

The keyword is followed by a line with five records. The records are defined as follows, 

Keyword to define WWCT inversion settings 

1
st  

FLOAT                 This will be the WWCT value selected for TTM misfit evaluation 
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2
nd   

BOOLEAN Flag to include WWCT sensitivities in INVERSION, leave this  

   field at TRUE (TRUE/FALSE) 

3
rd   

STRING  When set to PERM_RANGE, a permeability range specified below 

   will be applied to perm range for inversion process   

   (NONE/PERM_RANGE) 

4
th 

FLOAT                   Define the lower limit for permeability (LOWER LIMIT OF  

   PERM) 

5
h 

FLOAT  Define the upper limit for permeability (UPPER LIMIT OF PERM) 

 

DIP_INV_PARAMETER 

Defines setting for GCT inversion (Chapter III – multiscale approach) 

The keyword is followed by a line with two records. The records are defined as follows, 

Keyword to define GCT inversion (global matching) settings 

1
st  

FLOAT                 Number of basis 

2
nd   

STRING  File name to read basis values 

 


